Efficient one-pot synthesis of [3]catenanes based on Pt(II) metallacycles

with a flexible building block

Yuan-Guang Shao,^a Lang He,^a Qian-Qian Mao,^a Tao Hong,^a Xin-Wen Ying,^a Zibin Zhang,^a Shijun Li^{*a} and Peter J. Stang^{*b}

^aCollege of Material, Chemistry and Chemical Engineering, Hangzhou Normal University,

Hangzhou 311121, P. R. China

^bDepartment of Chemistry, University of Utah, 315 South 1400 East, Room 2020,

Salt Lake City, Utah 84112

Email address: l_shijun@hznu.edu.cn; stang@chem.utah.edu

Table of Contents

- 1. ¹H NMR, ¹³C NMR and mass spectra of **1a**
- 2. ¹H NMR spectrum of **1b**
- 3. ¹H NMR, ³¹P NMR and ¹H-¹H COSY NMR spectra of metallacycles **2a** and **2b**
- 4. ¹H NMR and ³¹P NMR spectra of [3] catenane 3, [3] catenane 4 and [3] catenane 5
- 5. ESI-MS spectra of metallacycles 2a and 2b
- 6. ESI-MS spectra of [3] catenane 3, [3] catenane 4 and [3] catenane 5
- 7. Investigation of the host-guest complexation DB24C8 **J***a*, DB30C10 **J***a* and DB24C8 **J***b*
- 8. Determination of binding constant (K_a) using the UV-vis titration method
- 9. Crystal structure of 1b
- 10. NMR spectra of [3] catenanes by using one-pot construction method
- 11. Synthesis and characterization of anion-exchanged metallacycles 7, 8 and [3] catenanes 9, 10, 11
- 12. X-ray analysis data of 1a and [3]catenane 4

1. ¹H NMR, ¹³C NMR and mass spectra of **1a**

Fig. S1 1 H NMR (500 MHz, CD₃CN, 25 $^{\circ}$ C) spectrum of 1a.

Fig. S2 ¹³C{¹H} NMR (126 MHz, CD₃CN, 25 °C) spectrum of **1a**.

Fig. S3 High resolution electrospray ionization mass spectrum of **1a**. m/z calcd. for C₂₃H₂₂F₆N₄P ([M – PF₆]⁺), 499.1481; found, 499.1468, error –2.6 ppm.

2. ¹H NMR spectrum of 1b

Fig. S4 ¹H NMR (500 MHz, acetone- d_6 , 25 °C) spectrum of **1b**.

3. ¹H NMR, ³¹P NMR and ¹H-¹H COSY NMR spectra of metallacycles **2a** and **2b**

Fig. S5 ¹H NMR (500 MHz, acetone- d_6 , 25 °C) spectrum of metallacycle 2a.

Fig. S6 ³¹P{¹H} NMR (202 MHz, acetone- d_6 , 25 °C) spectrum of metallacycle **2a**.

Fig. S7 ¹H-¹H COSY NMR (500 MHz, acetone- d_6 , 25 °C) spectrum of metallacycle **2a**.

Fig. S8 ¹H NMR (500 MHz, acetone- d_6 , 25 °C) spectrum of metallacycle **2b**.

Fig. S9 ³¹P{¹H} NMR (202 MHz, acetone- d_6 , 25 °C) spectrum of metallacycle **2b**.

Fig. S10 ¹H-¹H COSY NMR (500 MHz, acetone- d_6 , 25 °C) spectrum of metallacycle **2b**.

4. ¹H NMR and ³¹P NMR spectra of [3] catenane 3, [3] catenane 4 and [3] catenane 5

Fig. S11 ¹H NMR (500 MHz, acetone- d_6 , 25 °C) spectrum of [3]catenane **3**.

Fig. S12 ³¹P{¹H} NMR (202 MHz, acetone- d_6 , 25 °C) spectrum of [3]catenane **3**.

Fig. S13 ¹H NMR (500 MHz, acetone- d_6 , 25 °C) spectrum of [3]catenane 4.

Fig. S14 ³¹P{¹H} NMR (202 MHz, acetone- d_6 , 25 °C) spectrum of [3]catenane **4**.

Fig. S15 ¹H NMR (500 MHz, acetone- d_6 , 25 °C) spectrum of [3]catenane 5.

Fig. S16 ³¹P{¹H} NMR (202 MHz, acetone- d_6 , 25 °C) spectrum of [3]catenane **5**.

Fig. S17 ESI-MS spectrum of **2a**. a) experimental spectrum of $[\mathbf{2a} - 2\text{OTf}]^{2+}$ (m/z = 1224.2068) and its fragment $[\mathbf{1a} + \mathbf{6} - \text{OTf}]^+$ (m/z = 1224.2068); b) simulated spectrum of the fragment $[\mathbf{1a} + \mathbf{6} - \text{OTf}]^+$; c) simulated spectrum of $[\mathbf{2a} - 2\text{OTf}]^{2+}$; d) experimental spectrum of $[\mathbf{2a} - 2\text{PF}_6]^{2+}$ (m/z = 1228.1958) and its fragment $[\mathbf{1a} + \mathbf{6} - \text{PF}_6]^+$ (m/z = 1228.1958); e) simulated spectrum of the fragment of the fragment $[\mathbf{1a} + \mathbf{6} - \text{PF}_6]^+$; f) simulated spectrum of $[\mathbf{2a} - 2\text{PF}_6]^{2+}$.

Fig. S18 ESI-MS spectrum of $[2\mathbf{b} + 2\mathbf{K}]^{2+}$ (*m*/*z* = 1383.2289) (blue), and its simulated spectrum (red).

6. ESI-MS spectra of [3]catenane 3, [3]catenane 4 and [3]catenane 5

Fig. S19 ESI-MS spectrum of **3**. a) experimental spectrum of $[\mathbf{3} - 20\text{Tf}]^{2+}$ (*m*/*z* = 1672.4119) and its fragment $[\mathbf{1a} + \mathbf{6} + \text{DB}24\text{C8} - \text{OTf}]^+$ (*m*/*z* = 1672.4119); b) simulated spectrum of the fragment $[\mathbf{1a} + \mathbf{6} + \text{DB}24\text{C8} - \text{OTf}]^+$; c) simulated spectrum of $[\mathbf{3} - 20\text{Tf}]^{2+}$; d) experimental spectrum of $[\mathbf{3} - 2\text{PF}_6]^{2+}$ (*m*/*z* = 1676.4027) and its fragment $[\mathbf{1a} + \mathbf{6} + \text{DB}24\text{C8} - \text{PF}_6]^+$ (*m*/*z* = 1676.4027); e) simulated spectrum of the fragment $[\mathbf{1a} + \mathbf{6} + \text{DB}24\text{C8} - \text{PF}_6]^+$; f) simulated spectrum of $[\mathbf{3} - 2\text{PF}_6]^{2+}$; g) experimental spectrum of $[\mathbf{3} - 3\text{HPF}_6 - 4\text{HOTf} + \text{H} + \text{Na}]^{2+}$ (*m*/*z* = 1314.3741); h) simulated spectrum of $[\mathbf{3} - 3\text{HPF}_6 - 4\text{HOTf} + \text{H} + \text{Na}]^{2+}$ (*m*/*z* = 1314.4884); i) experimental spectrum of $[\mathbf{3} - 4\text{HPF}_6 - 3\text{HOTf} + \text{H} + \text{Na}]^{2+}$ (*m*/*z* = 1316.4862); k) experimental spectrum of $[\mathbf{3} - 4\text{HPF}_6 - 3\text{HOTf} + 1\text{H}_2\text{O} + 2\text{K}]^{2+}$ (*m*/*z* = 1352.8510); l) simulated spectrum of $[\mathbf{3} - 4\text{HPF}_6 - 3\text{HOTf} + 1\text{H}_2\text{O} + 2\text{K}]^{2+}$ (*m*/*z* = 1352.9525).

Fig. S20 ESI-MS spectrum of **4**. a) experimental spectrum of $[\mathbf{4} - 2\text{OTf}]^{2+}$ (*m*/*z* = 1760.4725) and its fragment $[\mathbf{1a} + \mathbf{6} + \text{DB30C10} - \text{OTf}]^+$ (*m*/*z* = 1760.4725); b) simulated spectrum of the fragment $[\mathbf{1a} + \mathbf{6} + \text{DB30C10} - \text{OTf}]^+$; c) simulated spectrum of $[\mathbf{4} - 2\text{OTf}]^{2+}$; d) experimental spectra of $[\mathbf{4} - 2\text{PF}_6]^{2+}$ (*m*/*z* = 1764.4629) and its fragment $[\mathbf{1a} + \mathbf{6} + \text{DB30C10} - \text{PF}_6]^+$ (*m*/*z* = 1764.4629); e) simulated spectrum of the fragment $[\mathbf{1a} + \mathbf{6} + \text{DB30C10} - \text{PF}_6]^+$; f) simulated spectrum of $[\mathbf{4} - 2\text{PF}_6]^{2+}$; g) experimental spectrum of $[\mathbf{4} - 3\text{OTf}]^{3+}$ (*m*/*z* = 1123.9954); h) simulated spectrum of $[\mathbf{4} - 3\text{OTf}]^{3+}$; i) experimental spectrum of $[\mathbf{4} - 4\text{HPF}_6 - 3\text{HOTf} + 1\text{H}_2\text{O} + 2\text{K}]^{2+}$ (*m*/*z* = 1440.4142); j) simulated spectrum of $[\mathbf{4} - 4\text{HPF}_6 - 3\text{HOTf} + 1\text{H}_2\text{O} + 2\text{K}]^{2+}$ (*m*/*z* = 1440.5050).

Fig. S21 ESI-MS spectrum of **5**. a) experimental spectrum of $[5 - 2PF_6]^{2+}$ (*m*/*z* = 1648.3750) and its fragment $[1b + 6 + DB24C8 - PF_6]^+$ (*m*/*z* = 1648.3750); b) simulated spectrum of the fragment $[1b + 6 + DB24C8 - PF_6]^+$; c) simulated spectrum of $[5 - 2PF_6]^{2+}$; d) experimental spectrum of $[5 - 2OTf]^{2+}$ (*m*/*z* = 1644.3840) and its fragment $[1b + 6 + DB24C8 - OTf]^+$ (*m*/*z* = 1644.3837); e) simulated spectrum of the fragment $[1b + 6 + DB24C8 - OTf]^+$; f) simulated spectrum of $[5 - 2OTf]^{2+}$; g) experimental spectrum of $[5 - 3HPF_6 - 4HOTf + H + NH_4]^{2+}$ (*m*/*z* = 1283.8494); h) simulated spectrum of $[5 - 3HPF_6 - 4HOTf + H + NH_4]^{2+}$ (*m*/*z* = 1283.8494); i) experimental spectrum of $[5 - 3HPF_6 - 4HOTf + H + NH_4]^{2+}$ (*m*/*z* = 1283.9714); i) experimental spectrum of $[5 - 3HPF_6 - 3HOTf + H + NH_4]^{2+}$ (*m*/*z* = 1285.8425); j) simulated spectrum of $[5 - 3HPF_6 - 4HOTf + H + NH_4]^{2+}$ (*m*/*z* = 1286.3397); l) simulated spectrum of $[5 - 3HPF_6 - 4HOTf + H + NA_4]^{2+}$ (*m*/*z* = 1286.3397); l) simulated spectrum of $[5 - 3HPF_6 - 4HOTf + H + NA_4]^{2+}$ (*m*/*z* = 1286.3397); l) simulated spectrum of $[5 - 3HPF_6 - 4HOTf + H + NA_4]^{2+}$ (*m*/*z* = 1286.3397); l) simulated spectrum of $[5 - 3HPF_6 - 4HOTf + H + NA_4]^{2+}$ (*m*/*z* = 1286.4653).

7. Investigation of the host-guest complexation DB24C8 \supset 1a, DB30C10 \supset 1a and DB24C8 \supset 1b

Fig. S22 Job plot showing the 1:1 stoichiometry of the complex between DB24C8 and the guest 1a using ¹H NMR data of H² on DB24C8. [DB24C8]₀ + $[1a]_0 = 5.00$ mM in CD₃COCD₃. [DB24C8]₀ and $[1a]_0$ are initial concentrations of DB24C8 and 1a.

Fig. S23 HRESI mass spectrum of a mixed solution of **1a** and **DB24C8** (1:1 molar ratio). m/z = 947.3587 for [**DB24C8** \supset **1a** – PF₆]⁺, and m/z = 1395.5655 for [(**DB24C8**)₂ \supset **1a** – PF₆]⁺.

Fig. S24 Job plot showing the 1:1 stoichiometry of the complex between DB30C10 and the guest 1a using ¹H NMR data of H^b on 1a. [DB30C10]₀ + $[1a]_0 = 5.00$ mM in CD₃COCD₃. [DB30C10]₀ and $[1a]_0$ are initial concentrations of DB30C10 and 1a.

Fig. S25 HRESI mass spectrum of a mixed solution of **1a** and **DB30C10** (1:1 molar ratio). m/z = 1035.4238 for [**DB30C10** \supset **1a** – PF₆]⁺, and m/z = 445.2301 for [**DB30C10** \supset **1a** – 2PF₆]²⁺.

Fig. S26 ¹H NMR (500 MHz, acetone-*d*₆, 25 °C) spectrum of (a) 12.00 mM **1b**, (b) 12.00 mM **1b** + 12.00 mM **DB24C8**, (c) 12.00 mM **DB24C8**.

8. Determination of binding constant (K_a) using the UV-vis titration method

Procedures for UV-vis titration: A 0.04 mM solution of guest **1a** in acetonitrile, and a solution of host (DB24C8 or DB30C10, 20 mM) with guest **1a** (0.04 mM) in acetonitrile were separately prepared. The guest solution (2 mL) was then titrated with the concentrated host solution that contained the guest. Upon each addition, the solution was balanced for more than 1 min before recording the spectrum. The error involved was assumed to be negligible owing to the total change in concentration of the host was small over the course of the titration. The association constants were determined by using the nonlinear least squares fitting of the titration curves and plotting the absorbance A at the host-guest complex charge-transfer band against the concentration of the host. The titration curve was well fitted to the expression of a 1:1 binding isotherm.

Fig. S27 (a) The absorption spectral changes of 1a (0.04 mM) upon the addition of DB24C8 and (b) the absorption intensity changes at $\lambda = 270$ nm upon the addition of DB24C8.

Fig. S28 (a) The absorption spectral changes of 1a (0.04 mM) upon the addition of DB30C10 and (b) the absorption intensity changes at $\lambda = 270$ nm upon the addition of DB30C10.

9. Crystal structure of 1b

Fig. S29 Crystal structure of 1,1-bis(bipyridinium)methane 1b reported by Peinador et al. (*J. Am. Chem. Soc.*, 2007, 129, 13978–13986.)

10. NMR spectra of [3] catenanes by using one-pot construction method

Fig. S30 ¹H NMR spectra (500 MHz, acetone- d_6 , 25 °C) of [3]catenane **3** (a) self-assembly followed by threading (**2a** + DB24C8), (b) one-pot reaction (**1a** + **6** + DB24C8).

Fig. S31 ³¹P{¹H} NMR spectra (202 MHz, acetone- d_6 , 25 °C) of [3]catenane **3** (a) self-assembly followed by threading (**2a** + DB24C8), (b) one-pot reaction (**1a** + **6** + DB24C8).

Fig. S32 ¹H NMR spectra (500 MHz, acetone- d_6 , 25 °C) of [3]catenane **4** (a) self-assembly followed by threading (**2a** + DB30C10), (b) one-pot reaction (**1a** + **6** + DB30C10).

Fig. S33 ³¹P{¹H} NMR spectra (202 MHz, acetone- d_6 , 25 °C) of [3]catenane **4** (a) self-assembly followed by threading (**2a** + DB30C10), (b) one-pot reaction (**1a** + **6** + DB30C10).

Fig. S34 ¹H NMR spectra (500 MHz, acetone- d_6 , 25 °C) of [3]catenane **5** (a) self-assembly followed by threading (**2b** + DB24C8), (b) one-pot reaction (**1b** + **6** + DB24C8).

Fig. S35 ³¹P{¹H} NMR spectra (202 MHz, acetone- d_6 , 25 °C) of [3]catenane **5** (a) self-assembly followed by threading (**2b** + DB24C8), (b) one-pot reaction (**1b** + **6** + DB24C8).

11. Synthesis and characterization of anion-exchanged metallacycles 7, 8 and [3] catenanes 9, 10, 11

1,3-Bis(4,4'-bipyridinium)propane **1a** or 1,1-bis(4,4'-bipyridinium)methane **1b** (0.012 mmol) and 90° platinum(II) receptor **6** (0.012 mmol) were placed in a 2-dram vial, followed by addition of acetone (1.2 mL) and water (0.4 mL), the solutions were then stirred for 6 h at room temperature. A little excess KPF₆ in aqueous solution was added into the reaction mixture. Acetone was removed by N₂ flow. The resulted precipitate was collected by filtration and the solid was then re-dissolved in acetone (1.0 mL). Water (1.0 mL) was added into the solution and acetone was removed again by N₂ flow. The resulted precipitate was collected by filtration and dried under vacuum to afford metallacycle **7** (15.8 mg, 96%) or **8** (9.3 mg, 58%) as a white solid, respectively.

Corresponding crown ethers (12 mM) were added directly into a solution of metallacycle 7 or 8 (2 mM) in acetone- d_6 . The solution was then stirred for 1 days at room temperature to generate [3]catenane (9, 10 or 11). This initial reaction solution was directly used for the following characterization.

Metallacycle 7: ¹H NMR (500 MHz, acetone- d_6 ,) (Fig. S36): δ (ppm) 9.44 (d, J = 4.8 Hz, 8H), 9.16 (d, J = 7.0 Hz, 8H), 8.53 (d, J = 7.0 Hz, 8H), 8.25 (d, J = 6.6 Hz, 8H), 5.11–5.05 (m, 8H), 2.97–3.03 (m, 4H), 2.11–2.16 (m, 24H), 1.38 (dt, J = 17.6, 7.5 Hz, 36H). ³¹P{¹H} NMR (202 MHz, acetone- d_6) (Fig. S37): δ (ppm) –0.11 (s, ¹⁹⁵Pt satellites, $J_{Pt-P} = 3110$ Hz).

Metallacycle 8: ¹H NMR (500 MHz, acetone- d_6) (Fig. S38): δ (ppm) 9.80 (d, J = 7.1 Hz, 8H), 9.44 (d, J = 4.8 Hz, 8H), 8.64 (d, J = 7.1 Hz, 8H), 8.16 (d, J = 6.6 Hz, 8H), 7.85 (s, 4H), 2.13 (dt, J = 16.0, 7.8 Hz, 24H), 1.41–1.34 (m, 36H). ³¹P{¹H} NMR (202 MHz, acetone- d_6) (Fig. S39): δ (ppm) –0.10 (s, ¹⁹⁵Pt satellites, $J_{Pt-P} = 3104$ Hz).

[3]Catenane **9**: ¹H NMR (500 MHz, acetone- d_6) (Fig. S40): δ (ppm) 9.46 (d, J = 4.8 Hz, 8H), 9.10 (d, J = 7.0 Hz, 8H), 8.35 (d, J = 7.0 Hz, 8H), 8.22 (d, J = 6.6 Hz, 8H), 6.61 (dd, J = 6.0, 3.6 Hz, 8H), 6.16 (dd, J = 6.1, 3.4 Hz, 8H), 5.04–4.97 (m, 8H), 3.82 (s, 16H), 3.69 (s, 16H), 3.61–3.52 (m, 16H), 3.19–3.11 (m, 4H), 2.10–2.15 (m, 24H), 1.41–1.35 (m, 36H). ³¹P{¹H} NMR (202 MHz, acetone- d_6) (Fig. S41): δ (ppm) –0.66 (s, ¹⁹⁵Pt satellites, $J_{Pt-P} = 3112$ Hz).

[3]Catenane **10**: ¹H NMR (500 MHz, acetone- d_6) (Fig. S42): δ (ppm) 9.44 (d, J = 4.9 Hz, 8H), 8.95 (d, J = 6.8 Hz, 8H), 8.18 (d, J = 6.8 Hz, 8H), 8.11 (d, J = 6.5 Hz, 8H), 6.39 (dd, J = 5.9, 3.6 Hz, 8H), 5.81 (dd, J = 5.9, 3.4 Hz, 8H), 4.99–4.91 (m, 8H), 3.79 (d, J = 5.4 Hz, 16H), 3.69 (d, J = 2.0 Hz,

16H), 3.58 (d, J = 4.8 Hz, 16H), 3.37 (d, J = 2.9 Hz, 16H), 3.04–2.98 (m, 4H), 2.15 (dd, J = 15.9, 7.2 Hz, 25H), 1.44–1.38 (m, 36H). ³¹P{¹H} NMR (202 MHz, acetone- d_6) (Fig. S43): δ (ppm) –0.69 (s, ¹⁹⁵Pt satellites, $J_{Pt-P} = 3108$ Hz).

[3]Catenane **11**: ¹H NMR (500 MHz, acetone- d_6) (Fig. S44): δ (ppm) 9.72 (d, J = 6.7 Hz, 8H), 9.47 (d, J = 4.2 Hz, 8H), 8.54 (d, J = 6.3 Hz, 8H), 8.26 (s, 8H), 7.80 (s, 4H), 6.52–6.41 (m, 8H), 5.89 (s, 8H), 3.80 (s, 16H), 3.68 (d, J = 4.9 Hz, 16H), 3.65 (s, 16H), 2.04–1.96 (m, 24H), 1.36–1.30 (m, 36H). ³¹P{¹H} NMR (202 MHz, acetone- d_6) (Fig. S45): δ (ppm) –1.65 (s, ¹⁹⁵Pt satellites, $J_{Pt-P} = 3131$ Hz).

Fig. S36 ¹H NMR (500 MHz, acetone- d_6 , 25 °C) spectrum of metallacycle 7.

Fig. S37 ³¹P{¹H} NMR (202 MHz, acetone- d_6 , 25 °C) spectrum of metallacycle **7**.

Fig. S38 ¹H NMR (500 MHz, acetone- d_6 , 25 °C) spectrum of metallacycle 8.

Fig. S39 ³¹P{¹H} NMR (202 MHz, acetone- d_6 , 25 °C) spectrum of metallacycle 8.

Fig. S40 ¹H NMR (500 MHz, acetone- d_6 , 25 °C) spectrum of [3]catenane 9.

Fig. S41 ³¹P{¹H} NMR (202 MHz, acetone- d_6 , 25 °C) spectrum of [3]catenane **9**.

Fig. S42 ¹H NMR (500 MHz, acetone- d_6 , 25 °C) spectrum of [3]catenane **10**.

Fig. S43 ³¹P{¹H} NMR (202 MHz, acetone- d_6 , 25 °C) spectrum of [3]catenane **10**.

Fig. S44 ¹H NMR (500 MHz, acetone- d_6 , 25 °C) spectrum of [3]catenane 11.

Fig. S45 ³¹P{¹H} NMR (202 MHz, acetone- d_6 , 25 °C) spectrum of [3]catenane 11.

Fig. S46 ESI-MS spectrum of **9**. a) experimental spectrum of $[9 - 2PF_6]^{2+}$ (m/z = 1668.8662); b) simulated spectrum of $[9 - 2PF_6]^{2+}$ (m/z = 1668.9314); c) experimental spectrum of $[9 - 3PF_6]^{3+}$ (m/z = 1064.3447); d) simulated spectrum of $[9 - 3PF_6]^{3+}$ (m/z = 1064.3020); e) experimental spectrum of $[9 + 2MeOH + H_2O + 2K]^{2+}$ (m/z = 1893.1202); f) simulated spectrum of $[9 + 2MeOH + H_2O + 2K]^{2+}$ (m/z = 1893.3868); g) experimental spectrum of $[9 - 4HPF_6 + H + Na]^{2+}$ (m/z = 1533.5529); h) simulated spectrum of $[9 - 4HPF_6 + H + Na]^{2+}$ (m/z = 1533.4464).

Fig. S47 ESI-MS spectrum of **10**. a) experimental spectrum of $[10 - 2PF_6]^{2+}$ (m/z = 1757.0630); b) simulated spectrum of $[10 - 2PF_6]^{2+}$ (m/z = 1756.9869); c) experimental spectrum of $[10 - 3PF_6]^{3+}$ (m/z = 1122.7149); d) simulated spectrum of $[10 - 3PF_6]^{3+}$ (m/z = 1122.6676); e) experimental spectrum of $[10 - 8HPF_6 + Na + NH_4]^{2+}$ (m/z = 1339.5517); f) simulated spectrum of $[10 - 8HPF_6 + Na + NH_4]^{2+}$ (m/z = 1339.5517); f) simulated spectrum of $[10 - 8HPF_6 + Na + NH_4]^{2+}$ (m/z = 1339.0536).

Fig. S48 ESI-MS spectrum of **11**. a) experimental spectrum of $[11 + 2H]^{2+}$ (*m*/*z* = 1785.5858); b) simulated spectrum of $[11 + 2H]^{2+}$ (*m*/*z* = 1785.8643).

Compounds	Guest 1a	[3]catenane 4
Empirical formula	$C_{23}H_{22}F_{12}N_4P_2$	$C_{126}H_{184}F_{48}N_8O_{20}P_{12}Pt_2$
Formula weight	644.38	3804.62
Temperature [K]	170.0	170.0
Crystal system	Monoclinic	Triclinic
Space group	$P2_{1}/c$	<i>P</i> -1
<i>a</i> [Å]	7.1855(5)	10.1341(4)
<i>b</i> [Å]	14.1620(8)	21.2668(8)
<i>c</i> [Å]	25.8378(19)	22.2187(9)
α [°]	90	62.6960(10)
β[°]	90.229(2)	78.8210(10)
γ [°]	90	76.6310(10)
Volume [Å ³]	2629.3(3)	4118.3(3)
Ζ	4	1
Density [Mg/m ³]	1.628	1.534
Absorption coefficient [mm ⁻¹]	0.273	1.927
F [000]	1304.0	1924.0
Crystal size [mm ³]	$0.36 \times 0.18 \times 0.07$	$0.42 \times 0.16 \times 0.12$
Radiation	MoKa ($\lambda = 0.71073$)	MoKa ($\lambda = 0.71073$)
2θ range for data collection [°]	4.268 to 64.622	4.148 to 54.276
Index ranges	$-10 \leq h \leq 10$,	$-12 \leq h \leq 12$,
	$-21 \leq k \leq 21,$	$-27 \leq k \leq 27,$
	$0 \leq 1 \leq 38$	$-28 \leq 1 \leq 28$
Reflections collected	8371	101992
Independent reflections	8371 [Rint = ?, Rsigma = 0.0633]	18164 [$R_{int} = 0.0464$, $R_{sigma} = 0.0321$]
Data/restraints/parameters	8371/6/426	18164/39/1010
Goodness-of-fit on F^2	1.021	1.018
Final R indexes $[I > 2\sigma(I)]$	$R_1 = 0.0743, wR_2 = 0.1856$	$R_1 = 0.0483, wR_2 = 0.1220$
Final R indexes (all data)	$R_1 = 0.1175, wR_2 = 0.2196$	$R_1 = 0.0624, wR_2 = 0.1331$
Largest diff. peak and hole [e.Å ⁻³]	0.91/-0.63	1.68/-1.61
Deposition Number	2079026	2079027

12. X-ray analysis data of 1a and [3] catenane 4