Supporting Information

Divergent synthesis of unsymmetrical azobenzenes via Cu-catalyzed C–N coupling

Yuzhou Wang, Rongrong Xie, Lingyu Huang, Ya-Nan Tian, Shihai Lv, Xiangfei Kong and Shiqing Li*

Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P. R. China. E-mail: <u>lisq@glut.edu.cn</u>

Table of contents

I. General remarks	1
II. General procedure for the synthesis of substrate 1	2
III. General procedure A for the synthesis of azobenzenes from 1 and 2	3
IV. General procedure B for three-component reaction to synthesize azobenzenes	3
V. Mechanistic Experiments	4
VI. Experimental data for the described substances	7
VII. References	16
VIII. Copies of ¹ H and ¹³ C NMR spectra	18

I. General remarks

NMR spectra were obtained on a BRUKER Ascend500. The ¹H NMR (500 MHz) chemical shifts were measured relative to CDCl₃ or DMSO-*d*₆ as the internal reference (CDCl₃: δ = 7.26 ppm; DMSO-*d*₆: δ = 2.50 ppm). The ¹³C NMR (126 MHz) chemical shifts were given using CDCl₃ or DMSO-*d*₆ the internal standard (CDCl₃: δ = 77.16 ppm; DMSO-*d*₆: δ = 39.52 ppm). High-resolution mass spectra (HR-MS) were obtained with a BRUKER solanX 70 FT-MS (ESI⁺). Melting points were determined with SGW_® X-4 and are uncorrected.

Unless otherwise noted, all reagents were obtained from commercial suppliers and used without further purification. Phthalic anhydride, arylhydrazine, arylboronic acids and copper salts were purchased from Beijing Innochem Chemical Engineering Reagent (China) Co., Ltd. TfOH and *m*-CPBA (purity of 75%) were purchased from Adamas-beta Ltd. N-aryl phthalic hydrazide (**1a**, **1c** and **1e**)¹ were prepared according to the literature procedures.

II. General procedure for the synthesis of substrate 1.

Compounds **1** were prepared according to modified literature procedure:¹ A solution of phthalic anhydride (PA, 1 mmol, 1 equiv, 148 mg) and phenylhydrazine or phenylhydrazine hydrochloride (1.0 mmol, 1equiv, 145 mg) in HCl (10% aq, 3 mL) was reacted at 100 °C for 9 h. The reaction mixture was cooled to room temperature, resulting solid was collected by filtration and recrystallized from ethanol to afford pure compounds **1**.

2-(*m*-tolyl)-2,3-dihydrophthalazine-1,4-dione (1c)

A brown solid (166 mg, 66% yield). M.p.: 223-225 °C. ¹H NMR (500 MHz, NH DMSO-d₆): $\delta = 11.80$ (s, 1H), 8.30 (d, J = 7.5 Hz, 1H), 8.02 (d, J = 8.0 Hz, 1H), 7.98-7.91 (m, 2H), 7.44 (t, J = 6.8 Hz, 2H), 7.36 (t, J = 7.8 Hz, 1H), 7.18 (d, J = 7.0 Hz, 1H) ppm. ¹³C NMR (126 MHz, DMSO-d₆) $\delta = 157.28$, 150.31, 141.67, 137.78, 133.53, 132.48, 129.25, 128.19, 127.68, 126.85, 126.42, 124.57, 124.17, 123.03, 20.90 ppm. HRMS (ESI) *m/z*: calcd for C₁₅H₁₃N₂O₂ (M+H) 253.0977, found 253.0974.

2-(4-ethylphenyl)-2,3-dihydrophthalazine-1,4-dione (1d)

A white solid (245 mg, 92% yield). M.p.: 205-207 °C. ¹H NMR (500 MHz, DMSO-*d*₆): $\delta = 11.78$ (s, 1H), 8.30 (d, J = 7.5 Hz, 1H), 8.01 (d, J = 7.5 Hz, 1H), 7.98-7.90 (m, 2H), 7.53 (d, J = 8.0 Hz, 2H), 7.53 (d, J = 8.0 Hz, 2H), 2.66 (q, J = 7.5 Hz, 2H), 1.22 (t, J = 7.5 Hz, 3H) ppm. ¹³C NMR (126 MHz, DMSO-*d*₆): $\delta = 157.29$, 150.29, 142.67, 139.50, 133.49, 132.45, 129.26,

127.65, 126.85, 125.78, 124.58, 124.16, 27.79, 15.60 ppm. **HRMS (ESI)** *m/z*: calcd for C₁₆H₁₅N₂O₂ (M+H) 267.1134, found 267.1137. **HRMS (ESI)** *m/z*: calcd for C₁₆H₁₅N₂O₂ (M + H) 267.1134, found 267.1138.

4-(1,4-dioxo-3,4-dihydrophthalazin-2(1*H*)-yl)benzonitrile (1g)

A yellow solid (234 mg, 89% yield). M.p.: > 240 °C. ¹H NMR (500 MHz, DMSO-d₆): δ = 9.28 (s, 1H), 7.98-7.91 (m, 4H), 7.60 (d, J = 9.0 Hz, 2H), 6.92 (d, J = 9.0 Hz, 2H). ¹³C NMR (126 MHz, DMSO-d₆) δ = 166.06, 150.75, 135.03, 133.62, 129.66, 123.61, 119.59, 112.27, 100.82 ppm.

HRMS (ESI) *m/z*: calcd for C₁₅H₁₀N₃O₂ (M+H) 264.0773, found 264.0775.

III. General procedure A for the synthesis of azobenzenes from 1 and 2.

To a dry Schlenck tube with a magnetic stir bar was added **1** (0.2 mmol, 1 equiv), **2** (0.3 mmol, 1.5 equiv), Cu(MeCN)₄BF₄ (6.4 mg, 10 mol%), K₃PO₄ (85 mg, 2 equiv) and DMF (1 mL). The mixture was stirred at 100 °C for 10 h under air. After the reaction was compeleted, the mixture was passed through a silica gel column (200-300 mesh), eluting with petroleum ether/EtOAc (100/1 \rightarrow 50/1, v/v) to afford corresponding azobenzenes **3-10**.

IV. General procedure B for three-component reaction to synthesize azobenzenes.

A mixture of phthalic hydrazide (32 mg, 0.2 mmol), diaryliodonium triflates **11** (0.2 mmol, 1 equiv), arylboronic acid **2** (0.2 mmol, 1 equiv), Cu(MeCN)₄BF₄ (10 mol%, 6.4 mg), K₃PO₄ (85 mg, 2 equiv) and DMF (1 mL) was stirred at 100 °C for 10 h under air. After the reaction was compeleted, the mixture was passed through a silica gel column (100-200 mesh), eluting with petroleum ether to afford **3aa-3da**.

The reaction of PH and 11a (*path a*):

A mixture of phthalic hydrazide (0.2 mmol, 32.4 mg), diphenyliodonium triflate **11a** (0.2 mmol, 1 equiv, 86 mg), Cu(MeCN)₄BF₄ (10 mol%, 6.4 mg), K₃PO₄ (85 mg, 2 equiv) and DMF (1 mL) was stirred at 100 °C for 10 h under air. After the reaction was compeleted, the solvent was removed under reduced pressure, and the residue was purified by a silica gel column (100-200 mesh), eluting with petroleum ether/EtOAc ($10/1 \rightarrow 5/1$, v/v) to afford **1a** as a white solid (42 mg, 88% yield).

2-phenyl-2,3-dihydrophthalazine-1,4-dione (1a)¹

¹**H NMR** (**500 MHz**, **DMSO-***d*₆): $\delta = 11.83$ (s, 1H), 8.31 (d, J = 8.0 Hz, 1H), 8.02 (d, J = 8.0 Hz, 1H), 7.99-7.91 (m, 2H), 7.64 (d, J = 8.0 Hz, 2H), 7.49 (t, J =7.8 Hz 2H), 7.37 (t, J = 7.3 Hz ,1H) ppm. ¹³**C NMR** (**126 MHz**, **DMSO-***d*₆) $\delta =$ 157.33, 150.37, 141.75, 133.57, 132.50, 129.24, 128.41, 127.07, 126.87, 125.94, 124.62, 124.19 ppm.

The reaction of PH and 2a (*path b*):

A mixture of phthalic hydrazide (0.2 mmol, 32.4 mg), phenylboronic acid **2a** (0.2 mmol, 1 equiv, 24.4 mg), Cu(MeCN)₄BF₄ (10 mol%, 6.3 mg), K₃PO₄ (85 mg, 2 equiv) and DMF (1 mL) was stirred at 100 °C for 10 h under air. The mixture was detected by TLC and **1a** was not observed.

V. Mechanistic Experiments

Synthesis of 3a':

The mixture of **1a** (0.2 mmol, 47.6mg, 1equiv), phenylboronic acid **2a** (0.2 mmol, 24.4 mg, 1 equiv), CuI (38.0 mg, 1 equiv), triethylamine (2 equiv) and DMF (1 mL) was heated at 100 °C for 9 h. Then the reaction was cooled, DMF was removed under reduced pressure, and the residue was purified by a silica gel column (100-200 mesh), eluting with petroleum ether/EtOAc ($10/1 \rightarrow 5/1$, v/v) to afford **3a'** as a white solid (50.3 mg, 80% yield).

2,3-diphenyl-2,3-dihydrophthalazine-1,4-dione (3a')

M.p.: 175-177 °C. ¹H NMR (500 MHz, CDCl₃): $\delta = 8.45-8.42$ (m, 2H), 7.91-7.88 (m, 2H), 7.32-7.26 (m, 8H), 7.19 (t, J = 7.3 Hz, 2H) ppm. ¹³C NMR (126 MHz, CDCl₃) $\delta = 158.57$, 137.79, 134.07, 129.74, 128.92, 128.81, 128.48, 128.41 ppm. HRMS (ESI) *m/z*: calcd for C₂₀H₁₅N₂O₂ (M + H) 315.1134, found 315.1135.

Deprotection of 3a':

The mixture of **3a'** (0.2 mmol) with or without K_3PO_4 (2 equiv) in DMF (1 mL) was heated at 100 °C for 10 h. Then the reaction was cooled, the mixture was purified by a silica gel column (100-200 mesh), eluting with petroleum ether to afford **3a** (with K_3PO_4 , 31.3 mg, 87% yield; without K_3PO_4 , 0% yield).

The reaction of phenylhydrazine hydrochloride and 2a:

The mixture of phenylhydrazine hydrochloride (0.2 mmol, 28.9 mg), phenylboronic acid **2a** (0.2 mmol, 24.4 mg, 1 equiv), Cu(MeCN)₄BF₄ (10 mol%, 6.4 mg), K₃PO₄ (85 mg, 2 equiv) and DMF (1 mL) was stirred at 100 °C for 10 h under air. The mixture was detected by TLC and **3a** was not observed.

Competition experiments:

The mixture of **1a** (0.1 mmol, 23.8 mg), arylboronic acid **2h** (0.1 mmol, 15.2 mg, 1 equiv), **2l** (0.1 mmol, 19 mg, 1 equiv), Cu(MeCN)₄BF₄ (10 mol%, 3.2 mg), K₃PO₄ (42.5 mg, 2 equiv) and DMF (1 mL) was stirred at 100 °C for 10 h under air. The mixture was passed a silica gel column (100-200 mesh), eluting with petroleum ether/EtOAc (100/1 \rightarrow 50/1, v/v) to afford the mixture of **3e** and **3l**. The ratio of **3e/3l** was determined to be 2.0/1 by ¹H NMR (see below).

7.972 7.912 7.912 7.822 7.812 7.812 7.812 7.812 7.812 7.812 7.812 7.812 7.812 7.812 7.812 7.812 7.812 7.733 7.733 7.733 7.733 7.733 7.7457

Figure S1. ¹H NMR (500 MHz, CDCl₃) of the mixture of 3e and 3l

The mixture of **1d** (0.1 mmol, 26.6 mg), **1f** (0.1 mmol, 31.7 mg), phenylboronic acid **2a** (0.1 mmol, 12.2 mg, 1 equiv), Cu(MeCN)₄BF₄ (10 mol%, 3.2 mg), K₃PO₄ (42.5 mg, 2 equiv) and DMF (1 mL) was stirred at 100 °C for 10 h under air. The mixture was passed a silica gel column (100-200 mesh), eluting with petroleum ether/EtOAc (100/1 \rightarrow 50/1, v/v) to afford the mixture of **4d** and **4f**. The ratio of **4d/4f** was determined to be 2.3/1 by ¹H NMR (see below).

7.250 7.2916 7.2916 7.2916 7.2916 7.2927 7.2875 7.2875 7.2819 7.2616 7.2614 7.2714 7.2614 7.2714 7.2614 7.2714 7.2614 7.2714 7.2614 7.2714 7.2614 7.2714 7.2614 7.2714 7.2614 7.2714 7.2614 7.2714 7.2614 7.2714 7.2614 7.2714 7.2614 7.2714 7.2614 7.2714 7.2614 7.2714 7.2614 7.2714 7.2614 7.2714 7.2614 7.2714 7.2614 7.2714 7.2614 7.2714 7.2

7, 7, 938 7, 7, 94 7, 7, 94 7, 7, 96 7, 7, 98 7, 7, 98 7, 7, 98 7, 7, 98 7, 7, 98 7, 7, 98 7, 7, 98 7, 7, 98 7, 7, 49 7, 49 7, 49 7, 49 7, 40 7,

Figure S2. ¹H NMR (500 MHz, CDCl₃) of the mixture of 4d and 4f

VI. Experimental data for the described substances

(E)-1,2-diphenyldiazene (3a and 3aa)²

An orange solid (**3a** in general procedure A, 33 mg, 92% yield; **3aa** in general procedure B, 32 mg, 89% yield), purification via a silica (100-200 mesh) gel column (petroleum ether/EtOAc = 20/1, v/v). M.p.: 63-65 °C. ¹H NMR (**500 MHz, CDCl₃**): δ = 7.93 (d, *J* = 7.0 Hz, 4H), 7.53 (d, *J* = 7.3 Hz, 4H), 7.48 (d, *J* = 7.3 Hz, 2H) ppm. ¹³C NMR (**126 MHz, CDCl₃**) : δ = 152.81, 131.13, 129.23, 122.99 ppm.

(E)-1-phenyl-2-(o-tolyl)diazene (3b)²

An orange solid (20 mg, 51% yield), following the general procedure A, purification via a silica (200-300 mesh) gel column (petroleum ether/EtOAc = 30/1, v/v). M.p.: 96-98 °C. ¹H NMR (500 MHz, CDCl₃): δ = 7.96 (d, *J* = 7.0 Hz, 2H), 7.68 (d, *J* = 8.0 Hz, 1H), 7.74 (t, *J* = 7.8 Hz, 2H), 7.49 (t, *J* = 7.3 Hz, 1H), 7.41-7.36 (m, 2H), 7.32-7.28 (m, 1H) ppm. ¹³C NMR (126 MHz, CDCl₃): δ = 153.12, 150.87, 138.25, 131.38, 131.06, 130.91, 129.19, 126.56, 123.09, 115.58, 17.64 ppm.

(*E*)-1-(3-methoxyphenyl)-2-phenyldiazene(3c)³

An orange solid (24 mg, 57% yield), following the general procedure A, purification via a silica (200-300 mesh) gel column (petroleum ether/EtOAc = 50/1, v/v). M.p.: 61-63 °C. ¹H NMR (500 MHz, CDCl₃): δ = 7.93 (d, *J* = 7.5 Hz, 2H), 7.57 (d, *J* = 7.5 Hz, 1H), 7.53 (t, *J* = 7.5 Hz, 2H), 7.49-7.47 (m, 2H), 7.44 (t, *J* = 7.5 Hz, 1H), 7.05 (dd, *J* = 8.5 Hz, 2.5 Hz, 1H), 3.91 (s, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 160.48, 154.05, 152.75, 131.17, 129.92, 129.23, 123.01, 117.94, 117.25, 105.91, 55.62 ppm.

(E)-1-(3-bromophenyl)-2-phenyldiazene (3d)⁴

An orange solid (28 mg, 54% yield), following the general procedure A, purification via a silica (200-300 mesh) gel column (petroleum ether/EtOAc = 100/1, v/v). M.p.: 63-65 °C. ¹H NMR (500 MHz, CDCl₃): δ = 8.06 (t, *J* = 2.0 Hz, 1H), 7.93-7.91 (m, 2H), 7.90-7.87 (m, 1H), 7.61-7.59 (m, 1H), 7.55-7.50 (m, 3H), 7.41 (t, *J* = 8.0 Hz, 1H) ppm. ¹³C NMR (126 MHz, CDCl₃): δ = 153.69, 152.51, 133.74, 131.68, 130.59, 129.31, 124.79, 123.27, 123.20, 123.10 ppm.

(*E*)-1-phenyl-2-(*p*-tolyl)diazene $(3e \text{ and } 4c)^4$

An orange solid (**3e**, 24 mg, 62% yield; **4c**, 24 mg, 62% yield), following the general procedure A, purification via a silica (200-300 mesh) gel column (petroleum ether/EtOAc = 100/1, v/v). M.p.: 63-65 °C. ¹H NMR (**500 MHz, CDCl₃**): δ = 7.91 (d, *J* = 8.0 Hz, 2H), 7.85 (d, *J* = 8.0 Hz, 2H), 7.52 (t, *J* = 7.5 Hz, 2H), 7.47 (t, *J* = 7.3 Hz, 1H), 7.33 (d, *J* = 8.0 Hz, 2H), 2.45 (s, 3H) ppm. ¹³C NMR (**126 MHz, CDCl₃**): δ = 152.88, 150.93, 141.69, 130.83, 129.88, 129.19, 123.00, 122.86, 21.64 ppm.

(*E*)-1-(4-(*tert*-butyl)phenyl)-2-phenyldiazene (3f and 4e)⁴

An orange solid (**3f**, 37 mg, 77% yield; **4e**, 30 mg, 63% yield), following the general procedure A, purification via a silica (200-300 mesh) gel column (petroleum ether/EtOAc = 50/1, v/v). M.p.: 41-43 °C. ¹H NMR (**500 MHz, CDCl₃**): δ = 7.90 (d, *J* = 7.5 Hz, 2H), 7.87 (d, *J* = 8.5 Hz, 2H), 7.55–7.50 (m, 4H), 7.46 (t, *J* = 7.5 Hz, 1H), 1.38 (s, 9H) ppm. ¹³C NMR (**126 MHz, CDCl₃**): δ = 154.73, 152.98, 150.79, 130.82, 129.19, 126.16, 122.86, 122.73, 35.16, 31.42 ppm.

(*E*)-1-([1,1'-biphenyl]-4-yl)-2-phenyldiazene (3g)⁵

An orange solid (44 mg, 85% yield), following the general procedure A, purification via a silica (200-300 mesh) gel column (petroleum ether/EtOAc = 100/1, v/v). M.p.: 79-81 °C. ¹H NMR (500 MHz, CDCl₃): δ = 8.03 (d, *J* = 8.5 Hz, 2H), 7.97 (d, *J* = 8.0 Hz, 2H), 7.77 (d, *J* = 8.5 Hz, 2H), 7.69 (d, *J* = 8.0 Hz, 2H), 7.55 (t, *J* = 7.8 Hz, 2H), 7.50 (t, *J* = 7.8 Hz, 3H), 7.41 (t, *J* = 7.3 Hz, 1H) ppm. ¹³C NMR (126 MHz, CDCl₃): δ = 152.90, 151.92, 143.88, 140.34, 131.11, 129.25, 129.04, 128.04, 127.92, 127.34, 123.53, 123.01 ppm.

(E)-1-(4-methoxyphenyl)-2-phenyldiazene (3h and 3da)⁴

An orange solid (**3h** in general procedure A, 26 mg, 62% yield; **3da** in general procedure B, 36 mg, 85% yield), purification via a silica (200-300 mesh) gel column (petroleum ether/EtOAc = 80/1, v/v). M.p.: 56-58 °C. ¹H NMR (**500 MHz, CDCl₃**): δ = 7.96-7.94 (m, 2H), 7.92-7.89 (m, 2H), 7.52 (t, *J* = 7.8 Hz, 2H), 7.45 (t, *J* = 7.8 Hz, 1H), 7.04-7.02 (m, 2H), 3.89 (s, 3H) ppm. ¹³C NMR (**126 MHz, CDCl₃**): δ = 162.19, 152.90, 147.15, 130.48, 129.15, 124.88, 122.69, 114.34, 55.68 ppm.

(E)-1-(4-chlorophenyl)-2-phenyldiazene (3i)⁶

An orange solid (33 mg, 77% yield), following the general procedure A, purification via a silica (200-300 mesh) gel column (petroleum ether/EtOAc = 100/1, v/v). M.p.: 76-78 °C. ¹H NMR (500 MHz, CDCl₃): δ = 7.92 (d, *J* = 7.5 Hz, 2H), 7.88 (d, *J* = 9.0 Hz, 2H), 7.55-7.48 (m, 5H) ppm. ¹³C NMR (126 MHz, CDCl₃): δ = 152.60, 151.12, 137.04, 131.42, 129.48, 129.28, 124.27, 123.07 ppm.

(*E*)-1-(4-bromophenyl)-2-phenyldiazene (3j and 4f)⁴

An orange solid (**3j**, 33 mg, 64% yield; **4f**, 34 mg, 64% yield), following the general procedure A, purification via a silica (200-300 mesh) gel column (petroleum ether/EtOAc = 100/1, v/v). M.p.: 89-91 °C. ¹H NMR (**500 MHz, CDCl₃**): δ = 7.92 (d, *J* = 8.0 Hz, 2H), 7.81 (d, *J* = 8.5 Hz, 2H), 7.65 (d, *J* = 9.0 Hz, 2H), 7.54-7.47 (m, 3H) ppm. ¹³C NMR (**126 MHz, CDCl₃**): δ = 152.63, 151.51, 132.48, 131.47, 129.30, 125.51, 124.50, 123.09 ppm.

(E)-methyl 4-(phenyldiazenyl)benzoate (3k and 3ak)⁵

An orange solid (**3k** in general procedure A, 28 mg, 58% yield; **3ak** in general procedure B, 40 mg, 83% yield), following the general procedure A, purification via a silica (200-300 mesh) gel column (petroleum ether/EtOAc = 50/1, v/v). M.p.: 115-117 °C. ¹H NMR (**500** MHz, CDCl₃): δ = 8.20 (d, *J* = 7.5 Hz, 2H), 7.95 (d, *J* = 8.5 Hz, 4H), 7.56-7.51 (m, 3H), 3.96 (s, 3H) ppm. ¹³C NMR (**126** MHz, CDCl₃): δ = 166.72, 152.73, 131.86, 130.78, 129.34, 123.30, 122.80, 120.91, 52.49 ppm.

(*E*)-1-phenyl-2-(4-(trifluoromethyl)phenyl)diazene (31)⁴

An orange solid (31 mg, 62% yield), following the general procedure A, purification via a silica (200-300 mesh) gel column (petroleum ether/EtOAc = 50/1, v/v). M.p.: 82-84 °C. ¹H NMR (500 MHz, CDCl₃): δ = 8.01 (d, *J* = 8.0 Hz, 2H), 7.96 (d, *J* = 8.0 Hz, 2H), 7.79 (d, *J* = 8.5 Hz, 2H), 7.57-7.52 (m, 3H) ppm. ¹³C NMR (126 MHz, CDCl₃): δ = 154.59, 152.59, 131.97, 129.36, 126.45 (d, *J*_{C-F} = 3.7 Hz), 123.32, 123.16 ppm.

(*E*)-4-(phenyldiazenyl)benzonitrile¹⁰ (3m, 4g and 3ca)⁵

An orange solid (**3m** in general procedure A, 25 mg, 60% yield; **4g** in general procedure A, 24 mg, 59% yield; **3ca** in general procedure B, 33 mg, 81% yield), purification via a silica (200-300 mesh) gel column (petroleum ether/EtOAc = 20/1, v/v). M.p.: 102-104 °C. ¹H NMR (**500** MHz, CDCl₃): δ = 7.99 (d, *J* = 8.5 Hz, 2H), 7.97-7.95 (m, 2H), 7.82 (d, *J* = 8.5 Hz, 2H), 7.56-7.54 (m, 3H) ppm. ¹³C NMR (**126** MHz, CDCl₃): δ = 154.68, 152.53, 133.38, 132.37, 129.42, 123.51, 123.47, 118.62, 114.12 ppm.

(*E*)-1-(4-nitrophenyl)-2-phenyldiazene (3n and 3an)

An orange solid (**3n** in general procedure A, 36 mg, 78% yield; **3an** in general procedure B, 32 mg, 71% yield), purification via a silica (200-300 mesh) gel column (petroleum ether/EtOAc = 10/1, v/v). M.p.: 109-111 °C. M.p.: 109-111 °C. ¹H NMR (**500** MHz, CDCl₃): δ = 8.39 (d, *J* = 9.0 Hz, 2H), 8.04 (d, *J* = 9.0 Hz, 2H), 7.99-7.97 (m, 2H), 7.57-7.55 (m, 3H) ppm. ¹³C NMR (**126** MHz, CDCl₃): δ = 155.86, 152.55, 148.87, 132.56, 129.46, 124.89, 123.59, 123.57 ppm. HRMS (ESI) *m/z*: calcd for C₁₂H₁₀N₃O₂ (M + H) 228.0773, found 228.0775.

(*E*)-1-(naphthalen-2-yl)-2-phenyldiazene (30)⁷

An orange solid (32 mg, 70% yield), following the general procedure A, purification via a silica (200-300 mesh) gel column (petroleum ether/EtOAc = 30/1, v/v). M.p.: 73-75 °C. ¹H NMR (500 MHz, CDCl₃): δ = 8.47 (s, 1H), 8.08 (dd, *J* = 9.0 Hz, 2.0 Hz, 1H), 8.04– 8.02 (m, 1H), 7.99 – 7.98 (m, 2H), 7.93 – 7.89 (m, 2H), 7.58 – 7.53 (m, 4H), 7.51 – 7.49 (m, 1H) ppm. ¹³C NMR (126 MHz, CDCl₃): δ = 152.93, 150.41, 134.99, 133.69, 131.11, 129.53, 129.27, 128.09, 127.71, 126.88, 123.01, 117.28 ppm.

(*E*)-4-(phenyldiazenyl)pyridine (3p)⁸

An orange solid (23 mg, 60% yield), following the general procedure A, purification via a silica (200-300 mesh) gel column (petroleum ether/EtOAc = 20/1, v/v). M.p.: 80-82 °C. ¹H NMR (500 MHz, CDCl₃): δ =8.81 (d, *J* = 6.0 Hz, 2H), 7.97 (m, 2H), 7.55 (d, *J* =7.7 Hz, 2H), 7.55 (t, *J* = 3.3 Hz, 3H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ = 157.46, 152.48, 151.29, 132.61, 129.42, 123.57, 116.48 ppm.

(E)-N,N-diphenyl-4-(phenyldiazenyl)aniline (3r).

An orange solid (48 mg, 68% yield), following the general procedure A, purification via a silica (200-300 mesh) gel column (petroleum ether/EtOAc = 50/1, v/v). M.p.: 89-91 °C. ¹H NMR (500 MHz, CDCl₃): δ = 7.88 (d, *J* = 7.5 Hz, 2H), 7.83 (d, *J* = 8.5 Hz, 2H), 7.50 (t, *J* = 7.3 Hz, 2H), 7.43 (t, *J* = 7.3 Hz, 1H), 7.32 (t, *J* = 7.5 Hz, 4H), 7.18 (d, *J* = 8.0 Hz, 4H), 7.12 (d, *J* = 8.0 Hz, 4H) ppm. ¹³C NMR (126 MHz, CDCl₃): δ = 146.84, 146.79, 130.38, 129.72, 129.22, 125.80, 125.78, 124.60, 124.55, 122.55, 121.53, 121.49 ppm. HRMS (ESI) *m*/*z*: calcd for C₂₄H₂₀N₃ (M + H) 350.1657, found 350.1659.

(E)-1-(4-(9H-fluoren-9-yl)phenyl)-2-phenyldiazene (3s)

An orange solid (36 mg, 52% yield), following the general procedure A, purification via a silica (200-300 mesh) gel column (petroleum ether/EtOAc = 80/1, v/v). M.p.: 117-119 °C. ¹H NMR (500 MHz, CDCl₃): δ = 8.19-8.16 (m, 4H), 7.99 (d, *J* = 7.5 Hz, 2H), 7.76 (d, *J* = 8.5 Hz, 2H), 7.57 (t, *J* = 7.5 Hz, 2H), 7.52 (d, *J* = 8.5 Hz, 3H), 7.46-7.43 (m, 2H), 7.33 (t, *J* = 7.5 Hz, 2H) ppm. ¹³C NMR (126 MHz, CDCl₃): δ = 152.82, 151.35, 140.69, 140.24, 131.42, 129.34, 127.48, 126.29, 124.54, 123.86, 123.13, 120.56, 120.53, 110.02 ppm. HRMS (ESI) *m*/*z*: calcd for C₂₄H₁₈N₃ (M + H) 348.1501, found 348.1506.

(E)-1-phenyl-2-(m-tolyl)diazene (4b)²

An orange solid (28 mg, 72% yield), following the general procedure A, purification via a silica (200-300 mesh) gel column (petroleum ether/EtOAc = 100/1, v/v). M.p.: 52-54 °C. ¹H NMR (500 MHz, CDCl₃): δ = 7.92 (d, *J* = 7.5 Hz, 2H), 7.73 (s, 2H), 7.52 (t, *J* = 7.5 Hz, 2H), 7.47 (t, *J* = 7.5 Hz, 1H), 7.41 (t, *J* = 7.5 Hz, 1H), 7.30 (d, *J* = 7.5 Hz, 1H), 2.47 (s, 3H) ppm. ¹³C NMR (126 MHz, CDCl₃): δ = 152.92, 152.87, 139.13, 131.93, 131.03, 129.22, 129.05, 123.07, 122.95, 120.64, 77.41, 77.16, 76.91, 21.51 ppm.

(E)-1-(4-ethylphenyl)-2-phenyldiazene (4d)⁹

An orange solid (37 mg, 87% yield), following the general procedure A, purification via a silica (200-300 mesh) gel column (petroleum ether/EtOAc = 100/1, v/v). M.p.: 73-75 °C. ¹H NMR (500 MHz, CDCl₃): δ = 7.91 (d, *J* = 7.5 Hz, 2H), 7.86 (d, *J* = 8.5 Hz, 2H), 7.52 (t, *J* = 7.5 Hz, 2H), 7.46 (d, *J* = 7.5 Hz, 1H), 7.35 (d, *J* = 8.5 Hz, 2H), 2.74 (q, *J* = 7.5 Hz, 2H), 1.30 (t, *J* = 7.5 Hz, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 152.93, 151.12, 147.96, 130.82, 129.19, 128.70, 123.09, 122.86, 28.99, 15.54 ppm.

(E)-1-(4-bromophenyl)-2-(4-(tert-butyl)phenyl)diazene (4h)¹⁰

An orange solid (44 mg, 70% yield), following the general procedure A, purification via a silica (200-300 mesh) gel column (petroleum ether/EtOAc = 100/1, v/v). M.p.: 58-60 °C. ¹H NMR (500 MHz, CDCl₃): δ = 7.85 (d, *J* = 8.5 Hz, 2H), 7.79 (d, *J* = 9.0 Hz, 2H), 7.64 (d, *J* = 8.5 Hz, 2H), 7.54 (d, *J* = 9.0 Hz, 2H) ppm. ¹³C NMR (126 MHz, CDCl₃): δ = 155.15, 151.66, 150.60, 132.41, 126.23, 125.14, 124.39, 122.84, 35.21, 31.39 ppm.

(E)-methyl 4-((4-ethylphenyl)diazenyl)benzoate (4i)

An orange solid (38 mg, 71% yield), following the general procedure A, purification via a silica (200-300 mesh) gel column (petroleum ether/EtOAc = 30/1, v/v). M.p.: 100-102 °C. ¹H NMR (500 MHz, CDCl₃): δ = 8.18 (d, *J* = 8.5 Hz, 2H), 7.93 (d, *J* = 9.0 Hz, 2H), 7.88 (d, *J* = 8.5 Hz, 2H), 7.36 (d, *J* = 8.5 Hz, 2H), 3.96 (s, 3H), 2.95 (q, *J* = 7.5 Hz, 2H), 1.30 (t, *J* = 7.5 Hz, 3H) ppm. ¹³C NMR (126 MHz, CDCl₃): δ = 166.76, 155.47, 151.07, 148.86, 131.68, 130.75, 128.81, 123.42, 122.67, 52.45, 29.06, 15.48 ppm. HRMS (ESI) *m/z*: calcd for C₁₆H₁₇N₂O₂ (M + H) 269.1290, found 269.1295.

(E)-4-((4-ethylphenyl)diazenyl)pyridine (4j)

An orange solid (38 mg, 90% yield), following the general procedure A, purification via a silica (200-300 mesh) gel column (petroleum ether/EtOAc = 20/1, v/v). M.p.: 62-64 °C. ¹H NMR (500 MHz, CDCl₃): δ = 8.79 (d, *J* = 4.5 Hz, 2H), 7.90 (d, *J* = 8.0 Hz, 2H), 7.70 (d, *J* = 5.0 Hz, 2H), 7.37 (d, *J* = 8.0 Hz, 2H), 2.75 (q, *J* = 7.5 Hz, 2H), 1.30 (t, *J* = 7.5 Hz, 3H) ppm. ¹³C NMR (126 MHz, CDCl₃): δ = 157.63, 151.25, 150.90, 149.76, 128.91, 123.74, 116.45, 29.10, 15.43 ppm. HRMS (ESI) *m/z*: calcd for C₁₃H₁₄N₃ (M + H) 212.1188, found 212.1185. HRMS (ESI) *m/z*: calcd for C₁₃H₁₄N₃ (M + H) 212.1188, found 212.1185.

(E)-1-(4-propylphenyl)-2-(p-tolyl)diazene (5)

An orange solid (33 mg, 69% yield), following the general procedure A, purification via a silica (200-300 mesh) gel column (petroleum ether/EtOAc = 100/1, v/v). M.p.: 63-65 °C. ¹H NMR (500 MHz, CDCl₃): δ = 7.83 (t, *J* = 7.8, 4H), 7.31(dd, *J* = 8.3 Hz, 1.8 Hz, 4H), 2.67 (t, *J* = 7.5 Hz, 2H), 2.44 (s, 3H), 1.74-1.66 (m, 2H) , 0.97 (t, *J* = 7.3 Hz, 3H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ = 151.18, 151.01, 146.10, 141.33, 129.85, 129.27, 122.86, 122.84, 38.07, 24.56, 21.62, 13.93 ppm. HRMS (ESI) *m/z*: calcd for C₁₆H₁₉N₂ (M + H) 239.1548, found 239.1545.

(E)-1-(4-ethylphenyl)-2-(p-tolyl)diazene (6)⁹

An orange solid (30 mg, 67% yield), following the general procedure A, purification via a silica (200-300 mesh) gel column (petroleum ether/EtOAc = 100/1, v/v). M.p.: 76-78 °C. ¹H NMR (500 MHz, CDCl₃): δ = 7.86-7.82 (m, 4H), 7.35-7.31 (m, 4H), 2.74 (q, *J* = 7.5 Hz, 2H), 2.44 (s, 3H), 1.30 (td, *J* = 7.5 Hz, 1.0 Hz, 3H) ppm. ¹³C NMR (126 MHz, CDCl₃): δ = 151.17, 151.02, 147.61, 141.32, 129.84, 128.65, 122.95, 122.87, 28.97, 21.61, 15.56 ppm.

(E)-1-(4-ethylphenyl)-2-(4-propylphenyl)diazene (7)

An orange solid (30 mg, 60% yield), following the general procedure A, purification via a silica (200-300 mesh) gel column (petroleum ether/EtOAc = 100/1, v/v). M.p.: 52-54 °C. ¹H NMR (500 MHz, CDCl₃): δ = 7.83 (dd, *J* = 8.3 Hz, 3.3Hz, 4H), 7.34-7.30 (m, 4H), 2.73 (m, 2H), 2.67 (t, *J* = 7.5 Hz, 2H), 1.69 (m, 2H), 1.29 (t, J = 7.8 Hz, 3H), 0.97 (t, J = 7.3 Hz, 3H) ppm. ¹³C NMR (126 MHz, CDCl₃): $\delta = 151.21, 151.20, 147.62, 146.11, 129.27, 128.66, 122.95, 122.85, 38.08, 28.97, 24.57, 15.57, 13.93 ppm. HRMS (ESI)$ *m/z*: calcd for C₁₇H₂₁N₂ (M + H) 253.1705, found 253.1703.

(E)-1-(4-propylphenyl)-2-(m-tolyl)diazene (8)

An orange solid (30 mg, 62 % yield), following the general procedure A, purification via a silica (200-300 mesh) gel column (petroleum ether/EtOAc = 100/1, v/v). M.p.: 46-48 °C. ¹H NMR (500 MHz, CDCl₃): δ = 7.84 (d, *J* = 8.0, 2H), 7.72-7.71(m, 2H), 7.40 (t, *J* = 7.8 Hz, 1H), 7.32(d, *J* = 8.5 Hz, 2H), 7.28 (d, *J* = 2.5, 1H), 2.67 (t, *J* = 7.5, 2H), 2.46 (s, 3H), 1.74-1.66 (m, 2H), 0.97 (t, *J* = 7.3, 3H) ppm, ¹³C NMR (126 MHz, CDCl₃): δ = 153.00, 151.16, 146.35, 139.08, 131.63, 129.30, 129.01, 122.93, 120.52, 38.09, 24.55, 21.52, 13.94 ppm. HRMS (ESI) *m/z*: calcd for C₁₆H₁₉N₂ (M + H) 239.1548, found 239.1549.

(E)-1-(4-bromophenyl)-2-(4-chlorophenyl)diazene (9)¹¹

An orange solid (34 mg, 58% yield), following the general procedure A, purification via a silica (200-300 mesh) gel column (petroleum ether/EtOAc = 100/1, v/v). M.p.: 191-193 °C. ¹H NMR (500 MHz, CDCl₃): δ = 7.87 (d, *J* = 8.5 Hz, 2H), 7.79 (d, *J* = 8.5 Hz, 2H), 7.65 (d, *J* = 9.0 Hz, 2H), 7.49 (d, *J* = 9.0 Hz, 2H) ppm. ¹³C NMR (126 MHz, CDCl₃): δ = 132.56, 129.58, 124.57, 124.36 ppm. HRMS (ESI) *m/z*: calcd for C₁₂H₉BrClN₂ (M + H) 294.9638, found 294.9636.

(E)-1-(m-tolyl)-2-(p-tolyl)diazene (10)

A orange solid (28 mg, 67% yield), following the general procedure A, purification via a silica (200-300 mesh) gel column (petroleum ether/EtOAc = 100/1, v/v). M.p.: 50-52 °C. ¹H NMR (500 MHz, CDCl₃): δ = 7.83 (d, J = 8.5 Hz, 2H), 7.71 (br, 2H), 7.40 (t, J = 7.8 Hz, 1H), 7.32 (d, J = 8.0 Hz, 2H), 7.28 (d, J = 7.5 Hz, 1H), 2.46 (s, 3H), 2.44 (s, 3H) ppm. ¹³C NMR (126 MHz, CDCl₃): δ = 152.98, 150.97,

141.59, 139.09, 131.64, 129.88, 129.02, 122.95, 120.52, 21.63, 21.51 ppm. **HRMS (ESI)** *m/z*: calcd for C₁₄H₁₅N₂ (M + H) 211.1235, found 211.1237.

(E)-1,2-di-p-tolyldiazene (3be)⁶

An orange solid (35 mg, 83% yield), following the general procedure B, purification via a silica (200-300 mesh) gel column (petroleum ether/EtOAc = 100/1, v/v). M.p.: 63-65 °C ¹H NMR (500 MHz, CDCl₃): δ = 7.82 (d, *J* = 8.5 Hz, 4H), 7.31 (d, *J* = 8.0 Hz, 4H), 2.44 (s, 6H) ppm. ¹³C NMR (126 MHz, CDCl₃): δ = 151.0, 141.3, 129.8, 122.9, 21.6 ppm.

VII. References

[1] (*a*) P. Cai, E. Zhang, Y. Wu, T. Fang, Q. Li, C. Yang, J. Wang, Y. Shang, Ru(II)/Ir(III)-catalyzed C–H bond activation/annulation of cyclic amides with 1,3-diketone-2-diazo compounds: Facile access to 8H-isoquinolino[1,2-b]quinazolin-8-ones and phthalazino[2,3-a]cinnoline-8,13-diones, *Acs. Omega.* 2018, 3, 14575–14584; (*b*) R. Prakash, B. R. Bora, R. C. Boruah, S. Gogoi, Ru(II)-catalyzed C–H activation and annulation reaction via carbon–carbon triple bond cleavage, *Org. Lett.* 2018, 20, 2297–2300.

[2] H. Lv, R. D. Laishram, J. Li, Y. Zhou, D. Xu, S. More, Y. Dai, B. Fan, Photocatalyzed oxidative dehydrogenation of hydrazobenzenes to azobenzenes, *Green Chem.* **2019**, 21, 4055–4061.

[3] C. Xia, Z. Wei, C. Shen, J. Xu, Y Yang, W. Su, P. Zhang, Palladium-catalyzed direct orthosulfonylation of azobenzenes with arylsulfonyl chlorides via C–H activation, *RSC Adv.* **2015**, 5, 52588–52594.

[4] H. Lv, R. D. Laishram, Y. Yang, J. Li, D. Xu, Y. Zhan, Y. Luo, Z. Su, S. More, B. Fan, TEMPO catalyzed oxidative dehydrogenation of hydrazobenzenes to azobenzenes, *Org. Biomol. Chem.* **2020**, 18, 3471–3474.

[5] K.-Y. Kim, J.-Taek. Shin, K.-S. Lee, C.-G. Cho, Cu(I) mediated one-pot synthesis of azobenzenes from bis-Boc aryl hydrazines and aryl halides, *Tetrahedron Lett.* **2004**, 45, 117–120.

[6] N. Sakai, S. Asama, S. Anai, T. Konakahara, One-pot preparation of azobenzenes from nitrobenzenes by the combination of an indium-catalyzed reductive coupling and a subsequent oxidation, *Tetrahedron* **2014**, 70, 2027–2033.

[7] G.-Q. Li, H. Gao, C. Keene, M. Devonas, D. H. Ess, L. Kurti, Organocatalytic aryl–aryl bond formation: An atroposelective [3,3]-rearrangement approach to BINAM derivatives, *J. Am. Chem. Soc.* **2013**, 135, 7414–7417.

[8] A. Bannwarth, S. O. Schmidt, G. Peters, F. D. Sönnichsen, W. Thimm, R. Herges, F. Tuczek, Fe^{III} spin-crossover complexes with photoisomerizable ligands: Experimental and theoretical studies on the ligand-driven light-induced spin change effect, *Eur. J. Inorg. Chem.* **2012**, 2776–2783.

[9] J. Lux, J. Rebek. Jr, Reversible switching between self-assembled homomeric and hybrid capsules, *Chem. Commun.* **2013**, 49, 2127–2129.

[10] P. Sarkar, C. Mukhopadhyay, First use of *p-tert*-butylcalix[4]arene-tetra-*O*-acetate as a nanoreactor having tunable selectivity towards cross azo-compounds by trapping silver ions, *Green Chem.* **2016**, 18, 442–451.

[11] J. Wang, J. He, C. Zhi, B. Luo, X. Li, Y. Pan, X. Cao, H. Gu, Highly efficient synthesis of azos catalyzed by the common metal copper (0) through oxidative coupling reactions, *RSC Adv.* **2014**, 4, 16607–16611.

VIII. Copies of ¹H and ¹³C NMR spectra

¹H NMR (500 MHz, DMSO-*d*₆) of **1a**

¹H NMR (500 MHz, DMSO-*d*₆) of **1b**

13 C NMR (126 MHz, DMSO- d_6) of $\mathbf{1b}$

¹H NMR (500 MHz, DMSO- d_6) of **1g**

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹H NMR (500 MHz, CDCl₃) of **3d**

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

^1H NMR (500 MHz, CDCl₃) of 3e or 4c

¹H NMR (500 MHz, CDCl₃) of **3f** or **4e**

110 100 fl (ppm) -10

¹³C NMR (126 MHz, CDCl₃) of **3j**

4 00	- 00 00 7 7 CI	
0 0	N 90 100	409
0 0	440000	0 0 1
NH	01-1010 + m	410
nn	MMMMM	0
		_
52	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	\checkmark

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹H NMR (500 MHz, CDCl₃) of **3m**, **4g** or **3ca**

110 100 fl (ppm) 210 200 190 160 150 140 130 120 -10

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

110 100 fl (ppm) 210 200 130 120 -10

¹H NMR (500 MHz, CDCl₃) of **4h**

140 130 120 110 100 fl (ppm) 210 200 190 -10

¹H NMR (500 MHz, CDCl₃) of 6

7.360 7.355 7.355 7.334 7.334 7.334 7.334 7.317 7.317 7.319 7.333 7.333 7.333 7.333 7.333 7.338 7.338 7.338 7.338 7.360

2.761 2.746 2.746 2.746 2.746 2.741 2.716 2.716 2.711 2.711 2.711 2.731 2.746 2.731 2.731 2.746 2.731 2.746 2.731 2.746 2.731 2.746 2.731 2.746 2.731 2.746 2.731 2.746 2.731 2.746 2.731 2.746 2.

