A Biomimetic Synthesis-Enabled Stereochemical Assignment of Rhodotomentones A and B, Two Unusual Caryophyllene-Derived Meroterpenoids from *Rhodomyrtus tomentosa*

Lu-Ming Deng, ^{‡a,b} Li-Jun Hu, ^{‡a,b} Wei Tang, ^{‡a,b} Jia-Xin Liu, ^{a,b} Xiao-Jun Huang, ^{a,b} Yue-Yue Li, ^b Yao-Lan Li, ^b Wen-Cai Ye, ^{*a,b} and Ying Wang ^{*a,b}

^aCenter for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China.

^bGuangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China.

Contents

Table S1. ¹ H and ¹³ C NMR spectral data of 1	3
Figure S1. Key ¹ H– ¹ H COSY and HMBC correlations of 2	3
Figure S2. Key NOESY correlations of 2	4
Table S2. ¹ H and ¹³ C NMR spectral data of 2	4
Table S3. ¹ H and ¹³ C NMR spectral data of 7	5
Table S4. ¹ H and ¹³ C NMR spectral data of 12	5
Table S5. ¹ H and ¹³ C NMR spectral data of 13	6
Table S6. ¹ H and ¹³ C NMR spectral data of 14	7
Table S7. ¹ H and ¹³ C NMR spectral data of 15	7
Experimental section and results	8
1. UPLC-UV-MS-guided isolation of Fr.B	8
2. UPLC-QTOF/MS analysis of the methanol extract of <i>Rhodomyrtus tomentosa</i>	9
3. Quantum chemical ECD calculation	10
4. HRMS, UV, IR, and NMR spectra of the natural 1–2, 7, and 12–15	24
5. Synthetic experimental procedures	45
5.1 General information	45
5.2 Syntheses of 7 and 12–15	46
5.3 Syntheses of 1–2 and 16–17 through path A	
5.4 Syntheses of 8–11 and 18–21	
5.5 Syntheses of 1–2 and 16–17 through path B	67
6. X-ray crystal structures of 7, 16, and 18	73
7. ¹ H and ¹³ C NMR spectra of the synthetic compounds	74
References	

Table S1. ¹H (300 MHz) and ¹³C (75 MHz) NMR spectral data of **1** in CDCl₃ (δ in ppm, J in Hz).

position	$\delta_{ m H}$	$\delta_{ m C}$	position	$\delta_{ m H}$	$\delta_{ m C}$
1	—	171.3	8'	-	83.3
2	_	48.0	9'	2.38 m	44.8
3	_	213.1	10'a	1.63 m	35.7
4	_	55.5	10'b	1.48 m	
5	_	197.2	11'	_	34.1
6	_	108.4	12'	0.94 s	22.4
7	4.07 d (7.2)	45.2	13'	0.97 s	30.1
8	_	216.0	14'	1.26 s	21.0
9	2.89 m	42.9	15'a	2.16 m	33.8
10	1.24 d (6.8)	20.4	15'b	1.55 m	
11	1.07 d (6.8)	18.3	1"	_	168.8
12	1.37 s	24.5	2"	_	48.2
13	1.42 s	25.6	3"	_	213.0
14	1.34 s	26.7	4"	_	55.4
15	1.29 s	26.0	5"	_	198.0
1'	1.82 m	48.7	6"	_	112.6
2'a	1.70 m	23.4	7"	2.85 m	25.6
2'b	1.40 m		8"a	1.64 m	43.7
3'a	2.18 m	40.8	8''b	1.03 m	
3'b	1.73 m		9"	1.69 m	25.9
4'	_	84.3	10"	0.92 d (6.0)	24.1
5'	2.15 m	43.2	11"	0.98 d (6.0)	21.3
6'a	1.87 m	21.5	12"	1.36 s	24.9
6'b	1.78 m		13"	1.31 s	21.9
7'a	2.11 m	39.5	14"	1.31 s	22.9
7'b	1.91 m		15"	1.32 s	26.0

Figure S1. Key ¹H–¹H COSY and HMBC correlations of 2.

Figure S2. Key NOESY correlations of 2.

Table S2. ¹H (500 MHz) and ¹³C (125 MHz) NMR spectral data of **2** in CDCl₃ (δ in ppm, J in Hz).

position	$\delta_{ m H}$	$\delta_{ m C}$	position	$\delta_{ m H}$	$\delta_{ m C}$
1	_	171.7	8'	_	82.8
2	-	48.0	9'	2.58 m	47.5
3	_	212.9	10'a	1.60 m	34.6
4	_	55.5	10'b	1.39 m	
5	_	197.4	11'	_	34.0
6	_	107.9	12'	0.95 s	22.9
7	4.22 d (7.0)	42.6	13'	0.97 s	29.3
8	_	216.3	14'	1.14 s	21.0
9	2.71 m	42.7	15'a	1.98 m	23.6
10	1.32 d (6.5)	21.3	15'b	1.89 m	
11	1.03 d (6.5)	17.4	1"	_	169.8
12	1.37 s	25.2	2"	_	48.1
13	1.44 s	25.5	3"	_	213.3
14	1.36 s	27.3	4"	_	55.5
15	1.31 s	20.8	5"	—	197.9
1'	1.74 m	48.6	6"	_	110.7
2'a	1.53 m	23.0	7"	2.95 m	25.3
2'b	1.25 m		8"a	1.49 m	42.5
3'a	2.11 m	40.7	8"b	1.10 m	
3'b	1.73 m		9"	1.70 m	26.1
4'	_	83.4	10"	0.91 d (6.2)	24.1
5'	2.21 m	40.6	11"	1.03 d (6.2)	21.3
6'a	1.28 m	29.9	12"	1.39 s	24.9
б'Ъ	1.25 m		13"	1.30 s	25.5
7'a	2.27 m	36.7	14"	1.33 s	22.7
7'b	1.72 m		15"	1.36 s	26.5

Table S3. ¹H (400 MHz) and ¹³C (100 MHz) NMR spectral data of **7** in CDCl₃ (δ in ppm, J in Hz).

position	$\delta_{ m H}$	$\delta_{ m C}$	position	$\delta_{ m H}$	$\delta_{ m C}$
1	_	169.2	3'a	с	b
2	_	48.1	3'b	с	
3	—	213.8	4'	-	b
4	_	55.5	5'	5.20 brs	b
5	_	197.9	6'a	с	b
6	_	109.9	6'b	с	
7	2.91 m	24.6	7'a	с	b
8a	1.40 ^a m	42.3	7'b	с	
8b	1.24ª m		8'	-	b
9	1.83ª m	25.7	9'	с	b
10	1.08 d (6.4)	21.0	10'a	1.67ª m	37.4
11	0.97 ^a d (6.4)	24.2	10'b	1.35 ^a m	
12	1.26 s	25.4	11'	-	32.7
13	1.32 ^a s	25.3	12'	0.90 brs	29.9
14	1.32 ^a s	26.8	13'	0.96 ^a s	22.8
15	1.31 ^a s	22.4	14'	1.71 s	b
1'	с	b	15'a	с	b
2'	с	b	15'b	с	

^a) Overlapped signals, ^b) Signals invisible, ^c) Signals unassigned

Table S4. ¹H (400 MHz) and ¹³C (100 MHz) NMR spectral data of **12** in CDCl₃ (δ in ppm, J in Hz).

position	$\delta_{ m H}$	$\delta_{ m C}$	position	$\delta_{ m H}$	δ_{C}
1	_	170.5	3'a	2.08 ^a m	37.5
2	_	47.7	3'b	1.90 m	
3	_	214.1	4'	_	83.1
4	_	55.3	5'	2.08 ^a m	40.4
5	-	197.6	6'a	1.74 m	33.1
6	-	113.7	6'b	1.43 ^a m	
7	2.26 m	34.6	7'a	2.47 m	35.4
8	1.82 m	38.9	7'b	2.12 ^a m	

	1.31ª m		8'	_	152.3
9	1.47ª m	25.6	9'	2.39 m	42.5
10	0.75 d (6.6)	24.2	10'a	1.68 m	36.4
11	0.83 d (6.6)	24.1	10'b	1.61 m	
12	1.37 s	24.1	11'	_	33.6
13	1.32 s	25.6	12'	0.98 ^a s	30.5
14	1.31 s	23.4	13'	0.98 ^a s	22.3
15	1.33 s	26.2	14'	1.06 s	21.0
1'	2.03 m	52.2	15'a	4.91 s	110.8
2'a	1.78 ^a m	22.4	15'b	4.88 s	
2'b	1.40 ^a m				

^{*a*}) Overlapped signals

Table S5.	¹ H (400 MHz) a	nd ¹³ C (100 MHz) NMR spectral dat	ta of 13 in CDCl ₃ (δ in ppm,	J in Hz).
-----------	----------------------------	-----------------------------	--------------------	---	-----------

position	$\delta_{ m H}$	$\delta_{ m C}$	position	$\delta_{ m H}$	$\delta_{ m C}$
1	_	170.4	3'a	2.03 m	46.3
2	_	47.7	3'b	1.39ª m	
3	—	213.8	4'	-	86.4
4	_	55.5	5'	1.74ª m	39.8
5	_	197.2	6'	1.66 m	25.3
6	_	116.4			
7	2.88 m	28.4	7'a	2.33 m	35.4
8a	1.40ª m	41.0	7'b	2.13 m	
8b	1.10 m		8'	_	150.8
9	1.47ª m	26.7	9'	2.40 m	42.4
10	0.82 d (6.0)	24.7	10'a	1.72ª m	36.2
11	0.97 ^a d (6.0)	21.7	10'b	1.59ª m	
12	1.32 ^a s	25.0	11'	_	34.5
13	1.35 s	25.5	12'	0.94 s	29.8
14	1.32 ^a s	23.8	13'	0.97 ^a s	21.9
15	1.32 s	25.5	14'	1.35 s	23.4
1'	1.49 ^a m	58.2	15'a	4.91 s	111.1
2'	1.55–1.61 ^a m	24.2	15'b	4.90 s	

^{*a*}) Overlapped signals

Table S6. ¹H (300 MHz) and ¹³C (75 MHz) NMR spectral data of **14** in CDCl₃ (δ in ppm, J in Hz).

position	$\delta_{ m H}$	$\delta_{ m C}$	position	$\delta_{ m H}$	$\delta_{ m C}$
1	—	169.8	3'a	2.03 m	41.6
2	—	47.9	3'b	1.76 m	
3	_	213.7	4'	-	85.5
4	—	55.5	5'	2.10 ^a m	38.5
5	-	198.0	6'a	1.70 ^a m	29.2
6	—	114.8	6'b	1.51ª m	
7	2.98 m	29.3	7'a	2.35 m	36.4
8a	1.49 ^a m	42.1	7'b	2.12 ^a m	
8b	1.08 m		8'	-	154.9
9	1.67ª m	27.6	9'	2.57 q (9.2)	42.9
10	0.95 d (6.2)	24.3	10'a	1.73 m	38.6
11	0.87 ^a d (6.2)	21.9	10'b	1.65 m	
12	1.35 ^a s	25.5	11'	-	33.5
13	1.37 s	26.2	12'	0.96 s	29.6
14	1.35 ^a s	22.9	13'	0.88 s	22.3
15	1.34 s	25.2	14'	1.25 s	23.7
1'	1.54ª m	56.9	15'a	4.83 brs	110.2
2'a	1.44 ^a m	23.4	15'b	4.73 brs	
2'b	1.19 m				

^{*a*}) Overlapped signals

Table S7. ¹ H (400 MHz) and ¹³ C (100 MHz) NMR spectral data of 15 in CDCl ₃ (δ in ppm, J in H	Iz).
---	------

position	$\delta_{ m H}$	$\delta_{ m C}$	position	$\delta_{ m H}$	$\delta_{ m C}$
1	-	170.4	3'a	2.13 ^a m	39.4
2	-	47.7	3'b	1.77 m	
3	-	214.1	4'	_	83.5
4	_	55.3	5'	2.09 ^a m	40.0
5	_	197.6	6'a	1.65 ^a m	34.5
6	_	113.4	6'b	1.47ª m	
7	2.28 m	35.1	7'a	2.40 m	36.4
8a	1.88 ^a m	39.4	7'b	2.19 m	

8b	1.40 ^a m		8'	_	155.0
9	1.56ª m	25.7	9'	2.71 q (9.6)	42.8
10	0.89 d (6.6)	24.1	10'a	1.92 m	40.4
11	0.79 d (6.6)	24.0	10'b	1.56 ^a m	
12	1.38 s	24.0	11'	_	33.5
13	1.31 ^a s	25.5	12'	1.00 s	29.8
14	1.34 s	25.9	13'	0.97 s	22.4
15	1.31 ^a s	23.7	14'	1.03 s	19.9
1'	1.61ª m	54.6	15'a	4.83 s	110.3
2'	1.52ª m	22.1	15'b	4.68 s	

^{*a*}) Overlapped signals

Experimental section and results

1. UPLC-UV-MS-guided isolation of Fr.B

Fr.B was speculated to contain caryophyllene-derived meroterpenoids (CDMTs) on the basis of its UPLC-QTOF/MS analysis result, which showed a unique UV profile (λ_{max} 265 nm) as well as the typical ion peak at m/z 719.4926 [M+H]⁺ (Figure S3).

Figure S3. A: UPLC-QTOF/MS analysis for Fr.B; **B** and **C**: Fr.B showed a typical ion peak at m/z 719.4926 [M+H]⁺ as well as a unique UV profile.

2. UPLC-QTOF/MS analysis of the methanol extract of Rhodomyrtus tomentosa

Preparation of the sample solution: The fresh leaves and twigs of *Rhodomyrtus tomentosa* (100 g) were cut into pieces and extracted using methanol by ultrasonic extraction at room temperature for 1 h. The extract was then concentrated *in vacuo* and filtered through a 0.22 µm membrane prior for further UPLC-QTOF/MS analysis.

UPLC condition: UPLC analysis was performed on a Waters Acquity UPLC system equipped with a binary solvent system, an automatic sample manger and a photodiode array detector (PDA). Chromatographic separation was achieved on a SB-C18 column (100 mm \times 2.1 mm, 1.8 µm). The mobile phases consisted of (A) 0.1% formic acid-water and (B) MeOH. The UPLC elution program was optimized as linear gradient from 80 to 100% B (0–20 min). The flow rate was set at 0.3 mL/min.

MS condition: HRESIMS analysis was performed on a Waters Xevo-G2 QTOF mass spectrometer equipped with ESI source. Mass spectra were recorded across the range from 100 to 1000 Da. Samples were analyzed in positive mode and the operating parameters were set as follow: capillary voltage of 3.0 kV; sample cone voltage of 30 V; extraction cone voltage of 4 V, source temperature of 100 °C, desolvation temperature 350 °C, cone gas flow of 30 L/h and desolvation gas flow of 600 L/h.

Figure S4. UPLC-QTOF/MS analysis of the methanol extract the fresh leaves and twigs of *Rhodomyrtus tomentosa* (**A**: Total ion chromatogram; **B**: Extracted ion chromatogram, Peak I: retention time: 10.054 min, m/z 741.4949 [M+Na]⁺; Peak II retention time: 10.624 min, m/z 741.4949 [M+Na]⁺; **C**: Ion chromatogram of compound **1** (retention time: 9.941 min), m/z 741.4949 [M+Na]⁺; **D**: Ion chromatogram of compound **2** (retention time: 10.607 min), m/z 741.4949 [M+Na]⁺.

3. Quantum chemical ECD calculation

On the account of the ECD spectra of two enantiomers are mirror images by definition, one of the two plaussible steroisomers of **1** and **2** (7R,1 $^{\prime}R$,4 $^{\prime}R$,5 $^{\prime}S$,8 $^{\prime}R$,9 $^{\prime}S$,7 $^{\prime}S$ -**1**, 7S,1 $^{\prime}R$,4 $^{\prime}S$,5 $^{\prime}R$,8 $^{\prime}R$,9 $^{\prime}S$,7 $^{\prime}S$ -**2**) were arbitorarily selected for the following calculation. The systematic random conformational analysis of the selected steroisomers of **1** and **2** were performed in the SYBYL-X 2.1.1 program by using MMFF94s molecular force field with an energy cutoff of 10 kcal/mol to the global minima, which afforded 25 and 18 conformers, respectively. All of the obtained conformers were further optimized using DFT at the B3LYP/6-31+G(d) level in gas phase using Gaussian09 software,¹ which afforded 12 and 12 stable conformers for **1** and **2**, respectively. The optimized stable conformers of the selected steroisomers of **1** and **2** were further subjected to ECD calculations at the B3LYP/6-31+G(d) level with the PCM solvation model of methanol (**1** and **2**). The first 50 excitations for **1** and **2** were considered. The overall ECD curves of **1** and **2** were all weighted by Boltzmann distribution. The calculated ECD spectra were subsequently compared with the experimental ones. The ECD spectra were produced by SpecDis 1.70 software.²

	Cartesian coordinate of 1a						Cartes	sian coordina	ate of 1b			
	S	tandard orien	tation				Standard orientation					
Center	Atomic	Coord	linates (Angst	troms)		Center Atomic Coordinates (Angstrom						
Number	Number	Х	Y Z			Number	Number	Х	Y	Z		
1	6	6.474854	-0.002606	-1.398835		1	6	6.742389	-1.20209	0.289961		
2	6	6.693882	0.102814	0.116672		2	6	6.829298	0.305778	0.107805		
3	6	5.420044	0.35479	0.948622		3	6	5.599023	0.847594	-0.59812		
4	6	4.1301	0.046077	0.324974		4	6	4.2658	0.325906	-0.19257		
5	6	3.987988	0.08826	-1.024716		5	6	4.199861	-0.90032	0.357961		
6	6	5.112322	0.438743	-1.983195		6	6	5.377459	-1.83438	0.60191		
7	6	2.958522	-0.177195	1.235425		7	6	3.055162	1.174364	-0.51211		
8	6	1.620362	-0.032726	0.474631		8	6	1.741866	0.367391	-0.28107		
9	6	1.641088	-0.620695	-0.952195		9	6	1.851275	-0.6284	0.913766		

Table S8. Cartesian coordinate of dominant conformer of (7*R*,1'*R*,4'*R*,5'S,8'*R*,9'S,7"S)-1.

10	8	2.823427	-0.059908	-1.681776	10	8	3.001351	-1.47776	0.738812
11	8	7.365496	-0.36593	-2.134129	11	8	7.76175	-1.90016	0.265474
12	8	5.512165	0.772869	2.089123	12	8	5.663277	1.731812	-1.44978
13	6	4.904457	-0.260867	-3.326655	13	6	5.410807	-2.27557	2.07725
14	6	5.155116	1.962352	-2.156198	14	6	5.224986	-3.07276	-0.30327
15	6	3.153418	-1.494262	2.004169	15	6	3.150291	2.530834	0.218509
16	6	7.270313	-1.235049	0.606662	16	6	6.949466	0.977458	1.481562
17	6	7.677021	1.258689	0.350638	17	6	8.079796	0.641915	-0.72526
18	6	3.604515	-1.333199	3.461623	18	6	3.502944	3.767455	-0.61712
19	6	2.356884	-1.242331	4.346845	19	6	2.264723	4.625	-0.84967
20	6	4.503054	-2.509194	3.8554	20	6	4.593733	4.572099	0.087288
21	6	0.412039	-0.516808	1.286137	21	6	0.457709	1.22936	-0.29422
22	6	-0.579537	0.586505	1.671823	22	6	-0.55423	0.937589	-1.43328
23	6	0.401941	1.375177	-2.059718	23	6	0.412881	-2.6531	-0.0531
24	6	0.496434	-0.13396	-1.840018	24	6	0.631604	-1.59168	1.03096
25	6	-1.801492	0.74898	0.757555	25	6	-1.82771	0.094803	-1.097
26	6	-1.620979	1.684492	-0.430846	26	6	-1.61008	-1.42615	-1.32298
27	6	-0.18952	2.097463	-0.867903	27	6	-0.19082	-2.11	-1.33763
28	6	-1.981	3.180914	-0.259636	28	6	-1.76808	-2.00694	-2.77008
29	6	-0.669914	3.584428	-1.003595	29	6	-0.7782	-3.14225	-2.37523
30	8	-1.958991	-0.614321	0.17245	30	8	-2.15574	0.336982	0.288031
31	6	-3.184236	-0.991225	-0.273646	31	6	-3.43774	0.076798	0.746024
32	6	-4.326103	-0.291727	-0.085101	32	6	-4.47774	-0.11215	-0.08867
33	6	-4.358712	0.962797	0.75509	33	6	-4.35037	0.00982	-1.59126
34	6	-3.056571	1.063836	1.580547	34	6	-2.99107	0.624155	-1.96433
35	6	-3.093765	-2.28335	-1.059369	35	6	-3.50393	-0.06174	2.260159
36	6	-4.446423	-3.036164	-0.991422	36	6	-4.93893	0.179877	2.748007
37	6	-5.743534	-2.21545	-1.024292	37	6	-6.09147	-0.38874	1.935679
38	6	-5.559479	-0.70095	-0.776304	38	6	-5.75422	-0.63795	0.47584
39	6	1.780128	-2.127413	-1.058029	39	6	1.995461	0.042757	2.29826
40	1	-2.180857	1.247639	-1.287763	40	1	-2.28259	-1.96719	-0.63869
41	1	0.53317	2.022684	-0.018172	41	1	0.555071	-1.51627	-1.86794
42	1	1.510055	1.079417	0.324684	42	1	1.732315	-0.25218	-1.17838
43	6	0.20013	4.58417	-0.249411	43	6	0.201288	-3.50882	-3.4913
44	6	-0.923811	4.060615	-2.427549	44	6	-1.46618	-4.39847	-1.83424
45	6	-5.579018	1.016147	1.699644	45	6	-5.50193	0.730326	-2.35104
46	6	-6.31559	2.373843	1.649202	46	6	-5.5878	2.272171	-2.3107
47	6	-7.639464	2.282136	2.429524	47	6	-6.75556	2.738678	-3.18998
48	6	-5.448704	3.518622	2.197905	48	6	-5.76069	2.837745	-0.90512
49	6	-2.820897	-1.954645	-2.532396	49	6	-3.06542	-1.46779	2.69357
50	6	-1.999459	-3.182944	-0.486519	50	6	-2.59211	0.981145	2.944445
51	6	-6.375748	-2.423967	-2.407009	51	6	-6.54036	-1.7092	2.579114
52	6	-6.662707	-2.724903	0.096446	52	6	-7.25662	0.614521	1.979887
53	8	-6.41652	0.08323	-1.131532	53	8	-6.52121	-1.27121	-0.25115
54	8	-4.471228	-4.24586	-0.953257	54	8	-5.16118	0.743224	3.825106

55	8	2.799009	-2.568711	1.571721	55	8	2.953658	2.639342	1.42943
56	1	2.973663	0.647072	2.000223	56	1	3.071711	1.403844	-1.58719
57	1	5.731835	-0.045748	-4.016118	57	1	6.281982	-2.90778	2.285813
58	1	3.966644	0.05556	-3.800263	58	1	4.519191	-2.85171	2.350289
59	1	4.85861	-1.350878	-3.209641	59	1	5.469136	-1.41414	2.751962
60	1	4.233524	2.327973	-2.628569	60	1	4.284307	-3.60332	-0.11564
61	1	5.263164	2.485031	-1.19882	61	1	5.246358	-2.79135	-1.36313
62	1	5.98908	2.263576	-2.803476	62	1	6.037697	-3.79101	-0.14307
63	1	8.195687	-1.486129	0.067526	63	1	7.803267	0.581598	2.043205
64	1	6.56898	-2.063963	0.453681	64	1	6.055796	0.82138	2.095369
65	1	7.516801	-1.194178	1.675929	65	1	7.081488	2.060979	1.381119
66	1	8.624251	1.093325	-0.178664	66	1	8.997083	0.296241	-0.23466
67	1	7.26845	2.220577	0.02426	67	1	8.033788	0.166519	-1.71238
68	1	7.909964	1.357472	1.422216	68	1	8.181421	1.721941	-0.88334
69	1	4.194914	-0.385556	3.564945	69	1	3.888922	3.45218	-1.5909
70	1	2.634353	-1.197531	5.408205	70	1	2.524086	5.556929	-1.36295
71	1	1.767155	-0.346114	4.128777	71	1	1.538733	4.096533	-1.47536
72	1	1.707438	-2.119382	4.225269	72	1	1.768839	4.879799	0.093234
73	1	4.849566	-2.415001	4.890582	73	1	4.920741	5.410862	-0.53605
74	1	5.391657	-2.565953	3.215757	74	1	5.467467	3.947417	0.299816
75	1	3.974134	-3.467273	3.763365	75	1	4.240176	4.978484	1.041429
76	1	-0.116699	-1.332143	0.747106	76	1	-0.03147	1.227029	0.681852
77	1	0.749138	-1.001998	2.219563	77	1	0.744529	2.274334	-0.43471
78	1	-0.935765	0.363913	2.695657	78	1	-0.90729	1.93824	-1.72415
79	1	-0.064855	1.562775	1.747848	79	1	-0.05279	0.564942	-2.33344
80	1	-0.204903	1.557502	-2.966254	80	1	-0.26289	-3.40418	0.373523
81	1	1.40703	1.785524	-2.282534	81	1	1.350307	-3.17621	-0.27265
82	1	0.598389	-0.618168	-2.82937	82	1	0.770221	-2.17531	1.953257
83	1	-0.454579	-0.511003	-1.400586	83	1	-0.28195	-1.01779	1.186675
84	1	-2.908355	3.491576	-0.744146	84	1	-2.77441	-2.33341	-3.04739
85	1	-2.020448	3.522705	0.783547	85	1	-1.39444	-1.34389	-3.56055
86	1	-4.41601	1.825736	0.046614	86	1	-4.36291	-1.02334	-1.96471
87	1	-2.977676	2.071098	2.030817	87	1	-2.79419	0.482441	-3.03324
88	1	-3.114386	0.356067	2.431911	88	1	-3.04824	1.706533	-1.7976
89	1	2.746623	-2.479648	-0.65843	89	1	2.972343	0.513429	2.431965
90	1	1.019037	-2.656704	-0.467653	90	1	1.208166	0.776237	2.490629
91	1	1.721277	-2.477338	-2.09221	91	1	1.952409	-0.70626	3.099123
92	1	1.180564	4.697888	-0.727456	92	1	0.998535	-4.15615	-3.1104
93	1	-0.266585	5.576527	-0.222887	93	1	-0.31013	-4.03952	-4.30165
94	1	0.377179	4.284435	0.78947	94	1	0.674015	-2.62129	-3.92599
95	1	-1.550039	3.356588	-2.985956	95	1	-2.18191	-4.17347	-1.03757
96	1	-1.439142	5.02795	-2.434207	96	1	-2.01613	-4.91166	-2.63093
97	1	0.013315	4.183166	-2.980293	97	1	-0.73017	-5.10208	-1.43044
98	1	-6.29997	0.219741	1.433287	98	1	-5.39958	0.443496	-3.40807
99	1	-5.281236	0.787541	2.737121	99	1	-6.4701	0.320521	-2.04322

100	1	-6.55769	2.593463	0.579547	100	1	-4.67842	2.699191	-2.74801
101	1	-8.196585	3.224484	2.378338	101	1	-7.71291	2.362934	-2.81282
102	1	-8.29104	1.501001	2.020816	102	1	-6.8086	3.832312	-3.21878
103	1	-7.475707	2.056779	3.488699	103	1	-6.63352	2.385344	-4.21941
104	1	-6.001386	4.465164	2.202991	104	1	-5.86863	3.927588	-0.93745
105	1	-4.551583	3.670889	1.589536	105	1	-4.89625	2.622634	-0.27243
106	1	-5.127238	3.325122	3.226885	106	1	-6.6567	2.430253	-0.42896
107	1	-2.816762	-2.864231	-3.14692	107	1	-1.98699	-1.60885	2.575047
108	1	-1.837492	-1.481219	-2.653123	108	1	-3.55738	-2.24933	2.104668
109	1	-3.56803	-1.26915	-2.949093	109	1	-3.3076	-1.65092	3.746953
110	1	-2.17481	-3.402493	0.574315	110	1	-2.87777	2.002159	2.664002
111	1	-1.967777	-4.148178	-1.010915	111	1	-2.65371	0.912017	4.037143
112	1	-1.009394	-2.71554	-0.566124	112	1	-1.538	0.841341	2.680332
113	1	-6.570046	-3.485718	-2.604466	113	1	-6.70021	-1.59689	3.657568
114	1	-5.743645	-2.037362	-3.213064	114	1	-5.7975	-2.50069	2.438091
115	1	-7.33803	-1.893138	-2.475144	115	1	-7.4777	-2.06943	2.139169
116	1	-6.870085	-3.798402	-0.023	116	1	-8.06937	0.325006	1.304146
117	1	-6.213394	-2.588114	1.086784	117	1	-7.67755	0.695849	2.988977
118	1	-7.628009	-2.201981	0.088394	118	1	-6.92464	1.616891	1.689796

Table S9. Key transitions and their related rotatory and oscillator strengths of dominant conformer of 1a.

HOMO	is 196				
Na	Energy	Wavelength	R	Osc.	Maion contribu
INO.	(cm ⁻¹)	(nm)	(length)	Strength	Major contribs
1	32621.9	306.5	12.7571	0.0046	H-4->L+4 (19%), H-1->LUMO (12%), H-1->L+4 (55%)
2	32676.7	306.0	-8.887	0.0005	H-2->L+1 (86%)
3	32811.4	304.8	8.2387	0.0005	H-3->LUMO (81%)
4	33873.7	295.2	0.5905	0.0008	H-5->L+3 (42%), H-2->L+3 (48%)
5	33892.2	295.1	-0.5648	0.0003	H-6->L+2 (35%), H-3->L+2 (54%)
6	36369.2	275.0	-0.2714	0.0878	H-1->LUMO (59%), H-1->L+2 (23%)
7	36448.2	274.4	8.13	0.0128	HOMO->L+1 (11%), HOMO->L+3 (83%)
8	37017.6	270.1	-12.0153	0.0308	H-1->LUMO (11%), H-1->L+2 (66%), H-1->L+4 (11%)
9	37769.3	264.8	1.6895	0.0016	HOMO->LUMO (98%)
10	38679.9	258.5	88.6734	0.3665	HOMO->L+1 (77%), HOMO->L+3 (10%)
11	38817.9	257.6	-0.3026	0.0026	H-1->L+1 (97%)
12	39436.5	253.6	-1.719	0.0062	H-6->LUMO (79%), H-3->LUMO (12%)
13	39968.0	250.2	18.8989	0.0487	H-4->LUMO (21%), H-4->L+4 (33%), H-1->L+4 (17%)
14	40005.1	250.0	-20.8487	0.0147	H-5->L+1 (74%), H-2->L+3 (12%)
15	40214.0	248.7	-15.1277	0.0073	H-5->L+3 (51%), H-2->L+3 (35%)
16	40460.8	247.2	0.1242	0.0004	HOMO->L+2 (96%)
17	40674.5	245.9	-0.0855	0.0001	H-1->L+3 (99%)
18	40802.0	245.1	12.2543	0.005	H-6->L+2 (54%), H-3->L+2 (36%)
19	41114.9	243.2	0.5381	0.0104	H-2->LUMO (93%)
20	41329.5	242.0	-5.4462	0.1385	H-4->LUMO (41%), H-3->L+4 (36%)
21	41761.8	239.5	-0.4109	0.001	HOMO->L+4 (96%)

22	42198.9	237.0	-9.0456	0.0726	H-4->LUMO (13%), H-4->L+2 (10%), H-4->L+4 (19%), H-
	10		0.01.77	0.0001	3->L+4 (40%)
23	42799.0	233.7	-0.0177	0.0004	H-3->L+1 (97%)
24	43082.9	232.1	-4.9854	0.0164	H-4->L+2 (77%), H-4->L+4 (13%)
25	43671.7	229.0	-0.0475	0.0001	H-2->L+2 (98%)
26	43859.6	228.0	0.1724	0.0011	H-4->L+1 (97%)
27	44363.7	225.4	-0.128	0.0001	H-5->LUMO (99%)
28	44612.9	224.2	0.013	0	H-3->L+3 (99%)
29	45250.1	221.0	-0.0352	0	H-2->L+4 (99%)
30	45729.2	218.7	-0.1353	0.0002	H-4->L+3 (99%)
31	46111.5	216.9	1.6517	0.003	H-7->LUMO (75%), H-6->L+1 (19%)
32	46129.3	216.8	-2.4227	0.0016	H-7->LUMO (19%), H-6->L+1 (76%)
33	46571.3	214.7	5.7792	0.0078	H-9->L+1 (30%), H-8->L+1 (61%)
34	46762.4	213.8	0.4056	0.0011	H-6->L+4 (36%), H-1->L+5 (46%)
35	46799.5	213.7	-1.3052	0.0027	H-6->L+4 (52%), H-1->L+5 (32%)
36	46932.6	213.1	0.0194	0	H-5->L+2 (99%)
37	47025.3	212.7	4.3606	0.0102	H-7->L+1 (93%)
38	47126.2	212.2	-7.5128	0.0059	HOMO->L+5 (58%), HOMO->L+6 (37%)
30	17256.8	211.6	2 1053	0.0007	H-11->LUMO (11%), H-10->LUMO (17%), H-8->LUMO
57	47250.0	211.0	2.1055	0.0007	(65%)
40	47874.7	208.9	-26.025	0.0115	H-9->L+1 (52%), H-8->L+1 (31%)
41	47961.0	208.5	0.2794	0	H-6->L+3 (95%)
42	47965 8	208 5	2 122	0.0012	H-11->LUMO (23%), H-10->LUMO (31%), H-8->LUMO
12	17905.0	200.0	2.122	0.0012	(31%)
43	48435.2	206.5	-0.0259	0	H-5->L+4 (99%)
4.4	40020.2	202.0	0.0272	0.0012	HOMO->L+5 (20%), HOMO->L+6 (35%), HOMO->L+7
44	49039.5	203.9	-0.9275	0.0012	(17%), HOMO->L+8 (17%)
45	49178.8	203.3	2.761	0.0044	H-7->L+2 (24%), H-1->L+7 (11%), HOMO->L+7 (33%)
46	49182.9	203.3	-5 3813	0.0012	H-7->L+2 (12%), H-1->L+6 (14%), H-1->L+7 (19%),
40	47102.7	203.5	-5.5015	0.0012	HOMO->L+7 (25%)
47	49200.6	203.2	3.283	0.0025	H-7->L+2 (61%), H-1->L+6 (11%), H-1->L+7 (16%)
			0.1010	0.0012	H = 0 + 1 + 2 (1 < 0) + 1 = 1 + 2 (7 < 0) + 1 = 1 + 2 (7 < 0) + 1 = 1 + 2 =
48	49399.8	202.4	-0.1318	0.0012	H-8->L+3 (10%), H-7->L+3 (79%)
48 49	49399.8 49412.8	202.4 202.4	0.1273	0.0012	H-8->L+3 (16%), H-7->L+3 (79%) H-10->LUMO (10%), H-9->LUMO (69%)

Figure S5. Key molecular orbitals involved in important transitions regarding the ECD spectrum of dominant conformer of 1a.

НОМО	is 196				
No	Energy	Wavelength	R	Osc.	Moion contriba
INO.	(cm ⁻¹)	(nm)	(length)	Strength	Major contribs
1	32300.1	309.6	-13.0488	0.0007	H-2->L+1 (86%)
2	32657.4	306.2	22.7729	0.0014	H-4->L+4 (11%), H-3->LUMO (38%), H-1->L+4 (32%)
3	32685.6	305.9	-3.8957	0.0023	H-4->L+4 (11%), H-3->LUMO (46%), H-1->L+4 (29%)
4	33887 /	205.1	16 8454	0.0042	H-5->L+1 (10%), H-5->L+2 (11%), H-5->L+3 (27%), H-2-
	55007.4	2)5.1	10.0454	0.0042	>L+2 (14%), H-2->L+3 (35%)
5	34211.6	292.3	16 2518	0.0073	H-6->LUMO (22%), H-6->L+2 (12%), H-3->L+2 (35%), H-
5	54211.0	272.3	10.2510	0.0075	3->L+3 (14%)
6	35719.1	280.0	-7.9618	0.0784	H-1->LUMO (76%)
7	35920.7	278.4	-5 8011	0.0206	HOMO->L+1 (24%), HOMO->L+2 (21%), HOMO->L+3
/	55720.1	270.4	-5.0011	0.0200	(54%)
8	37166.0	269.1	0.0097	0.0005	HOMO->LUMO (99%)
9	37485.4	266.8	12.1043	0.0214	H-4->LUMO (13%), H-1->L+2 (51%), H-1->L+3 (20%)
10	38158.9	262.1	83.5298	0.3084	HOMO->L+1 (63%), HOMO->L+3 (16%)
11	38542.8	259.5	-0.1021	0.0001	H-1->L+1 (100%)
12	39564.7	252.8	-0.7173	0.0184	H-6->LUMO (53%), H-4->LUMO (15%), H-3->L+2 (10%)
13	39749.4	251.6	-3.8847	0.0032	H-5->L+1 (68%), H-2->L+3 (20%)
14	40100.3	249.4	16.7337	0.0239	H-6->LUMO (10%), H-4->L+4 (45%), H-1->L+4 (18%)
15	40492.3	247.0	-0.833	0.0015	HOMO->L+2 (62%), HOMO->L+3 (25%)
16	40558.4	246.6	-2.5974	0.0094	H-2->LUMO (87%)
17	40627.8	246.1	23 2781	0 084	H-5->L+1 (15%), H-5->L+2 (12%), H-5->L+3 (29%), H-2-
1/	-0027.0	2-0.1	23.2701	0.004	>L+3 (12%)
18	40706.0	245.7	-41.3269	0.0619	H-4->LUMO (32%), H-2->LUMO (11%)

Table S10. Key transitions and their related rotatory and oscillator strengths of dominant conformer of 1b.

19	40764.1	245.3	-2.7713	0.0009	H-1->L+2 (26%), H-1->L+3 (71%)
20	41110.1	243.2	-0.6655	0.0005	HOMO->L+4 (90%)
21	41832.8	239.0	-0.0811	0.0169	H-3->L+4 (80%)
22	42484.4	235.4	-28.1082	0.0867	H-6->L+2 (31%), H-6->L+3 (12%), H-4->LUMO (18%)
23	42714.3	234.1	-0.1764	0.0005	H-3->L+1 (97%)
24	43628.9	229.2	-3.3212	0.0015	H-4->L+1 (95%)
25	43665.2	229.0	-7.155	0.0357	H-4->L+2 (49%), H-4->L+3 (19%)
26	43845.9	228.1	-1.3755	0.0036	H-2->L+2 (61%), H-2->L+3 (24%)
27	44208.1	226.2	-0.4674	0.0007	H-5->LUMO (99%)
28	44645.2	224.0	0.0102	0	H-2->L+4 (97%)
29	44886.4	222.8	0.0002	0	H-3->L+2 (28%), H-3->L+3 (72%)
30	45860.7	218.1	-0.1228	0.0002	H-4->L+2 (28%), H-4->L+3 (71%)
31	46010.7	217.3	0.2098	0.0039	H-7->LUMO (94%)
32	46262.3	216.2	-1.0115	0.0005	H-6->L+1 (96%)
33	46518.0	215.0	-11.569	0.0067	HOMO->L+5 (62%), HOMO->L+6 (32%)
34	46648.7	214.4	4.3574	0.0011	H-9->L+1 (17%), H-8->L+1 (19%), H-7->L+1 (57%)
35	46673.7	214.3	-3.0735	0.0014	H-1->L+5 (73%), H-1->L+6 (20%)
36	46825.3	213.6	26.4496	0.0189	H-8->L+1 (62%), H-7->L+1 (29%)
37	46885.8	213.3	-7.604	0.006	H-6->L+4 (84%)
38	47231.0	211.7	4.3142	0.0021	H-11->LUMO (13%), H-8->LUMO (73%)
39	47478.6	210.6	0.0164	0.0001	H-5->L+2 (68%), H-5->L+3 (27%)
40	47769.0	209.3	-27.4031	0.0102	H-9->L+1 (66%), H-8->L+1 (14%)
41	47015.0	208.7	5 7215	0.0012	H-11->LUMO (46%), H-10->LUMO (17%), H-8->LUMO
41	47913.0	208.7	5.7215	0.0012	(25%)
42	48226.3	207.4	-0.0855	0	H-5->L+4 (96%)
13	48412.6	206.6	3 0806	0.0000	HOMO->L+5 (10%), HOMO->L+6 (16%), HOMO->L+7
45	40412.0	200.0	-3.9890	0.0009	(43%), HOMO->L+8 (17%)
44	48459.4	206.4	0.0463	0.0001	H-6->L+2 (28%), H-6->L+3 (71%)
15	19602.2	205.4	0.5400	0.0024	HOMO->L+6 (26%), HOMO->L+7 (42%), HOMO->L+8
45	40075.5	205.4	0.5409	0.0024	(18%)
46	49066.7	203.8	3.2949	0.0064	H-1->L+6 (26%), H-1->L+7 (37%), H-1->L+8 (20%)
47	49174 8	203.4	3 8444	0.0019	HOMO->L+5 (14%), HOMO->L+6 (15%), HOMO->L+8
7/	7/1/7.0	203.4	5.0444	0.0017	(43%)
48	49307.9	202.8	-4.2227	0.004	H-2->L+5 (39%), H-2->L+6 (35%)
49	49408.7	202.4	3.8163	0.005	H-1->L+7 (31%), H-1->L+8 (46%)
50	49524.1	201.9	-2.2151	0.0032	H-7->L+2 (41%), H-7->L+3 (47%)

Figure S6. Key molecular orbitals involved in important transitions regarding the ECD spectrum of dominant conformer of 1b.

	Cartesian coordinate of 2a					Cartesian coordinate of 2b						
	Sta	andard orient	ation				Sta	undard orient	ation			
Center	Atomic	Coord	inates (Angs	troms)		Center	Atomic	Coord	inates (Angs	troms)		
Number	Number	Х	Y	Z		Number	Number	Х	Y	Z		
1	6	6.576121	0.120396	-1.52448		1	6	6.521907	-0.24593	-1.46092		
2	6	6.133709	-1.33535	-1.52179		2	6	6.006851	-1.67004	-1.31389		
3	6	4.623549	-1.46508	-1.44442		3	6	4.491106	-1.71701	-1.25265		
4	6	3.874266	-0.52743	-0.56578		4	6	3.778179	-0.65727	-0.49022		
5	6	4.434907	0.640081	-0.22036		5	6	4.39205	0.511514	-0.25836		
6	6	5.799139	1.137987	-0.67531		6	6	5.785125	0.8923	-0.73843		
7	6	2.499403	-0.95279	-0.12247		7	6	2.378148	-0.9669	-0.03032		
8	6	1.686282	0.261789	0.399473		8	6	1.621063	0.332459	0.353097		
9	6	2.525436	1.285491	1.217527		9	6	2.501396	1.393654	1.074577		
10	8	3.801007	1.553918	0.586464		10	8	3.79424	1.534611	0.437182		
11	8	7.593621	0.467455	-2.13453		11	8	7.563907	-0.01513	-2.08448		
12	8	4.00884	-2.35237	-2.03395		12	8	3.840349	-2.62963	-1.75896		
13	6	5.604328	2.402006	-1.5374		13	6	5.664396	2.065163	-1.73272		
14	6	6.676769	1.478667	0.54334		14	6	6.662549	1.318421	0.453195		
15	6	2.675489	-2.12724	0.861021		15	6	2.481619	-2.04328	1.068755		
16	6	6.629587	-2.01249	-2.81317		16	6	6.48624	-2.50354	-2.51698		
17	6	6.750456	-2.05063	-0.31354		17	6	6.569621	-2.2823	-0.02535		
18	6	0.345816	-0.14928	1.054768		18	6	0.255149	0.056337	1.026474		
19	6	-0.79132	-0.23751	0.030228		19	6	-0.87468	-0.07371	-0.00124		
20	6	0.642383	2.996227	2.05499		20	6	0.69926	3.271792	1.709009		
21	6	1.870581	2.711488	1.193862		21	6	1.917275	2.839572	0.895981		

Table S11. Cartesian coordinate of dominant conformer of (7*S*,1'*R*,4'*S*,5'*R*,8'*R*,9'*S*,7"*S*)-2.

22	6	-1.8596	0.882269	0.139447	22	6	-1.88888	1.100325	-0.00391
23	6	-1.14108	2.26276	0.047292	23	6	-1.10711	2.428749	-0.23298
24	6	-0.70227	3.089774	1.323138	24	6	-0.63333	3.36065	0.955022
25	6	-2.02913	3.493927	-0.32597	25	6	-1.93232	3.656951	-0.73701
26	6	-1.07735	4.395007	0.515643	26	6	-0.93576	4.591623	0.011933
27	8	-2.64713	0.78668	-1.05994	27	8	-2.69609	0.925901	-1.18282
28	6	-3.85139	0.114054	-1.0844	28	6	-3.85366	0.173892	-1.13059
29	6	-4.42891	-0.39179	0.018567	29	6	-4.39526	-0.2461	0.025937
30	6	-3.80059	-0.30283	1.393075	30	6	-3.83201	0.089822	1.38827
31	6	-2.73914	0.805882	1.40102	31	6	-2.77164	1.193185	1.255214
32	6	-4.41399	0.041517	-2.49332	32	6	-4.43429	-0.05892	-2.51809
33	6	-5.68861	-0.80416	-2.58764	33	6	-5.69556	-0.93569	-2.52302
34	6	-6.56361	-0.97551	-1.35744	34	6	-6.03132	-1.75494	-1.28593
35	6	-5.79565	-0.98999	-0.04972	35	6	-5.67017	-1.01964	-0.0076
36	6	2.840853	0.852356	2.65445	36	6	2.782212	1.095016	2.55231
37	1	-0.33316	2.185678	-0.6954	37	1	-0.30099	2.237077	-0.95675
38	1	-1.43639	2.960722	2.1364	38	1	-1.37894	3.356628	1.768164
39	1	1.444058	0.812287	-0.52262	39	1	1.415944	0.796944	-0.6238
40	6	-1.81627	5.428927	1.36802	40	6	-1.62103	5.747279	0.744354
41	6	-0.00011	5.074188	-0.33038	41	6	0.178824	5.120138	-0.89128
42	6	-3.3326	-1.69571	1.884854	42	6	-3.37727	-1.187	2.141591
43	6	-2.56964	-1.7376	3.22409	43	6	-2.70989	-0.98246	3.517185
44	6	-3.37531	-1.13366	4.37465	44	6	-3.58566	-0.18215	4.481432
45	6	-2.20052	-3.18606	3.559628	45	6	-2.37902	-2.34511	4.134647
46	6	-4.73449	1.452371	-3.01401	46	6	-4.81983	1.30268	-3.13156
47	6	-3.3646	-0.61423	-3.42034	47	6	-3.39483	-0.75195	-3.41861
48	6	-7.57685	0.174934	-1.30326	48	6	-7.54083	-2.06072	-1.28199
49	6	-7.32015	-2.31337	-1.48118	49	6	-5.25354	-3.0764	-1.32794
50	8	-6.31611	-1.42296	0.980567	50	8	-6.36093	-1.09481	1.008014
51	8	-6.05517	-1.25567	-3.6791	51	8	-6.37824	-1.03666	-3.54851
52	6	1.704545	-3.30781	0.738777	52	6	1.451871	-3.17933	1.048967
53	6	2.259404	-4.3587	-0.2137	53	6	1.961305	-4.34844	0.216587
54	6	1.442309	-3.91795	2.115089	54	6	1.141546	-3.63207	2.475042
55	8	3.581913	-2.14421	1.697225	55	8	3.375597	-2.02112	1.918081
56	1	1.960987	-1.34691	-0.99507	56	1	1.83126	-1.42005	-0.86835
57	1	6.564302	2.816951	-1.86659	57	1	6.647976	2.396357	-2.08624
58	1	5.082439	3.195042	-0.98939	58	1	5.175139	2.936027	-1.28126
59	1	5.022192	2.177854	-2.43954	59	1	5.083855	1.774277	-2.61665
60	1	6.791121	0.616607	1.209727	60	1	6.725536	0.527614	1.208808
61	1	7.683961	1.785079	0.237074	61	1	7.687526	1.54219	0.134659
62	1	6.252538	2.29949	1.133108	62	1	6.2717	2.216595	0.945193
63	1	7.721894	-1.97367	-2.89647	63	1	7.580193	-2.52706	-2.58253
64	1	6.212571	-1.51964	-3.69958	64	1	6.107396	-2.08765	-3.45828
65	1	6.337465	-3.06827	-2.85452	65	1	6.141728	-3.54224	-2.45282
66	1	7.841984	-1.95264	-0.30858	66	1	7.664561	-2.2383	-0.00998

67	1	6.382505	-1.64441	0.63459		67	1	6.210024	-1.75984	0.867449
68	1	6.504594	-3.11896	-0.3188		68	1	6.269597	-3.33169	0.077501
69	1	0.440387	-1.10817	1.566925		69	1	0.292701	-0.84987	1.633143
70	1	0.062736	0.525346	1.857279		70	1	0.001235	0.821735	1.75378
71	1	-0.38657	-0.24278	-0.99148		71	1	-0.46261	-0.18698	-1.01372
72	1	-1.26615	-1.21711	0.106569		72	1	-1.39565	-1.02109	0.152664
73	1	0.567643	2.276597	2.875475		73	1	0.580705	2.642617	2.59596
74	1	0.800221	3.958973	2.560533		74	1	0.903578	4.270962	2.117997
75	1	2.647697	3.415549	1.531002		75	1	2.725961	3.536523	1.167249
76	1	1.704027	2.997062	0.150996		76	1	1.771592	3.022985	-0.17268
77	1	-3.05712	3.450029	0.052268		77	1	-2.96093	3.703322	-0.36071
78	1	-2.08099	3.717128	-1.39675		78	1	-1.973	3.770258	-1.82535
79	1	-4.57819	0.033147	2.093777		79	1	-4.64693	0.529365	1.980594
80	1	-3.30633	1.744421	1.476843		80	1	-3.33639	2.134856	1.203187
81	1	-2.13389	0.775184	2.310434		81	1	-2.16868	1.279305	2.161862
82	1	3.27207	1.687454	3.219828		82	1	3.250293	1.961318	3.035404
83	1	1.96173	0.497794	3.197968		83	1	1.881689	0.841819	3.11705
84	1	3.602115	0.06934	2.680353		84	1	3.502501	0.281899	2.668196
85	1	-1.13097	5.91188	2.072826		85	1	-0.91301	6.265245	1.400128
86	1	-2.62501	4.973045	1.949649		86	1	-2.45459	5.3987	1.363907
87	1	-2.2623	6.20763	0.739805		87	1	-2.02313	6.477619	0.033792
88	1	0.469561	4.384578	-1.03776		88	1	0.613983	4.336091	-1.51773
89	1	-0.43012	5.889706	-0.92296		89	1	-0.20537	5.889763	-1.57037
90	1	0.784351	5.500861	0.303259		90	1	0.982537	5.569804	-0.29901
91	1	-4.21493	-2.34168	1.988926		91	1	-4.25528	-1.82969	2.293696
92	1	-2.72851	-2.18689	1.115481		92	1	-2.70759	-1.7823	1.513115
93	1	-1.63074	-1.18266	3.126842		93	1	-1.76029	-0.45249	3.38584
94	1	-2.83463	-1.23562	5.321844		94	1	-3.11515	-0.11541	5.468393
95	1	-3.55733	-0.06618	4.219169		95	1	-3.7394	0.841368	4.126934
96	1	-4.34454	-1.63186	4.484282		96	1	-4.56765	-0.6507	4.606885
97	1	-1.60089	-3.23247	4.474877		97	1	-1.84292	-2.22289	5.081779
98	1	-1.6125	-3.6341	2.75227		98	1	-1.743	-2.93184	3.464402
99	1	-3.0946	-3.80109	3.70859		99	1	-3.28752	-2.92439	4.331952
100	1	-3.82645	2.055622	-3.13001		100	1	-3.96032	1.979509	-3.2
101	1	-5.40072	1.993716	-2.33431		101	1	-5.5923	1.800071	-2.53254
102	1	-5.23049	1.413117	-3.9909		102	1	-5.22034	1.188661	-4.14579
103	1	-3.13834	-1.63778	-3.09745		103	1	-3.05891	-1.70125	-2.9868
104	1	-3.7207	-0.67089	-4.45587		104	1	-3.81012	-0.97701	-4.40806
105	1	-2.42335	-0.05276	-3.44006		105	1	-2.50842	-0.12584	-3.57299
106	1	-8.33107	0.004329	-0.52608		106	1	-7.8311	-2.65549	-0.40811
107	1	-8.09888	0.294846	-2.25929		107	1	-7.84181	-2.6237	-2.1731
108	1	-7.09219	1.128445	-1.06844		108	1	-8.12854	-1.13514	-1.26144
109	1	-7.94485	-2.34425	-2.3814		109	1	-5.45	-3.62361	-2.25694
110	1	-6.61876	-3.15466	-1.53503	1	110	1	-4.17159	-2.91727	-1.2656
111	1	-7.98007	-2.49036	-0.62406	1	111	1	-5.52877	-3.72372	-0.48712
					-					

112	1	0.750706	-2.94397	0.343461	112	1	0.523307	-2.80888	0.602876
113	1	1.643662	-5.26425	-0.20304	113	1	1.298624	-5.21544	0.308378
114	1	2.267041	-3.98359	-1.24089	114	1	2.0003	-4.08039	-0.84291
115	1	3.285693	-4.6374	0.048878	115	1	2.968462	-4.65122	0.522885
116	1	2.35094	-4.36088	2.537927	116	1	2.016796	-4.08835	2.950819
117	1	0.682617	-4.70401	2.05257	117	1	0.332331	-4.36975	2.480257
118	1	1.087056	-3.15812	2.819365	118	1	0.832668	-2.78504	3.096778

Table S12. Key transitions and their related rotatory and oscillator strengths of dominant conformer of 2a.

НОМО	is 196				
No.	Energy (cm ⁻¹)	Wavelength (nm)	R (length)	Osc. Strength	Major contribs
1	32767.1	305.2	-5.5149	0.0005	H-2->L+1 (88%)
2	33072.0	302.4	-9.356	0.0007	H-3->LUMO (83%)
3	33387.3	299.5	-27.5631	0.0036	H-4->L+4 (46%), H-1->L+4 (40%)
4	33827.7	295.6	-4.5696	0.0004	H-5->L+2 (41%), H-2->L+2 (48%)
5	34201.9	292.4	-11.866	0.0017	H-6->LUMO (16%), H-6->L+3 (21%), H-3->L+3 (54%)
6	36502.2	274.0	3.2147	0.0164	HOMO->L+2 (87%)
7	36941.8	270.7	20.7058	0.0458	H-1->LUMO (46%), H-1->L+3 (49%)
8	38025.0	263.0	1.3608	0.0007	HOMO->LUMO (98%)
0	20200.0	0(1.0	0.1001	0.0452	H-4->LUMO (31%), H-1->LUMO (16%), H-1->L+3 (22%),
9	38200.8	261.8	-8.1891	0.0452	H-1->L+4 (25%)
10	20504.1	250.7	14 2105	0.0211	H-4->L+4 (38%), H-1->LUMO (11%), H-1->L+3 (14%), H-
10	38504.1	259.7	-14.2185	0.0211	1->L+4 (29%)
11	38908.2	257.0	56.9744	0.343	HOMO->L+1 (79%)
12	39601.8	252.5	0.5128	0.0005	H-1->L+1 (96%)
13	40002.7	250.0	-3.4375	0.0037	H-6->LUMO (74%), H-3->L+3 (17%)
14	40148.7	249.1	15.6259	0.0594	H-5->L+1 (72%)
15	40251.9	248.4	-16.7462	0.0081	H-5->L+2 (49%), H-2->L+2 (35%)
16	40356.8	247.8	-31.6455	0.1424	H-6->L+3 (14%), H-4->LUMO (48%), H-1->LUMO (12%)
17	40531.0	246.7	-25.2566	0.0126	HOMO->L+3 (34%), HOMO->L+4 (61%)
18	40906.8	244.5	-0.3952	0.0005	HOMO->L+3 (64%), HOMO->L+4 (35%)
19	41279.5	242.3	7.9179	0.0154	H-3->L+4 (76%)
20	41419.0	241.4	-0.011	0	H-2->LUMO (99%)
21	41434.3	241.3	0.0235	0	H-1->L+2 (99%)
22	42083.6	237.6	38.8127	0.1125	H-6->L+3 (44%), H-4->LUMO (12%), H-3->L+3 (19%)
23	42661.1	234.4	0.6174	0.0006	H-3->L+1 (95%)
24	43371.7	230.6	3.6499	0.0026	H-4->L+3 (89%)
25	43663.6	229.0	0.0299	0.0001	H-4->L+1 (98%)
26	43948.3	227.5	0.0811	0	H-2->L+3 (72%), H-2->L+4 (28%)
27	44248.4	226.0	0.0108	0	H-2->L+3 (28%), H-2->L+4 (72%)
28	44341.1	225.5	-0.0046	0	H-3->L+2 (99%)
29	44738.0	223.5	0.0652	0.0001	H-5->LUMO (99%)
30	45561.5	219.5	-0.0129	0	H-4->L+2 (99%)
31	45987.3	217.5	-2.1296	0.0027	H-6->L+1 (27%), H-6->L+4 (63%)

32	46384.1	215.6	4.889	0.0009	H-7->L+1 (12%), H-6->L+1 (60%), H-6->L+4 (23%)
33	46602.7	214.6	8.1884	0.0075	H-7->L+1 (78%), H-6->L+1 (12%)
34	46707.6	214.1	7.682	0.008	HOMO->L+5 (72%), HOMO->L+7 (22%)
35	46944.7	213.0	1.0927	0.0013	H-7->LUMO (98%)
36	47311.7	211.4	-0.0094	0	H-5->L+3 (84%), H-5->L+4 (15%)
37	47369.7	211.1	2.6212	0.0016	H-1->L+5 (74%), H-1->L+6 (18%)
38	47456.0	210.7	-13.3396	0.0069	H-9->L+1 (30%), H-8->L+1 (52%)
39	47629.5	210.0	-0.1739	0.0003	H-5->L+3 (15%), H-5->L+4 (84%)
40	48014.2	208.3	-0.0346	0	H-6->L+2 (99%)
41	48409.4	206.6	-2.7667	0.0032	HOMO->L+6 (83%)
42	48561.8	205.9	-2.5738	0.0007	H-10->LUMO (14%), H-8->LUMO (75%)
43	48623 1	205.7	-7 1649	0.0022	H-13->LUMO (10%), H-10->LUMO (37%), H-9->LUMO
15	10023.1	200.1	/.1019	0.0022	(17%), H-8->LUMO (24%)
44	48851.4	204.7	0.3487	0.0005	H-9->L+1 (44%), H-8->L+1 (43%)
45	49035.3	203.9	0.4173	0.0015	H-7->L+2 (76%), HOMO->L+7 (11%)
46	49067 5	203.8	2 8282	0.0011	H-7->L+2 (20%), HOMO->L+5 (10%), HOMO->L+7
-10	49007.5	203.0	2.0202	0.0011	(41%), HOMO->L+8 (17%)
47	49337.7	202.7	2.4634	0.0016	H-1->L+5 (11%), H-1->L+6 (66%), H-1->L+7 (11%)
48	49439.4	202.3	2.1844	0.0008	HOMO->L+7 (13%), HOMO->L+8 (59%)
49	49608.7	201.6	0.8514	0.0009	H-7->L+3 (50%), H-7->L+4 (49%)
50	49693.4	201.2	-0.8909	0.0038	H-2->L+5 (51%), H-2->L+7 (31%)

Figure S7. Key molecular orbitals involved in important transitions regarding the ECD spectrum of dominant conformer of 2a.

Table S13. Key transitions and their related rotatory and oscillator strengths of dominant conformer of 2b.

НОМО	is 196				
No	Energy	Wavelength	R	Osc.	Major contribe
110.	(cm ⁻¹)	(nm)	(length)	Strength	Major contribs

1	32633.2	306.4	-10.2165	0.0007	H-2->L+1 (86%)
2	33061.5	302.5	-9.681	0.0007	H-3->LUMO (83%)
3	33401.8	299.4	-27.3125	0.0036	H-4->L+4 (39%), H-1->L+4 (32%)
4	34173.7	292.6	-22.6141	0.0065	H-5->L+1 (24%), H-5->L+3 (16%), H-2->L+3 (40%)
5	34214.8	292.3	-11.0246	0.0018	H-6->LUMO (17%), H-6->L+2 (20%), H-3->L+2 (54%)
6	36218.3	276.1	27.8038	0.0511	HOMO->L+1 (51%), HOMO->L+3 (34%)
7	36940.2	270.7	16.2467	0.0467	H-1->LUMO (48%), H-1->L+2 (47%)
8	37898.4	263.9	0.3643	0.0002	HOMO->LUMO (99%)
0	38204.9	261.7	-7 6733	0.042	H-4->LUMO (31%), H-1->LUMO (15%), H-1->L+2 (23%),
	56204.7	201.7	-7.0755	0.042	H-1->L+4 (21%)
10	38496.0	259.8	-14 2291	0.021	H-4->L+4 (30%), H-1->LUMO (11%), H-1->L+2 (15%), H-
10	50470.0	237.0	14.2291	0.021	1->L+4 (22%)
11	38790.4	257.8	-6.983	0.254	HOMO->L+1 (36%), HOMO->L+3 (46%)
12	39292.1	254.5	0.0962	0.0002	H-1->L+1 (96%)
13	39969.6	250.2	-2.6361	0.0072	H-5->L+1 (60%), H-2->L+3 (31%)
14	39993.0	250.0	-2.0772	0.003	H-6->LUMO (74%), H-3->L+2 (17%)
15	40332.6	247.9	-7.2771	0.1303	H-6->L+2 (12%), H-4->LUMO (44%), H-1->LUMO (11%)
16	40386.6	247.6	-25.6266	0.022	HOMO->L+2 (26%), HOMO->L+4 (56%)
17	40818.9	245.0	0.1588	0.0001	HOMO->L+2 (70%), HOMO->L+4 (24%)
18	41279.5	242.3	7.9359	0.0156	H-3->L+3 (15%), H-3->L+4 (62%)
19	41410.9	241.5	-0.0338	0	H-2->LUMO (99%)
20	41998.1	238.1	45.892	0.0815	H-5->L+3 (44%), H-5->L+4 (10%)
21	42090.0	237.6	-27.2301	0.0148	H-1->L+3 (72%), H-1->L+4 (15%)
22	42124.7	237.4	59.3056	0.1019	H-6->L+2 (43%), H-4->LUMO (11%), H-3->L+2 (18%)
23	42326.4	236.3	4.4767	0.0036	H-3->L+1 (91%)
24	43337.0	230.7	0.0773	0.0002	H-4->L+1 (98%)
25	43395.0	230.4	3.7683	0.0027	H-4->L+2 (89%)
26	43965.3	227.5	0.1284	0	H-2->L+2 (65%), H-2->L+4 (29%)
27	44264.5	225.9	0.012	0	H-2->L+2 (34%), H-2->L+3 (12%), H-2->L+4 (53%)
28	44974.3	222.3	0.0946	0.0001	H-5->LUMO (99%)
29	45012.2	222.2	-0.017	0	H-3->L+3 (81%), H-3->L+4 (19%)
30	45854.2	218.1	-1.0811	0.0014	H-6->L+1 (68%), H-6->L+4 (20%)
31	46178.5	216.6	1.6847	0.0011	H-6->L+1 (16%), H-6->L+4 (32%), H-4->L+3 (32%)
32	46197.0	216.5	1.3638	0.0004	H-6->L+4 (16%), H-4->L+3 (50%), H-4->L+4 (14%)
33	46355.1	215.7	5.9956	0.0048	H-7->L+1 (80%)
34	46488.2	215.1	8.3964	0.01	HOMO->L+5 (75%), HOMO->L+7 (15%)
35	46922.9	213.1	1.4345	0.0012	H-7->LUMO (98%)
36	47325.4	211.3	1.9446	0.0027	H-1->L+5 (66%), H-1->L+6 (13%)
37	47327.8	211.3	-12.193	0.0063	H-9->L+1 (25%), H-8->L+1 (48%)
38	47578.6	210.2	-0.1398	0.0001	H-5->L+2 (78%), H-5->L+4 (18%)
39	47876.3	208.9	0.0225	0.0002	H-5->L+2 (21%), H-5->L+3 (14%), H-5->L+4 (64%)
40	48219.9	207.4	-3.5072	0.0049	HOMO->L+6 (83%)
41	48534.4	206.0	-0.7644	0.0002	H-8->LUMO (94%)
42	48615.1	205.7	-10.2508	0.0028	H-13->LUMO (11%), H-10->LUMO (48%), H-9->LUMO (19%)

43	48665.9	205.5	-1.9611	0.001	H-9->L+1 (40%), H-8->L+1 (36%)
44	48693.3	205.4	-0.0513	0.0002	H-6->L+3 (72%), H-6->L+4 (18%)
45	48964.3	204.2	0.8815	0.0007	HOMO->L+8 (75%)
46	49214.3	203.2	0.2124	0.0005	HOMO->L+5 (13%), HOMO->L+7 (70%)
47	49330.5	202.7	3.2656	0.0017	H-1->L+5 (10%), H-1->L+6 (68%), H-1->L+8 (14%)
48	49524.9	201.9	0.8388	0.0033	H-2->L+5 (57%), H-2->L+7 (25%)
49	49561.2	201.8	-0.9003	0.0006	H-7->L+2 (19%), H-7->L+3 (72%)
50	49653.1	201.4	2.4169	0.0009	H-7->L+2 (29%), H-7->L+3 (19%), H-7->L+4 (48%)

Figure S8. Key molecular orbitals involved in important transitions regarding the ECD spectrum of dominant conformer of 2b.

4. HRMS, UV, IR, and NMR spectra of the natural 1–2, 7, and 12–15

m/z	lon	Formula ⊽	Abundanc								
19.4882	(M+H)+	C45 H67 O7	821857.2								
Best	Formula (M)	Ion Formula	Calc m/z	Score	Cross Score	Mass V	Calc Mass	Diff (ppm)	Abs Diff (ppm)	Abund Match	Diff (mDa)
	C45 H66 O7	C45 H67 O7	719.4881	98.82		718.4809	718.4809	-0.01	0.01	97.17	-0.01
	C38 H70 O12	C38 H71 O12	719.494	68.71		718.4809	718.4867	8.17	8.17	93.82	5.87
	C52 H62 O2	C52 H63 O2	719.4823	63.92		718.4809	718.475	-8.18	8.18	77.38	-5.88
iromatog	ram Results	∰MS Formula	Results: +	III - Scan ((0.453 min)	- TJN-BEE	-1. d				
romatog S Spect	ram Results	∰MS Formula	Results: +	III - Scan ((0.453 min)	- TJN-BEE	-1.d				
romatog SSpect ⇔ ‡∣€	ram Results rum Results 2 🛨 🚧 🔏 🚰	∰MS Formula	Results: +	 - Scan (<mark>%</mark> % %	(0. 453 min) 6 🎘 🔁	- TJN-BEE	-1. d				
uromatog S Spect ↔ ‡ © 10 ⁵ +ES	ram Results rum Results E to C 4	∰MS Formula ★ ▲ • • • 1 hin) Frag=175.0	Results: +	"" - Scan (% % 1. d	(0.453 min) 6 🎇 🥑	- TJN-BEE	<u>-1. d</u>				
romatog S Spect ↔ ‡ 6 10 5 +ES 8-	ram Results rum Results R 💽 😻 📽 🤷 I Scan (0.453 r	∰MS Formula ★ ▲ ⊖ ← 1 Ain) Frag=175.0	Results: +	III Scan (Scan (1. d 19. 4882 (M+H)+	(0.453 min) 6 (路) (3) C	- TJN-BEE	-1. d		741.4700		
aromatog S Spect ↔ ‡ € 10 ⁵ +ES 8- 6-	ram Results rum Results E 😧 🛠 🕰 🛃	∰MS Formula ▲ ▲ • C 1 hin) Frag=175.(Results: +	III Scan (% % % 1. d 19. 4882 (M+1) +	(0.453 min) 6 🎇 🕑 C	- TJN-BEE	-1. d		741. 4700		
romatog S Spect ↔ ‡ € 10 ⁵ +ES. 8- 6-	ram Results rum Results E to C E	∰MS Formula	Results: +	 - Scan (% % % 1. d 19. 4882 (M+1)+	(0.453 min) 6 🎇 🚍 -		-1. d		741. 4700		
S Spect S Spect ↔	ram Results rum Results E to C E	₩MS Formula	Results: +	III - Scan (-	(0.453 min) 6 🎘 🍠		-1.d	, o	741. 4700		
S Spect S Spect ↔ \$ 6 10 ⁵ +ES 8- 6- 4- 2-	ram Results run Results Tu Results To Results I Scan (0.453 r	₩MS Formula	Results: +	III Scan (% % % 1. d 19. 4882 (M+1)+	(0.453 min) 6 🎘 🥔			, o	741.4700		

Figure S9. HR-ESI-MS spectrum of rhodotomentone A (1).

Figure S10. UV spectrum of rhodotomentone A (1) in MeOH.

Figure S11. IR spectrum of rhodotomentone A (1) (KBr disc).

44.09 44.0644.06 44.06 44.06 44.0644.06 44.06 44.06 44.0644.06 44.06 44.06 44.06 44.06 44.0644.06 44.06 44.06 44.0644.06 44.06 44.06 44.0644.06 44.06 44.06 44.0644.06 44.06 44.0644.06 44.06 44.0644.06 44.06 44.0644.06 44.06 44.0644.06 44.06 44.0644.06 44.06 44.0644.06 44.06 44.0644.06 44.06 44.0644.06 44.06 44.0644.06 44.06 44.0644.06 44.06 44.0644.06 44.0644.06 44.0644.06 44.0644.06 44.0644.06 44.0644.06 44.0644.06 44.0644.06 44.0644.06 44.0644.06 44.0644.06 44.0644.06 44.0644.06 44.06

Figure S12. ¹H NMR spectrum (300 MHz) of rhodotomentone A (1) in CDCl₃.

Figure S13. ¹³C NMR spectrum (75 MHz) of rhodotomentone A (1) in CDCl₃.

Figure S14. ¹H–¹H COSY spectrum of rhodotomentone A (1) in CDCl₃.

Figure S15. HSQC spectrum of rhodotomentone A (1) in CDCl₃.

Figure S16. HMBC spectrum of rhodotomentone A (1) in CDCl₃.

Figure S17. NOESY spectrum of rhodotomentone A (1) in CDCl₃.

Figure S18. HR-ESI-MS spectrum of rhodotomentone B (2).

Figure S19. UV spectrum of rhodotomentone B (2) in MeOH.

Figure S20. IR spectrum of rhodotomentone B (2) (KBr disc).

Figure S21. ¹H NMR spectrum (500 MHz) of rhodotomentone B (2) in CDCl₃.

Figure S22. ¹³C NMR spectrum (125 MHz) of rhodotomentone B (2) in CDCl₃.

Figure S24. HSQC spectrum of rhodotomentone B (2) in CDCl₃.

Figure S25. HMBC spectrum of rhodotomentone B (2) in CDCl₃.

Figure S26. NOESY spectrum of rhodotomentone B (2) in CDCl₃.

Figure S27. HR-ESI-MS spectrum of rhodomentone A (7).

Figure S28. UV spectrum of rhodomentone A (7) in MeOH.

Figure S29. IR spectrum of rhodomentone A (7) (KBr disc).

5.3.1 5.3.1 5.3.1 5.3.1 1.3.8 5.3.1 1.3.8 1.3.9

Figure S30. ¹H NMR spectrum (400 MHz) of rhodomentone A (7) in CDCl₃.

-109.9

-213.8

-197.9

-169.2

Figure S31. ¹³C NMR spectrum (100 MHz) of rhodomentone A (7) in CDCl₃.

G.∎R	Form	ula Results	: + Scan (0. 283	min) - TJI	N-BEC-	5-5-2. d						×
m	/z	lon	Formula 🗸	Abundanc								
▶ 455	5.3521	I (M+H)+	C30 H47 O3	1638931								
E	Best	Formula (M)	Ion Formula	Calc m/z	Score	Cross Score	Mass 🗸	Calc Mass	Diff (ppm)	Abs Diff (ppm)	Abund Match	Diff (mDa)
Đ	\checkmark	C30 H46 O3	C30 H47 O3	455.352	98.2		454.3448	454.3447	-0.29	0.29	98.4	-0.13
					Ш							Þ
<u>A</u> Chr	omato	ogram Result:	s ∰MS Formula I	Results: +	Scan	(0.283 min)	- TJN-BEC	-5-5-2. d				
<u>l</u> ∎s	Spec	trum Result	5									×
2 H	\$	Q I 😿 🗸	🛧 🖄 🕤 ල 1	- 👖 🎙	% %	6 🏹 🕹						
x10	6 +E	SI Scan (0.28	3 min) Frag=175.0	V TJN-BEC-5	i-5-2. d	* 455⊾ 3521				o, X	0	H
1.	5-					(W+H)+		477.333	2		ĨĨ.	\mathbf{X}
1	1-							1		$/\gamma$	Ť H	Дн
0.1	75 -									0	Ň	
0.	5 -							2				
0.2	25 - 0	Ĩ.								tom	entodione A	(12)
		415 420	425 430 435	440 44	5 45C	455 460 Counts vs.	465 47 Mass-to-Cha	0 475 4; arge (m/z)	30 485	490 495 50	0 505 510	515
ff Sp	ectru	un Preview	· ·			-		-				×

Figure S32. HR-ESI-MS spectrum of tomentodione A (12).

Figure S33. UV spectrum of tomentodione A (12) in MeOH.

Figure S34. IR spectrum of tomentodione A (12) (KBr disc).

Figure S36. ¹³C NMR spectrum (100 MHz) of tomentodione A (12) in CDCl₃.

Figure S37. HR-ESI-MS spectrum of tomentodione B (13).

Figure S38. UV spectrum of tomentodione B (13) in MeOH.

Figure S39. IR spectrum of tomentodione B (13) (KBr disc).

Figure S40. ¹H NMR spectrum (400 MHz) of tomentodione B (13) in CDCl₃.

-213.8 -197.2 -170.4 -150.8

-86.4 -86.4 -86.4 -86.4 -86.4 -86.4 -93.6 -93.6 -93.6 -93.4 -93.5 -93.4

tomentodione B (13)

-116.4 -111.1

Figure S42. HR-ESI-MS spectrum of tomentodione C (14).

Figure S43. UV spectrum of tomentodione C (14) in MeOH.

Figure S44. IR spectrum of tomentodione C (14) (KBr disc).

Figure S46. ¹³C NMR spectrum (75 MHz) of tomentodione C (14) in CDCl₃.

Figure S47. HR-ESI-MS spectrum of tomentodione D (15).

Figure S48. UV spectrum of tomentodione D (15) in MeOH.

Figure S49. IR spectrum of tomentodione D (15) (KBr disc).

Figure S50. ¹H NMR spectrum (400 MHz) of tomentodione D (15) in CDCl₃.

Figure S51. ¹³C NMR spectrum (100 MHz) of tomentodione D (15) in CDCl₃.

5. Synthetic experimental procedures

5.1 General information

Unless otherwise mentioned, all reactions were carried out under a nitrogen atmosphere under anhydrous conditions, and all reagents were purchased from commercial suppliers without further purification. Solvent purifications were conducted according to Purification of Laboratory Chemicals (Peerrin, D. D.; Armarego, W. L. and Perrins, D. R., Pergamon Press: Oxford, 1980). Yields refer to chromatographically and spectroscopically (¹H NMR) homogeneous materials, unless otherwise stated. Reactions were monitored by thin layer chromatography (TLC) on plates (GF254) supplied by Yantai Chemicals (P. R. China) using UV light as visualizing agent, an ethanolic solution of *p*-anisaldehyde, and heat as developing agent. If not specially mentioned, flash column chromatography used silica gel (200–300 mesh) supplied by Tsingtao Haiyang Chemicals (P. R. China), Preparative thin layer chromatography (PTLC) separations were carried out 0.50 mm Yantai (P. R. China) silica gel plates. NMR spectra were recorded on Bruker AV400 and Bruker AV300, and calibrated using residual undeuterated solvent as an internal reference (CHCl₃, δ 7.26 ppm ¹H NMR, δ 77.00 ¹³C NMR). The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, b = broad, and m = multiplet.

The analytic and preparative HPLC were performed on an Agilent 1260 instrument equipped with a multiple wavelength diode array detector (DAD), accompanied by Cosmosil C₁₈ (4.6×250 mm, 5.0μ m) and Cosmosil 5C₁₈-MS-II (10×250 mm, 5.0μ m) columns, respectively. HR-ESI-MS spectra were acquired on an Agilent 6210 ESI/TOF mass spectrometer (Agilent, Pala Alto, CA, USA). IR spectra were recorded on a JASCO FT/IR-480 plus Fourier Transform infrared spectrometer (JASCO, Tokyo, Japan) using KBr pellets. Optical rotations were measured on a JASCO P-1020 polarimeter (JASCO, Tokyo, Japan) with a 1 cm cell at room temperature.

5.2 Syntheses of 7 and 12-15

Table S14. Condition screen for the syntheses of compounds 7 and 12–15.

entry ^a	catalyst	mol %	solvent	temp (°C)	time (h)	Yield $(\%)^b$	7:12:13:14:15
1	_	—	DCM	40	24	25	16:10:15:5:1
2	_	_	H ₂ O	100	24	trace	_
3	-	—	toluene	rt	48	28	9:19:31:11:1
4	-	—	toluene	60	24	30	14:13:26:9:1
5	_	—	toluene	80	24	36	32:22:14:19:1
6	_	—	toluene	110	24	45	5:6:9:5:1
7	DEAC	60	toluene	110	24	trace	_
8	ZnF_2	60	toluene	110	24	23	9:7:4:10:1
9	$ZnCl_2$	60	toluene	110	24	32	8:6:3:7:1
10	ZnI_2	60	toluene	110	1	53	6:5:2:9:1
11	-	—	neat	rt	24	48	13:11:20:9:1
12	_	_	neat	80	24	55	13:9:16:6:1
13	_	_	toluene/H ₂ O (1:1)	110	24	49	14:8:14:4:1
14	_	_	toluene/H ₂ O (2:1)	110	24	60	15:9:14:5:1
15	_	_	toluene/H ₂ O (1:2)	110	24	50	14:7:13:4:1

^a Unless otherwise stated, the reactions of entries 1–15 were performed with 4 (0.4 mmol) and 6 (0.4 mmol). ^b Combined isolated yield.

Compound **4** (100 mg, 0.4 mmol) in a toluene-H₂O (2:1) solution (4 mL) was added β -caryophyllene (**6**) (91 µL, 0.4 mmol) under reflux at 110 °C (entry 14). The resulting mixture was stirred for 24 h. After the reaction was finished according to TLC, the mixture was concentrated *in vacuum*. The crude residue was further purified by preparative HPLC (CH₃CN-H₂O, 95:5) to afford corresponding products **7** and **12–15**.

Compound 7: 36.3 mg, 20% yield, colorless needle crystals, mp 156–158 °C;

 $\mathbf{R}_f = 0.53$ (petroleum ether/ethyl acetate, 20/1);

 $[\alpha]_{D}^{25} = -23.2^{\circ} (c \ 0.5, \text{MeOH});$

IR (KBr) ν_{max} : 2948, 2867, 1715, 1647, 1617, 1462, 1385, 1359, 1284, 1185, 1080, 1045, 977, 891, 851, 757, 619, 468 cm⁻¹;

¹**H** NMR (300 MHz, CDCl₃) δ 5.20 (brs, 1H), 2.89 (m, 1H), 1.83 (m, 1H), 1.70 (s, 3H), 1.67 (m, 1H), 1.39 (m, 1H), 1.35 (m, 1H), 1.31 (s, 3H), 1.31 (s, 3H), 1.26 (s, 3H), 1.24 (m, 1H), 1.08 (d, J = 6.5 Hz, 3H), 0.97 (d, J = 6.5 Hz, 3H), 0.96 (s, 3H), 0.92 (brs, 3H);

¹³**C NMR** (75 MHz, CDCl₃) *δ* 213.9, 197.9, 169.2, 109.9, 55.5, 48.1, 42.3, 37.4, 32.7, 29.8, 26.8, 25.7, 25.4, 25.3, 24.6, 24.2, 23.0, 22.5, 21.0;

HRMS (ESI) calcd for C₃₀H₄₇O₃ [M+H]⁺ Exact Mass: 455.3520; found: 455.3523.

	¹ Н & рј	om (J)		¹³ C d	& ppm	
position	isolated (400M)	synthesized (300M)	error (iso syn.)	isolated (100M)	synthesized (75M)	error (iso syn.)
1	-	-	-	169.2	169.2	0
2	-	-	-	48.1	48.1	0
3	-	-	-	213.8	213.9	-0.1
4	-	-	-	55.5	55.5	0
5	-	-	-	197.9	197.9	0
6	-	-	-	109.9	109.9	0
7	2.91 (m, 1H)	2.89 (m, 1H)	0.02	24.6	24.6	0
8a	1.40 ^a (m, 1H)	1.39 ^a (m, 1H)	0.01	42.3	42.3	0
8b	1.24 ^a (m, 1H)	1.24 ^a (m, 1H)	0			
9	1.83 ^a (m, 1H)	1.83 ^a (m, 1H)	0	25.7	25.7	0
10	1.08 (d, J = 6.4 Hz, 3H)	1.08 (d, J = 6.5 Hz, 3H)	0	21.0	21.0	0
11	0.97 ^a (d, <i>J</i> = 6.4 Hz, 3H)	0.97^{a} (d, $J = 6.5$ Hz, 3H)	0	24.2	24.2	0
12	1.26 (s, 3H)	1.26 (s, 3H)	0	25.4	25.4	0
13	1.32 ^a (s, 3H)	1.31 ^a (s, 3H)	0.01	25.3	25.3	0
14	1.32ª (s, 3H)	1.31ª (s, 3H)	0.01	26.8	26.8	0
15	1.31ª (s, 3H)	1.31ª (s, 3H)	0	22.4	22.5	-0.1
1'	C	C		b	b	
2'	С	С		b	b	
3'a	С	С		b	b	
3'b	С	С				
4'	-	-		b	b	
5'	5.20 (brs, 1H)	5.20 (brs, 1H)	0	b	b	
6'a	ĊĊ ,	`c ´		b	b	
6'b	С	С				
7'a	С	С		b	b	
7'b	c	С				
8'	_	_		b	b	
9'	С	С		b	b	
10'a	1.67 ^a (m. 1H)	1.67 ^a (m. 1H)	0	37.4	37.4	0
10'b	1.35 ^a (m. 1H)	1.35 ^a (m. 1H)	Ó			
11'		-	-	32.7	32.7	0
12'	0.90 (brs. 3H)	0.92 (brs. 3H)	-0.02	29.9	29.8	0.1
13'	0.96 ^a (s. 3H)	0.96 ^a (s, 3H)	0	22.8	23.0	-0.2
14'	1.71 (s. 3H)	1.70 (s. 3H)	0.01	b	b	
15'a	C	C		b	Ď	
15'b	C	C				

Table S15. NMR data (CDCl₃) comparison between synthetic 7 and the isolated natural product.

^a Overlapped signals, ^b Signals invisible, ^c Signals unassigned

Compound 12: 21.8 mg, 12% yield, yellow oil;

 $\mathbf{R}_f = 0.38$ (petroleum ether/ethyl acetate, 20/1);

 $[\alpha]_{D}^{25} = +78.5^{\circ} (c \ 1.0, \text{MeOH});$

IR (**KBr**) *v*_{max}: 2949, 2871, 1716, 1624, 1463, 1381, 1188, 1048, 759 cm⁻¹;

¹**H** NMR (400 MHz, CDCl₃) δ 4.91 (s, 1H), 4.88 (s, 1H), 2.47 (dt, J = 13.8, 5.1 Hz, 1H), 2.39 (m, 1H), 2.26 (m, 1H), 2.11 (m, 1H), 2.08 (m, 1H), 2.03 (m, 1H), 1.90 (m, 1H), 1.81 (m, 1H), 1.78 (m, 1H), 1.74 (m, 1H), 1.68 (m, 1H), 1.62 (m, 1H), 1.46 (m, 1H), 1.43 (m, 1H), 1.40 (m, 1H), 1.37 (s, 3H), 1.33 (s, 3H), 1.32 (s, 3H), 1.32 (m, 1H), 1.31 (s, 3H), 1.06 (s, 3H), 0.98 (s, 3H), 0.98 (s, 3H), 0.83 (d, J = 6.5 Hz, 3H), 0.75 (d, J = 6.5 Hz, 3H);

¹³C NMR (100 MHz, CDCl₃) δ 214.1, 197.7, 170.6, 152.3, 113.7, 110.8, 83.2, 55.3, 52.2, 47.7, 42.5, 40.4, 38.9, 37.5, 36.4, 35.4, 34.6, 33.6, 33.1, 30.5, 26.2, 25.6, 25.6, 24.2, 24.1, 24.1, 23.4, 22.4, 22.3, 21.0;

HRMS (ESI) calcd for $C_{30}H_{47}O_3$ [M+H]⁺ Exact Mass: 455.3520; found: 455.3521.

	¹ H & j	ррт (Ј)		¹³ C 8	& ррт	
position	isolated (400M)	synthesized (400M)	error (iso syn.)	isolated (100M)	synthesized (100M)	error (iso syn.)
1	-	-	-	170.5	170.6	-0.1
2	-	-	-	47.7	47.7	0
3	-	-	-	214.1	214.1	0
4	-	-	-	55.3	55.3	0
5	-	-	-	197.6	197.7	-0.1
6	-	-	-	113.7	113.7	0
7	2.26 (m, 1H)	2.26 (m, 1H)	0	34.6	34.6	0
8a	1.82 (m, 1H)	1.81 (m, 1H)	0.01	38.9	38.9	0
8b	1.31 ^a (m, 1H)	1.32 ^a (m, 1H)	-0.01			
9	1.47ª (m, 1H)	1.46ª (m, 1H)	0.01	25.6	25.6	0
10	0.75 (d, J = 6.6 Hz, 3H)	0.75 (d, J = 6.5 Hz, 3H)	0	24.2	24.2	0
11	0.83 (d, J = 6.6 Hz, 3H)	0.83 (d, J = 6.5 Hz, 3H)	0	24.1	24.1	0
12	1.37 (s, 3H)	1.37 (s, 3H)	0	24.1	24.1	0
13	1.32 (s, 3H)	1.32 (s, 3H)	0	25.6	25.6	0
14	1.31 (s, 3H)	1.31 (s, 3H)	0	23.4	23.4	0
15	1.33 (s, 3H)	1.33 (s, 3H)	0	26.2	26.2	0
1 [.]	2.03 (m, 1H)	2.03 (m, 1H)	0	52.2	52.2	0
2'a	1.78° (m, 1H)	1.78° (m, 1H)	0	22.4	22.4	U
2'0	1.40° (m, 1H)	1.40° (m, 1H)	0	07 F	07 F	0
3.9	2.08 ⁴ (m, 1H)	2.08° (m, 1H)	0	37.5	37.5	U
3 D	1.90 (M, 1H)	1.90 (M, 1H)	U	024	02.2	0.4
4	2 0 0 a (m 1 L)	2 09 ^a (m. 111)	-	03.1	03.Z	-0.1
5	2.00^{-1} (III, III) 1.74 (m. 14)	2.00^{-1} (III, III) 1.74 (m. 14)	0	40.4	40.4	0
0 a 6'h	1.74 (III, III) 1.428 (m. 14)	1.74 (III, 10)	0	33.1	33.1	U
7'2	2.47 (m, 1H)	2 /7 (dt / = 13 8 5 1 Hz 1	L) Å	25 /	25 4	0
7 a 7'b	2.47 (III, III) 2.12 ^a (m. 1H)	2.47 (ul, $J = 15.6, 5.1 Hz, 12.11^{a} (m 1H)$		55.4	55.4	U
8'	2.12 (11, 11)	2.11 (11, 11)	0.01	152 3	152 3	0
ġ'	2 39 (m 1H)	2 39 (m 1H)	0	42.5	12.5	ŏ
10'a	1.68 (m. 1H)	1.68 (m. 1H)	ő	36.4	36 /	ŏ
10'h	1.60 (m, 1H)	1.62 (m. 1H)	-0 01	00.4	00.4	v
11'			-	33.6	33.6	0
12'	0.98 ^a (s. 3H)	0.98 ^a (s. 3H)	0	30.5	30.5	ŏ
13'	0.98 ^a (s. 3H)	0.98 ^a (s. 3H)	ŏ	22.3	22.3	ŏ
14'	1.06 (s. 3H)	1.06 (s. 3H)	õ	21.0	21.0	õ
15'a	4.91 (s. 1H)	4.91 (s. 1H)	Ō	110.8	110.8	Ō
15'b	4.88 (s, 1H)	4.88 (s, 1H)	0			-

Fable S16. NMR data	(CDCl ₃) compar	ison between s	vnthetic 12	and the isola	ted natural product.
----------------------------	-----------------------------	----------------	-------------	---------------	----------------------

Compound 13: 36.3 mg, 20% yield, yellow oil;

 $\mathbf{R}_f = 0.35$ (petroleum ether/ethyl acetate, 20/1);

 $[\alpha]_{D}^{25} = +40.6^{\circ} (c \ 0.5, \text{MeOH});$

IR (**KBr**) *v*_{max}: 2938, 2868, 1713, 1648, 1621, 1459, 1383, 1282, 1190, 890, 843, 759 cm⁻¹;

¹**H** NMR (400 MHz, CDCl₃) δ 4.92 (s, 1H), 4.90 (s, 1H), 2.88 (m, 1H), 2.40 (m, 1H), 2.33 (m, 1H), 2.13 (m, 1H), 2.04 (m, 1H), 1.75 (m, 1H), 1.73 (m, 1H), 1.67 (m, 2H), 1.55-1.61 (m, 2H), 1.59 (m, 1H), 1.50 (m, 1H), 1.48 (m, 1H), 1.41 (m, 1H), 1.39 (m, 1H), 1.36 (s, 3H), 1.35 (s, 3H), 1.33 (s, 3H), 1.33 (s, 3H), 1.32 (s, 3H), 1.10 (m, 1H), 0.97 (s, 3H), 0.97 (d, *J* = 6.0 Hz, 3H), 0.94 (s, 3H), 0.82 (d, *J* = 6.0 Hz, 3H);

¹³C NMR (100 MHz, CDCl₃) δ 214.0, 197.3, 170.4, 150.9, 116.5, 111.1, 86.5, 58.2, 55.6, 47.7, 46.4, 42.4, 41.0, 39.9, 36.2, 35.4, 34.5, 29.9, 28.4, 26.7, 25.6, 25.5, 25.3, 25.0, 24.8, 24.3, 23.8, 23.5, 21.9, 21.7;

HRMS (ESI) calcd for $C_{30}H_{47}O_3$ [M+H]⁺ Exact Mass: 455.3520; found: 455.3528.

	¹ Н & рј	om (J)		¹³ C 8	& ppm	
position	isolated (400M)	synthesized (400M)	error (iso syn.)	isolated (100M)	synthesized (100M)	error (iso syn.)
1	-	-	-	170.4	170.4	0
2	-	-	-	47.7	47.7	0
3	-	-	-	213.8	214.0	-0.2
4	-	-	-	55.5	55.6	-0.1
5	-	-	-	197.2	197.3	-0.1
6	-	-	-	116.4	116.5	-0.1
7	2.88 (m, 1H)	2.88 (m, 1H)	0	28.4	28.4	0
8a	1.40 ^a (m, 1H)	1.41 ^a (m, 1H)	-0.01	41.0	41.0	0
8b	1.10 (m, 1H)	1.10 (m, 1H)	0			
9	1.47 ^a (m, 1H)	1.48 ^a (m, 1H)	-0.01	26.7	26.7	0
10	0.82 (d, <i>J</i> = 6.0 Hz, 3H)	0.82 (d, J = 6.0 Hz, 3H)	0	24.7	24.8	-0.1
11	0.97 ^a (d, <i>J</i> = 6.0 Hz, 3H)	0.97 ^a (d, J = 6.0 Hz, 3H)	0	21.7	21.7	0
12	1.32 ^a (s, 3H)	1.33 ^a (s, 3H)	-0.01	25.0	25.0	0
13	1.35 (s, 3H)	1.35 (s, 3H)	0	25.5	25.5	0
14	1.32 ^a (s, 3H)	1.33 ^a (s, 3H)	-0.01	23.8	23.8	0
15	1.32 (s, 3H)	1.32 (s, 3H)	0	25.5	25.6	-0.1
1'	1.49 ^a (m, 1H)	1.50 ^a (m, 1H)	-0.01	58.2	58.2	0
2'	1.55-1.61 ^a (m, 2H)	1.55-1.61 ^a (m, 2H)	0	24.2	24.3	-0.1
3'a	2.03 (m, 1H)	2.04 (m, 1H)	-0.01	46.3	46.4	-0.1
3'b	1.39 ^a (m, 1H)	1.39 ^a (m, 1H)	0			
4'	-	-	-	86.4	86.5	-0.1
5'	1.74 ^a (m, 1H)	1.75 ^a (m, 1H)	-0.01	39.8	39.9	-0.1
6'	1.66 (m, 2H)	1.67 (m, 2H)	-0.01	25.3	25.3	0
7'a	2.33 (m, 1H)	2.33 (m, 1H)	0	35.4	35.4	0
7'b	2.13 (m, 1H)	2.13 (m, 1H)	0			
8'	-	-	-	150.8	150.9	-0.1
9'	2.40 (m, 1H)	2.40 (m, 1H)	0	42.4	42.4	0
10'a	1.72 ^a (m, 1H)	1.73 ^a (m, 1H)	-0.01	36.2	36.2	0
10'b	1.59 ^a (m, 1H)	1.59 ^a (m, 1H)	0			
11'	-	-	-	34.5	34.5	0
12'	0.94 (s, 3H)	0.94 (s, 3H)	0	29.8	29.9	-0.1
13'	0.97 ^a (s, 3H)	0.97 ^a (s, 3H)	0	21.9	21.9	0
14'	1.35 (s, 3H)	1.36 (s, 3H)	-0.01	23.4	23.5	-0.1
15'a	4.91 (s, 1H)	4.92 (s, 1H)	-0.01	111.1	111.1	0
15'b	4.90 (s, 1H)	4.90 (s, 1H)	0			

Table S17. NMR data (CDCl₃) comparison between synthetic 13 and the isolated natural product.

Compound 14: 12.7 mg, 7% yield, yellow oil;

 $\mathbf{R}_f = 0.53$ (petroleum ether/ethyl acetate, 20/1);

 $[\alpha]_{\rm D}^{25} = -26.4^{\circ} (c \ 0.5, \text{MeOH});$

IR (**KBr**) *v*_{max}: 2950, 2871, 1716, 1623, 1463, 1381, 1188, 1048, 885, 761 cm⁻¹;

¹**H NMR** (400 MHz, CDCl₃) δ 4.83 (brs, 1H), 4.73 (brs, 1H), 2.98 (m, 1H), 2.57 (q, J = 9.2 Hz, 1H), 2.35 (m, 1H), 2.13 (m, 1H), 2.10 (m, 1H), 2.03 (m, 1H), 1.76 (m, 1H), 1.73 (m, 1H), 1.71 (m, 1H), 1.67 (m, 1H), 1.65 (m, 1H), 1.53 (m, 1H), 1.51 (m, 1H), 1.49 (m, 1H), 1.44 (m, 1H), 1.37 (s, 3H), 1.35 (s, 3H), 1.35 (s, 3H), 1.35 (s, 3H), 1.25 (s, 3H), 1.19 (m, 1H), 1.08 (m, 1H), 0.96 (s, 3H), 0.95 (d, J = 6.4 Hz, 3H), 0.88 (s, 3H), 0.87 (d, J = 6.4 Hz, 3H);

¹³C NMR (100 MHz, CDCl₃) δ 213.7, 198.0, 169.8, 154.9, 114.7, 110.2, 85.5, 56.9, 55.5, 47.9, 42.9, 42.1, 41.6, 38.6, 38.5, 36.4, 33.5, 29.6, 29.3, 29.2, 27.6, 26.2, 25.5, 25.2, 24.3, 23.7, 23.4, 22.9, 22.3, 21.9;

HRMS (ESI) calcd for $C_{30}H_{47}O_3$ [M+H]⁺ Exact Mass: 455.3520; found: 455.3525.

	¹ Н & рр	om (J)		¹³ C 8	& ppm	
position	isolated (400M)	synthesized (400M)	error (iso syn.)	isolated (100M)	synthesized (100M)	error (iso syn.)
1	-	-	-	169.8	169.8	0
2	-	-	-	47.9	47.9	0
3	-	-	-	213.7	213.7	0
4	-	-	-	55.5	55.5	0
5	-	-	-	198.0	198.0	0
6	-	-	-	114.8	114.7	0.1
7	2.98 (m, 1H)	2.98 (m, 1H)	0	29.3	29.3	0
8a	1.49 ^a (m, 1H)	1.49 ^a (m, 1H)	0	42.1	42.1	0
8b	1.08 (m, 1H)	1.08 (m, 1H)	0			
9	1.67 ^a (m, 1H)	1.67 ^a (m, 1H)	0	27.6	27.6	0
10	0.95 (d, <i>J</i> = 6.2 Hz, 3H)	0.95 (d, <i>J</i> = 6.4 Hz, 3H)	0	24.3	24.3	0
11	0.87 ^a (d, <i>J</i> = 6.2 Hz, 3H)	0.87 ^a (d, <i>J</i> = 6.4 Hz, 3H)	0	21.9	21.9	0
12	1.35 ^a (s, 3H)	1.35 ^a (s, 3H)	0	25.5	25.5	0
13	1.37 (s, 3H)	1.37 (s, 3H)	0	26.2	26.2	0
14	1.35 ^a (s, 3H)	1.35 ^a (s, 3H)	0	22.9	22.9	0
15	1.34 (s, 3H)	1.35 (s, 3H)	-0.01	25.2	25.2	0
1'	1.54 ^a (m, 1H)	1.53ª (m, 1H)	0.01	56.9	56.9	0
2'a	1.44 ^a (m, 1H)	1.44ª (m, 1H)	0	23.4	23.4	0
2'b	1.19 (m, 1H)	1.19 (m, 1H)	0			
3'a	2.03 (m, 1H)	2.03 (m, 1H)	0	41.6	41.6	0
3'b	1.76 (m, 1H)	1.76 (m, 1H)	0			
4'	-	-	-	85.5	85.5	0
5'	2.10 ^ª (m, 1H)	2.10 ^ª (m, 1H)	0	38.5	38.6	-0.1
6'a	1.70 ^a (m, 1H)	1.71 ^a (m, 1H)	-0.01	29.2	29.2	0
6'b	1.51ª (m, 1H)	1.51 ^a (m, 1H)	0			
7'a	2.35 (m, 1H)	2.35 (m, 1H)	-	36.4	36.4	0
7'b	2.12 ^a (m, 1H)	2.13 ^a (m, 1H)	-0.01			
8'	-	-	-	154.9	154.9	0
9'	2.57 (q, <i>J</i> = 9.2 Hz, 1H)	2.57 (q, <i>J</i> = 9.2 Hz, 1H)	0	42.9	42.9	0
10'a	1.73 (m, 1H)	1.73 (m, 1H)	0	38.6	38.5	0.1
10'b	1.65 (m, 1H)	1.65 (m, 1H)	0			
11'	-	-	-	33.5	33.5	0
12'	0.96 (s, 3H)	0.96 (s, 3H)	0	29.6	29.6	0
13'	0.88 (s, 3H)	0.88 (s, 3H)	0	22.3	22.3	0
14'	1.25 (s, 3H)	1.25 (s, 3H)	0	23.7	23.7	0
15'a	4.83 (brs, 1H)	4.83 (brs, 1H)	0	110.2	110.2	0
15'b	4.73 (brs, 1H)	4.73 (brs, 1H)	0			

Table S18. NMR data (CDCl₃) comparison between synthetic 14 and the isolated natural product.

Compound 15: 1.8 mg, 1% yield, yellow oil;

 $\mathbf{R}_f = 0.53$ (petroleum ether/ethyl acetate, 20/1);

 $[\alpha]_{D}^{25} = -20.4^{\circ} (c \ 0.5, \text{MeOH});$

IR (KBr) *v*_{max}: 2933, 2867, 1713, 1620, 1462, 1383, 1192, 1040 cm⁻¹;

¹**H NMR** (400 MHz, CDCl₃) *δ* 4.83 (s, 1H), 4.68 (s, 1H), 2.71 (q, *J* = 9.3 Hz, 1H), 2.40 (m, 1H), 2.28 (m, 1H), 2.20 (m, 1H), 2.14 (m, 1H), 2.10 (m, 1H), 1.92 (m, 1H), 1.88 (m, 1H), 1.78 (m, 1H), 1.65 (m, 1H), 1.62 (m, 1H), 1.56 (m, 1H), 1.56 (m, 1H), 1.56 (m, 1H), 1.52 (m, 2H), 1.48 (m, 1H), 1.40 (m, 1H), 1.38 (s, 3H), 1.34 (s, 3H), 1.31 (s, 3H), 1.31 (s, 3H), 1.03 (s, 3H), 1.00 (s, 3H), 0.97 (s, 3H), 0.89 (d, *J* = 6.5 Hz, 3H), 0.80 (d, *J* = 6.5 Hz, 3H);

¹³C NMR (100 MHz, CDCl₃) δ 214.1, 197.6, 170.4, 155.0, 113.4, 110.3, 83.5, 55.3, 54.6, 47.7, 42.8, 40.4, 40.0, 39.4, 39.4, 36.4, 35.1, 34.5, 33.5, 29.8, 25.9, 25.7, 25.5, 24.1, 24.0, 24.0, 23.7, 22.4, 22.1, 19.9;

HRMS (ESI) calcd for C₃₀H₄₇O₃ [M+H]⁺ Exact Mass: 455.3520; found: 455.3521.

	¹ H & pp	om (J)		¹³ C a	& ppm	
position	isolated (400M)	synthesized (400M)	error (iso syn.)	isolated (100M)	synthesized (100M)	error (iso syn.)
1	-	_	-	170.4	170.4	0
2	-	-	-	47.7	47.7	0
3	-	-	-	214.1	214.1	0
4	-	-	-	55.3	55.3	0
5	-	-	-	197.6	197.6	0
6	-	-	-	113.4	113.4	0
7	2.28 (m, 1H)	2.28 (m, 1H)	0	35.1	35.1	0
8a	1.88 ^a (m, 1H)	1.88ª (m, 1H)	0	39.4	39.4	0
8b	1.40 ^a (m, 1H)	1.40 ^a (m, 1H)	0			
9	1.56 ^a (m, 1H)	1.56 ^a (m, 1H)	0	25.7	25.7	0
10	0.89 (d, <i>J</i> = 6.6 Hz, 3H)	0.89 (d, J = 6.5 Hz, 3H)	0	24.1	24.1	0
11	0.79 (d, <i>J</i> = 6.6 Hz, 3H)	0.80 (d, J = 6.5 Hz, 3H)	-0.01	24.0	24.0	0
12	1.38 (s, 3H)	1.38 (s, 3H)	0	24.0	24.0	0
13	1.31 ^a (s, 3H)	1.31 ^a (s, 3H)	0	25.5	25.5	0
14	1.34 (s, 3H)	1.34 (s, 3H)	0	25.9	25.9	0
15	1.31 ^a (s, 3H)	1.31 ^a (s, 3H)	0	23.7	23.7	0
1'	1.61 ^a (m, 1H)	1.62 ^a (m, 1H)	-0.01	54.6	54.6	0
2'	1.52 ^a (m, 2H)	1.52 ^a (m, 2H)	0	22.1	22.1	0
3'a	2.13 ^a (m, 1H)	2.14 ^a (m, 1H)	-0.01	39.4	39.4	0
3'b	1.77 (m, 1H)	1.78 (m, 1H)	-0.01			
4'	-	-	-	83.5	83.5	0
5'	2.09 ^a (m, 1H)	2.10 ^ª (m, 1H)	-0.01	40.0	40.0	0
6'a	1.65ª (m, 1H)	1.65ª (m, 1H)	0	34.5	34.5	0
6'b	1.47 ^a (m, 1H)	1.48 ^a (m, 1H)	-0.01			
7'a	2.40 (m, 1H)	2.40 (m, 1H)	0	36.4	36.4	0
7'b	2.19 (m, 1H)	2.20 (m, 1H)	-0.01			
8'	-	-	-	155.0	155.0	0
9'	2.71 (q, <i>J</i> = 9.6 Hz, 1H)	2.71 (q, <i>J</i> = 9.3 Hz, 1H)	0	42.8	42.8	0
10'a	1.92 (m, 1H)	1.92 (m, 1H)	0	40.4	40.4	0
10'b	1.56 ^a (m, 1H)	1.56 ^a (m, 1H)	0			
11'	-	-	-	33.5	33.5	0
12'	1.00 (s, 3H)	1.00 (s, 3H)	0	29.8	29.8	0
13'	0.97 (s, 3H)	0.97 (s, 3H)	0	22.4	22.4	0
14'	1.03 (s, 3H)	1.03 (s, 3H)	0	19.9	19.9	0
15'a	4.83 (s, 1H)	4.83 (s, 1H)	0	110.3	110.3	0
15'b	4.68 (s, 1H)	4.68 (s, 1H)	0			

Table S19. NMR data (CDCl₃) comparison between synthetic 15 and the isolated natural product.

5.3 Syntheses of 1-2 and 16-17 through path A

Compound 7 (50 mg, 0.11 mmol) in a toluene solution (4 mL) was added **5b** (47 mg, 0.16 mmol) and 4Å molecular sieves under reflux at 110 °C. The resulting mixture was stirred for 24 h. After the reaction was finished according to TLC, the reaction was filtered through a plug of celite (CH₂Cl₂ was used as the eluent) and was concentrated *in vacuum*. The crude residue was further purified by preparative HPLC (CH₃OH-H₂O, 92:8) to afford corresponding products 1-2 and 16-17.

Compound 1: 19.7 mg, 25% yield, yellow oil;

 $\mathbf{R}_{f} = 0.69$ (petroleum ether/ethyl acetate, 4/1);

 $[\alpha]_{D}^{25} = +117.1^{\circ} (c \ 1.0, \text{MeOH});$

IR (**KBr**) *v*_{max}: 2954, 2925, 2868, 2850, 1713, 1652, 1618, 1466, 1383, 1362, 1212, 1182, 770 cm⁻¹;

ECD (**CH**₃**OH**): *λ*_{max} (Δ*ε*) 207 (-14.9), 273 (+60.0) nm;

¹**H NMR** (400 MHz, CDCl₃) δ 4.08 (d, J = 7.2 Hz, 1H), 2.90 (m, 1H), 2.84 (m, 1H), 2.38 (m, 1H), 2.18 (m, 1H), 2.16 (m, 1H), 2.15 (m, 1H), 2.11 (m, 1H), 1.92 (m, 1H), 1.88 (m, 1H), 1.82 (m, 1H), 1.78 (m, 1H), 1.73 (m, 1H), 1.71 (m, 1H), 1.68 (m, 1H), 1.64 (m, 1H), 1.62 (m, 1H), 1.55 (m, 1H), 1.48 (m, 1H), 1.43 (s, 3H), 1.40 (m, 1H), 1.37 (s, 3H), 1.36 (s, 3H), 1.35 (s, 3H), 1.33 (s, 3H), 1.32 (s, 3H), 1.31 (s, 3H), 1.30 (s, 3H), 1.26 (s, 3H), 1.25 (d, J = 6.6 Hz, 3H), 1.07 (d, J = 6.6 Hz, 3H), 1.03 (m, 1H), 0.98 (d, J = 6.6 Hz, 3H), 0.97 (s, 3H), 0.94 (s, 3H), 0.92 (d, J = 6.6 Hz, 3H); 1.3C **NMR** (100 MHz, CDCl₃) δ 216.0, 213.1, 213.0, 198.0, 197.2, 171.4, 168.8, 112.5, 108.3, 84.3, 83.3, 55.5, 55.4, 48.7, 48.2, 48.0, 45.2, 44.8, 43.6, 43.2, 42.9, 40.8, 39.5, 35.7, 34.1, 33.8, 30.1, 26.7, 26.1, 26.0, 25.9, 25.6, 25.5, 24.9, 24.4, 24.1, 23.4, 22.9, 22.4, 21.9, 21.5, 21.2, 21.0, 20.4, 18.3;

HRMS (ESI) calcd for C₄₅H₆₇O₇ [M+H]⁺ Exact Mass: 719.4881; found: 719.4884.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	¹ Н & р	om (J)		¹³ C a	& ррт	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	position	isolated (300M)	synthesized (400M)	error (iso syn.)	isolated (75M)	synthesized (100M)	error (iso syn.)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	-	-	-	171.3	171.4	-0.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	-	-	-	48.0	48.0	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	-	-	-	213.1	213.1	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	-	-	-	55.5	55.5	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	-	-	-	197.2	197.2	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5		4 09 (d. 1 - 7 2 H - 1 H)	0 01	108.4	108.3	0.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8	4.07 (d, <i>J</i> = 7.2 Hz, 1H)	4.08 (0, J = 7.2 HZ, TH)	-0.01	45.2	40.2	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9	2 80 (m 1H)	2 90 (m 1H)	-0 01	42.9	42 9	Ő
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	2.09 (III, III) 1 24 (d. / = 6 8 Hz 3H)	$1.25 (d_{1}) = 6.6 Hz (3H)$	-0.01	20.4	20.4	ŏ
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11	1.24 (d, 3 = 0.0 Hz, 3H)	1.07 (d, J = 6.6 Hz, 3H)	0	18.3	18.3	ŏ
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12	1.37 (s. 3H)	1.37 (s. 3H)	Ō	24.5	24.4	0.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13	1.42 (s. 3H)	1.43 (s, 3H)	-0.01	25.6	25.5	0.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14	1.34 (s. 3H)	1.35 (s, 3H)	-0.01	26.7	26.7	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15	1.29 (s, 3H)	1.30 (s, 3H)	-0.01	26.0	26.0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1'	1.82 (m, 1H)	1.82 (m, 1H)	0	48.7	48.7	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2'a	1.70 (m, 1H)	1.71 (m, 1H)	-0.01	23.4	23.4	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2'b	1.40 (m, 1H)	1.40 (m, 1H)	0			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3'a	2.18 (m, 1H)	2.18 (m, 1H)	0	40.8	40.8	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3'b	1.73 (m, 1H)	1.73 (m, 1H)	0			•
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4'		2 45 (-	84.3	84.3	0
6a 1.87 (m, 1H) 1.68 (m, 1H) -0.01 21.3 21.5 0 $7a$ 2.11 (m, 1H) 1.78 (m, 1H) 0 39.5 39.5 0 $7b$ 1.91 (m, 1H) 2.11 (m, 1H) 0.01 39.5 39.5 0 $8'$ - - 83.3 83.3 0 $9'$ 2.38 (m, 1H) 2.38 (m, 1H) 0 44.8 44.8 0 $10'a$ 1.63 (m, 1H) 1.62 (m, 1H) 0.011 35.7 35.7 0 $10'b$ 1.48 (m, 1H) 1.48 (m, 1H) 0 44.8 44.8 0 $10'a$ 1.63 (m, 1H) 1.48 (m, 1H) 0 35.7 35.7 0 $11'$ - - - 34.1 34.1 0 $12'$ 0.94 (s, 3H) 0.97 (s, 3H) 0 30.1 30.1 0 $14'$ 1.26 (s, 3H) 1.26 (s, 3H) 0 21.0 21.0 0 $15'b$ 1.55 (m, 1H) 1.55 (m, 1H) 0 33.8 33.8 0 $10''$ - </td <td>5' 6'-</td> <td>2.15 (m, 1H)</td> <td>2.15 (M, 1H)</td> <td>0.01</td> <td>43.2</td> <td>43.Z</td> <td>0</td>	5' 6'-	2.15 (m, 1H)	2.15 (M, 1H)	0.01	43.2	43.Z	0
0.0 1.78 (m, 1H) 1.78 (m, 1H) 0 39.5 39.5 0 7'a 2.11 (m, 1H) 1.92 (m, 1H) -0.01 8 33.3 0 8' - - - 83.3 83.3 0 9' 2.38 (m, 1H) 1.62 (m, 1H) 0.01 35.7 35.7 0 10'a 1.63 (m, 1H) 1.62 (m, 1H) 0.01 35.7 35.7 0 10'b 1.48 (m, 1H) 1.62 (m, 1H) 0.01 35.7 35.7 0 11' - - - 34.1 34.1 0 12' 0.94 (s, 3H) 0.97 (s, 3H) 0 22.4 22.4 0 13' 0.97 (s, 3H) 0.97 (s, 3H) 0 31.1 30.1 0 14' 1.26 (s, 3H) 1.26 (s, 3H) 0 31.8 33.8 0 15'a 2.16 (m, 1H) 2.16 (m, 1H) 0 33.8 33.8 0 15'b 1.55 (m, 1H) 2.84 (m, 1H) 0 148.2 48.2 0 2'' -	0 a 6'b	1.87 (m, 1H)	1.00 (III, 1H) 1.78 (m. 1H)	-0.01	21.5	21.5	U
1 true 2.11 (in, 11) 2.11 (in, 11) 0.11 (in, 11) 0.01 8' - - 83.3 83.3 0 9' 2.38 (m, 1H) 2.38 (m, 1H) 0.01 35.7 0 10'a 1.63 (m, 1H) 1.62 (m, 1H) 0.01 35.7 0 10'a 1.63 (m, 1H) 1.48 (m, 1H) 0 44.8 44.8 0 11' - - 34.1 34.1 0 0 11' - - 34.1 34.1 0 12' 0.94 (s, 3H) 0.97 (s, 3H) 0 22.4 22.4 0 13' 0.97 (s, 3H) 0.97 (s, 3H) 0 31.3 0.3.1 0.1 14' 1.26 (s, 3H) 1.26 (s, 3H) 0 21.0 21.0 0 15'b 1.55 (m, 1H) 2.16 (m, 1H) 0 33.8 33.8 0 2''' - - - 168.8 168.8 0 2''' - - - 198.0 198.0 0 1''' <t< td=""><td>7'a</td><td>1.70 (III, 10) 2.11 (m. 14)</td><td>2 11 (m 1H)</td><td>ŏ</td><td>39.5</td><td>39.5</td><td>0</td></t<>	7'a	1.70 (III, 10) 2.11 (m. 14)	2 11 (m 1H)	ŏ	39.5	39.5	0
10^{-1} 1.51 (iii, 111) 1.62 (iii, 111) 0.61 83.3 83.3 0.7 $9'$ 2.38 (m, 1H) 2.38 (m, 1H) 0.1 44.8 44.8 44.8 0.1 $10^{10}a$ 1.63 (m, 1H) 1.62 (m, 1H) 0.01 35.7 35.7 0 $10^{10}b$ 1.48 (m, 1H) 1.48 (m, 1H) 0.01 35.7 35.7 0 $10^{10}b$ 1.48 (m, 1H) 1.48 (m, 1H) 0.01 35.7 35.7 0 $11'$ $ 34.1$ 34.1 0 $12'$ 0.94 (s, 3H) 0.97 (s, 3H) 0 22.4 22.4 22.4 0.37 (s, 3H) 0.97 (s, 3H) 0 21.0 21.0 0 $14'$ 1.26 (s, 3H) 1.26 (s, 3H) 0 21.0 21.0 0 $15'a$ 2.16 (m, 1H) 2.16 (m, 1H) 0 33.8 33.8 0 $1''$ $ 48.2$ 48.2 0 $3''$ $ 168.8$ 168.8 0 $1''$ $ 18.0$ 198.0 0 $1''$ $ 112.6$ 112.5 0.1 $1''$ $ 112.6$ 112.5 0.1 $1''$ $ 112.6$ 112.5 0.1 $1''$ $ 112.6$ 12.5 0.1 </td <td>7'b</td> <td>1 91 (m, 1H)</td> <td>1.92 (m. 1H)</td> <td>-0 01</td> <td>00.0</td> <td>55.5</td> <td>v</td>	7'b	1 91 (m, 1H)	1.92 (m. 1H)	-0 01	00.0	55.5	v
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8	1.51 (m, 11)	····· (····, ····)	-	83.3	83.3	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9'	2.38 (m. 1H)	2.38 (m, 1H)	0	44.8	44.8	Ó
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10'a	1.63 (m, 1H)	1.62 (m, 1H)	0.01	35.7	35.7	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10'b	1.48 (m, 1H)	1.48 (m, 1H)	0			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11'	-	-	-	34.1	34.1	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12'	0.94 (s, 3H)	0.94 (s, 3H)	0	22.4	22.4	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13'	0.97 (s, 3H)	0.97 (s, 3H)	0	30.1	30.1	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14'	1.26 (s, 3H)	1.26 (s, 3H)	0	21.0	21.0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15'a	2.16 (m, 1H)	2.16 (m, 1H)	0	33.8	33.8	U
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15 0	1.55 (M, 1H)	1.55 (m, 1H)	U	168.8	169.9	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2"	-	-	_	48.2	48.2	ő
4'' - - 55.4 55.4 57.4 $5''$ - - 198.0 198.0 0 $6''$ - - 198.0 198.0 0 $6''$ - - 112.6 112.5 0.1 $7''$ 2.85 (m, 1H) 2.84 (m, 1H) 0.01 25.6 25.6 0 $8''a$ 1.64 (m, 1H) 1.64 (m, 1H) 0 43.7 43.6 0.1 $8''b$ 1.03 (m, 1H) 1.03 (m, 1H) 0 - - - $9''$ 1.69 (m, 1H) 1.68 (m, 1H) 0.01 25.9 25.9 0 $10''$ 0.92 (d, $J = 6.0$ Hz, 3H) 0.92 (d, $J = 6.6$ Hz, 3H) 0 24.1 24.1 0 $11''$ 0.98 (d, $J = 6.0$ Hz, 3H) 0.98 (d, $J = 6.6$ Hz, 3H) 0 21.3 21.2 0.1 $12''$ 1.36 (s, 3H) 1.31 (s, 3H) 0 21.9 24.9 0 $13''$ 1.31 (s, 3H) 1.32 (s, 3H) -0.01 22.9 22.9 0 $14'''$ 1.32 (s, 3H) <t< td=""><td>3"</td><td>-</td><td>-</td><td>_</td><td>213.0</td><td>213 1</td><td>-0.1</td></t<>	3"	-	-	_	213.0	213 1	-0.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4"	-	-	-	55.4	55.4	0
	5"	-	-	-	198.0	198.0	Ŏ
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6"	-	-	-	112.6	112.5	0.1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7"	2.85 (m, 1H)	2.84 (m, 1H)	0.01	25.6	25.6	0
	8''a	1.64 (m, 1H)	1.64 (m, 1H)	0	43.7	43.6	0.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8''b	1.03 (m, 1H)	1.03 (m, 1H)	0			
$10^{"}$ 0.92 (d, $J = 6.0$ Hz, $3H$) 0.92 (d, $J = 6.6$ Hz, $3H$) 0 24.1 24.1 0 $11^{"}$ 0.98 (d, $J = 6.0$ Hz, $3H$) 0.98 (d, $J = 6.6$ Hz, $3H$) 0 21.3 21.2 0.1 $12^{"}$ 1.36 (s, $3H$) 1.36 (s, $3H$) 0 24.9 24.9 0 $13^{"}$ 1.31 (s, $3H$) 1.31 (s, $3H$) 0 21.9 21.9 0 $14^{"}$ 1.31 (s, $3H$) 1.32 (s, $3H$) -0.01 22.9 22.9 0 $15^{"}$ 1.32 (s, $3H$) 1.33 (s, $3H$) -0.01 22.0 26.0 26.1 -0.1	9"	1.69 (m, 1H)	1.68 (m, 1H)	0.01	25.9	25.9	0
11° 0.98 (d, $J = 6.0$ Hz, 3H)0.98 (d, $J = 6.6$ Hz, 3H)021.321.20.1 12° 1.36 (s, 3H) 1.36 (s, 3H)024.924.90 13° 1.31 (s, 3H) 1.31 (s, 3H)021.921.90 14° 1.31 (s, 3H) 1.32 (s, 3H)-0.0122.922.90 15° 1.32 (s, 3H) 1.33 (s, 3H)-0.0126.026.1-0.1	10"	0.92 (d, <i>J</i> = 6.0 Hz, 3H)	0.92 (d, $J = 6.6$ Hz, 3H)	0	24.1	24.1	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11"	0.98 (d, <i>J</i> = 6.0 Hz, 3H)	0.98 (d, $J = 6.6$ Hz, 3H)	U	21.3	21.2	0.1
13 1.31 (s, 3H) 1.31 (s, 3H) 0 21.9 21.9 0 14" 1.31 (s, 3H) 1.32 (s, 3H) -0.01 22.9 22.9 0 15" 1.32 (s, 3H) 1.33 (s, 3H) -0.01 26.0 26.1 -0.1	12"	1.36 (s, 3H)	1.36 (S, 3H)	U	24.9	24.9	U
15" 1.32 (s, 3H) 1.33 (s, 3H) -0.01 26.0 26.1 -0.1	13	1.31 (S, 3H)	1.31 (S,3⊓) 1.32 (e. 3∐)	_0.01	21.9	∠1.9 22 0	0
	15"	1.32 (s. 3H)	1.33 (s. 3H)	-0.01	26.0	26.1	-0.1

Fable S20. NMR data ((CDCl ₃) co	mparison between	synthetic 1	through path	A and the	e isolated natural	product.
	· · · · · · · · · · · · · · · · · · ·		~ /				

Compound 2: 10.3 mg, 13% yield, yellow oil;

 $\mathbf{R}_f = 0.69$ (petroleum ether/ethyl acetate, 4/1);

 $[\alpha]_{D}^{25} = -33.2^{\circ} (c \ 1.0, \text{MeOH});$

IR (**KBr**) v_{max} : 2925, 2858, 1699, 1622, 1462, 1383, 1204, 1142, 804, 769, 720 cm⁻¹;

ECD (**CH₃OH**): λ_{max} ($\Delta \varepsilon$) 208 (+30.1), 251 (-30.4), 274 (+10.8), 304 (-15.0) nm;

¹**H** NMR (300 MHz, CDCl₃) δ 4.23 (d, J = 7.5 Hz, 1H), 2.95 (m, 1H), 2.70 (m, 1H), 2.58 (m, 1H), 2.28 (m, 1H), 2.20 (m, 1H), 2.11 (m, 1H), 1.97 (m, 1H), 1.88 (m, 1H), 1.74 (m, 1H), 1.73 (m, 1H), 1.72 (m, 1H), 1.70 (m, 1H), 1.60 (m, 1H), 1.53 (m, 1H), 1.49 (m, 1H), 1.44 (s, 3H), 1.39 (s, 3H), 1.38 (m, 1H), 1.37 (s, 3H), 1.36 (s, 3H), 1.36 (s, 3H), 1.33 (s, 3H), 1.32 (d, J = 6.6 Hz, 3H), 1.31 (s, 3H), 1.30 (s, 3H), 1.28 (m, 1H), 1.26 (m, 2H), 1.14 (m, 3H), 1.10 (m, 1H), 1.03 (d, J = 6.6 Hz, 3H), 1.03 (d, J = 6.6 Hz, 3H), 0.97 (s, 3H), 0.95 (s, 3H), 0.91 (d, J = 6.6 Hz, 3H);

¹³C NMR (75 MHz, CDCl₃) δ 216.3, 213.3, 212.9, 197.9, 197.4, 171.7, 169.8, 110.7, 107.9, 83.4, 82.8, 55.5, 55.5, 48.6, 48.1, 48.0, 47.5, 42.7, 42.6, 42.5, 40.7, 40.6, 36.7, 34.6, 34.0, 29.9, 29.3, 27.3, 26.5, 26.1, 25.5, 25.3, 25.2, 24.9, 24.1, 23.6, 23.0, 22.9, 22.7, 21.3, 21.3, 21.0, 20.8, 17.4;

HRMS (ESI) calcd for C₄₅H₆₇O₇ [M+H]⁺ Exact Mass: 719.4881; found: 719.4880.

Table S21. NMR data (CDCl₃) comparison between synthetic 2 from through A and the isolated natural product.

isolated (500M) synthesized (300M) error (iso syn.) isolated (125M) synthesized (75M) 1 - - - 171.7 171.7 2 - - - 48.0 48.0 3 - - - 212.9 212.9 4 - - - 55.5 55.5 5 - - - 197.4 197.4	error (iso syn.) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 - - 171.7 171.7 2 - - - 48.0 48.0 3 - - - 212.9 212.9 4 - - - 55.5 55.5 5 - - - 197.4 197.4 6 - - 107.9 107.9	0 0 0 0 0 0 0 0 0 0 0 0
2 - - 48.0 48.0 3 - - 212.9 212.9 4 - - 55.5 55.5 5 - - 197.4 197.4 6 - 107.9 107.9	0 0 0 0 0 0 0 0 0 0 0
3 - - 212.9 212.9 4 - - 55.5 55.5 5 - - 197.4 197.4 6 - - 107.9 107.9	0 0 0 0 0 0 0 0 0 0
4 - 55.5 55.5 5 - 197.4 197.4 6 - 107.9 107.9	0 0 0 0 0 0 0 0 0
5 - 197.4 197.4	0 0 0 0 0 0 0
6 1170 170	0 0 0 0 0 0
	0 0 0 0 0
7 4.22 (d, $J = 7.0$ Hz, 1H) 4.23 (d, $J = 7.5$ Hz, 1H) -0.01 42.6 42.6 42.6	0 0 0 0
8 - 216.3 216.3 20.0 - 216.3 216.3	0 0 0
9 2.71 (m, 1H) 2.70 (m, 1H) 0.01 42.7 42.7 $\frac{1}{2}$	0
10 1.32 (d, $J = 6.5$ Hz, 3H) 1.32 (d, $J = 6.0$ Hz, 3H) 0 21.3 21.3	0
11 1.03 (d, $J = 6.5$ HZ, $3H$) 1.03 (d, $J = 0.6$ HZ, $3H$) 0 17.4 17.4	0
12 1.37 (S, 3H) 1.37 (S, 3H) 0 25.2 25.2	
13 $1.44 (5, 3H)$ $1.44 (5, 3H)$ 0 20.0 20.0 20.0 136 (5, 3H) 0 27.3 27.3	ŏ
14 1.30 (5, 5H) 1.30 (5, 5H) 0 21.3 21.3 15 1.21 (c. 2H) 1.31 (c. 3H) 0 20.8 20.8	ŏ
1^{\prime} $1.57(5,51)$ $1.57(5,51)$ $1.74(m,1H)$ 0 48.6 48.6	õ
$2'_{a}$ 153 (m 1H) 153 (m 1H) 0 23.0 23.0	õ
2'b 1.25 (m 1H) 1.26 (m 1H) -0.01	v
$3^{1}a$ 2.12 (m, 1H) 2.11 (m, 1H) 0 40.7 40.7	0
3'b 173 (m 1H) 1.73 (m 1H) 0	-
4 83.4 83.4	0
5' 2.21 (m. 1H) 2.20 (m, 1H) 0.01 40.6 40.6	0
6'a 1.28 (m. 1H) 1.28 (m, 1H) 0 29.9 29.9	0
6'b 1.25 (m, 1H) 1.26 (m, 1H) -0.01	
7'a 2.27 (m, 1H) 2.28 (m, 1H) -0.01 36.7 36.7	0
7'b 1.72 (m, 1H) 1.72 (m, 1H) 0	
8' 82.8 82.8	0
9' 2.58 (m, 1H) 2.58 (m, 1H) 0 47.5 47.5	0
10'a 1.60 (m, 1H) 1.60 (m, 1H) 0 34.6 34.6	0
10 [°] b 1.39 (m, 1H) 1.38 (m, 1H) 0.01	-
	0
12 0.95 (s, 3H) 0.95 (s, 3H) 0 22.9 22.9	U
13 0.97 (s, 3H) 0.97 (s, 3H) 0 29.3 29.3	0
14 1.14 (s, 3H) 1.14 (s, 3D) 0 21.0 21.0 1.0 (s, 3D) 0 21.0 21.0 21.0 1.0 21.0 1.0 21.0 1.0 21.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0
15'A 1.98 (M, 1H) 1.97 (III, III) 0.01 23.0 23.0	U
189 (m, in) 1.00 (iii, in) 0.01	0
	ŏ
3" 713 3 213 3	ŏ
4" - 55.5 55.5	ŏ
5" 197.9 197.9	ŏ
6" - 110.7 110.7	Ō
7" 2.95 (m. 1H) 2.95 (m. 1H) 0 25.3 25.3	Ō
8"a 1.49 (m. 1H) 1.49 (m. 1H) 0 42.5 42.5	0
8"b 1.10 (m. 1H) 1.10 (m, 1H) 0	
9" 1.70 (m, 1H) 1.70 (m, 1H) 0 26.1 26.1	0
10" 0.91 (d, $J = 6.2$ Hz, 3H) 0.91 (d, $J = 6.6$ Hz, 3H) 0 24.1 24.1	0
11" 1.03 (d, $J = 6.2$ Hz, 3H) 1.03 (d, $J = 6.6$ Hz, 3H) 0 21.3 21.3	0
12" 1.39 (s, 3H) 1.39 (s, 3H) 0 24.9 24.9	0
13" 1.30 (s, 3H) 1.30 (s, 3H) 0 25.5 25.5	0
14" 1.33 (s, 3H) 1.33 (s, 3H) 0 22.7 22.7	0
15" 1.36 (s, 3H) 1.36 (s, 3H) 0 26.5 26.5	0

Compound 16: 11.0 mg, 14% yield, yellow blocks, mp 213–215 °C;

 $\mathbf{R}_f = 0.62$ (petroleum ether/ethyl acetate, 4/1);

 $[\alpha]_{\rm D}^{25} = +49.4^{\circ} (c \ 0.5, \text{MeOH});$

IR (**KBr**) *v*_{max}: 2923, 2857, 1707, 1659, 1616, 1459, 1378, 1201 cm⁻¹;

¹**H** NMR (400 MHz, CDCl₃) δ 3.39 (d, J = 11.2 Hz, 1H), 2.93 (m, 1H), 2.64 (m, 1H), 2.23 (m, 1H), 2.19 (m, 1H), 2.10 (m, 1H), 2.08 (m, 1H), 2.02 (m, 1H), 1.88 (m, 1H), 1.85 (m, 1H), 1.78 (m, 1H), 1.76 (m, 1H), 1.69 (m, 1H), 1.66 (m, 1H), 1.64 (m, 1H), 1.52 (m, 1H), 1.45 (s, 3H), 1.40 (s, 3H), 1.38 (m, 1H), 1.35 (s, 3H), 1.35 (s, 3H), 1.34 (s, 3H), 1.31 (s, 3H), 1.28 (s, 3H), 1.28 (s, 3H), 1.26 (d, J = 7.0 Hz, 3H), 1.25 (m, 2H), 1.21 (m, 1H), 1.16 (s, 3H), 1.13 (d, J = 7.0 Hz, 3H), 0.99 (s, 3H), 0.92 (s, 3H), 0.92 (d, J = 5.8 Hz, 3H), 0.87 (d, J = 5.8 Hz, 3H), 0.80 (m, 1H);

¹³C NMR (100 MHz, CDCl₃) δ 216.5, 212.9, 212.8, 198.5, 197.4, 171.9, 167.4, 114.0, 110.1, 83.3, 83.1, 55.2, 55.1, 49.2, 49.1, 48.5, 48.0, 43.8, 42.8, 42.6, 41.3, 38.8, 38.3, 36.2, 35.7, 33.8, 30.0, 29.9, 26.7, 26.2, 25.9, 25.6, 25.5, 24.9, 24.8, 24.2, 23.9, 23.4, 22.6, 21.7, 21.4, 20.9, 20.7, 20.0, 19.2;

HRMS (ESI) calcd for $C_{45}H_{67}O_7$ [M+H]⁺ Exact Mass: 719.4881; found: 719.4879.

position	$\delta_{ m H}$	$\delta_{ m C}$	position	$\delta_{ m H}$	$\delta_{ m C}$
1	_	171.9	8'	_	83.1
2	—	48.0	9'	2.10 m	42.6
3	—	212.9	10'a	1.76 m	36.2
4	—	55.1	10'b	1.38 m	
5	-	197.4	11'	-	33.8
6	-	110.1	12'	0.92 s	21.7
7	3.39 d (11.2)	49.2	13'	0.99 s	30.0
8	-	216.5	14'	1.16 s	20.0
9	2.93 m	41.3	15'a	2.08 m	38.3
10	1.26 d (7.0)	20.7	15'b	1.21 m	
11	1.13 d (7.0)	19.2	1"	_	167.4
12	1.35 s	25.6	2"	_	48.5
13	1.45 s	24.8	3"	-	212.8
14	1.31 s	22.6	4"	_	55.2
15	1.28 s	23.9	5"	_	198.5
1'	2.02 m	49.1	6"	_	114.0
2'	1.25 m	29.9	7"	2.64 m	25.9
			8"a	1.69 m	42.8
3'a	2.19 m	35.7	8"b	0.80 m	
3'b	1.85 m		9"	1.64 m	25.5

Table S22. ¹H (400 MHz) and ¹³C (100 MHz) NMR spectral data of **16** in CDCl₃ (δ in ppm, J in Hz).

4'	_	83.3	10"	0.87 d (5.8)	24.2
5'	2.23 m	43.8	11"	0.92 d (5.8)	20.9
6'a	1.78 m	21.4	12"	1.35 s	26.7
6'b	1.52 m		13"	1.40 s	23.4
7'a	1.88 m	38.8	14"	1.28 s	26.2
7'b	1.66 m		15"	1.34 s	24.9

Compound 17: 6.3 mg, 8% yield, yellow oil;

 $\mathbf{R}_f = 0.62$ (petroleum ether/ethyl acetate, 4/1);

 $[\alpha]_{D}^{25} = +29.2^{\circ} (c \ 0.5, \text{MeOH});$

IR (**KBr**) *v*_{max}: 2925, 2857, 1712, 1659, 1621, 1464, 1383, 1354 cm⁻¹;

¹**H** NMR (400 MHz, CDCl₃) δ 3.45 (d, J = 10.4 Hz, 1H), 2.86 (m, 1H), 2.73 (m, 1H), 2.47 (m, 1H), 2.16 (m, 1H), 2.04 (m, 1H), 2.01 (m, 1H), 1.86 (m, 2H), 1.73 (m, 1H), 1.72 (m, 1H), 1.70 (m, 1H), 1.67 (m, 1H), 1.57 (m, 1H), 1.53 (m, 2H), 1.48 (m, 1H), 1.45 (s, 3H), 1.43 (d, J = 6.8 Hz, 3H), 1.37 (m, 1H), 1.32 (s, 3H), 1.32 (s, 3H), 1.32 (s, 3H), 1.30 (s, 3H), 1.30 (m, 1H), 1.29 (s, 3H), 1.28 (s, 3H), 1.24 (s, 3H), 1.18 (m, 1H), 1.09 (d, J = 6.8 Hz, 3H), 1.07 (s, 3H), 1.06 (d, J = 6.8 Hz, 3H), 1.03 (m, 1H), 0.98 (s, 3H), 0.96 (s, 3H), 0.96 (d, J = 6.8 Hz, 3H);

¹³C NMR (100 MHz, CDCl₃) δ 216.2, 213.3, 212.8, 197.9, 197.0, 171.2, 169.7, 110.3, 109.7, 82.8, 82.2, 55.7, 55.5, 48.5, 47.9, 47.8, 47.3, 46.9, 43.8, 42.1, 41.6, 38.3, 37.5, 34.6, 33.7, 29.5, 26.9, 26.3, 25.5, 25.5, 25.4, 25.2, 24.9, 24.7, 24.3, 24.0, 22.9, 22.5, 22.1, 21.9, 21.4, 21.4, 20.5, 20.0, 17.8;

HRMS (ESI) calcd for C₄₅H₆₇O₇ [M+H]⁺ Exact Mass: 719.4881; found: 719.4881.

Table S23. ¹H (400 MHz) and ¹³C (100 MHz) NMR spectral data of 17 in CDCl₃ (δ in ppm, J in Hz).

position	$\delta_{ m H}$	$\delta_{ m C}$	position	$\delta_{ m H}$	$\delta_{ m C}$
1	—	171.2	8'	—	82.2
2	—	47.8	9'	2.47 m	46.9
3	-	212.8	10'a	1.57 m	34.6
4	-	55.7	10'b	1.30 m	
5	—	197.0	11'	-	33.7
6	-	109.7	12'	0.98 s	22.9
7	3.45 d (10.4)	47.3	13'	0.96 s	29.5
8	-	216.2	14'	1.07 s	21.4
9	2.73 m	43.8	15'	1.86 m	24.0
10	1.43 d (6.8)	20.5			
11	1.09 d (6.8)	17.8	1"	-	169.7
12	1.32 s	21.4	2"	_	47.9
13	1.45 s	24.7	3"	_	213.3

14	1.29 s	22.1	4"	-	55.5
15	1.32 s	22.5	5"	_	197.9
1'	1.72 m	48.5	6"	_	110.3
2'	1.53 m	21.9	7"	2.86 m	25.2
			8"a	1.48 m	42.1
3'a	2.16 m	38.3	8"b	1.03 m	
3'b	1.67 m		9"	1.73 m	26.3
4'	_	82.8	10"	0.96 d (6.8)	24.3
5'	2.01 m	41.6	11"	1.06 d (6.8)	20.0
6'a	1.70 m	25.5	12"	1.24 s	24.9
6'b	1.37 m		13"	1.28 s	25.4
7'a	2.04 m	37.5	14''	1.30 s	25.5
7'b	1.18 m		15"	1.32 s	26.9

5.4 Syntheses of 8–11 and 18–21

entry ^a	catalyst	mol %	solvent	temp (°C)	time (h)	Yield $(\%)^b$
1	-	-	DCM	40	48	$trace^d$
2	_	_	DCM	40	48	45
3	TFA	20	DCM	40	24	trace
4	_	—	THF	60	48	trace
5	—	_	toluene	60	48	60
6	—	_	toluene	60	48	10^d
7	TFA	20	toluene	60	24	trace
8	-	-	toluene	110	48	48
9	-	-	toluene	110	48	trace ^c
10	Sc(CF ₃ SO ₃) ₃	20	toluene	110	24	trace
11	Quinine	50	toluene	rt	48	25
12	Quinine	50	toluene	110	48	30
13	(S)-C1 ^e	20	toluene	110	48	58
14	(<i>S</i>)- C1	20	toluene	110	48	50^d

^{*a*} Unless otherwise stated, the reactions of entries 1–14 were performed with **5b** (0.35 mmol), **6** (0.24 mmol) and 4Å MS (30 mg). ^{*b*} Combined isolated yield. ^{*c*} Without 4Å MS. ^{*d*} **5a** was added. ^{*e*} (*S*)-**C1** was (11a*S*)-3,7-Bis[3,5-bis(trifluoromethyl)phenyl]-10,11,12,13-tetrahydro-5-hydroxy-5-oxide-diindeno[7,1-de:1',7'-fg][1,3,2]dioxaphosphocin.

Compound **5b** (100 mg, 0.35 mmol) in a toluene solution (4 mL) was added β -caryophyllene (6) (53.5 μ L, 0.24 mmol) and 4Å molecular sieves (30 mg) at 60 °C (entry 5). The resulting mixture was stirred for 48 h. After the reaction was finished according to TLC, the reaction was filtered through a plug of celite (CH₂Cl₂ was used as the eluent) and was concentrated *in vacuum*. The crude residue was further purified by preparative HPLC (CH₃CN-H₂O, 94:6) to afford corresponding products **8–11** and **18–21**.

Compound 8: 16.6 mg, 15% yield, yellow oil;

 $\mathbf{R}_{f} = 0.35$ (petroleum ether/ethyl acetate, 20/1);

 $[\alpha]_{\rm D}^{25} = +110.4^{\circ} (c \ 1.0, \text{MeOH});$

IR (**KBr**) *v*_{max}: 2938, 2868, 1709, 1625, 1462, 1380, 1358, 1187, 1105, 1053, 890, 759 cm⁻¹;

¹**H** NMR (400 MHz, CDCl₃) δ 4.99 (s, 2H), 4.05 (d, J = 6.6 Hz, 1H), 2.88 (sept, J = 6.9 Hz, 1H), 2.50 (m, 1H), 2.42 (m, 1H), 2.24 (m, 1H), 2.12 (m, 1H), 2.08 (m, 1H), 1.78 (m, 1H), 1.75 (m, 1H), 1.68 (m, 1H), 1.63 (m, 1H), 1.61 (m, 1H), 1.59 (m, 1H), 1.57 (m, 1H), 1.43 (s, 3H), 1.40 (m, 1H), 1.36 (s, 3H), 1.31 (s, 3H), 1.30 (s, 3H), 1.21 (d, J = 6.7 Hz, 3H), 1.07 (d, J = 6.7 Hz, 3H), 0.98 (s, 3H), 0.96 (s, 3H);

¹³C NMR (100 MHz, CDCl₃) δ 216.9, 213.4, 196.9, 172.0, 150.6, 111.6, 107.6, 84.9, 57.0, 55.3, 48.0, 43.8, 43.4, 42.8, 41.6, 38.1, 36.5, 35.9, 34.4, 30.0, 27.1, 26.2, 25.8, 24.7, 23.4, 22.6, 21.9, 21.7, 20.1, 18.0;

HRMS (ESI) calcd for $C_{30}H_{45}O_4$ [M+H]⁺ Exact Mass: 469.3312; found: 469.3315.

	¹ H & ppm	(J)		¹³ C 8	ppm	
positio	n (500M)	synthesized (400M)	error (rep. - syn.)	reported (125M)	synthesized (100M)	error (rep syn.)
1	-	-	-	171.8	172.0	-0.2
2	-	-	-	47.8	48.0	-0.2
3	-	-	-	213.2	213.4	-0.2
4	-	-	-	55.1	55.3	-0.2
5	-	-	-	196.7	196.9	-0.2
6	-	-	-	107.5	107.6	-0.1
7	4.06 (d, <i>J</i> = 6.6 Hz, 1H)	4.05 (d, <i>J</i> = 6.6 Hz, 1H)	0.01	43.3	43.4	-0.1
8	-	-	-	216.7	216.9	-0.2
9	2.89 (sept, <i>J</i> = 6.9 Hz, 1H)	2.88 (sept, <i>J</i> = 6.9 Hz, 1F	l) 0.01	42.7	42.8	-0.1
10	1.21 (d, <i>J</i> = 6.9 Hz, 3H)	1.21 (d, <i>J</i> = 6.7 Hz, 3H)	0	19.9	20.1	-0.2
11	1.07 (d, <i>J</i> = 6.9 Hz, 3H)	1.07 (d, <i>J</i> = 6.7 Hz, 3H)	0	17.9	18.0	-0.1
12	1.36 (s, 3H)	1.36 (s, 3H)	0	24.5	24.7	-0.2
13	1.43 (s, 3H)	1.43 (s, 3H)	0	25.7	25.8	-0.1
14	1.31 (s, 3H)	1.30 (s, 3H)	0.01	22.4	22.6	-0.2
15	1.31 (s, 3H)	1.30 (s, 3H)	0.01	26.1	26.2	-0.1
1'	1.59 (m, 1H)	1.59 (m, 1H)	0	56.8	57.0	-0.2
2'a	1.63 (m, 1H)	1.63 (m, 1H)	0	23.2	23.4	-0.2
2'b	1.40 (m, 1H)	1.40 (m, 1H)	0			
3'a	2.12 (brdd, <i>J</i> = 14.0, 10.6 Hz, 1H)	2.12 (m, 1H)	0	43.7	43.8	-0.1
3'b	1.57 (m, 1H)	1.57 (m, 1H)	0			
4'			-	84.8	84.9	-0.1
5'	2.08 (dt, <i>J</i> = 8.5, 6.9 Hz, 1H)	2.08 (m, 1H)	0	38.0	38.1	-0.1
6'a	1.78 (m, 1H)	1.78 (m, 1H)	0	26.9	27.1	-0.2
6'b	1.68 (m, 1H)	1.68 (m, 1H)	0			
7'a 2.	51 (ddd, $J = 14.3, 10.0, 4.4$ Hz, 1F	1) 2.50 (m, 1H)	0.01	35.8	35.9	-0.1
/'b	2.24 (m, 1H)	2.24 (m, 1H)	0	450 5		0.4
8.	-	-	-	150.5	150.6	-0.1
9.	2.43 (q, J = 8.2 Hz, 1H)	2.42 (m, 1H)	0.01	41.5	41.6	-0.1
10'a	1.75 (t, $J = 10.6$ Hz, 1H)	1.75 (m, 1H)	0	36.3	36.5	-0.2
10 [.] D	1.62 (dd, J = 10.6, 7.7 Hz, 1H)	1.61 (m, 1H)	0.01			0.4
11'	-		-	34.3	34.4	-0.1
12	0.98 (S, 3H)	0.98 (S, 3H)	U	21.8	21.9	-0.1
13	0.97 (S, 3H)	0.96 (S, 3H)	0.01	29.8	30.0	-0.2
14	1.32 (S, 3H)	1.31 (S, 3H)	0.01	21.5	21.7	-0.2
15	5.00 (brs, 2H)	4.99 (S, 2H)	0.01	111.5	111.6	-0.1

Table S25. NMR data (CDCl₃) comparison between synthetic 8 and the reported natural product.

Compound 9: 10.0 mg, 9% yield, yellow oil;

 $\mathbf{R}_f = 0.25$ (petroleum ether/ethyl acetate, 20/1);

 $[\alpha]_{D}^{25} = +13.1^{\circ} (c \ 2.0, \text{MeOH});$

IR (**KBr**) *v*_{max}: 2941, 2872, 1713, 1623, 1462, 1378, 1358, 1187, 1103, 1051, 890 cm⁻¹;

¹**H NMR** (400 MHz, CDCl₃) δ 4.78 (s, 1H), 4.74 (s, 1H), 3.40 (d, J = 10.5 Hz, 1H), 2.85 (sept, J = 6.9 Hz, 1H), 2.50 (m, 1H), 2.32 (m, 1H), 2.22 (dt, J = 10.4, 5.2 Hz, 1H), 2.10 (m, 1H), 1.83 (m, 1H), 1.77 (m, 1H), 1.73 (m, 1H), 1.66 (m, 1H), 1.61 (t, J = 10.1 Hz, 1H), 1.57 (m, 1H), 1.52 (m, 1H), 1.50 (m, 1H), 1.45 (s, 3H), 1.41 (m, 1H), 1.33 (d, J = 6.9 Hz, 3H), 1.32 (s, 3H), 1.30 (s, 3H), 1.29 (s, 3H), 1.14 (d, J = 6.9 Hz, 3H), 1.07 (s, 3H), 0.99 (s, 3H), 0.97 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 216.6, 213.1, 197.2, 171.5, 154.8, 110.3, 109.4, 83.4, 57.3, 55.3, 47.8, 47.8, 42.6, 42.2,

39.3, 39.0, 38.2, 37.8, 33.3, 33.1, 29.8, 25.4, 24.7, 24.6, 24.0, 22.3, 22.3, 20.2, 20.2, 18.6;

HRMS (ESI) calcd for $C_{30}H_{45}O_4$ [M+H]⁺ Exact Mass: 469.3312; found: 469.3311.

	¹ Н & рр	om (J)		¹³ C 8	ррт	
positio	reported on (500M)	synthesized (400M)	error (rep syn.)	reported (125M)	synthesized (100M)	error (rep syn.)
1	-	-	-	171.3	171.5	-0.2
2	-	-	-	47.6	47.8	-0.2
3	-	-	-	212.9	213.1	-0.2
4	-	-	-	55.1	55.3	-0.2
5	-	-	-	197.0	197.2	-0.2
6	-	-	-	109.3	109.4	-0.1
7	3.40 (d, <i>J</i> = 10.5 Hz, 1H)	3.40 (d, <i>J</i> = 10.5 Hz, 1H)	0	47.6	47.8	-0.2
8	-	-	-	216.3	216.6	-0.3
9	2.85 (sept, <i>J</i> = 6.9 Hz, 1H)	2.85 (sept, J = 6.9 Hz, 1H)	0	42.4	42.6	-0.2
10	1.33 (d, J = 6.9 Hz, 3H)	1.33 (d, J = 6.9 Hz, 3H)	0	20.1	20.2	-0.1
11	1.14 (d, <i>J</i> = 6.9 Hz, 3H)	1.14 (d, <i>J</i> = 6.9 Hz, 3H)	0	18.4	18.6	-0.2
12	1.32 (s, 3H)	1.32 (s, 3H)	0	25.2	25.4	-0.2
13	1.44 (s, 3H)	1.45 (s, 3H)	-0.01	24.6	24.7	-0.1
14	1.30 (s, 3H)	1.30 (s, 3H)	0	23.8	24.0	-0.2
15	1.29 (s, 3H)	1.29 (s, 3H)	0	24.5	24.6	-0.1
1'	1.56 (m, 1H)	1.57 (m, 1H)	-0.01	57.1	57.3	-0.2
2'a	1.52 (m, 1H)	1.52 (m, 1H)	0	22.1	22.3	-0.2
2'b	1.42 (m, 1H)	1.41 (m, 1H)	0.01			
3'a 2	.10 (brdd, J = 15.5, 10.9 Hz, 1H)	2.10 (m, 1H)	0	38.0	38.2	-0.2
3'b 1	1.77 (brdd, J = 15.5, 6.4 Hz, 1H)	1.77 (m, 1H)	0			
4'	-	-	-	83.2	83.4	-0.2
5'	2.22 (dt, J = 10.5, 5.2 Hz, 1H) 2	2.22 (dt, <i>J</i> = 10.4, 5.2 Hz, 1H	H) -0.01	39.2	39.3	-0.1
6'a	1.67 (m, 1H)	1.66 (m, 1H)	0.01	33.0	33.1	-0.1
6'b	1.50 (m, 1H)	1.50 (m, 1H)	0			
7'a 2	2.32 (brdd, J = 13.3, 9.7 Hz, 1H)	2.32 (m, 1H)	0.01	37.6	37.8	-0.2
7'b 1	.84 (brdd, J = 13.3, 8.6 Hz, 1H)	1.83 (m, 1H)	0.01			
8'	-	-	-	154.7	154.8	-0.1
9'	2.49 (q, <i>J</i> = 9.1 Hz, 1H)	2.50 (q, <i>J</i> = 9.2 Hz, 1H)	-0.01	42.1	42.2	-0.1
10'a	1.74 (dd, J = 10.5, 8.4 Hz, 1H)	1.73 (m, 1H)	0.01	38.9	39.0	-0.1
10'b	1.61 (t, J = 10.1 Hz, 1H)	1.61 (t, J = 10.1 Hz, 1H)	0			
11'	-	-	-	33.2	33.3	-0.1
12'	0.97 (s, 3H)	0.97 (s, 3H)	0	22.1	22.3	-0.2
13'	0.99 (s, 3H)	0.99 (s, 3H)	0	29.6	29.8	-0.2
14'	1.07 (s, 3H)	1.07 (s, 3H)	0	20.0	20.2	-0.2
15'a	4.78 (brs, 1H)	4.78 (s, 1H)	0	110.1	110.3	-0.2
15'b	4.74 (brs, 1H)	4.74 (s, 1H)	0			

Table S26. NMR data (CDCl₃) comparison between synthetic 9 and the reported natural product.

Compound 10: 8.8 mg, 8% yield, yellow oil;

 $\mathbf{R}_f = 0.4$ (petroleum ether/ethyl acetate, 20/1);

 $[\alpha]_{\rm D}^{25} = -91.4^{\circ} (c \ 1.0, \text{ MeOH});$

IR (**KBr**) *v*_{max}: 2938, 2868, 1712, 1621, 1464, 1378, 1358, 1289, 1192, 1049, 890, 759 cm⁻¹;

¹**H** NMR (400 MHz, CDCl₃) δ 4.87 (s, 1H), 4.81 (s, 1H), 4.20 (d, J = 7.2 Hz, 1H), 2.83 (m, 1H), 2.57 (m, 1H), 2.50 (m, 1H), 2.36 (m, 1H), 2.27 (m, 1H), 2.05 (m, 1H), 1.78 (m, 1H), 1.73 (m, 2H), 1.67 (m, 1H), 1.54 (m, 1H), 1.50 (m, 1H), 1.43 (s, 3H), 1.37 (s, 3H), 1.35 (s, 3H), 1.32 (d, J = 6.8 Hz, 3H), 1.30 (s, 3H), 1.25 (m, 2H), 1.14 (s, 3H), 1.06 (d, J = 6.8 Hz, 3H), 0.99 (s, 3H), 0.94 (s, 3H);

¹³**C NMR** (100 MHz, CDCl₃) *δ* 217.0, 213.3, 197.3, 171.7, 153.8, 110.6, 107.9, 84.0, 57.6, 55.5, 47.9, 43.0, 42.9, 42.7, 40.7, 39.0, 37.5, 36.9, 33.7, 29.7, 28.5, 27.2, 25.5, 24.8, 23.2, 22.4, 21.4, 21.0, 20.7, 17.6;

HRMS (ESI) calcd for $C_{30}H_{45}O_4$ [M+H]⁺ Exact Mass: 469.3312; found: 469.3309.

	¹ Н & р	om (J)		¹³ C 8	ррт	
positio	reported n (300M)	synthesized (400M)	error (rep syn.)	reported (75M)	synthesized (100M)	error (rep syn.)
1	-	-	-	171.7	171.7	0
2	-	-	-	47.9	47.9	0
3	-	-	-	213.2	213.3	-0.1
4	-	-	-	55.5	55.5	0
5	-	-	-	197.3	197.3	0
6	-	-	-	107.9	107.9	0
7	4.19 (d, <i>J</i> = 7.3 Hz, 1H)	4.20 (d, <i>J</i> = 7.2 Hz, 1H)	-0.01	42.9	42.9	0
8	-	-	-	216.9	217.0	-0.1
9	2.83 (m, 1H)	2.83 (m, 1H)	0	43.0	43.0	0
10	1.32 (d, <i>J</i> = 6.5 Hz, 3H)	1.32 (d, <i>J</i> = 6.8 Hz, 3H)	0	20.7	20.7	0
11	1.06 (d, J = 6.5 Hz, 3H)	1.06 (d, J = 6.8 Hz, 3H)	0	17.6	17.6	0
12	1.37 (s, 3H)	1.37 (s, 3H)	0	24.9	24.8	0.1
13	1.43 (s, 3H)	1.43 (s, 3H)	0	25.5	25.5	0
14	1.34 (s, 3H)	1.35 (s, 3H)	-0.01	27.1	27.2	-0.1
15	1.30 (s, 3H)	1.30 (s, 3H)	0	21.4	21.4	0
1'	1.53 (m, 1H)	1.54 (m, 1H)	-0.01	57.6	57.6	0
2'	1.25 (m, 2H)	1.25 (m, 2H)	0	23.2	23.2	0
3'a 2.	.05 (dd, <i>J</i> = 15.5, 10.0 Hz, 1H)	2.05 (m, 1H)	0	40.8	40.7	0.1
3'b	1.76 (m, 1H)	1.78 (m, 1H)	-0.02			
4'	-	-	-	84.0	84.0	0
5'	2.36 (m, 1H)	2.36 (m, 1H)	0	39.0	39.0	0
6'a	1.68 (m, 1H)	1.67 (m, 1H)	0.01	28.5	28.5	0
6'b	1.51 (m, 1H)	1.50 (m, 1H)	0.01			
7'a	2.49 (m, 1H)	2.50 (m, 1H)	-0.01	36.9	36.9	0
7'b	2.28 (m, 1H)	2.27 (m, 1H)	0.01			
8'	-	-	-	153.8	153.8	0
9'	2.56 (m, 1H)	2.57 (m, 1H)	-0.01	42.7	42.7	0
10'	1.74 (m, 2H)	1.73 (m, 2H)	0.01	37.6	37.5	0.1
11'	-	-	-	33.7	33.7	0
12'	0.93 (s, 3H)	0.94 (s, 3H)	-0.01	22.4	22.4	0
13'	0.98 (s, 3H)	0.99 (s, 3H)	-0.01	29.7	29.7	0
14'	1.14 (s, 3H)	1.14 (s, 3H)	0	21.0	21.0	0
15'a	4.87 (brs, 1H)	4.87 (brs, 1H)	0	110.6	110.6	0
15'b	4.71 (brs, 1H)	4.71 (brs, 1H)	0			

Table S27. NMR data (CDCl₃) comparison between synthetic 10 and the reported natural product.

Compound 11: 12.0 mg, 11% yield, yellow oil;

 $\mathbf{R}_f = 0.13$ (petroleum ether/ethyl acetate, 20/1);

 $[\alpha]_{D}^{25} = +25.6^{\circ} (c \ 0.5, \text{MeOH});$

IR (**KBr**) *v*_{max}: 2936, 2868, 1713, 1623, 1462, 1380, 1355, 1289, 1190, 1051, 892, 759 cm⁻¹;

¹**H** NMR (400 MHz, CDCl₃) δ 4.83 (s, 1H), 4.75 (s, 1H), 3.24 (d, J = 10.7 Hz, 1H), 2.72 (m, 1H), 2.38 (m, 1H), 2.33 (m, 1H), 2.24 (m, 1H), 2.14 (m, 1H), 2.07 (m, 1H), 1.95 (m, 1H), 1.95 (m, 1H), 1.78 (m, 1H), 1.74 (m, 1H), 1.63 (m, 2H), 1.52 (m, 1H), 1.47 (m, 1H), 1.45 (s, 3H), 1.35 (s, 3H), 1.31 (s, 3H), 1.27 (s, 3H), 1.18 (d, J = 6.8 Hz, 3H), 1.13 (s, 3H), 1.05 (d, J = 6.8 Hz, 3H), 0.98 (s, 3H), 0.98 (s, 3H);

¹³**C NMR** (100 MHz, CDCl₃) *δ* 215.2, 213.0, 197.4, 171.7, 151.0, 111.5, 109.1, 83.2, 55.2, 51.9, 49.5, 47.8, 42.1, 39.6, 38.3, 37.0, 36.7, 35.0, 33.8, 31.7, 30.4, 25.3, 25.1, 24.8, 23.6, 22.4, 22.3, 21.2, 20.7, 19.8;

HRMS (ESI) calcd for C₃₀H₄₅O₄ [M+H]⁺ Exact Mass: 469.3312; found: 469.3310.

	¹ H &	ррт (Ј)		¹³ C &	ppm	
maaitia	reported	synthesized	error	reported	synthesized	error
positio	n (300M)	(400M)	(rep syn.)	(75M)	(100M)	(rep syn.)
1	-	-	-	171.7	171.7	0
2	-	-	-	47.8	47.8	0
3	-	-	-	213.0	213.0	0
4	-	-	-	55.2	55.2	0
5	-	-	-	197.4	197.4	0
6	-	-	-	109.0	109.1	-0.1
7	3.23 (d, <i>J</i> = 10.6 Hz, 1H)	3.24 (d, <i>J</i> = 10.7 Hz, 1H)	-0.01	49.5	49.5	0
8	-	-	-	215.2	215.2	0
9	2.72 (m, 1H)	2.72 (m, 1H)	0	39.6	39.6	0
10	1.18 (d, <i>J</i> = 6.8 Hz, 3H)	1.18 (d, <i>J</i> = 6.8 Hz, 3H)	0	20.7	20.7	0
11	1.05 (d, <i>J</i> = 6.8 Hz, 3H)	1.05 (d, <i>J</i> = 6.8 Hz, 3H)	0	19.8	19.8	0
12	1.35 (s, 3H)	1.35 (s, 3H)	0	25.3	25.3	0
13	1.44 (s, 3H)	1.45 (s, 3H)	-0.01	25.1	25.1	0
14	1.30 (s, 3H)	1.31 (s, 3H)	-0.01	24.8	24.8	0
15	1.27 (s, 3H)	1.27 (s, 3H)	0	23.6	23.6	0
1'	1.95 (m, 1H)	1.95 (m, 1H)	0	51.9	51.9	0
2'a	1.77 (m, 1H)	1.78 (m, 1H)	-0.01	22.4	22.4	0
2'b	1.46 (m, 1H)	1.47 (m, 1H)	-0.01			
3'a	2.14 (m, 1H)	2.14 (m, 1H)	0	37.0	37.0	0
3'b	1.94 (m, 1H)	1.95 (m, 1H)	-0.01			
4'	-	-	-	83.2	83.2	0
5'	2.23 (m, 1H)	2.24 (m, 1H)	-0.01	38.3	38.3	0
6'a	1.74 (m, 1H)	1.74 (m, 1H)	0	31.7	31.7	0
6'b	1.51 (m, 1H)	1.52 (m, 1H)	-0.01			
7'a	2.34 (m, 1H)	2.33 (m, 1H)	0.01	35.0	35.0	0
7'b	2.08 (m, 1H)	2.07 (m, 1H)	0.01			
8'	-	-	-	151.0	151.0	0
9'	2.36 (m, 1H)	2.38 (m, 1H)	-0.02	42.1	42.1	0
10'	1.62 (m, 2H)	1.63 (m, 2H)	-0.01	36.7	36.7	0
11'	-	-	-	33.8	33.8	0
12'	0.98 (s, 3H)	0.98 (s, 3H)	0	22.3	22.3	0
13'	0.98 (s, 3H)	0.98 (s, 3H)	0	30.4	30.4	0
14'	1.13 (s, 3H)	1.13 (s, 3H)	0	21.2	21.2	0
15'a	4.83 (s, 1H)	4.83 (s, 1H)	0	115.5	115.5	0
15'b	4.75 (s, 1H)	4.75 (s, 1H)	0			

Table S28. NMR data (CDCl₃) comparison between synthetic 11 and the reported natural product.

Compound 18: 11.0 mg, 10% yield, colorless needle crystals, mp 187–190 °C;

 $\mathbf{R}_f = 0.38$ (petroleum ether/ethyl acetate, 20/1);

 $[\alpha]_{D}^{25} = -43.0^{\circ} (c \ 0.5, \text{MeOH});$

IR (**KBr**) *v*_{max}: 2968, 2931, 2866, 1709, 1630, 1457, 1387, 1358, 1290, 1185, 1076, 1042, 849, 756, 611 cm⁻¹;

¹**H** NMR (400 MHz, CDCl₃) δ 5.13 (brs, 1H), 3.97 (m, 1H), 3.07 (m, 1H), 1.66 (s, 3H), 1.40 (s, 3H), 1.39 (d, J = 6.8 Hz, 3H), 1.38 (s, 3H), 1.28 (s, 3H), 1.28 (s, 3H), 1.20 (d, J = 6.8 Hz, 3H), 0.97 (s, 3H), 0.93 (brs, 3H);

¹³C NMR (100 MHz, CDCl₃) δ 213.9, 213.5, 197.4, 55.7, 48.0, 38.8, 37.6, 29.9, 27.5, 25.6, 24.7, 23.3, 21.2, 20.6, 17.7;

HRMS (ESI) calcd for C₃₀H₄₅O₄ [M+H]⁺ Exact Mass: 469.3312; found: 469.3316.

Compound 19: 3.3 mg, 3% yield, yellow oil;

 $\mathbf{R}_f = 0.4$ (petroleum ether/ethyl acetate, 20/1);

 $[\alpha]_{D}^{25} = +23.1^{\circ} (c \ 1.0, \text{MeOH});$

IR (**KBr**) *v*_{max}: 2963, 2934, 2868, 1715, 1628, 1464, 1410, 1378, 1269, 1187, 1123, 1098, 1051, 913, 761 cm⁻¹;

¹**H NMR** (400 MHz, CDCl₃) δ 4.89 (s, 1H), 4.78 (s, 1H), 3.16 (d, J = 8.2 Hz, 1H), 2.42 (m, 1H), 2.40 (m, 1H), 2.32 (m, 1H), 1.97 (m, 1H), 1.95 (m, 1H), 1.88 (m, 1H), 1.86 (m, 1H), 1.73 (m, 1H), 1.68 (m, 1H), 1.66 (m, 1H), 1.65 (m, 1H), 1.55 (m, 1H), 1.52 (m, 1H), 1.40 (s, 3H), 1.40 (s, 3H), 1.35 (s, 3H), 1.32 (s, 3H), 1.31 (m, 1H), 1.17 (s, 3H), 0.99 (d, J = 6.7 Hz, 3H), 0.94 (s, 3H), 0.93 (d, J = 6.7 Hz, 3H), 0.90 (s, 3H);

¹³C NMR (100 MHz, CDCl₃) δ 213.8, 193.5, 175.9, 152.7, 127.5, 116.1, 111.0, 89.9, 57.9, 55.5, 52.9, 50.2, 45.5, 42.9, 41.4, 36.2, 35.9, 35.3, 33.8, 30.3, 30.0, 25.2, 25.0, 24.1, 23.7, 22.6, 22.6, 22.4, 16.9, 16.8;

HRMS (ESI) calcd for $C_{30}H_{45}O_4$ [M+H]⁺ Exact Mass: 469.3312; found: 469.3311.

|--|

$\begin{array}{c c c c c c c c c c c c c c c c c c c $		¹ H & ppn	ı (J)		¹³ C 8	ррт	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	position	reported ۱ (500M)	synthesized (400M)	error (rep syn.)	reported (125M)	synthesized (100M)	error (rep syn.)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	-	-	-	175.7	175.9	-0.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	-	-	-	45.4	45.5	-0.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	-	-	-	213.6	213.8	-0.2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	-	-	-	55.3	55.5	-0.2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	-	-	-	193.3	193.5	-0.2
73.16 (d, $J = 8.3 Hz$, 1H)3.16 (d, $J = 8.2 Hz$, 1H)052.752.9-0.28127.3127.5-0.291.94 (sept, $J = 6.8 Hz$, 1H)1.95 (m, 1H)-0.0135.835.9-0.1100.99 (d, $J = 6.8 Hz$, 3H)0.99 (d, $J = 6.7 Hz$, 3H)016.616.8-0.2110.93 (d, $J = 6.8 Hz$, 3H)0.99 (d, $J = 6.7 Hz$, 3H)016.616.8-0.2121.40 (s, 3H)1.40 (s, 3H)024.825.0-0.2131.40 (s, 3H)1.32 (s, 3H)023.623.7-0.1141.33 (s, 3H)1.35 (s, 3H)025.125.2-0.11'1.53 (m, 1H)1.52 (m, 1H)0.0157.757.9-0.22'a1.65 (m, 1H)1.65 (m, 1H)022.822.60.22'b1.32 (m, 1H)1.40 (m, 1H)0.0157.757.9-0.23'a2.40 (m, 1H)1.40 (m, 1H)0.0157.757.9-0.22'a1.65 (m, 1H)1.66 (m, 1H)0.0141.441.403'b1.67 (m, 1H)1.66 (m, 1H)0.0141.441.403'b1.67 (m, 1H)1.88 (m, 1H)050.150.2-0.16'a1.88 (m, 1H)1.88 (m, 1H)035.235.3-0.17'b1.87 (m, 1H)1.86 (m, 1H)0.0135.235.3-0.16'a1.88 (m, 1H)2.32 (m,	6	-	-	-	115.9	116.1	-0.2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7	3.16 (d, <i>J</i> = 8.3 Hz, 1H)	3.16 (d, J = 8.2 Hz, 1H)	0	52.7	52.9	-0.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8	-	-	-	127.3	127.5	-0.2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9	1.94 (sept, <i>J</i> = 6.8 Hz, 1H)	1.95 (m, 1H)	-0.01	35.8	35.9	-0.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	0.99 (d, <i>J</i> = 6.8 Hz, 3H)	0.99 (d, J = 6.7 Hz, 3H)	0	16.6	16.8	-0.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11	0.93 (d, <i>J</i> = 6.8 Hz, 3H)	0.93 (d, J = 6.7 Hz, 3H)	0	16.7	16.9	-0.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12	1.40 (s, 3H)	1.40 (s, 3H)	0	24.8	25.0	-0.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13	1.40 (s, 3H)	1.40 (s, 3H)	0	23.6	23.7	-0.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14	1.33 (s, 3H)	1.32 (s, 3H)	0.01	23.9	24.1	-0.2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15	1.35 (s, 3H)	1.35 (s, 3H)	0	25.1	25.2	-0.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1'	1.53 (m, 1H)	1.52 (m, 1H)	0.01	57.7	57.9	-0.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2'a	1.65 (m, 1H)	1.65 (m, 1H)	0	22.8	22.6	0.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2'b	1.32 (m, 1H)	1.31 (m, 1H)	0.01			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3'a	2.40 (m, 1H)	2.40 (m, 1H)	0	41.4	41.4	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3'b	1.67 (m, 1H)	1.66 (m, 1H)	0.01			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4'	-	-	-	89.7	89.9	-0.2
	5'	1.97 (m, 1H)	1.97 (m, 1H)	0	50.1	50.2	-0.1
	6'a	1.88 (m, 1H)	1.88 (m, 1H)	0	29.8	30.0	-0.2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6'b	1.73 (m, 1H)	1.73 (m, 1H)	0			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7'a	2.43 (m, 1H)	2.42 (m, 1H)	0.01	35.2	35.3	-0.1
	7'b	1.87 (m, 1H)	1.86 (m, 1H)	0.01			
9'2.33 (q, $J = 9.0$ Hz, 1H)2.32 (m, 1H)0.0142.742.9-0.210'a1.68 (t, $J = 10.6$ Hz, 1H)1.68 (m, 1H)036.136.2-0.110'b1.55 (dd, $J = 10.6$, 7.8 Hz, 1H)1.55 (m, 1H)031.131.2-0.110'b1.55 (dd, $J = 10.6$, 7.8 Hz, 1H)1.55 (m, 1H)033.733.8-0.111'33.733.8-0.112'0.90 (s, 3H)0.90 (s, 3H)022.222.4-0.213'0.94 (s, 3H)0.94 (s, 3H)030.130.3-0.214'1.17 (s, 3H)1.17 (s, 3H)022.522.6-0.115'a4.89 (s, 1H)4.89 (s, 1H)0110.9111.0-0.115'b4.78 (s, 1H)4.78 (s, 1H)0110.9111.0-0.1	8'	-	-	-	152.6	152.7	-0.1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	9'	2.33 (q, <i>J</i> = 9.0 Hz, 1H)	2.32 (m, 1H)	0.01	42.7	42.9	-0.2
	10'a	1.68 (t, <i>J</i> = 10.6 Hz, 1H)	1.68 (m, 1H)	0	36.1	36.2	-0.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10'b	1.55 (dd, <i>J</i> = 10.6, 7.8 Hz, 1H)	1.55 (m, 1H)	0			
12'0.90 (s, 3H)0.90 (s, 3H)022.222.4-0.213'0.94 (s, 3H)0.94 (s, 3H)030.130.3-0.214'1.17 (s, 3H)1.17 (s, 3H)022.522.6-0.115'a4.89 (s, 1H)4.89 (s, 1H)0110.9111.0-0.115'b4.78 (s, 1H)4.78 (s, 1H)0110.9111.0111.0	11'	-	-	-	33.7	33.8	-0.1
13' 0.94 (s, 3H) 0.94 (s, 3H) 0 30.1 30.3 -0.2 14' 1.17 (s, 3H) 1.17 (s, 3H) 0 22.5 22.6 -0.1 15'a 4.89 (s, 1H) 4.89 (s, 1H) 0 110.9 111.0 -0.1 15'b 4.78 (s, 1H) 4.78 (s, 1H) 0 110.9 111.0 -0.1	12'	0.90 (s, 3H)	0.90 (s, 3H)	0	22.2	22.4	-0.2
14' 1.17 (s, 3H) 1.17 (s, 3H) 0 22.5 22.6 -0.1 15'a 4.89 (s, 1H) 4.89 (s, 1H) 0 110.9 111.0 -0.1 15'b 4.78 (s, 1H) 4.78 (s, 1H) 0 110.9 111.0 -0.1	13'	0.94 (s, 3H)	0.94 (s, 3H)	0	30.1	30.3	-0.2
15'a 4.89 (s, 1H) 4.89 (s, 1H) 0 110.9 111.0 -0.1 15'b 4.78 (s, 1H) 4.78 (s, 1H) 0	14'	1.17 (s, 3H)	1.17 (s, 3H)	0	22.5	22.6	-0.1
15'b 4.78 (s, 1H) 4.78 (s, 1H) 0	15'a	4.89 (s, 1H)	4.89 (s, 1H)	0	110.9	111.0	-0.1
	15'b	4.78 (s, 1H)	4.78 (s, 1H)	0			

Compound 20: 1.1 mg, 1% yield, yellow oil;

 $\mathbf{R}_f = 0.3$ (petroleum ether/ethyl acetate, 20/1);

 $[\alpha]_{D}^{25} = -59.2^{\circ} (c \ 0.5, \text{MeOH});$

IR (**KBr**) *v*_{max}: 2941, 2872, 1713, 1628, 1571, 1462, 1373, 1264, 1187, 1119, 1051, 913, 768, 615, 464 cm⁻¹;

¹**H** NMR (400 MHz, CDCl₃) δ 4.73 (s, 1H), 4.47 (s, 1H), 3.18 (d, J = 9.8 Hz, 1H), 2.61 (q, J = 9.2 Hz, 1H), 2.36 (m, 1H), 2.19 (m, 1H), 2.15 (m, 1H), 2.05 (m, 1H), 2.03 (m, 1H), 1.88 (m, 1H), 1.86 (m, 1H), 1.71 (m, 1H), 1.50 (m, 1H), 1.50 (m, 1H), 1.48 (m, 1H), 1.48 (m, 1H), 1.47 (s, 3H), 1.45 (m, 1H), 1.43 (s, 3H), 1.36 (m, 1H), 1.34 (s, 3H), 1.33 (s, 3H), 1.13 (s, 3H), 1.07 (d, J = 6.8 Hz, 3H), 0.94 (s, 3H), 0.90 (d, J = 6.8 Hz, 3H), 0.89 (s, 3H);

¹³**C NMR** (100 MHz, CDCl₃) *δ* 213.4, 193.7, 176.2, 154.4, 126.0, 116.0, 110.8, 88.7, 55.8, 53.6, 52.3, 51.5, 45.6, 43.6, 40.5, 40.1, 37.3, 33.4, 33.3, 29.7, 29.3, 25.3, 25.0, 23.9, 23.8, 23.4, 23.1, 22.8, 17.0, 16.4;

HRMS (ESI) calcd for $C_{30}H_{45}O_4$ [M+H]⁺ Exact Mass: 469.3312; found: 469.3312.

Table S30. NMR data (CDCl₃) comparison between synthetic 20 and the reported natural product.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	_	¹ H & ppn	ı (J)		¹³ C 8	a ppm	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	positior	reported າ (500M)	synthesized (400M)	error (rep syn.)	reported (125M)	synthesized (100M)	error (rep syn.)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	-	-	-	176.0	176.2	-0.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	-	-	-	45.4	45.6	-0.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	-	-	-	213.3	213.4	-0.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	-	-	-	55.7	55.8	-0.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	-	-	-	193.6	193.7	-0.1
73.18 (d, $J = 9.9$ Hz, 1H)3.18 (d, $J = 9.8$ Hz, 1H)052.252.3-0.18125.8126.0-0.291.89 (sept, $J = 6.8$ Hz, 1H)1.88 (m, 1H)0.0137.137.3-0.2101.07 (d, $J = 6.8$ Hz, 3H)1.07 (d, $J = 6.8$ Hz, 3H)016.316.4-0.1110.90 (d, $J = 6.8$ Hz, 3H)0.90 (d, $J = 6.8$ Hz, 3H)016.817.0-0.2121.47 (s, 3H)1.43 (s, 3H)023.623.8-0.1131.43 (s, 3H)1.33 (s, 3H)023.623.8-0.2141.33 (s, 3H)1.34 (s, 3H)024.825.0-0.21'1.50 (m, 1H)1.50 (m, 1H)053.553.6-0.12'a1.50 (m, 1H)1.50 (m, 1H)022.923.1-0.22'b1.35 (m, 1H)1.36 (m, 1H)-0.0139.940.1-0.23'a2.35 (dd, $J = 15.5$, 9.2 Hz, 1H)2.36 (m, 1H)-0.0139.940.1-0.23'b1.45 (m, 1H)1.45 (m, 1H)0151.351.5-0.24'88.588.7-0.25'2.16 (dt, $J = 9.9$, 3.5 Hz, 1H)2.15 (m, 1H)0.0151.351.5-0.26'b1.71 (m, 1H)2.03 (m, 1H)0.0133.133.3-0.27'b2.04 (m, 1H)2.05 (m, 1H)0.0143.443.6-0.2 <tr< tr="">9'<td< td=""><td>6</td><td>-</td><td>-</td><td>-</td><td>115.8</td><td>116.0</td><td>-0.2</td></td<></tr<>	6	-	-	-	115.8	116.0	-0.2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	3.18 (d, <i>J</i> = 9.9 Hz, 1H)	3.18 (d, J = 9.8 Hz, 1H)	0	52.2	52.3	-0.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	-	-	-	125.8	126.0	-0.2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9	1.89 (sept, <i>J</i> = 6.8 Hz, 1H)	1.88 (m, 1H)	0.01	37.1	37.3	-0.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	1.07 (d, <i>J</i> = 6.8 Hz, 3H)	1.07 (d, J = 6.8 Hz, 3H)	0	16.3	16.4	-0.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11	0.90 (d, <i>J</i> = 6.8 Hz, 3H)	0.90 (d, J = 6.8 Hz, 3H)	0	16.8	17.0	-0.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12	1.47 (s, 3H)	1.47 (s, 3H)	0	25.2	25.3	-0.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13	1.43 (s, 3H)	1.43 (s, 3H)	0	23.6	23.8	-0.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14	1.33 (s, 3H)	1.33 (s, 3H)	0	23.8	23.9	-0.1
1'1.50 (td, $J = 9.7, 1.5$ Hz, 1H)1.50 (m, 1H)053.553.6-0.12'a1.50 (m, 1H)1.50 (m, 1H)022.923.1-0.22'b1.35 (m, 1H)1.36 (m, 1H)-0.0139.940.1-0.23'a2.35 (dd, $J = 15.5, 9.2$ Hz, 1H)2.36 (m, 1H)-0.0139.940.1-0.24'88.588.7-0.25'2.16 (dt, $J = 9.9, 3.5$ Hz, 1H)2.15 (m, 1H)051.351.5-0.26'a2.05 (m, 1H)2.05 (m, 1H)029.129.3-0.26'b1.71 (m, 1H)1.71 (m, 1H)07'a2.18 (m, 1H)2.03 (m, 1H)07'a2.18 (m, 1H)2.03 (m, 1H)0.0133.133.3-0.29'2.61 (q, $J = 8.6$ Hz, 1H)2.61 (q, $J = 9.2$ Hz, 1H)0.0143.443.6-0.210'a1.88 (t, $J = 7.5$ Hz, 1H)1.86 (m, 1H)0.0111.43.443.6-0.210'a1.49 (m, 1H)1.48 (m, 1H)0.0111.33.333.4-0.112'0.89 (s, 3H)0.89 (s, 3H)022.622.8-0.213'0.94 (s, 3H)0.94 (s, 3H)023.223.4-0.214'1.13 (s, 3H)1.13 (s, 3H)023.223.4-0.215'a4.73 (brs, 1H)4.73 (s, 1H)0110.6110.8-0.2	15	1.34 (s, 3H)	1.34 (s, 3H)	0	24.8	25.0	-0.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1'	1.50 (td, J = 9.7, 1.5 Hz, 1H)	1.50 (m, 1H)	0	53.5	53.6	-0.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2'a	1.50 (m, 1H)	1.50 (m, 1H)	0	22.9	23.1	-0.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2'b	1.35 (m, 1H)	1.36 (m, 1H)	-0.01			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3'a	2.35 (dd, J = 15.5, 9.2 Hz, 1H)	2.36 (m, 1H)	-0.01	39.9	40.1	-0.2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3'b	1.45 (m, 1H)	1.45 (m, 1H)	0			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4'	-	_	-	88.5	88.7	-0.2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5'	2.16 (dt, J = 9.9, 3.5 Hz, 1H)	2.15 (m, 1H)	0.01	51.3	51.5	-0.2
	6'a	2.05 (m, 1H)	2.05 (m, 1H)	0	29.1	29.3	-0.2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6'b	1.71 (m, 1H)	1.71 (m, 1H)	0			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7'a	2.18 (m, 1H)	2.19 (m, 1H)	-0.01	33.1	33.3	-0.2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7'b	2.04 (m, 1H)	2.03 (m, 1H)	0.01			
9'2.61 (q, $J = 8.6$ Hz, 1H)2.61 (q, $J = 9.2$ Hz, 1H)0.0143.443.6-0.210'a1.88 (t, $J = 7.5$ Hz, 1H)1.86 (m, 1H)0.0240.340.5-0.210'b1.49 (m, 1H)1.48 (m, 1H)0.0110'b1.49 (m, 1H)0.0111'33.333.4-0.112'0.89 (s, 3H)0.89 (s, 3H)022.622.8-0.213'0.94 (s, 3H)0.94 (s, 3H)029.529.7-0.214'1.13 (s, 3H)1.13 (s, 3H)023.223.4-0.215'a4.73 (brs, 1H)4.47 (s, 1H)0110.6110.8-0.2	8'	-	-	-	154.2	154.4	-0.2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	9'	2.61 (q, <i>J</i> = 8.6 Hz, 1H)	2.61 (q, J = 9.2 Hz, 1H)	0.01	43.4	43.6	-0.2
10'b 1.49 (m, 1H) 1.48 (m, 1H) 0.01 11' - - 33.3 33.4 -0.1 12' 0.89 (s, 3H) 0.89 (s, 3H) 0 22.6 22.8 -0.2 13' 0.94 (s, 3H) 0.94 (s, 3H) 0 29.5 29.7 -0.2 14' 1.13 (s, 3H) 1.13 (s, 3H) 0 23.2 23.4 -0.2 15'a 4.73 (brs, 1H) 4.73 (s, 1H) 0 110.6 110.8 -0.2 15'b 4.47 (brs, 1H) 4.47 (s, 1H) 0 110.6 110.8 -0.2	10'a	1.88 (t, J = 7.5 Hz, 1H)	1.86 (m, 1H)	0.02	40.3	40.5	-0.2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10'b	1.49 (m, 1H)	1.48 (m, 1H)	0.01			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11'	- /	- ,	-	33.3	33.4	-0.1
13' 0.94 (s, 3H) 0.94 (s, 3H) 0 29.5 29.7 -0.2 14' 1.13 (s, 3H) 1.13 (s, 3H) 0 23.2 23.4 -0.2 15'a 4.73 (brs, 1H) 4.73 (s, 1H) 0 110.6 110.8 -0.2 15'b 4.47 (brs, 1H) 4.47 (s, 1H) 0 110.6 110.8 -0.2	12'	0.89 (s, 3H)	0.89 (s, 3H)	0	22.6	22.8	-0.2
14' 1.13 (s, 3H) 1.13 (s, 3H) 0 23.2 23.4 -0.2 15'a 4.73 (brs, 1H) 4.73 (s, 1H) 0 110.6 110.8 -0.2 15'b 4.47 (brs, 1H) 4.47 (s, 1H) 0 110.6 110.8 -0.2	13'	0.94 (s, 3H)	0.94 (s, 3H)	0	29.5	29.7	-0.2
15'a 4.73 (brs, 1H) 4.73 (s, 1H) 0 110.6 110.8 -0.2 15'b 4.47 (brs, 1H) 4.47 (s, 1H) 0	14'	1.13 (s, 3H)	1.13 (s, 3H)	0	23.2	23.4	-0.2
15'b 4.47 (brs, 1H) 4.47 (s, 1H) 0	15'a	4.73 (brs, 1H)	4.73 (s, 1H)	0	110.6	110.8	-0.2
	15'b	4.47 (brs, 1H)	4.47 (s, 1H)	0			

Compound 21: 3.3 mg, 3% yield, yellow oil;

 $\mathbf{R}_f = 0.43$ (petroleum ether/ethyl acetate, 20/1);

 $[\alpha]_{D}^{25} = -20.3^{\circ} (c \ 1.0, \text{MeOH});$

IR (**KBr**) *v*_{max}: 2968, 2936, 2871, 1713, 1628, 1571, 1464, 1410, 1190, 1123, 1098, 1051, 913, 761 cm⁻¹;

¹**H** NMR (400 MHz, CDCl₃) δ 5.02 (s, 2H), 3.64 (d, J = 9.4 Hz, 1H), 2.61 (m, 1H), 2.40 (m, 1H), 2.12 (m, 1H), 2.08 (m, 1H), 2.05 (m, 1H), 1.97 (dd, J = 13.9, 9.7 Hz, 1H), 1.79 (t, J = 10.5 Hz, 1H), 1.59 (dd, J = 10.5, 7.8 Hz, 1H), 1.56 (m, 1H), 1.48 (m, 1H), 1.44 (m, 1H), 1.43 (s, 3H), 1.40 (s, 3H), 1.39 (s, 3H), 1.34 (m, 1H), 1.33 (s, 3H), 1.25 (m, 2H), 1.11 (s, 3H), 0.99 (s, 3H), 0.97 (s, 3H), 0.96 (d, J = 6.8 Hz, 3H), 0.91 (d, J = 6.8 Hz, 3H);

¹³C NMR (100 MHz, CDCl₃) δ 213.5, 194.5, 177.6, 152.4, 127.3, 112.2, 111.1, 88.8, 60.1, 55.8, 48.7, 45.6, 45.2, 44.6, 42.4, 37.0, 36.4, 35.4, 34.5, 29.9, 29.9, 26.3, 24.5, 24.0, 23.4, 23.1, 22.1, 22.1, 16.5, 16.5;

HRMS (ESI) calcd for $C_{30}H_{45}O_4$ [M+H]⁺ Exact Mass: 469.3312; found: 469.3309.

Table S31. NMR data (CDCl₃) comparison between synthetic 21 and the reported natural product.

_	¹ Н & рј	om (J)		¹³ C 8	ррт	
positio	n (500M)	synthesized (400M)	error (rep syn.)	reported (125M)	synthesized (100M)	error (rep syn.)
1	-	-	-	177.4	177.6	-0.2
2	-	-	-	45.5	45.6	-0.1
3	-	-	-	213.4	213.5	-0.1
4	-	-	-	55.6	55.8	-0.2
5	-	-	-	194.4	194.5	-0.1
6	-	-	-	112.1	112.2	-0.1
7	3.64 (d, <i>J</i> = 9.5 Hz, 1H)	3.64 (d, <i>J</i> = 9.4 Hz, 1H)	0	48.6	48.7	-0.1
8	-	-	-	127.1	127.3	-0.2
9	2.11 (sept, <i>J</i> = 6.8 Hz, 1H)	2.12 (m, 1H)	-0.01	35.2	35.4	-0.2
10	0.96 (d, <i>J</i> = 6.8 Hz, 3H)	0.96 (d, <i>J</i> = 6.8 Hz, 3H)	0	16.3	16.5	-0.2
11	0.92 (d, <i>J</i> = 6.8 Hz, 3H)	0.91 (d, <i>J</i> = 6.8 Hz, 3H)	0.01	16.4	16.5	-0.1
12	1.43 (s, 3H)	1.43 (s, 3H)	0	23.9	24.0	-0.1
13	1.39 (s, 3H)	1.39 (s, 3H)	0	24.3	24.5	-0.2
14	1.33 (s, 3H)	1.33 (s, 3H)	0	23.0	23.1	-0.1
15	1.40 (s, 3H)	1.40 (s, 3H)	0	26.2	26.3	-0.1
1'	1.48 (m, 1H)	1.48 (m, 1H)	0	59.9	60.1	-0.2
2'a	1.57 (m, 1H)	1.56 (m, 1H)	0.01	23.4	23.4	0
2'b	1.34 (m, 1H)	1.34 (m, 1H)	0			
3'a	1.97 (dd, J = 13.9, 9.5 Hz, 1H)	1.97 (dd, <i>J</i> = 13.9, 9.7 Hz, <i>′</i>	IH) 0	44.5	44.6	-0.1
3'b	1.44 (m, 1H)	1.44 (m, 1H)	0			
4'	-	-	-	88.6	88.8	-0.2
5'	2.05 (m, 1H)	2.05 (m, 1H)	0	45.0	45.2	-0.2
6'	1.25 (m, 2H)	1.25 (m, 2H)	0	29.6	29.9	-0.3
7'a	2.61 (m, 1H)	2.61 (m, 1H)	0	36.9	37.0	-0.1
7'b	2.09 (m, 1H)	2.08 (m, 1H)	0.01			
8'	-	-	-	152.3	152.4	-0.1
9'	2.40 (q, <i>J</i> = 9.0 Hz, 1H)	2.40 (m, 1H)	0	42.3	42.4	-0.1
10'a	1.79 (t, <i>J</i> = 10.5 Hz, 1H)	1.79 (t, <i>J</i> = 10.5 Hz, 1H)	0	36.2	36.4	-0.2
10'b	1.59 (dd, <i>J</i> = 10.5, 7.8 Hz, 1H)	1.59 (dd, J = 10.5, 7.8 Hz, 1	H) 0			
11'	-	-	-	34.4	34.5	-0.1
12'	0.97 (s, 3H)	0.97 (s, 3H)	0	21.9	22.1	-0.2
13'	0.99 (s, 3H)	0.99 (s, 3H)	0	29.8	29.9	-0.1
14'	1.11 (s, 3H)	1.11 (s, 3H)	0	21.9	22.1	-0.2
15'	5.02 (brs, 2H)	5.02 (s, 2H)	0	110.9	111.1	-0.2

5.5 Syntheses of 1-2 and 16-17 through path B

Compound **4** (53.5 mg, 0.21 mmol) and ZnI_2 (8.3 mg, 0.026 mmol) in a toluene solution (2 ml) was added **8–11** (20 mg, 0.043 mmol) under reflux at 110 °C. After 48 h, the reaction was quenced with brine and extracted with ethyl acetate. Then the combined organic layers were dried over Na₂SO₄, filtered and concentrated *in vacuo*. The crude residue was further purified by preparative HPLC (CH₃CN-H₂O, 95:5) to to afford corresponding products **1–2** and **16–17**.

Compound 1: 6.2 mg, 20% yield, yellow oil;

 $\mathbf{R}_f = 0.69$ (petroleum ether/ethyl acetate, 4/1);

 $[\alpha]_{D}^{25} = +106.8^{\circ} (c \ 0.6, \text{MeOH});$

IR (**KBr**) *v*_{max}: 2960, 2865, 1708, 1637, 1468, 1375, 1362, 1208, 1156, 863, 752 cm⁻¹;

ECD (**CH₃OH**): *λ*_{max} (Δ*ε*) 207 (-15.0), 273 (+68.1) nm;

¹**H NMR** (400 MHz, CDCl₃) δ 4.07 (d, J = 7.2 Hz, 1H), 2.90 (m, 1H), 2.84 (m, 1H), 2.37 (m, 1H), 2.18 (m, 1H), 2.16 (m, 1H), 2.15 (m, 1H), 2.11 (m, 1H), 1.92 (m, 1H), 1.87 (m, 1H), 1.81 (m, 1H), 1.77 (m, 1H), 1.73 (m, 1H), 1.71 (m, 1H), 1.68 (m, 1H), 1.65 (m, 1H), 1.62 (m, 1H), 1.55 (m, 1H), 1.48 (m, 1H), 1.43 (s, 3H), 1.39 (m, 1H), 1.37 (s, 3H), 1.36 (s, 3H), 1.35 (s, 3H), 1.33 (s, 3H), 1.32 (s, 3H), 1.31 (s, 3H), 1.30 (s, 3H), 1.26 (s, 3H), 1.25 (d, J = 6.8 Hz, 3H), 1.07 (d, J = 6.8 Hz, 3H), 1.03 (m, 1H), 0.98 (d, J = 6.6 Hz, 3H), 0.97 (s, 3H), 0.94 (s, 3H), 0.92 (d, J = 6.6 Hz, 3H); 1³**C NMR** (100 MHz, CDCl₃) δ 216.1, 213.1, 213.0, 198.1, 197.2, 171.4, 168.8, 112.5, 108.3, 84.3, 83.3, 55.5, 55.4, 48.7, 48.2, 48.0, 45.2, 44.8, 43.6, 43.1, 42.9, 40.8, 39.5, 35.7, 34.1, 33.8, 30.1, 26.8, 26.1, 26.0, 25.9, 25.6, 25.5, 24.9,

24.4, 24.1, 23.4, 22.9, 22.4, 21.9, 21.5, 21.2, 21.0, 20.4, 18.3;

HRMS (ESI) calcd for C₄₅H₆₇O₇ [M+H]⁺ Exact Mass: 719.4881; found: 719.4880.

	¹ Н & рр	om (J)		¹³ C	& ppm	
position	isolated (300M)	synthesized (400M)	error (iso syn.)	isolated (75M)	synthesized (100M)	error (iso syn.)
1	-		-	171.3	171.4	-0.1
2	-	-	-	48.0	48.0	0
3	-	-	-	213.1	213.1	0
4	-	-	-	55.5	55.5	0
5	-	-	-	197.2	197.2	0
6	· · · · · · · · · · · · · · · · ·		-	108.4	108.3	0.1
1	4.07 (d, <i>J</i> = 7.2 Hz, 1H)	4.07 (d, $J = 7.2$ Hz, 1H)	U	45.2	45.2	0 1
0	2 80 (m 1H)	2 90 (m. 1H)	_0_01	12 0	210.1 12.0	-0.1
10	2.09 (III, 10) 1.24 (d. 1 - 6.9 Uz. 20)	1.25 (d I = 6.8 Hz 3H)	-0.01	20.4	42.5 20 <i>4</i>	ů
11	1.24 (d, J = 0.8 Hz, 3H)	$1.07 (d_1) = 6.8 Hz, 3H)$	-0.01	18.3	18.3	ő
12	1 37 (s 3H)	1.37 (s. 3H)	ŏ	24.5	24.4	0.1
13	1.42 (s. 3H)	1.43 (s, 3H)	-0.01	25.6	25.6	0
14	1.34 (s, 3H)	1.35 (̀s,́ 3H)́	-0.01	26.7	26.8	-0.1
15	1.29 (s, 3H)	1.30 (s, 3H)	-0.01	26.0	26.1	-0.1
1'	1.82 (m, 1H)	1.81 (m, 1H)	0.01	48.7	48.7	0
2'a	1.70 (m, 1H)	1.71 (m, 1H)	-0.01	23.4	23.4	0
2'b	1.40 (m, 1H)	1.39 (m, 1H)	0.01			-
3'a	2.18 (m, 1H)	2.18 (m, 1H)	0	40.8	40.8	0
3.0	1.73 (m, 1H)	1.73 (m, 1H)	U	04.2	04.2	0
4		2.15 (m 14)	-	04.3 42.2	04.3	01
5 6'a	2.15 (M, 1H)	2.15 (III, 1H) 1.87 (m. 1H)	0	43.2	43.1	0.1
6'b	1.07 (III, 1H) 1.78 (m. 1H)	1 77 (m, 1H)	0 01	21.5	21.5	U
7'a	2 11 (m 1H)	2.11 (m. 1H)	0	39.5	39.5	0
7'b	1.91 (m. 1H)	1.92 (m, 1H)	-0.01			
8'		-	-	83.3	83.3	0
9'	2.38 (m, 1H)	2.37 (m, 1H)	0.01	44.8	44.8	0
10'a	1.63 (m, 1H)	1.62 (m, 1H)	0.01	35.7	35.7	0
10'b	1.48 (m, 1H)	1.48 (m, 1H)	0			
11'	.	-	-	34.1	34.1	0
12	0.94 (s, 3H)	0.94 (s, 3H)	0	22.4	22.4	0
13	0.97 (s, 3H)	0.97 (S, 3H) 1.26 (c. 2H)	0	30.1	30.1	0
14	1.20 (S, 3H) 2.16 (m. 1H)	2 16 (m 1H)	0	21.0	21.0	ů
15'b	1.55 (m. 1H)	1.55 (m. 1H)	ő	33.0	55.0	U
1"	1.55 (iii, 11)		-	168.8	168.8	0
2"	-	-	-	48.2	48.2	Ō
3''	-	-	-	213.0	213.0	0
4''	-	-	-	55.4	55.4	0
5''	-	-	-	198.0	198.1	-0.1
6"	-	· · ·	-	112.6	112.5	0.1
7"	2.85 (m, 1H)	2.84 (m, 1H)	0.01	25.6	25.5	0.1
8"a	1.64 (m, 1H)	1.65 (m, 1H)	-0.01	43.7	43.6	0.1
0 U 0''	1.03 (m, 1H)	1.03 (III, 111) 1.68 (m. 111)	0.01	25.0	25.0	0
3 10"	1.09 (m, 1n) 0.02 (d /= 6.0 Hz 2H)	0.92 (d. /=66Hz 3H)	0.01	23.3	23.5	ñ
11"	0.32 (0, 3 - 0.0 Hz, 3H)	0.98 (d, $J = 6.6$ Hz, 3H)	õ	21.3	21.2	0.1
12"	1.36 (s. 3H)	1.36 (s. 3H)	ŏ	24.9	24.9	0
13"	1.31 (s. 3H)	1.32 (s, 3H)	-0.01	21.9	21.9	Ō
14"	1.31 (s, 3H)	1.31 (s, 3H)	0	22.9	22.9	0
15"	1.32 (s, 3H)	1.33 (s, 3H)	-0.01	26.0	26.1	-0.1

Table S32. NMR data (CDCl₃) comparison between synthetic 1 thrgouh path B and the isolated natural product.

Compound 2: 5.6 mg, 18% yield, yellow oil;

 $\mathbf{R}_f = 0.69$ (petroleum ether/ethyl acetate, 4/1);

 $[\alpha]_{\rm D}^{25} = -37.6^{\circ} (c \ 0.6, \text{MeOH});$

IR (**KBr**) *v*_{max}: 2952, 2926, 2868, 1715, 1650, 1625, 1465, 1386, 1360, 1206, 1154, 823, 760 cm⁻¹;

ECD (**CH₃OH**): *λ*_{max} (Δ*ε*) 208 (+19.9), 251 (-21.7), 274 (+8.0), 304 (-11.4) nm;

¹**H** NMR (400 MHz, CDCl₃) δ 4.22 (d, J = 7.2 Hz, 1H), 2.95 (m, 1H), 2.70 (m, 1H), 2.59 (m, 1H), 2.28 (m, 1H), 2.20 (m, 1H), 2.10 (m, 1H), 1.99 (m, 1H), 1.88 (m, 1H), 1.74 (m, 1H), 1.73 (m, 1H), 1.72 (m, 1H), 1.70 (m, 1H), 1.60 (m, 1H), 1.53 (m, 1H), 1.49 (m, 1H), 1.44 (s, 3H), 1.39 (s, 3H), 1.38 (m, 1H), 1.37 (s, 3H), 1.37 (s, 3H), 1.36 (s, 3H), 1.33 (s, 3H), 1.32 (d, J = 6.6 Hz, 3H), 1.31 (s, 3H), 1.29 (s, 3H), 1.28 (m, 1H), 1.26 (m, 2H), 1.14 (m, 3H), 1.10 (m, 1H), 1.03 (d, J = 6.6 Hz, 3H), 1.03 (d, J = 6.4 Hz, 3H), 0.97 (s, 3H), 0.95 (s, 3H), 0.90 (d, J = 6.4 Hz, 3H);

¹³C NMR (100 MHz, CDCl₃) δ 216.4, 213.3, 213.0, 197.9, 197.5, 171.8, 169.9, 110.6, 107.8, 83.4, 82.8, 55.5, 55.5, 48.6, 48.1, 47.9, 47.4, 42.6, 42.5, 42.4, 40.7, 40.6, 36.7, 34.6, 34.0, 29.9, 29.3, 27.3, 26.5, 26.0, 25.5, 25.5, 25.3, 25.1, 24.9, 24.1, 23.5, 23.0, 22.9, 22.7, 21.3, 21.2, 21.0, 20.8, 17.4;

HRMS (ESI) calcd for C₄₅H₆₇O₇ [M+H]⁺ Exact Mass: 719.4881; found: 719.4885.

Table S33. NMR data (CDCl₃) comparison between synthetic 2 through path B and the isolated natural product.

¹ H & ppm (J)				¹³ C & ppm		
position	isolated (500M)	synthesized (400M)	error (iso syn.)	isolated (125M)	synthesized (100M)	error (iso syn.)
1	-	-	-	171.7	171.8	-0.1
2	-	-	-	48.0	47.9	0.1
3	-	-	-	212.9	213.0	-0.1
4	-	-	-	55.5	55.5	0
5	-	-	-	197.4	197.5	-0.1
6		-	-	107.9	107.8	0.1
7	4.22 (d, <i>J</i> = 7.0 Hz, 1H)	4.22 (d, <i>J</i> = 7.8 Hz, 1H)	0	42.6	42.5	0.1
8	-	- 2 70 (m. 14)	0 01	216.3	216.4	-0.1
9 10	2.71 (m, 1H)	2.70 (III, III) 1 32 (d. / = 6 6 Hz 3H)	0.01	42.7	42.0	0.1
10	1.32 (0, J = 0.5 HZ, 3H)	1.32 (d, J = 0.0 Hz, 3H)	ŏ	17 /	21.3 17 <i>1</i>	Ő
12	1.05 (0, J = 0.5 HZ, 3H)	1 37 (s 3H)	ŏ	25.2	25.1	0 1
13	1.37 (S, 311) 1.44 (s. 3H)	1.44 (s. 3H)	ŏ	25.5	25.5	0
14	1.36 (s. 3H)	1.36 (s. 3H)	ŏ	27.3	27.3	ŏ
15	1.31 (s. 3H)	1.31 (s. 3H)	ŏ	20.8	20.8	Ō
1'	1.74 (m. 1H)	1.74 (m, 1H)	Ō	48.6	48.6	Ō
2'a	1.53 (m. 1H)	1.53 (m, 1H)	0	23.0	23.0	0
2'b	1.25 (m, 1H)	1.26 (m, 1H)	-0.01			
3'a	2.11 (m, 1H)	2.10 (m, 1H)	0.01	40.7	40.7	0
3'b	1.73 (m, 1H)	1.73 (m, 1H)	0			
4'	-	-	-	83.4	83.4	0
5'	2.21 (m, 1H)	2.20 (m, 1H)	0.01	40.6	40.6	0
6'a	1.28 (m, 1H)	1.28 (m, 1H)	0	29.9	29.9	0
6'b	1.25 (m, 1H)	1.26 (m, 1H)	-0.01	~~ -		
7'a	2.27 (m, 1H)	2.28 (m, 1H)	-0.01	36.7	36.7	0
7°b	1.72 (m, 1H)	1.72 (m, 1H)	U			•
8		- 2 E0 (m. 411)	0 01	82.8	82.8	0
9 10'a	2.58 (m, 1H)	2.59 (M, 1H)	-0.01	47.5	47.4	0.1
10 a 10'h	1.60 (m, 1H)	1.00 (III, 1H)	0.01	54.0	34.0	U
11'	1.39 (III, TH)	1.36 (11, 11)	0.01	34.0	34.0	٥
12'	0.05 (c. 3H)	0.95 (s. 3H)	ō	22.9	22.9	ŏ
13'	0.95 (S, 511) 0.97 (s. 3H)	0.97 (s. 3H)	ŏ	29.3	29.3	ŏ
14'	1 14 (s. 3H)	1.14 (s. 3H)	ŏ	21.0	21.0	õ
15'a	1.98 (m. 1H)	1.99 (m. 1H)	-0.01	23.6	23.5	0.1
15'b	1.89 (m. 1H)	1.88 (m, 1H)	0.01			
1"	_	-	-	169.8	169.9	-0.1
2"	-	-	-	48.1	48.1	0
3"	-	-	-	213.3	213.3	0
4''	-	-	-	55.5	55.5	0
5"	-	-	-	197.9	197.9	0
6"	-	/ · · · ·	-	110.7	110.6	0.1
7"	2.95 (m, 1H)	2.95 (m, 1H)	0	25.3	25.3	0
8''a	1.49 (m, 1H)	1.49 (m, 1H)	0	42.5	42.4	0.1
0.0	1.10 (m, 1H)	1.10 (m, 1H)	U U	26.4	26.0	0.4
9 10"	1./U (m, 1H)		004	20.1	20.U	0.1
10	U.91 (d, J = 6.2 Hz, 3H)	0.50 (0, J = 0.4 HZ, 3H)	0.01	24.1	24.1	0 1
12"	1.03 (0, J = 0.2 HZ, 3H)	1.03 (U, J - 0.4 FIZ, 3FI) 1.30 (e. 3H)	Ň	21.5	21.2	0.1
13"	1.39 (5,3⊓) 1.30 (c. 2⊔)	1 29 (e. 3H)	0 01	25.5	25.5	õ
14"	1.30 (5, 3∏ <i>)</i> 1.33 (e. 3⊔)	1.33 (s. 3H)	0.01	22.7	22.5	ŏ
15"	1.35 (s. 3H)	1.37 (s. 3H)	-0.01	26.5	26.5	ŏ
	1.50 (5, 511)		0.01	2010	20.0	

Compound 16: 5.2 mg, 17% yield, yellow oil;

 $\mathbf{R}_{f} = 0.62$ (petroleum ether/ethyl acetate, 4/1);

 $[\alpha]_{D}^{25} = +60.5^{\circ} (c \ 1.0, \text{MeOH});$

IR (**KBr**) *v*_{max}: 2945, 2868, 1715, 1650, 1465, 1380, 1205, 1183, 872 cm⁻¹;

¹**H** NMR (400 MHz, CDCl₃) δ 3.39 (d, J = 11.6 Hz, 1H), 2.92 (m, 1H), 2.63 (m, 1H), 2.23 (m, 1H), 2.19 (m, 1H), 2.10 (m, 1H), 2.08 (m, 1H), 2.03 (m, 1H), 1.88 (m, 1H), 1.85 (m, 1H), 1.78 (m, 1H), 1.76 (m, 1H), 1.69 (m, 1H), 1.67 (m, 1H), 1.64 (m, 1H), 1.52 (m, 1H), 1.45 (s, 3H), 1.39 (s, 3H), 1.38 (m, 1H), 1.35 (s, 3H), 1.34 (s, 3H), 1.34 (s, 3H), 1.31 (s, 3H), 1.28 (s, 3H), 1.27 (s, 3H), 1.26 (d, J = 6.8 Hz, 3H), 1.25 (m, 2H), 1.22 (m, 1H), 1.16 (s, 3H), 1.13 (d, J = 6.8 Hz, 3H), 0.99 (s, 3H), 0.92 (s, 3H), 0.92 (d, J = 6.0 Hz, 3H), 0.87 (d, J = 6.0 Hz, 3H), 0.80 (m, 1H);

¹³C NMR (100 MHz, CDCl₃) δ 216.5, 212.9, 212.8, 198.5, 197.4, 171.9, 167.4, 114.0, 110.1, 83.3, 83.1, 55.2, 55.1, 49.2, 49.1, 48.5, 48.0, 43.7, 42.8, 42.6, 41.3, 38.8, 38.3, 36.2, 35.8, 33.8, 30.0, 29.9, 26.7, 26.2, 25.9, 25.5, 25.5, 24.9, 24.8, 24.2, 23.9, 23.4, 22.6, 21.7, 21.4, 20.9, 20.7, 19.9, 19.2;

HRMS (ESI) calcd for C₄₅H₆₇O₇ [M+H]⁺ Exact Mass: 719.4881; found: 719.4883.

¹ H & ppm (J)			¹³ C & ppm			
position	16 (path A) (400M)	16 (path B) (400M)	error	16 (path A) (100M)	16 (path B) (100M)	error
1	-	-	-	171.9	171.9	0
2	-	-	-	48.0	48.0	0
3	-	-	-	212.9	212.9	0
4	-	-	-	55.1	55.1	0
5	-	-	-	197.4	197.4	0
6	-		-	110.1	110.1	0
7	3.39 (d, <i>J</i> = 11.2 Hz, 1H)	3.39 (d, <i>J</i> = 11.6 Hz, 1H)	0	49.2	49.2	0
8	/ - ////	-	-	216.5	216.5	0
9	2.93 (m, 1H)	2.92 (M, 1H)	0.01	41.3	41.3	0
10	1.26 (d, J = 7.0 Hz, 3H)	$1.20 (0, J = 0.0 \Pi Z, 3\Pi)$	0	20.7	20.7	0
12	1.13 (0, J = 7.0 Hz, 3H)	1.13 (U, J = 0.0 HZ, 3H)	0	19.2	19.2	01
12	1.35 (S, 3H)	1.33 (S, 3H) 1.45 (c. 3H)	0	23.0	20.0	0.1
13	1.45 (S, 3H)	1.45 (S, 30) 1.31 (c. 34)	0	24.0	24.0	0
14	1.31 (S, 3H)	1.37 (s, 31)	0 01	22.0	22.0	ŏ
13	1.20 (S, 30)	2.03 (m. 1H)	-0.01	23.5 49 1	23.9	ŏ
2'	$2.02 (m, 1\pi)$	1.05 (m, 11)	-0.01	29.9	20.0	ŏ
2	1.25 (III, ZH)	1.23 (11, 211)	U	20.0	25.5	v
3'a	2 19 (m. 1H)	2.19 (m. 1H)	0	35.7	35.8	-0.1
3'b	1.85 (m. 1H)	1.85 (m, 1H)	ŏ		00.0	•••
4'	1.00 (III, 111)		-	83.3	83.3	0
5'	2 23 (m 1H)	2.23 (m. 1H)	0	43.8	43.7	0.1
6'a	1.78 (m. 1H)	1.78 (m, 1H)	Ō	21.4	21.4	0
6'b	1.52 (m, 1H)	1.52 (m, 1H)	Ó			
7'a	1.88 (m. 1H)	1.88 (m, 1H)	0	38.8	38.8	0
7'b	1.66 (m, 1H)	1.67 (m, 1H)	-0.01			
8'		-	-	83.1	83.1	0
9'	2.10 (m, 1H)	2.10 (m, 1H)	0	42.6	42.6	0
10'a	1.76 (m, 1H)	1.76 (m, 1H)	0	36.2	36.2	0
10'b	1.38 (m, 1H)	1.38 (m, 1H)	0			
11'	-	-	-	33.8	33.8	0
12'	0.92 (s, 3H)	0.92 (s, 3H)	0	21.7	21.7	0
13'	0.99 (s, 3H)	0.99 (s, 3H)	0	30.0	30.0	0
14'	1.16 (s, 3H)	1.16 (s, 3H)	0	20.0	19.9	0.1
15'a	2.08 (m, 1H)	2.08 (m, 1H)	0	38.3	38.3	0
15'D	1.21 (m, 1H)	1.22 (m, 1H)	-0.01	407.4	407.4	•
1	-	-	-	167.4	167.4	0
2"	-	-	-	48.5	48.5	0
3	-	-	-	212.8	212.8	0
4 5"	-	-	-	35.Z	33.Z	0
5	-	-	-	190.5	190.0	0
0 7"	2.64 (m. 411)	2.63 (m. 1H)	0 01	25.0	25.0	Ő
, 8"a	2.04 (III, 1H)	1.69 (m, 1H)	0.01	42.8	12 8	ŏ
8"h	0.80 (m, 1H)	0.80 (m. 1H)	ň	42.0	42.0	v
9"	1.64 (m. 1H)	1 64 (m, 1H)	õ	25.5	25 5	0
10"	$0.87 (d_1) = 5.8 Hz 3H$	0.87 (d, J = 6.0 Hz, 3H)	õ	24.2	24 2	ŏ
11"	0.92 (d I = 5.8 Hz 3H)	0.92 (d, J = 6.0 Hz, 3H)	õ	20.9	20.9	ŏ
12"	1.35 (s. 3H)	1.34 (s. 3H)	0.01	26.7	26.7	ŏ
13"	1.40 (s. 3H)	1.39 (s. 3H)	0.01	23.4	23.4	Ō
14"	1.28 (s. 3H)	1.28 (s, 3H)	0	26.2	26.2	Ó
15"	1.34 (s, 3H)	1.34 (s, 3H)	0	24.9	24.9	0

Table S34. NMR data (CDCl₃) comparison between synthetic 16 through path A and path B.

Compound 17: 4.6 mg, 15% yield, yellow oil;

 $\mathbf{R}_{f} = 0.62$ (petroleum ether/ethyl acetate, 4/1);

 $[\alpha]_{\rm D}^{25} = +36.4^{\circ} (c \ 1.0, \text{MeOH});$

IR (**KBr**) *v*_{max}: 2928, 2865, 1706, 1656, 1623, 1464, 1368, 1280, 1186, 856, 754 cm⁻¹;

¹**H** NMR (400 MHz, CDCl₃) δ 3.45 (d, J = 10.4 Hz, 1H), 2.86 (m, 1H), 2.73 (m, 1H), 2.47 (m, 1H), 2.16 (m, 1H), 2.04 (m, 1H), 2.01 (m, 1H), 1.86 (m, 2H), 1.73 (m, 1H), 1.72 (m, 1H), 1.70 (m, 1H), 1.67 (m, 1H), 1.57 (m, 1H), 1.53 (m, 2H), 1.48 (m, 1H), 1.45 (s, 3H), 1.43 (d, J = 7.0 Hz, 3H), 1.37 (m, 1H), 1.32 (s, 3H), 1.32 (s, 3H), 1.32 (s, 3H), 1.30 (s, 3H), 1.30 (m, 1H), 1.29 (s, 3H), 1.28 (s, 3H), 1.24 (s, 3H), 1.17 (m, 1H), 1.09 (d, J = 7.0 Hz, 3H), 1.06 (s, 3H), 1.06 (d, J = 6.6 Hz, 3H), 1.03 (m, 1H), 0.99 (s, 3H), 0.96 (s, 3H), 0.96 (d, J = 6.6 Hz, 3H);

¹³**C NMR** (100 MHz, CDCl₃) δ 216.3, 213.3, 212.8, 197.9, 197.1, 171.2, 169.8, 110.2, 109.6, 82.8, 82.2, 55.7, 55.5, 48.4, 48.0, 47.8, 47.3, 46.9, 43.8, 42.0, 41.6, 38.3, 37.5, 34.6, 33.7, 29.5, 26.9, 26.3, 25.5, 25.5, 25.4, 25.2, 24.9, 24.7, 24.3, 24.0, 22.9, 22.5, 22.1, 21.9, 21.4, 21.4, 20.5, 20.0, 17.8;

HRMS (ESI) calcd for C₄₅H₆₇O₇ [M+H]⁺ Exact Mass: 719.4881; found: 719.4884.

	¹ Н & ррт (J)			¹³ C & ppm		
position	17 (path A) (400M)	17 (path B) (400M)	error	17 (path A) (100M)	17 (path B) (100M)	error
1	-	-	-	171.2	171.2	0
2	-	-	-	47.8	47.8	0
3	-	-	-	212.8	212.8	0
4	-	-	-	55.7	55.7	0
5	-	-	-	197.0	197.1	-0.1
0 7		$2.45(d_1 - 10.4 Hz - 1H)$	-	109.7	109.6	0.1
/ 8	3.45 (d, J = 10.4 Hz, 1H)	3.45 (0, J = 10.4 Hz, 1H)	U	47.3	47.3	-0.1
9	2 73 (m 1H)	2 73 (m 1H)	0	43.8	43.8	-0.1
10	1.43 (d I = 6.8 Hz 3H)	$1 43 (d_1) = 70 Hz 3H$	õ	20.5	20.5	ŏ
11	1.9 (d, $J = 6.8$ Hz, 3H)	1.09 (d, J = 7.0 Hz, 3H)	õ	17.8	17.8	ŏ
12	1.32 (s. 3H)	1.32 (s. 3H)	ŏ	21.4	21.4	Ō
13	1.45 (s. 3H)	1.45 (s. 3H)	ŏ	24.7	24.7	Ō
14	1.29 (s. 3H)	1.29 (s, 3H)	Ō	22.1	22.1	Ō
15	1.32 (s, 3H)	1.32 (s, 3H)	0	22.5	22.5	0
1'	1.72 (m, 1H)	1.72 (m, 1H)	0	48.5	48.4	0.1
2'	1.53 (m, 2H)	1.53 (m, 2H)	0	21.9	21.9	0
3'a	2.16 (m, 1H)	2.16 (m, 1H)	0	38.3	38.3	0
3'b	1.67 (m, 1H)	1.67 (m, 1H)	0			•
4.	-	-	-	82.8	82.8	U
5.	2.01 (m, 1H)	2.01 (m, 1H)	0	41.6	41.6	U
6'a	1.70 (m, 1H)	1.70 (m, 1H)	Ű	25.5	25.5	U
0 D 7'o	1.37 (m, 1H)	1.37 (M, 1H)	0	27 5	27 E	0
7 a 7'b	2.04 (M, 1H)	2.04 (III, 1H) 1.17 (m. 1H)	0 01	37.5	37.5	U
2' 2'	1.10 (m, 1H)	1.17 (III, 1H)	0.01	82.2	82.2	٥
0 0'	2 47 (m. 1H)	2 47 (m 1H)	0	46.9	16 9	ŏ
10'a	1.57 (m. 1H)	1.57 (m, 1H)	0	34.6	34.6	ŏ
10'a	1.37 (m, 1H)	1 30 (m. 1H)	õ	54.0	54.0	Ū
11'	1.50 (11, 11)		-	33.7	33 7	0
12'	0.98 (s. 3H)	0.99 (s. 3H)	-0.01	22.9	22.9	ŏ
13'	0.96 (s. 3H)	0.96 (s. 3H)	0	29.5	29.5	Ō
14'	1.07 (s. 3H)	1.06 (s, 3H)	0.01	21.4	21.4	Ó
15'	1.86 (m, 2H)	1.86 (m, 2H)	0	24.0	24.0	0
1"	-	-	-	169.7	169.8	-0.1
2"	-	-	-	47.9	48.0	-0.1
3"	-	-	-	213.3	213.3	0
4	-	-	-	55.5	55.5	0
5"	-	-	-	197.9	197.9	0
5.		2.96 (m. 411)	-	110.3	110.2	0.1
/ 9"o	2.86 (m, 1H)	2.00 (M, 1H)	0	25.2	25.2	0.1
0 a 0"h	1.48 (m, 1H)	1.40 (m, 1n) 1.02 (m, 1H)	0	42.1	42.0	0.1
0 U 0''	1.03 (m, 1n) 1.72 (m, 1H)	1.03 (III, 10) 1.73 (m. 14)	0	26.3	26.3	0
	1./3 (III, 10) 0.96 (d. /= 6.8 Hz 34)	0.96 (d /=66 Hz 34)	0	20.3	20.3	ň
11"	1 06 (d /= 6 8 Hz 3H)	$1.06 (d_1) = 6.6 Hz (3H)$	ñ	20.0	24.5	ň
12"	1 24 (s 3H)	1.24 (s. 3H)	ñ	24.9	24.9	õ
13"	1 28 (s. 3H)	1.28 (s. 3H)	õ	25.4	25.4	ŏ
14"	1.30 (s. 3H)	1.30 (s. 3H)	õ	25.5	25.5	õ
15"	1.32 (s. 3H)	1.32 (s. 3H)	ō	26.9	26.9	ō
		= (0, 0)	-			

Table S35. NMR data (CDCl₃) comparison between synthetic 17 through paths A and B.
6. X-ray crystal structures of 7, 16, and 18

Figure S52. X-ray ORTEP drawing of 7 (thermal ellipsoids at the 50% probability level).

Figure S53. X-ray ORTEP drawing of 16 (thermal ellipsoids at the 50% probability level).

Figure S54. X-ray ORTEP drawing of 18 (thermal ellipsoids at the 50% probability level).

5.5.29 1.1.85 1.1.85 1.1.85 1.1.85 1.1.88 1.

Figure S56. ¹³C NMR spectrum (75 MHz) of synthetic 7 in CDCl₃.

Figure S57. Comparison of ¹H NMR spectra between synthetic and natural 7.

Figure S58. Comparison of ¹³C NMR spectra between synthetic and natural 7.

Figure S60. ¹³C NMR spectrum (100 MHz) of synthetic 12 in CDCl₃.

Figure S61. Comparison of ¹H NMR spectra between synthetic and natural 12.

Figure S62. Comparison of ¹³C NMR spectra between synthetic and natural 12.

11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 f1 (ppm)

Figure S66. Comparison of ¹H NMR spectra between synthetic and natural 13.

Figure S68. ¹³C NMR spectrum (100 MHz) of synthetic 14 in CDCl₃.

Figure S69. Comparison of ¹H NMR spectra between synthetic and natural 14.

Figure S70. Comparison of ¹³C NMR spectra between synthetic and natural 14.

Figure S72. ¹³C NMR spectrum (100 MHz) of synthetic 15 in CDCl₃.

Figure S73. Comparison of ¹H NMR spectra between synthetic and natural 15.

Figure S74. Comparison of ¹³C NMR spectra between synthetic and natural 15.

Figure S76. ¹³C NMR spectrum (100 MHz) of synthetic 8 in CDCl₃.

Figure S78. ¹³C NMR spectrum (100 MHz) of synthetic 9 in CDCl₃.

Figure S80. ¹³C NMR spectrum (100 MHz) of synthetic 10 in CDCl₃.

Figure S82. ¹³C NMR spectrum (100 MHz) of synthetic 11 in CDCl₃.

5.19 5.05 5.05 5.05 3.07 3.07 3.07 3.07 3.07 3.02 3.02 3.02 3.02 3.02 1.140 1.128 1.

Figure S84. ¹³C NMR spectrum (100 MHz) of synthetic 18 in CDCl₃.

Figure S85. ¹H–¹H COSY spectrum of synthetic 18 in CDCl₃.

Figure S86. HSQC spectrum of synthetic 18 in CDCl₃.

Figure S87. HMBC spectrum of synthetic 18 in CDCl₃.

Figure S88. NOESY spectrum of synthetic 18 in CDCl₃.

Figure S90. ¹³C NMR spectrum (100 MHz) of synthetic 19 in CDCl₃.

Figure S92. ¹³C NMR spectrum (100 MHz) of synthetic 20 in CDCl₃.

Figure S94. ¹³C NMR spectrum (100 MHz) of synthetic 21 in CDCl₃.

44.08 44.0744.07 44.0744.07 44.07 44.07 44.07 44.07 44.07 44.07 44.0744.07 44.07 44.07 44.07 44.0744.07 44.07 44.07 44.0744.07 44.07 44.0744.07 44.07 44.0744.07 44.07 44.0744.07 44.07 44.0744.07 44.07 44.0744.07 44.07 44.0744.07 44.0744.074

Figure S96. ¹³C NMR spectrum (100 MHz) of synthetic 1 through path A in CDCl₃.

44.08 44.07 44.07 44.07 44.07 44.07 44.07 44.07 44.0844.08 44.0844.08 44.08 44.08 44.08 44.08 44.08 44.0844.08 44.08 44.08 44.0844.08 44.08 44.0844.08 44.08 44.0844.08 44.08 44.0844.08 44.08 44.0844.08 44.08 44.0844.08 44.08 44.0844.08 44.08 44.0844.08 44.0844.08 44.0844.08 44.0844.08 44.0844.08 44.0844.08 44.0844.08 44.0844.08 44.0844.08 44.0844.08 44.0844.08 44.0844.08 44.0844.08 44.0844.08 44.0844.08 44.08

Figure S99. Comparison of ¹H NMR spectra between synthetic and natural 1.

Figure S100. Comparison of ¹H NMR spectra between synthetic and natural 1.

Figure S101. ¹H NMR spectrum (400 MHz) of synthetic 2 through path A in CDCl₃.

Figure S102. ¹³C NMR spectrum (100 MHz) of synthetic 2 through path A in CDCl₃.

Figure S103. ¹H NMR spectrum (400 MHz) of synthetic 2 through path B in CDCl₃.

Figure S104. ¹³C NMR spectrum (100 MHz) of synthetic 2 through path B in CDCl₃.

Figure S105. Comparison of ¹H NMR spectra between synthetic and natural 2.

Figure S106. Comparison of ¹H NMR spectra between synthetic and natural 2.

 $\begin{array}{c} 3.3.40\\ 2.2.29\\$

Figure S108. ¹³C NMR spectrum (100 MHz) of synthetic 16 through path A in CDCl₃.

Figure S109. $^{1}H^{-1}H$ COSY spectrum of synthetic 16 through path A in CDCl₃.

Figure S110. HSQC spectrum of synthetic 16 through path A in CDCl₃.

Figure S111. HMBC spectrum of synthetic 16 through path A in CDCl₃.

Figure S112. NOESY spectrum of synthetic 16 through path A in CDCl₃.

Figure S114. ¹³C NMR spectrum (100 MHz) of synthetic 16 through path B in CDCl₃.

Figure S115. Comparison of ¹H NMR spectra between synthetic 16 through paths A and B.

Figure S116. Comparison of ¹³C NMR spectra between synthetic 16 through paths A and B.

Figure S117. ¹H NMR spectrum (400 MHz) of synthetic 17 through path A in CDCl₃.

Figure S118. ¹³C NMR spectrum (100 MHz) of synthetic 17 through path A in CDCl₃.

Figure S119. $^{1}H^{-1}H$ COSY spectrum of synthetic 17 through path A in CDCl₃.

Figure S120. HSQC spectrum of synthetic 17 through path A in CDCl₃.

Figure S121. HMBC spectrum of synthetic 17 through path A in CDCl₃.

Figure S122. NOESY spectrum of synthetic 17 through path A in CDCl₃.

Figure S124. ¹³C NMR spectrum (100 MHz) of synthetic 17 through path B in CDCl₃.

Figure S125. Comparison of ¹H NMR spectra between synthetic 17 through paths A and B.

Figure S126. Comparison of 13 C NMR spectra between synthetic 17 through paths A and B.

References

- Gaussian 09, Revision A.02, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, **2009**.
- (2) Bruhn, T.; Schaumloffel, A.; Hemberger, Y.; Pescitelli, G. SpecDis version 1.70, Berlin, Germany, 2017.