Supporting Information

Chemoselective acylation of N-acylglutarimides with N-acylpyrroles

and aryl esters under transition-metal-free conditions

Jie Li,^{1,3} Jiaqi Yao,^{1,3} Lingfeng Chen,¹ Dong Zou,³ Patrick J. Walsh,*² Guang Liang^{*,1}

¹ School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China

² Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, USA

³ Department of Pharmacy, School of Medicine, Zhejiang University City College, No. 48, Huzhou Road, Hangzhou 310015, P. R. China

Table of Content

General Information	S2
Preparation of N-acylglutarimides	S2
Preparation of N-acylpyrroles	S2
Preparation of aryl esters	S2
Reaction optimization of acylation of N-acylglutarimide with aryl esters	S2
Reaction optimization of the synthesis of symmetric imide	S3
Synthesis of diarylimides	S3
References	S19
NMR Spectra	S20

General Information

All reactions were conducted under an atmosphere of dry nitrogen with oven-dried glassware or vacuum line techniques. All anhydrous solvents were purchased from Sigma-Aldrich and used without further purification. Unless otherwise stated, reagents were commercially available and used without purification. Chemicals were purchased from Sigma-Aldrich, TCI China, Acros, Alfa Aesar or J&K.

Progress of reactions was monitored by thin-layer chromatography using TLC plates and visualized by short-wave ultraviolet light. Flash chromatography was performed with Qingdao Haiyang flash silica gel (200–300 mesh). The NMR spectra were obtained using a Bruker AVANCE III 500 MHz spectrometers (Bruker Co., Switzerland) with TMS as the internal standard. The infrared spectra were obtained with KBr plates by using a FTIR650 FT-IR Spectrometer. High resolution mass spectrometry (HRMS) data were obtained on an Agilent Q-TOF 1290 LC/6224 MS system using electrospray ionization (ESI) in positive or negative mode. Melting points were determined on a Thermal Values analytical microscope and were uncorrected.

Preparation of N-acylglutarimides: N-acylglutarimides were prepared according to the literature.¹

Preparation of N-acylpyrroles: N-acylpyrroles were prepared according to the literature.²

Preparation of aryl esters: aryl esters were prepared according to the literature.³

Reaction optimization of acylation of N-acylglutarimide with aryl esters

Table S1. Reaction Optimization^a

	NH NH			
4a	2a		3aa	
entry	solvent	temp (°C)	base	yield ^b (%)
1	THF	120	NaHMDS	37
2	DME	120	NaHMDS	88
3	CPME	120	NaHMDS	65
4	1,4-dioxane	120	NaHMDS	40
5	toluene	120	NaHMDS	66
6	DME	120	KHMDS	55
7	DME	120	LiHMDS	75
8	DME	120	LiO ^t Bu	trace
9	DME	120	NaO ^t Bu	trace
10	DME	120	KO ^t Bu	Null

11	DME	100	NaHMDS	75
12	DME	80	NaHMDS	60
13	DME	60	NaHMDS	trace
14	DME	120	NaHMDS ^c	93
15	DME	120	$NaHMDS^d$	60

^aReactions were conducted with 4a (0.1 mmol), 2a (0.1 mmol), base (0.2 mmol), solvent (1 mL), 12 h.

^b Isolated yields. ^c3 equiv of NaHMDS. ^d1 equiv of NaHMDS.

Reaction optimization of the synthesis of symmetric imides

Table S2. Reaction Optimization^a

	Ph N O 2a	3 equiv base solvent, 120	Ph N Ph H 6a	
entry	solvent	temp (°C)	base	yield(%) ^b
1	THF	120	NaHMDS	40
2	DME	120	NaHMDS	90
3	CPME	120	NaHMDS	60
4	1,4-dioxane	120	NaHMDS	45
5	toluene	120	NaHMDS	80
6	DME	120	KHMDS	42
7	DME	120	LiHMDS	69
8	DME	120	LiO ^t Bu	35
9	DME	120	NaO'Bu	trace
10	DME	120	KO ^t Bu	30
11	DME	100	NaHMDS	85
12	DME	80	NaHMDS	65
13	DME	60	NaHMDS	trace
14	DME	120	NaHMDS ^c	85
15	DME	120	NaHMDS ^d	50

^{*a*}Reactions were conducted with **2a** (0.1 mmol), base (0.3 mmol), solvent (1 mL), 12 h. ^{*b*}Isolated yields. ^{*c*}2 equiv of NaHMDS. ^{*d*}1 equiv of NaHMDS.

Synthesis of diarylimides

General Procedure A: An oven-dried 10 mL vial equipped with a stir bar was charged with *N*-acylglutarimides (0.1 mmol) and $LiN(SiMe_3)_2$ (33.3 mg, 0.2 mmol) under a nitrogen atmosphere. A solution of *N*-acylpyrroles (0.1 mmol) in 1.0 mL of dry DME was added to the reaction mixture at rt by syringe and the color of the reaction mixture turned to light yellow. The reaction mixture was stirred for 12 h at 120 °C in an oil bath. After cooling to room temperature, the reaction mixture was quenched with three drops of H₂O and the vail was opened to the air, passed through a short pad of silica gel and

eluted with ethyl acetate (1 mL \times 3). The combined organics were concentrated under reduced pressure. The crude material was loaded onto a silica gel column and purified by flash chromatography.

General Procedure B: An oven-dried 10 mL vial equipped with a stir bar was charged with *N*-acylglutarimides (0.1 mmol) and NaN(SiMe₃)₂ (56 mg, 0.3 mmol) under a nitrogen atmosphere. A solution of aryl ester (0.1 mmol) in 1.0 mL of dry DME was taken up by syringe and added to the mixture and the color of the reaction mixture turned to light yellow. After stirring for 12 h at 120 °C in an oil bath. The reaction mixture was quenched with three drops of H₂O and the vail was opened to the air, passed through a short pad of silica gel and eluted with ethyl acetate (1 mL × 3). The combined organics were concentrated *in vacuo*. The crude material was loaded onto a silica gel column and purified by flash chromatography.

General Procedure C: To an oven-dried 10 mL vial equipped with a stir bar was added *N*-acylglutarimides (0.1 mmol), NaN(SiMe₃)₂ (56 mg, 0.3 mmol) and THF (1 mL). The color of the reaction mixture turned to light yellow. The reaction mixture was then heated to 120 °C and stirred for 12 h in an oil bath. After cooling to room temperature, the reaction mixture was quenched with three drops of H₂O and the vail was opened to the air, passed through a short pad of silica gel and eluted with ethyl acetate (1 mL × 3). The combined organics were concentrated under reduced pressure. The crude material was loaded onto a silica gel column for purification of imides.

N-benzoyl-2-methylbenzamide (3aa). The reaction was performed following General Procedure A with 1a (17.1 mg, 0.1 mmol), LiN(SiMe₃)₂ (33.3 mg, 0.2 mmol), and 2a (23.1 mg, 0.1 mmol) dissolved in DME (1 mL) at 120 °C. The crude material was purified by flash chromatography on silica gel (eluted with hexanes:EtOAc = 5:1) to give the product (22.0 mg, 92% yield) as a white solid. ¹H NMR (500 MHz, CDCl₃): δ 9.14 (s, 1H), 7.88 – 7.87 (m, 2H), 7.61 – 7.58 (m, 1H), 7.50 – 7.44 (m, 3H), 7.40 – 7.37 (m, 1H), 7.27 – 7.25 (m, 2H), 2.47 (s, 3H). The NMR spectral data match the previously published data.⁴

N-benzoyl-1-naphthamide (3ab). The reaction was performed following General Procedure A with 1a (17.1 mg, 0.1 mmol), LiN(SiMe₃)₂ (33.3 mg, 0.2 mmol), and 2b (26.7 mg, 0.1 mmol) dissolved in DME (1 mL) at 120 °C. The crude material was purified by flash chromatography on silica gel (eluted with hexanes:EtOAc = 5:1) to give the product (23.9 mg, 87% yield) as a white solid. ¹H NMR (500 MHz, (CD₃)₂SO): δ 11.69 (s, 1H), 8.19 (dd, *J* = 8.4, 7.0 Hz, 1H), 8.10 (d, *J* = 8.3 Hz, 1H), 8.04 – 8.02 (m, 1H), 7.97 – 7.95 (m, 2H), 7.81 (dd, *J* = 7.1, 1.1 Hz, 1H), 7.64 -7.57 (m, 4H), 7.54 - 7.51 (m, 2H). The NMR spectral data match the previously published data.⁵

N-benzoyl-2-naphthamide (3ac). The reaction was performed following General Procedure A with 1a (17.1 mg, 0.1 mmol), LiN(SiMe₃)₂ (33.3 mg, 0.3 mmol), and

2c (26.7 mg, 0.1 mmol) dissolved in DME (1 mL) at 120 °C. The crude material was purified by flash chromatography on silica gel (eluted with hexanes:EtOAc = 5:1) to give the product (24.5 mg, 89% yield) as a white solid. ¹H NMR (500 MHz, (CD₃)₂SO): δ 11.45 (s, 1H), 8.58 (d, *J* = 1.1 Hz, 1H), 8.07 – 8.06 (m, 1H), 7.99 (t, *J* = 9.5 Hz, 2H), 7.94 – 7.89 (m, 3H), 7.65 – 7.58 (m, 3H), 7.53 – 7.50 (m, 2H). The NMR spectral data match the previously published data.⁴

N-benzoyl-4-(tert-butyl)benzamide (3ad). The reaction was performed following General Procedure A with 1a (17.1 mg, 0.1 mmol), LiN(SiMe₃)₂ (33.3 mg, 0.2 mmol), and 2d (27.3 mg, 0.1 mmol) dissolved in DME (1 mL) at 120 °C. The crude material was purified by flash chromatography on silica gel (eluted with hexanes:EtOAc = 5:1) to give the product (25.5 mg, 91% yield) as a yellow solid. mp: 150 – 152 °C; ¹H NMR (500 MHz, CDCl₃): δ 9.10 (s, 1H), 7.86 – 7.85 (m, 2H), 7.83 – 7.80 (m, 2H), 7.60 – 7.57 (m, 1H), 7.51 – 7.47 (m, 4H), 1.34 (s, 9H). ¹³C {¹H} NMR (125 MHz, CDCl₃): δ 165.6, 165.2, 155.9, 132.5, 132.0, 129.4, 127.8, 126.9, 126.9, 124.8, 34.1, 30.0; IR (thin film): 3440, 3070, 2928, 2251, 2125, 1732, 1676, 1602, 1483 cm⁻¹; HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₁₈H₂₀NO₂ 282.1489; found 282.1513.

N-benzoyl-[1,1'-biphenyl]-4-carboxamide (3ae). The reaction was performed following General Procedure A with 1a (17.1 mg, 0.1 mmol), LiN(SiMe₃)₂ (33.3 mg, 0.2 mmol), and 2e (29.3 mg, 0.1 mmol) dissolved in DME (1 mL) at 120 °C. The crude material was purified by flash chromatography on silica gel (eluted with hexanes:EtOAc = 5:1) to give the product (22.6 mg, 75% yield) as a colorless oil. ¹H NMR (500 MHz, (CD₃)₂SO): δ 11.38 (s, 1H), 8.03 – 8.01 (m, 2H), 7.95 – 7.93 (m, 2H), 7.84 – 7.82 (m, 2H), 7.78 – 7.76 (m, 2H), 7.67 – 7.64 (m, 1H), 7.56 – 7.51 (m, 4H), 7.46 – 7.43 (m, 1H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 166.6, 166.4, 145.9, 139.6, 133.3, 133.1, 131.9, 129.0, 128.8, 128.7, 128.4, 128.0, 127.4, 127.3; IR (thin film): 3448, 3128, 1892, 1720, 1665, 1411, 1387, 1264, 1010 cm⁻¹; HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₂₀H₁₆NO₂ 302.1176; found 302.1185.

N-benzoyl-4-(trifluoromethoxy)benzamide (3af). The reaction was performed following General Procedure A with 1a (17.1 mg, 0.1 mmol), LiN(SiMe₃)₂ (33.3 mg, 0.2 mmol), and 2f (30.1 mg, 0.1 mmol) dissolved in DME (1 mL) at 120 °C. The crude material was purified by flash chromatography on silica gel (eluted with hexanes:EtOAc = 5:1) to give the product (26.2 mg, 85% yield) as a yellow oil. ¹H NMR (500 MHz, (CD₃)₂SO): δ 11.46 (s, 1H), 8.07 – 8.04 (m, 2H), 7.95 – 7.93 (m, 2H), 7.66 – 7.63 (m, 1H), 7.55 – 7.51 (m, 4H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 168.0, 167.2, 151.5, 134.1, 133.5, 133.2, 131.6, 129.0 (d, $J_{C(Ar)-F}$ = 36.3 Hz), 121.0, 120.4 (q, J_{C-F} = 257.4 Hz); IR (thin film): 3235, 3140, 3061, 2924, 2852, 1717, 1672, 1597, 1487 cm⁻¹; HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₁₅H₁₁F₃NO₃ 310.0686; found 310.0691.

benzoyl-4-fluorobenzamide (3ag). The reaction was performed following General Procedure A with **1a** (17.1 mg, 0.1 mmol), LiN(SiMe₃)₂ (33.3 mg, 0.2 mmol), and **2g** (23.5 mg, 0.1 mmol) dissolved in DME (1 mL) at 120 °C. The crude material was purified by flash chromatography on silica gel (eluted with hexanes:EtOAc = 5:1) to give the product (22.4 mg, 92% yield) as a yellow oil. ¹H NMR (500 MHz, (CD₃)₂SO): δ 11.40 (s, 1H), 8.06 – 8.03 (m, 2H), 7.96 – 7.95 (m, 2H), 7.69 – 7.66 (m, 1H), 7.58 – 7.55 (dd, *J* = 10.6, 4.8 Hz, 2H), 7.41 – 7.38 (m, 2H); The NMR spectral data match the previously published data.⁴

benzoyl-4-(trifluoromethyl)benzamide (3ah). The reaction was performed following General Procedure A with **1a** (17.1 mg, 0.1 mmol), LiN(SiMe₃)₂ (33.3 mg, 0.2 mmol), and **2h** (28.5 mg, 0.1 mmol) dissolved in DME (1 mL) at 120 °C. The crude material was purified by flash chromatography on silica gel (eluted with hexanes:EtOAc = 5:1) to give the product (22.0 mg, 75% yield) as a white solid. ¹H NMR (500 MHz, CDCl₃): δ 9.40 (s, 1H), 7.94 (d, *J* = 8.1 Hz, 2H), 7.88 – 7.86 (m, 2H), 7.72 (d, *J* = 8.3 Hz, 2H), 7.61 (t, *J* = 7.5 Hz, 1H), 7.48 (t, *J* = 7.8 Hz, 2H). The NMR spectral data match the previously published data.⁴

N-benzoyl-[1,1'-biphenyl]-2-carboxamide (3ai). The reaction was performed following General Procedure A with 1a (17.1 mg, 0.1 mmol), LiN(SiMe₃)₂ (33.3 mg, 0.2 mmol), and 2i (29.3 mg, 0.1 mmol) dissolved in DME (1 mL) at 120 °C. The crude material was purified by flash chromatography on silica gel (eluted with hexanes:EtOAc = 5:1) to give the product (23.4 mg, 78% yield) as a colorless oil. ¹H NMR (500 MHz, (CD₃)₂SO): δ 11.19 (s, 1H), 7.53 – 7.37 (m, 7H), 7.35 – 7.30 (m, 6H), 7.28 – 7.23 (m, 1H); ¹³C{¹H} NMR (125 MHz, (CD₃)₂SO): δ 170.8, 166.3, 139.9, 139.4, 136.1, 132.9, 132.7, 130.3, 129.8, 128.6, 128.4, 128.3, 128.2, 127.9, 127.5, 127.3; IR (thin film): 3452, 3241, 3148, 1721, 1685, 1511, 1487, 1473, 1264 cm⁻¹; *m/z*: [M + H]⁺ calcd for C₂₀H₁₆NO₂ 302.1176; found 302.1185.

N-benzoyl-2-chlorobenzamide (3aj). The reaction was performed following General Procedure A with 1a (17.1 mg, 0.1 mmol), LiN(SiMe₃)₂ (33.3 mg, 0.2

mmol), and **2j** (25.1 mg, 0.1 mmol) dissolved in DME (1 mL) at 120 °C. The crude material was purified by flash chromatography on silica gel (eluted with hexanes:EtOAc = 5:1) to give the product (22 mg, 85% yield) as a white solid. ¹H NMR (500 MHz, (CD₃)₂SO): δ 11.10 (s, 1H), 8.50-8.47 (m, 2H), 8.12 – 8.07 (m, 1H), 8.04 – 7.97 (m, 3H), 7.96 – 7.93 (m, 2H), 7.90 – 7.87 (m, 1H). The NMR spectral data match the previously published data.⁶

methyl 4-(benzoylcarbamoyl)benzoate (3ak). The reaction was performed following General Procedure A with 1a (17.1 mg, 0.1 mmol), LiN(SiMe₃)₂ (33.3 mg, 0.2 mmol), and 2k (27.5 mg, 0.1 mmol) dissolved

in DME (1 mL) at 120 °C. The crude material was purified by flash chromatography on silica gel (eluted with hexanes:EtOAc = 5:1) to give the product (22.6 mg, 80% yield) as a yellow oil. ¹H NMR (500 MHz, (CD₃)₂SO): δ 11.48 (s, 1H), 8.05 – 8.02 (m, 2H), 7.98 – 7.95 (m, 2H), 7.90 – 7.88 (m, 2H), 7.63 – 7.59 (m, 1H), 7.51 – 7.48 (m, 2H), 3.86 (s, 3H); ¹³C{¹H} NMR (125 MHz, (CD₃)₂SO): δ 167.6, 167.5, 165.7, 138.1, 133.5, 132.8, 132.7, 129.1, 128.9, 128.7, 128.5, 52.5; IR (thin film): 3374, 2924, 2853, 1734, 1713, 1504, 1486, 1468, 1244 cm⁻¹; HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₁₆H₁₄NO4 284.0917; found 284.0921.

4-acetyl-*N***-benzoylbenzamide (3al).** The reaction was performed following General Procedure A with 1a (17.1 mg, 0.1 mmol), NaN(SiMe₃)₂ (56 mg, 0.3 mmol), and **2l** (25.9 mg, 0.1 mmol) dissolved in DME (1 mL) at 120 °C. The

crude material was purified by flash chromatography on silica gel (eluted with hexanes:EtOAc = 5:1) to give the product (17.4 mg, 65% yield) as a yellow oil. ¹H NMR (500 MHz, CDCl₃): δ 9.28 (s, 1H), 8.03 (d, J = 8.4 Hz, 2H), 7.93 – 7.88 (m, 4H), 7.63 – 7.60 (m, 1H), 7.51 (t, J = 7.8 Hz, 2H), 2.63 (s, 3H). The NMR spectral data match the previously published data.⁵

N-benzoylfuran-2-carboxamide (3am). The reaction was performed following General Procedure A with 1a (17.1 mg, 0.1 mmol), LiN(SiMe₃)₂ (33.3 mg, 0.2 mmol), and 2m (20.7 mg, 0.1 mmol) dissolved in DME (1 mL) at 120 °C. The crude material was purified by flash chromatography on silica gel (eluted with hexanes:EtOAc = 5:1) to give the product (13.1 mg, 61% yield) as a yellow solid. ¹H NMR (500 MHz, CDCl₃): δ 9.37 (s, 1H), 7.89 (dd, J = 5.2, 3.3 Hz, 2H), 7.62 – 7.58 (m, 2H), 7.51 (dd, J = 10.5, 4.8 Hz, 2H), 7.40 – 7.39 (m, 1H), 6.62 (dd, J = 3.6,

1.7 Hz, 1H); The NMR spectral data match the previously published data.⁴

benzoylthiophene-2-carboxamide (3an). The reaction was performed following General Procedure A with **1a** (17.1 mg, 0.1 mmol), LiN(SiMe₃)₂ (33.3 mg, 0.2 mmol), and **2n** (22.3 mg, 0.1 mmol) dissolved in DME (1 mL) at 120 °C. The crude material was purified by flash chromatography on silica gel (eluted with hexanes:EtOAc = 5:1) to give the product (16.4 mg, 71% yield) as a white solid. ¹H NMR (500 MHz, (CD₃)₂SO): δ 11.30 (s, 1H), 8.17 (dd, *J* = 3.8, 1.0 Hz, 1H), 8.00 – 7.99 (m, 1H), 7.89 – 7.87 (m, 2H), 7.66 – 7.63 (m, 1H), 7.53 (dd, *J* = 10.7, 4.8 Hz, 2H), 7.25 (dd, *J* = 4.9, 3.9 Hz, 1H). The NMR spectral data match the previously published data.⁴

N-benzoylbenzo[b]thiophene-2-carboxamide (3ao). The reaction was performed following General Procedure A with 1a (17.1 mg, 0.1 mmol), LiN(SiMe₃)₂ (33.3 mg, 0.2 mmol), and 2o (27.3 mg, 0.1 mmol) dissolved in DME (1 mL) at 120 °C. The crude material was purified by flash chromatography on silica gel (eluted with hexanes:EtOAc = 5:1) to give the product (19.7 mg, 70% yield) as a yellow oil. ¹H NMR (500 MHz, (CD₃)₂SO) δ 11.47 (s, 1H), 8.48 (s, 1H), 8.02 – 8.01 (m, 1H), 7.95 (d, *J* = 7.7 Hz, 1H), 7.88 – 7.86 (m, 2H), 7.62 – 7.58 (m, 1H), 7.51 – 7.46 (m, 3H), 7.44 – 7.41 (m, 1H); ¹³C{¹H} NMR (125 MHz, (CD₃)₂SO) δ 167.3, 161.7, 141.3, 138.9, 138.1, 133.9, 132.7, 129.3, 128.7, 128.4, 127.3, 126.0, 125.3, 123.0; IR (thin film): 3440, 3261, 3150, 1688, 1625, 1499, 1387, 1313, 1254 cm⁻¹; HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₁₆H₁₂NO₂S 282.0583; found 282.0590.

N-(2-methylbenzoyl)-1-naphthamide (3ba). The reaction was performed following General Procedure A with 2a (23.1 mg, 0.1 mmol), LiN(SiMe₃)₂ (33.3 mg, 0.2 mmol), and 1b (22.1 mg, 0.1 mmol) dissolved in DME (1 mL) at 120 °C. The crude material was purified by flash chromatography on silica gel (eluted with hexanes:EtOAc = 5:1) to give the product (23.1 mg, 80% yield) as a yellow oil. ¹H NMR (500 MHz, (CD₃)₂SO): δ 11.70 (s, 1H), 8.21 (d, J = 8.4 Hz, 1H), 8.10 (d, J = 8.3 Hz, 1H), 8.03 – 8.02 (m, 1H), 7.84 (dd, J = 7.1, 1.1 Hz, 1H), 7.64 – 7.58 (m, 4H), 7.42 – 7.39 (m, 1H), 7.30 – 7.27 (m, 2H), 2.41 (s, 3H); ¹³C{¹H} NMR (125 MHz, (CD₃)₂SO): δ 169.5, 168.9, 135.9, 135.4, 133.1, 132.8, 131.1, 130.7, 130.5, 129.6, 128.5, 127.8, 127.4, 126.6, 126.4, 125.6, 124.9, 124.7, 19.5; IR (thin film): 3227, 3143, 3063, 2960, 1720, 1677, 1512, 1243, 1195 cm⁻¹; HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₁₉H₁₆NO₂ 290.1176; found 290.1160.

N-(2-methylbenzoyl)-2-naphthamide (3ca). The reaction was performed

following General Procedure A with **2a** (23.1 mg, 0.1 mmol), LiN(SiMe₃)₂ (33.3 mg, 0.2 mmol), and **1c** (22.1 mg, 0.1 mmol) dissolved in DME (1 mL) at 120 °C. The crude material was purified by flash chromatography on silica gel (eluted with hexanes:EtOAc = 5:1) to give the product (24.0 mg, 83% yield) as a white solid. mp: 159 – 161 °C; ¹H NMR (500 MHz, CDCl₃): δ 9.15 (br s, 1H), 8.41 (s, 1H), 7.95 – 7.92 (m, 2H), 7.91 – 7.89 (m, 2H), 7.64 – 7.61 (m, 1H), 7.59 – 7.55 (m, 1H), 7.51 – 7.50 (m, 1H), 7.43 – 7.39 (m, 1H), 7.29 – 7.28 (m, 2H), 2.50 (s, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 169.7, 165.7, 137.0, 135.7, 134.9, 132.6, 131.5, 131.2, 130.2, 129.4, 129.2, 129.1, 128.9, 128.0, 127.4, 127.1, 126.0, 123.9, 20.1; IR (thin film): 3436, 3239, 2963, 1737, 1717, 1677, 1496, 1259, 1225 cm⁻¹; HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₁₉H₁₆NO₂ 290.1176; found 290.1210.

methyl-*N***-(3-methylbenzoyl)benzamide (3da).** The reaction was performed following General Procedure A with **2a** (23.1 mg, 0.1 mmol), LiN(SiMe₃)₂ (33.3 mg, 0.2 mmol), and **1d** (18.5 mg, 0.1 mmol) dissolved in DME (1 mL) at 120 °C.

The crude material was purified by flash chromatography on silica gel (eluted with hexanes:EtOAc = 5:1) to give the product (23.3 mg, 92% yield) as a white solid. mp: $100 - 102 \,^{\circ}$ C; ¹H NMR (500 MHz, (CD₃)₂SO): δ 11.38 (s, 1H), 7.76 (s, 1H), 7.73 (d, *J* = 7.6 Hz, 1H), 7.46 (dd, *J* = 12.8, 5.1 Hz, 2H), 7.42 - 7.38 (m, 2H), 7.30 - 7.26 (m, 2H), 2.38 (s, 6H); ¹³C{¹H} NMR (125 MHz, (CD₃)₂SO): δ 170.2, 166.8, 137.8, 136.0, 135.5, 133.4, 133.2, 130.5, 130.2, 129.0, 128.4, 127.5, 125.8, 125.6, 20.9, 19.3; IR (thin film): 3238, 3143, 2924, 2852, 1738, 1718, 1679, 1581, 1504 cm⁻¹; HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₁₆H₁₆NO₂ 254.1176; found 254.1144.

(4-(tert-butyl)benzoyl)-2-methylbenzamide (3ea). The reaction was performed following General Procedure A with 2a (23.1 mg, 0.1 mmol), LiN(SiMe₃)₂ (33.3 mg, 0.2 mmol), and 1e (22.7 mg, 0.1 mmol) dissolved in DME (1 mL) at 120 °C. The crude material was purified by flash chromatography on silica gel (eluted with hexanes:EtOAc = 5:1) to give the product (26.0 mg, 88% yield) as a white solid. mp: 124 – 125 °C; ¹H NMR (500 MHz, (CD₃)₂SO): δ 11.33 (s, 1H), 7.84 (d, *J* = 8.4 Hz, 2H), 7.50 – 7.47 (m, 2H), 7.40 – 7.39 (m, 1H), 7.45 – 7.32 (m, 1H), 7.24 – 7.19 (m, 2H), 2.32 (s, 3H), 1.26 (s, 9H); ¹³C {¹H} NMR (125 MHz, (CD₃)₂SO): δ 170.4, 166.5, 155.9, 136.1, 135.4, 130.5, 130.4, 130.1, 128.6, 127.4, 125.6, 125.3, 34.8, 30.9, 19.4; IR (thin film): 3260, 3023, 2963, 2919, 2850, 1734, 1717, 1659, 1500 cm⁻¹; HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₁₉H₂₂NO₂ 296.1645; found 296.1617.

N-(2-methylbenzoyl)-[1,1'-biphenyl]-4-carboxamide (3fa). The reaction was performed following General Procedure A with 2a (23.1 mg, 0.1 mmol), LiN(SiMe₃)₂ (33.3 mg, 0.2 mmol), and 1f (24.7 mg, 0.1 mmol) dissolved in

DME (1 mL) at 120 °C. The crude material was purified by flash chromatography on silica gel (eluted with hexanes:EtOAc = 5:1) to give the product (22.1 mg, 70% yield) as a colorless oil. ¹H NMR (500 MHz, (CD₃)₂SO): δ 11.43 (s, 1H), 7.98 – 7.96 (m, 2H), 7.76 – 7.74 (m, 2H), 7.69 – 7.67 (m, 2H), 7.45 – 7.42 (m, 3H), 7.37 – 7.31 (m, 2H), 7.23 – 7.19 (m, 2H), 2.33 (s, 3H); ¹³C{¹H} NMR (125 MHz, (CD₃)₂SO): δ 170.3, 166.5, 144.3, 138.9, 136.0, 135.5, 132.0, 130.6, 130.2, 129.4, 129.1, 128.4, 127.6, 127.0, 126.6, 125.6, 19.4; IR (thin film): 3259, 3061, 3024, 2927, 2250, 1732, 1682, 1559, 1455 cm⁻¹; HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₂₁H₁₈NO₂ 316.1332; found 316.1300.

N-(4-cyanobenzoyl)-2-methylbenzamide (3ga). The reaction was performed following General Procedure A with 2a (23.1 mg, 0.1 mmol), LiN(SiMe₃)₂ (33.3 mg, 0.2 mmol), and 1g (19.6 mg, 0.1 mmol) dissolved in DME (1 mL) at

120 °C. The crude material was purified by flash chromatography on silica gel (eluted with hexanes:EtOAc = 5:1) to give the product (22.4 mg, 85% yield) as a white solid. mp: 130 – 132 °C; ¹H NMR (500 MHz, CDCl₃): δ 8.93 (s, 1H), 7.88 (d, *J* = 8.4 Hz, 2H), 7.72 (d, *J* = 8.4 Hz, 2H), 7.43 (d, *J* = 7.7 Hz, 1H), 7.38 – 7.35 (m, 1H), 7.24 – 7.19 (m, 2H), 2.41 (s, 3H); ¹³C {¹H} NMR (125 MHz, CDCl₃): δ 168.0, 164.2, 136.4, 135.9, 132.7, 131.5, 130.62, 130.61, 127.7, 126.1, 125.0, 116.6, 115.4, 19.0; IR (thin film): 3288, 3102, 2925, 2853, 2233, 1720, 1677, 1659, 1510 cm⁻¹; HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₁₆H₁₃N₂O₂ 265.0972; found 265.0944.

2-methyl-*N***-(4-(trifluoromethoxy)benzoyl)benzamide (3ha).** The reaction was performed following General Procedure A with **2a** (23.1 mg, 0.1 mmol), LiN(SiMe₃)₂ (33.3 mg, 0.2 mmol), and **1h** (25.5 mg, 0.1 mmol) dissolved in

DME (1 mL) at 120 °C. The crude material was purified by flash chromatography on silica gel (eluted with hexanes:EtOAc = 5:1) to give the product (30.0 mg, 93% yield) as a white solid. mp: 132 – 134 °C; ¹H NMR (500 MHz, CDCl₃): δ 9.16 (s, 1H), 7.88 – 7.87 (m, 2H), 7.37 (d, *J* = 7.7 Hz, 1H), 7.33 – 7.30 (m, 1H), 7.23 (d, *J* = 8.1 Hz, 2H), 7.20 – 7.16 (m, 2H), 2.38 (s, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 169.0, 163.8, 151.7, 135.9, 133.4, 130.3, 130.2, 130.1, 129.2, 126.0, 124.8, 119.6, 119.2 (q, *J*_{C-F} = 259.1 Hz), 18.8; IR (thin film): 3270, 2925, 2854, 1724, 1676, 1606, 1500, 1476, 1289 cm⁻¹; HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₁₆H₁₃F₃NO₃ 324.0842; found 324.0833.

2,4,6-trimethyl-*N*-(2-methylbenzoyl)benzamide (3ia). The reaction was performed following General Procedure A with **2a** (23.1 mg, 0.1 mmol), KN(SiMe₃)₂ (39.9 mg, 0.2 mmol), and **1i** (21.3 mg, 0.1 mmol) dissolved in DME (1 mL) at 120 °C. The crude material was purified by flash chromatography on silica gel (eluted with hexanes:EtOAc = 5:1) to give the product (19.7 mg, 70% yield) as a white solid. mp: 121 – 123 °C; ¹H NMR (500 MHz, CDCl₃): δ 8.65 (s, 1H), 7.46 (d, *J* = 7.6 Hz, 1H), 7.38 (t, *J* = 7.2 Hz, 1H), 7.26 – 7.23 (m, 2H), 6.86 (s, 2H), 2.45 (s, 3H), 2.31 (s, 6H), 2.28 (s, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 169.7, 166.0, 138.1, 136.6, 132.8, 132.48, 132.45, 130.6, 130.4, 127.4, 125.9, 125.0, 20.2, 19.1, 18.3; IR (thin film): 3451, 3240, 2921, 2851, 1723, 1681, 1478, 1231, 1097 cm⁻¹; HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₁₈H₂₀NO₂ 282.1489; found 282.1451.

Methyl-4-((2-methylbenzoyl)carbamoyl)benzoate (3ja). The reaction was performed following General Procedure A with 2a (23.1 mg, 0.1 mmol), LiN(SiMe₃)₂ (33.3 mg, 0.2 mmol), and 1j (22.9 mg, 0.1 mmol)

dissolved in DME (1 mL) at 120 °C. The crude material was purified by flash chromatography on silica gel (eluted with hexanes:EtOAc = 5:1) to give the product (22.3 mg, 75% yield) as a white solid. mp: 126 – 128 °C; ¹H NMR (500 MHz, (CD₃)₂SO): δ 11.61 (s, 1H), 8.07 – 8.05 (m, 2H), 8.02 – 8.01 (m, 2H), 7.52 (dd, *J* = 7.6, 1.0 Hz, 1H), 7.43 – 7.40 (m, 1H), 7.31 – 7.27 (m, 2H), 3.89 (s, 3H), 2.38 (s, 3H); ¹³C{¹H} NMR (125 MHz, (CD₃)₂SO): δ 170.3, 166.8, 166.0, 137.9, 136.2, 136.0, 133.3, 131.1, 130.9, 129.6, 129.4, 128.2, 126.1, 53.0, 19.9; IR (thin film): 3227, 2924, 2854, 1720, 1465, 1378, 1279, 1138, 1107 cm⁻¹; HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₁₇H₁₆NO₄ 298.1074; found 298.1055.

(2-methylbenzoyl)furan-2-carboxamide (3ka). The reaction was performed following General Procedure A with 2a (23.1 mg, 0.1 mmol), LiN(SiMe₃)₂ (33.3 mg, 0.2 mmol), and 1k (16.1 mg, 0.1 mmol) dissolved in DME (1 mL) at 120 °C.

The crude material was purified by flash chromatography on silica gel (eluted with hexanes:EtOAc = 5:1) to give the product (12.6 mg, 55% yield) as a yellow oil. ¹H NMR (500 MHz, CDCl₃): δ 9.09 (s, 1H), 7.55 (d, J = 1.0 Hz, 1H), 7.48 – 7.46 (m, 1H), 7.41 – 7.38 (m, 1H), 7.35 (dd, J = 5.5, 2.4 Hz, 1H), 7.28 – 7.25 (m, 2H), 6.60 (dd, J = 3.6, 1.7 Hz, 1H), 2.49 (s, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 167.3, 153.9, 145.3, 144.5, 135.8, 133.6, 130.3, 130.1, 125.9, 124.8, 117.1, 112.2, 18.8; IR (thin film): 3274, 3145, 2925, 2852, 1713, 1675, 1571, 1499, 1238 cm⁻¹; HRMS (ESI) m/z: [M + H]⁺ calcd for

C13H12NO3 230.0812; found 230.0799.

(2-methylbenzoyl)thiophene-2-carboxamide (3la). The reaction was performed following General Procedure A with 2a (23.1 mg, 0.1 mmol), LiN(SiMe₃)₂ (33.3 mg, 0.2 mmol), and 1l (17.7 mg, 0.1 mmol) dissolved in DME (1 mL) at 120 °C. The crude material was purified by flash chromatography on silica gel (eluted with hexanes:EtOAc = 5:1) to give the product (15.9 mg, 65% yield) as a white solid. mp: 134 – 135 °C; ¹H NMR (500 MHz, CDCl₃): δ 9.35 (s, 1H), 7.84 (dd, *J* = 3.8, 1.1 Hz, 1H), 7.64 (dd, *J* = 5.0, 1.1 Hz, 1H), 7.42 (d, *J* = 7.7 Hz, 1H), 7.39 – 7.36 (m, 1H), 7.26 – 7.23 (m, 2H), 7.13 (dd, *J* = 4.9, 3.9 Hz, 1H), 2.46 (s, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 168.7, 158.2, 136.3, 135.4, 133.7, 132.6, 130.1, 129.9, 127.2, 125.9, 124.8, 18.8, one resonance was not observed due to coincidental overlap; IR (thin film): 3247, 3136, 3104, 1726, 1713, 1673, 1522, 1499, 1413 cm⁻¹; HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₁₃H₁₂NO₂S 246.0583; found 246.0577.

N-(2-methylbenzoyl)thiophene-3-carboxamide (3ma). The reaction was performed following General Procedure A with 2a (23.1 mg, 0.1 mmol), LiN(SiMe₃)₂ (33.3 mg, 0.2 mmol), and 1m (17.7 mg, 0.1 mmol) dissolved in DME (1 mL) at 120 °C. The crude material was purified by flash chromatography on silica gel (eluted with hexanes:EtOAc = 5:1) to give the product (14.2 mg, 58% yield) as a yellow solid. mp: 135 - 137 °C; ¹H NMR (500 MHz, (CD₃)₂SO): δ 11.25 (s, 1H), 8.51 (dd, *J* = 2.9, 1.3 Hz, 1H), 7.61 - 7.54 (m, 2H), 7.39 - 7.33 (m, 2H), 7.26 - 7.21 (m, 2H), 2.32 (s, 3H); ¹³C{¹H} NMR (125 MHz, (CD₃)₂SO): δ 170.2, 161.0, 136.3, 136.1, 135.2, 132.6, 130.4, 130.0, 127.6, 127.33, 127.26, 125.6, 19.3; IR (thin film): 3245, 3108, 3096, 2926, 1719, 1672, 1495, 1481, 1238 cm⁻¹; HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₁₃H₁₂NO₂S 246.0583; found 246.0577.

(2-methylbenzoyl)thiazole-4-carboxamide (3na). The reaction was performed following General Procedure A with 2a (23.1 mg, 0.1 mmol), LiN(SiMe₃)₂ (33.3 mg, 0.2 mmol), and 1n (17.8 mg, 0.1 mmol) dissolved in DME (1 mL) at 120 °C. The crude material was purified by flash chromatography on silica gel (eluted with hexanes:EtOAc = 5:1) to give the product (13.8 mg, 56% yield) as a yellow solid. mp: 134 – 136 °C; ¹H NMR (500 MHz, CDCl₃): δ 10.24 (s, 1H), 8.82 (d, J = 2.1 Hz, 1H), 8.39 (d, J = 2.1 Hz, 1H), 7.55 – 7.53 (m, 1H), 7.44 – 7.40 (m, 1H), 7.31 – 7.27 (m, 2H), 2.54 (s, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 167.0, 157.0, 152.3, 148.8, 136.2, 133.4, 130.5, 130.2, 126.1, 125.6, 125.0, 19.1; IR (thin film): 3475, 3349, 3121, 3076, 2923, 2851, 1740, 1691, 1510 cm⁻¹; HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₁₂H₁₁N₂O₂S 247.0536; found 247.0501.

(cyclopropanecarbonyl)-2-methylbenzamide (3oa). The reaction was performed following General Procedure A with 2a (23.1 mg, 0.1 mmol), LiN(SiMe₃)₂ (33.3 mg, 0.2 mmol), and 1o (13.5 mg, 0.1 mmol) dissolved in DME (1 mL) at 120 °C. The crude material was purified by flash chromatography on silica gel (eluted with hexanes:EtOAc = 5:1) to give the product (13.8 mg, 68% yield) as a white solid. mp: 142 – 143 °C; ¹H NMR (500 MHz, CDCl₃): δ 8.36 (s, 1H), 7.47 (d, *J* = 7.7 Hz, 1H), 7.41 – 7.38 (m, 1H), 7.29 – 7.26 (m, 2H), 2.96 – 2.91 (m, 1H), 2.51 (s, 3H), 1.21 – 1.20 (m, 2H), 1.07 – 1.04 (m, 2H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 176.6, 168.4, 137.4, 134.5, 131.7, 131.5, 127.0, 126.1, 20.2, 14.7, 11.2; IR (thin film): 3447, 3002, 2682, 1926, 1810, 1773, 1682, 1512, 1313 cm⁻¹; HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₁₂H₁₄NO₂ 204.1019; found 204.0991.

2-methyl-*N***-pivaloylbenzamide (3pa).** The reaction was performed following General Procedure A with 2a (23.1 mg, 0.1 mmol), $LiN(SiMe_3)_2$ (33.3 mg, 0.2 mmol), and **1p** (15.1 mg, 0.1 mmol) dissolved in DME (1 mL) at 120 °C. The crude material was purified by flash chromatography on silica gel (eluted with hexanes:EtOAc = 5:1) to give the product (13.4 mg, 61% yield) as a white solid. mp: 135 – 137 °C; ¹H NMR (500 MHz, (CD₃)₂SO): δ 10.57 (s, 1H), 7.33 – 7.30 (m, 1H), 7.24 – 7.20 (m, 3H), 2.26 (s, 3H), 1.14 (s, 9H). The NMR spectral data match the previously published data.⁷

benzoyl-4-cyanobenzamide (5ah). The reaction was performed following General Procedure B with **4a** (19.8 mg, 0.1 mmol), NaN(SiMe₃)₂ (56 mg, 0.3 mmol), and 4-(2,6-dioxopiperidine-1-carbonyl)benzonitrile (24.2 mg, 0.1 mmol) dissolved in DME (1 mL) at 120 °C. The crude material was purified by flash chromatography on silica gel (eluted with hexanes:EtOAc = 5:1) to give the product (16.5 mg, 56% yield) as a yellow solid. mp: 136 – 137 °C; ¹H NMR (500 MHz, (CD₃)₂SO): δ 11.54 (s, 1H), 8.01 – 7.96 (m, 4H), 7.92 – 7.90 (m, 2H), 7.64 – 7.60 (m, 1H), 7.52 – 7.49 (m, 2H). The NMR spectral data match the previously published data.⁸

N-(2-methylbenzoyl)furan-3-carboxamide (5la). The reaction was performed following General Procedure B with 2a (23.1 mg, 0.1 mmol), NaN(SiMe₃)₂ (56 mg, 0.3 mmol), and phenyl furan-3-carboxylate (18.8 mg, 0.1 mmol) dissolved in DME

(1 mL) at 120 °C. The crude material was purified by flash chromatography on silica gel (eluted with hexanes:EtOAc = 5:1) to give the product (14.9 mg, 65% yield) as a yellow oil. ¹H NMR (500 MHz, (CD₃)₂SO): δ 10.55 (s, 1H), 8.88 (dd, *J* = 1.5, 0.8 Hz, 1H), 8.14 (dd, *J* = 4.1, 2.4 Hz, 1H), 7.90 (dd, *J* = 7.6, 1.2 Hz, 1H), 7.83 – 7.80 (m, 1H), 7.73 – 7.67 (m, 2H), 7.38 (dd, *J* = 1.9, 0.8 Hz, 1H), 2.85 (s, 3H);

¹³C{¹H} NMR (125 MHz, (CD₃)₂SO): δ 170.0, 160.8, 147.8, 144.6, 136.2, 135.2, 130.5, 130.1, 127.4, 125.6, 121.9, 109.6, 19.3; IR (thin film): 3274, 3145, 2925, 2852, 1713, 1675, 1571, 1499, 1238,1159 cm⁻¹; HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₁₃H₁₂NO₃ 230.0812; found 230.0782.

N-benzoylbenzamide (6a). The reaction was performed following General Procedure C with *N*-benzoylglutarimide (21.7 mg, 0.1 mmol), NaN(SiMe₃)₂ (56 mg, 0.3 mmol) dissolved in DME (1 mL) at 120 °C. The crude material was purified by flash chromatography on silica gel (eluted with hexanes:EtOAc = 5:1) to give the product (10.1 mg, 90% yield) as a white soild. ¹H NMR (500 MHz, CDCl₃): δ 8.99 (s, 1H), 7.88 – 7.86 (m, 4H), 7.63 – 7.60 (m, 2H), 7.53 – 7.50 (m, 4H). The NMR spectral data match the previously published data.⁴

N-(1-naphthoyl)-1-naphthamide (6b). The reaction was performed following General Procedure C with 2b (26.7 mg, 0.1 mmol), NaN(SiMe₃)₂ (56 mg, 0.3 mmol) dissolved in DME (1 mL) at 120 °C. The crude material was purified by flash chromatography on silica gel (eluted with hexanes:EtOAc = 5:1) to give the product (11.0 mg, 68% yield) as a white soild. ¹H NMR (500 MHz, CDCl₃): δ 8.89 (s, 1H), 8.37 (d, *J* = 8.4 Hz, 2H), 7.99 (d, *J* = 8.3 Hz, 2H), 7.90 – 7.88 (m, 2H), 7.78 (dd, *J* = 7.1, 1.0 Hz, 2H), 7.61 – 7.54 (m, 4H), 7.48 (dd, *J* = 8.2, 7.2 Hz, 2H). The NMR spectral data match the previously published data.⁹

N-(2-naphthoyl)-2-naphthamide (6c). The reaction was performed following General Procedure C with 2c (26.7 mg, 0.1 mmol), NaN(SiMe₃)₂ (56 mg, 0.3 mmol) dissolved in DME (1 mL) at 120 °C. The crude material

was purified by flash chromatography on silica gel (eluted with hexanes:EtOAc = 5:1) to give the product (11.0 mg, 68% yield) as a white soild. mp: 115 – 117 °C; ¹H NMR (500 MHz, (CD₃)₂SO): δ 11.58 (s, 1H), 8.61 (s, 2H), 8.06 (d, J = 8.0 Hz, 2H), 8.03 – 7.98 (m, 4H), 7.94 (dd, J = 8.6, 1.6 Hz, 2H), 7.66 – 7.58 (m, 4H); ¹³C{¹H} NMR (125 MHz, (CD₃)₂SO): δ 168.3, 135.2, 132.4, 131.6, 130.2, 129.7, 128.9, 128.5, 128.2, 127.4, 125.3; IR (thin film): 3434, 3266, 3204, 1825, 1713, 1600, 1422, 1410, 1400 cm⁻¹; HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₂₂H₁₆NO₂ 326.1176; found 326.1160.

methyl-*N*-(4-methylbenzoyl)benzamide (6d). The reaction was performed following General Procedure C with 2d (23.1 mg, 0.1 mmol), NaiN(SiMe₃)₂ (56 mg, 0.3 mmol) dissolved in DME (1 mL) at 120 °C. The crude material was

purified by flash chromatography on silica gel (eluted with hexanes:EtOAc = 5:1) to give the product (8.5 mg, 68% yield) as a white soild. ¹H NMR (500 MHz, CDCl₃): δ 9.06 (s, 1H), 7.76 – 7.75 (m, 4H),

7.27 (d, J = 7.8 Hz, 4H), 2.41 (s, 6H). The NMR spectral data match the previously published data.¹⁰

4-(tert-butyl)-N-(4-(tert-butyl)benzoyl)benzamide (6e). The reaction was performed following General Procedure C with 2e (27.3 mg, 0.1 mmol), NaN(SiMe₃)₂ (56 mg, 0.3 mmol) dissolved in DME (1 mL) at

120 °C. The crude material was purified by flash chromatography on silica gel (eluted with hexanes:EtOAc = 5:1) to give the product (12.6 mg, 75% yield) as a colorless oil. ¹H NMR (500 MHz, (CD₃)₂SO): δ 11.16 (s, 1H), 7.86 – 7.84 (m, 4H), 7.55 – 7.53 (m, 4H), 1.32 (s, 18H); ¹³C{¹H} NMR (125 MHz, (CD₃)₂SO): δ 167.5, 155.7, 131.1, 128.6, 125.2, 34.8, 30.9; IR (thin film): 3440, 3236, 3204, 2252, 2126, 1659, 1294, 1153, 1027 cm⁻¹; HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₂₂H₂₈NO₂ 338.2115; found 338.2090.

 $([1,1'-biphenyl]-4-carbonyl)-[1,1'-biphenyl]-4-carboxamide (6f). The reaction was performed following General Procedure C with 2f (29.3 mg, 0.1 mmol), NaN(SiMe_3)_2 (56 mg, 0.3 mmol) dissolved in DME (1 mL) at 120 °C. The crude material was purified by flash chromatography on silica gel (eluted with hexanes:EtOAc = 5:1) to give the product (10.9 mg, 58% yield) as a colorless oil. ¹H NMR (500 MHz, CDCl_3): <math>\delta$ 9.21 (s, 1H), 7.97 (d, J = 8.3 Hz, 4H), 7.62 – 7.60 (m, 4H), 7.47 (t, J = 7.5 Hz, 4H), 7.42 – 7.39 (m, 2H). The NMR spectral data match the previously published data.⁹

4-(trifluoromethoxy)-N-(4-(trifluoromethoxy)benzoyl)benzamide

(6g). The reaction was performed following General Procedure C with 2g (30.1 mg, 0.1 mmol), NaN(SiMe₃)₂ (56 mg, 0.3 mmol) dissolved in

DME (1 mL) at 120 °C. The crude material was purified by flash chromatography on silica gel (eluted with hexanes:EtOAc = 5:1) to give the product (12.8 mg, 65% yield) as a white soild. mp: 120 – 122 °C; ¹H NMR (500 MHz, (CD₃)₂SO): δ 11.53 (s, 1H), 8.06 – 8.04 (m, 4H), 7.52 (d, *J* = 8.1 Hz, 4H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 165.0, 151.7, 130.2, 129.3, 119.6, 119.2 (q, *J*_{C-F} = 259.2 Hz); IR (thin film): 3451, 2963, 1715 , 1659, 1606, 1469, 1296 cm⁻¹; HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₁₆H₁₀F₆NO₄ 394.0509; found 394.0480.

4-chloro-*N***-(4-chlorobenzoyl)benzamide (6h).** The reaction was performed following General Procedure C with **2h** (25.1 mg, 0.1 mmol), NaN(SiMe₃)₂ (56 mg, 0.3 mmol) dissolved in DME (1 mL) at 120 °C. The

crude material was purified by flash chromatography on silica gel (eluted with hexanes:EtOAc = 5:1) to

give the product (8.8 mg, 60% yield) as a colorless oil. ¹H NMR (500 MHz, (CD₃)₂SO): δ 11.45 (s, 1H), 7.93 - 7.92 (m, 4H), 7.61 - 7.60 (m, 4H). The NMR spectral data match the previously published data.¹⁰

4-fluoro-*N*-(**4-fluorobenzoyl)benzamide** (**6i**). The reaction was performed following General Procedure C with **2i** (23.5 mg, 0.1 mmol), NaN(SiMe₃)₂ (56 mg, 0.3 mmol) dissolved in DME (1 mL) at 120 °C. The crude material was purified by flash chromatography on silica gel (eluted with hexanes:EtOAc = 5:1) to give the product (8.5 mg, 65% yield) as a colorless oil. ¹H NMR (500 MHz, (CD₃)₂SO): δ 11.36 (s, 1H), 8.01 – 7.98 (m, 4H), 7.38 – 7.34 (m, 4H); ¹³C{¹H} NMR (125 MHz, (CD₃)₂SO): δ 167.1, 165.2 (d, J^{1}_{C-F} = 250.6 Hz), 132.1 (d, J^{3}_{C-F} = 9.4 Hz), 130.8 (d, J^{4}_{C-F} = 2.9 Hz), 115.9 (d, J^{2}_{C-F} = 22.0 Hz); IR (thin film): 3304, 3077, 2919, 2850, 1724, 1682, 1604, 1516, 1489 cm⁻¹; HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₁₄H₁₀F₂NO₂ 262.0674; found 262.0644.

4-(trifluoromethyl)-*N*-(**4-(trifluoromethyl)benzoyl)benzamide (6j).** The $_{F_3C}$ **(c**_{F_3}) reaction was performed following General Procedure C with **2j** (28.5 mg, 0.1 mmol), NaN(SiMe_3)₂ (56 mg, 0.3 mmol) dissolved in DME (1 mL) at 120 °C. The crude material was purified by flash chromatography on silica gel (eluted with hexanes:EtOAc = 5:1) to give the product (15.3 mg, 85% yield) as a white soild. mp: 133 – 135 °C; ¹H NMR (500 MHz, (CD_3)₂SO) δ 11.71 (s, 1H), 8.06 (d, *J* = 8.1 Hz, 4H), 7.85 (d, *J* = 8.2 Hz, 4H); ¹³C {¹H} NMR (125 MHz, (CD_3)₂SO) δ 167.0, 137.6, 132.2 (q, *J*²_{C(Ar)-F} = 32.0 Hz), 129.51, 125.4 (q, *J*³_{C(Ar)-F} = 3.7 Hz), 123.8 (q, *J*¹_{C-F} = 272.6 Hz); IR (thin film): 3466, 3022, 2887, 2850, 1701, 1666, 1485, 1262, 1192 cm⁻¹; HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₁₆H₁₀F₆NO₂ 362.0610; found 362.0588.

4-nitro-*N*-(**4-nitrobenzoyl)benzamide (6k).** The reaction was performed following General Procedure C with **2k** (26.2 mg, 0.1 mmol), NaN(SiMe₃)₂ (56 mg, 0.3 mmol) dissolved in DME (1 mL) at 120 °C. The crude material

was purified by flash chromatography on silica gel (eluted with hexanes:EtOAc = 5:1) to give the product (7.1 mg, 45% yield) as a colorless oil. ¹H NMR (500 MHz, (CD₃)₂SO): δ 11.95 (s, 1H), 8.37 – 8.35 (m, 4H), 8.15 – 8.13 (m, 4H). The NMR spectral data match the previously published data.¹¹

4-cyano-*N*-(4-cyanobenzoyl)benzamide (6l). The reaction was performed following General Procedure C with 2l (24.2 mg, 0.1 mmol), NaN(SiMe₃)₂ (56 mg, 0.3 mmol) dissolved in DME (1 mL) at 120 °C. The crude material was purified by flash chromatography on silica gel (eluted with hexanes:EtOAc = 5:1) to give the product (8.3 mg, 60% yield) as a colorless oil. ¹H NMR (500 MHz, (CD₃)₂SO): δ 11.79 (s, 1H), 8.07 – 8.01 (m, 8H). The NMR spectral data match the previously published data.⁵

2-methyl-*N***-(2-methylbenzoyl)benzamide (6m).** The reaction was performed following General Procedure C with **2a** (23.1 mg, 0.1 mmol), NaN(SiMe₃)₂ (56 mg, 0.3 mmol) dissolved in DME (1 mL) at 120 °C. The crude material was purified by

flash chromatography on silica gel (eluted with hexanes:EtOAc = 5:1) to give the product (10.1 mg, 80% yield) as a white soild. mp: 115 – 117 °C; ¹H NMR (500 MHz, CDCl₃): δ 8.47 (s, 1H), 7.49 (d, *J* = 7.8 Hz, 2H), 7.42 – 7.38 (m, 2H), 7.29 – 7.27 (m, 4H), 2.51 (s, 6H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 168.4, 137.3, 134.2, 131.6, 131.3, 127.0, 125.9, 20.0; IR (thin film): 3366, 3124, 3004, 2779, 2126, 1654, 1394, 1250, 1024 cm⁻¹; HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₁₆H₁₆NO₂ 254.1176; found 254.1140.

2-chloro-*N***-(2-chlorobenzoyl)benzamide (60).** The reaction was performed following General Procedure C with **20** (25.1 mg, 0.1 mmol), NaN(SiMe₃)₂ (56 mg, 0.3 mmol) dissolved in DME (1 mL) at 120 °C. The crude material was purified by flash chromatography on silica gel (eluted with hexanes:EtOAc = 5:1) to give the product (9.4 mg, 64% yield) as a colorless oil. ¹H NMR (500 MHz, (CD₃)₂SO): δ 11.11 (s, 1H), 8.07 – 8.05 (m, 2H), 7.97 – 7.95 (m, 4H), 7.91 – 7.88 (m, 2H). The NMR spectral data match the previously published data.⁵

2-fluoro-N-(2-fluorobenzoyl)benzamide (6p). The reaction was performed following General Procedure C with **2p** (23.5 mg, 0.1 mmol), NaN(SiMe₃)₂ (56 mg, 0.3 mmol) dissolved in DME (1 mL) at 120 °C. The crude material was purified by flash

chromatography on silica gel (eluted with hexanes:EtOAc = 5:1) to give the product (8.6 mg, 66% yield) as a colorless oil. ¹H NMR (500 MHz, CDCl₃): δ 10.19 (s, 1H), 8.15 – 8.12 (m, 2H), 7.60 – 7.58 (m, 2H), 7.35 – 7.32 (m, 2H), 7.23 – 7.18 (m, 2H). The NMR spectral data match the previously published data.¹²

 $\stackrel{\circ}{\underset{}}$ $\stackrel{\circ}{\underset{}}{\overset{}}{\underset{}}$ $\stackrel{\circ}{\underset{}}{\overset{}}{\underset{}}{\overset{}}{\underset{}}{\overset{}}{\underset{}}{\overset{}}{\underset{}}{\overset{}}{\underset{}}{\overset{}}{\underset{}}{\overset{}}{\overset{}}{\underset{}}{\overset{}}{\underset{}}{\overset{}}{\overset{}}{\underset{}}{\overset{}}{\underset{}}{\overset{}}{\underset{}}{\overset{}}{\overset{}}{\underset{}}{\overset{}}{\underset{}}{\overset{}}{\overset{}}{\underset{}}{\overset{}}{\underset{}}{\overset{}}{\underset{}}{\overset{}}{\overset{}}{\underset{}}{\overset{}}{\overset{}}{\underset{}}{\overset{}}{\underset{}}{\overset{}}{\overset{}}{\underset{$

References

- 1. Meng, G.; Szostak, M. Org. Lett. 2015, 17, 4364-4367.
- 2. Huang, P. Q.; Chen, H. Chem. Commun. 2017, 53, 12584-12587.
- 3. Halima, T. B.; Zhang, W. Y.; Yalaoui, I.; Hong, X.; Yang, Y. F.; Houk, K. N.; Newman, S. G. J. Am.

Chem. Soc. 2017, 139, 1311–1318.

- 4. Kataoka, K.; Wachi, K. J.; Jin, X. J.; Suzuki, K.; Sasano, Y.; Lwabuchi, Y.; Hasegawa, J. Y.; Mizuno,
- N.; Yamaguchi, K. Chem. Sci. 2018, 9, 4756-4768.
- 5. Ran, L. F.; Ren, Z. H.; Wang, Y. Y.; Guan, Z. H. Chem. Asian J. 2014, 9, 577-583.
- Digwal, C. S.; Yadav, U.; Ramya, P. V. S.; Sana, S.; Swain, B.; Kamal, A. J. Org. Chem. 2017, 82, 7332–7345.
- 7. Cui, S. L.; Zhang, Y.; Wu, Q. F. Chem. Sci. 2013, 4, 3421-3426.
- 8. Xu, L.; Zhang, S. H.; Trudell, M. L. Chem. Commun. 2004, 1668-1669.
- 9. Kazutaka, U.; Yoshihiro, S.; Miwako, M. J. Am. Chem. Soc. 2000, 43, 10722-10723.
- 10. Zheng, Z.; Wang, Y.; Xu, M. R.; Kong, L. K.; Wang, M. D.; Li, Y. Z. Chem. Commun. 2018, 54, 6192–6795.
- 12. Mishra, K. S.; Suryaprakash, N. RSC Adv. 2015, 5, 86013-86022.
- 11. Heine, H. W.; Kaplan, M. S. J. Org. Chem. 1967, 32, 3069-3074.
- 13. Jiang, T.; Naik, T. K.; Day, C. S.; Noftle, R. E. Polyhedron 2017, 127, 505-511.

NMR Spectra

100

5 0.0 7.5 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 12.0 11.5 11.0 10.5 10.0 9.5 6.5 6.0 f1 (ppm) 9.0 8.5 7.0

Supplementary Figure 3. ¹H NMR Spectrum of 3ac (500 MHz, (CD₃)₂SO)

Supplementary Figure 7. ¹³C NMR Spectrum of 3ae (125 MHz, CDCl₃)

Supplementary Figure 9. ¹³C NMR Spectrum of 3af (125 MHz, (CD₃)₂SO)

Supplementary Figure 13. ¹³C NMR Spectrum of 3ai (125 MHz, (CD₃)₂SO)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

Supplementary Figure 18. ¹H NMR Spectrum of 3am (500 MHz, CDCl₃)

12.5 11.5 10.5 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 f1 (ppm)

Supplementary Figure 21. ¹³C NMR Spectrum of 3ao (125 MHz, (CD₃)₂SO)

Supplementary Figure 23. ¹³C NMR Spectrum of 3ba (125 MHz, (CD₃)₂SO)

Supplementary Figure 27. ¹³C NMR Spectrum of 3da (125 MHz, (CD₃)₂SO)

Supplementary Figure 29. ¹³C NMR Spectrum of 3ea (125 MHz, (CD₃)₂SO)

Supplementary Figure 31. ¹³C NMR Spectrum of 3fa (125 MHz, (CD₃)₂SO)

Supplementary Figure 33. ¹³C NMR Spectrum of 3ga (125 MHz, CDCl₃)

Supplementary Figure 37. ¹³C NMR Spectrum of 3ia (125 MHz, CDCl₃)

Supplementary Figure 39. ¹³C NMR Spectrum of 3ja (125 MHz, (CD₃)₂SO)

Supplementary Figure 41. ¹³C NMR Spectrum of 3ka (125 MHz, CDCl₃)

Supplementary Figure 43. ¹³C NMR Spectrum of 3la (125 MHz, CDCl₃)

6.5 6.0 f1 (ppm) 5.5

5.0 4.5

4.0 3.5

3.02-[

2.5 2.0 1.5 1.0 0.5 0.0

3.0

F70.0

8.5 8.0

9.0

00.

12.0 11.5 11.0 10.5 10.0 9.5

1.95 4 2.02 4 2.03 4

7.5 7.0

Supplementary Figure 45. ¹³C NMR Spectrum of 3ma (125 MHz, (CD₃)₂SO)

Supplementary Figure 47. ¹³C NMR Spectrum of 3na (125 MHz, CDCl₃)

Supplementary Figure 51. ¹H NMR Spectrum of 5ah (500 MHz, (CD₃)₂SO)

Supplementary Figure 53. ¹³C NMR Spectrum of 5la (125 MHz, (CD₃)₂SO)

Supplementary Figure 55. ¹H NMR Spectrum of 6b (500 MHz, CDCl₃)

Supplementary Figure 57. ¹³C NMR Spectrum of 6c (125 MHz, (CD₃)₂SO)

Supplementary Figure 59. ¹H NMR Spectrum of 6e (500 MHz, (CD₃)₂SO)

^tΒι

Supplementary Figure 62. ¹H NMR Spectrum of 6g (500 MHz, (CD₃)₂SO)

₩ XY-A38 S I

 $< \frac{8.06}{8.04}$

Supplementary Figure 63. ¹H NMR Spectrum of 6g (500 MHz, CDCl₃)

Supplementary Figure 65. ¹H NMR Spectrum of 6i (500 MHz, (CD₃)₂SO)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

Supplementary Figure 68. ¹³C NMR Spectrum of 6j (125 MHz, (CD₃)₂SO)

210 200 190 180 170 160 150 140 130 120 110 100 f1 (ppm) -10 Ó

S53

Supplementary Figure 70. ¹H NMR Spectrum of 6l (500 MHz, (CD₃)₂SO)

XY-C1602_{€:} ≕

Supplementary Figure 73. ¹H NMR Spectrum of 6n (500 MHz, (CD₃)₂SO)

Supplementary Figure 74. ¹³C NMR Spectrum of 6n (125 MHz, (CD₃)₂SO)

Supplementary Figure 75. ¹H NMR Spectrum of 60 (500 MHz, (CD₃)₂SO)

Supplementary Figure 77. ¹H NMR Spectrum of 6q (500 MHz, (CD₃)₂SO)