Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2021

Supporting Information

Cobalt-Catalyzed C8-H Sulfonylation of 1-Naphthylamine

Derivatives with Sodium Sulfinates

Yucong Sun,[†] Cancan Feng,[†] Peisong Wang,[†] Fan Yang,^{*,†} and Yangjie Wu^{*,†}

[†]College of Chemistry, Green Catalysis Center, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Zhengzhou University, Zhengzhou 450052, PR China

E-mail: yangf@zzu.edu.cn; wyj@zzu.edu.cn

Table of Contents	
1. General Information	S2
2. Optimization of Reaction Conditions	S2
3. Experimental Section	S4
3.1. Typical procedure for the synthesis of substrate 1a	
3.2. Typical procedure for the product 2a	
3.3. Typical procedure for the product 3aa	
3.4. Typical procedure for the product 4a	
3.5. The experiment of trapping the radicals	
3.6. Kinetic isotope effect measurements	
4. Characterization Data of the Products	S8
5. References	S19
6. The Single Crystal X-ray Diffraction Study of 3aa	S19
7. Copies of ¹ H and ¹³ C NMR Spectra for the Products	S21

1. General Information

¹H NMR and ¹³C NMR spectra were recorded on a Bruker DPX-400 spectrometer with CDCl₃ as the solvent and TMS as an internal standard. Melting points were measured using a WC-1 microscopic apparatus and are uncorrected. High resolution mass spectra were ensured on an Agilent Technologies 1290-6540 UHPLC/Accurate-Mass Quadrupole Time-of-Flight LC/MS. All solvents were used with further purification. Dichloromethane, ethyl acetate, and hexane were used for column chromatography. The commercials were obtained from commercial sources and used as-received without further purification unless otherwise noted.

2. Optimization of Reaction Conditions

Table S1. Optimization of Solvent and Catalyst^a

Entry	Catalyst	Solvent	Yield ^b
1	CoCl ₂ ·6H ₂ O	DCE	<5%
2	CoCl ₂ ·6H ₂ O	THF	22%
3	CoCl ₂ ·6H ₂ O	DMA	<5%
4	CoCl ₂ ·6H ₂ O	DMSO	<5%
5	CoCl ₂ ·6H ₂ O	MeCN	13%
6	CoCl ₂ ·6H ₂ O	CH ₃ OH	<5%
7	CoCl ₂ ·6H ₂ O	acetone	8%
8	CoCl ₂ ·6H ₂ O	toluene	<5%
9	CoCl ₂ ·6H ₂ O	1,4-dioxane	26%
10	CoCl ₂ ·6H ₂ O	HFIP	<5%
11	CoCl ₂ ·6H ₂ O	1,4-dioxane/MeCN(v/v = 2:1)	35%
12	NiCl ₂ ·6H ₂ O	1,4-dioxane/MeCN(v/v = 2:1)	<5%
13	FeCl ₃	1,4-dioxane/MeCN(v/v = 2:1)	<5%
14	$Cu(OAc)_2 \cdot H_2O$	1,4-dioxane/MeCN(v/v = 2:1)	<5%
15	$Pd(OAc)_2$	1,4-dioxane/MeCN(v/v = 2:1)	<5%
16	$Co(NO_3)_2$	1,4-dioxane/MeCN(v/v = 2:1)	38%
17	$Co(OAc)_2$	1,4-dioxane/MeCN(v/v = 2:1)	<5%

18	$Co(acac)_2$	1,4-dioxane/MeCN($v/v = 2:1$)	10%
^a Reactio	on conditions: 1a (0.1 mm	nol), 2a (2.0 equiv.), catalysts (10 mol %), KH ₂ PO ₄ (2	.0 equiv.), Ag ₂ CO ₃ (1.1
equiv.), H ₂	O (20 μ L) in solvent (1.0	mL) at 100 °C under argon for 16 h. ^b Isolated yield.	

Table S2. Optimization of	Base, Oxidant a	and Additive ^a

HN HN	₩ + P	∾hSO₂Na H₂O (1,4-c	Co(NO ₃) ₂ (10 mol %) Oxidant (1.1 equiv) Base (2.0 equiv) (20 μ L), Additive (5 mol%) dioxane:MeCN (v/v = 2:1)	O S HN N
1a		2a	100 C, AI, 1011	3aa
Entry	Base	Oxidant	Additive	yield ^b
1	$(NH_4)_2HPO_4$	Ag_2CO_3	-	36%
2	^t BuOK	Ag ₂ CO ₃	-	<5%
3	Na ₂ CO ₃	Ag_2CO_3	-	38%
4	Na ₃ PO ₄	Ag_2CO_3	-	28%
5	K ₂ CO ₃	Ag_2CO_3	-	23%
6	KOAc	Ag_2CO_3	-	21%
7	LiF	Ag_2CO_3	-	23%
8	NaF	Ag_2CO_3	-	41%
9	NaI	Ag ₂ CO ₃	-	13%
10	Cs_2CO_3	Ag_2CO_3	-	<5%
11	PivONa	Ag ₂ CO ₃	-	<5%
12	DBU	Ag_2CO_3	-	<5%
13	NEt ₃	Ag_2CO_3	-	24%
14	Pyridine	Ag ₂ CO ₃	-	32%
15	NaF	TBHP	-	<5%
16	NaF	I_2	-	<5%
17	NaF	$K_2S_2O_8$	-	<5%
18	NaF	BPO	-	<5%
19	NaF	MnO_2	-	7%
20	NaF	Ag ₂ O	-	<5%
21	NaF	AgOAc	-	8%
22	NaF	AgNO ₂	-	15%
23	NaF	AgI	-	<5%
24	NaF	Ag ₂ CO ₃	dppe	57%

25	NaF	Ag ₂ CO ₃	PPh ₃	51%
26	NaF	Ag ₂ CO ₃	Selectfluor	62%
27	NaF	Ag ₂ CO ₃	NFSI	72%
28 ^c	NaF	Ag ₂ CO ₃	NFSI	<5%
29	NaF	-	NFSI	<5%
30 ^d	NaF	Ag ₂ CO ₃	NFSI	64%
31 ^e	NaF	Ag ₂ CO ₃	NFSI	65%
32 ^f	NaF	Ag ₂ CO ₃	NFSI	52%
33 ^g	NaF	Ag_2CO_3	NFSI	54%

^{*a*} Reaction conditions: **1a** (0.1 mmol), **2a** (2 equiv.), Co(NO₃)₂ (10 mol%), base (2.0 equiv.) and oxidant (1.1 equiv.), additive (5 mol%), H₂O (20 μ L) in 1,4-dioxane/MeCN(v/v = 2:1) (1.0 mL) at 100 °C under argon for 16 h. ^{*b*} Isolated yield. ^{*c*} In the absence of Co(NO₃)₂. ^{*d*} At an additive loading of 20 mol%. ^{*e*} At a catalysis loading of 5 mol%. ^{*f*} In the absence of water. ^{*g*} Under air.

3. Experimental Section

3.1. Typical Procedure for the Synthesis of Substrate 1a

A 100 mL two-necked round-bottom flask was equipped with a magnetic stir bar and charged with 1-naphthylamine (20 mmol, 2.86 g), picolinic acid (1.1 equiv., 2.70 g), N,N-dimethyl-4-aminopyridine (DMAP, 0.1 equiv., 0.244 g) in 30 mL anhydrous CH_2Cl_2 at 0 °C. After EDCI (4.20 g, 1.1 equiv.) in CH_2Cl_2 (20 mL) was added dropwise to the solution under a nitrogen atmosphere, the reaction was then warmed to room temperature, stirred for 12 h and quenched with water (30 mL). The reaction mixture was extracted with CH_2Cl_2 (3 × 20 mL), and the combined organic solvent was dried over Na₂SO₄, filtered and concentrated under reduced pressure. The resulting residue was purified by column chromatography (hexane/ethyl acetate = 3:1) (V/V) to afford the pure product **1a** as a white solid (4.42 g, 89%).

All amides were prepared from the corresponding 1-naphthylamine derivatives and 2-picolinic acid according to the reported procedure.^[1]

3.2. Typical Procedure for the Product 2a

Sodium sulfite (2.50 g, 20 mmol), sodium hydrogen carbonate (1.68 g, 20 mmol), and sulfonyl chlorides (10 mmol) were added to water (10 mL). After stirring at 80 °C for 4 h, water was removed by rotary evaporator. Then, the remaining solid was extracted and recrystallized by ethanol to obtain a white solid as the desired product. Other sodium sulfinates were prepared through a similar route from their corresponding sulfonyl chlorides.^[2]

3.3. Typical Procedure for the Product 3aa

A Schlenk tube was equipped with a magnetic stir bar and charged with N-(naphthalen-1yl)picolinamide **1a** (0.1 mmol, 24.8 mg), **2a** (0.2 mmol, 32 mg), Co(NO₃)₂ (0.01 mmol, 1.8 mg), NaF (0.2 mmol, 8 mg), Ag₂CO₃ (0.11 mmol, 30 mg), NFSI (0.005 mmol, 1.3 mg), H₂O (20 μ L) in 1,4-dioxane/MeCN (v/v = 2:1) (1.0 mL). The resulting mixture was sealed under argon, heated at 100 °C for 16 h, and cooled to room temperature. Upon completion, CH₂Cl₂ (20 mL) was added to the reaction system, and the resulting mixture was filtered through a pad of Celite. After the organic material was concentrated in vacuum, the product was purified by column chromatography on silica gel (100–200 mesh) using hexane/EtOAc as an eluent (2:1, V/V) to afford the pure product **3aa**.

3.4. Typical Procedure for the Product 4a

A mixture of **3aa** (77.6 mg, 0.2 mmol, 1.0 equiv) and NaOH (80 mg, 2 mmol, 10 equiv.) was heated in ethanol (2 mL) for 12 h at 80 °C. After the mixture was cooled to room temperature and diluted with water (3.0 mL), the solution of diluted hydrochloric acid was added until it was acidic. The saturated NaHCO₃ solution was then added until the pH value was about 7. The mixture was then extracted with CH_2Cl_2 and dried over anhydrous Na_2SO_4 . After the organic material was concentrated in vacuum, the product was purified by column chromatography on silica gel (100–200 mesh) using hexane/EtOAc as an eluent (2:1, V/V) to afford the pure product **4a**.

3.5. The Experiment of Trapping the Radicals

HRMS (ESI⁺): calcd for C₂₁H₂₈O₃S [M+Na]⁺: 383.1651, Found: 383.1652.

3.6. Kinetic Isotope Effect Experiments

Deuterium Exchange Experiment: A Schlenk tube was equipped with a magnetic stir bar and charged with N-(naphthalen-1-yl)picolinamide $1a-d_1$ (0.1 mmol), Co(NO₃)₂ (0.01 mmol, 1.8 mg),

NaF (0.2 mmol, 8 mg), Ag₂CO₃ (0.11 mmol, 30 mg), NFSI (0.005 mmol, 1.3 mg), H₂O (54 μ L, 30 equiv.). in 1,4-dioxane/MeCN (v/v = 2:1) (1.0 mL). The resulting mixture was sealed and heated at 100 °C for 16 h, and cooled to room temperature. Upon completion, the mixture was added into H₂O (20 mL) and extracted with ethyl acetate (10 mL× 3). The organic layer was collected, dried over anhydrous sodium sulfate, and then filtered. After evaporation of the solvent under vacuum, the residue was purified by column chromatography on silica gel (100-200 mesh) using hexane-EtOAc as an eluent (3:1, V/V). The substrate **1a**-*d*₁ was successfully recycled (21.3 mg, 86% isolated yield), and its structure was confirmed by ¹H NMR spectrum, which suggested that the H/D exchange did not occur.

Parallel Reaction: A Schlenk tube was equipped with a magnetic stir bar and charged with N-(naphthalen-1-yl)picolinamide **1a** (0.1 mmol) or **1a**- d_1 (0.1 mmol), **2a** (0.2 mmol, 32 mg), Co(NO₃)₂ (0.01 mmol, 1.8 mg), NaF (0.2 mmol, 8 mg), Ag₂CO₃ (0.11 mmol, 30 mg), NFSI (0.005 mmol, 1.3 mg), H₂O (20 µL) in 1,4-dioxane/MeCN (v/v = 2:1) (1.0 mL). The resulting mixture was sealed under Ar, heated at 100 °C for 3 h and cooled to room temperature. Upon completion, CH₂Cl₂ (20 mL) was added to the reaction system, and the resulting mixture was filtered through a pad of Celite. After the organic material was concentrated in vacuum, the product was purified by column chromatography on silica gel (100–200 mesh) using hexane/EtOAc as an eluent (2:1, V/V) to afford the pure product **3aa**, which was analyzed by ¹H NMR spectrum, respectively. The KIE value was calculated as $k_H/k_D = 1.26$

Competitive Reaction: A Schlenk tube was equipped with a magnetic stir bar and charged with N-(naphthalen-1-yl)picolinamide **1a** (0.05 mmol, 12.4 mg), **1a**- d_1 (0.05 mmol, 12.4 mg), **2a** (0.2 mmol, 32 mg), Co(NO₃)₂ (0.01 mmol, 1.8 mg), NaF (0.2 mmol, 8 mg), Ag₂CO₃ (0.11 mmol, 30 mg), NFSI (0.005 mmol, 1.3 mg), H₂O (20 µL) in 1,4-dioxane/MeCN (v/v = 2:1) (1.0 mL). The resulting mixture was sealed under Ar, heated at 100 °C for 1 h and cooled to room temperature. Upon completion, CH₂Cl₂ (20 mL) was added to the reaction system, and the resulting mixture was filtered through a pad of Celite. After the organic material was concentrated in vacuum, the product was purified by column chromatography on silica gel (100–200 mesh) using hexane/EtOAc as an eluent (2:1, V/V) to afford the pure product **1a/1a**- d_1 , and then analyzed by ¹H NMR spectrum. The KIE value was calculated as $k_H/k_D = 1.3$.

4. Characterization Data of the Products

N-(8-(phenylsulfonyl)naphthalen-1-yl)picolinamide (**3aa**): white solid (72%), mp 230-232 °C; ¹H NMR (400 MHz, CDCl₃) δ 11.10 (s, 1H), 8.77-8.70 (m, 1H), 8.56 (dd, J_I = 7.49 Hz, J_2 = 1.27 Hz, 1H), 8.28-8.21 (m, 1H), 8.00-7.93 (m, 1H), 7.81 (d, J = 7.61 Hz, 2H), 7.78-7.73 (m, 1H), 7.70-7.65 (m, 1H), 7.65-7.60 (m 1H), 7.49-7.44 (m, 1H), 7.36-7.32 (m, 2H), 7.24-7.18 (m, 1H), 7.04-6.97 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 164.1, 150.0, 148.0, 142.8, 136.9, 136.7, 136.3, 133.7, 132.6, 132.1, 131.4, 130.5, 128.7, 128.4, 127.3, 126.2, 126.2, 124.5, 123.9, 122.8; HRMS (ESI⁺): calcd for C₂₂H₁₆N₂O₃S [M+H]⁺: 389.0954, Found: 389.0952.

N-(5-methoxy-8-(phenylsulfonyl)naphthalen-1-yl)picolinamide (**3ba**): white solid (67%), mp 213-215 °C; ¹H NMR (400 MHz, CDCl₃) δ 11.08 (s, 1H), 8.75-8.69 (m, 1H), 8.62 (d, *J* = 8.59 Hz, 1H), 8.50-8.42 (m, 1H), 7.80-7.70 (m, 3H), 7.68-7.60 (m, 1H), 7.48-7.42 (m, 1H), 7.33-7.27 (m, 2H), 7.18-7.11 (m, 1H), 6.98-6.91 (m, 3H), 4.14 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.0, 161.2, 149.9, 148.0, 143.6, 136.6, 136.1, 131.7, 131.2, 131.0, 128.2, 128.2, 127.6, 126.6, 126.2, 124.1, 123.3, 122.7, 122.2, 102.0, 56.3; HRMS (ESI⁺): calcd for C₂₃H₁₈N₂O₄S [M+H]⁺: 419.1060, Found: 419.1062.

N-(5-acetamino-8-(phenylsulfonyl)naphthalen-1-yl)picolinamide (**3ca**): white solid (62%), mp 259-261 °C; ¹H NMR (400 MHz, CDCl₃) δ 11.05 (s, 1H), 8.73 (d, *J* =4.38 Hz, 1H), 8.47 (s, 1H), 8.29-8.171 (m, 1H), 8.06 (s, 1H), 7.94-7.84 (m, 2H), 7.84-7.77 (m, 1H), 7.68-7.62 (m, 1H), 7.53-7.42 (m, 4H), 7.34-7.28 (m, 1H), 7.17-7.02 (m, 2H), 2,41 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.6, 149.8, 148.2, 142.0, 139.3, 136.9, 133.2, 132.5, 131.8, 130.3, 128.6, 127.1, 126.8, 126.5, 125.5, 122.7, 120.9, 117.8, 43.4, 29.7; HRMS (ESI⁺): calcd for C₂₄H₁₉N₃O₄S [M+H]⁺: 446.1169, Found: 446.1167

N-(4-(hydrazine-1,2-dicarboxylate)-8-(phenylsulfonyl)naphthalen-1-yl)picolinamide (**3da**): white solid (53%), mp 138-140 °C; ¹H NMR (400 MHz, CDCl₃) δ 11.18 (s, 1H), 8.95-8.59 (m, 2H), 8.56-8.48 (m, 1H), 7.90-7.72 (m, 4H), 7.71-7.53 (m, 2H), 7.51-7.44 (m, 1H), 7.41-7.31 (m, 2H), 7.26-7.19 (m, 1H), 7.11-6.96 (m, 2H), 5.15-4.85 (m, 2H), 1.22 (s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 164.3, 156.0, 155.3, 149.7, 148.1, 142.6, 138.1, 136.8, 133.8, 133.2, 132.3, 131.9, 131.7, 130.0, 128.4, 126.8, 126.4, 124.7, 124.5, 122.9, 71.4, 70.1, 21.9, 21.8; HRMS (ESI⁺): calcd for C₃₀H₃₀N₄O₇S [M+H]⁺: 591.1908, Found: 591.1904

N-(2-methyl-8-(phenylsulfonyl)naphthalen-1-yl)picolinamide (**3ea**): white solid (25%), mp 240-242 °C; ¹H NMR (400 MHz, CDCl₃) δ 10.06 (s, 1H), 8.75-8.68 (m, 1H), 8.66-8.57 (m, 1H), 8.51 (s, 1H), 8.32 (d, *J* =7.81 Hz, 1H), 8.07-7.89 (m, 4H), 7.62-7.40 (m, 6H), 2.58 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 162.6, 149.1, 148.3, 141.7, 137.8, 136.2, 134.4, 133.1, 133.0, 132.0, 131.3, 129.1, 127.8, 127.5, 127.4, 127.4, 126.9, 124.6, 123.5, 122.8, 19.1; HRMS (ESI⁺): calcd for C₂₃H₁₈N₂O₃S [M+H]⁺: 403.1111, Found: 403.1110.

N-(7-methoxy-8-(phenylsulfonyl)naphthalen-1-yl)picolinamide (**3fa**): white solid (41%), mp 208-210 °C; ¹H NMR (400 MHz, CDCl₃) δ 11.39 (s, 1H), 8.68 (d, *J* = 4.08 Hz, 1H), 8.17 (d, *J* = 7.78 Hz, 1H), 8.01 (d, *J* = 8.17 Hz, 1H), 7.87 (d, *J* = 7.30 Hz, 1H), 7.84-7.76 (m, 2H), 7.70 (d, *J* = 7.55 Hz, 2H), 7.57 (t, *J* = 7.64 Hz, 1H), 7.44-7.30 (m, 4H), 7.07 (d, *J* = 8.03 Hz, 1H), 3.35 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.2, 158.8, 150.3, 148.3, 145.6, 137.3, 136.9, 132.2, 132.0, 130.9, 130.4, 128.7, 128.0, 127.6, 126.7, 126.0, 125.3, 122.5, 121.0, 113.1, 56.2; HRMS (ESI⁺): calcd for C₂₃H₁₈N₂O₄S [M+H]⁺: 441.0879, Found: 441.0884.

N-(5-Bromo-8-(phenylsulfonyl)naphthalen-1-yl) picolinamide (**3ga**): white solid (55%), mp 170-172 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 11.25 (s, 1H), 8.83 (d, J = 4.37 Hz, 1H), 8.63-8.53 (m, 2H), 8.38-8.29 (m, 1H), 8.27-8.21 (m, 1H), 8.21-8.09 (m, 2H), 8.01 (d, J = 7.42 Hz, 2H), 7.82-7.70 (m, 3H), 7.67-7.60 (m, 2H); ¹³C NMR (100 MHz, DMSO) δ 163.4, 149.5, 149.2, 141.7, 139.8, 138.9, 134.0, 131.9, 130.9, 130.1, 129.1, 128.8, 128.0, 127.8, 127.6, 127.5, 124.6, 123.5, 123.0, 118.9; HRMS (ESI⁺): calcd for C₂₂H₁₅BrN₂O₃S [M+H]⁺: 467.0060, Found: 467.0058.

N-(4-bromo-8-(phenylsulfonyl)naphthalen-1-yl)picolinamide (**3ha**): white solid (53%), mp 175-177 °C; ¹H NMR (400 MHz, CDCl₃) δ 11.05 (s, 1H), 8.75-8.71 (m, 1H), 8.54-8.48 (m, 1H), 8.33 (d, *J* = 8.13 Hz, 1H), 7.98 (d, *J* =8.16 Hz, 1H), 7.87-7.74 (m, 4H), 7.49-7.44 (m, 1H), 7.38-7.32 (m, 2H), 7.25-7.20 (m, 1H), 7.08-7.00 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 164.2, 149.7, 148.1, 142.4, 136.8, 134.3, 133.1, 132.9, 132.5, 132.3, 132.0, 131.5, 128.7, 128.5, 128.5, 128.0, 127.5, 126.4, 124.5, 122.8; HRMS (ESI⁺): calcd for C₂₂H₁₅BrN₂O₃S [M+H]⁺: 467.0060, Found: 467.0059.

N-(8-(phenylsulfonyl)naphthalen-1-yl)-4-methoxypicolinamide (**3ia**): white solid (50%), mp 204-206 °C; ¹H NMR (400 MHz, CDCl₃) δ 11.08 (s, 1H), 8.57-8.50 (m, 2H), 8.24 (d, *J* = 7.60 Hz, 1H), 7.95 (d, *J* = 7.89 Hz, 1H), 7.80 (d, *J* = 7.38 Hz, 1H), 7.70-7.59 (m, 2H), 7.39-7.32 (m, 3H), 7.28-7.23 (m, 1H), 7.09-7.02 (m, 2H), 6.99-6.95 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 166.5, 164.0, 151.9, 149.2, 142.7, 136.8, 136.3, 133.6, 132.7, 132.0, 131.4, 130.5, 128.7, 128.4, 127.3, 126.2, 124.6, 123.9, 113.0, 108.0, 55.5; HRMS (ESI⁺): calcd for C₂₃H₁₈N₂O₄S [M+H]⁺: 419.1060, Found: 419.1060.

N-(8-(phenylsulfonyl)naphthalen-1-yl)-5-methoxypicolinamide (**3ja**): white solid (52%), mp 210-212 °C; ¹H NMR (400 MHz, CDCl₃) δ 11.08 (s, 1H), 8.72 (d, *J* = 4.62 Hz, 1H), 8.62 (d, *J* = 8.52 Hz, 1H), 8.53-8.36 (m, 1H), 7.82-7.69 (m, 1H), 7.49-7.40 (m, 1H), 7.29 (d, *J* = 7.53 Hz, 2H), 7.19-7.10 (m, 1H), 6.98-6.89 (m, 3H), 4.14 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.0, 161.2, 150.0, 148.0, 143.6, 136.6, 136.1, 131.7, 131.2, 131.0, 128.2, 128.2, 127.6, 126.6, 126.2, 124.1, 123.3, 122.7, 122.2, 122.0, 102.0, 56.3; HRMS (ESI⁺): calcd for C₂₃H₁₈N₂O₄S [M+H]⁺: 419.1060, Found: 419.1058.

N-(8-(phenylsulfonyl)naphthalen-1-yl)-3-methylpicolinamide (**3ka**): white solid (42%), mp 240-242 °C; ¹H NMR (400 MHz, CDCl₃) δ 11.13 (s, 1H), 8.61-8.56 (m, 2H), 8.27-8.21 (m, 1H), 7.97-7.91 (m, 1H), 7.84 (d, *J* = 7.48 Hz, 1H), 7.70-7.60 (m, 2H), 7.53-7.48 (m, 1H), 7.40-7.34 (m, 1H), 7.29-7.24 (m, 3H), 7.05-6.91 (m, 2H), 2.36 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.4, 147.2, 145.5, 143.0, 140.3, 137.0, 136.4, 135.8, 133.9, 132.4, 131.7, 131.6, 130.3, 128.4, 128.3, 127.2, 126.4, 125.8, 124.1, 123.9, 20.4; HRMS (ESI⁺): calcd for C₂₃H₁₈N₂O₃S [M+H]⁺: 403.1111, Found: 403.1112.

N-(8-(phenylsulfonyl)naphthalen-1-yl)-5-fluoropicolinamide (**3la**): yellow solid (32%), mp 160-162 °C; ¹H NMR (400 MHz, CDCl₃) δ 10.98 (s, 1H), 8.55 (d, J =2.68 Hz, 1H), 8.52-8.45 (m, 1H), 8.26-8.21 (m, 1H), 7.98-7.94 (m, 1H), 7.90-7.85 (m, 1H), 7.80 (d, J = 7.21 Hz, 1H), 7.71-7.59 (m, 2H), 7.52-7.42 (m, 2H), 7.41-7.35 (m, 2H), 7.11-7.05 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 163.0, 161.1 (d, J = 261.8 Hz), 146.4 (d, J = 3.91 Hz), 142.7, 136.9, 136.5 (d, J = 24.99 Hz), 136.3, 133.5, 132.7, 132.3, 131.2, 130.5, 128.8, 128.4, 127.3, 126.1, 124.7, 124.5 (d, J = 5.51 Hz), 124.0, 123.3 (d, J = 19.08 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ -121.86 (s, 1F); HRMS (ESI⁺): calcd for C₂₂H₁₅FN₂O₃S [M+H]⁺: 407.0860, Found: 407.0861.

N-(8-(phenylsulfonyl)naphthalen-1-yl)-5-chloropicolinamide (**3ma**): white solid (38%), mp 170-172 °C; ¹H NMR (400 MHz, CDCl₃) δ 10.86 (s, 1H), 8.76-8.65 (m, 3H), 8.60 (d, *J* = 8.32 Hz, 1H), 8.36-8.30 (m, 1H), 8.15-8.07 (m, 1H), 7.99-7.93 (m, 3H), 7.69-7.60 (m, 2H), 7.52-7.44 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 161.4, 147.4, 147.3, 142.0, 138.1, 137.7, 136.0, 132.9, 131.4, 131.1, 129.4, 129.1, 128.3, 127.3, 126.0, 125.4, 123.7, 120.7, 115.4; HRMS (ESI⁺): calcd for C₂₂H₁₅ClN₂O₃S [M+H]⁺: 423.0565, Found: 423.0569.

N-(8-(phenylsulfonyl)naphthalen-1-yl)-5-bromopicolinamide (**3na**): white solid (38%), mp 125-127 °C; ¹H NMR (400 MHz, CDCl₃) δ 10.87 (s, 1H), 8.80-8.77 (m, 1H), 8.75-8.71 (m, 1H), 8.62-8.58 (m, 1H), 8.28-8.23 (m, 1H), 8.13-8.08 (m, 2H), 7.99-7.94 (m, 2H), 7.67-7.62 (m, 2H), 7.53-7.44 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 161.6, 149.5, 147.8, 142.0, 140.7, 138.1, 132.9, 131.4, 131.1, 129.4, 129.1, 128.3, 127.3, 127.2, 126.0, 125.4, 125.0, 124.1, 120.7, 115.5; HRMS (ESI⁺): calcd for C₂₂H₁₅BrN₂O₃S [M+H]⁺: 467.0060, Found: 467.0064.

N-(8-(phenylsulfonyl)naphthalen-1-yl)-4-chloropicolinamide (**30a**): white solid (52%), mp 194-196 °C; ¹H NMR (400 MHz, CDCl₃) δ 11.03 (s, 1H), 8.62 (d, J = 5.16 Hz, 1H), 8.56-8.44 (m, 1H), 8.25 (dd, $J_I = 8.18$ Hz, $J_2 = 1.06$ Hz, 1H), 8.01-7.96 (m, 1H), 7.82-7.76 (m, 2H), 7.72-7.66 (m, 1H), 7.65-7.60 (m, 1H), 7.49-7.45 (m, 1H), 7.37-7.33 (m, 2H), 7.33-7.28 (m, 1H), 7.12-7.04 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 163.0, 151.4, 149.0, 145.3, 142.8, 136.9, 136.3, 133.7, 132.6, 132.2, 131.0, 130.6, 129.0, 128.5, 127.3, 126.3, 126.2, 124.6, 124.1, 123.3,; HRMS (ESI⁺): calcd for C₂₂H₁₅ClN₂O₃S [M+H]⁺: 423.0565, Found: 423.0565.

N-(8-(phenylsulfonyl)naphthalen-1-yl)isoquinoline-1-carboxamide (**3pa**): white solid (48%), mp 228-230 °C; ¹H NMR (400 MHz, CDCl₃) δ 11.30 (s, 1H), 9.00-8.92 (m, 1H), 8.67 (d, J = 5.54 Hz, 1H), 8.64-8.61 (m, 1H), 8.27 (dd, $J_1 = 8.20$ Hz, $J_2 = 1.20$ Hz, 1H), 8.00-7.95 (m, 2H), 7.90-7.85 (m, 2H), 7.74-7.69 (m, 2H), 7.68-7.62 (m, 1H), 7.58-7.53 (m, 1H), 7.15-7.09 (m, 2H), 7.76-6.75 (m, 1H), 6.65-6.59 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 165.4, 148.3, 142.8, 140.4, 137.2, 137.0, 136.4, 134.1, 132.4, 131.7, 131.5, 130.3, 130.0, 128.5, 128.2, 128.2, 127.5, 127.2, 127.1, 126.7, 126.2, 124.4, 124.0, 123.8; HRMS (ESI+): calcd for C₂₆H₁₈N₂O₃S [M+H]⁺: 439.1111, Found: 439.1114.

N-(8-(phenylsulfonyl)naphthalen-1-yl)pyrimidine-3-carboxamide (**3qa**): white solid (50%), mp 235-237 °C; ¹H NMR (400 MHz, CDCl₃) δ 10.66 (s, 1H), 9.59 (d, J = 1.24 Hz, 1H), 8.90 (d, J = 2.41 Hz, 1H), 8.77-8.72 (m, 1H), 8.72-8.67 (m, 2H), 8.61 (d, J = 8.25 Hz, 1H), 8.14-8.07 (m, 1H), 8.00-7.95 (m, 2H), 7.69-7.61 (m, 2H), 7.55-7.44 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 161.0, 148.2, 144.9, 143.9, 142.5, 141.9, 137.7, 133.0, 131.9, 131.0, 129.4, 129.1, 128.4, 127.3, 127.3, 126.0, 125.5, 120.5, 115.9; HRMS (ESI⁺): calcd for C₂₁H₁₅N₃O₃S [M+H]⁺: 390.0907, Found: 390.0911.

N-(1-(phenylsulfonyl)naphthalen-2-yl) picolinamide (**3ra**): light yellow solid (57%), mp 162-165 °C; ¹H NMR (400 MHz, CDCl₃) δ 12.98 (s, 1H), 9.01-8.85 (m, 2H), 8.80 (d, J = 4.24 Hz, 1H), 8.37-8.23 (m, 1H), 8.08 (d, J = 9.18 HZ 1H), 7.98-7.88 (m, 3H), 7.86-7.77 (m, 1H), 7.59-7.50 (m, 2H), 7.50-7.42 (m, 2H), 7.40-7.32 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 163.4, 149.8, 148.7, 142.5, 139.7, 137.5, 135.8, 133.2, 130.9, 130.0, 129.0, 128.9, 128.6, 126.8, 126.3, 125.5, 124.5, 122.9, 121.2, 120.0; HRMS (ESI⁺): calcd for C₂₂H₁₆N₂O₃S [M+Na]⁺: 411.0774, Found: 411.0771.

N-(8-(4-(tert-butyl)phenylsulfonyl)naphthalen-1-yl)picolinamide (**3ab**): light yellow solid (42%), mp 198-200 °C; ¹H NMR (400 MHz, CDCl₃) δ 11.18 (s 1H), 8.82-8.68 (m, 1H), 8.57 (dd, $J_I =$ 7.48 Hz, $J_2 =$ 1.31 Hz, 1H), 8.28-8.19 (m, 1H), 8.00-7.89 (m, 1H), 7.87-7.71 (m, 3H), 7.71-7.56 (m, 2H), 7.51-7.43 (m, 1H), 7.28-7.21 (m, 2H), 7.02-6.98 (m, 2H), 1.15 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 163.9, 155.5, 150.0, 148.1, 139.8, 136.8, 136.7, 136.3, 133.6, 132.7, 131.3, 130.5, 128.7, 127.2, 126.2, 125.4, 124.2, 123.9, 122.6, 34.8, 30.8; HRMS (ESI⁺): calcd for C₂₆H₂₄N₂O₃S [M+H]⁺: 445.1580, Found: 445.1583.

N-(8-(4-methoxyphenylsulfonyl)naphthalen-1-yl)picolinamide (3ac): white solid (37%), mp 157-

159 °C; ¹H NMR (400 MHz, CDCl₃) δ 11.10 (s, 1H), 8.78-8.67 (m, 3H), 8.55 (d, J = 8.31 Hz, 1H), 8.37 (d, J = 7.79 Hz, 1H), 8.19-8.13 (m, 1H), 8.02-7.95 (m, 1H), 7.93-7.88 (m, 2H), 7.68-7.60 (m, 2H), 7.60-7.54 (m, 1H), 6.96-6.88 (m, 2H), 3.81 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 163.1, 162.3, 149.4, 148.2, 138.1, 138.0, 133.6, 131.9, 130.7, 129.6, 129.3, 128.1, 127.0, 127.0, 126.0, 125.4, 122.7, 120.8, 115.3, 114.3, 55.6; HRMS (ESI⁺): calcd for C₂₃H₁₈N₂O₄S [M+H]⁺: 419.1060, Found: 419.1060.

N-(8-(4-methylphenylsulfonyl)naphthalen-1-yl)picolinamide (**3ad**): white solid (47%), mp 200-202 °C; ¹H NMR (400 MHz, CDCl₃) δ 11.09 (s, 1H), 8.77-8.70 (m, 1H), 8.50 (dd, J_1 = 7.49 Hz, J_2 = 1.28 Hz, 1H), 8.26-8.18 (m, 1H), 7.98-7.93 (m, 1H), 7.85-7.80 (m, 2H), 7.80-7.74 (m, 1H), 7.70-7.64 (m, 1H), 7.64-7.57 (m, 1H), 7.50-7.43 (m, 1H), 7.24-7.22 (m, 2H), 6.79 (d, J = 8.07 Hz, 2H), 7.18 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.1, 150.2, 148.1, 142.8, 139.9, 136.7, 136.4, 136.3, 133.4, 133.1, 131.4, 130.6, 128.9, 128.7, 127.2, 126.2, 126.2, 124.7, 123.9, 122.6; HRMS (ESI⁺): calcd for C₂₃H₁₈N₂O₃S [M+H]⁺: 403.1111, Found: 403.1108.

N-(8-(4-(trifluoromethyl)phenylsulfonyl)naphthalen-1-yl)picolinamide (**3ae**): white solid (37%), mp 215-217 °C; ¹H NMR (400 MHz, CDCl₃) δ 10.89 (s, 1H), 8.75-8.66 (m, 2H), 8.32 (dd, J_I = 8.17 Hz, J_2 = 1.16 Hz, 1H), 8.05-7.96 (m, 1H), 7.79-7.66 (m, 5H), 7.53-7.45 (m, 1H), 7.42 (d, J = 8.25 Hz, 2H), 7.18 (d, J = 8.40 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 164.0, 149.4, 148.0, 146.7, 137.6, 137.0, 136.4, 134.7, 133.4 (d, J = 33.1 Hz), 131.4, 131.0, 129.2, 127.5, 126.7 126.5, 125.4, 125.3, 124.4, 124.2, 122.7; ¹⁹F NMR (376 MHz, CDCl₃): δ -63.36 (s, 3F); HRMS (ESI⁺): calcd for C₂₃H₁₅F₃N₂O₃S [M+H]⁺: 457.0828, Found: 457.0829.

N-(8-(4-fluorophenylsulfonyl)naphthalen-1-yl)picolinamide (**3af**): light yellow solid (32%), mp 220-222 °C; ¹H NMR (400 MHz, CDCl₃) δ 11.02 (s, 1H), 8.77-8.70 (m, 1H), 8.58-8.49 (m, 1H), 8.31-8.21 (m, 1H), 7.98 (dd, J_1 = 8.08 Hz, J_2 = 1.08 Hz, 1H), 7.91-7.86 (m, 1H), 7.84-7.78 (m, 2H), 7.73-7.60 (m, 2H), 7.51-7.46 (m, 1H), 7.39-7.34 (m, 2H), 6.72-6.59 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 164.1, 163.1, 149.9, 148.1, 139.0, 137.1, 136.9, 136.4, 133.8, 132.4, 131.3, 130.9,

128.9, 127.3 (d, J = 10.93 Hz), 127.2, 126.4, 126.3, 124.0, 122.7, 115.5 (d, J = 22.82 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ -105.54 (s, 1F); HRMS (ESI⁺): calcd for C₂₂H₁₅FN₂O₃S [M+H]⁺: 407.0860, Found: 407.0861.

N-(8-(4-chlorophenylsulfonyl)naphthalen-1-yl)picolinamide (**3ag**): light yellow solid (62%), mp 208-210 °C; ¹H NMR (400 MHz, CDCl₃) δ 10.94 (s, 1H), 8.73-8.69 (m, 1H), 8.63-8.56 (m, 1H), 8.34-8.23 (m, 1H), 7.99 (dd, J_1 = 8.08 Hz, J_2 = 1.11 Hz, 1H), 7.85-7.76 (m, 3H), 7.73-7.62 (m, 2H), 7.52-7.47 (m, 1H), 7.26-7.23 (m, 2H), 6.96-6.85 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 164.1, 149.8, 148.0, 141.6, 138.3, 137.3, 136.8, 136.3, 134.1, 131.9, 131.2, 131.1, 129.0, 128.5, 127.4, 126.5, 126.5, 125.7, 124.0, 122.8; HRMS (ESI⁺): calcd for C₂₂H₁₅ClN₂O₃S [M+H]⁺: 423.0565, Found: 423.0562.

N-(8-(4-bromophenylsulfonyl)naphthalen-1-yl)picolinamide (**3ah**): light yellow solid (48%), mp 192-197 °C; ¹H NMR (400 MHz, CDCl₃) δ 10.92 (s, 1H), 8.70 (d, *J* =4.60 Hz,1H), 8.60 (d, *J* = 6.89 Hz, 1H), 8.28 (d, *J* = 7.82 Hz, 1H), 7.99 (d, *J* = 7.70 Hz, 1H), 7.85-7.77 (m, 3H), 7.74-7.63 (m, 2H), 7.52-7.46 (m, 1H), 7.22-7.16 (m, 2H), 7.09-7.04 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 164.1, 149.8, 148.0, 142.2, 137.3, 136.8, 136.4, 134.2, 131.8, 131.4, 131.2, 129.0, 127.4, 126.8, 126.6, 126.5, 125.7, 124.1, 122.8; HRMS (ESI⁺): calcd for C₂₂H₁₅BrN₂O₃S [M+H]⁺: 467.0060, Found: 467.0059.

N-(8-(2-methoxy-5-bromophenylsulfonyl)naphthalen-1-yl)picolinamide (**3ai**): yellow solid (20%), mp 206-208 °C; ¹H NMR (400 MHz, CDCl₃) δ 11.10 (s, 1H), 8.76 (d, *J* = 4.15 Hz, 1H), 8.63 (d, *J* = 7.30 Hz, 1H), 8.20 (d, *J* = 7.72 Hz, 1H), 8.04 (d, *J* = 7.75 Hz, 1H), 7.92 (d, *J* = 7.99 Hz, 1H), 7.84 (d, *J* = 7.49 Hz, 2H), 7.67-7.65 (m, 4H), 7.50-7.45 (m, 1H), 6.48 (d, *J* = 8.83 Hz, 1H), 3.34 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.2, 154.7, 149.8, 148.3, 137.1, 136.8, 136.4, 136.1, 135.4, 133.4, 132.5, 131.6, 130.0, 129.7, 128.5, 127.0, 126.4, 125.9, 124.0, 123.0, 113.8, 112.2, 56.0; HRMS (ESI⁺): calcd for C₂₃H₁₇BrN₂O₄S [M+H]⁺: 497.0165, Found: 497.0163.

N-(8-(naphthalen-2-ylsulfonyl)naphthalen-1-yl)picolinamide (**3aj**): yellow solid (50%), mp 222-224 °C; ¹H NMR (400 MHz, CDCl₃) δ 11.04 (s, 1H), 8.68 (d, *J* = 4.28 Hz, 1H), 8.59 (d, *J* = 7.25 Hz, 1H), 8.28 (d, *J* = 8.02 Hz, 1H), 7.99 (d, *J* = 7.68 Hz, 1H), 7.95 (s, 1H), 7.78 (d, *J* = 7.49 Hz, 1H), 7.73-7.59 (m, 3H), 7.53-7.48 (m, 2H), 7.46-7.27 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 164.2, 149.6, 147.9, 140.0, 136.9, 136.4, 134.3, 133.9, 132.8, 131.5, 131.4, 130.8, 129.1, 128.9, 128.7, 128.4, 127.6, 127.3, 127.1, 126.6, 126.1, 125.5, 124.0, 122.2, 120.4; HRMS (ESI⁺): calcd for C₂₆H₁₈N₂O₃S [M+H]⁺: 439.1111, Found: 439.1112.

N-(8-(3-pyridylsulfonyl)naphthalen-1-yl)picolinamide (**3ak**): yellow solid (23%), mp 172-174 °C; ¹H NMR (400 MHz, CDCl₃) δ 11.19 (s, 1H), 9.20 (d, J = 2.02 HZ, 1H), 8.82-8.76 (m, 1H), 8.76 -8.70 (m, 3H), 8.67-8.61 (m, 1H), 8.40-8.35 (m, 1H), 8.24-8.17 (m, 2H), 8.02-7.96 (m, 1H), 7.72-7.65 (m, 2H), 7.61-7.56 (m, 1H), 7.43-7.38 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 162.3, 153.4, 149.2, 148.3, 139.0, 138.6, 138.0, 134.9, 131.8, 130.0, 129.3, 128.7, 127.3, 127.1, 125.9, 124.8, 123.6, 122.8, 121.0, 115.1; HRMS (ESI⁺): calcd for C₂₁H₁₅N₃O₃S [M+Na]⁺: 412.0726, Found: 412.0727.

N-(8-(cyclopropylsulfonyl)naphthalen-1-yl)picolinamide (**3al**): white solid (53%), mp 184-186 °C; ¹H NMR (400 MHz, CDCl₃) δ 11.83 (s, 1H), 8.85-8.77 (m, 1H), 8.43-8.34 (m, 1H), 8.28 (d, J = 7.88 Hz, 1H), 8.20-8.13 (m, 1H), 8.06 (d, J = 7.54 Hz, 1H), 7.96-7.86 (m, 2H), 7.74-7.66 (m, 1H), 7.59-7.49 (m, 2H), 2.94-2.80 (m, 1H), 1.30-1.25 (m, 2H), 0.82-0.69 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 164.6, 150.1, 148.6, 137.3, 136.3, 136.2, 135.3, 131.7, 131.0, 129.5, 128.6, 126.9, 126.5, 125.3, 123.9, 123.0, 33.3, 6.6; HRMS (ESI⁺): calcd for C₁₉H₁₆N₂O₃S [M+H]⁺: 353.0954, Found: 353.0952.

8-phenylsulfonyl-1-naphthylamine (**4a**): yellow paste (85%), mp 50 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.51 (d, J = 7.51 Hz, J = 1.13 Hz, 1H), 8.09-7.96 (m, 1H), 7.76-7.65 (m, 2H), 7.56-7.41 (m, 4H), 7.36-7.27 (m, 2H), 6.79-6.70 (m, 1H), 5.29 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 142.8, 142.7, 136.9, 136.6, 134.8, 132.5, 131.4, 128.8, 127.7, 126.4, 123.4, 119.7, 119.6, 115.5; HRMS (ESI⁺): calcd for C₁₆H₁₃NO₂S [M+H]⁺: 284.0740, Found: 284.0740.

N-(2-morpholine-8-(phenylsulfonyl)naphthalen-1-yl)picolinamide (**5a**): yellow solid (76%), mp 228-230 °C; ¹H NMR (400 MHz, CDCl₃) δ 10.25 (s, 1H), 8.68-8.60 (m, 1H), 8.59-8.48 (m, 1H), 8.18-8.11 (m, 1H), 7.97 (d, *J* =8.48 HZ, 1H), 7.75-7.62 (m, 2H), 7.56-7.48 (m, 2H), 7.46-7.40 (m, 3H), 7.16-7.07 (m, 1H), 7.00-6.88 (m, 2H), 3.51-3.42 (m, 2H), 3.42-3.33 (m, 2H), 3.31-3.22 (m, 2H), 2.95-2.85 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 163.7, 151.3, 150.0, 147.8, 143.9, 136.7, 136.4, 135.0, 132.5, 131.8, 131.6, 130.5, 130.2, 128.1, 126.1, 124.2, 124.0, 122.5, 121.5, 67.1, 51.5; HRMS (ESI⁺): calcd for C₂₆H₂₃N₃O₄S [M+H]⁺: 474.1482, Found: 474.1483.

N-(4-nitro-8-(phenylsulfonyl)naphthalen-1-yl)picolinamide (**6a**): yellow solid (40%), mp 225-227 °C; ¹H NMR (400 MHz, CDCl₃) δ 11.41 (s, 1H), 8.86-8.70 (m, 2H), 8.62-8.52 (m, 1H), 8.29-8.20 (m, 1H), 8.03-7.95 (m, 1H), 7.95-7.88 (m, 2H), 7.86-7.77 (m, 2H), 7.56-7.48 (m, 1H), 7.42-7.29 (m, 3H), 7.18-7.05 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 164.1, 149.3, 148.3, 145.9, 141.7, 137.1, 137.0, 134.8, 133.9, 132.8, 130.3, 128.7, 128.0, 127.6, 126.9, 126.8, 126.2, 125.1, 124.5, 123.0; HRMS (ESI⁺): calcd for C₂₂H₁₅N₃O₅S [M+H]⁺: 434.0805, Found: 434.0802.

N-(4-iodo-8-(phenylsulfonyl)naphthalen-1-yl)picolinamide (7a): red solid (43%), mp 220-222 °C;

¹H NMR (400 MHz, CDCl₃) δ 10.55 (s, 1H), 8.80 (s, 1H), 8.72-8.64 (m, 1H), 8.55-8.47 (m, 1H), 8.30-8.22 (m, 1H), 7.83-7.76 (m, 1H), 7.76-7.68 (m, 1H), 7.66-7.59 (m, 1H), 7.59-7.51 (m, 2H), 7.49-7.41 (m,1H), 7.27-7.22 (m, 2H), 7.17-7.06 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 164.0, 149.2, 148.0, 142.2, 140.3, 136.8, 136.1, 135.8, 134.7, 134.7, 132.5, 129.9, 128.4, 126.5, 126.2, 125.6, 122.7, 105.9, 100.8; HRMS (ESI⁺): calcd for C₂₂H₁₅IN₂O₃S [M+H]⁺: 514.9921, Found: 514.9920.

2, 6-ditert-butyl-4-phenylsulfonylmethylphenol (**8a**): yellow solid (51%), mp 114-115 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.66-7.51 (m, 3H), 7.48-7.34 (m, 2H), 6.74 (s, 2H), 5.24 (s, 1H), 4.22 (s, 2H), 1.31 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 154.2, 137.8, 136.0, 133.3, 128.8, 128.6, 127.6, 118.7, 63.1, 34.1, 30.0; HRMS (ESI⁺): calcd for C₂₁H₂₈O₃S [M+Na]⁺: 383.1651, Found: 383.1652.

5. References

[1]. R. Shang, L. Ilies and E. Nakamura, J. Am. Chem. Soc. 2015, 137, 7660.

[2]. (a) B. Du, P. Qian, Y. Wang, H. Mei, J. Han, Y. Pan, *Org. Lett.* 2016, 18, 4144; (b) P. R. Bai, S. Y. Sun, Z. X. Li, H. J. Qiao, X. X. Su, F. Yang, Y. S. Wu and Y. J. Wu, *J. Org. Chem.* 2017, 82, 12119.

6. The Single Crystal X-ray Diffraction Study

The Single Crystal X-ray Diffraction Study of 3aa

CCDC 2078508 (**3aa**) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre *via* www. ccdc.cam.ac.uk/data_request/cif.

Table S3 Crystal Data and Structure Refinement for CCDC 2078508.

Empirical formula	$C_{22}H_{16}N_2O_3S$
Formula weight	388.43
Temperature/K	293(2)
Crystal system	monoclinic
Space group	$P2_1/c$
a/Å	8.8921(4)
b/Å	14.4512(7)
c/Å	14.9303(6)
α/°	90
β/°	105.182(4)
$\gamma/^{o}$	90
Volume/Å ³	1851.62 (14)
Ζ	4
$\rho_{calc}g/cm^3$	1.393

μ/mm^{-1}	1.775
F(000)	808.0
Crystal size/mm ³	0.15 imes 0.12 imes 0.1
Radiation	$CuK\alpha \ (\lambda = 1.54184)$
2Θ range for data collection/°	8.666 to 134.02
Index ranges	$-10 \le h \le 8, -16 \le k \le 17, -17 \le l \le 17$
Reflections collected	7015
Independent reflections	3301 [$R_{int} = 0.0249, R_{sigma} = 0.0339$]
Data/restraints/parameters	3301/1/257
Goodness-of-fit on F ²	1.035
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0486, wR_2 = 0.1342$
Final R indexes [all data]	$R_1 = 0.0580, wR_2 = 0.1457$
Largest diff. peak/hole / e Å ⁻³	0.35/-0.29

7. Copies of ¹H, ¹³C NMR Spectra for the Products

S25

-100

-120

-140

-160

-180

-200 ppm

0

-20

-40

-60

-80

