Supporting Information

Amine Hydrochloride Salts as Bifunctional Reagents for Maleimides

Radical Aminochlorination

Wenliang Zhang,^a Yujing Yao,^a Yaling Xu,^a Xueying Zhou,^a Ge Wu,^{*a,b}

^aSchool of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035,

China

^bState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.

*E-mail: wuge@wmu.edu.cn

Table of Contents

(1) General considerations, experimental data	S2-S24
(2) References for known compounds	S25
(3) ¹ H, ¹³ C and ¹⁹ F NMR spectra of products	.826-862

General Information

N-substituent Maleimides¹ were prepared according to the reported procedures. ¹H and ¹³C spectra of known compounds were in accordance with those described in the literatures. All other reagents were purchased from TCI, Sigma-Aldrich, Alfa Aesar, Acros, and Meryer and used without further purification. ¹H NMR (500 MHz), ¹³C NMR (125 MHz) and ¹⁹F NMR (470 MHz) spectra were recorded in CDCl₃ and DMSO-D6 solutions using a Burker AVANCE 500 spectrometer. High-resolution mass spectra were recorded on an ESI-Q-TOF mass spectrometer. Analysis of crude reaction mixture was done on the Varian 4000 GC/MS and 1200 LC. All reactions were conducted using standard Schlenk techniques. Column chromatography was performed using EM silica gel 60 (300–400 m).

Detailed optimization of reaction conditions:

O V V	Ph + HNO + MC	$\frac{[Cu] (10 \text{ mol } 6)}{\text{solevent, } O_2, 100^{\circ}}$	²⁶ , 24 h	∑ N−Ph
1a	2a		3a	
entry	catalyst	Cl ⁻ source	solvent	yield (%) ^b
1	CuBr	HC1	toluene	88
2	CuBr	n-Bu ₄ NCl	toluene	0
3	CuBr	LiCl	toluene	0
4	CuBr	NaCl	toluene	0
5	CuBr	KCl	toluene	0
6	CuBr	TMSCl	toluene	80
7	Pd(OAc) ₂	HC1	toluene	0
8	Ni(PPh ₃) ₂ Cl ₂	HC1	toluene	0
9	[Ru(p-cymene)Cl ₂] ₂	HCl	toluene	0
10	FeCl ₃	HCl	toluene	0
11	AgNO ₃	HCl	toluene	0
12	CuBr	HC1	THF	0
13	CuBr	HC1	dioxane	0
14	CuBr	HC1	DMSO	0
15	CuBr	HC1	DMF	0
16	CuBr	HC1	CH ₃ CN	0
17	CuBr	HC1	EtOAc	0
18	CuBr ₂	HCl	toluene	62
19	CuCl	HCl	toluene	82
20	CuI	HC1	toluene	85
21	Cu(OAc) ₂	HCl	toluene	80
22		HCl	toluene	0
23°	CuBr	HCl	toluene	16

24 ^d CuBr	HC1	toluene	81
----------------------	-----	---------	----

^a Reaction conditions unless specified otherwise: **1a** (0.2 mmol), **2a** (0.6 mmol), MCl (0.6 mmol) and catalyst (0.02 mmol) in solvent (2.0 mL) at 100 °C for 24 h. ^b Isolated yield. ^c Under N₂ atmosphere. ^d Under air atmosphere.

General Procedure of Amine Hydrochloride Salts as Bifunctional Reagents for Electron-Deficient Alkenes Aminochlorination:

A 25 mL Schlenk tube equipped with a stir bar was charged with maleimide (0.2 mmol), alkylamines (0.6 mmol), CuBr (0.02 mol) and 2 mL toluene, then, the addition of aqueous hydrochloric acid (37%, 0.6 mmol) using a pipette, the tube was fitted with a rubber septum, and then it was evacuated and refilled with dioxygen three times, then the septum was replaced by a Teflon screwcap under oxygen flow. The reaction mixture was stirred 100 °C (aluminium block heating mantle) for 24 h. After cooling down, the reaction mixture was diluted with 10 mL of ethyl ether, filtered through a pad of silica gel, followed by washing the pad of the silica gel with the same solvent (20 mL), concentrated under reduced pressure. The residue was then purified by flash chromatography on silica gel to provide the corresponding product.

5mmol scale-up reaction:

A 150 mL Schlenk tube equipped with a stir bar was charged with *N*-Phenylmaleimide (5.0 mmol), morpholine (15 mmol), CuBr (0.5 mol) and 50 mL toluene, then, the addition of aqueous hydrochloric acid (37%, 15 mmol) using a pipette, the tube was fitted with a rubber septum, and then it was evacuated and refilled with dioxygen three times, then the septum was replaced by a

Teflon screwcap under oxygen flow. The reaction mixture was stirred at 100 °C (oil bath) for 24 h. After cooling down, the reaction mixture was diluted with 10 mL of ethyl ether, filtered through a pad of silica gel, followed by washing the pad of the silica gel with the same solvent (20 mL), concentrated under reduced pressure. The residue was then purified by flash chromatography on silica gel to provide the corresponding product **3a** (isolated 79% yield).

Mechanism investigation:

(a) Radical scavenger

$$\begin{array}{c}
O\\
N-Ph + O\\
O\end{array}
NH + HCl \\
\hline
CuBr (10 mol \%) \\
\hline
TEMPO (1.0 equiv) \\
\hline
toluene, O_2, 100 °C, 24 h
\end{array}$$
3a, 0%

A 25 mL Schlenk tube equipped with a stir bar was charged with *N*-Phenylmaleimide (0.2 mmol), morpholine (0.6 mmol), CuBr (0.02 mol), TEMPO (0.2 mmol) and 2 mL toluene, then, the addition of aqueous hydrochloric acid (37%, 0.6 mmol) using a pipette, the tube was fitted with a rubber septum, and then it was evacuated and refilled with dioxygen three times, then the septum was replaced by a Teflon screwcap under oxygen flow. The reaction mixture was stirred at room temperature for 5 minutes, the mixture reacted at 100 °C (aluminium block heating mantle). After stirring for 24 h, the reaction mixture was cooled to room temperature and the reaction was filtered through a pad of Celite and diluted with ethyl acetate (10 mL), no corresponding product was detected by GC-MS, which suggest radical process was involved in current multi-component reactions.

$$\begin{array}{c}
O \\
N-Ph + O \\
O \\
\end{array} NH + HCl \\
\begin{array}{c}
CuBr (10 \text{ mol \%}) \\
BHT (1.0 \text{ equiv}) \\
\hline
\text{toluene, O}_2, 100 \ ^{\circ}\text{C}, 24 \text{ h} \\
\end{array}$$
3a, 0%

A 25 mL Schlenk tube equipped with a stir bar was charged with *N*-Phenylmaleimide (0.2 mmol), morpholine (0.6 mmol), CuBr (0.02 mol), BHT (0.2 mmol) and 2 mL toluene, then, the addition of aqueous hydrochloric acid (37%, 0.6 mmol) using a pipette, the tube was fitted with a rubber septum, and then it was evacuated and refilled with dioxygen three times, then the septum was replaced by a Teflon screwcap under oxygen flow. The reaction mixture was stirred at room

temperature for 5 minutes, the mixture reacted at 100 °C (aluminium block heating mantle). After stirring for 24 h, the reaction mixture was cooled to room temperature and the reaction was filtered through a pad of Celite and diluted with ethyl acetate (10 mL), no corresponding product was detected by GC-MS, which suggest radical process was involved in current multi-component reactions.

(b) Competent intermediate identification

A 25 mL Schlenk tube equipped with a stir bar was charged with *N*-Phenylmaleimide (0.2 mmol), CuBr (0.02 mol), aqueous hydrochloric acid (37%, 0.6 mmol) and 2 mL toluene, the tube was fitted with a rubber septum, and then it was evacuated and refilled with dioxygen three times, then the septum was replaced by a Teflon screwcap under oxygen flow. The reaction mixture was reacted at 100 $^{\circ}$ C (aluminium block heating mantle). After stirring for 24 h, the reaction mixture was cooled to room temperature and the reaction was filtered through a pad of Celite and diluted with ethyl acetate (10 mL), no corresponding product was detected by GC-MS.

A 25 mL Schlenk tube equipped with a stir bar was charged with *N*-Phenylmaleimide (0.2 mmol), CuBr (0.02 mol), morpholine (0.6 mmol) and 2 mL toluene, the tube was fitted with a rubber septum, and then it was evacuated and refilled with dioxygen three times, then the septum was replaced by a Teflon screwcap under oxygen flow. The reaction mixture was reacted at 100 $^{\circ}$ C (aluminium block heating mantle). After stirring for 24 h, the reaction mixture was cooled to room temperature and the reaction was filtered through a pad of Celite and diluted with ethyl acetate (10 mL), and the corresponding product was isolated in 85% yield.

$$N = Ph$$
 + HCl $CuBr (10 \text{ mol } \%)$
toluene, O₂, 100 °C, 24 h no reaction

A 25 mL Schlenk tube equipped with a stir bar was charged with 3-morpholino-1-phenyl-1Hpyrrole-2,5-dione (0.2 mmol), CuBr (0.02 mol), aqueous hydrochloric acid (37%, 0.6 mmol) and 2 mL toluene, the tube was fitted with a rubber septum, and then it was evacuated and refilled with dioxygen three times, then the septum was replaced by a Teflon screwcap under oxygen flow. The reaction mixture was reacted at 100 $^{\circ}$ C (aluminium block heating mantle). After stirring for 24 h, the reaction mixture was cooled to room temperature and the reaction was filtered through a pad of Celite and diluted with ethyl acetate (10 mL), no corresponding product was detected by GC-MS.

A 25 mL Schlenk tube equipped with a stir bar was charged with 3-morpholino-1-phenyl-1Hpyrrole-2,5-dione (0.2 mmol), CuBr (0.02 mol), and 2 mL toluene, then, the addition of morpholine (0.6 mmol) and aqueous hydrochloric acid (37%, 0.6 mmol) using a pipette, the tube was fitted with a rubber septum, and then it was evacuated and refilled with dioxygen three times, then the septum was replaced by a Teflon screwcap under oxygen flow. The reaction mixture was stirred at room temperature for 5 minutes, the mixture reacted at 100 °C (aluminium block heating mantle). After stirring for 24 h, the reaction mixture was cooled to room temperature and the reaction was filtered through a pad of Celite and diluted with ethyl acetate (10 mL), the desired product was isolated in 84% yield.

A 25 mL Schlenk tube equipped with a stir bar was charged with 3-morpholino-1-phenyl-1Hpyrrole-2,5-dione (0.2 mmol) and 2 mL toluene, then, the addition of morpholine (0.6 mmol) and aqueous hydrochloric acid (37%, 0.6 mmol) using a pipette, the tube was fitted with a rubber septum, and then it was evacuated and refilled with dioxygen three times, then the septum was replaced by a Teflon screwcap under oxygen flow. The reaction mixture was stirred at room temperature for 5 minutes, the mixture reacted at 100 $^{\circ}$ C (aluminium block heating mantle). After stirring for 24 h, the reaction mixture was cooled to room temperature and the reaction was filtered through a pad of Celite and diluted with ethyl acetate (10 mL), no new product was observed on TLC and GC-MS.

A 25 mL Schlenk tube equipped with a stir bar was charged with (1-cyclopropylvinyl)benzene (0.2 mmol), CuBr (0.02 mol), and 2 mL toluene, then, the addition of morpholine (0.6 mmol) and aqueous hydrochloric acid (37%, 0.6 mmol) using a pipette, the tube was fitted with a rubber septum, and then it was evacuated and refilled with dioxygen three times, then the septum was replaced by a Teflon screwcap under oxygen flow. The reaction mixture was stirred at room temperature for 5 minutes, the mixture reacted at 100 $^{\circ}$ C (aluminium block heating mantle). After stirring for 24 h, the reaction mixture was cooled to room temperature and the reaction was filtered through a pad of Celite and diluted with ethyl acetate (10 mL), it was found that **7c** was detected by HRMS, which suggesting that chlorine radical was generated in reaction mixture.

Characterization of Products in Details:

3-chloro-4-morpholino-1-phenyl-1H-pyrrole-2,5-dione²

3a

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow solid (51.4 mg, 88% yield), Mp = 145-146°C. ¹H NMR (500 MHz, CDCl₃): δ 7.43 (t, *J*=7.85 Hz, 2H), 7.35-7.30 (m, 3H), 4.01 (t, *J*=4.60 Hz, 4H), 3.81 (t, *J*=4.60 Hz, 4H); ¹³C NMR (125MHz, CDCl₃): δ 165.2, 164.7, 140.8, 131.3, 129.1, 127.9, 126.3, 96.0, 67.1, 48.5; HRMS (ESI): calcd for C₁₄H₁₄ClN₂O₃ [M + H]⁺ 293.0693, found 293.0699.

3-chloro-4-((2S,6R)-2,6-dimethylmorpholino)-1-phenyl-1H-pyrrole-2,5-dione

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow solid (53.7 mg, 84% yield). yield), Mp = 145-146 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.46-7.42 (m, 2H), 7.36-7.30 (m, 3H), 4.65 (d, *J* = 13.4 Hz, 2H), 3.76 (dtd, *J* = 12.4, 6.2, 2.1 Hz, 2H), 2.85 (dd, *J* = 13.3, 10.4 Hz, 2H), 1.23 (s, 3H), 1.21 (s, 3H); ¹³C NMR (125MHz, CDCl₃): δ 165.4, 164.8, 140.7, 131.4, 129.3, 129.1, 128.0, 126.4, 120.0, 95.6, 72.4, 53.4, 18.7; HRMS (ESI): calcd for C₁₆H₁₇N₂O₃NaCl [M + Na]⁺ 343.0825, found343.0827.

3-chloro-1-phenyl-4-(piperidin-1-yl)-1H-pyrrole-2,5-dione

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (49.9 mg, 86% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.45-7.40 (m, 2H), 7.35-7.31 (m, 3H), 3.94-3.92 (m, 4H), 1.74-1.72 (m, 6H); ¹³C NMR (125MHz, CDCl₃): δ 165.7, 164.8, 141.6, 131.6, 129.1, 127.8, 126.4, 94.2, 49.9, 26.9, 24.2; HRMS (ESI): calcd for C₁₅H₁₆ClN₂O₂ [M + H]⁺ 291.0900, found 291.0899.

Methyl 1-(4-chloro-2,5-dioxo-1-phenyl-2,5-dihydro-1H-pyrrol-3-yl)piperidine-4carboxylate²

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (54.3 mg, 78% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.45-7.41 (m, 2H), 7.36-7.30

(m, 3H), 4.59 (dt, J = 13.6, 4.2 Hz, 2H), 3.71 (s, 3H), 3.39-3.32 (m, 2H), 2.68-2.61 (m, 1H), 2.08-2.02 (m, 2H), 1.94-1.85 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 174.3, 165.4, 164.7, 141.3, 131.4, 129.2, 129.1, 127.8, 126.3, 126.2, 95.5, 52.1, 47.9, 40.3, 28.7; **HRMS** (ESI): calcd for C₁₇H₁₈ClN₂O₄ [M + H]⁺ 349.0955, found 349.0954.

3-chloro-4-(4-methylpiperidin-1-yl)-1-phenyl-1H-pyrrole-2,5-dione²

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (51.6 mg, 85% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.45-7.41 (m, 2H), 7.35-7.31 (m, 3H), 4.76 (dt, *J* = 13.5, 2.4 Hz, 2H), 3.10 (td, *J* = 12.9, 2.5 Hz, 2H), 1.82-1.65 (m, 3H), 1.40-1.30 (m, 2H), 0.99 (d, *J* = 6.5 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 165.7, 164.8, 141.6, 131.6, 129.1, 127.8, 126.4, 94.3, 49.1, 35.0, 30.8, 21.8; HRMS (ESI): calcd for C₁₆H₁₇ClN₂NaO₂ [M + Na]⁺ 327.0876, found 327.0881.

ethyl 1-(4-chloro-2,5-dioxo-1-phenyl-2,5-dihydro-1H-pyrrol-3-yl)piperidine-3carboxylate

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (55.7 mg, 77% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.44-7.40 (m, 2H), 7.34-7.30 (m, 3H), 4.60-4.55 (m, 1H), 4.39-4.33 (m, 1H), 4.15 (q, *J* = 7.1 Hz, 2H), 3.62 (dd, *J* = 13.6, 9.4 Hz, 1H), 3.40 (ddd, *J* = 13.3, 10.1, 2.9 Hz, 1H), 2.69 (tt, *J* = 9.7, 4.0 Hz, 1H), 2.14-2.08 (m, 1H), 1.91-1.78 (m, 1H), 1.75-1.66 (m, 1H), 1.25 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 172.7, 165.4, 164.7, 141.5, 131.5, 129.1, 127.8, 126.3, 95.7, 60.9, 50.2, 49.1, 42.0, 27.0, 25.1, 14.2; HRMS (ESI): calcd for C₁₈H₁₉N₂O₄NaCl [M + Na]⁺ 385.0931, found 385.0936.

tert-butyl (1-(4-chloro-2,5-dioxo-1-phenyl-2,5-dihydro-1H-pyrrol-3-yl)piperidin-4-yl)carbamate²

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow solid (56.7 mg, 70% yield), Mp = 158-159°C. ¹H NMR (400 MHz, CDCl₃): δ 7.45-7.41 (m, 2H), 7.36-7.29 (m, 3H), 4.67 (d, *J* = 13.5 Hz, 2H), 4.51 (d, *J* = 8.0 Hz, 1H), 3.78 (brs, 1H), 3.26 (ddd, *J* = 14.2, 11.6, 2.3 Hz, 2H), 2.09 (dd, *J* = 13.2, 3.8 Hz, 2H), 1.51 (dt, *J* = 4.4, 2.5 Hz, 2H), 1.45 (s, 9H); ¹³C NMR (125 MHz, CDCl₃): δ 165.5, 164.7, 155.2, 141.3, 131.5, 129.1, 127.9, 126.3, 79.9, 47.6, 47.4, 33.2, 28.5; HRMS (ESI): calcd for C₂₀H₂₄ClN₃NaO₄ [M + Na]⁺ 428.1353, found 428.1353.

3-chloro-4-(4-hydroxypiperidin-1-yl)-1-phenyl-1H-pyrrole-2,5-dione

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (50.8 mg, 83% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.47-7.42 (m, 2H), 7.36-7.30 (m, 3H), 4.31 (ddd, *J* = 13.4, 7.1, 3.7 Hz, 2H), 4.02 (tt, *J* = 7.8, 3.8 Hz, 1H), 3.71 (ddd, *J* = 13.7, 8.5, 3.4 Hz, 2H), 2.07-2.00 (m, 2H), 1.71 (dtd, *J* = 12.2, 8.1, 3.6 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 165.6, 164.8, 141.4, 131.5, 129.1, 127.9, 126.4, 95.2, 66.3, 45.8, 34.9; HRMS (ESI): calcd for C₁₅H₁₅N₂O₃NaCl [M + Na]⁺ 329.0669, found 329.0673.

3-chloro-4-(4-(hydroxymethyl)piperidin-1-yl)-1-phenyl-1H-pyrrole-2,5-dione

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (51.8 mg, 81% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.46-7.41 (m, 2H), 7.36-7.30 (m, 3H), 4.83 (dt, *J* = 13.4, 2.4 Hz, 2H), 3.55 (d, *J* = 6.1 Hz, 2H), 3.16-3.09 (m, 2H), 1.92-1.87 (m, 2H), 1.66 (brs, 2H), 1.48-1.38 (m, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 165.7, 164.8, 141.5, 131.5, 129.1, 127.8, 126.4, 94.8, 67.3, 48.8, 38.3, 29.6; HRMS (ESI): calcd for C₁₆H₁₇N₂O₃NaCl [M + Na]⁺ 343.0825, found 343.0828.

tert-butyl 4-(4-chloro-2,5-dioxo-1-phenyl-2,5-dihydro-1H-pyrrol-3-yl)piperazine-1-carboxylate²

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow solid (61.8 mg, 79% yield), Mp = 202-203 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.46-7.42 (m, 2H), 7.37-7.30 (m, 3H), 3.96 (t, *J* = 5.2 Hz, 4H), 3.58 (t, *J* = 5.2 Hz, 4H), 1.49 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 165.3, 164.7, 154.5, 141.0, 131.3, 129.2, 128.0, 126.4, 96.5, 80.7, 55.8, 48.1, 28.5; HRMS (ESI): calcd for C₁₉H₂₂ClN₃NaO₄ [M + Na]⁺ 414.1197, found 414.1190.

3-chloro-1-phenyl-4-(pyrrolidin-1-yl)-1H-pyrrole-2,5-dione²

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow solid (50.2 mg, 91% yield), Mp = 117-118°C. ¹H NMR (400 MHz, CDCl₃): δ 7.45-7.41 (m, 2H), 7.34-7.30 (m, 3H), 4.01-3.97 (m, 4H), 1.97-1.94 (m, 4H); ¹³C NMR (125 MHz, CDCl₃):

δ 166.3, 164.2, 140.4, 131.8, 129.0, 127.6, 126.3, 90.7, 50.7, 25.3; **HRMS** (ESI): calcd for $C_{14}H_{14}CIN_2O_2$ [M + H]⁺ 277.0744, found 277.0742.

3-chloro-4-(2-(chloromethyl)pyrrolidin-1-yl)-1-phenyl-1H-pyrrole-2,5-dione

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow solid (53.1 mg, 82% yield), Mp = 117-118°C. ¹H NMR (500 MHz, CDCl₃): δ 7.46-7.42 (m, 2H), 7.36-7.32 (m, 3H), 5.02-4.98 (m, 1H), 4.19 (ddd, *J* = 10.6, 6.9, 3.6 Hz, 1H), 3.95-3.90 (m, 1H), 3.71 (dd, *J* = 10.9, 3.1 Hz, 1H), 3.48 (dd, *J* = 10.9, 8.5 Hz, 1H), 2.22-2.16 (m, 1H), 2.09-1.99 (m, 3H), 1.61 (brs, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 165.8, 164.3, 139.5, 131.5, 129.1, 127.9, 126.3, 93.4, 60.7, 51.4, 45.7, 28.1, 22.9; HRMS (ESI): calcd for C₁₅H₁₄N₂O₂NaCl₂ [M + Na]⁺ 347.0330, found 347.0333.

3-(benzyl(methyl)amino)-4-chloro-1-phenyl-1H-pyrrole-2,5-dione²

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (54.7 mg, 84% yield). ¹H NMR (500 MHz, CDCl₃): δ 7.46-7.43 (m, 2H), 7.41-7.38 (m, 2H), 7.36-7.33 (m, 4H), 7.32-7.30 (m, 2H), 5.02 (s, 2H), 3.36 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 165.6, 164.5, 141.7, 136.3, 131.4, 129.0, 128.9, 127.9, 127.7, 127.6, 126.3, 94.1, 56.4, 39.3; HRMS (ESI): calcd for C₁₈H₁₆ClN₂O₂ [M + H]⁺ 327.0900, found 327.0907

3-chloro-4-(methyl(phenethyl)amino)-1-phenyl-1H-pyrrole-2,5-dione

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow solid (52.3 mg, 77% yield), Mp = 117-118°C. ¹H NMR (400 MHz, CDCl₃): δ 7.46-7.42 (m, 2H), 7.35-7.24 (m, 8H), 4.00 (t, *J* = 7.5 Hz, 2H), 3.41 (s, 3H), 2.99 (t, *J* = 7.7 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 165.7, 164.5, 141.5, 137.9, 131.6, 129.1, 128.8, 127.8, 127.0, 126.4, 93.4, 55.5, 40.5, 35.2; HRMS (ESI): calcd for C₁₉H₁₇N₂O₂NaCl [M + Na]⁺ 363.0876, found 363.0881.

3-chloro-4-(methyl(pentyl)amino)-1-phenyl-1H-pyrrole-2,5-dione²

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (54.4 mg, 89% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.45-7.41 (m, 2H), 7.35-7.31 (m, 3H), 3.73 (t, *J* = 7.84 Hz, 2H), 3.43 (s, 3H), 1.73-1.67 (m, 2H), 1.38-1.30 (m, 4H), 0.92 (t, *J* = 6.9 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 165.9, 164.5, 141.5, 131.6, 129.1, 127.8, 126.4, 92.3, 54.0, 40.1, 28.7, 28.4, 22.6, 14.1; HRMS (ESI): calcd for C₁₆H₂₀ClN₂O₂ [M + H]⁺ 307.1213, found 307.1219.

3-chloro-4-((4-methoxybenzyl)(methyl)amino)-1-phenyl-1H-pyrrole-2,5-dione

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (53.4 mg, 75% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.46-7.42 (m, 2H), 7.36-7.31

(m, 3H), 7.26-7.22 (m, 2H), 6.91 (d, J = 8.6 Hz, 2H), 4.94 (s, 2H), 3.81 (s, 3H), 3.32 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 165.7, 164.7, 159.5, 141.8, 131.6, 129.2, 129.1, 128.3, 127.8, 126.4, 114.4, 93.9, 55.9, 55.4, 39.1; HRMS (ESI): calcd for C₁₉H₁₇N₂O₃NaCl [M + Na]⁺ 379.0825, found 379.0828.

1-benzyl-3-chloro-4-morpholino-1H-pyrrole-2,5-dione²

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (52.0 mg, 85% yield). ¹H NMR (500 MHz, CDCl₃): δ 7.35-7.25 (m, 5H), 4.64 (s, 2H), 3.95 (t, *J* = 4.45 Hz, 4H), 3.77 (t, *J* = 4.65 Hz, 4H); ¹³C NMR (125 MHz, CDCl₃): δ 166.2, 165.5, 141.0, 136.3, 128.8, 128.7, 128.0, 95.3, 67.1, 48.3, 41.9; HRMS (ESI): calcd for C₁₅H₁₅ClN₂NaO₃ [M + Na]⁺ 329.0669, found 329.0667.

3-chloro-1-(4-methylbenzyl)-4-morpholino-1H-pyrrole-2,5-dione²

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow solid (55.7 mg, 87% yield), Mp = 128-129°C. ¹H NMR (500 MHz, CDCl₃): δ 7.24 (d, *J* = 7.8 Hz, 2H), 7.12 (d, *J* = 7.8 Hz, 2H), 4.59 (s, 2H), 3.94 (t, *J* = 4.45 Hz, 4H), 3.76 (t, *J* = 4.65 Hz, 4H), 2.31 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 166.2, 165.5, 141.0, 137.7, 133.3, 129.4, 128.7, 95.2, 67.0, 48.3, 41.6, 21.2; HRMS (ESI): calcd for C₁₆H₁₇ClN₂NaO₃ [M + Na]⁺ 343.0825, found 343.0822.

3-chloro-1-(4-methoxybenzyl)-4-morpholino-1H-pyrrole-2,5-dione²

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (53.8 mg, 80% yield). ¹H NMR (500 MHz, CDCl₃): δ 7.29 (d, *J* = 8.7 Hz, 2H), 6.83 (d, *J* = 7.7 Hz, 2H), 4.57 (s, 2H), 3.94 (t, *J* = 4.80 Hz, 4H), 3.77-3.75 (m, 7H); ¹³C NMR (125 MHz, CDCl₃): δ 166.2, 165.5, 159.3, 141.0, 130.2, 128.5, 114.1, 95.2, 67.0, 55.4, 48.3, 41.3; HRMS (ESI): calcd for C₁₆H₁₇ClN₂NaO₄ [M + Na]⁺ 379.0837, found 379.0827.

3-chloro-1-(4-fluorobenzyl)-4-morpholino-1H-pyrrole-2,5-dione²

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (53.1 mg, 82% yield). ¹H NMR (500 MHz, CDCl₃): δ 7.35-7.32 (m, 2H), 6.99 (t, *J* = 8.6 Hz, 2H), 4.60 (s, 2H), 3.96 (t, *J* = 4.70 Hz, 4H), 3.78 (t, *J* = 4.85 Hz, 4H); ¹³C NMR (125 MHz, CDCl₃): δ 166.1, 165.4, 162.5 (d, *J* = 246.5 Hz), 141.0, 132.1 (d, *J* = 3.4 Hz), 130.6 (d, *J* = 8.1 Hz), 115.6 (d, *J* = 21.8 Hz), 95.2, 67.1, 48.3, 41.2; ¹⁹F NMR (375 MHz, CDCl₃): δ -114.2 (s, 1F); HRMS (ESI): calcd for C₁₅H₁₄ClFN₂NaO₃ [M + Na]⁺ 347.0575, found 347.0572.

3-chloro-1-(4-chlorobenzyl)-4-morpholino-1H-pyrrole-2,5-dione²

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow solid (53.7 mg, 79% yield), Mp = 76-77 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.29-7.26 (m,

4H), 4.60 (s, 2H), 3.96 (t, J = 4.70 Hz, 4H), 3.78 (t, J = 4.85 Hz, 4H); ¹³C NMR (100 MHz, CDCl₃): δ 166.1, 165.4, 141.0, 134.7, 134.0, 130.2, 129.0, 95.2, 67.1, 48.3, 41.2; HRMS (ESI): calcd for C₁₅H₁₅Cl₂N₂O₃ [M + H]⁺ 341.0460, found 341.0458.

1-(4-bromobenzyl)-3-chloro-4-morpholino-1H-pyrrole-2,5-dione²

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow solid (59.1 mg, 77% yield), Mp = 130-131 °C. **¹H NMR** (400 MHz, CDCl₃): δ 7.43 (d, *J* = 8.5 Hz, 2H), 7.23 (d, *J* = 8.4 Hz, 2H), 4.58 (s, 2H), 3.96 (t, J = 4.70 Hz, 4H), 3.78 (t, J = 4.85 Hz, 4H); **¹³C NMR** (125 MHz, CDCl₃): δ 166.0, 165.4, 141.0, 135.2, 131.9, 130.6, 130.5, 122.1, 95.2, 67.1, 48.4, 41.3; **HRMS** (ESI): calcd for C₁₅H₁₄BrClN₂NaO₃ [M + Na]⁺ 406.9774, found 406.9774.

3-chloro-4-morpholino-1-(4-(trifluoromethyl)benzyl)-1H-pyrrole-2,5-dione²

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow solid (53.8 mg, 72% yield), Mp = 110-111 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.58 (d, *J* = 8.0 Hz, 2H), 7.46 (d, *J* = 8.0 Hz, 2H), 4.69 (s, 2H), 3.97 (t, J = 4.75 Hz, 4H), 3.78 (t, J = 4.85 Hz, 4H); ¹³C NMR (125 MHz, CDCl₃): δ 166.0, 165.4, 141.1, 140.1, 130.3 (q, *J* = 32.4 Hz), 129.0, 125.8 (q, *J* = 3.9 Hz), 124.1 (q, *J* = 272.2 Hz), 95.2, 67.1, 48.4, 41.4; ¹⁹F NMR (375 MHz, CDCl₃): δ -62.7; HRMS (ESI): calcd for C₁₆H₁₄ClF₃N₂NaO₃ [M + Na]⁺ 397.0543, found 397.0537.

3-chloro-4-morpholino-1-(naphthalen-1-ylmethyl)-1H-pyrrole-2,5-dione²

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (59.1 mg, 83% yield). ¹H NMR (500 MHz, CDCl₃): δ 8.28 (d, *J* = 8.5 Hz, 1H), 7.85 (d, *J* = 8.1 Hz, 1H), 7.80 (d, *J* = 8.2 Hz, 1H), 7.59-7.55 (m, 2H), 7.50 (t, *J* = 7.5 Hz, 1H), 7.43 (t, *J* = 7.6 Hz, 1H), 5.10 (s, 2H), 3.91-3.89 (m, 4H), 3.74-3.71 (m, 4H); ¹³C NMR (125 MHz, CDCl₃): δ 166.2, 165.6, 140.9, 133.8, 131.4, 131.2, 128.8, 127.7, 126.6, 125.9, 125.3, 123.5, 95.1, 66.9, 48.2, 39.8; HRMS (ESI): calcd for C₁₉H₁₇ClN₂NaO₃ [M + Na]⁺ 379.0825, found 379.0826.

3-chloro-4-morpholino-1-(thiophen-2-ylmethyl)-1H-pyrrole-2,5-dione²

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow solid (49.9 mg, 80% yield), Mp = 129-130 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.20 (d, *J* = 5.2 Hz, 1H), 7.05 (d, *J* = 3.5 Hz, 1H), 6.91 (t, *J* = 4.4 Hz, 1H), 4.80 (s, 2H), 3.94 (t, J = 4.75 Hz, 4H), 3.76 (t, J = 4.85 Hz, 4H); ¹³C NMR (125 MHz, CDCl₃): δ 165.6, 165.1, 141.0, 137.9, 127.8, 126.9, 125.9, 95.2, 67.0, 48.3, 35.9; HRMS (ESI): calcd for C₁₃H₁₃ClN₂NaO₃S [M + Na]⁺ 335.0233, found 335.0242.

3-chloro-1-(3,4-dichlorobenzyl)-4-morpholino-1H-pyrrole-2,5-dione²

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow solid (53.1 mg, 71% yield), Mp = 99-100°C. ¹H NMR (500 MHz, CDCl₃): δ 7.42 (d, *J* =

2.1 Hz, 1H), 7.37 (d, J = 8.2 Hz, 1H), 7.19 (dd, J = 8.3, 2.1 Hz, 1H), 4.57 (s, 2H), 3.96 (t, J = 4.75 Hz, 4H), 3.78 (t, J = 4.85 Hz, 4H); ¹³**C NMR** (125 MHz, CDCl₃): δ 165.9, 165.3, 141.0, 136.3, 132.8, 132.3, 130.8, 130.7, 128.2, 95.1, 67.0, 48.4, 40.8; **HRMS** (ESI): calcd for C₁₅H₁₃Cl₃N₂NaO₃ [M + Na]⁺ 396.9889, found 396.9885.

3-chloro-1-methyl-4-morpholino-1H-pyrrole-2,5-dione²

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (38.6 mg, 84% yield). ¹H NMR (500 MHz, CDCl₃): δ 3.93 (t, *J* = 4.65 Hz, 4H), 3.75 (t, *J* = 4.65 Hz, 4H), 2.95 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 166.5, 165.9, 141.1, 95.1, 67.0, 48.3, 24.1; HRMS (ESI): calcd for C₉H₁₂ClN₂O₃ [M + H]⁺ 231.0536, found 231.0528.

3-chloro-1-cyclohexyl-4-morpholino-1H-pyrrole-2,5-dione²

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow solid (49.4 mg, 83% yield), Mp = 130-131 °C. ¹H NMR (400 MHz, CDCl₃): δ 3.96-3.93 (m, 4H), 3.92-3.85 (m, 1H), 3.80-3.78 (m, 4H), 2.01 (qd, *J* = 12.4, 3.4 Hz, 2H), 1.84-1.78 (m, 2H), 1.68-1.62 (m, 3H), 1.36-1.13 (m, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 166.4, 165.7, 140.6, 95.5, 67.1, 51.3, 48.3, 30.1, 26.1, 25.2; HRMS (ESI): calcd for C₁₄H₁₉ClN₂NaO₃ [M + Na]⁺ 321.0982, found 321.0980.

2-chloro-3-morpholinonaphthalene-1,4-dione

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (47.1 mg, 85% yield). ¹H NMR (400 MHz, CDCl₃): δ 8.08 (dd, *J* = 7.3, 1.7 Hz, 1H), 7.97 (dd, *J* = 7.3, 1.7 Hz, 1H), 7.71-7.63 (m, 2H), 3.85 (t, *J* = 4.4 Hz, 4H), 3.61 (t, *J* = 4.4 Hz, 4H); ¹³C NMR (125 MHz, CDCl₃): δ 181.8, 178.1, 149.7, 134.2, 133.3, 131.5, 131.4, 126.9, 126.7, 123.3, 67.6, 51.8; HRMS (ESI): calcd for C₁₄H₁₃NO₃Cl [M + H]⁺ 278.0584, found 278.0580.

3-chloro-4-((3-(10,11-dihydro-5H-dibenzo[a,d][7]annulen-5ylidene)propyl)(methyl)amino)-1-phenyl-1H-pyrrole-2,5-dione

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (83.3 mg, 89% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.49-7.45 (m, 2H), 7.40-7.35 (m, 1H), 7.33-7.29 (m, 3H), 7.27-7.17 (m, 6H), 7.11-7.08 (m, 1H), 5.92 (t, *J* = 7.6 Hz, 1H), 3.88 (t, *J* = 7.3 Hz, 2H), 3.52-3.32 (m, 5H), 3.04-2.97 (m, 1H), 2.86-2.82 (m, 1H), 2.68-2.53 (m, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 165.6, 164.4, 146.1, 141.3, 140.8, 139.6, 139.5, 137.2, 131.6, 130.2, 129.0, 128.5, 128.3, 128.1, 127.9, 127.7, 127.5, 126.4, 126.3, 126.2, 125.9, 93.0, 53.3, 40.1, 33.8, 32.1, 29.0, 27.0; HRMS (ESI): calcd for C₂₉H₂₅N₂O₂NaCl [M + Na]⁺ 491.1502, found 491.1503.

3-((3-((9r,10r)-9,10-ethanoanthracen-9(10H)-yl)propyl)(methyl)amino)-4-chloro-1-phenyl-1H-pyrrole-2,5-dione

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (81.9 mg, 85% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.48-7.44 (m, 2H), 7.37-7.33 (m, 3H), 7.29-7.25 (m, 4H), 7.15-7.07 (m, 4H), 4.30 (t, *J* = 2.7 Hz, 1H), 4.06 (t, *J* = 7.8 Hz, 2H), 3.56 (s, 3H), 2.53-2.48 (m, 2H), 2.23-2.19 (m, 2H), 1.87-1.83 (m, 2H), 1.63-1.59 (m, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 165.7, 164.4, 144.9, 144.9, 141.4, 131.5, 129.0, 127.8, 126.4, 125.4, 125.3, 123.5, 121.0, 92.8, 54.6, 44.6, 44.5, 40.2, 29.7, 27.6, 27.6, 24.3; HRMS (ESI): calcd for C₃₀H₂₇N₂O₂NaCl [M + Na]⁺ 505.1659, found 505.1663.

(R)-3-chloro-4-(methyl(3-phenyl-3-(o-tolyloxy)propyl)amino)-1-phenyl-1H-pyrrole-2,5-dione²

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (75.4 mg, 82% yield). ¹H NMR (500 MHz, CDCl₃): δ 7.44-7.40 (m, 2H), 7.37-7.32 (m, 5H), 7.28-7.24 (m, 3H), 7.13 (d, *J* = 7.8 Hz, 1H), 6.96 (t, *J* = 7.8 Hz, 1H), 6.80 (t, *J* = 7.4 Hz, 1H), 6.58 (d, *J* = 8.1 Hz, 6H), 5.28 (dd, *J* = 8.9, 3.8 Hz, 1H), 4.14-3.96 (m, 2H), 3.44 (s, 3H), 2.45-2.37 (m, 1H), 2.35 (s, 3H), 2.32-2.22 (m, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 165.6, 164.4, 155.6, 141.5, 141.1, 131.5, 130.9, 129.0, 128.9, 127.9, 127.8, 126.9, 126.8, 126.4, 125.7, 120.7, 112.6, 93.3, 51.0, 40.2, 37.7, 16.7; HRMS (ESI): calcd for C₂₇H₂₅ClN₂NaO₃ [M + Na]⁺ 483.1451, found 483.1447.

3-chloro-4-(methyl(3-phenyl-3-(4-(trifluoromethyl)phenoxy)propyl)amino)-1phenyl-1H-pyrrole-2,5-dione²

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (77.1 mg, 75% yield). ¹H NMR (500 MHz, CDCl₃): δ 7.43-7.39 (m, 4H), 7.35-7.32(m, 5H), 7.31-7.28 (m, 1H), 7.17 (d, *J* = 8.3 Hz, 2H), 6.88 (d, *J* = 8.5 Hz, 2H), 5.28 (dd, *J* = 9.2, 3.6 Hz, 1H), 4.09-3.99 (m, 2H), 3.45 (s, 3H), 2.43-2.36 (m, 1H), 2.28-2.19 (m, 1H); ¹³C NMR (125)

MHz, CDCl₃): δ 165.5, 164.5, 160.1, 149.1, 141.5, 140.2, 131.4, 131.3, 129.1, 129.1, 128.4, 127.9, 127.0, 127.0, 126.4, 125.7, 115.7, 93.5, 78.1, 50.8, 40.2, 37.5, 27.1; ¹⁹F NMR (375 MHz, CDCl₃): δ -61.6 (s, 3F); HRMS (ESI): calcd for C₂₇H₂₂ClF₃N₂NaO₃ [M + Na]⁺ 537.1169, found 537.1177.

3-((4S)-3-((benzo[d][1,3]dioxol-5-yloxy)methyl)-4-(4-fluorophenyl)piperidin-1-yl)-4chloro-1-phenyl-1H-pyrrole-2,5-dione

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (84.4 mg, 79% yield). ¹H NMR (500 MHz, CDCl₃): δ 7.49 (t, *J* = 7.8 Hz, 2H), 7.39 (dt, *J* = 6.2, 1.5 Hz, 3H), 7.22 (dd, *J* = 8.5, 5.4 Hz, 2H), 7.04 (t, *J* = 8.7 Hz, 2H), 6.68 (d, *J* = 8.4 Hz, 1H), 6.41 (d, *J* = 2.5 Hz, 1H), 6.19 (dd, *J* = 8.5, 2.5 Hz, 1H), 5.93 (s, 2H), 5.15 (ddd, *J* = 13.5, 3.9, 2.1 Hz, 1H), 5.06-5.00 (m, 1H), 3.71 (dd, *J* = 9.6, 2.7 Hz, 1H), 3.55 (dd, *J* = 9.6, 6.1 Hz, 1H), 3.27 (dd, *J* = 13.6, 11.1 Hz, 2H), 2.93 (td, *J* = 11.3, 5.0 Hz, 1H), 2.34-2.26 (m, 1H), 2.04-1.95 (m, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 165.5, 164.7, 163.1, 160.6, 154.1, 148.3, 141.9, 141.2, 138.2, 138.2, 134.3, 131.5, 129.1, 128.9, 128.9, 127.8, 126.3, 126.1, 115.9, 115.7, 107.9, 105.6, 101.2, 98.1, 95.4, 68.3, 51.9, 49.3, 43.7, 43.1, 34.6; ¹⁹F NMR (375 MHz, CDCl₃): δ -115.5 (s, 1F); HRMS (ESI): calcd for C₂₉H₂₄N₂O₅NaClF [M + Na]⁺ 557.1255, found 557.1252.

3-chloro-4-((1R,5S)-3-hydroxy-8-azabicyclo[3.2.1]octan-8-yl)-1-phenyl-1H-pyrrole-2,5-dione

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (58.4 mg, 88% yield). ¹H NMR (500 MHz, CDCl₃): δ 7.48-7.44 (m, 2H), 7.37-7.34 (m, 3H), 5.42-5.30 (brs, 2H), 4.15-4.12 (m, 1H), 2.39-2.36 (m, 2H), 2.23-2.18 (m, 2H), 2.07-2.00

(m, 3H), 1.91 (d, J = 14.7 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 166.1, 164.2, 138.4, 131.6, 129.0, 127.7, 126.3, 91.2, 64.4, 60.5, 55.5, 40.5, 27.2, 21.1, 14.3; **HRMS** (ESI): calcd for C₁₇H₁₇N₂O₃NaCl [M + Na]⁺ 355.0829, found 355.0825.

References:

(1) Galvis, C. E. P.; Kouznetsov, V. V. Org. Biomol. Chem. 2013, 11, 407-411.

(2) Zhou, X.; Yao, Y.; Wang, C.; Xu, Y.; Zhang, W.; Ma, Y.; Wu, G. Org. Lett. 2021, 23, 3669-3673.

¹H, ¹³C and ¹⁹F NMR spectra of product

