Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2021

Electronic Supplementary Information

An expedient, mild and aqueous method for Suzuki-Miyaura diversification of (hetero)aryl halides or (poly)chlorinated pharmaceuticals†

Sunil V. Sharma, Cristina Pubill-Ulldemolins, Enrico Marelli and Rebecca J. M. Goss

Contents:	Page
General experimental	2
Table S1: Initial screening of Pd-catalysts and bases for Suzuki-Miyaura cross-coupling for various 5-haloindoles with p -Tol-B(OH) $_2$	3
General procedure for Suzuki-Miyaura cross-coupling reaction	3
Characterisation data of purified products	3-8
References	8
NMR spectra	9-31

General Experimental

All reagents were purchased from commercial suppliers and were used without further purification unless otherwise stated. Proton NMR (1 H), carbon NMR (13 C) and fluorine NMR (19 F) were recorded on either a Bruker Ascend 500 (500 MHz), Bruker 500 UltraShield (500 MHz), Bruker 400 UltraShield (400 MHz) or a Bruker UltraShield (300 MHz) spectrometer. The NMR experiments were carried out in deuterochloroform (CDCl₃) or deuterated methanol (d_4 -MeOH). The chemical shifts (δ) are quoted in parts per million (ppm). Using a DEPT-Q sequence, the 13 C NMR spectra are depicted to indicate CH₃/ CH and CH₂ / C_{quaternary} in opposite phase. Multiplicities are abbreviated as s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; b, broad for the 1 H NMR spectra. Coupling constants are reported in Hertz (Hz).

Column chromatography was performed using Davisil silica gel LC60A (40-63 micron). Flash column chromatography was performed on a Biotage Isolear-4 using snap-silica cartridges. Thin layer chromatography (TLC) was performed using aluminium sheets of silica gel 60 F254 and was visualised under a Mineralight model UVGL-58 lamp (254 nm). The plates were developed with basic potassium permanganate solutions.

High- and low-resolution mass spectra were recorded at the University of St Andrews on a Waters Micromass LCT mass spectrometer coupled to a Waters 2975 HPLC system; or on an Orbitrap Velos pro or at the EPSRC National Mass Spectrometry Service, Swansea. Microwave reactions were conducted in sealed vials using a Biotage Initiator+ microwave reactor.

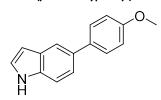
7-Bromotryptophan and *N*-Boc-7-bromotryptophan were prepared as described previously.¹ Optimisation of these reaction conditions were detailed in our earlier publication.² Along with water, to improve the solubility of substrates, acetonitrile was found beneficial organic co-solvent (4:1 water-acetonitrile ratio). A series of readily available sulphonated water soluble phosphine ligand (including TPPTS, ⁵SPhos, ⁵XPhos) in combination with Pd-salts such as Na₂PdCl₄, Pd(OAc)₂ and PdCl₂ were screened. In addition to these systems, we also evaluated precatalysts based on bidentate ligands such as [PdCl₂(dppf)], [PdCl₂(dtbpf)], [PdCl₂(Xantphos)] and NHC-Pd complexes. Mild bases (K₂CO₃, Na₂CO₃, K₃PO₄, Cs₂CO₃) were also screened. In this preliminary screen, for the cross-coupling 5-iodo- or 5-bromoindole with *p*-tolyl boronic acid (*p*-Tol-B(OH)₂); the use of the water-soluble Na₂PdCl₄ catalyst in combination with ⁵SPhos ligand, and K₂CO₃ as base were found to be the most suitable. These optimised aqueous conditions were applied to diversify a range of halogenated aromatic compounds and aryl boronic acids in this study.

Table S1. Initial screening of Pd-catalyst and bases for Suzuki-Miyaura cross-coupling for various 5-haloindoles with *p*-Tol-B(OH)₂

	X=	Pd-Ligand (1:2.5 ratio)	Base	Solvent	Time (Temp.)	Conversion (%) ^a
Catalyst	screen					
	Br	Na ₂ PdCl ₄ - ^S SPhos	K ₂ CO ₃	Water- CH₃CN (4:1)	18 h	99
		(5 mol%)			(37 °C)	
	Br	Na ₂ PdCl ₄ - ^S XPhos	K ₂ CO ₃	Water- CH₃CN (4:1)	18 h	20
		(5 mol%)			(37 °C)	
	Br	Na ₂ PdCl ₄ -TPPTS	K ₂ CO ₃	Water- CH₃CN (4:1)	18 h	48
		(5 mol%)			(37 °C)	
	Br	(dtbpf)PdCl ₂	K ₂ CO ₃	Water- CH₃CN (4:1)	18 h	65
		(5 mol%)			(37 °C)	
	Br	Xantphos.PdCl ₂	K ₂ CO ₃	Water- CH₃CN (4:1)	18 h	25
		(5mol%)			(37 °C)	
Base scr	een					
	I	Na ₂ PdCl ₄ - ^S SPhos	K ₂ CO ₃	Water- CH₃CN (4:1)	8 h	98
		(2 mol%)			(37 °C)	
	ı	Na ₂ PdCl ₄ - ^S SPhos	Na ₂ CO ₃	Water- CH₃CN (4:1)	8 h	58
		(2 mol%)			(37 °C)	
	I	Na ₂ PdCl ₄ - ^S SPhos	Cs ₂ CO ₃	Water- CH₃CN (4:1)	8 h	70
		(2 mol%)			(37 °C)	
	ı	Na ₂ PdCl ₄ - ^S SPhos	Na ₃ PO ₄	Water- CH₃CN (4:1)	8 h	85
		(2 mol%)			(37 °C)	

Conditions: A mixture of 5-haloindole (0.1 mmol), Pd-catalyst (2 or 5 mol%), ligand (5 or 12 mol%), p-Tol-B(OH)₂ (0.15 mM) and appropriate base (0.3 mmol) in corresponding solvent (2 ml) was stirred at specified temperature. ^aConversion was determined by ¹H NMR of the crude reaction.

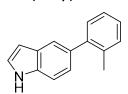
General Procedure for mild, aqueous Suzuki-Miyaura cross-coupling


In a screw cap glass vial, appropriate aryl halide (0.1 mmol), arylboronic acid (0.15 mmol), potassium carbonate (42 mg, 0.3 mmol) were suspended in water-CH $_3$ CN mixture (4:1, 1.8 mL). A solution of Na $_2$ PdCl $_4$ (5 mol%, 1.4 mg) and 5 SPhos (12 mol%, 6 mg) in water (0.2 mL) was added. The vial was closed and stirred at 37 °C until complete consumption of aryl halide was observed by TLC. The reaction was diluted with brine (2 mL) and extracted with ethyl acetate (3 × 3-4 mL). Combined organic extract was washed with brine, dried (MgSO $_4$), filtered and solvent removed under reduced pressure. The desired product was isolated by flash chromatography using dichloromethane or ethyl acetate in hexanes (5-100% gradient).

Characterisation data of purified products

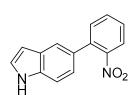
2a: 5-(p-Tolyl)-1H-indole

The general procedure afforded 19 mg (92% from 5-bromoindole) of the desired product as a white solid. ¹H NMR (300 MHz, CDCl₃): δ 8.12 (bs, 1H), 7.95 – 7.88 (bs, 1H), 7.63 (d, J = 8.1 Hz, 2H), 7.53 – 7.42 (m, 2H), 7.32 (d, J = 8.1 Hz, 2H), 7.27 – 7.22 (m, 1H), 6.70 – 6.62 (m, 1H), 2.47 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 139.78, 136.07, 135.26, 133.46, 129.50, 128.47, 127.35, 124.91, 121.93, 119.09, 111.30, 103.05, 21.19 ppm; MS (ESI) m/z 208.09 [M+H]⁺; HRMS (FTMS +p ESI) m/z C₁₅H₁₄N


2b: 5-(p-Methoxyphenyl)-1H-indole.

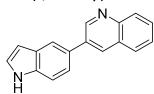
The general procedure afforded 22 mg (98%) of the desired product as a white waxy solid. ¹H NMR (400 MHz, CDCl₃): δ 8.19 (bs, 1H), 7.89 – 7.84 (m, 1H), 7.66 – 7.59 (m, 2H), 7.50 – 7.42 (m, 2H), 7.27 (dd, J = 3.1, 2.5 Hz, 1H), 7.04 (d, J = 8.8 Hz, 2H), 6.68 – 6.61 (m, 1H), 3.91 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 158.6, 135.3, 135.1, 133.2, 128.5, 128.5, 124.9, 121.8, 118.9, 114.3, 111.4, 103.0, 55.5 ppm; MS (ESI) m/z 224.09 [M+H]⁺; HRMS (FTMS +p ESI) m/z

 $C_{15}H_{14}NO~[M+H]^+$ calculated 224.1070, found 224.1069. NMR data was in agreement with literature reported data.³


2c: 5-(o-Tolyl)-1H-indole.

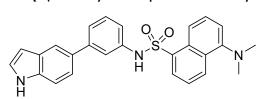
The general procedure afforded 20 mg (98%) of the desired product as an off-white solid. 1 H NMR (400 MHz, CDCl₃): δ 8.22 (bs, 1H), 7.66 – 7.60 (m, 1H), 7.47 (dt, J = 8.4, 0.8 Hz, 1H), 7.40 – 7.25 (m, 5H), 7.22 (dd, J = 8.3, 1.6 Hz, 1H), 6.63 (ddd, J = 2.1, 1.1, 0.9 Hz, 1H), 2.36 (s, 3H) ppm; 13 C NMR (100 MHz, CDCl₃): δ 143.2, 135.9, 134.9, 133.9, 130.5, 130.3, 127.9, 126.8, 125.7, 124.7, 123.9, 121.2, 110.6, 102.9, 20.8 ppm; MS (ESI) m/z 208.08 [M+H]⁺; HRMS (FTMS +p ESI) m/z C₁₅H₁₄N [M+H]⁺ calculated

208.1121, found 208.1122. NMR data was in agreement with literature reported data.3


2d: 5-(o-Nitrophenyl)-1H-indole.

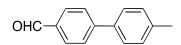
The general procedure afforded 20 mg (84%) of the desired product as a yellow solid. **¹H NMR** (400 MHz, CDCl₃) : δ 8.30 (s, 1H), 7.85 (dd, J = 8.1, 1.1 Hz, 1H), 7.69 – 7.65 (m, 1H), 7.63 (dd, J = 7.5, 1.2 Hz, 1H), 7.57 (dd, J = 7.7, 1.4 Hz, 1H), 7.53 – 7.39 (m, 2H), 7.33 – 7.25 (m, 1H), 7.17 (dd, J = 8.4, 1.7 Hz, 1H), 6.62 (ddd, J = 3.0, 2.0, 0.8 Hz, 1H) ppm; **¹³C NMR** (100 MHz, CDCl₃) : δ 149.9, 137.5, 135.6, 132.6, 132.1, 129.0, 128.3, 127.5, 125.3, 123.9, 122.1, 120.3, 111.5, 103.2 ppm; **MS (ESI)** m/z 239.09 [M+H]⁺,

261.09 [M+Na]⁺; **HRMS (FTMS +p ESI)** m/z C₁₄H₁₁N₂O₂ [M+H]⁺ calculated 239.0815, found 239.0814. NMR data was in agreement with literature reported data.⁴


2e: 5-(Quinolin-3-yl)-1H-indole.

The general procedure afforded 16 mg (62%) of the desired product as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃) : δ 9.28 (d, J = 2.3 Hz, 1H), 8.36 (bs, 1H), 8.35 (d, J = 2.1 Hz, 1H), 8.15 (d, J = 8.5 Hz, 1H), 8.04 – 7.96 (m, 1H), 7.89 (dd, J = 8.1, 1.3 Hz, 1H), 7.71 (ddd, J = 8.4, 6.9, 1.5 Hz, 1H), 7.61 – 7.54 (m, 3H), 7.31 (dd, J = 3.1, 2.5 Hz, 1H), 6.68 (dd, J = 3.8, 1.4 Hz, 1H) ppm; ¹³C NMR (75 MHz, CDCl₃) : δ 150.7, 146.9, 135.8, 135.3, 133.1, 129.9, 129.2, 129.0, 128.8, 128.4, 128.03, 126.9, 125.5, 121.9, 119.9, 111.9, 103.3 ppm; MS (ESI) m/z 245.17 [M+H]⁺;

HRMS (FTMS +p ESI) m/z C₁₇H₁₃N₂ [M+H]⁺ calculated 245.1073, found 245.1064.


2f: 5-[3-(5-Dimethylaminonaphthalene-1-sulfonylamino)]-1H-indole.

The general procedure afforded 26 mg (60%) of the desired product as a yellow solid. ¹H NMR (400 MHz, CDCl₃): δ 8.50 (dt, J = 8.5, 1.0 Hz, 1H), 8.39 (d, J = 8.7 Hz, 1H), 8.23 (dd, J = 7.4, 1.3 Hz, 1H), 7.63 – 7.54 (m, 2H), 7.44 (dd, J = 8.5, 7.4 Hz, 1H), 7.36 (dt, J = 8.4, 0.7 Hz, 1H), 7.30 (ddd, J = 7.8, 1.7, 1.1 Hz, 1H), 7.25 – 7.21 (m, 1H), 7.20 – 7.14 (m,

3H), 7.12 (t, J = 1.9 Hz, 1H), 6.90 (ddd, J = 8.0, 2.2, 1.0 Hz, 1H), 6.88 (s, 1H), 6.56 (ddd, J = 3.0, 2.0, 0.9 Hz, 1H), 2.86 (s, 6H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 152.2, 143.7, 136.8, 135.5, 134.2, 132.3, 130.9, 130.6, 129.9, 129.8, 129.4, 128.8, 128.4, 125.1, 124.4, 123.3, 121.7, 120.7, 119.6, 119.3, 118.6, 115.4, 111.4, 103.0, 45.5 ppm; MS (ESI) m/z 442.17 [M+H]+; HRMS (FTMS +p ESI) m/z C₂₆H₂₄N₃O₂S [M+H]+ calculated 442.1584, found 442.1570.

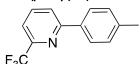
4a: 4'-Methyl-[1,1'-biphenyl]-4-carbaldehyde.

The general procedure afforded 19.6 mg (quantitative yield) of the desired product as a white solid. ^{1}H NMR (400 MHz, CDCl₃): δ 10.05 (s, 1H), 7.94 (d, J

= 8.3 Hz, 2H), 7.74 (d, J=8.3 Hz, 2H), 7.55 (d, J = 8.0, 2H), 7.29 (d, J = 8.0, 2H), 2.42 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 191.9, 147.1, 138.5, 136.8, 134.9, 130.3, 129.7, 127.4, 127.2, 21.2 ppm; HRMS (FTMS +p ESI) m/z C₁₄H₁₃O [M+H]⁺ calculated 197.0961, found 197.0964. NMR data was in agreement with literature reported data. NMR data was in agreement with literature reported data.

4b: 4-Methyl-4'-(methylsulfonyl)-1,1'-biphenyl.

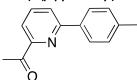
The general procedure afforded 24.6 mg (quantitative yield) of the desired product as a white solid. ¹**H NMR** (400 MHz, CDCl₃): δ 7.99 (dt, J = 8.8, 2 Hz, 2H), 7.76 (dt, J = 8.8, 2.0 Hz, 2H), 7.52 (dt, J = 8.4, 1.8 Hz, 2H), 7.30 (d, J = 8.0 Hz, 2H), 3.09 (s, 3H) 2.42 (s, 3H) ppm; ¹³**C NMR** (100 MHz, CDCl₃): δ 146.6,


138.7, 138.7, 136.2, 129.8, 127.9, 127.7, 127.2, 44.6, 21.2 ppm; **HRMS (FTMS +p ESI)** m/z C₁₁H₁₁N₂ [M+H]⁺ calculated 171.0917, found 171.0914. NMR data was in agreement with literature reported data.⁶

4c: N,N,4'-Trimethyl-[1,1'-biphenyl]-4-amine.

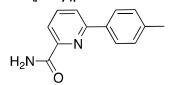
The general procedure afforded 21.1 mg (quantitative yield) of the desired product as a yellow solid. 1 H NMR (400 MHz, CDCl₃) : δ 7.52-7.44 (m, 4H), 7.22 (d, J = 7.5 Hz, 2H), 6.85 (d, J = 8.2, 2H), 3.00 (s, 6H), 2.38 (s, 3H) ppm; 13 C NMR (100 MHz, CDCl₃) : δ 146.6, 138.3, 135.7, 129.4, 127.6, 126.2, 113.2, 40.9, 21.0

ppm; HRMS (FTMS +p ESI) m/z C₁₅H₁₈N [M+H]⁺ calculated 212.1468, found 212.1434. NMR data was in agreement with literature reported data.⁷


4d: 2-(p-Tolyl)-6-(trifluoromethyl)pyridine.

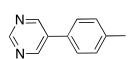
The general procedure afforded 20.2 mg (85% yield) of the desired product as a white solid. ^{1}H NMR (400 MHz, CDCl₃): δ 7.97 (d, J = 8.4 Hz, 2H), 7.90-7.87 (m, 2H), 7.60-7.55 (m, 1H), 7.30 (d, J = 8.0 Hz, 2H), 2.42 (s, 3H) ppm; ^{13}C NMR (100 MHz, CDCl₃): δ 157.8, 148.0 (q, J = 34 Hz), 139.9, 137.9, 135.0, 129.6, 126.9, 122.4,

121.8 (q, J = 273 Hz), 118.1 (q, J = 2.8 Hz), 21.3 ppm; ¹⁹**F NMR** (372 MHz, CDCl₃) : δ -68.1 ppm; **HRMS (FTMS +p ESI)** m/z C₁₃H₁₁F₃N [M+H]⁺ calculated 238.0838, found 238.0834. NMR data was in agreement with literature reported data.⁸


4e: 1-(6-(p-pyridin-2-yl)ethenone.

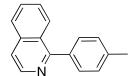
The general procedure afforded 21.1 mg (quantitative yield) of the desired product as a white solid. 1 H NMR (400 MHz, CDCl₃): δ 8.03 (dt, J = 8.0, 2.0 Hz, 2H), 7.97 (dd, J = 7.2, 1.6 Hz, 1H), 7.94-7.85 (m, 2H), 7.34 (d, J = 8.8 Hz, 2H), 2.85 (s, 3H) 2.46 (s, 3H) ppm; 13 C NMR (125 MHz, CDCl₃): δ 200.7, 156.4, 153.3, 139.5, 137.5, 135.6, 129.6, 126.7, 123.1, 119.4, 25.8, 21.3 ppm; HRMS (FTMS +p ESI)

m/z C₁₄H₁₃NO [M+H]⁺ calculated 212.1070, found 212.1067. NMR data was in agreement with literature reported data.⁹


4f: 6-(p-Tolyl)picolinamide.

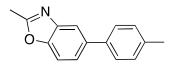
The general procedure afforded 21.2 mg (quantitative yield) of the desired product as a white solid. ^{1}H NMR (400 MHz, CDCl₃) : δ 8.13 (dd, J = 7.2, 1.6 Hz, 2H), 8.04 (bs, 1H), 7.93-7.88 (m 3H), 7.85 (dd, J = 8.0, 1.2 Hz, 1H), 7.31 (d, J = 7.6 Hz, 2H), 6.03 (bs, 1H), 2.43 (s, 3H) ppm; ^{13}C NMR (100 MHz, CDCl₃) : δ 167.0, 156.1, 149.1, 139.6, 138.0, 135.5, 129.5, 126.8, 122.9, 120.4, 21.3 ppm;

HRMS (FTMS +p ESI) m/z C₁₃H₁₃N₂O [M+H]⁺ calculated 213.1022, found 213.1026.


4g: 5-(p-Tolyl)pyrimidine.

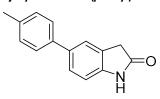
The general procedure afforded 16.2 mg (96% yield) of the desired product as an off-white solid. ¹H NMR (400 MHz, CDCl₃) : δ 9.18 (s, 1H), 8.93 (s, 2H), 7.48 (d, J = 7.6, 2H), 7.32 (d, J = 7.6 Hz, 2H), 2.43 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) : δ 157.2, 154.7, 139.1, 134.2, 131.3, 130.1, 126.8, 21.2 ppm; HRMS (FTMS +p ESI) m/z C₁₁H₁₁N₂

[M+H]⁺ calculated 171.0917, found 171.0914. NMR data was in agreement with literature reported data. NMR data was in agreement with literature reported data.¹⁰


4h: 1-(p-Tolyl)isoquinoline.

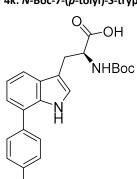
The general procedure afforded 20.2 mg (92% yield) of the desired product as a colorless oil. 1 H NMR (500 MHz, CDCl₃) : δ 8.60 (d, J = 5.5 Hz, 1H), 8.14 (dd, J = 8.5, 1.0 Hz, 1H), 7.88 (d, J = 8.0 Hz, 1H), 7.88 (d, J = 8.0, 1H), 7.69 (ddd, J = 8.1, 6.9, 1.1 Hz, 1H), 7.64 (d, J = 6.0 Hz, 1H), 7.61 (d, J = 8.0 Hz, 2H), 7.54 (ddd, J = 8.2, 6.9, 1.1 Hz, 1H), 7.34 (d, J = 7.5 Hz, 2H) 7.35 (bs, 1H), 2.47 (s, 3H) ppm; 13 C NMR (125 MHz, CDCl₃) : δ 160.8,

142.0, 136.8, 136.5, 129.9, 129.8, 129.0, 127.7, 127.1, 126.9, 126.7, 119.8, 21.4 ppm; **HRMS (FTMS +p ESI)** m/z $C_{16}H_{14}N$ [M+H]⁺ calculated 220.1121, found 220.1117. NMR data was in agreement with literature reported data. NMR data was in agreement with literature reported data.


4i: 2-Methyl-5-(p-tolyl)benzo[d]oxazole.

The general procedure afforded 14.9 mg (67% yield) of the desired product as a white solid. 1 H NMR (400 MHz, CDCl₃) : δ 8.13 (dd, J = 7.2, 1.6 Hz, 2H), 8.04 (bs, 1H), 7.93-7.88 (m 3H), 7.85 (dd, J = 8.0, 1.2 Hz, 1H), 7.31 (d, J = 7.6 Hz, 2H), 6.03 (bs, 1H), 2.43 (s, 3H) ppm; 13 C NMR (125 MHz, CDCl₃) : δ 163.8,

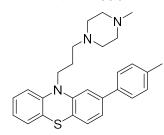
150.4, 142.1, 138.2, 137.9, 136.9, 129.5, 127.3, 123.9, 117.7, 110.1, 21.1, 14.6 ppm; **HRMS (FTMS +p ESI)** m/z $C_{15}H_{14}NO$ [M+H]⁺ calculated 224.1070, found 224.1069.


4j: Synthesis of 5-(p-Tolyl)-2-oxindole using microwave heating.

In a microwave vial, 5-chloro-2-oxindole (17 mg, 0.1 mmol), p-tolylboronic acid (20 mg, 0.15 mmol), potassium carbonate (42 mg, 0.3 mmol) were suspended in water-CH₃CN mixture (4:1, 1.5 mL). A solution of Na₂PdCl₄ (5 mol%, 1.4 mg) and ⁵SPhos (12 mol%, 6 mg) in water (0.2 mL) was added. The vial was sealed with an aluminium crimp cap and heated at 80 °C for 1 h under microwave irradiation. After cooling, the reaction was diluted with water (2 mL) and

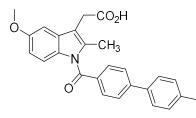
extracted with ethyl acetate (3 × 3 mL). Combined organic extract was dried (MgSO₄), filtered and solvent removed under reduced pressure. Recrystallisation from MeOH afforded 14 mg (63% yield) of the desired product as a white solid. 1 H NMR (500 MHz, CDCl₃): δ 8.28 (s, 1H), 7.51 – 7.47 (m, 2H), 7.46 (d, J = 8.2 Hz, 2H), 7.26 (d, J = 7.9 Hz, 2H), 6.96 (d, J = 8.0 Hz, 1H), 3.63 (s, 2H), 2.42 (s, 3H) ppm; 13 C NMR (125 MHz, CDCl₃): δ 177.3, 141.4, 138.0, 136.8, 135.9, 129.6, 126.8, 126.7, 125.9, 123.5, 109.8, 36.3, 21.1 ppm; MS (ESI) m/z 224.09 [M+H]⁺; HRMS (FTMS +p ESI) m/z C_{15} H₁₄NO [M+H]⁺ calculated 224.1070, found 224.1068.

4k: N-Boc-7-(p-tolyl)-S-tryptophan.


The general procedure afforded 12 mg (65% isolated yield) of the desired product as clear, colourless solid using *N*-Boc-7-bromo-*S*-tryptophan (18 mg, 0.047 mmol), p-tol-B(OH)₂ (20 mg, 3 equiv.) and K_2CO_3 (40 mg, 6 equiv.) at 37 °C (24 h). The product was isolated by purification using gradient reversed phase chromatography (C-18, 12 g) eluting with water-MeOH (5-95% gradient). ¹H NMR (500 MHz, CD₃OD) : δ 10.17 (s, 1H), 7.58 (t, J = 4.5 Hz, 1H), 7.52 (d, J = 8.0 Hz, 2H), 7.32 (d, J = 7.9 Hz, 2H), 7.16 – 7.08 (m, 3H), 4.48 – 4.43 (m, 1H), 3.37 (dd, J = 14.5, 5.4 Hz, 1H), 3.17 (dd, J = 14.6, 7.6 Hz, 1H), 2.43 (s, 3H), 1.41 & 1.21 (2 × s, 7H+2H = 9H) ppm; ¹³C NMR (100 MHz, CDCl₃) : δ 176.6, 165.5, 155.6, 137.2, 136.0, 134.0, 129.9, 128.1, 125.7, 123.2, 122.0, 120.2, 110.4, 80.3, 54.2, 28.3, 27.6, 21.2 ppm; MS (ESI) m/z 417.17 [M+Na]⁺, 811.35 [2M+Na]⁺; HRMS (FTMS +p ESI) m/z $C_{23}H_{26}N_2O_4Na$ [M+Na]⁺ calculated 417.1785, found 417.1782.

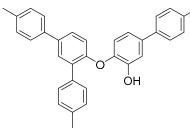
6a: 1-((4'-methyl-[1,1'-biphenyl]-2-yl)diphenylmethyl)-1H-imidazole (from clotrimazole).

The general procedure afforded 34.8 mg (87% isolated yield) of the desired product as a white crystalline solid. ¹H NMR (400 MHz, CDCl₃) : δ 7.85 (d, J = 7.5 Hz, 2H), 7.77 (s, 1H), 7.46 (dd, J = 7.9, 1.5 Hz, 1H), 7.43 – 7.34 (m, 7H), 7.29 (d, J = 7.0 Hz, 1H), 7.25 – 7.15 (m, 7H), 6.97 (dd, J = 8.0, 1.5 Hz, 1H), 6.78 (t, J = 1.5 Hz, 1H), 2.40 (s, 3H) ppm. ¹³C NMR (126 MHz, CDCl₃) : δ 140.1, 139.8, 138.7, 138.2, 135.5, 133.6, 132.3, 130.4, 130.1, 130.0, 128.4, 128.1, 128.1, 127.1, 121.8, 75.7, 21.6 ppm. HRMS (FTMS +p NSI)


m/z C₂₉H₂₄N₂H [M+H]⁺ calculated for 401.2018, found 401.2019.

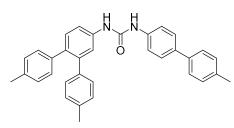
6b: 10-(3-(4-methylpiperazin-1-yl)propyl)-2-(p-tolyl)-10H-phenothiazine (from prochlorperazine).

The general procedure afforded 38.6 mg (90% isolated yield) of the desired product as an orange viscous liquid. ¹H NMR (400 MHz, CDCl₃) : δ 7.43 (d, J = 8.1 Hz, 2H), 7.24 (d, J = 7.9 Hz, 2H), 7.19 – 7.08 (m, 4H), 7.05 (d, J = 1.6 Hz, 1H), 6.95 – 6.87 (m, 2H), 3.99 (t, J = 6.8 Hz, 2H), 2.72 – 2.45 (m, 6H), 2.40 (s, 6H), 2.28 (s, 4H), 1.99 (p, J = 7.0 Hz, 2H) ppm; ¹³C NMR (126 MHz, CDCl₃) : δ 145.5, 145.1, 140.6, 138.0, 137.1, 129.4, 127.5, 127.4, 127.2, 126.8, 125.1, 123.9, 122.4, 121.2, 115.6, 114.3, 55.5, 54.8, 52.9, 45.7, 45.2, 24.3, 21.1 ppm; HRMS (FTMS +p NSI) m/z C₂₇H₃₂N₃S [M+H]⁺ calculated for 430.2311, found 430.2303.


6c: 2-(5-methoxy-2-methyl-1-(4'-methyl-[1,1'-biphenyl]-4-carbonyl)-1H-indol-3-yl)acetic acid (from indomethacine).

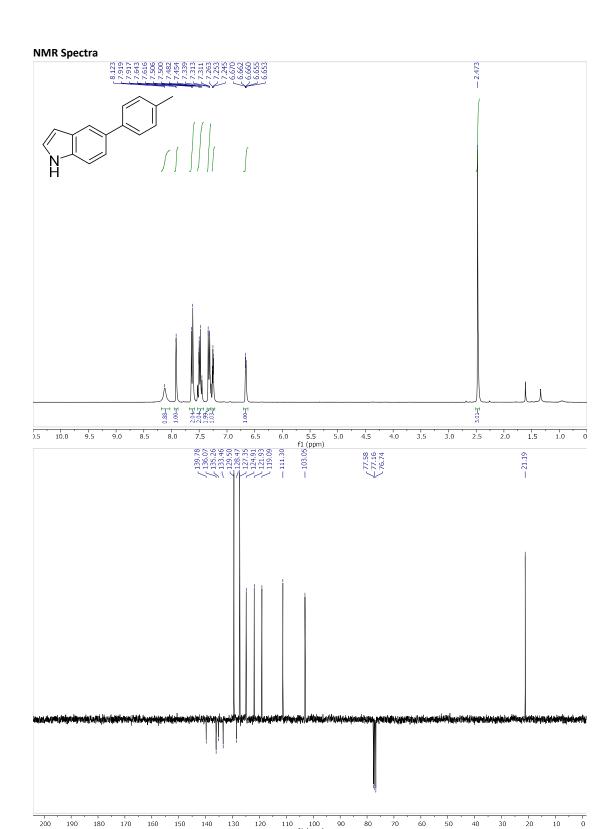
The general procedure afforded 30.4 mg (71% isolated yield) of the desired product as a yellowish solid. ^{1}H NMR (400 MHz, CDCl₃): δ 7.78 (d, J = 8.4 Hz, 2H), 7.69 (d, J = 8.5 Hz, 2H), 7.56 (d, J = 8.2 Hz, 2H), 7.30 (d, J = 7.9 Hz, 2H), 7.06 – 6.86 (m, 2H), 6.67 (dd, J = 9.0, 2.6 Hz, 1H), 3.83 (s, 3H), 3.72 (s, 2H), 2.42 (s, 6H) ppm; ^{13}C NMR (101 MHz, CDCl₃): δ 176.2, 169.2, 155.9, 145.6, 138.4, 136.7, 136.4, 133.7, 130.9, 130.5, 130.3, 129.7, 127.0, 115.1, 111.6, 111.3, 100.9, 55.7, 29.9, 21.2, 13.3

ppm; HRMS (FTMS -p NSI) m/z C₂₆H₂₂NO₄ [M-H]⁻ calculated for 412.1554, found 412.1544. NMR data was in agreement with literature reported data. NMR data was in agreement with literature reported data.

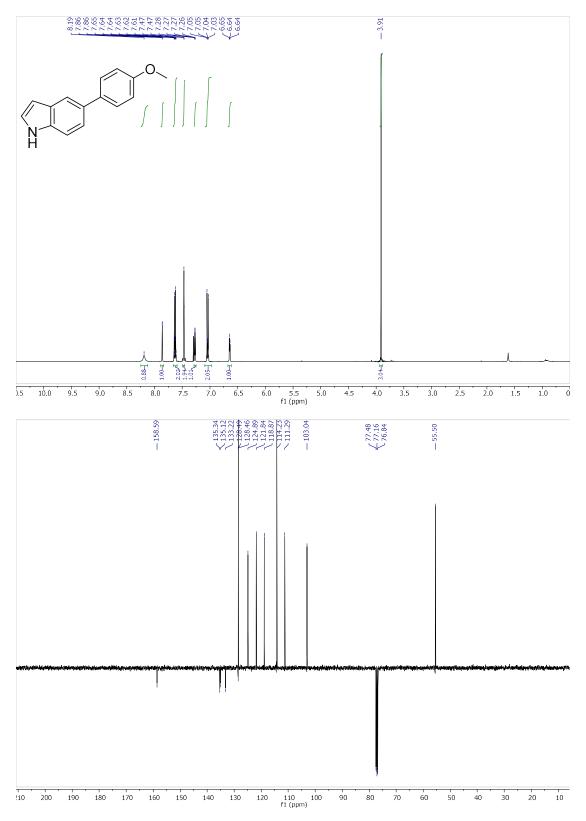

6e: 4-((4,4"-Dimethyl-[1,1":3',1"-terphenyl]-4'-yl)oxy)-4'-methyl-[1,1'-biphenyl]-3-ol (from irgasan).

The general procedure afforded 39.9 mg (81% isolated yield) of the desired product as a white crystalline solid using p-tol-B(OH)₂ (4.5 equiv.) and K_2CO_3 (6 equiv.) after 66 h. H NMR (400 MHz, CDCl₃): δ 7.67 (d, J = 2.3 Hz, 1H), 7.54 – 7.42 (m, 7H), 7.29 – 7.20 (m, 7H), 7.09 (d, J = 8.4 Hz, 1H), 7.04 (dd, J = 8.4, 2.2 Hz, 1H), 6.94 (d, J = 8.4 Hz, 1H), 5.56 (s, 1H), 2.40 (s, 3H), 2.38 (s, 6H) ppm; ^{13}C NMR (101 MHz, CDCl₃): δ 152.3, 147.0, 143.7, 137.5, 137.4, 137.4, 137.3, 137.1, 136.9, 134.4, 133.6, 129.8, 129.5, 129.4, 129.1, 128.9, 126.9, 126.8, 126.7, 119.5,

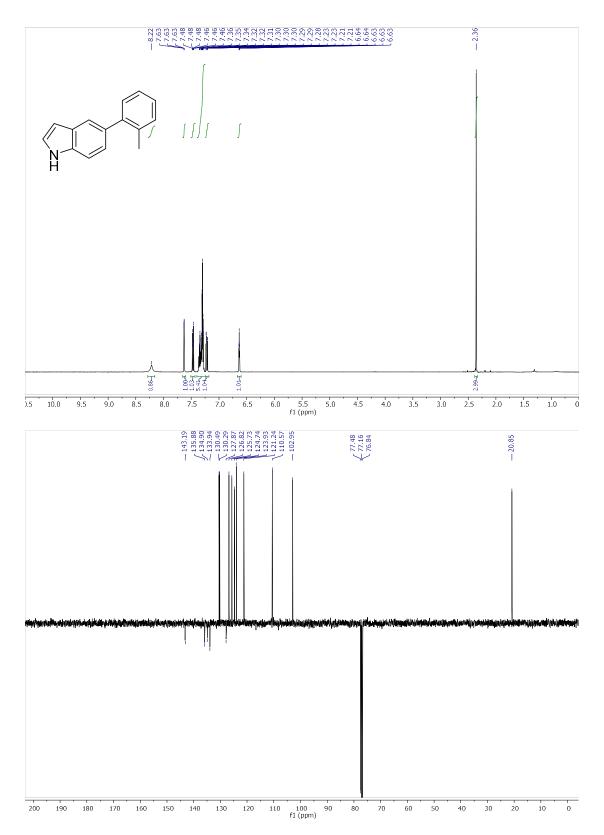
118.9, 117.9, 114.4, 21.2, 21.1, 21.1 ppm; **HRMS (FTMS +p NSI)** m/z C₃₃H₃₂O₂N [M+NH₄]⁺ calculated for 474.2428, found 474.2420; O₄H₆₀C₆₆N [2M+NH₄]⁺ calculated for 930.4517, found 930.4516.


6f: 1-(4,4"-dimethyl-[1,1':2',1"-terphenyl]-4'-yl)-3-(4'-methyl-[1,1'-biphenyl]-4-yl)urea (from triclocarban).

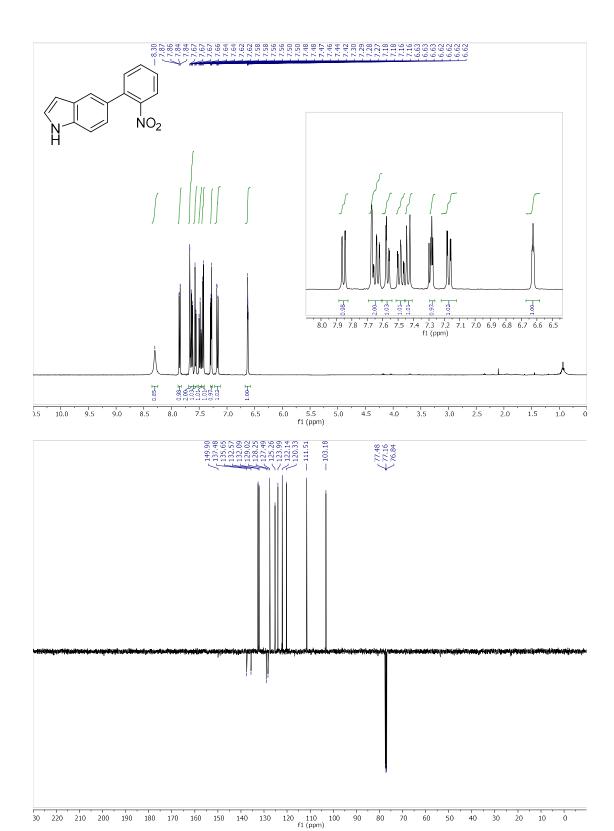
The general procedure afforded 39.5 mg (82% isolated yield) of the desired product as beige solid using p-tol-B(OH) $_2$ (4.5 equiv.) and K $_2$ CO $_3$ (6 equiv.) after 66 h. 1 H NMR (400 MHz, DMSO- d_6) : δ 8.83 (d, J = 13.0 Hz, 2H), 7.62 – 7.43 (m, 8H), 7.31 – 7.21 (m, 3H), 7.02 (m, 8H), 2.33 (s, 3H), 2.27 (s, 3H), 2.25 (s, 3H) ppm; 13 C NMR (100 MHz, DMSO- d_6) : δ 152.5, 140.2, 138.9, 138.4, 138.1, 136.9, 136.0, 135.7, 135.2, 133.5, 133.5, 130.9, 129.5, 129.3, 129.2, 128.7, 128.6, 126.7, 125.9, 120.0, 118.6, 117.2, 20.7, 20.7 ppm;

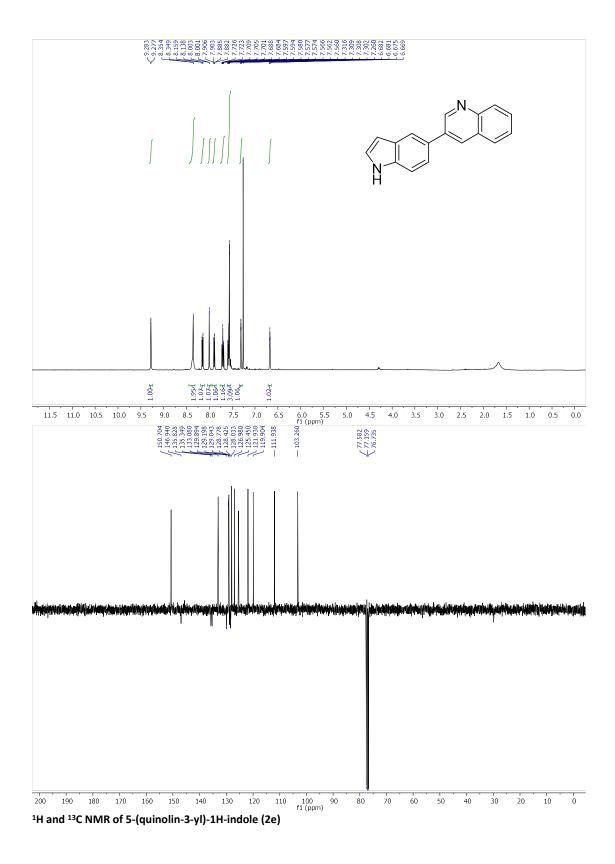

References:

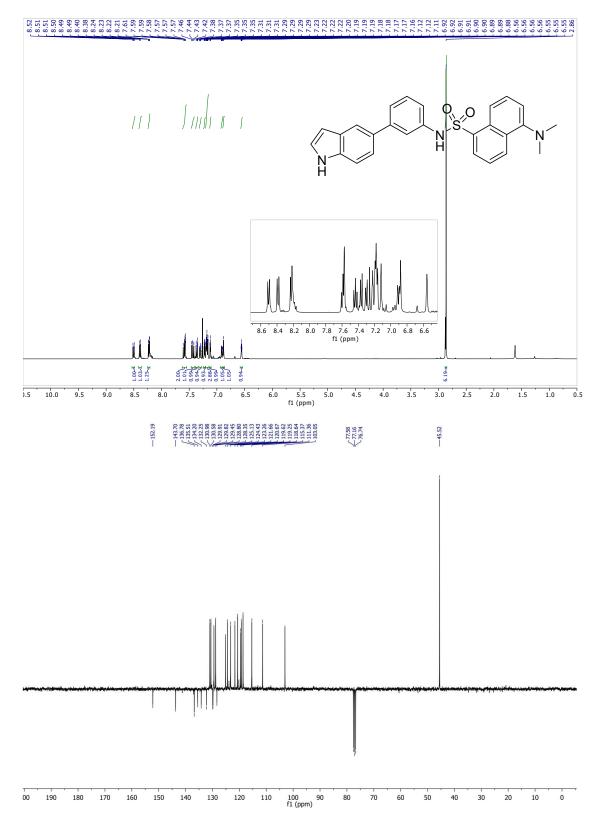
- 1. M. J. Corr, S. V. Sharma, C. Pubill-Ulldemolins, R. T. Bown, P. Poirot, D. R. M. Smith, C. Cartmell, A. Abou Fayad and R. J. M. Goss, Sonogashira diversification of unprotected halotryptophans, halotryptophan containing tripeptides; and generation of a new to nature bromo-natural product and its diversification in water, *Chem. Sci.*, 2017, **8**, 2039-2046.
- 2. S. V. Sharma, X. Tong, C. Pubill-Ulldemolins, C. Cartmell, E. J. A. Bogosyan, E. J. Rackham, E. Marelli, R. B. Hamed and R. J. M. Goss, Living GenoChemetics by hyphenating synthetic biology and synthetic chemistry in vivo, *Nature Commun.*, 2017, **8**.
- 3. G. Miao, P. Ye, L. Yu and C. M. Baldino, Microwave-promoted Suzuki reactions of aryl chlorides in aqueous media, *J. Org. Chem.*, 2005, **70**, 2332-2334.
- 4. J. H. Kim, M. Eum, T. H. Kim and J. Y. Lee, A novel pyrrolocarbazole donor for stable and highly efficient thermally activated delayed fluorescent emitters, *Dyes Pigm.*, 2017, **136**, 529-534.
- 5. B. Karimi, D. Elhamifar, J. H. Clark and A. J. Hunt, Ordered Mesoporous Organosilica with Ionic-Liquid Framework: An Efficient and Reusable Support for the Palladium-Catalyzed Suzuki-Miyaura Coupling Reaction in Water, *Chem. Eur. J.*, 2010, **16**, 8047-8053, S8047/8041-S8047/8018.
- 6. A. K. Cooper, D. K. Leonard, S. Bajo, P. M. Burton and D. J. Nelson, Aldehydes and ketones influence reactivity and selectivity in nickel-catalysed Suzuki-Miyaura reactions, *Chem. Sci.*, 2020, **11**, 1905-1911.
- 7. S. M. Raders, J. V. Kingston and J. G. Verkade, Advantageous Use of tBu2P-N=P(iBuNCH2CH2)3N in the Hiyama Coupling of Aryl Bromides and Chlorides, *J. Org. Chem.*, 2010, **75**, 1744-1747.
- 8. D. X. Yang, S. L. Colletti, K. Wu, M. Song, G. Y. Li and H. C. Shen, Palladium-Catalyzed Suzuki-Miyaura Coupling of Pyridyl-2-boronic Esters with Aryl Halides Using Highly Active and Air-Stable Phosphine Chloride and Oxide Ligands, *Org. Lett.*, 2009, **11**, 381-384.
- 9. K. Kumarasamy, T. Devendhiran, M.-C. Lin and C.-W. Chiu, Synthesis and physical property studies of cyclometalated Pt(II) and Pd(II) complexes with tridentate ligands containing pyrazole and pyridine groups, *Polyhedron*, 2020, **191**, 114799.
- 10. C. Liu, N. Han, X. Song and J. Qiu, A General and Highly Efficient Method for the Construction of Aryl-Substituted N-Heteroarenes, *Eur. J. Org. Chem.*, 2010, 5548-5551, S5548/5541-S5548/5523.
- 11. C. M. So, W. K. Chow, P. Y. Choy, C. P. Lau and F. Y. Kwong, Remarkably Effective Phosphanes Simply with a PPh2 Moiety: Application to Pd-Catalysed Cross-Coupling Reactions for Tetra-ortho-substituted Biaryl Syntheses, *Chem. Eur. J.*, 2010, **16**, 7996-8001, S7996/7991-S7996/7204.
- 12. T. Zhou, S. Ma, F. Nahra, A. M. C. Obled, A. Poater, L. Cavallo, C. S. J. Cazin, S. P. Nolan and M. Szostak, [Pd(NHC)(μ-Cl)Cl]2: Versatile and Highly Reactive Complexes for Cross-Coupling Reactions that Avoid Formation of Inactive Pd(I) Off-Cycle Products, *iScience*, 2020, **23**, 101377.



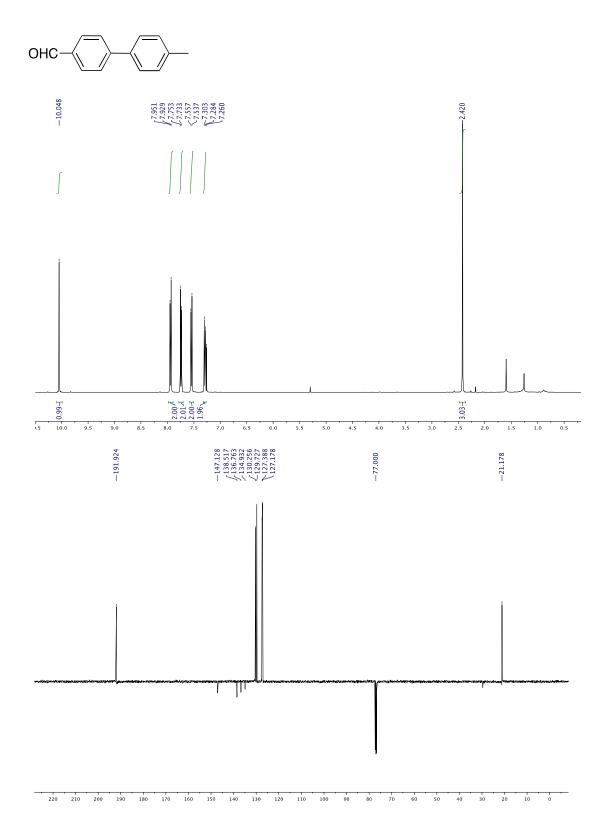
110 100 f1 (ppm)


¹H and ¹³C NMR of X1 5-(p-tolyl)-1H-indole (2a)

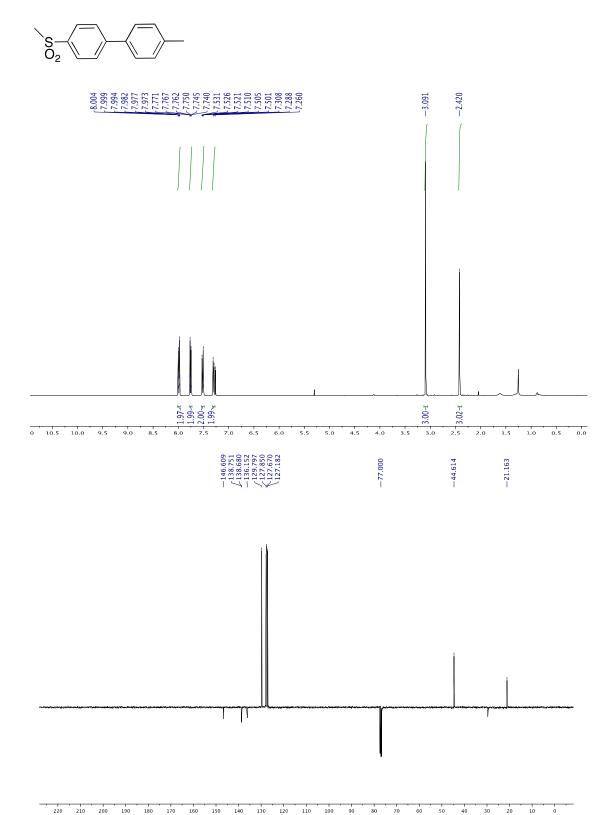

 $^{1}\mathrm{H}$ and $^{13}\mathrm{C}$ NMR of 5-(p-methoxyphenyl)-1H-indole (2b)

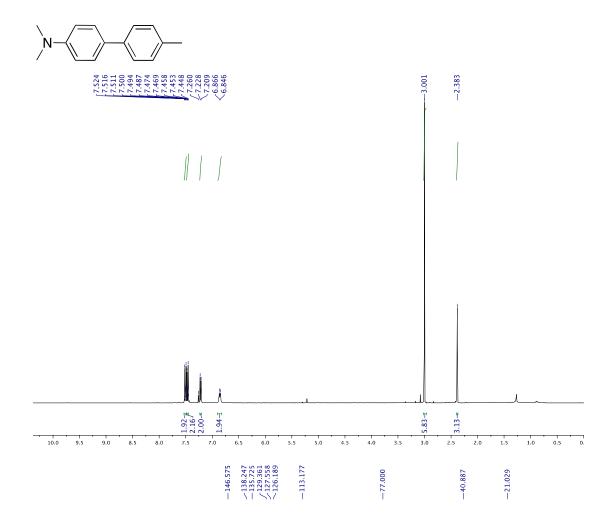


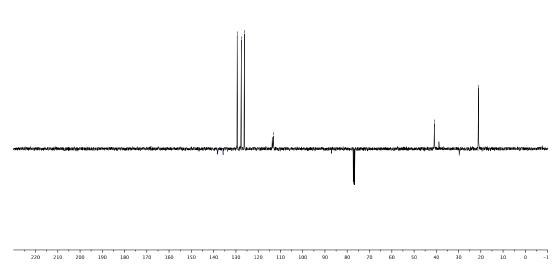
¹H and ¹³C NMR of 5-(o-tolyl)-1H-indole (2c)



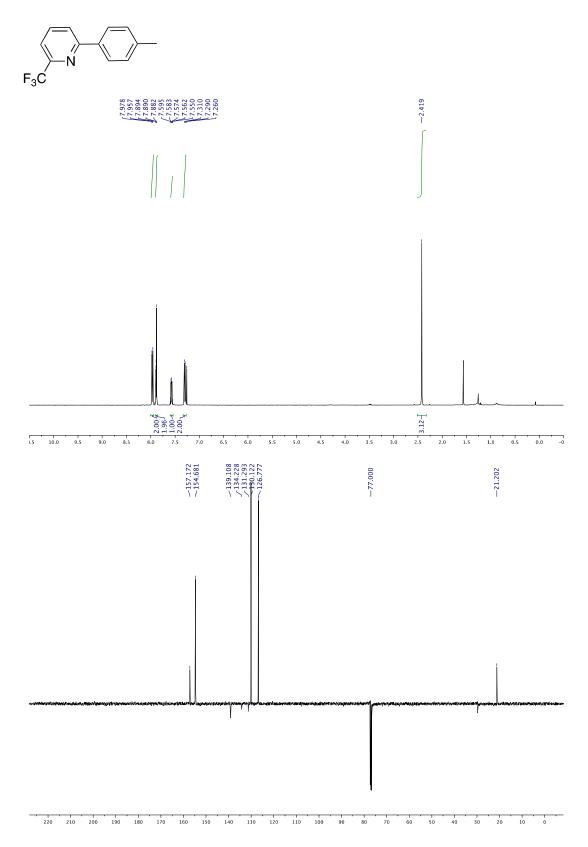
¹H and ¹³C NMR 5-(o-nitrophenyl)-1H-indole (2d)



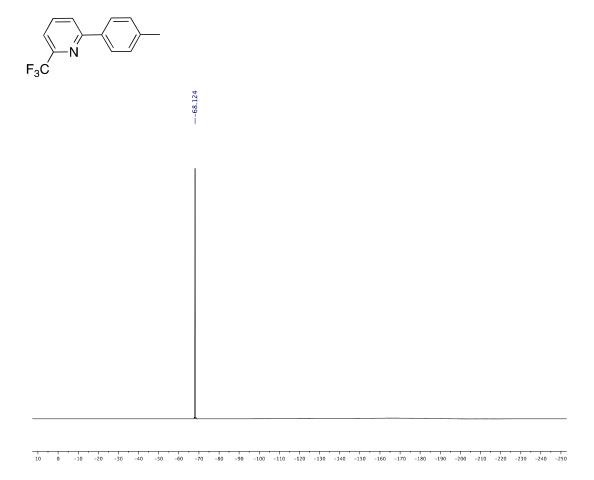

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR of 5-[3-(5-dimethylaminonaphthalene-1-sulfonylamino)]-1H-indole (2f)

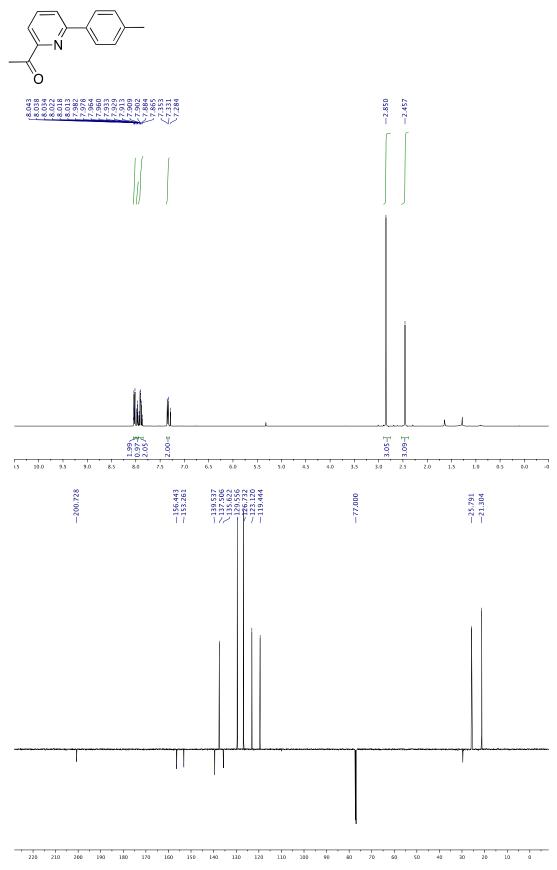


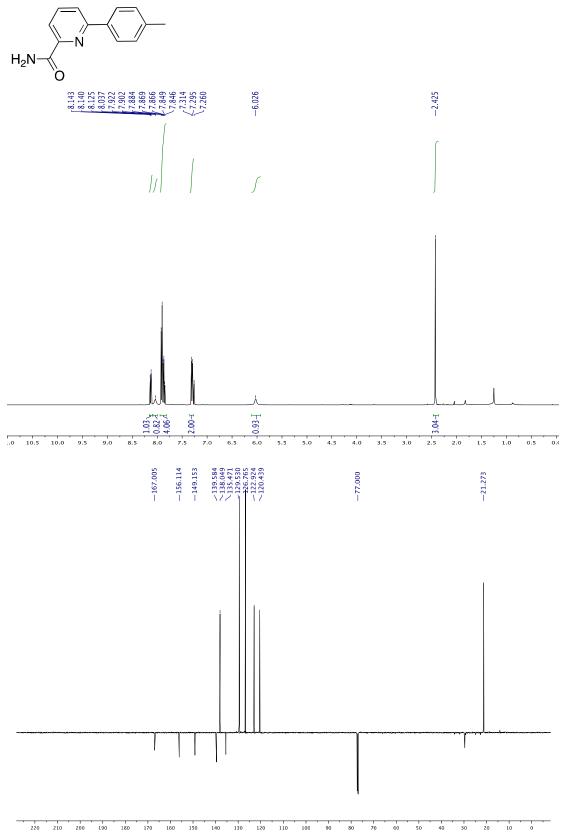
 $^{1}\mathrm{H}$ and $^{13}\mathrm{C}$ NMR of 4'-methyl-[1,1'-biphenyl]-4-carbaldehyde (4a)

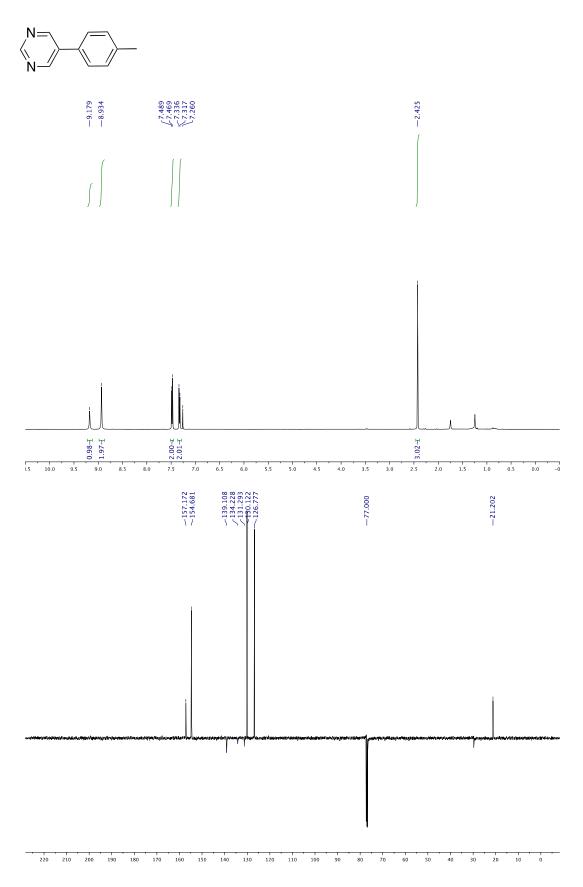


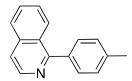
¹H and ¹³C NMR of 4-methyl-4'-(methylsulfonyl)-1,1'-biphenyl (4b)

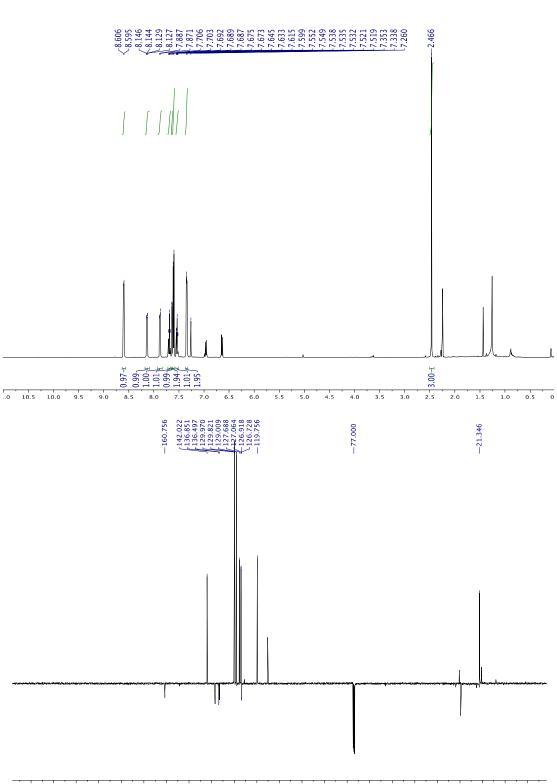



¹H and ¹³C NMR of *N,N,*4'-trimethyl-[1,1'-biphenyl]-4-amine (4c)

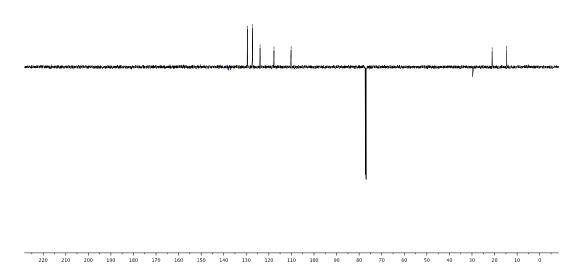

 $^{1}\mathrm{H}$ and $^{13}\mathrm{C}$ NMR of 2-(p-tolyl)-6-(trifluoromethyl)pyridine (4d)


¹⁹F NMR of 2-(*p*-tolyl)-6-(trifluoromethyl)pyridine (4d)


¹H and ¹³C NMR of 1-(6-(p-tolyl)pyridin-2-yl)ethenone (4e)

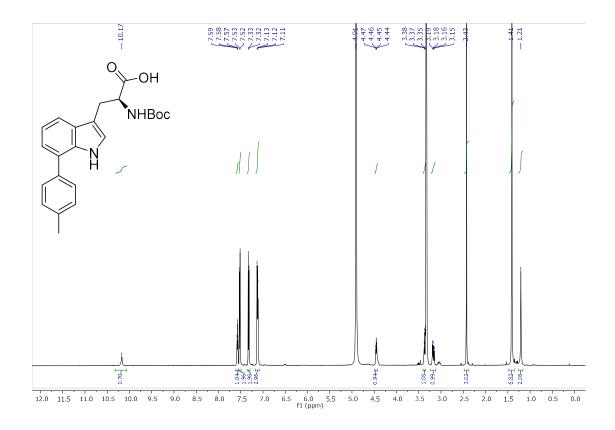


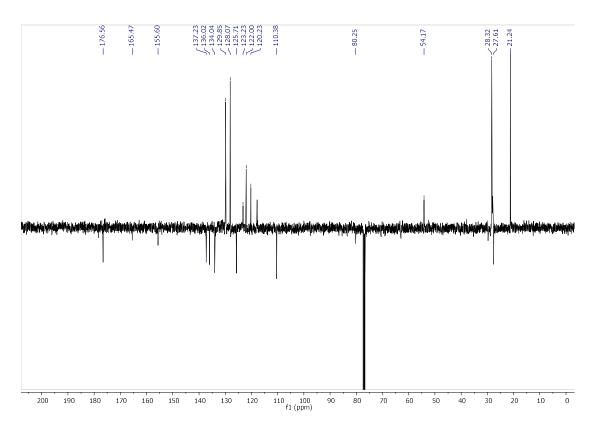
¹H and ¹³C NMR of 6-(*p*-tolyl)picolinamide (4f)


 $^{1}\mathrm{H}$ and $^{13}\mathrm{C}$ NMR of 5-(p-tolyl)pyrimidine (4g)

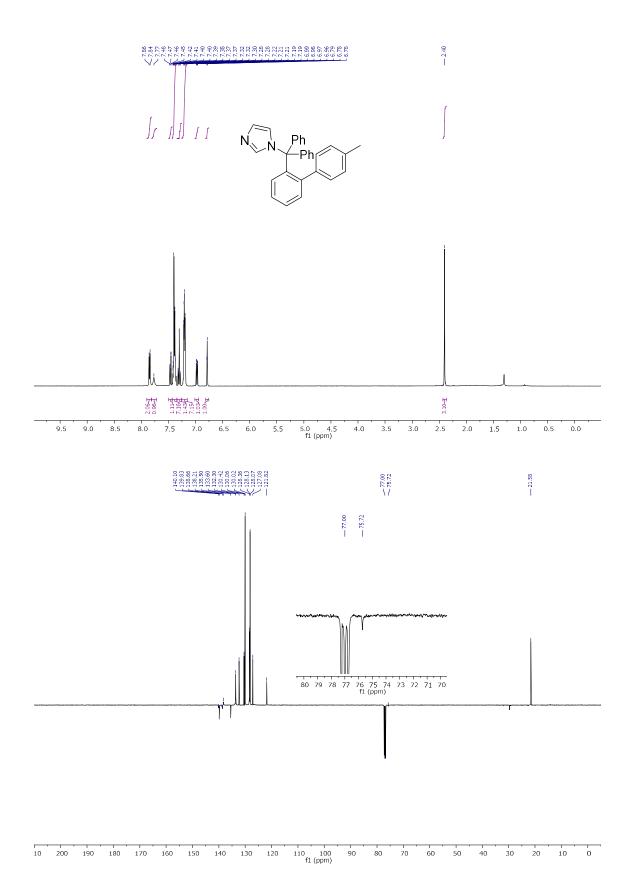


¹H and ¹³C NMR of 1-(p-tolyl)isoquinoline (4h)

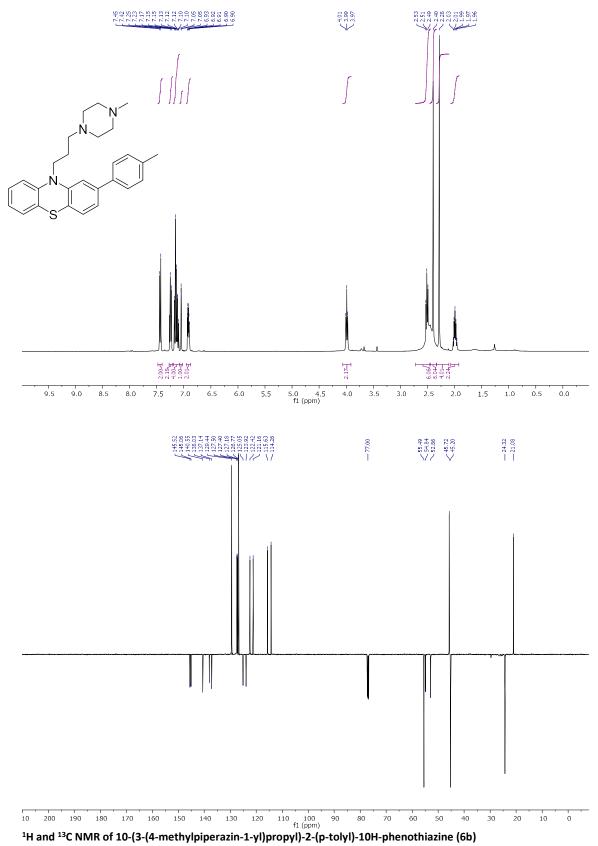


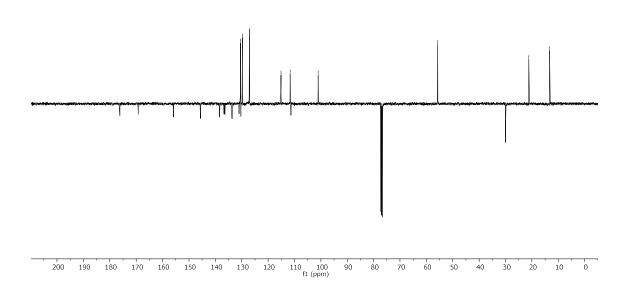


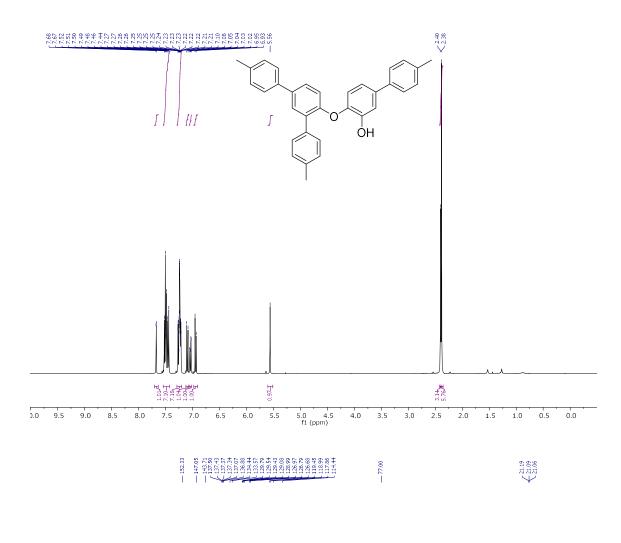
¹H and ¹³C NMR of 2-methyl-5-(p-tolyl)benzo[d]oxazole (4i)

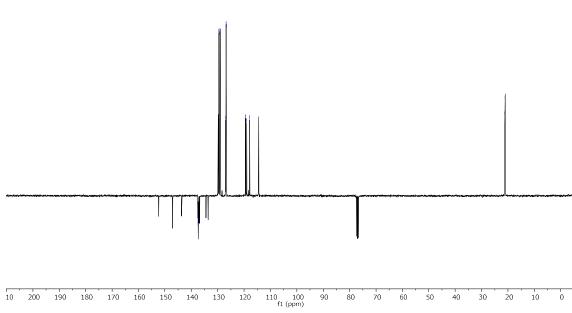


 ^{1}H and ^{13}C NMR of 5-(p-tolyl)-2-oxindole (4j)

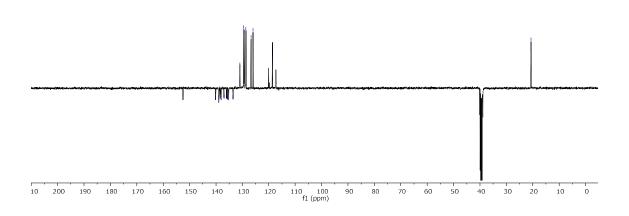



¹H and ¹³C NMR of *N*-Boc-7-(*p*-tolyl)-*S*-tryptophan (4k)


 $^1\!H$ and $^{13}\!C$ NMR of 1-((4'-methyl-[1,1'-biphenyl]-2-yl)diphenylmethyl)-1H-imidazole (6a)






¹H and ¹³C NMR of 2-(5-methoxy-2-methyl-1-(4'-methyl-[1,1'-biphenyl]-4-carbonyl)-1H-indol-3-yl)acetic acid (6c)

 1 H and 13 C NMR of 4-((4,4"-dimethyl-[1,1':3',1"-terphenyl]-4'-yl)oxy)-4'-methyl-[1,1'-biphenyl]-3-ol (6e)

 $^{1}\text{H and }^{13}\text{C NMR of 1-(4,4''-dimethyl-[1,1':2',1''-terphenyl]-4'-yl)-3-(4'-methyl-[1,1'-biphenyl]-4-yl)} urea (6f)$