Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2021

Supporting Information for

Switchable Hydroxysulfonyloxylation and Defluorination-Decarboxylation Sulfonylation of *gem*-Difluoroalkenes with Sodium Sulfinate *via* Aerobic Oxidation

Xiang Liu,* Jiatong Lin, Canzhan Zhuang, Jinling Zhong, Dan Song, Jiaji Zhao, Hua Cao*

School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, P. R. of China

E-mail: liux96@gdpu.edu.cn; caohua@gdpu.edu.cn

Table of Contents:

1. General considerations	S2
2. Condition optimization for synthesis of 5a	S3
3. Experimental procedures and characterization data	S4
2.1 Experimental procedures	S4
2.2 Characterization data	S4
4. NMR spectra for new compounds	S14
5. X-ray crystallographic data	S43
6. References	S46

1. General considerations

Unless otherwise noted, commercial reagents were purchased from Adamas, Alfa, Aladdin, TCI, *J&K* or Macklin and used without further purification. All reactions were carried out using oven-dried glassware and all reactions proceeded without special care. Column chromatography was performed on 200-300 mesh silica gel (Huanghai, China).

¹H, ¹⁹F and ¹³C{¹H} NMR spectra were recorded on an Bruker Ascend 400 MHz spectrometer at ambient temperature. ¹H NMR spectra are referred to the TMS signal ($\delta = 0$ ppm) and ¹³C NMR spectra are referred to the residual solvent signal ($\delta = 77.16$ ppm). Data for ¹H NMR are reported as follows: chemical shifts (δ ppm), multiplicities (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad), coupling constants (Hz), integration.

The data of HRMS was carried out on a waters G2-XS high-resolution mass spectrometer (HR-ESI-MS) or Thermo Fisher Scientific LTQ FTICR-MS. Melting point were recorded using a SGW X-4 Melting Point Apparatus.

gem-Difluoroalkene substrates 1 are known and their spectral data are in accordance with the reported in the literature.¹⁻⁶

2. Condition optimization for synthesis of 5a

	Me F _ O	additive	ć	Me
Ph	F Ph ⁻⁵ 1a 2a	ONa solvent, te	mp Ph	5a
entry	additive	solvent	temp	yield
1		THF	60	trace
2	CsF	THF	60	n. d.
3	pyridine·HF	THF	60	trace
4	TBAF	THF	60	15
5	$BF_3 \cdot OEt_2$	THF	60	n. d.
6	KF	THF	60	42
7	Et ₃ N·3HF	THF	60	54
8	Et ₃ N·3HF	1,4-dioxane	60	23
6	Et ₃ N·3HF	DMF	60	trace
7	Et ₃ N·3HF	CH_2Cl_2	60	n. d.
8	Et ₃ N·3HF	DCE	60	n. d.
9 ^b	Et ₃ N·3HF	THF	60	56
10 ^{b,c}	Et ₃ N·3HF	THF	60	58
11 ^{b,c}	Et ₃ N·3HF	THF	40	45
12 ^{b,c}	Et ₃ N·3HF	THF	80	26
13 ^{b,c,d}	Et ₃ N·3HF	THF	60	trace

Table S1. Optimization of reaction condition for synthesis of 5a^a

^{*a*} Reaction condition: **1a** (0.2 mmol), **2a** (0.4 mmol, 2.0 equiv), additive (0.2 mmol, 2.0 equiv), solvent (2 mL), O₂ atmosphere, 12 h. Isolated yields. ^{*b*} Et₃N·3HF (3.0 equiv). ^{*c*} **2a** (3.0 equiv). ^{*d*} N₂ atmosphere.

3. Experimental procedures and characterization data

Synthesis of product 3 according to the following procedure:

As exemplified for **3a**:

A pressure tube was charged with 4-(1,1-difluoroprop-1-en-2-yl)-1,1'-biphenyl **1a** (46.1 mg, 0.2 mmol), sodium sulfinate **2a** (0.734 mg, 0.4 mmol) and DCE (2 mL). TFA (22.8 mg, 0.2 mmol) was added and the mixtures were heated with a heating mantle at 50 °C under O₂ atmosphere for 12 h. After cooling to room temperature, the solvent was volatilized and the crude product was purified by flash column chromatography on silica gel (eluent: PE/EA = 6/1, v/v), and the target compound **3a** was obtained.

Synthesis of product 5 according to the following procedure:

As exemplified for 5a:

A pressure tube was charged with 4-(1,1-difluoroprop-1-en-2-yl)-1,1'-biphenyl **1a** (46.1 mg, 0.2 mmol), sodium sulfinate **2a** (98.3 mg, 0.6 mmol) and THF (2 mL). Et₃N·3HF (96.7 mg, 0.6 mmol) was added and the mixtures were heated with a heating mantle at 60 °C under O₂ atmosphere for 12 h. After cooling to room temperature, the solvent was volatilized and the crude product was purified by preparative TLC (eluent: PE/EA = 6/1, v/v), and the target compound **5a** was obtained. In some cases, twice purifications are needed.

2.2 Characterization data

2-([1,1'-Biphenyl]-4-yl)-1,1-difluoro-2-hydroxypropyl benzenesulfonate (3a)

Flash column chromatography on silica gel (eluent: PE/EA = 6/1, v/v) to afford **3a**. Yellow solid (63.0 mg, 78%), mp 98.8-99.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.79 – 7.74 (m, 2H), 7.59 – 7.55 (m, 3H), 7.47 (d, *J* = 14.5 Hz, 6H), 7.43 (d, *J* = 4.4 Hz, 1H), 7.41 – 7.37 (m, 2H), 2.26 (s, 1H), 1.73 (s, 3H). ¹³C

NMR (100 MHz, CDCl₃) δ 141.28, 140.44, 137.30, 136.82, 134.49, 129.22, 128.99, 128.00, 127.71, 127.17,

126.84, 126.81, 123.39 (t, J = 285.0 Hz), 76.07 (t, J = 27.0 Hz), 23.67. ¹⁹F NMR (377 MHz, CDCl₃) δ -82.31, -82.42. HR-DART-MS (m/z): calcd for C₂₁H₂₂NF₂O₄S [M + NH₄]⁺: 422.1232, found: 422.1231.

1,1-Difluoro-2-hydroxy-2-(4-methoxyphenyl)propyl benzenesulfonate (3b)

Flash column chromatography on silica gel (eluent: PE/EA = 6/1, v/v) to afford **3b**. Light yellow oil (45.1 mg, 63%). ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, *J* = 8.0 Hz, 2H), 7.67 – 7.61 (m, 1H), 7.47 (t, *J* = 7.8 Hz, 2H), 7.35 (d, *J* = 8.6 Hz, 2H), 6.80 (d, *J* = 8.7 Hz, 2H), 3.80 (s, 3H), 2.38 (s,

1H), 1.68 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 159.40, 139.95, 136.84, 134.51, 129.25, 129.19, 128.03, 123.38 (t, *J* = 285.0 Hz), 118.60, 113.88, 112.33, 76.08 (t, *J* = 27.0 Hz), 55.35, 23.81. ¹⁹F NMR (377 MHz, CDCl₃) δ -82.56, -82.69. HR-GC-MS (m/z): calcd for C₁₆H₁₆F₂O₅S [M]: 358.0687, found: 358.0690.

1,1-Difluoro-2-hydroxy-2-(3-methoxyphenyl)propyl benzenesulfonate (3c)

Flash column chromatography on silica gel (eluent: PE/EA = 6/1, v/v) to afford **3c**. Yellow oil (46.5 mg, 65%). ¹H NMR (400 MHz, CDCl₃) δ 7.80 – 7.76 (m, 2H), 7.66 – 7.60 (m, 1H), 7.46 (t, *J* = 7.8 Hz, 2H), 7.23 – 7.16 (m, 1H), 7.00 (dd, *J* = 7.4, 1.9 Hz, 2H), 6.85 – 6.81 (m, 1H), 3.75 (s, 3H), 1.68 (s,

3H). ¹³C NMR (100 MHz, CDCl₃) δ 159.40, 139.95, 136.84, 134.51, 129.25, 129.19, 128.03, 123.38 (t, *J* = 285.0 Hz), 118.60, 113.88, 112.33, 76.08 (t, *J* = 27.0 Hz), 55.35, 23.81. ¹⁹F NMR (377 MHz, CDCl₃) δ - 82.12, -82.18. HR-GC-MS (m/z): calcd for C₁₆H₁₆F₂O₅S [M]: 358.0687, found: 358.0687.

1,1-Difluoro-2-hydroxy-2-(2-methoxyphenyl)propyl benzenesulfonate (3d)

Flash column chromatography on silica gel (eluent: PE/EA = 6/1, v/v) to afford **3d**. Colorless oil (42.9 mg, 60%). ¹H NMR (400 MHz, CDCl₃) δ 7.78 – 7.73 (m, 2H), 7.62 (t, *J* = 7.5 Hz, 1H), 7.45 (t, *J* = 7.9 Hz, 2H), 7.33 – 7.28 (m, 1H), 7.23 (dd, *J* = 7.9, 1.5 Hz, 1H), 6.97 (td, *J* = 7.6, 1.1 Hz, 1H), 6.88 (d, *J* =

8.3 Hz, 1H), 6.08 (s, 1H), 3.81 (s, 3H), 1.67 (s, 3H).¹³C NMR (100 MHz, CDCl₃) δ 58.20, 137.28, 134.24, 130.28, 129.90, 129.15, 127.93, 125.83, 123.90 (t, *J* = 285.0 Hz), 121.60, 112.66, 77.96 (t, *J* = 27.0 Hz), 56.41, 22.47. ¹⁹F NMR (377 MHz, CDCl₃) δ -82.18, -83.88. HR-DART-MS (m/z): calcd for C₁₆H₁₇F₂O₅S [M + H]⁺: 359.0759, found: 359.0761.

1,1-Difluoro-2-hydroxy-2-(naphthalen-2-yl)propyl benzenesulfonate (3e)

Flash column chromatography on silica gel (eluent: PE/EA = 6/1, v/v) to afford **3e**. Yellow oil (52.9 mg, 70%).¹H NMR (400 MHz, CDCl₃) δ 7.87 (s, 1H), 7.81 – 7.77 (m, 1H), 7.76 – 7.73 (m, 1H), 7.69 (d, J = 8.7 Hz, 1H), 7.62

(d, J = 7.7 Hz, 2H), 7.53 – 7.46 (m, 3H), 7.41 (t, J = 7.5 Hz, 1H), 7.18 (t, 2H), 2.53 (s, 1H), 1.78 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 136.50, 135.71, 134.32, 133.02, 132.74, 128.97, 128.87, 128.54, 127.81, 127.49, 126.69, 126.33, 126.26, 125.91, 123.85, 123.42 (t, J = 285.0 Hz), 120.57, 76.26 (t, J = 27.0 Hz), 23.67. ¹⁹F NMR (377 MHz, CDCl₃) δ -82.09, -82.21. HR-GC-MS (m/z): calcd for C₁₉H₁₆F₂O₄S [M]: 378.0737, found: 378.0739.

2-([1,1'-Biphenyl]-4-yl)-1,1-difluoro-2-hydroxypropyl 4-methylbenzenesulfonate (3f)

Flash column chromatography on silica gel (eluent: PE/EA = 6/1, v/v) to afford **3f**. Yellow solid (60.3 mg, 72%), mp 88.8-89.9 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, *J* = 8.1 Hz, 2H), 7.59 – 7.55 (m, 2H), 7.49 (s, 4H), 7.45 (t, *J* = 7.7 Hz, 2H), 7.39 – 7.34 (m, 1H), 7.20

(d, J = 8.1 Hz, 2H), 2.56 (s, 1H), 2.34 (s, 3H), 1.73 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 145.82, 141.21, 140.44, 137.34, 133.80, 129.84, 128.98, 128.11, 127.71, 127.15, 126.84, 126.74, 123.32 (t, J = 285.0 Hz), 76.10 (t, J = 27.0 Hz), 23.73, 21.76. ¹⁹F NMR (377 MHz, CDCl₃) δ -82.47, -82.57. HR-GC-MS (m/z): calcd for C₂₂H₂₀F₂O₄S [M]: 418.1050, found: 418.1055.

2-([1,1'-Biphenyl]-4-yl)-1,1-difluoro-2-hydroxypropyl 3,4-dimethylbenzenesulfonate (3g)

Flash column chromatography on silica gel (eluent: PE/EA = 6/1, v/v) to afford **3g**. Light yellow oil (58.7 mg, 68%). ¹H NMR (400 MHz, CDCl₃) δ 7.58 – 7.53 (m, 4H), 7.51 (s, 4H), 7.45 (t, *J* = 7.6 Hz, 2H), 7.36 (t, *J* = 7.2 Hz, 1H), 7.16 (d, *J* = 7.9 Hz, 1H), 2.62 (s, 1H), 2.24

(s, 3H), 2.20 (s, 3H), 1.73 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 144.59, 141.11, 140.38, 138.15, 137.41, 133.87, 130.30, 128.96, 128.71, 127.69, 127.12, 126.86, 126.67, 125.63, 123.33 (t, *J* = 285.0 Hz), 76.09 (t, *J* = 27.0 Hz), 23.78, 20.17, 19.86. ¹⁹F NMR (377 MHz, CDCl₃) δ -82.41, -82.53. HR-GC-MS (m/z): calcd for C₂₃H₂₂F₂O₄S [M]: 432.1207, found: 432.1214.

2-([1,1'-Biphenyl]-4-yl)-1,1-difluoro-2-hydroxypropyl 4-(tert-butyl)benzenesulfonate (3h)

Flash column chromatography on silica gel (eluent: PE/EA = 6/1, v/v) to afford **3h**. Colorless oil (59.8 mg, 65%). ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, *J* = 8.4 Hz, 2H), 7.58 (dd, *J* = 8.2, 1.4 Hz, 2H), 7.51 (s, 4H), 7.47 – 7.38 (m, 5H), 2.50 (s, 1H), 1.75 (s, 3H),

1.24 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 158.71, 141.24, 140.41, 137.37, 133.71, 129.00, 127.92, 127.74, 127.17, 126.85, 126.77, 126.23, 123.34 (t, *J* = 285.0 Hz), 76.14 (t, *J* = 27.0 Hz), 35.40, 30.99, 23.79. ¹⁹F NMR (377 MHz, CDCl₃) δ -82.51, -82.57. HR-GC-MS (m/z): calcd for C₂₅H₂₆F₂O₄S [M]: 460.1520, found: 460.1527.

2-([1,1'-Biphenyl]-4-yl)-1,1-difluoro-2-hydroxypropyl [1,1'-biphenyl]-4-sulfonate (3i)

Flash column chromatography on silica gel (eluent: PE/EA = 6/1, v/v) to afford **3i**. Yellow solid (64.3 mg, 67%), mp 188.4-188.9 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, *J* = 8.3 Hz, 2H), 7.56 (d, *J* = 8.5 Hz, 2H), 7.52 – 7.47 (m, 6H), 7.45 – 7.35 (m, 8H), 2.56 (s, 1H), 1.76

(s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 147.33, 141.25, 140.30, 138.75, 137.31, 135.09, 129.24, 129.01, 128.97, 128.53, 127.72, 127.64, 127.44, 127.16, 126.84, 126.72, 123.30 (t, *J* = 285.0 Hz), 76.12 (t, *J* = 27.0 Hz), 23.63. ¹⁹F NMR (377 MHz, CDCl₃) δ -82.48, -82.53. HR-GC-MS (m/z): calcd for C₂₇H₂₂F₂O₄S [M]: 480.1207, found: 480.1212.

2-([1,1'-Biphenyl]-4-yl)-1,1-difluoro-2-hydroxypropyl 4-fluorobenzenesulfonate (3j)

Flash column chromatography on silica gel (eluent: PE/EA = 6/1, v/v) to afford **3j**. Yellow oil (48.9 mg, 58%). ¹H NMR (400 MHz, CDCl₃) δ 7.80 – 7.75 (m, 2H), 7.59 – 7.56 (m, 2H), 7.53 – 7.44 (m, 6H), 7.40 – 7.35 (m, 1H), 7.08 (t, *J* = 8.5 Hz, 2H), 2.49 (s, 1H), 1.75 (s, 3H).¹³C

NMR (100 MHz, CDCl₃) δ 166.12 (d, J = 258.0 Hz), 141.44, 140.31, 137.16, 132.74 (d, J = 3.3 Hz), 131.05 (d, J = 9.8 Hz), 129.05, 128.99, 127.81, 127.17, 126.83, 123.36 (t, J = 285.0 Hz), 116.64 (d, J = 23.0 Hz), 76.06 (t, J = 27.0 Hz), 23.67. ¹⁹F NMR (377 MHz, CDCl₃) δ -82.51, -82.62, -101.38. HR-GC-MS (m/z): calcd for C₂₁H₁₇F₃O₄S [M]: 422.0800, found: 422.0787.

2-([1,1'-Biphenyl]-4-yl)-1,1-difluoro-2-hydroxypropyl 4-chlorobenzenesulfonate (3k)

Flash column chromatography on silica gel (eluent: PE/EA = 6/1, v/v) to afford **3k**. Yellow solid (56.1 mg, 64%), mp 79.0-80.9 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, *J* = 8.4 Hz, 2H), 7.60 – 7.57 (m, 2H),

7.51 – 7.44 (m, 6H), 7.40 – 7.35 (m, 3H), 2.47 (s, 1H), 1.75 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 141.48, 141.32, 140.29, 137.12, 135.21, 129.57, 129.45, 129.05, 127.82, 127.21, 126.83, 126.52, 123.39 (t, *J* = 285.0 Hz), 76.07 (t, *J* = 27.0 Hz), 23.66. ¹⁹F NMR (377 MHz, CDCl₃) δ -82.38, -82.45. HR-GC-MS (m/z): calcd for C₂₁H₁₇ClF₂O₄S [M]: 438.0504, found: 438.0503.

2-([1,1'-Biphenyl]-4-yl)-1,1-difluoro-2-hydroxypropyl 4-bromobenzenesulfonate (31)

Flash column chromatography on silica gel (eluent: PE/EA = 6/1, v/v) to afford **31**. Light yellow oil (58.8 mg, 61%). ¹H NMR (400 MHz, CDCl₃) δ 7.61 – 7.56 (m, 4H), 7.55 – 7.44 (m, 8H), 7.38 (t, J = 7.4 Hz,

1H), 1.75 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 141.44, 140.26, 137.11, 135.72, 132.55, 129.92, 129.42, 129.04, 127.81, 127.22, 126.83, 126.80, 123.38 (t, *J* = 285.0 Hz), 76.03 (t, *J* = 27.0 Hz), 23.61. ¹⁹F NMR (377 MHz, CDCl₃) δ -82.36, -82.43. HR-GC-MS (m/z): calcd for C₂₁H₁₇BrF₂O₄S [M]: 481.9999, found: 482.0003.

2-([1,1'-Biphenyl]-4-yl)-1,1-difluoro-2-hydroxypropyl 4-cyanobenzenesulfonate (3m)

Flash column chromatography on silica gel (eluent: PE/EA = 6/1, v/v) to afford **3m**. White solid (48.1 mg, 56%), mp 141.9-142.7 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, *J* = 8.2 Hz, 2H), 7.65 (d, *J* =

8.3 Hz, 2H), 7.59 (d, J = 7.4 Hz, 2H), 7.54 – 7.46 (m, 6H), 7.40 (t, J = 7.4 Hz, 1H), 2.56 (s, 1H), 1.77 (s, 3H).¹³C NMR (100 MHz, CDCl₃) δ 141.55, 140.78, 139.99, 136.94, 132.89, 129.20, 128.54, 128.01, 127.08, 126.90, 126.78, 123.54 (t, J = 285.0 Hz), 118.03, 116.81, 75.96 (t, J = 27.0 Hz), 23.48. ¹⁹F NMR (377 MHz, CDCl₃) δ -82.03, -82.20. HR-GC-MS (m/z): calcd for C₂₂H₁₇F₂NO₄S [M]: 429.0846, found: 429.0850.

1,1-Difluoro-2-hydroxy-2-(naphthalen-2-yl)propyl 4-methylbenzenesulfonate (3n)

Flash column chromatography on silica gel (eluent: PE/EA = 6/1, v/v) to afford **3n**. Colorless oil (52.7 mg, 67%). ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, *J* = 1.8 Hz, 1H), 7.82 – 7.78 (m, 1H), 7.76 – 7.68 (m, 2H), 7.54 – 7.45 (m, 5H), 6.94 (d, *J* = 8.1 Hz, 2H), 2.78

(s, 1H), 2.26 (s, 3H), 1.79 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 145.65, 135.75, 133.42, 133.03, 132.76, 129.58, 128.52, 127.88, 127.74, 127.46, 126.63, 126.28, 125.90, 123.91, 123.28 (t, *J* = 284.0 Hz), 76.29 (t, *J* = 27.0 Hz), 23.70, 21.69. ¹⁹F NMR (377 MHz, CDCl₃) δ -82.24, -82.34. HRMS-ESI (m/z): calcd for C₂₀H₁₉F₂O₄S [M + H]⁺: 393.0972, found: 393.0972.

1,1-Difluoro-2-hydroxy-2-(naphthalen-2-yl)propyl [1,1'-biphenyl]-4-sulfonate (30)

Flash column chromatography on silica gel (eluent: PE/EA = 6/1, v/v) to afford **30**. Colorless oil (54.5 mg, 60%). ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, J = 1.8 Hz, 1H), 7.78 – 7.72 (m, 2H), 7.70 (d, J =

8.8 Hz, 1H), 7.65 (d, J = 8.3 Hz, 2H), 7.55 – 7.51 (m, 1H), 7.49 – 7.40 (m, 7H), 7.34 (d, J = 8.4 Hz, 2H), 2.77 (s, 1H), 1.82 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 147.19, 138.70, 135.74, 134.88, 133.00, 132.77, 129.13, 128.96, 128.49, 128.37, 127.78, 127.44, 127.09, 126.66, 126.39, 125.93, 123.90, 123.38 (t, J = 285.0 Hz), 76.31 (t, J = 27.0 Hz), 23.72. ¹⁹F NMR (377 MHz, CDCl₃) δ -82.06, -82.24. HR-GC-MS (m/z): calcd for C₂₅H₂₀FO₂S [M]: 454.1050, found: 454.1058.

1,1-Difluoro-2-hydroxy-2-(naphthalen-2-yl)propyl 4-chlorobenzenesulfonate (3p)

Flash column chromatography on silica gel (eluent: PE/EA = 6/1, v/v) to afford **3p**. Light yellow oil (52.7 mg, 64%). ¹H NMR (400 MHz, CDCl₃) δ 7.87 – 7.81 (m, 2H), 7.79 – 7.74 (m, 1H), 7.71 (d, *J* = 8.7 Hz, 1H), 7.53 (td, *J* = 6.6, 6.0, 3.5 Hz, 2H), 7.48 (t, *J* = 8.7 Hz, 3H),

7.06 (d, J = 8.5 Hz, 2H), 2.65 (s, 1H), 1.82 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 141.13, 135.51, 134.80, 133.06, 132.72, 129.28, 129.20, 128.43, 127.84, 127.53, 126.89, 126.60, 125.90, 123.77, 123.35 (t, J = 285.0 Hz), 76.27 (t, J = 27.0 Hz), 23.60. ¹⁹F NMR (377 MHz, CDCl₃) δ -82.08, -82.16. HR-GC-MS (m/z): calcd for C₁₉H₁₅ClF₂O₄S [M]: 412.0348, found: 412.0349.

4-(1-(Phenylsulfonyl)ethyl)-1,1'-biphenyl (5a)

Purified by preparative TLC (eluent: PE/EA = 6/1, v/v) to afford **5a**. Yellow solid (37.3 mg, 58%), mp 167.4-168.3 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.58 (dd, J = 15.4, 7.7 Hz, 5H), 7.49 (d, J = 8.0 Hz, 2H), 7.43 (dt, J = 10.4, 7.6 Hz, 4H), 7.36 (t, J = 7.3 Hz, 1H), 7.21 (d, J = 8.0 Hz, 2H), 4.29 (q, J = 7.1 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 141.73, 140.35, 136.97, 133.70, 132.68, 129.94, 129.35, 128.97, 128.81, 127.76, 127.17, 127.14, 65.90, 14.21. HR-DART-MS (m/z): calcd for $C_{20}H_{19}O_2S$ [M + H]⁺: 323.1100, found: 323.1099.

1-Methoxy-4-(1-(phenylsulfonyl)ethyl)benzene (5b)

Purified by preparative TLC (eluent: PE/EA = 6/1, v/v) to afford **5b**. Yellow solid (22.1 mg, 40%), mp 92.4-93.5 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, J = 7.7 Hz, 3H), 7.45 – 7.39 (m, 2H), 7.08 – 7.03 (m, 2H), 6.80 – 6.74 (m, 2H), 4.20 (q, J = 7.2 Hz, 1H), 3.79 (s, 3H), 1.73 (d, J = 7.2 Hz, 3H). ¹³C NMR (100

MHz, CDCl₃) δ 160.0, 137.0, 133.6, 130.7, 129.3, 128.7, 125.6, 113.9, 65.5, 55.4, 14.2. HR-DART-MS (m/z): calcd for C₁₅H20NO₃S [M + NH₄]⁺: 294.1158, found: 294.1158.

2-(1-(Phenylsulfonyl)ethyl)naphthalene (5c)

Purified by preparative TLC (eluent: PE/EA = 6/1, v/v) to afford **5c**. Yellow solid (18.9 mg, 32%), mp 137.8-138.9 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.83 – 7.79 (m, 1H), 7.75 – 7.68 (m, 2H), 7.58 – 7.50 (m, 4H), 7.50 – 7.44 (m, 2H),

7.35 (t, J = 7.7 Hz, 2H), 7.30 – 7.27 (m, 1H), 4.41 (q, J = 7.2 Hz, 1H), 1.86 (d, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 136.9, 133.7, 133.3, 133.0, 131.3, 129.3, 129.2, 128.8, 128.2, 128.2, 127.7, 126.8, 126.7, 126.5, 66.3, 14.4. HR-DART-MS (m/z): calcd for C₁₈H₂₀NO₂S [M +NH₄]⁺: 314.1209, found: 314.1209.

4-(1-Tosylethyl)-1,1'-biphenyl (5d)

Purified by preparative TLC (eluent: PE/EA = 6/1, v/v) to afford **5d**. Yellow solid (24.9 mg, 37%), mp 180.3-182.4 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, *J* = 8.0 Hz, 2H), 7.51 – 7.42 (m, 6H), 7.39 – 7.35 (m, 1H), 7.22 (t, *J* = 7.4 Hz, 4H), 4.27 (q, *J* = 7.2 Hz, 1H), 2.40 (s, 3H), 1.82 –

1.74 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 144.7, 141.7, 140.4, 134.0, 132.9, 130.0, 129.5, 129.4, 129.0, 127.7, 127.2, 127.1, 65.9, 21.8, 14.3. HR-GC-MS (m/z): calcd for C₂₁H₂₀O₂S [M]: 336.1184, found: 336.1186.

4-(1-((4-(Tert-butyl)phenyl)sulfonyl)ethyl)-1,1'-biphenyl (5e)

Purified by preparative TLC (eluent: PE/EA = 6/1, v/v) to afford **5e**. Light yellow oil (30.3 mg, 40%). ¹H NMR (400 MHz, CDCl₃) δ 7.58 – 7.52 (m, 4H), 7.51 – 7.47 (m, 2H), 7.47 – 7.41 (m, 4H), 7.39 – 7.33 (m, 1H), 7.24 (d, *J* = 8.2 Hz, 2H), 4.27 (q, *J* = 7.1 Hz, 1H), 1.78 (d, *J* = 7.1

Hz, 3H), 1.32 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 157.7, 141.7, 140.5, 134.0, 132.8, 130.0, 129.2, 129.0, 127.7, 127.2, 127.1, 125.8, 65.9, 35.4, 31.2, 14.4. HR-DART-MS (m/z): calcd for C₂₄H₃₀NO₂S [M + NH₄]⁺: 396.1992, found: 396.1992.

4-((1-([1,1'-Biphenyl]-4-yl)ethyl)sulfonyl)-1,1'-biphenyl (5f)

Purified by preparative TLC (eluent: PE/EA = 6/1, v/v) to afford **5f**. Yellow solid (28.7 mg, 36%), mp 258.9-259.7 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.68 – 7.61 (m, 4H), 7.58 (dd, J = 7.9, 6.0 Hz, 4H), 7.53 – 7.49 (m, 3H), 7.48 – 7.41 (m, 5H), 7.36 (t, J = 7.3 Hz, 1H), 7.28 (s, 1H), 4.33 (q,

J = 7.2 Hz, 1H), 1.83 (d, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 146.6, 141.8, 140.4, 139.2, 135.5, 132.7, 130.0, 129.9, 129.2, 129.0, 128.8, 127.8, 127.5, 127.4, 127.2, 66.0, 14.4. HR-DART-MS (m/z): calcd for C₂₆H₂₆NO₂S [M + NH₄]⁺: 416.1679, found: 416.1677.

4-(1-((4-Fluorophenyl)sulfonyl)ethyl)-1,1'-biphenyl (5g)

Purified by preparative TLC (eluent: PE/EA = 6/1, v/v) to afford **5g**. Yellow solid (31.3 mg, 46%), mp 152.4-153.5 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.60 – 7.55 (m, 4H), 7.52 – 7.48 (m, 2H), 7.48 – 7.42 (m, 2H), 7.39 – 7.34 (m, 1H), 7.21 (d, *J* = 7.9 Hz, 2H), 7.11 – 7.05 (m, 2H), 4.28 (q, *J* = 7.1 Hz,

1H), 1.81 (d, J = 6.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.2, 164.6, 141.9, 140.2, 132.9 (d, J = 3.2 Hz), 132.6, 132.2 (d, J = 9.6 Hz), 130.9, 129.0, 127.8, 127.2 (d, J = 4.1 Hz), 116.1 (d, J = 22.5 Hz), 66.1, 14.1. HR-DART-MS (m/z): calcd for C₂₀H₂₁NFO₂S [M + NH₄]⁺: 358.1272, found: 358.1271.

4-(1-((4-Bromophenyl)sulfonyl)ethyl)-1,1'-biphenyl (5h)

Purified by preparative TLC (eluent: PE/EA = 6/1, v/v) to afford **5h**. Yellow solid (38.5 mg, 54%), mp 144.1-145.6 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.61 – 7.55 (m, 4H), 7.50 (dd, J = 8.3, 2.0 Hz, 2H), 7.48 – 7.42 (m, 2H), 7.39 – 7.34 (m, 1H), 7.21 (dd, J = 8.3, 2.0 Hz, 2H), 7.11 – 7.05 (m, 2H), 4.28 (q, J = 7.3 Hz, 1H), 1.81 (d, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.2, 164.6, 141.9, 140.2, 132.6, 132.2, 132.1, 129.9, 129.0, 127.9, 127.2, 116.1, 66.1, 29.9, 14.1. HR-DART-MS (m/z): calcd for C₂₀H₁₈ClO₂S [M + H]⁺: 357.0716, found: 357.0724.

2-(1-Tosylethyl)naphthalene (5i)

Purified by preparative TLC (eluent: PE/EA = 6/1, v/v) to afford **5i**. Yellow solid (42.1 mg, 53%), mp 136.4-137.6 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.56 (t, J = 8.2 Hz, 4H), 7.51 (d, J = 8.0 Hz, 2H), 7.48 – 7.41 (m, 4H), 7.38

(d, J = 7.3 Hz, 1H), 7.22 (d, J = 7.9 Hz, 2H), 4.28 (q, J = 7.2 Hz, 1H), 1.80 (d, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 141.9, 140.2, 136.0, 132.4, 132.1, 130.9, 129.9, 129.2, 129.0, 127.9, 127.3, 127.2, 66.0, 14.1. HR-DART-MS (m/z): calcd for C₂₀H₂₁NBrO₂S [M + NH₄]⁺: 418.0471, found: 418.0470.

2-(1-([1,1'-Biphenyl]-4-ylsulfonyl)ethyl)naphthalene (5j)

Purified by preparative TLC (eluent: PE/EA = 6/1, v/v) to afford **5j**. White powder (15.5 mg, 25%), mp 149.9-150.3 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.82 – 7.79 (m, 1H), 7.73 (dd, *J* = 8.8, 6.0 Hz, 2H), 7.58 (d, *J* = 1.8 Hz, 1H), 7.50 – 7.46 (m, 2H), 7.43 (d, *J* = 8.2 Hz, 2H), 7.29 (dd, *J* =

8.5, 1.9 Hz, 1H), 7.15 (d, J = 8.0 Hz, 2H), 4.39 (q, J = 7.2 Hz, 1H), 2.37 (s, 3H), 1.84 (d, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 144.6, 134.0, 133.3, 133.0, 131.5, 129.4, 129.4, 129.1, 128.2, 128.1, 127.7, 126.8, 126.7, 126.4, 66.3, 21.7, 14.5. HR-GC-MS MALDI (m/z): calcd for C₁₉H₁₈O₂S [M]: 310.1028, found: 310.1029.

2-(1-((4-Fluorophenyl)sulfonyl)ethyl)naphthalene (5k)

Purified by preparative TLC (eluent: PE/EA = 6/1, v/v) to afford **5k**. Colorless oil (15.7 mg, 25%). ¹H NMR (400 MHz, CDCl₃) δ 7.83 – 7.80 (m, 1H), 7.73 (t, J = 8.8 Hz, 2H), 7.56 (d, J = 1.8 Hz, 1H), 7.55 – 7.45 (m, 4H), 7.27 (d, J = 1.9 Hz, 1H), 7.01 (t, J = 8.6 Hz, 2H), 4.40 (q, J = 7.2 Hz, 1H),

1.88 (d, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.1, 164.6, 133.4, 133.0, 132.2, 132.1, 131.2,

129.1, 128.3, 128.2, 127.8, 126.9, 126.6 (d, J = 3.4 Hz), 116.1 (d, J = 22.6 Hz), 66.5, 14.3. HR-GC-MS (m/z): calcd for C₁₈H₁₅F₂O₄S [M]: 314.0777, found: 314.0780.

2-(1-((4-Chlorophenyl)sulfonyl)ethyl)naphthalene (51)

Purified by preparative TLC (eluent: PE/EA = 6/1, v/v) to afford **51**. Colorless oil (17.1 mg, 26%). ¹H NMR (400 MHz, CDCl₃) δ 7.84 – 7.80 (m, 1H), 7.74 (t, J = 7.8 Hz, 2H), 7.58 (d, J = 1.7 Hz, 1H), 7.50 (td, J = 6.9, 6.1, 3.7 Hz, 2H), 7.45 (d, J = 8.4 Hz, 2H), 7.32 (d, J = 8.3 Hz, 2H), 7.28 (d,

J = 1.8 Hz, 1H), 4.40 (q, *J* = 7.1 Hz, 1H), 1.87 (d, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 140.5, 135.4, 133.4, 133.0, 131.0, 130.8, 129.2, 129.1, 128.4, 128.2, 127.8, 126.9, 126.7, 126.6, 66.5, 14.3. HR-GC-MS (m/z): calcd for C₁₈H₁₅ClO₂S [M]: 330.0481, found: 330.0482.

2-([1,1'-Biphenyl]-4-yl)-1-ethoxy-1,1-difluoropropan-2-ol (6)

Flash column chromatography on silica gel (eluent: PE/EA = 6/1, v/v) to afford **6**. Colorless oil (36.2 mg, 62%). ¹H NMR (400 MHz, CDCl₃) δ 7.65 - 7.56 (m, 7H), 7.44 (t, *J* = 7.6 Hz, 2H), 7.35 (t, *J* = 7.3 Hz, 1H), 4.25 (q, *J* = 13.6, 7.0 Hz, 2H), 3.85 (s, 1H), 1.82 (s, 3H), 1.29 (t, *J* = 7.1 Hz, 3H). ¹³C

NMR (100 MHz, CDCl₃) δ 175.75, 141.97, 140.73, 128.90, 127.51, 127.22, 127.15, 125.79, 123.20 (t, *J* = 285.0 Hz), 75.68 (t, *J* = 27.0 Hz), 62.66, 26.88, 14.20. ¹⁹F NMR (377 MHz, CDCl₃) δ -86.08, -86.46. HRMS-ESI (m/z): calcd for C₁₇H₁₉F₂O₂ [M+H]⁺: 293.1353, found: 293.1352.

4. NMR spectra for new compounds

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

140 130 120 110 100 90 fl (ppm) -10

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

140 130 120 110 100 90 fl (ppm) -10

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

 $^1\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR spectrum of compound 3l

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹H NMR and ¹³C NMR spectrum of compound **5**a

S31

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

S38

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

5. X-ray crystallographic data

Figure S1 X-ray single crystal structure of 3a

Single crystals of **3a** were grown by slow evaporation of its DCM/PE solution. Single-crystal X-ray diffraction data were collected with a 'multiwire proportional' diffractometer. The crystal was kept at 100 K during data collection. Using Olex2, the structure was solved with the olex2.solve structure solution program using Charge Flipping and refined with the olex2.refine refinement package using Least Squares minimization. Supplementary crystallographic data have been deposited at the Cambridge Crystallographic Data Center (CCDC 2094381).

Table S2 Crystal data and structure refinement for 3a.

3a
$C_{21}H_{18}F_2O_4S$
404.41
149.99(10)
monoclinic
$P2_1/c$
6.0267(3)
18.6496(7)
16.3446(7)
90
96.788(4)
90
1824.18(14)
4
1.473
1.991

Table S2 Crystal data and structure refinement for 3a.

F(000)	840.0
Crystal size/mm ³	$0.13 \times 0.1 \times 0.08$
Radiation	Cu Ka ($\lambda = 1.54184$)
20 range for data collection/°	7.22 to 133.146
Index ranges	$\textbf{-7} \leq h \leq \textbf{4}, \textbf{-21} \leq k \leq \textbf{22}, \textbf{-19} \leq \textbf{l} \leq \textbf{19}$
Reflections collected	6693
Independent reflections	3223 [$R_{int} = 0.0893$, $R_{sigma} = 0.0929$]
Data/restraints/parameters	3223/0/265
Goodness-of-fit on F ²	1.050
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0597, wR_2 = 0.1395$
Final R indexes [all data]	$R_1 = 0.0789, wR_2 = 0.1566$

Table S3 Bond Lengths for 3a.

		0 0					
Atom Atom		Length/Å	Aton	n Atom	Length/Å		
S1	01	1.424(2)	C7	C8	1.394(4)		
S1	O2	1.419(2)	C7	C12	1.392(5)		
S1	03	1.621(2)	C8	C9	1.389(5)		
S 1	C16	1.750(3)	С9	C10	1.381(5)		
F1	C15	1.361(4)	C10	C11	1.397(5)		
F2	C15	1.343(4)	C10	C13	1.528(5)		
03	C15	1.395(4)	C11	C12	1.391(5)		
04	C13	1.473(6)	C13	C14	1.505(6)		
05	C13	1.38(2)	C13	C15	1.536(5)		
C1	C2	1.390(5)	C16	C17	1.387(4)		
C1	C6	1.390(5)	C16	C21	1.380(5)		
C1	C7	1.485(4)	C17	C18	1.381(5)		
C2	C3	1.391(5)	C18	C19	1.382(5)		
C3	C4	1.381(5)	C19	C20	1.384(5)		
C4	C5	1.386(5)	C20	C21	1.386(5)		
C5	C6	1.389(5)					

Table S4 Bond Angles for 3a.

Aton	1 Aton	n Atom	Angle/°	Atom	Atom	Atom	Angle/°
01	S 1	03	101.39(14)	C11	C12	C7	120.8(3)
01	S 1	C16	110.07(16)	O4	C13	C10	106.3(3)
02	S 1	01	120.57(16)	O4	C13	C14	116.0(5)
02	S 1	03	109.81(14)	O4	C13	C15	104.2(4)
02	S 1	C16	110.18(15)	05	C13	C10	120.1(12)

Table S4 Bond Angles for 3a.

Aton	1 Aton	n Atom	Angle/°	Aton	n Aton	1 Atom	Angle/°
03	S 1	C16	103.10(14)	05	C13	C14	81(2)
C15	03	S 1	123.4(2)	05	C13	C15	121.5(12)
C2	C1	C6	118.2(3)	C10	C13	C15	109.1(3)
C2	C1	C7	120.8(3)	C14	C13	C10	112.2(4)
C6	C1	C7	120.9(3)	C14	C13	C15	108.6(3)
C1	C2	C3	120.9(3)	F1	C15	O3	109.7(3)
C4	C3	C2	120.4(3)	F1	C15	C13	111.0(3)
C3	C4	C5	119.1(3)	F2	C15	F1	105.4(3)
C4	C5	C6	120.5(3)	F2	C15	O3	110.1(3)
C5	C6	C1	120.8(3)	F2	C15	C13	110.3(3)
C8	C7	C1	120.4(3)	03	C15	C13	110.3(3)
C12	C7	C1	121.4(3)	C17	C16	S 1	118.7(3)
C12	C7	C8	118.2(3)	C21	C16	S 1	119.8(3)
C9	C8	C7	120.9(3)	C21	C16	C17	121.4(3)
C10	С9	C8	121.0(3)	C18	C17	C16	119.2(3)
C9	C10	C11	118.5(3)	C17	C18	C19	119.8(3)
C9	C10	C13	119.4(3)	C18	C19	C20	120.7(3)
C11	C10	C13	122.1(3)	C19	C20	C21	119.9(3)
C12	C11	C10	120.6(3)	C16	C21	C20	118.9(3)

6. References

- 1. Tian, H.; Shimakoshi, H.; Imamura, K.; Shiota, Y.; Yoshizawa, K.; Hisaeda. Y. Chem. Commun. 2017, 53, 9478.
- Sakaguchi, H.; Uetake, Y.; Ohashi, M.; Niwa, T.; Ogoshi, S.; Hosoya, T. J. Am. Chem. Soc. 2017, 139, 12855.
- Zhang, Z.; Yu, W.; Wu, C.; Wang, C.; Zhang, Y.; Wang, J. Angew. Chem. Int. Ed. 2016, 55, 273.
- 4. Zhao, Y.; Huang, W.; Zhu, L.; Hu, J. Org. Lett. 2010, 12, 1444.
- 5. Liu, X.; Lin, E. E.; Chen, G.; Li, J.-L.; Liu, P.; Wang, H. Org. Lett. 2019, 21, 8454.
- 6. Zheng, J.; Cai, J.; Lin, J.-H.; Guo, Y.; Xiao, J.-C. Chem. Commun. 2013, 49, 7513.