Catalyst-Free Reductive Hydrogenation or Deuteration of Aryl-Heteroatom

Bonds Induced by Light

Boyu Yan, Yutong Zhou, Jieliang Wu, Maogang Ran, Huihui Li, and Qiuli Yao*

Supporting Information

1.	General Experiments	S1
2.	Supplement Figures and Tables	.S1
3.	Experimental Procedure	.S5
4.	Mechanistic Studies	.S15
5.	References	S20
6.	NMR Spectra	S21
7.	Deuterium Ratios Determined by ¹ H NMR Spectroscopy	S68

1. General Experiments

NMR spectra were recorded on an Agilent-NMR-VNMRs 400 MHz spectrometer or Bruker Advance 400 MHz spectrometer. Chemical shifts are reported in parts per million (ppm) and referenced to CDCl₃ (7.26 ppm) for ¹H NMR, and CDCl₃ (77.16 ppm) for ¹³C NMR. GC-MS analyses were performed with an Agilent 8890-597BGCMSD spectrometer. High-resolution mass spectrometry used electro-spraying ionization (ESI) on a Thermo Scientific LTQ Orbitrap XL. Column chromatography or preparative thin-layer chromatography (TLC) was performed with Qing Dao silica gel. All reagents and solvents were used directly as purchased. DMSO- d_6 (99.8% deuterium, containing 0.03% (v/v) TMS), acetone- d_6 (99.8% deuterium, containing 0.03% (v/v) TMS) were used directly as purchased in deuteration reactions.

2. Supplement Figures and Tables

Figure S1. Photoreactors with household UV lamps (254 nm, 8 W each lamp): (a) 4*8 W; (b) 20*8 W.

(a)

Table S1. Optimization of conditions for the reduction of aryl triflates.^{*a*}

		OTf solve bas additi r.t., /	$\begin{array}{c} \text{ent} \\ \text{e} \\ \text{ive} \\ \text{hv} \\ \text{hv} \\ 2a \end{array}$	
entry	solvent/mL	base/equiv	additive/equiv	yield/%
1	CH ₃ CN/1	DIPEA/1	NaI/0.5	13
2	DMF/1	DIPEA/1	NaI/0.5	26
3	DMSO/1	DIPEA/1	NaI/0.5	13
4	$H_2O/1$	DIPEA/1	NaI/0.5	trace
5	DMF/1	NEt ₃ /1	NaI/0.5	29
6	DMF/1	HNEt ₂ /1	NaI/0.5	26
7	DMF/1	DMAP/1	NaI/0.5	41
8	DMF/1	Pyridine/1	NaI/0.5	24
9	DMF/1	TMEDA/1	NaI/0.5	23
10	DMF/1	DMAP/2	NaI/0.5	55
11	DMF/1	DMAP/2	-	49
12	DMF/2	DMAP/2	-	57
13	DMF/2	DMAP/2	CH ₃ COONa/1	64
14	DMF/2	DMAP/2	KCl/1	68
15	DMF/2	DMAP/2	KNO ₃ /1	61
16	DMF/2	DMAP/2	CaCl ₂ /1	61
17	DMF/2	DMAP/2	Na ₃ PO ₄ ·12 H ₂ O/1	73
18	DMF/2	DMAP/2	CaSO ₄ /1	64
19	DMF/2	DMAP/2	NaNO ₂ /1	65
20	DMF/2	DMAP/2	KBr/1	65
21	DMF/2	DMAP/2	Rb ₂ CO ₃ /1	73
22	DMF/2	DMAP/2	Na3PO4 [·] 12 H2O/0.5	75
23 ^b	DMF/2	DMAP/2	Na ₃ PO ₄ ·12 H ₂ O/0.5	75

^{*a*} Reaction conditions: **4a** (0.1 mmol), solvent, air, r.t., *hv* (254 nm, 20*8 W), 20 h, GC-MS yield with 1,3,5-trimethylbenzene as internal standard. ^{*b*} *hv* (254 nm, 4*8 W).

	MeO	OTf -	solvent base additive r.t., hv	D	
		4d	3d		
entry	solvent	base/equiv	additive/equiv	yield/%	D-content/%
1	CD ₃ OD	-	-	0	-
2	DMSO-d ₆	-	-	22	96
3	acetone- d_6	-	-	Trace	-
4	DMF/D ₂ O (9:1)	-	-	57	10
5	CH ₃ CN/D ₂ O (9:1)	-	-	0	-
6	CD ₃ CN	-	-	10	96
7	DMSO- d_6	DMAP/1	-	44	96
8	DMSO- d_6	DMAP/2	-	62	96
9	DMSO- d_6	DMAP/3	-	51	96
10	DMSO- d_6	DMAP/2	Na ₃ PO ₄ /0.5	70	96
11	DMSO-d ₆	DMAP/2	Na ₃ PO ₄ /1	78	96
12	DMSO- d_6	DMAP/2	Na ₃ PO ₄ /1.5	74	96
13	DMSO- d_6	DMAP/2	K ₃ PO ₄ /1	72	96
14	DMSO- d_6	DMAP/2	K ₂ CO ₃ /1	69	96
15	DMSO- d_6	DMAP/2	NaOH/1	55	96

Table S2. Optimization of conditions for the reductive deuteration of aryl triflates.^a

^{*a*} Reaction conditions: **4d** (0.1 mmol), solvent (0.5 mL), base, additive, *hv* (254 nm, 4*8 W), 24 h, r.t., Ar. The yields were obtained after purified by preparative TLC, and the deuterium incorporation was determined by ¹H NMR spectroscopy of the product.

	Br	base, <i>hv</i> solvent, Ar, 18 h		
			3al	
entry	solvent/mL	base/equiv	yield/%	D-content/%
1	CDCl ₃ /0.5	-	trace	-
2	acetone-d ₆ /0.5	-	52	99
3	DMSO- <i>d</i> ₆ /0.5	-	10	99
4	CD ₃ OD/0.5	-	33	99
5	acetone- $d_6/0.35$	-	35	99
6	acetone- $d_6/0.15$	-	25	99
5	acetone- $d_6/0.5$	N-Methylpyrrole/1	13	50
6	acetone- $d_6/0.5$	N-Methylpiperidine/1	50	10
7	acetone- $d_6/0.5$	Pyrrolidine/1	70	50
8	acetone- $d_6/0.5$	NEt ₃ /1	31	20
9	acetone- $d_6/0.5$	Pyridine/1	trace	-
10	acetone- $d_6/0.5$	DMAP/1	trace	-
11	acetone- $d_6/0.5$	DBU/1	43	20
12	acetone- $d_6/0.5$	K ₃ PO ₄ /1	60	80
13	acetone- $d_6/0.5$	$Cs_2CO_3/1$	43	99
14	acetone- $d_6/0.5$	KI/1	44	99
15	acetone- $d_6/0.5$	Li ₂ CO ₃ /1	50	99
16	acetone- $d_6/0.5$	Rb ₂ CO ₃ /1	53	99
17	acetone- $d_6/0.5$	Na ₂ SO ₄ /0.5	trace	-
18	acetone- $d_6/0.5$	K ₂ CO ₃ /1	60	99
19	acetone- $d_6/0.5$	Na ₂ CO ₃ /1	63	99
20	acetone-d ₆ /0.5	Na ₂ CO ₃ /2	75	99
21	acetone- $d_6/0.5$	Na ₂ CO ₃ /3	70	99
22	CD ₃ OD/0.5	Na2CO3/2	54	99

Table S3. Optimization of conditions for the reductive deuteration of aryl halide.^a

Reaction conditions: 5a (0.1 mmol), hv (254 nm, 20*8 W), 18 h, r.t., Ar. The yields were obtained after purified by preparative TLC, and the deuterium incorporation was determined by ¹H NMR spectroscopy of the product.

3. Experimental procedure(1) General procedure for the reduction of C–N bond

 $ArNH_{2} + MeOTf \xrightarrow{Na_{2}CO_{3}} Ar - NMe_{3}OTf$ $Ar - NMe_{3}OTf \xrightarrow{Condition A: THF (1 mL), hv, air, 5 h, r.t.} Ar - H (2)$ or $Ar - DMe_{3}OTf \xrightarrow{Condition B: CD_{3}OD (0.5 mL), hv, Ar, 5 h, r.t.} Ar - H (2)$ (3)

Aryltrimethylammonium triflates (1) were prepared according to the literature:¹ To a solution of ArNH₂ (1 mmol) in CH₃CN (2 mL) was added MeOTf (3.2 mmol, 362 μ L) and Na₂CO₃ (3 mmol, 318 mg) under air atmosphere. The mixture was stirred for 2 h at room temperature, and then filtrated through a celite pad. The filtrate was concentrated and washed with diethyl ether (5 mL*3) to afford the desired aryl trimethylammonium salts (1) which were used directly in the next step without further purification.

To a 10 mL quartz tube charged with a magnetic stir-bar was added 1 (0.1 mmol) and THF (1 mL) under air atmosphere or CD₃OD (0.5 mL) under argon atmosphere. Then the reaction mixture was irradiated by UV light (254 nm, 4*8 W) for 5 h at room temperature. The mixture was concentrated and purified by preparative TLC with petroleum ether/EtOAc (100:1~5:1) to afford the desired products 2 or 3 in yields as indicated in Table 2. The deuterium incorporation of 3 was determined by ¹H NMR spectroscopy or GC-MS.

CH₂Cl₂, pyridine Ar-OH Ar -OTf TfOTf, 0 °C to r.t. 4 Condition A: DMAP (2 equiv) $Na_{3}PO_{4} \cdot 12 H_{2}O(0.5 equiv)$ Ar-H (2) DMF, hv, air, 20 h, r.t. Ar OTf or Condition B: DMAP (2 equiv) 4 Ar - D (3) Na₃PO₄ (1 equiv) DMSO-d₆ (0.5 mL), hv, Ar, 24 h, r.t.

(2) General procedure for the reduction of C-O bond

Aryl triflates (**4**) were prepared according to literature:² To a solution of ArOH (1 mmol) in CH₂Cl₂ (4 mL) at 0 °C was added pyridine (2 or 4 mmol, 163 or 326 μ L) and triflic anhydride (2 equiv, 2 or 4 mmol, 335 or 670 μ L) dropwise. After 5 minutes, the ice bath was removed and the mixture was stirred at room temperature for 12 h. The mixture was concentrated and purified by flash column chromatography with petroleum ether/EtOAc (20:1~10:1) to afford the desired aryl triflates **4** which have data in according with reported literature.²

Reductive hydrogenation of **4** to **2**: To a 15 mL quartz tube charged with a magnetic stir-bar under air atmosphere was added **4** (0.2 mmol), Na₃PO₄·12 H₂O (0.1 mmol, 38 mg), DMAP (0.4 mmol, 49 mg) and DMF (4 mL) sequentially. The reaction mixture was irradiated by UV light (254 nm, 8*4 W) for 20 h at room temperature. Then EtOAc (10 mL) was added and the mixture was washed with brine (2 mL*3), dried with anhydrous Na₂SO₄. The filtrate was concentrated under reduced pressure, and the residue was purified by preparative TLC with petroleum ether/EtOAc (100:1-5:1) to afford the products **2** in yields as indicated in Table 3.

Reductive deuteration of **4** to **3**: To a 10 mL quartz tube charged with a magnetic stir-bar under argon atmosphere was added **4** (0.1 mmol), Na₃PO₄ (0.1 mmol, 16 mg), DMAP (0.2 mmol, 24 mg) and DMSO- d_6 (0.5 mL) sequentially. The reaction mixture was irradiated by UV light (254 nm, 4*8 W) for 24 h at room

temperature. Then EtOAc (10 mL) was added and the mixture was washed with brine (2 mL*3), dried with anhydrous Na₂SO₄. The filtrate was concentrated under reduced pressure, and the residue was purified by preparative TLC with petroleum ether/EtOAc (100:1-5:1) to afford the products **3** in yields as indicated in Table 4. The deuterium incorporation of **3** was determined by ¹H NMR spectroscopy.

(3) General procedure for the reductive deuteration of aryl halides

Ar-x
$$\begin{array}{c} Na_2CO_3 (2 \text{ equiv}), CD_3OD (0.5 \text{ mL}) \\ \hline hv, Ar, r.t. \\ 3 \end{array}$$

To a 10 mL quartz tube charged with a magnetic stir-bar under argon atmosphere was added aryl halide (5, 0.1 mmol), Na₂CO₃ (0.2 mmol, 21 mg) and CD₃OD (0.5 mL) sequentially. The reaction mixture was irradiated by UV light (254 nm, 20*8 W) for 12 h (Ar-I) or 18 h (Ar-Br/Ar-Cl) at room temperature. Then the reaction mixture was filtrated through a celite pad. The filtrate was concentrated and purified by preparative TLC with petroleum ether/EtOAc (100:1-5:1) to afford the products **3** in yields as indicated in Table 5. The deuterium incorporation of **3** was determined by ¹H NMR spectroscopy.

Anisole (2a)

The yield of **2a** was determined by GC-MS using 1,3,5-trimethylbenzene as an internal standard and its structure was confirmed by comparison with standard anisole sample via GC-MS analysis. EI (m/z) 108.0. These data were agreed with literature.³

1,1'-Biphenyl (2b/2h/2ab/2q)

Off-white powder, m.p. 69.8-70.9 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, *J*=7.1 Hz, 4H), 7.47 (t, *J*=7.8 Hz, 4H), 7.37 (t, *J*=7.4 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 141.3, 128.9, 127.4, 127.3. These data were agreed with literature.³

Eto

Ethyl benzoate (2c/2i/2r)

Colorless liquid, ¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, J = 7.2 Hz, 2H), 7.55 (t, J = 7.4 Hz, 1H), 7.43 (t, J = 7.5 Hz, 2H), 4.38 (q, J = 7.2 Hz, 2H), 1.40 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.8, 132.9, 130.6, 129.6, 128.4, 61.1, 14.5. These data were agreed with literature.⁴

Methyl benzoate (2d/2j)

Colorless liquid, ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, *J* = 8.0 Hz, 2H), 7.55 (t, *J* = 7.4 Hz, 1H), 7.44 (t, *J* = 7.1 Hz, 2H), 3.91 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 167.2, 133.0, 130.2, 129.7, 128.5, 52.2. These data were agreed with literature.⁴

Ethyl 2-phenylacetate (2e/2i) EtO

Colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.37-7.23 (m, 5H), 4.15 (q, J = 7.1 Hz, 2H), 3.62 (s, 2H), 1.26 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.8, 134.2, 129.4, 128.7, 127.2, 61.0, 41.6, 14.3. These data were agreed with literature.⁴

*t*ert-Butylbenzene (**2f**)

Colorless liquid, ¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, *J* = 7.8 Hz, 2H), 7.32 (t, *J* = 7.6 Hz, 2H), 7.19 (t, *J* = 7.2 Hz, 1H), 1.34 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 151.2, 128.2, 125.5, 125.4, 34.8, 31.5. These data were agreed with literature.³

Benzonitrile (2g)

Colorless liquid, ¹H NMR (400 MHz, CDCl₃) δ 7.66 (dd, J = 8.0, 1.0 Hz, 2H), 7.61 (t, J = 7.6 Hz, 1H), 7.48 (t, J = 7.7 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 132.9, 132.3, 129.2, 119.0, 112.5. These data were agreed with literature.³

Off-white powder, m.p. 80.8-82.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.92-7.83 (m, 4H), 7.55-7.46 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 133.5, 128.0, 126.0. These data were agreed with literature.³

Yellow liquid, ¹H NMR (400 MHz, CDCl₃) δ 8.95-8.91 (m, 1H), 8.25-8.18 (m, 2H), 7.86 (d, *J* = 8.1 Hz, 1H), 7.76 (t, *J* = 7.6 Hz, 1H), 7.59 (t, *J* = 8.3 Hz, 1H), 7.46 (dd, *J* = 8.1, 4.2 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 149.7, 147.3, 137.3, 130.2, 128.8, 128.4, 128.0, 127.1, 121.2. These data were agreed with literature.³

1H-Indole (2n)

Brown powder, m.p. 52.2-53.4 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 11.10 (s, 1H), 7.54 (t, J = 6.7 Hz, 1H), 7.39 (t, J = 8.4 Hz, 1H), 7.35-7.31 (m, 1H), 7.11-7.04 (m, 1H), 7.02-6.94 (m, 1H), 6.45-6.39 (m, 1H). ¹³C NMR (101 MHz, DMSO- d_6) δ 136.0, 127.7, 125.3, 121.0, 120.1, 118.9, 111.5, 101.1. These data were agreed with literature.³

Methyl 2-phenylacetate (2u)

Colorless liquid, ¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.26 (m, 5H), 3.70 (s, 2H), 3.64 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.2, 134.1, 129.4, 128.7, 127.2, 52.2, 41.3. These data were agreed with literature.⁵

Phenyl benzoate (2v)

Off-white powder, m.p. 69.5-71.2 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.25 (d, *J*=7.3 Hz, 2H), 7.66 (t, *J*=7.4 Hz, 1H), 7.54 (t, *J*=7.7 Hz, 2H), 7.46 (t, *J*=7.8 Hz, 2H), 7.30 (t, *J*=7.4 Hz, 1H), 7.25 (d, *J*=8.4 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 165.3, 151.0, 133.7, 130.3, 129.6, 128.7, 126.0, 121.8. These data were agreed with literature.⁶

Phenyl acetate (**2w**)

Yellow liquid, ¹H NMR (400 MHz, CDCl₃) δ 7.39 (t, *J* = 7.9 Hz, 2H), 7.24 (m, 1H), 7.10 (d, *J* = 8.6 Hz, 2H), 2.31 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 169.7, 150.7, 129.5, 125.9, 121.7, 21.2. These data were agreed with literature.⁷

N, *N*-Dimethylaniline (**2x**)

Yellow liquid, ¹H NMR (400 MHz, CDCl₃) δ 7.29 (t, *J* = 8.0 Hz, 2H), 6.82-6.76 (m, 3H), 2.98 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 150.5, 129.2, 117.1, 113.0, 40.9. These data were agreed with literature.³

2-Methoxynaphthalene (**2y**)

Off-white powder, m.p. 72.4-73.6 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.81-7.73 (m, 3H), 7.46 (t, J = 7.4 Hz, 1H), 7.36 (t, J = 7.4 Hz, 1H), 7.19-7.13 (m, 2H), 3.94 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 157.7, 134.7, 129.5, 129.0, 127.8, 126.9, 126.5, 123.7, 118.8, 105.8, 55.4. These data were agreed with literature.⁸

Benzo[d][1,3]dioxole (**2z**)

Colorless liquid, ¹H NMR (400 MHz, CDCl₃) δ 6.84 (s, 4H), 5.95 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 147.5, 121.7, 108.8, 100.7. These data were agreed with literature.⁹

Ethyl 3-(((trifluoromethyl)sulfonyl)oxy)benzoate (2aa)

Colorless liquid, ¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, J = 8.7 Hz, 1H), 7.93 (s, 1H), 7.55 (t, J = 8.0 Hz, 1H), 7.47 (dd, J = 8.3, 2.4 Hz, 1H), 4.41 (q, J = 7.1 Hz, 2H), 1.41 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 164.8, 149.5, 133.2, 130.5, 129.6, 125.8, 122.6, 118.9 (q, J = 322.2 Hz), 61.9, 14.4. ¹⁹F NMR (376 MHz, CDCl₃) δ -72.85.

Propane-2,2-diyldibenzene (2ac)

Colorless liquid, ¹H NMR (400 MHz, CDCl₃) *δ* 7.32-7.23 (m, 8H), 7.21-7.16 (m, 2H), 1.71 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) *δ* 150.8, 128.1, 126.9, 125.7, 43.1, 30.9.

Colorless liquid, ¹H NMR (400 MHz, CDCl₃) δ 7.30 (t, *J* = 7.4 Hz, 4H), 7.22 (t, *J* = 6.7 Hz, 6H), 4.00 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 141.2, 129.1, 128.6, 126.2, 42.1. These data were agreed with literature.¹⁰

2-Methylquinoline (**2ae**)

Yellow liquid, ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, J = 6.7 Hz, 2H), 7.74 (d, J = 7.8 Hz, 1H), 7.66 (t, J = 7.6 Hz, 1H), 7.45 (t, J = 7.4 Hz, 1H), 7.25 (d, J = 8.3 Hz, 1H), 2.73 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 159.0, 147.7, 136.4, 129.6, 128.6, 127.6, 126.5, 125.8, 122.1, 25.4. These data were agreed with literature.¹¹

2,6-Dimethylpyridine (**2af**)

Yellow liquid, ¹H NMR (400 MHz, CDCl₃) δ 7.45-7.38 (m, 1H), 6.91 (d, *J* = 7.5 Hz, 2H), 2.49 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 157.6, 136.7, 120.3, 24.5. These data were agreed with literature.¹²

Benzo[d]thiazole (**2ag**)

Yellow liquid, ¹H NMR (400 MHz, CDCl₃) δ 9.10 (s, 1H), 8.18 (d, *J* = 8.2 Hz, 1H), 7.97 (d, *J* = 8.4 Hz, 1H), 7.55 (t, *J* = 7.7 Hz, 1H), 7.47 (t, *J* = 7.6 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 154.5, 152.3, 133.5, 126.6, 125.9, 123.4, 122.1. These data were agreed with literature.¹³

2-Phenylbenzo[d]thiazole (2ah)

Off-white powder, m.p. 114.9-115.8 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.15-8.08 (m, 3H), 7.91 (d, J = 8.0 Hz, 1H), 7.55-7.48 (m, 4H), 7.40 (t, J = 7.6 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 168.3, 154.0, 135.0, 133.5, 131.2, 129.2, 127.7, 126.5, 125.4, 123.3, 121.8. These data were agreed with literature.¹³

(8R,9S,13S,14S)-13-methyl-7,8,9,11,12,13,14,15-octahydro-6H-cyclopenta[a]phenanthren-17-yl

trifluoromethanesulfonate (2ai)

Colorless liquid, ¹H NMR (400 MHz, CDCl₃) δ 7.27 (dd, J = 8.8, 2.4 Hz, 1H), 7.20-7.08 (m, 3H), 5.63 (dd, J = 3.3, 1.7 Hz, 1H), 2.93 (dd, J = 8.4, 3.5 Hz, 2H), 2.46-2.31 (m, 3H), 2.11 (ddd, J = 14.9, 11.1, 1.7 Hz, 1H), 1.97-1.89 (m, 1H), 1.81 (td, J = 11.3, 6.3 Hz, 1H), 1.71-1.57 (m, 3H), 1.51-1.41 (m, 1H), 1.01 (s, 3H). ¹³C NMR (101 MHz,CDCl₃) δ 159.4, 139.9, 136.5, 129.2, 126.0, 125.9, 125.1, 118.7 (q, J = 320.5 Hz), 114.6, 53.8, 45.2, 44.8, 36.5, 32.9, 29.3, 28.5, 26.8, 25.7, 15.4. ¹⁹F NMR (376 MHz, CDCl₃) δ -73.58. HRMS m/z (ESI) calcd. for C₁₉H₂₁F₃O₃S⁺ [M]⁺: 386.1158; found: 386.1160.

Anisole-4-d (3a) D

The yield and structure of **3a** were determined by GC-MS analysis using 1,3,5-trimethylbenzene as an internal standard. EI (m/z) 109.1. These data were agreed with literature.¹⁴

1,1'-Biphenyl-4-*d* (**3b**)

Off-white powder, m.p. 69.7-70.5 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, J = 7.7 Hz, 4H), 7.58-7.50 (m, 4H), 7.44 (t, J = 7.4 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 141.3, 128.9, 128.8, 127.4, 127.3, 126.8 (t, J = 23.1 Hz). These data were agreed with literature.¹⁵

Ethyl benzoate-4-d (3c)

Colorless liquid, ¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, J = 8.3 Hz, 2H), 7.44 (d, J = 7.9 Hz, 2H), 4.38 (q, J = 7.1 Hz, 2H), 1.40 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.8, 132.6 (t, J = 24.6 Hz), 130.6, 129.6, 128.3, 61.1, 14.5. These data were agreed with literature.¹⁶

Methyl benzoate-4-d (**3d**)

Colorless liquid, ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, J = 8.3 Hz, 2H), 7.44 (d, J = 8.1 Hz, 2H), 3.92 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 167.3, 132.8 (t, J = 24.7 Hz), 130.2, 129.7, 128.4, 52.3. These data were agreed with literature.¹⁵

1,1'-Biphenyl-3-d (3h)

Off-white powder, m.p. 69.4-70.3 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, J = 5.9 Hz, 4H), 7.53 (t, J = 7.8 Hz, 3H), 7.44 (dd, J = 6.5, 2.6 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 141.3, 128.9, 128.6 (J = 24.6 Hz), 127.4, 127.28, 127.26, 127.2.

Ethyl benzoate-3-d (3i)

Colorless liquid, ¹H NMR (400 MHz, CDCl₃) δ 8.07-8.03 (m, 2H), 7.55 (d, J = 7.4 Hz, 1H), 7.44 (t, J = 7.8 Hz, 1H), 4.38 (q, J = 7.1 Hz, 2H), 1.40 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.8, 132.8, 130.5, 129.6, 129.5, 128.4, 128.1 (t, J = 24.7 Hz), 61.1, 14.4. These data were agreed with literature.¹⁶

Methyl benzoate-3-d (3j)

Colorless liquid, ¹H NMR (400 MHz, CDCl₃) δ 8.07-8.02 (m, 2H), 7.56 (d, J = 7.5 Hz, 1H), 7.44 (t, J = 7.8 Hz, 1H), 3.92 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 167.2, 132.9, 130.2, 129.7, 129.6, 128.5, 128.2 (t, J = 23.4 Hz), 52.2. These data were agreed with literature.¹⁵

Off-white powder, m.p. 80.1-81.2 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.89 (dd, J = 5.5, 3.0 Hz, 4H), 7.53 (dd, J = 6.3, 3.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 133.5, 128.0, 127.9, 125.9, 125.8, 125.7 (t, J = 24.5 Hz). These data were agreed with literature.¹⁵

Naphthalene-1-d (3l)

Naphthalene-2-d (3k)

Off-white powder, m.p. 80.6-81.5 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.93-7.87 (m, 3H), 7.58-7.50 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 133.52, 133.46, 128.00, 127.95, 127.7 (t, *J* = 24.5 Hz), 125.9, 125.8. These data were agreed with literature.¹⁵

Quinoline-3-d (3m)

Yellow liquid, ¹H NMR (400 MHz, CDCl₃) δ 8.88 (s, 1H), 8.11 (d, J = 6.1 Hz, 1H), 8.08 (s, 1H), 7.78 (d, J = 8.1 Hz, 1H), 7.69 (m, 1H), 7.51 (t, J = 7.5 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 150.4, 148.2, 136.1, 129.6 129.4, 128.3, 127.9, 126.6, 120.9 (t, J = 24.6 Hz). These data were agreed with literature.¹⁵

1-(Phenyl-3-d)ethan-1-one (**3o**)

Yellow liquid, ¹H NMR (400 MHz, CDCl₃) δ 8.00-7.94 (m, 2H), 7.57 (d, *J* = 7.5 Hz, 1H), 7.47 (t, *J* = 8.0 Hz, 1H), 2.61 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 198.4, 137.1, 133.1 128.7, 128.40, 128.37 (t, *J* = 24.8 Hz), 128.3 26.8.

Quinoline-4-*d* (**3p**)

Yellow liquid, ¹H NMR (400 MHz, CDCl₃) δ 8.90 (d, J = 4.2 Hz, 1H), 8.11 (d, J = 8.5 Hz, 1H), 7.80 (d, J = 8.2 Hz, 1H), 7.71 (t, J = 7.7 Hz, 1H), 7.53 (t, J = 7.5 Hz, 1H), 7.38 (d, J = 3.7 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 150.4, 148.2, 135.9 (t, J = 24.9 Hz), 129.6, 129.4, 128.3, 127.8, 126.6, 121.0. These data were agreed with literature.¹⁷

1,1'-Biphenyl-2-*d* (**3q**)

Off-white powder, m.p. 70.1-71.3 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, J = 7.9 Hz, 3H), 7.48 (t, J = 7.4 Hz, 4H), 7.38 (t, J = 7.3 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 141.29, 141.26, 141.2, 128.9, 128.8, 127.3, 127.2, 126.9 (t, J = 24.3 Hz). These data were agreed with literature.¹⁸

Ethyl benzoate-2-d (**3r**)

Colorless liquid, ¹H NMR (400 MHz, CDCl₃) δ 8.05 (dd, J = 8.1, 1.1 Hz, 1H), 7.55 (td, J = 7.6, 1.3 Hz, 1H), 7.47-7.41 (m, 2H), 4.38 (q, J = 7.2 Hz, 2H), 1.40 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.8, 132.9, 130.5, 129.6, 129.4 (t, J = 23.6 Hz, 2H), 128.4, 128.3, 61.1, 14.5. These data were agreed with literature.¹⁶

Methyl benzoate-2-d (**3s**)

1,3-Benzodioxole-5-d (3z)

Colorless liquid, ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, J = 8.1 Hz, 1H), 7.56 (t, J = 7.4 Hz, 1H), 7.44 (t, J = 6.0 Hz, 2H), 3.92 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 167.2, 133.0, 130.1, 129.6, 129.4 (t, J = 23.7 Hz), 128.5, 128.4, 52.2. These data were agreed with literature.¹⁹

4-Ethyl-4-(phenyl-4-d)piperidine-2,6-dione (3t)

Colorless liquid, ¹H NMR (400 MHz, CDCl₃) δ (400 MHz, DMSO-*d*₆) δ 10.89 (s, 1H), 7.37 (d, *J* = 8.2 Hz, 2H), 7.28 (d, *J* = 8.3 Hz, 2H), 2.48-2.29 (m, 2H), 2.12 (dtd, *J* = 34.2, 13.1, 4.4 Hz, 2H), 1.94-1.69 (m, 2H), 0.75 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.6, 173.1, 138.8, 129.0, 128.9, 127.6, 127.3 (t, *J* = 24.8 Hz), 126.2, 51.1, 32.9, 29.3, 27.0, 9.1. HRMS m/z (ESI) calcd. for C₁₃H₁₅DNO₂⁺ [M+H]⁺: 219.1238; found: 219.1239.

$$\langle \bigcup_{O} \bigcup_{D} D$$

Colorless liquid, ¹H NMR (400 MHz, CDCl₃) δ 6.84 (s, 3H), 5.95 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 147.5, 121.6, 121.5 (t, *J* = 24.8 Hz), 108.8, 108.7, 100.7.

1,1'-Biphenyl-4,4'- d_2 (**3ab**) D

Off-white powder, m.p. 70.0-71.1 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, J = 8.1 Hz, 4H), 7.50 (d, J = 7.7 Hz, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 141.3, 128.8, 127.3, 126.8 (t, J = 23.1 Hz). These data were agreed with literature.¹⁵

1-(Benzyloxy)benzene-4-d (**3aj**)

Off-white powder, m.p. 37.8-38.7 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.51 (d, J = 7.2 Hz, 2H), 7.45 (t, J = 7.2 Hz, 2H), 7.42-7.33 (m, 3H), 7.05 (d, J = 8.6 Hz, 2H), 5.12 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 158.8, 137.1, 129.5, 128.7, 128.0, 127.6, 120.8 (t, J = 23.1 Hz), 114.9, 70.0. These data were agreed with literature.¹⁷

N-(Phenyl-4-d)acetamide (**3ak**) ²⁰

Off-white powder, m.p. 112.1-113.3 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.27 (s, 1H), 7.51 (d, J = 8.4 Hz, 2H), 7.27 (d, J = 8.3 Hz, 2H), 2.13 (s, 2.22 H). ¹³C NMR (101 MHz, CDCl₃) δ 169.2, 138.1, 128.8, 124.0 (t, J = 24.9 Hz), 120.2, 24.5, 24.2 (t, J = 19.8 Hz). These data were agreed with literature.¹⁶

2-Methoxynaphthalene-1-d (3al)

Off-white powder, m.p. 72.1-73.3 °C.¹H NMR (400 MHz, CDCl₃) δ 7.80-7.72 (m, 3H), 7.44 (t, J = 7.7 Hz, 1H), 7.34 (t, J = 7.7 Hz, 1H), 7.15 (d, J = 8.9 Hz, 1H), 3.93 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 157.6, 134.6, 129.5, 129.0, 127.8, 126.8, 126.5, 123.7, 118.8, 105.8 (t, J = 23.3 Hz), 55.4. These data were agreed with literature.¹⁷

4-(Pheny-4-*d*)morpholine (**3am**)

Colorless liquid, ¹H NMR (400 MHz, CDCl₃) δ 7.31 (d, J = 8.4 Hz, 2H), 6.95 (d, J = 8.6 Hz, 2H), 3.88 (t, J = 4.6 Hz, 4H), 3.18 (t, J = 4.8 Hz, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 151.3, 129.2, 119.9 (t, J = 24.8 Hz), 115.8, 67.0, 49.4. These data were agreed with literature.¹⁷

2-Methoxynaphthalene-6-d (3an)

Off-white powder, m.p. 71.9-73.1 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.82-7.78 (m, 3H), 7.50 (d, J = 8.2 Hz, 1H), 7.24-7.16 (m, 2H), 3.94 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 157.6, 134.6, 129.5, 129.0, 127.6, 126.8, 126.4, 123.4 (t, J = 24.6 Hz), 118.8, 105.8, 55.3. These data were agreed with literature.¹⁷

N, *N*-Diethylaniline-4-*d* (**3ao**)

Colorless liquid, ¹H NMR (400 MHz, CDCl₃) δ 7.29 (d, *J* = 7.8 Hz, 2H), 6.76 (d, *J* = 7.7 Hz, 2H), 3.41 (q, *J* = 7.1 Hz, 4H), 1.22 (t, *J* = 7.1 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 147.8, 129.2, 115.1 (t, *J* = 25.5 Hz), 111.9, 44.4, 12.6. These data were agreed with literature.¹⁷

4. Mechanistic Studies(1) Radical clock experiments

The procedures for the radical clock experiments were the same as the above reductive hydrogenative reactions with **1ap**, **4ap**, or **5ae** (0.1 mmol) and (1-cyclopropylvinyl)benzene (**6**, 0.2 mmol) in CH₃CN (1 mL), DMF (1 mL), or CH₃OH (0.5 mL), respectively. The reaction mixture was analyzed by GC-MS: Trace of product **7** was detected in a molecular weight of 220.0 at 18.974 min. The structure of **7** was further confirmed with the standard substance that was prepared according to literature which had the same retention time and MS spectrum in GC-MS.²⁰ ¹H NMR (400 MHz, CDCl₃) δ 7.38 (d, *J* = 4.4 Hz, 1H), 7.30-7.24 (m, 4H), 7.22-7.19 (m, 2H), 7.16-7.11 (m, 2H), 5.81 (t, *J* = 4.5 Hz, 1H), 3.80 (s, 2H), 2.80 (t, *J* = 8.0 Hz, 2H), 2.32 (dd, *J* = 12.5, 7.9 Hz, 2H). GC-MS (EI): m/z 220.0, 129.0, 91.0. These data were in agreement with literature.²⁰

Figure S2. GC-MS and ¹H NMR spectrum of 7.
(a) GC-MS report of 7 (t_R=18.974 min) from the reaction of 1ap with compound 6

(c) GC-MS report of 7 (t_R =18.974 min) from the reaction of **5ae** with compound **6**

(2) Radical trapping experiments

The procedures for the radical trapping experiments were the same as the above reductive hydrogenative reactions with **1ap**, **4ap**, or **5ae** (0.1 mmol) and 2,6-di-tert-butylphenol (**8**, 0.2 mmol) in CH₃CN (1 mL), DMF (1 mL), or CH₃OH (0.5 mL), respectively. The reaction mixture was analyzed by GC-MS: Trace of product **9** was detected in a molecular weight of 282.2 at 20.502 min. The structure of **9** was further confirmed with the standard substance that was prepared according to literature,²¹ which had the same retention time and MS spectrum in GC-MS. ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, *J* = 7.2 Hz, 2H), 7.47-7.40 (m, 4H), 7.32 (t, *J* = 7.3 Hz, 1H), 5.29 (s, 1H), 1.52 (s,18H). GC-MS (EI): m/z 282.2, 267.1, 207.1. These data were in agreement with literature.²¹

(b) GC-MS report of product 9 ($t_R=20.502$ min) from the reaction of 4ap with compound 8.

(c) GC-MS report of product 9 (t_R=20.502 min) from the reaction of **5ae** with compound **8**.

(e) ¹H NMR of **9** prepared according to literature.²¹

(3) TEMPO as an additive

The procedures with TEMPO as radical-trapping agents were the same as the above reductive hydrogenation of C-O bond with the presence of TEMPO (0/1/2/3 equiv), which afforded **2a** in a yield of 85%, 59%, 29%, or 19%, respectively as determined by GC-MS with 1,3,5-trimethylbenzene as internal standard.

(4) CH₃OD as H/D-source

The procedure with CH_3OD as H/D-source was the same as the above reductive deuteration of aryl halides with CH_3OD (0.5 mL) as a solvent, which afforded 12.9 mg **2b** in a yield of 84%.

5. References

- S. Jin, H. T. Dang, G. C. Haug, R. He, V. D. Nguyen, V. T. Nguyen, H. D. Arman, K. S. Schanze and O. V. Larionov, *J. Am. Chem. Soc.*, 2020, **142**, 1603-1613.
- (2) Z. Huang, Z. Liu and J. S. Zhou, J. Am. Chem. Soc., 2011, 133, 15882-15885.
- (3) T.-H. Ding, J.-P. Qu and Y.-B. Kang, Org. Lett., 2020, 22, 3084-3088.
- (4) B. Rammurthy, S. Peraka, A. Vasu, G. Krishna Sai, Y. Divya Rohini and N. Narender, *Asian J. Org. Chem.*, 2021, **10**, 594-601.
- (5) W. R. Harker, E. L. Carswell and D. R. Carbery, Org. Lett., 2010, 12, 3712-3715.
- (6) L. Zheng, C. Sun, W. Xu, A. V. Dushkin, N. Polyakov, W. Su and J. Yu, RSC Adv., 2021, 11, 5080-5085.
- (7) C. K. Lee, J. S. Yu and H.-J. Lee, J. Heterocyclic Chem., 2002, 39, 1207-1217.
- (8) F. Rajabi and M. R. Saidi, Syn. Comm., 2004, 34, 4179-4188.
- (9) A. R. Katritzky, J. Ellison, J. Frank, P. Rákóczy, L. Radics and E. Gács-Baitz, Org. Magn. Reson., 1981, 16, 280-284.
- (10) J. Shi, T. Yuan, M. Zheng and X. Wang, ACS Catal., 2021, 11, 3040-3047.
- (11) Q. Liu, R.-G. Xing, Y.-N. Li, Y.-F. Han, X. Wei, J. Li and B. Zhou, Synthesis, 2011, 2011, 2066-2072.
- (12) M. Zheng, P. Chen, W. Wu and H. Jiang, Chem. Commun., 2016, 52, 84-87.
- (13) A. Monga, S. Bagchi, R. K. Soni and A. Sharma, Adv. Synth. Catal., 2020, 362, 2232-2237.
- (14) T. Mutsumi, H. Iwata, K. Maruhashi, Y. Monguchi and H. Sajiki, Tetrahedron, 2011, 67, 1158-1165.
- (15) 1. Y. Lang, X. Peng, C.-J. Li and H. Zeng, Green Chem. 2020, 22, 6323-6327.
- (16) A. Enomoto, S. Kajita and K.-i. Fujita, Chem. Lett., 2019, 48, 106-109.
- (17) X. Wang, M. H. Zhu, D. P. Schuman, D. Zhong, W. Y. Wang, L. Y. Wu, W. Liu, B. M. Stoltz and W. B. Liu, *J. Am. Chem. Soc.*, 2018, **140**, 10970-10974.
- (18) E. Tatunashvili, B. Chan, P. E. Nashar and C. S. P. McErlean, Org. Biomol. Chem., 2020, 18, 1812-1819.
- (19) A. M. Majek, F. Filace and A. Jacobi von Wangelin, Chem. Eur. J., 2015, 21, 4518-4522.
- (20) Z. Sun, C. Du, P. Liu, Y. Wei, L. Xu and B. Dai, ChemistrySelect, 2018, 3, 900-903.
- (21) K. Liang, Q. Liu, L. Shen, X. Li, D. Wei, L. Zheng and C. Xia, Chem. Sci., 2020, 11, 6996-7002.

6. NMR Spectra ¹H NMR of compound 2b/2h/2ab/2q:

\sim	$\infty \infty \odot$	
$^{\circ}$	00 m m	8 0 4
÷	8 1 1 1 8	4 - 8
4	000	6 1 1
_		
	\searrow	

S22

¹H NMR of compound 2d/2j:

¹H NMR of compound 2e/2i:

¹H NMR of compound 2g:

¹H NMR of compound 2k/2l:

¹H NMR of compound 2m:

¹H NMR of compound 2n:

¹H NMR of compound 2u:

¹H NMR of compound 2v:

¹³C NMR of compound 2v:

55.29	51.00	33.69 30.25 29.60 28.66 25.99 21.82	7.48 7.16 5.84
Ē	- -		

fl (ppm)

¹H NMR of compound 2w:

¹H NMR of compound 2x:

¹H NMR of compound 2z:

¹H NMR of compound 2aa:

¹³C NMR of compound 2ad:

¹³C NMR of compound 2ae:

¹³C NMR of compound 2ag:

¹³C NMR of compound 2ah:

¹³C NMR of compound 2ai:

¹H NMR of compound 3b:

¹H NMR of compound 3c:

¹³C NMR of compound 3c:

¹H NMR of compound 3d:

¹H NMR of compound 3h:

¹³C NMR of compound 3h:

-141.32 128.88	-128.34 -127.37 -127.28 -127.28 -127.26	ר77.48 -77.16 ר76.84

¹H NMR of compound 3i:

¹H NMR of compound 3k:

¹H NMR of compound 3m:

· · ·							-		· · · ·			· · ·				· · ·
160	150	140	130	120	110	100	90	80 f1 (ppm)	70	60	50	40	30	20	10	0
								S53								

¹H NMR of compound 30:

¹H NMR of compound 3p:

S57

¹H NMR of compound 3t:

¹H NMR of compound 3z:

¹H NMR of compound 3ab:

¹³C NMR of compound 3ab:

¹H NMR of compound 3aj:

¹H NMR of compound 3an:

7. Deuterium Ratios Determined by ¹H NMR Spectroscopy Table 1, entry 10, 3b (ArNMe₃OTf to ArD)

Table 5, 3b (ArCl to ArD)

Table 5, 3j (ArI to ArD)

Table 5, 3j (ArCl to ArD)

Table 2, 3p (ArNMe₃OTf to ArD)

Table 4, 3s (ArOTf to ArD)

