Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2021

Materials and methods.

Unless stated otherwise, reactions were conducted in dry glassware using anhydrous solvents (passed through activated alumina columns). All commercially available reagents were used as received unless otherwise specified. Reaction temperatures were controlled using an IKA mag temperature modulator, and unless stated otherwise, reactions were performed at room temperature (RT, approximately 23 °C). Thin layer chromatography (TLC) was conducted on plates (GF254) supplied by Yantai Chemicals (China) and visualized using a combination of UV, anisaldehyde, iodine, and potassium permanganate staining. Silica gel (200-300 mesh) supplied by Tsingtao Haiyang Chemicals (China) was used for flash column chromatography. ¹H NMR spectra were recorded on Bruker spectrometers (at 400 MHz) and are reported relative to deuterated solvent signals. Data for ¹H NMR spectra are reported as follows: chemical shift (δ ppm), multiplicity, coupling constant (Hz) and integration. ¹³C NMR spectra are reported in terms of chemical shift. High resolution mass spectra were obtained from the Tsinghua University Mass Spectrometery Facility.

To a solution of **S1** (3.1 g, 10.88 mmol) in dichloromethane (108.0 mL) at RT was added *N*-Iodosuccinimide (4.9 g, 21.76 mmol). The mixture was stirred for 30 min, and then trifluoroacetic acid (10.8 mL) was added. The reaction was stirred for 3 h at RT. The reaction was quenched with saturated sodium carbonate solution and saturated sodium sulfite solution, and extracted with dichloromethane (3×100 mL). The combined organic layers were dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The crude residue was purified by silica gel chromatography, eluting with ethyl acetate/petroleum ether = 1/4 to afford the desired product **S2** (3.67 g, 95% yield) as a white solid.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.22 (d, J = 8.3 Hz, 1H), 7.81 (dd, J = 7.7, 1.3 Hz, 1H), 7.75 (ddd, J = 8.5, 7.3, 1.4 Hz, 1H), 7.28 (t, J = 7.6 Hz, 1H), 5.20 (t, J = 1.7 Hz, 1H), 4.56 (ddd, J = 7.7, 4.7, 2.3 Hz, 1H), 3.00 (dd, J = 13.0, 2.5 Hz, 1H), 2.91 (ddd, J = 15.2, 8.1, 2.3 Hz, 1H), 2.74 (dd, J = 15.2, 4.8 Hz, 1H), 2.19 – 2.08 (m, 1H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 194.5, 150.5, 147.0, 138.1, 124.7, 124.4, 123.0, 117.1, 88.3, 73.2, 49.4, 33.6, 18.2.

HRMS-ESI (m/z): calcd for C₁₃H₁₁INO₃ [M+H]⁺: 355.9784; found: 355.9785.

To a solution of **S2** (3.67 g, 10.34 mmol) in THF (130 mL) at RT was added 1,8-Diazabicyclo [5.4.0] undec-7-ene (10.8 mL, 72 mmol). The reaction was stirred for 3 h at reflux and then cooled to RT. The reaction was quenched with saturated ammonium chloride solution and extracted with ethyl acetate (3×100 mL). The combined organic layers were dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The crude residue was purified by silica gel chromatography, eluting with ethyl acetate/petroleum ether = 1/3 to afford the desired product **S3** (1.3 g, 55% yield) as a white solid.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.17 (dd, J = 8.4, 0.8 Hz, 1H), 7.79 (dt, J = 7.7, 1.0 Hz, 1H), 7.71 (ddd, J = 8.5, 7.3, 1.4 Hz, 1H), 7.38 – 7.08 (m, 1H), 6.64 (dd, J = 5.5, 2.5 Hz, 1H), 6.39 (dt, J = 5.5, 0.9 Hz, 1H), 5.47 – 5.46 (m, 1H), 2.60 (dd, J = 11.4, 2.5 Hz, 1H), 2.13 (dd, J = 11.4, 1.1 Hz, 1H).

¹³**C NMR** (100 MHz, Chloroform-*d*) δ 196.2, 151.0, 147.5, 138.4, 138.1, 136.5, 124.3, 124.2, 122.7, 117.1, 82.5, 73.5, 43.1.

HRMS-ESI (*m/z*): calcd for C₁₃H₁₀NO₃ [M+H]⁺: 228.0661; found: 228.0657.

To a solution of **S3** (900 mg, 3.96 mmol) in THF (20.0 mL) at -78 °C was added n-BuLi (3.72 mL, 5.95 mmol, 1.6 M in hexanes). The reaction was stirred at -78 °C for 2 h. The reaction was quenched with saturated ammonium chloride solution and extracted with ethyl acetate (3×40 mL). The combined organic layers were dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The crude residue was purified by silica gel chromatography, eluting with ethyl acetate/petroleum ether = 1/3 to afford the desired product **1a**' as the major epimer (661 mg, 59% combined yield, dr = 4:1).

The major (colorless oil): ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.84 (d, J = 8.0 Hz, 1H), 7.35 (dd, J = 7.6, 1.2 Hz, 1H), 7.30 (td, J = 7.8, 1.3 Hz, 1H), 7.10 (td, J = 7.5, 1.0 Hz, 1H), 6.72 (d, J = 5.6 Hz, 1H), 6.32 (dd, J = 5.7, 2.6 Hz, 1H), 5.32 – 5.30 (m, 1H), 2.46 (s, 1H), 2.34 (dd, J = 11.2, 2.7 Hz, 1H), 2.25 (d, J = 11.1 Hz, 1H), 1.86 – 1.71 (m, 2H), 1.47 – 1.22 (m, 4H), 0.87 (t, J = 7.1 Hz, 3H).

¹³**C NMR** (100 MHz, Chloroform-*d*) δ 148.9, 141.0, 139.6, 132.6, 132.6, 129.8, 124.0, 123.6, 115.3, 81.3, 80.5, 78.9, 39.5, 39.0, 24.9, 23.0, 14.0.

HRMS-ESI (*m/z*): calcd for C₁₇H₂₀NO₃ [M+H]⁺: 286.1443; found: 286.1443.

To a solution of 1a' (350 mg, 1.23 mmol) in EtOH (13 mL) at RT was added sodium hydroxide (492 mg, 12.3 mmol). The reaction was stirred for 3 h at 80 °C and then cooled to RT. The reaction was quenched with saturated ammonium chloride solution and extracted with ethyl acetate (3×26 mL). The combined organic layers were dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The crude residue was purified by silica gel chromatography, eluting with ethyl acetate/petroleum ether = 1/3 to afford the desired product **1a** (212 mg, 60% yield) as a brown oil.

¹**H** NMR (400 MHz, Methanol- d_4) δ 7.18 (dd, J = 7.4, 1.2 Hz, 1H), 7.03 (td, J = 7.6, 1.3 Hz, 1H), 6.69 (td, J = 7.4, 1.0 Hz, 1H), 6.59 (d, J = 7.8 Hz, 1H), 6.01 (dd, J = 5.7, 2.1 Hz, 1H), 5.91 (dd, J = 5.7, 1.2 Hz, 1H), 4.68 – 4.66 (m, 1H), 3.60 – 3.52 (m, 2H), 2.50 (dd, J = 14.3, 4.0 Hz, 1H), 2.06 (dd, J = 14.3, 6.9 Hz, 1H), 1.92 – 1.84 (m, 1H), 1.70 – 1.40 (m, 3H), 1.35 – 1.23 (m, 2H), 1.19 (t, J = 7.0 Hz, 3H), 0.90 (t, J = 7.3 Hz, 3H).

¹³C NMR (100 MHz, Methanol- d_4) δ 149.2, 136.6, 133.5, 133.2, 128.3, 123.7, 118.1,

109.8, 82.7, 82.7, 81.0, 64.1, 38.1, 36.2, 25.2, 23.2, 14.4, 13.0. **HRMS-ESI** (*m/z*): calcd for C₁₈H₂₆NO₂ [M+H]⁺: 288.1964; found: 288.1958.

To a solution of **S2** (300 mg, 1.33 mmol) in THF (13.0 mL) at 0 °C was added EtMgBr (2.66 mL, 2.66 mmol, 1 M in THF). The reaction was stirred at 0 °C for 2 h. The reaction was quenched with saturated ammonium chloride solution and extracted with ethyl acetate (3×25 mL). The combined organic layers were dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The crude residue was purified by silica gel chromatography, eluting with ethyl acetate/petroleum ether = 1/2 to afford the desired product **1b**' as the major epimer (198 mg, 58% combined yield, dr = 4.5:1).

The major (colorless oil): ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.79 (d, J = 8.1 Hz, 1H), 7.35 (dd, J = 7.5, 1.3 Hz, 1H), 7.30 – 7.23 (m, 1H), 7.07 (t, J = 7.5 Hz, 1H), 6.73 (d, J = 5.7 Hz, 1H), 6.27 (dd, J = 5.7, 2.5 Hz, 1H), 5.28 – 5.27 (m, 1H), 3.04 (s, 1H), 2.33 (dd, J = 11.2, 2.7 Hz, 1H), 2.20 (d, J = 11.2 Hz, 1H), 1.90 (dq, J = 14.6, 7.3 Hz, 1H), 1.75 (dq, J = 14.5, 7.4 Hz, 1H), 0.97 (t, J = 7.4 Hz, 3H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 148.9, 141.2, 139.5, 132.4, 132.3, 129.6, 124.1, 123.5, 115.1, 81.4, 80.4, 78.9, 39.3, 31.9, 7.3.

HRMS-ESI (*m/z*): calcd for C₁₅H₁₆NO₃ [M+H]⁺: 258.1130; found: 258.1129.

The above compound was prepared by following the same procedure as that for 1a. Purification by silica gel chromatography, eluting with ethyl acetate/petroleum ether = 1/3 to afford the desired product 1b (58% yield) as a white solid. The relative stereochemistry of 1b was confirmed by X-ray analysis.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.25 – 7.21 (m, 1H), 7.09 (td, J = 7.6, 1.3 Hz, 1H), 6.81 (td, J = 7.4, 0.9 Hz, 1H), 6.60 (dd, J = 7.7, 0.8 Hz, 1H), 6.07 (d, J = 5.6 Hz, 1H), 6.03 (dd, J = 5.7, 2.1 Hz, 1H), 4.58 – 4.55 (m, 1H), 3.63 (s, 1H), 3.61 – 3.51 (m, 2H), 2.37 (s, 1H), 2.30 (dd, J = 13.9, 3.2 Hz, 1H), 2.13 (dd, J = 13.9, 5.9 Hz, 1H), 1.91 – 1.71 (m, 2H), 1.23 (t, J = 7.0 Hz, 3H), 0.91 (t, J = 7.4 Hz, 3H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 148.2, 139.1, 133.0, 132.3, 128.5, 124.6, 119.2, 110.1, 83.3, 82.2, 81.9, 64.3, 37.6, 30.8, 15.6, 7.8.

HRMS-ESI (*m/z*): calcd for C₁₆H₂₂NO₂ [M+H]⁺: 260.1651; found: 260.1630.

The above compound was prepared by following the same procedure as that for S2. Purification by silica gel chromatography, eluting with ethyl acetate/petroleum ether = 1/4 to afford the desired product S5 (91% yield) as a white solid.

¹**H** NMR (400 MHz, Chloroform-*d*) δ 8.07 (dd, J = 9.2, 2.5 Hz, 1H), 7.34 – 7.25 (m, 1H), 7.17 (d, J = 2.6 Hz, 1H), 5.16 (s, 1H), 4.58 – 4.48 (m, 1H), 3.81 (s, 3H), 2.99 – 2.83 (m, 2H), 2.70 (dt, J = 15.3, 3.5 Hz, 1H), 2.09 (d, J = 12.9 Hz, 1H).

¹³**C NMR** (100 MHz, Chloroform-*d*) δ 194.3, 157.0, 146.9, 145.1, 127.2, 123.7, 118.1, 104.8, 88.2, 73.6, 55.8, 49.3, 33.6, 18.3.

HRMS-ESI (*m/z*): calcd for C₁₄H₁₃INO₄ [M+H]⁺: 385.9889; found: 385.9896.

The above compound was prepared by following the same procedure as that for S3. Purification by silica gel chromatography, eluting with ethyl acetate/petroleum ether = 1/3 to afford the desired product S6 (48% yield) as a brown solid.

¹**H** NMR (400 MHz, Chloroform-*d*) δ 8.05 (d, J = 9.0 Hz, 1H), 7.32 – 7.25 (m, 1H), 7.16 (d, J = 2.7 Hz, 1H), 6.61 (dd, J = 5.5, 2.5 Hz, 1H), 6.37 (dt, J = 5.5, 0.8 Hz, 1H), 5.47 – 5.42 (m, 1H), 3.80 (s, 3H), 2.57 (dd, J = 11.3, 2.5 Hz, 1H), 2.10 (dd, J = 11.3, 1.1 Hz, 1H).

¹³**C NMR** (100 MHz, Chloroform-*d*) δ 196.1, 156.7, 147.5, 145.8, 138.3, 136.3, 127.1, 123.4, 118.2, 104.7, 82.4, 73.8, 55.7, 43.2.

HRMS-ESI (*m/z*): calcd for C₁₄H₁₂NO₄ [M+H]⁺: 258.0766; found: 258.0761.

The above compound was prepared by following the same procedure as that for 1b'. Purification by silica gel chromatography, eluting with ethyl acetate/petroleum ether = 1/2 to afford the desired product 1c' as the major epimer (53% combined yield, dr = 6:1). The major(colorless oil): ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.72 (d, J = 8.8 Hz, 1H), 6.90 (d, J = 2.6 Hz, 1H), 6.80 (dd, J = 8.7, 2.6 Hz, 1H), 6.72 (dd, J = 5.7, 1.0 Hz, 1H), 6.29 (dd, J = 5.7, 2.6 Hz, 1H), 5.29 – 5.28 (m, 1H), 3.79 (s, 3H), 2.80 (s, 1H), 2.31 (dd, J = 11.2, 2.7 Hz, 1H), 2.23 (d, J = 11.1 Hz, 1H), 1.84 – 1.66 (m, 2H), 1.54 – 1.34 (m, 2H), 0.89 (t, J = 7.3 Hz, 3H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 156.3, 148.8, 141.1, 134.1, 133.1, 132.5, 115.8, 114.3, 110.2, 81.2, 80.6, 78.8, 55.7, 41.4, 39.4, 16.2, 14.3.

HRMS-ESI (*m/z*): calcd for C₁₇H₂₀NO₄ [M+H]⁺: 302.1392; found: 302.1389.

The above compound was prepared by following the same procedure as that for **1a**. Purification by silica gel chromatography, eluting with ethyl acetate/petroleum ether = 1/3 to afford the desired product **1c** (72% yield) as a yellow oil.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 6.84 (d, J = 2.6 Hz, 1H), 6.67 (dd, J = 8.4, 2.6 Hz, 1H), 6.54 (d, J = 8.4 Hz, 1H), 6.08 – 5.98 (m, 2H), 4.56 – 4.53 (m, 1H), 3.76 (s, 3H), 3.60 – 3.53 (m, 2H), 2.52 (s, 1H), 2.29 (dd, J = 14.0, 3.1 Hz, 1H), 2.11 (dd, J = 14.0, 5.8 Hz, 1H), 1.79 (ddd, J = 13.5, 11.8, 5.1 Hz, 1H), 1.65 (ddd, J = 13.5, 11.7, 4.5 Hz, 1H), 1.49 – 1.27 (m, 2H), 1.23 (t, J = 7.0 Hz, 3H), 0.86 (t, J = 7.3 Hz, 3H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 153.7, 141.7, 139.3, 134.1, 132.9, 114.1, 110.9,

110.5, 83.8, 82.1, 81.8, 64.3, 55.9, 40.6, 37.6, 16.6, 15.6, 14.5.

HRMS-ESI (*m/z*): calcd for C₁₈H₂₆NO₃ [M+H]⁺: 304.1913; found: 304.1911.

To a solution of **S7** (515 mg, 1 mmol) in dichloromethane (10.0 mL) at RT was added *N*-Iodosuccinimide (450 mg, 2.0 mmol,). The reaction was stirred for 4 h at RT. The reaction was quenched with saturated sodium carbonate solution and saturated sodium sulfite solution, and extracted with dichloromethane (3×20 mL). The combined organic layers were dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The crude residue was purified by silica gel chromatography, eluting with ethyl acetate/petroleum ether = 1/2 to afford the desired product **S8** as a mixture of two epimers (497 mg, 85% combined yield, dr = 3:1).

The mixture (yellow solid): ¹H NMR (400 MHz, Chloroform-*d*) δ 8.24 – 8.16 (m, 0.35H), 8.05 (dd, J = 7.3, 2.0 Hz, 1.03H), 7.94 – 7.83 (m, 1.43H), 7.83 – 7.69 (m,

4.20H), 7.32 (d, J = 7.3 Hz, 0.80H), 7.25 – 7.22 (m, 0.80H)., 7.11 (t, J = 7.6 Hz, 0.36H), 6.98 (d, J = 7.5 Hz, 1.04H), 6.88 (t, J = 7.5 Hz, 1.02H), 6.44 – 6.32 (m, 1.35H), 5.04 (s, 1.02H), 4.90 (s, 0.34H), 4.52 – 4.37 (m, 1.39H), 3.81 (s, 0.91H), 3.59 – 3.44 (m, 0.87H), 3.36 (s, 0.38H), 3.31 – 3.14 (m, 2.13H), 2.82 – 2.74 (m, 1.06H), 2.71 (d, J = 6.8 Hz, 2.06H), 2.67 – 2.55 (m, 0.93H), 2.52 – 2.34 (m, 1.23H), 2.27 – 2.13 (m, 2.13H), 2.10 – 2.00 (m, 0.30H), 1.86 – 1.77 (m, 1.13H).

¹³**C NMR** (100 MHz, Chloroform-*d*) δ 148.4, 148.3, 148.0, 148.0, 138.8, 138.0, 133.8, 133.7, 133.2, 133.1, 133.0, 133.0, 132.9, 131.6, 131.2, 131.1, 130.9, 130.2, 125.5, 125.4, 124.5, 123.9, 123.6, 122.9, 116.2, 115.9, 86.4, 85.7, 79.9, 79.7, 79.2, 77.9, 48.9, 46.9, 39.4, 39.0, 36.5, 34.5, 32.0, 30.7, 20.1, 18.8.

HRMS-ESI (*m/z*): calcd for C₂₁H₂₁IN₃O₇S [M+H]⁺: 586.0145; found: 586.0145.

The above compound was prepared by following the same procedure as that for **S3**. Purification by silica gel chromatography, eluting with ethyl acetate/petroleum ether = 1/1 to afford the desired product **1d**' and its epimer (83%, dr = 3:1) as a colorless oil. The major: ¹H NMR (400 MHz, Chloroform-*d*) δ 8.05 – 8.00 (m, 1H), 7.85 – 7.80 (m, 1H), 7.79 – 7.70 (m, 2H), 7.66 (d, *J* = 8.0 Hz, 1H), 7.19 (td, *J* = 7.8, 1.3 Hz, 1H), 7.01 (dd, *J* = 7.6, 1.3 Hz, 1H), 6.84 (td, *J* = 7.5, 1.0 Hz, 1H), 6.68 (dd, *J* = 5.7, 1.1 Hz, 1H), 6.37 (t, *J* = 5.3 Hz, 1H), 6.29 (dd, *J* = 5.7, 2.6 Hz, 1H), 5.31 – 5.25 (m, 1H), 4.19 (s, 1H), 3.25 (q, *J* = 5.1, 3.9 Hz, 2H), 2.35 (dd, *J* = 11.3, 2.8 Hz, 1H), 2.22 – 2.10 (m, 2H), 1.84 – 1.78 (m, 1H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 149.1, 147.9, 140.4, 139.2, 133.7, 133.2, 133.0, 132.8, 131.2, 131.0, 130.0, 125.3, 123.8, 123.6, 115.3, 81.5, 80.7, 78.9, 39.3, 39.1, 36.5. **HRMS-ESI** (*m*/*z*): calcd for C₂₁H₂₀N₃O₇S [M+H]⁺: 458.1022; found: 458.1006.

The above compound was prepared by following the same procedure as that for 1a. Purification by silica gel chromatography, eluting with ethyl acetate/petroleum ether = 1/1 to afford the desired product 1d (60% yield) as a brown oil.

¹**H** NMR (400 MHz, Chloroform-*d*) δ 8.07 – 8.01 (m, 1H), 7.88 – 7.83 (m, 1H), 7.78 – 7.67 (m, 2H), 7.02 (td, *J* = 7.6, 1.3 Hz, 1H), 6.85 (dd, *J* = 7.6, 1.3 Hz, 1H), 6.58 – 6.54 (m, 3H), 6.03 (dd, *J* = 5.6, 2.3 Hz, 1H), 5.93 (d, *J* = 5.6 Hz, 1H), 4.52 – 4.50 (m, 1H), 3.70 (s, 1H), 3.61 – 3.47 (m, 2H), 3.15 – 3.05 (m, 3H), 2.28 (dd, *J* = 14.1, 2.7 Hz, 1H),

2.11 - 1.99 (m, 3H), 1.22 (t, J = 7.0 Hz, 3H).

¹³**C NMR** (100 MHz, Chloroform-*d*) δ 148.1, 147.8, 138.3, 134.1, 133.5, 133.3, 132.5, 131.1, 131.0, 128.9, 125.0, 123.7, 119.5, 110.6, 83.6, 81.7, 81.6, 64.5, 39.9, 37.3, 35.7, 15.5.

HRMS-ESI (*m/z*): calcd for C₂₂H₂₆N₃O₆S [M+H]⁺: 460.1542; found: 460.1554.

The above compound was prepared by following the same procedure as that for **S8**. Purification by silica gel chromatography, eluting with ethyl acetate/petroleum ether = 1/3 to afford the desired product **S10** as a mixture of two epimers (96% combined yield, dr = 4:1).

The mixture(colorless oil): ¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.89 – 7.85 (m, 0.28H), 7.82 (dd, J = 8.0, 0.9 Hz, 0.96H), 7.45 – 7.31 (m, 6.70H), 7.30 – 7.23 (m, 1.65H), 7.13 – 7.00 (m, 2.27H), 5.04 (d, J = 3.1 Hz, 2.00H), 4.96 (dd, J = 3.0, 1.1 Hz, 0.26H), 4.71 (d, J = 11.9 Hz, 0.29H), 4.61 (s, 2.07H), 4.52 – 4.42 (m, 1.29H), 3.99 – 3.87 (m, 0.54H), 3.81 (s, 0.26H), 3.76 – 3.67 (m, 1.02H), 3.67 – 3.60 (m, 1.02H), 2.87 (dd, J = 15.5, 5.2 Hz, 1.05H), 2.78 (dd, J = 12.6, 2.9 Hz, 1.17H), 2.74 – 2.62 (m, 1.56H), 2.61 – 2.53 (m, 0.46H), 2.42 – 2.36 (m, 0.31H), 2.32 – 2.25 (m, 1.03H), 2.21 (dq, J = 12.7, 1.2 Hz, 1.03H), 2.11 – 1.99 (m, 0.31H), 1.75 – 1.65 (m, 1.23H).

¹³**C NMR** (100 MHz, Chloroform-*d*) δ 148.2, 139.2, 137.9, 137.1, 136.7, 133.6, 133.0, 130.4, 129.4, 128.7, 128.6, 128.3, 128.3, 128.2, 128.1, 124.0, 123.8, 123.8, 122.8, 116.1, 115.6, 86.2, 85.8, 79.6, 79.3, 79.3, 77.9, 73.9, 73.7, 66.0, 65.6, 48.7, 46.4, 36.7, 34.3, 31.6, 30.5, 20.6, 19.6.

HRMS-ESI (*m/z*): calcd for C₂₂H₂₃INO₄ [M+H]⁺: 492.0672; found: 492.0671.

The above compound was prepared by following the same procedure as that for 1d'. Purification by silica gel chromatography, eluting with ethyl acetate/petroleum ether = 1/2 to afford the desired product 1e' as a mixture of two epimers (71% yield, dr = 4:1).

The mixture(colorless oil): ¹H NMR (400 MHz, Chloroform-*d*) δ 7.88 – 7.85 (m, 1.37H), 7.44 – 7.30 (m, 7.44H), 7.28 (d, *J* = 1.4 Hz, 0.29H), 7.24 (d, *J* = 1.4 Hz, 0.30H), 7.14 (dd, *J* = 7.6, 1.3 Hz, 0.99H), 7.09 (td, *J* = 7.5, 1.1 Hz, 0.41H), 7.03 (td, *J* = 7.5, 1.1 Hz, 1.00H), 6.73 (dd, *J* = 5.7, 1.1 Hz, 1.00H), 6.33 – 6.26 (m, 1.68H), 5.32 – 5.27 (m,

1.03H), 5.24 – 5.19 (m, 0.37H), 5.04 (s, 1.00H), 4.62 (s, 2.05H), 4.59 – 4.50 (m, 0.65H), 4.19 (s, 0.32H), 3.86 – 3.78 (m, 1.72H), 3.69 – 3.65 (m, 1.04H), 2.84 – 2.75 (m, 0.43H), 2.44 – 2.26 (m, 2.44H), 2.25 – 2.13 (m, 1.22H), 2.10 (dd, *J* = 11.9, 2.8 Hz, 0.60H), 1.79 – 1.66 (m, 1.30H).

¹³**C NMR** (100 MHz, Chloroform-*d*) δ 148.8, 148.4, 141.4, 140.1, 139.7, 139.2, 136.9, 136.8, 133.4, 133.0, 132.5, 132.2, 130.4, 129.4, 128.7, 128.6, 128.3, 128.1, 128.0, 124.0, 123.8, 123.5, 123.2, 115.6, 115.1, 81.1, 80.3, 80.1, 79.9, 78.8, 77.8, 73.9, 73.7, 66.6, 66.2, 40.2, 39.3, 36.5, 35.0.

HRMS-ESI (*m/z*): calcd for C₂₂H₂₂NO₄ [M+H]⁺: 364.1549; found: 364.1566.

The above compound was prepared by following the same procedure as that for **1a**. Purification by silica gel chromatography, eluting with ethyl acetate/petroleum ether = 1/1 to afford the desired product **1e** as a mixture of two epimers (52% yield).

The mixture (brown oil): ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.42 – 7.30 (m, 4.99H), 7.12 – 7.06 (m, 1.87H), 6.80 – 6.76 (m, 1.00H), 6.60 – 6.57 (m, 1.02H), 6.10 (d, *J* = 5.9 Hz, 1.02H), 5.97 (d, *J* = 5.8 Hz, 1.02H), 4.71 – 4.68 (m, 0.90H), 4.55 – 4.52 (m, 2.23H), 4.18 (s, 0.86H), 3.87 – 3.78 (m, 0.44H), 3.75 – 3.69 (m, 0.98H), 3.65 – 3.51 (m, 3.87H), 2.70 (dd, *J* = 14.5, 3.0 Hz, 0.17H), 2.37 – 2.19 (m, 2.81H), 2.13 – 2.03 (m, 0.28H), 2.00 – 1.86 (m, 1.06H), 1.24 (t, *J* = 6.8 Hz, 3.82H).

¹³**C NMR** (100 MHz, Chloroform-*d*) δ 148.2, 147.9, 137.9, 137.5, 137.4, 137.2, 134.4, 133.2, 132.5, 132.3, 128.7, 128.4, 128.3, 128.2, 127.8, 127.8, 127.7, 127.6, 124.3, 124.1, 119.2, 119.0, 110.1, 109.8, 83.2, 83.0, 82.5, 82.1, 81.7, 81.1, 73.4, 73.2, 67.1, 66.8, 64.5, 64.1, 38.8, 37.6, 35.7, 34.8, 15.5, 15.4.

HRMS-ESI (*m*/*z*): calcd for C₂₃H₂₈NO₃ [M+H]⁺: 366.2069; found: 366.2072.

The above compound was prepared by following the same procedure as that for 1a'. Purification by silica gel chromatography, eluting with ethyl acetate/petroleum ether = 1/3 to afford the desired product 1f' as a mixture of two epimers (86% combined yield, dr = 2.5:1).

The mixture (white solid): ¹H NMR (400 MHz, Chloroform-*d*) δ 7.97 – 7.89 (m, 1.37H), 7.53 (*d*, J = 7.2 Hz, 1.00H), 7.46 – 7.35 (m, 2.93H), 7.34 – 7.20 (m, 5.48H), 7.17 – 7.11 (m, 3.42H), 6.94 (d, *J* = 5.6 Hz, 1.05H), 6.34 (dd, *J* = 5.8, 2.5 Hz, 1.00H), 6.06 (dd, *J* = 5.8, 2.5 Hz, 0.42H), 5.87 (d, *J* = 5.7 Hz, 0.40H), 5.32 – 5.24 (m, 0.42H), 5.14 – 5.07

(m, 0.98H), 3.32 (s, 1.00H), 2.69 (s, 0.44H), 2.46 (d, J = 11.8 Hz, 0.47H), 2.37 (dd, J = 11.8, 2.6 Hz, 0.45H), 1.72 (dd, J = 11.7, 2.7 Hz, 1.11H), 1.38 (d, J = 11.7 Hz, 1.16H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 149.0, 148.7, 142.9, 141.4, 140.8, 140.5, 140.4, 139.3, 133.8, 132.9, 132.6, 132.2, 130.9, 130.4, 128.5, 128.4, 128.3, 127.9, 127.3, 125.9, 125.1, 124.5, 124.2, 124.1, 115.9, 115.4, 81.3, 81.2, 81.1, 80.9, 80.7, 42.2, 38.9. **HRMS-ESI** (*m*/*z*): calcd for C₁₉H₁₆NO₃ [M+H]⁺: 306.113; found: 306.1147.

1f

The above compound was prepared by following the same procedure as that for **1a**. Purification by silica gel chromatography, eluting with ethyl acetate/petroleum ether = 1/3 to afford the desired product **1f** as a mixture of two epimers (72% yield).

The mixture (brown oil): ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.42 – 7.34 (m, 1.92H), 7.34 – 7.27 (m, 3.29H), 7.25 – 7.22 (m, 1.13H), 7.21 – 7.20 (m, 0.30H), 7.19 – 7.18 (m, 0.40H), 7.17 – 7.15 (m, 0.96H), 7.13 – 7.11 (m, 1.04H), 6.85 – 6.80 (m, 1.33H), 6.75 – 6.72 (m, 1.28H), 6.22 (d, *J* = 5.6 Hz, 1.00H), 6.08 (dd, *J* = 5.6, 2.3 Hz, 0.98H), 5.79 (dd, *J* = 5.7, 2.4 Hz, 0.34H), 5.42 (d, *J* = 5.7 Hz, 0.34H), 4.56 – 4.50 (m, 0.36H), 4.48 – 4.40 (m, 1.00H), 4.11 (s, 0.34H), 3.80 (s, 1.26H), 3.64 – 3.43 (m, 0.83H), 3.39 – 3.23 (m, 2.09H), 3.05 (s, 1.03H), 2.84 (dd, *J* = 14.2, 2.4 Hz, 0.40H), 1.95 (dd, *J* = 14.1, 6.0 Hz, 0.41H), 1.83 – 1.71 (m, 2.09H), 1.25 (t, *J* = 7.0 Hz, 1.44H), 1.15 (t, *J* = 7.0 Hz, 2.98H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 149.1, 148.9, 143.6, 142.6, 139.9, 138.1, 134.7, 134.1, 133.6, 132.2, 129.2, 129.1, 127.9, 127.7, 127.1, 126.6, 126.1, 125.0, 124.6, 120.1, 119.8, 110.5, 109.9, 84.3, 84.2, 84.1, 83.9, 82.2, 81.4, 64.4, 64.2, 39.9, 39.3, 15.5, 15.4. HRMS-ESI (*m*/*z*): calcd for C₂₀H₂₂NO₂ [M+H]⁺: 308.1651; found: 308.1642.

To a solution of 4-bromochlorobenzene (256 mg, 1.34 mmol) in THF (10 mL) at -78 °C was added n-BuLi (0.83 mL, 1.34 mmol, 1.6 M in hexane). After stirring for 0.5 h, **S3** (150 mg, 0.67 mmol, dissolved in 3 mL THF) was added. The mixture was stirred at -78 °C for 2 h. The reaction was quenched with saturated ammonium chloride and extracted with ethyl acetate (3×20 mL). The combined organic layers were dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The crude residue was purified by silica gel chromatography, eluting with ethyl acetate/petroleum ether =

1/3 to afforded the desired product 1g' as a mixture of two epimers (190mg, 84% combined yield, dr = 4:1).

The mixture (colorless oil): ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.91 – 7.89 (m, 1.23H), 7.50 – 7.45 (m, 0.51H), 7.43 – 7.35 (m, 1.77H), 7.31 – 7.26 (m, 2.22H), 7.22 (dd, *J* = 7.6, 1.3 Hz, 1.00H), 7.17 – 7.05 (m, 3.14H), 6.92 (d, *J* = 5.6 Hz, 1.00H), 6.34 (dd, *J* = 5.7, 2.6 Hz, 0.96H), 6.09 (dd, *J* = 5.7, 2.6 Hz, 0.25H), 5.85 (d, *J* = 5.7 Hz, 0.26H), 5.30 – 5.24 (m, 0.24H), 5.16 – 5.06 (m, 0.98H), 3.40 (s, 0.99H), 2.76 (s, 0.26H), 2.49 – 2.40 (m, 0.26H), 2.33 (dd, *J* = 11.9, 2.7 Hz, 0.26H), 1.71 (dd, *J* = 11.6, 2.7 Hz, 1.01H), 1.40 (dd, *J* = 11.6, 1.1 Hz, 1.02H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 149.0, 148.7, 141.5, 141.3, 140.7, 140.3, 140.2, 137.9, 134.4, 133.9, 133.4, 133.0, 132.5, 132.2, 131.1, 130.6, 128.8, 128.6, 128.5, 127.5, 124.9, 124.7, 124.2, 124.1, 116.0, 115.5, 81.2, 81.0, 80.9, 80.8, 80.8, 80.7, 42.2, 38.9. HRMS-ESI (*m/z*): calcd for C₁₉H₁₅ClNO₃ [M+H]⁺: 340.0740; found: 340.0740.

1g

The above compound was prepared by following the same procedure as that for **1a**. Purification by silica gel chromatography, eluting with ethyl acetate/petroleum ether = 1/3 to afforded the desired product **1g** as a mixture of two epimers (73% yield).

The mixture (brown oil): ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.38 – 7.32 (m, 2.29H), 7.29 – 7.23 (m, 2.78H), 7.21 – 7.14 (m, 1.11H), 7.08 (dd, J = 7.5, 1.2 Hz, 0.99H), 6.97 (d, J = 8.6 Hz, 0.08H), 6.81 (td, J = 7.4, 1.0 Hz, 1.07H), 6.73 (d, J = 7.8 Hz, 0.99H), 6.18 (d, J = 5.6 Hz, 1.00H), 6.08 (dd, J = 5.6, 2.3 Hz, 0.94H), 5.82 (dd, J = 5.7, 2.4 Hz, 0.09H), 5.42 (d, J = 5.7 Hz, 0.10H), 4.53 – 4.48 (m, 0.14H), 4.46 – 4.41 (m, 0.94H), 3.81 (s, 0.95H), 3.63 – 3.46 (m, 0.42H), 3.42 – 3.26 (m, 2.02H), 3.23 (s, 0.71H), 2.80 (dd, J = 14.2, 2.3 Hz, 0.11H), 1.93 (dd, J = 14.2, 6.0 Hz, 0.15H), 1.81 (dd, J = 14.2, 5.9 Hz, 1.01H), 1.71 (dd, J = 14.2, 3.1 Hz, 1.00H), 1.25 (t, J = 7.0 Hz, 0.62H), 1.15 (t, J = 7.0 Hz, 2.81H).

¹³**C NMR** (100 MHz, Chloroform-*d*) δ 148.7, 142.3, 141.3, 139.7, 137.9, 134.3, 134.2, 133.2, 132.8, 132.5, 129.3, 129.3, 128.0, 128.0, 127.9, 127.9, 127.8, 127.7, 127.6, 124.8, 124.4, 120.2, 119.8, 110.6, 110.0, 84.1, 83.9, 83.9, 83.7, 82.1, 81.3, 64.3, 60.4, 39.9, 39.3, 15.3, 14.1.

HRMS-ESI (*m/z*): calcd for C₂₀H₂₁ClNO₂ [M+H]⁺: 340.1104; found: 340.1124.

The above compound was prepared by following the same procedure as that for 1g'. Purification by silica gel chromatography, eluting with ethyl acetate/petroleum ether = 1/3 to afforded the desired product 1h' as a mixture of two epimers (76% combined yield, dr = 4:1).

The mixture (yellow solid): ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.86 (d, J = 8.0 Hz, 1.27H), 7.41 – 7.26 (m, 1.93H), 7.29 – 7.17 (m, 2.21H), 7.14 – 7.05 (m, 1.56H), 7.03 (d, J = 7.9 Hz, 0.30H), 6.94 (d, J = 5.7 Hz, 0.97H), 6.89 (d, J = 8.2 Hz, 0.29H), 6.83 – 6.76 (m, 1.97H), 6.60 (d, J = 7.7 Hz, 0.96H), 6.30 (dd, J = 5.4, 2.6 Hz, 0.96H), 6.07 – 6.01 (m, 0.27H), 5.88 (d, J = 5.6 Hz, 0.28H), 5.23 (s, 0.28H), 5.07 (s, 1.00H), 3.79 – 3.77 (m, 1.84H), 3.73 (s, 2.96H), 3.06 (s, 0.29H), 2.42 – 2.30 (m, 0.58H), 1.74 (d, J = 11.7 Hz, 1.02H), 1.41 (d, J = 11.6 Hz, 1.02H).

¹³**C NMR** (100 MHz, Chloroform-*d*) *δ* 159.6, 159.5, 149.1, 148.8, 144.7, 141.3, 141.1, 140.7, 140.6, 133.8, 132.7, 132.6, 132.1, 130.7, 130.2, 129.4, 129.3, 125.2, 124.5, 124.3, 124.0, 119.7, 118.6, 115.8, 115.3, 113.3, 113.3, 112.8, 111.9, 81.2, 81.2, 81.1, 81.0, 80.8, 80.7, 55.3, 55.2, 42.1, 38.9.

HRMS-ESI (*m/z*): calcd for C₂₀H₁₈NO₄ [M+H]⁺: 336.1236; found: 336.1243.

1h

The above compound was prepared by following the same procedure as that for **1a**. Purification by silica gel chromatography, eluting with ethyl acetate/petroleum ether = 1/3 to afforded the desired product **1h** as a mixture of two epimers (65% yield).

The mixture (brown oil): ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.23 – 7.09 (m, 3.94H), 7.03 (dd, J = 2.6, 1.7 Hz, 1.00H), 6.99 – 6.90 (m, 1.29H), 6.89 – 6.69 (m, 4.04H), 6.21 (dd, J = 5.6, 0.7 Hz, 1.00H), 6.08 (dd, J = 5.6, 2.2 Hz, 1.02H), 5.79 (dd, J = 5.7, 2.4 Hz, 0.23H), 5.48 (d, J = 5.7 Hz, 0.24H), 4.56 – 4.50 (m, 0.25H), 4.48 – 4.42 (m, 1.00H), 3.76 (s, 4.49H), 3.61 – 3.44 (m, 0.71H), 3.36 – 3.32 (m, 2.14H), 3.07 (s, 1.02H), 2.82 (dd, J = 14.1, 2.5 Hz, 0.28H), 1.96 (dd, J = 14.1, 6.0 Hz, 0.27H), 1.90 – 1.73 (m, 2.10H), 1.24 (t, J = 7.0 Hz, 1.01H), 1.15 (t, J = 7.0 Hz, 3.13H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 159.2, 159.1, 149.1, 148.8, 145.4, 144.3, 139.7, 138.1, 134.5, 134.1, 133.4, 132.2, 129.2, 129.1, 128.8, 128.6, 125.0, 124.5, 120.1, 119.7,

119.2, 118.6, 112.6, 112.3, 112.2, 112.0, 110.5, 109.9, 84.2, 84.1, 83.9, 82.2, 81.4, 64.3, 64.2, 55.1, 39.8, 39.4, 15.4, 15.4.

HRMS-ESI (*m/z*): calcd for C₂₁H₂₄NO₃ [M+H]⁺: 338.1756; found: 338.1748.

The above compound was prepared by following the same procedure as that for 1g[']. Purification by silica gel chromatography, eluting with ethyl acetate/petroleum ether = 1/3 to afforded the desired product 1i['] and its epimer (71% combined yield, dr = 6:1). The major (white solid): ¹H NMR (400 MHz, Chloroform-*d*) δ 7.91 (d, *J* = 8.1 Hz, 1H), 7.38 (td, *J* = 7.8, 1.4 Hz, 1H), 7.28 – 7.24 (m, 1H), 7.21 (dd, *J* = 7.6, 1.4 Hz, 1H), 7.13 (td, *J* = 7.5, 1.0 Hz, 1H), 7.03 (d, *J* = 2.3 Hz, 1H), 6.92 (d, *J* = 5.6 Hz, 1H), 6.90 – 6.86 (m, 1H), 6.34 (dd, *J* = 5.7, 2.6 Hz, 1H), 5.14 – 5.08 (m, 1H), 3.32 (s, 1H), 2.32 (s, 3H), 1.72 (dd, *J* = 11.6, 2.7 Hz, 1H), 1.42 (d, *J* = 11.6 Hz, 1H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 149.0, 141.5, 140.7, 140.4, 136.0, 134.1, 133.5, 133.0, 130.6, 128.9, 128.4, 124.9, 124.6, 124.1, 115.6, 81.2, 81.0, 80.8, 42.3, 20.2.

HRMS-ESI (m/z): calcd for C₂₀H₁₇ClNO₃ [M+H]⁺: 354.0897; found: 354.0906.

The above compound was prepared by following the same procedure as that for **1a**. Purification by silica gel chromatography, eluting with ethyl acetate/petroleum ether = 1/4 to afforded the desired product **1i** (72% yield) as a brown oil.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.30 (d, J = 2.2 Hz, 1H), 7.22 (d, J = 8.3 Hz, 1H), 7.16 (td, J = 7.7, 1.3 Hz, 1H), 7.13 – 7.07 (m, 2H), 6.81 (td, J = 7.4, 1.0 Hz, 1H), 6.73 (d, J = 7.8 Hz, 1H), 6.18 (d, J = 5.6 Hz, 1H), 6.08 (dd, J = 5.6, 2.3 Hz, 1H), 4.44 – 4.41 (m, 1H), 3.76 (s, 1H), 3.42 – 3.26 (m, 2H), 3.05 (s, 1H), 2.34 (s, 3H), 1.81 (dd, J = 14.2, 5.8 Hz, 1H), 1.73 (dd, J = 14.2, 3.1 Hz, 1H), 1.16 (t, J = 7.0 Hz, 3H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 148.8, 142.4, 138.1, 135.2, 134.4, 134.2, 133.0, 129.2, 128.5, 128.5, 125.2, 124.4, 120.2, 110.6, 84.2, 83.9, 82.2, 64.3, 39.4, 20.2, 15.4. HRMS-ESI (*m*/*z*): calcd for C₂₁H₂₃ClNO₂ [M+H]⁺: 356.1417; found: 356.1401.

The above compound was prepared by following the same procedure as that for 1a'. Purification by silica gel chromatography, eluting with ethyl acetate/petroleum ether = 1/3 to afforded the desired product 1j' as a mixture of two epimers (82% combined yield, dr = 6.5:1).

The mixture (colorless oil): ¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.82 – 7.76 (m, 1.15H), 7.54 – 7.49 (m, 0.34H), 7.43 – 7.40 (m, 0.52H), 7.35 – 7.27 (m, 3.92H), 7.18 – 7.10 (m, 1.99H), 6.96 – 6.86 (m, 2.15H), 6.83 (d, *J* = 2.6 Hz, 0.19H), 6.77 (d, *J* = 2.6 Hz, 1.00H), 6.30 (dd, *J* = 5.7, 2.6 Hz, 1.00H), 6.02 (dd, *J* = 5.7, 2.6 Hz, 0.15H), 5.86 (d, *J* = 5.8 Hz, 0.15H), 5.25 – 5.20 (m, 0.15H), 5.11 – 5.05 (m, 1.00H), 3.75 (s, 0.44H), 3.71 (s, 3.01H), 3.65 (s, 1.05H), 3.05 (s, 0.14H), 2.37 (d, *J* = 11.9 Hz, 0.15H), 2.32 (dd, *J* = 11.8, 2.6 Hz, 0.15H), 1.76 – 1.65 (m, 1.41H), 1.35 (dd, *J* = 11.6, 1.1 Hz, 1.01H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 157.0, 156.6, 149.0, 142.8, 140.6, 140.5, 135.0, 134.3, 132.7, 132.0, 128.5, 128.3, 127.9, 127.2, 125.9, 116.6, 116.3, 116.1, 115.9, 110.4, 109.4, 81.3, 81.1, 81.1, 81.0, 55.8, 55.7, 42.2, 38.9.

HRMS-ESI (*m/z*): calcd for C₂₀H₁₈NO₄ [M+H]⁺: 336.1236; found: 336.1233.

The above compound was prepared by following the same procedure as that for **1a**. Purification by silica gel chromatography, eluting with ethyl acetate/petroleum ether = 1/3 to afforded the desired product **1j** and its epimer (52% yield).

The major (brown oil): ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.38 – 7.36 (m, 2H), 7.32 – 7.20 (m, 3H), 6.77 – 6.66 (m, 3H), 6.20 (dd, J = 5.7, 2.5 Hz, 1H), 6.10 – 6.05 (m, 1H), 4.45 – 4.38 (m, 1H), 3.69 (s, 3H), 3.39 – 3.24 (m, 3H), 1.84 – 1.65 (m, 2H), 1.17 (t, J = 7.0 Hz, 3H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 154.3, 143.6, 142.4, 138.6, 136.0, 133.9, 127.9, 127.0, 126.0, 115.5, 111.6, 109.5, 84.6, 84.4, 82.1, 64.2, 55.7, 39.1, 15.4. HRMS-ESI (*m*/*z*): calcd for C₂₁H₂₄NO₃ [M+H]⁺: 338.1756; found: 338.1761.

The above compound was prepared by following the same procedure as that for 1g'. Purification by silica gel chromatography, eluting with ethyl acetate/petroleum ether = 1/3 to afford the desired product 1k' as a mixture of two epimers (82% combined yield, dr = 7:1).

The mixture (white foam): ¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.05 – 7.99 (m, 0.13H), 7.95 (d, J = 8.1 Hz, 1.08H), 7.87 – 7.85 (m, 0.30H), 7.84 – 7.80 (m, 1.11H), 7.79 – 7.70 (m, 1.99H), 7.62 (s, 0.89H), 7.59 – 7.57 (m, 0.23H), 7.56 – 7.53 (m, 0.25H), 7.52 – 7.45 (m, 2.06H), 7.42 – 7.39 (m, 1.04H), 7.33 – 7.29 (m, 0.29H), 7.26 – 7.20 (m, 2.96H), 7.18 – 7.13 (m, 0.17H), 7.12 (td, J = 7.5, 1.0 Hz, 1.05H), 6.98 (d, J = 5.6 Hz, 1.02H), 6.29 (dd, J = 5.7, 2.5 Hz, 1.00H), 5.97 (dd, J = 5.8, 2.5 Hz, 0.13H), 5.86 (d, J = 5.7 Hz, 0.14H), 5.24 – 5.20 (m, 0.15H), 5.06 – 5.01 (m, 1.01H), 3.72 (s, 1.02H), 2.96 (s, 0.13H), 2.51 – 2.37 (m, 0.26H), 1.71 (dd, J = 11.7, 2.7 Hz, 1.09H), 1.37 (d, J = 11.6 Hz, 1.10H).

¹³**C NMR** (100 MHz, Chloroform-*d*) δ 149.1, 148.9, 141.5, 140.8, 140.7, 140.5, 140.4, 136.9, 134.0, 133.0, 132.9, 132.8, 132.7, 132.2, 130.9, 130.4, 128.4, 128.3, 128.2, 128.1, 127.6, 127.5, 126.6, 126.6, 126.5, 126.4, 126.4, 125.2, 124.9, 124.8, 124.6, 124.4, 124.1, 124.1, 116.0, 115.5, 81.4, 81.2, 81.1, 80.9, 80.9, 42.2, 39.1.

HRMS-ESI (*m/z*): calcd for C₂₃H₁₈NO₃ [M+H]⁺: 356.1287; found: 356.1287.

The above compound was prepared by following the same procedure as that for **1a**. Purification by silica gel chromatography, eluting with ethyl acetate/petroleum ether = 1/3 to afford the desired product **1k** as a mixture of two epimers (58% yield).

The mixture (brown oil): ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.98 (s, 0.99H), 7.86 – 7.77 (m, 2.72H), 7.77 – 7.71 (m, 1.27H), 7.52 – 7.40 (m, 3.73H), 7.25 – 7.12 (m, 2.39H), 6.88 – 6.75 (m, 2.40H), 6.27 (d, *J* = 5.6 Hz, 1.00H), 6.09 (dd, *J* = 5.6, 2.3 Hz, 0.99H), 5.76 (dd, *J* = 5.7, 2.3 Hz, 0.18H), 5.50 (d, *J* = 5.6 Hz, 0.17H), 4.57 – 4.50 (m, 0.18H), 4.42 – 4.41 (m, 1.00H), 4.27 (s, 0.18H), 3.85 (s, 1.06H), 3.61 – 3.46 (m, 0.49H), 3.34 – 3.17 (m, 2.96H), 2.93 (dd, *J* = 14.2, 2.4 Hz, 0.19H), 1.99 (dd, *J* = 14.2, 6.0 Hz, 0.20H),

1.84 (dd, *J* = 14.2, 5.7 Hz, 1.00H), 1.78 (dd, *J* = 14.2, 3.3 Hz, 1.04H), 1.26 (t, *J* = 7.0 Hz, 0.82H), 1.10 (t, *J* = 7.0 Hz, 3.00H).

¹³**C NMR** (100 MHz, Chloroform-*d*) δ 149.2, 148.9, 141.6, 140.4, 139.9, 138.3, 134.6, 133.9, 133.6, 133.0, 132.9, 132.8, 132.6, 132.3, 129.3, 129.2, 128.6, 128.4, 128.4, 128.0, 127.9, 127.5, 127.5, 127.4, 127.3, 127.2, 126.3, 126.1, 126.1, 125.9, 125.8, 125.7, 125.2, 125.1, 125.0, 124.6, 124.1, 123.3, 120.6, 120.1, 119.8, 110.5, 110.0, 84.4, 84.2, 84.0, 82.2, 81.4, 64.3, 64.2, 40.1, 39.4, 15.4, 15.3.

HRMS-ESI (*m/z*): calcd for C₂₄H₂₄NO₂ [M+H]⁺: 358.1807; found: 358.1797.

The above compound was prepared by following the same procedure as that for 1g'. Purification by silica gel chromatography, eluting with ethyl acetate/petroleum ether = 1/2 to afford the desired product 11' and its epimer (82% combined yield, dr = 5:1). The major (colorless oil): ¹H NMR (400 MHz, Chloroform-*d*) δ 8.65 – 8.63 (m, 1H), 7.98 (d, J = 8.1 Hz, 1H), 7.78 (td, J = 7.7, 1.8 Hz, 1H), 7.42 – 7.41 (m, 1H), 7.40 – 7.28 (m, 2H), 7.19 (dd, J = 7.8, 1.3 Hz, 1H), 7.13 (td, J = 7.4, 1.1 Hz, 1H), 6.16 – 7.14 (m, 1H), 5.90 – 5.88 (m, 1H), 5.74 (s, 1H), 5.28 – 5.27 (m, 1H), 2.46 (d, J = 11.8 Hz, 1H), 2.30 (dd, J = 11.8, 2.7 Hz, 1H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 158.1, 148.7, 148.5, 142.2, 139.6, 137.1, 133.2, 131.1, 130.9, 125.5, 124.2, 123.5, 122.3, 115.8, 80.7, 80.6, 80.3, 39.5.

HRMS-ESI (m/z): calcd for C₁₈H₁₅N₂O₃ [M+H]⁺: 307.1083; found: 307.1082.

The above compound was prepared by following the same procedure as that for **1a**. Purification by silica gel chromatography, eluting with ethyl acetate/petroleum ether = 1/3 to afford the desired product **1l** (80% yield) as a yellow oil.

¹**H** NMR (400 MHz, Chloroform-*d*) δ 8.55 – 8.50 (m, 1H), 7.56 (td, J = 7.7, 1.8 Hz, 1H), 7.21 – 7.10 (m, 3H), 7.07 (dd, J = 7.5, 1.2 Hz, 1H), 6.78 (t, J = 7.4 Hz, 1H), 6.69 (d, J = 7.8 Hz, 1H), 6.38 – 6.30 (m, 2H), 5.97 (dd, J = 5.7, 1.8 Hz, 1H), 4.61 – 4.58 (m, 1H), 3.71 (s, 1H), 3.53 – 3.32 (m, 2H), 1.90 (dd, J = 13.7, 6.5 Hz, 1H), 1.41 (dd, J = 13.7, 5.8 Hz, 1H), 1.14 (t, J = 7.0 Hz, 3H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 160.3, 149.1, 146.7, 137.3, 137.0, 133.2, 132.6, 129.2, 124.5, 122.5, 121.8, 120.0, 110.4, 83.3, 83.0, 82.6, 64.1, 39.3, 15.4.

HRMS-ESI (m/z): calcd for C₁₉H₂₁N₂O₂ [M+H]⁺: 309.1603; found: 309.1595.

The above compound was prepared by following the same procedure as that for 1g'. Purification by silica gel chromatography, eluting with ethyl acetate/petroleum ether = 1/3 to afford the desired product 1m' as a mixture of two epimers (88% combined yield, dr = 5:1).

The mixture (white solid): ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.96 – 7.86 (m, 1.18H), 7.53 – 7.48 (m, 0.41H), 7.43 – 7.30 (m, 3.37H), 7.15 – 7.11 (m, 1.25H), 7.04 (t, J = 1.2 Hz, 0.94H), 6.88 (d, J = 5.7 Hz, 1.00H), 6.41 – 6.40 (m, 0.20H), 6.37 (dd, J = 5.7, 2.6 Hz, 0.99H), 6.23 – 6.22 (m, 0.97H), 6.19 (dd, J = 5.7, 2.6 Hz, 0.27H), 6.07 (d, J = 5.6 Hz, 0.23H), 5.34 – 2.31 (m, 0.21H), 5.22 – 5.20 (m, 1.00H), 3.02 (s, 0.97H), 2.51 (s, 0.20H), 2.45 (d, J = 11.8 Hz, 0.23H), 2.38 (dd, J = 11.8, 2.6 Hz, 0.24H), 2.06 (dd, J = 11.5, 2.7 Hz, 1.03H), 1.73 (dd, J = 11.6, 1.1 Hz, 1.04H).

¹³**C NMR** (100 MHz, Chloroform-*d*) δ 149.0, 148.7, 143.8, 143.8, 141.0, 140.8, 140.7, 140.4, 140.0, 139.9, 133.0, 132.9, 132.5, 132.2, 131.1, 130.4, 129.4, 125.5, 124.4, 124.2, 124.0, 115.8, 115.4, 109.7, 108.9, 81.2, 81.2, 80.7, 80.5, 77.3, 77.2, 42.0, 39.0. **HRMS-ESI** (*m/z*): calcd for C₁₇H₁₄NO₄ [M+H]⁺: 296.0923; found: 296.0915.

The above compound was prepared by following the same procedure as that for 1a. Purification by silica gel chromatography, eluting with ethyl acetate/petroleum ether = 1/3 to afford the desired product 1m and its epimer (60% yield).

The major (brown oil): ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.33 – 7.29 (m, 2H), 7.20 (dd, J = 7.4, 1.2 Hz, 1H), 7.13 (td, J = 7.7, 1.3 Hz, 1H), 6.81 (td, J = 7.5, 1.0 Hz, 1H), 6.69 (d, J = 7.8 Hz, 1H), 6.33 – 6.29 (m, 1H), 6.16 (d, J = 5.7 Hz, 1H), 6.10 (dd, J = 5.7, 2.3 Hz, 1H), 4.49 – 4.48 (m, 1H), 3.76 (s, 1H), 3.43 (q, J = 7.0 Hz, 2H), 3.18 (s, 1H), 2.05 (dd, J = 14.2, 2.8 Hz, 1H), 1.92 (dd, J = 14.1, 5.9 Hz, 1H), 1.18 (t, J = 7.0 Hz, 3H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 148.3, 142.9, 139.1, 138.1, 134.2, 133.7, 129.9, 129.1, 124.1, 120.0, 110.5, 109.6, 83.8, 82.1, 80.8, 64.3, 39.5, 15.4.

HRMS-ESI (*m/z*): calcd for C₁₈H₂₀NO₃ [M+H]⁺: 298.1443; found: 298.1441.

Condition 1: To a solution of **1a** (0.1 mmol) in CH₃CN (1 mL) at 0 °C was added trifluoroacetic acid (8 μ L, 0.1 mmol). The reaction was stirred for 12 h at 0 °C. The mixture was concentrated under reduced pressure and purified by silica gel chromatography, eluting with ethyl acetate/petroleum ether = 1/10 to afford the desired product **2a** and **3a** (78% yield, **2a**:**3a** = 3:1).

Condition 2: To a solution of **1a** (0.1 mmol) in 1,2-dichloroethane (1 mL) at RT was added **4c** (20 mg, 0.02 mmol). The reaction was stirred for 12 h at RT. The mixture was concentrated under reduced pressure and purified by silica gel chromatography, eluting with ethyl acetate/petroleum ether = 1/10 to afford the desired product **2a** and **3a** (80% yield, **2a**:**3a** < 1:10).

2a (white solid): ¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.12 (d, J = 7.9 Hz, 1H), 8.08 (s, 1H), 7.48 – 7.39 (m, 2H), 7.37 – 7.32 (m, 1H), 7.31 – 7.23 (m, 2H), 7.03 (d, J = 7.1 Hz, 1H), 3.29 – 3.18 (m, 2H), 1.84 (tt, J = 7.8, 6.6 Hz, 2H), 1.59 – 1.54 (m, 2H), 1.01 (t, J = 7.4 Hz, 3H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 139.8, 139.4, 138.4, 125.6, 125.1, 123.3, 122.6, 121.2, 120.1, 119.4, 110.4, 108.1, 34.2, 31.9, 22.9, 14.1.

HRMS-ESI (*m/z*): calcd for C₁₆H₁₈N [M+H]⁺: 224.1439; found: 224.1432.

3a (white solid): ¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.08 (d, J = 7.8 Hz, 1H), 7.99 (s, 1H), 7.95 (d, J = 7.6 Hz, 1H), 7.47 (d, J = 8.0 Hz, 1H), 7.45 – 7.39 (m, 1H), 7.27 – 7.17 (m, 3H), 2.91 (t, J = 7.7 Hz, 2H), 1.83 – 1.74 (m, 2H), 1.54 – 1.41 (m, 2H), 0.99 (t, J = 7.3 Hz, 3H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 139.3, 138.3, 125.6, 125.4, 124.6, 123.8, 123.0, 120.4, 119.5, 119.4, 117.9, 110.6, 31.7, 31.2, 22.7, 14.0.

HRMS-ESI (*m/z*): calcd for C₁₆H₁₈N [M+H]⁺: 224.1439; found: 224.1433.

Condition 1: Purification by silica gel chromatography, eluting with ethyl acetate/petroleum ether = 1/10 to afford the desired product **2b** and **3b** (85% yield, **2b**:**3b** = 3:1).

Condition 2: Purification by silica gel chromatography, eluting with ethyl acetate/petroleum ether = 1/10 to afford the desired product **2b** and **3b** (82% yield, **2b**:**3b** < 1:10).

2b (white solid): ¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.16 (d, J = 7.9 Hz, 1H), 8.08 (s, 1H), 7.47 – 7.42 (m, 2H), 7.40 – 7.34 (m, 1H), 7.33 – 7.23 (m, 2H), 7.07 (d, J = 7.2 Hz, 1H), 3.29 (q, J = 7.5 Hz, 2H), 1.48 (t, J = 7.5 Hz, 3H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 139.7, 139.5, 125.8, 125.1, 123.3, 122.7, 121.1, 119.4, 119.0, 110.4, 108.2, 27.3, 14.1.

HRMS-ESI (*m/z*): calcd for C₁₄H₁₄N [M+H]⁺: 196.1126; found: 196.1119.

3b (white solid): ¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.08 (d, J = 7.8 Hz, 1H), 7.99 (s, 1H), 7.95 (d, J = 7.7 Hz, 1H), 7.47 (d, J = 8.1 Hz, 1H), 7.42 (t, J = 7.5 Hz, 1H), 7.30 – 7.15 (m, 3H), 2.95 (q, J = 7.6 Hz, 2H), 1.43 (t, J = 7.6 Hz, 3H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 139.4, 138.2, 125.9, 125.6, 124.4, 123.9, 123.0, 120.4, 119.7, 119.4, 117.9, 110.6, 24.2, 13.8.

HRMS-ESI (*m/z*): calcd for C₁₄H₁₄N [M+H]⁺: 196.1126; found: 196.1124.

Condition 1: Purification by silica gel chromatography, eluting with ethyl acetate/petroleum ether = 1/10 to afford the desired product **2c** and **3c** (75% yield, **2c**:**3c** = 2.5:1).

Condition 2: The reaction was stirred for 12 h at 50 °C. Purification by silica gel chromatography, eluting with ethyl acetate/petroleum ether = 1/10 to afford the desired product **2c** and **3c** (60% yield, **2c**:**3c** < 1:10).

2c (white solid): ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.91 – 7.85 (m, 2H), 7.54 (d, *J* = 2.4 Hz, 1H), 7.36 (d, *J* = 8.7 Hz, 1H), 7.22 (d, *J* = 7.2 Hz, 1H), 7.16 (t, *J* = 7.5 Hz, 1H), 7.06 (dd, *J* = 8.9, 2.5 Hz, 1H), 3.93 (s, 3H), 2.86 (t, *J* = 7.7 Hz, 2H), 1.82 (h, *J* = 7.4 Hz, 2H), 1.04 (t, *J* = 7.3 Hz, 3H).

¹³**C NMR** (100 MHz, Chloroform-*d*) δ 153.8, 139.2, 134.2, 125.4, 124.6, 124.2, 123.0, 119.2, 117.9, 114.9, 111.3, 103.1, 56.0, 33.5, 22.7, 14.2.

HRMS-ESI (*m/z*): calcd for C₁₆H₁₈NO [M+H]⁺: 240.1388; found: 240.1383.

3c (white solid): ¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.96 (s, 1H), 7.62 (d, J = 2.4 Hz, 1H), 7.33 (dd, J = 13.8, 8.1 Hz, 2H), 7.28 – 7.24 (m, 1H), 7.08 (dd, J = 8.9, 2.4 Hz, 1H), 6.99 (d, J = 7.1 Hz, 1H), 3.94 (s, 3H), 3.23 – 3.14 (m, 2H), 1.89 (h, J = 7.4 Hz, 2H), 1.12 (t, J = 7.3 Hz, 3H).

¹³**C NMR** (100 MHz, Chloroform-*d*) δ 153.6, 140.7, 138.1, 134.4, 125.6, 123.7, 121.2, 119.8, 113.6, 110.8, 108.4, 106.4, 56.1, 36.5, 23.0, 14.3.

HRMS-ESI (m/z): calcd for C₁₆H₁₈NO [M+H]⁺: 240.1388; found: 240.138.

Condition 1: Purification by silica gel chromatography, eluting with ethyl acetate/petroleum ether = 1/4 to afford the desired product **2d** and **3d** (68% yield, **2d**:**3d** = 3.5:1).

Condition 2: The reaction was stirred for 12 h at 50 °C. Purification by silica gel chromatography, eluting with ethyl acetate/petroleum ether = 1/4 to afford the desired product 2d and 3d (61% yield, 2d:3d < 1:10).

2d (yellow solid): ¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.10 (s, 1H), 7.99 – 7.93 (m, 2H), 7.70 (d, J = 1.4 Hz, 1H), 7.55 (td, J = 7.7, 1.5 Hz, 1H), 7.49 (td, J = 7.6, 1.4 Hz, 1H), 7.45 – 7.40 (m, 2H), 7.33 – 7.28 (m, 2H), 7.23 – 7.19 (m, 1H), 6.97 – 6.95 (m, 1H), 5.43 (t, J = 5.8 Hz, 1H), 3.64 (q, J = 6.7 Hz, 2H), 3.48 (t, J = 7.1 Hz, 2H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 147.5, 140.0, 139.5, 133.5, 133.2, 132.5, 132.4, 130.9, 126.0, 125.6, 125.2, 122.5, 122.1, 121.0, 119.8, 110.7, 109.6, 43.2, 34.3. **HRMS-ESI** (*m*/*z*): calcd for C₂₀H₁₈N₃O₄S [M+H]⁺: 396.1018; found: 396.1014.

3d (yellow solid): ¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.40 (s, 1H), 8.01 (d, J = 7.8 Hz, 1H), 7.97 – 7.88 (m, 2H), 7.68 – 7.62 (m, 1H), 7.56 – 7.49 (m, 2H), 7.49 – 7.39 (m, 2H), 7.26 – 7.21 (m, 1H), 7.18 – 7.09 (m, 2H), 5.61 (t, J = 6.0 Hz, 1H), 3.55 (q, J = 6.8 Hz, 2H), 3.20 (t, J = 7.1 Hz, 2H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 147.5, 139.5, 138.5, 133.5, 133.3, 132.7, 130.3, 126.0, 126.0, 125.2, 123.5, 120.3, 119.7, 119.6, 119.6, 119.2, 110.9, 44.0, 32.7. HRMS-ESI (*m*/*z*): calcd for C₂₀H₁₈N₃O₄S [M+H]⁺: 396.1018; found: 396.1015.

Condition 1: Purification by silica gel chromatography, eluting with ethyl acetate/petroleum ether = 1/20 to afford the desired product **2e** and **3e** (70% yield, **2e**:**3e** = 2.7:1).

Condition 2: The reaction was stirred for 12 h at 50 °C. Purification by silica gel chromatography, eluting with ethyl acetate/petroleum ether = 1/20 to afford the desired product **2e** and **3e** (60% yield, **2e**:**3e** < 1:10).

2e (colorless oil): ¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.16 – 8.07 (m, 2H), 7.46 – 7.39 (m, 2H), 7.43 – 7.25 (m, 7H), 7.29 – 7.19 (m, 1H), 7.08 (d, *J* = 1.3 Hz, 1H), 4.60 (s, 2H), 3.96 – 3.91 (m, 2H), 3.59 (t, *J* = 7.7 Hz, 2H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 139.8, 139.5, 138.4, 133.8, 128.4, 127.7, 127.6, 125.7, 125.3, 123.1, 122.4, 121.6, 120.8, 119.6, 110.5, 108.8, 73.1, 69.8, 34.8. HRMS-ESI (*m/z*): calcd for C₂₁H₂₀NO [M+H]⁺: 302.1545; found: 302.1543. **3e** (colorless oil): ¹H NMR (400 MHz, Chloroform-*d*) δ 9.29 (s, 1H), 8.13 – 8.06 (m, 1H), 8.01 (dd, J = 7.5, 1.3 Hz, 1H), 7.47 – 7.31 (m, 6H), 7.27 – 7.15 (m, 4H), 4.57 (s, 2H), 4.09 – 3.85 (m, 2H), 3.27 (t, J = 5.4 Hz, 2H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 139.7, 137.7, 128.6, 128.1, 128.0, 126.5, 125.5

123.6, 123.4, 123.1, 120.2, 119.1, 119.0, 118.7, 110.9, 73.7, 72.1, 34.1.

HRMS-ESI (m/z): calcd for C₂₁H₂₀NO [M+H]⁺: 302.1545; found: 302.1543.

Condition 1: Purification by silica gel chromatography, eluting with ethyl acetate/petroleum ether = 1/10 to afford the desired product **2f** (87% yield) as a white solid.

¹**H** NMR (400 MHz, Chloroform-*d*) δ 8.06 (s, 1H), 7.71 – 7.65 (m, 2H), 7.61 – 7.46 (m, 5H), 7.43 – 7.38 (m, 3H), 7.16 (dd, J = 7.2, 1.1 Hz, 1H), 7.06 – 7.00 (m, 1H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 141.2, 139.8, 139.7, 137.7, 129.2, 128.4, 127.5, 125.6, 125.6, 122.9, 122.4, 121.1, 120.7, 119.0, 110.4, 109.5.

HRMS-ESI (*m/z*): calcd for C₁₈H₁₄N [M+H]⁺: 244.1126; found: 244.1121.

Condition 1: Purification by silica gel chromatography, eluting with ethyl acetate/petroleum ether = 1/10 to afford the desired product **2g** (82% yield) as a white solid.

¹**H** NMR (400 MHz, Chloroform-*d*) δ 8.16 (s, 1H), 7.60 – 7.55 (m, 2H), 7.55 – 7.47 (m, 3H), 7.48 – 7.41 (m, 3H), 7.38 – 7.36 (m, 1H), 7.08 (dd, J = 6.1, 2.2 Hz, 1H), 7.05 – 7.01 (m, 1H).

¹³**C NMR** (100 MHz, Chloroform-*d*) δ 139.8, 139.7, 139.6, 136.3, 133.4, 130.5, 128.6, 125.8, 125.6, 122.6, 122.2, 121.0, 120.6, 119.1, 110.5, 109.8.

HRMS-ESI (*m/z*): calcd for C₁₈H₁₃ClN [M+H]⁺: 278.0737; found: 278.0736.

Condition 1: Purification by silica gel chromatography, eluting with ethyl acetate/petroleum ether = 1/10 to afford the desired product **2h** (88% yield) as a colorless oil.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.12 (s, 1H), 7.57 (dt, J = 8.1, 1.0 Hz, 1H), 7.50 – 7.34 (m, 5H), 7.28 – 7.23 (m, 1H), 7.21 – 7.20 (m, 1H), 7.15 (dd, J = 7.1, 1.2 Hz, 1H), 7.09 – 6.99 (m, 2H), 3.87 (s, 3H).

¹³**C NMR** (100 MHz, Chloroform-*d*) δ 159.5, 142.6, 139.7, 139.6, 137.5, 129.4, 125.7, 125.5, 122.8, 122.5, 121.6, 120.9, 120.6, 119.0, 114.3, 113.5, 110.4, 109.6, 55.3. **HRMS-ESI** (*m*/*z*): calcd for C₁₉H₁₆NO [M+H]⁺: 274.1232; found: 274.1231.

Condition 1: Purification by silica gel chromatography, eluting with ethyl acetate/petroleum ether = 1/10 to afford the desired product **2i** (78% yield) as a white solid.

¹**H** NMR (400 MHz, Chloroform-*d*) δ 8.13 (s, 1H), 7.55 – 7.48 (m, 3H), 7.48 – 7.34 (m, 5H), 7.09 (dd, J = 6.7, 1.5 Hz, 1H), 7.05 – 7.01 (m, 1H), 2.49 (s, 3H).

¹³**C NMR** (100 MHz, Chloroform-*d*) δ 139.8, 139.8, 139.7, 136.6, 136.0, 133.6, 131.7, 129.0, 127.9, 125.8, 125.6, 122.8, 122.3, 121.0, 120.6, 119.2, 110.5, 109.7, 20.1.

HRMS-ESI (*m*/*z*): calcd for C₁₉H₁₅ClN [M+H]⁺: 292.0893; found: 292.0901.

Condition 1: Purification by silica gel chromatography, eluting with ethyl acetate/petroleum ether = 1/10 to afford the desired product **2j** (89% yield) as a white solid.

¹**H** NMR (400 MHz, Chloroform-*d*) δ 8.00 (s, 1H), 7.65 (d, J = 7.4 Hz, 2H), 7.59 – 7.31 (m, 6H), 7.16 – 6.90 (m, 3H), 3.64 (s, 3H).

¹³**C NMR** (100 MHz, Chloroform-*d*) δ 153.1, 141.0, 140.5, 137.6, 134.5, 129.3, 128.2, 127.5, 125.5, 123.3, 120.7, 120.5, 114.8, 111.0, 109.7, 105.2, 55.5.

HRMS-ESI (*m/z*): calcd for C₁₉H₁₆NO [M+H]⁺: 274.1232; found: 274.1228.

Condition 1: Purification by silica gel chromatography, eluting with ethyl acetate/petroleum ether = 1/10 to afford the desired product **2k** (75% yield) as a yellow soil.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.16 – 8.09 (m, 2H), 8.06 – 7.98 (m, 2H), 7.97 – 7.92 (m, 1H), 7.82 (dd, *J* = 8.3, 1.7 Hz, 1H), 7.62 – 7.56 (m, 2H), 7.52 (dd, *J* = 8.1, 6.5 Hz, 2H), 7.48 – 7.34 (m, 3H), 7.27 – 7.22 (m, 1H), 6.96 (ddd, *J* = 8.1, 6.9, 1.2 Hz, 1H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 139.9, 139.7, 138.8, 137.6, 133.5, 132.8, 128.2, 127.8, 127.8, 127.7, 126.2, 126.0, 125.7, 122.9, 122.5, 121.4, 120.9, 119.1, 110.4, 109.6. **HRMS-ESI** (*m*/*z*): calcd for C₂₂H₁₆N [M+H]⁺: 294.1283; found: 294.1283.

Condition 1: Purification by silica gel chromatography, eluting with ethyl acetate/petroleum ether = 1/3 to afford the desired product **2l** (89% yield) as a yellow solid.

¹**H** NMR (400 MHz, Chloroform-*d*) δ 8.86 – 8.54 (m, 1H), 8.54 (s, 1H), 7.87 (td, J = 7.7, 1.9 Hz, 1H), 7.73 (dt, J = 7.8, 1.2 Hz, 1H), 7.63 – 7.57 (m, 1H), 7.48 – 7.27 (m, 6H), 7.04 – 7.00 (m, 1H).

¹³**C NMR** (100 MHz, Chloroform-*d*) δ 159.5, 149.4, 140.1, 139.9, 136.5, 136.0, 125.7, 125.5, 124.2, 122.7, 122.4, 122.4, 121.0, 120.4, 118.9, 110.8, 110.5.

HRMS-ESI (m/z): calcd for C₁₇H₁₃N₂ [M+H]⁺: 245.1079; found: 245.1077.

Condition 1: Purification by silica gel chromatography, eluting with ethyl acetate/petroleum ether = 1/5 to afford the desired product **2m** (64% yield) as a brown oil.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.12 (s, 1H), 7.96 (d, J = 8.0 Hz, 1H), 7.72 (s, 1H), 7.64 (t, J = 1.7 Hz, 1H), 7.45 – 7.36 (m, 4H), 7.17 – 7.08 (m, 2H), 6.79 (dd, J = 1.8, 0.9 Hz, 1H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 142.8, 140.0, 139.9, 139.6, 128.1, 125.7, 125.6, 125.4, 123.0, 122.5, 121.4, 121.3, 119.2, 112.2, 110.4, 109.8.

HRMS-ESI (*m/z*): calcd for C₁₆H₁₂NO [M+H]⁺: 234.0919; found: 234.0922.

The corresponding compound 7 (0.3 mmol) was dissolved in pyridine (3.0 mL), followed by the addition of PDC (1.5 mmol). Then, the reaction mixture was stirred for 10h at 100°C. After completion, the reaction solution was concentrated under reduced pressure. The crude products were purified by silica gel chromatography, eluting with ethyl acetate/petroleum ether = 1/5 to afford the desired product **8** (55% yield) as a yellow solid.

¹**H NMR** (400 MHz, CDCl₃) δ 8.31 (s, 1H), 7.77 (d, J = 7.7 Hz, 1H), 7.72 (t, J = 7.8 Hz, 1H), 7.21 (dd, J = 15.1, 6.7 Hz, 2H), 6.48 (d, J = 5.5 Hz, 1H), 2.90 (d, J = 17.8 Hz, 1H), 2.70 (d, J = 17.8 Hz, 1H), 1.50 (s, 9H).

¹³**C NMR** (100 MHz, CDCl₃) *δ* 205.1, 196.0, 158.4, 150.1, 138.1, 136.1, 124.8, 123.7, 121.8, 117.1, 83.8, 74.8, 43.3, 28.1.

HRMS-ESI (*m/z*): calcd for C₁₇H₁₆NO₄ [M-H]⁺: 298.1079; found: 298.1083.

The above compound 7a was prepared by following the same procedure as that for 8a. Purification by silica gel chromatography, eluting with ethyl acetate/petroleum ether = 1/5 to afford the desired product 8a (51% yield) as a white solid. ¹**H** NMR (400 MHz, CDCl₃) δ 8.30 (s, 1H), 7.39 – 7.29 (m, 1H), 7.21 (d, *J* = 5.9 Hz, 2H), 6.50 (d, *J* = 5.5 Hz, 1H), 3.87 (s, 3H), 2.93 (d, *J* = 17.0 Hz, 1H), 2.73 (d, *J* = 17.8 Hz, 1H), 1.52 (s, 9H).

¹³**C NMR** (100 MHz, CDCl₃) *δ* 205.1, 195.9, 158.5, 156.3, 150.0, 136.0, 127.4, 122.5, 118.3, 105.1, 83.5, 75.1, 55.8, 43.3, 28.1.

HRMS-ESI (*m/z*): calcd for C₁₈H₂₀NO₅ [M+H]⁺: 330.1341; found: 330.1346.

To a solution of **8** (90 mg, 0.30 mmol) in THF (3.0 mL) at -78°C under N₂ were added LiHMDS (0.35mL, 0.45 mmol, 1.3 M in THF), and then PhLi (0.23 mL, 0.45 mmol, 2.0 M in dibutyl ether). The mixture was stirred for 2 h. After completion, the reaction was quenched with saturated NH₄Cl solution and extracted with ethyl acetate (3×20 mL). The combined organic layers were dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The crude residue was purified by silica gel chromatography, eluting with ethyl acetate/dichloromethane/petroleum ether = 1/3/2 to yield the desired product **5a** (70mg, 80% yield) as a yellow oil. Only one epimer was generated. The stereochemistry should be analogous to that of **1a**.

¹**H NMR** (400 MHz, CDCl₃) δ 8.02 (d, J = 6.8 Hz, 1H), 7.40 (t, J = 7.8 Hz, 1H), 7.32 (s, 5H), 7.21 (d, J = 7.4 Hz, 1H), 7.11 (t, J = 7.4 Hz, 1H), 6.79 (d, J = 5.7 Hz, 1H), 5.78 (d, J = 5.7 Hz, 1H), 3.29 (d, J = 18.7 Hz, 1H), 3.20 (s, 1H), 2.91 (d, J = 18.7 Hz, 1H), 1.46 (s, 9H).

¹³**C NMR** (100 MHz, CDCl₃) *δ* 207.4, 160.7, 151.9, 142.7, 139.5, 133.1, 132.2, 130.5, 128.3, 126.9, 124.9, 123.7, 116.3, 83.6, 82.9, 80.2, 39.9, 28.3.

HRMS-ESI (*m*/*z*): calcd for C₂₃H₂₂NO₄ [M-H]⁺: 376.1549; found: 376.1556.

To a solution of **8** (90 mg, 0.30 mmol) in THF (3.0 mL) at -78°C under N₂ was added LiHMDS (0.35mL, 0.45 mmol, 1.3 M in THF). The reaction was stirred for 1 h, and then 3-OMePhLi [made by the treatment of 1-bromo-3-methoxybenzene (0.45 mmol) in THF with n-BuLi (0.4 mmol) at -78°C] was added. The mixture was stirred at -78 °C for 2 h. The reaction was quenched with saturated ammonium chloride and extracted

with ethyl acetate ($3 \times 20 \text{ mL}$). The combined organic layers were dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The crude residue was purified by silica gel chromatography, eluting with ethyl acetate/dichloromethane/petroleum ether = 1/3/2 to afforded the desired product **5b** (86mg, 75% yield) as a colorless oil.

¹**H NMR** (400 MHz, CDCl₃) δ 8.05 (d, J = 7.0 Hz, 1H), 7.43 (t, J = 7.8 Hz, 1H), 7.25 (dd, J = 10.3, 5.3 Hz, 2H), 7.13 (t, J = 7.5 Hz, 1H), 6.94 (s, 1H), 6.91 – 6.79 (m, 3H), 5.84 (d, J = 5.6 Hz, 1H), 3.79 (s, 3H), 3.32 (d, J = 18.7 Hz, 1H), 2.97 (d, J = 18.7 Hz, 1H), 2.74 (s, 1H), 1.49 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 207.2, 160.2, 159.5, 151.8, 142.7, 141.0, 132.9, 132.3, 130.6, 129.3, 124.8, 123.7, 119.4, 116.4, 113.4, 113.1, 83.6, 82.9, 80.2, 55.3, 39.7, 28.3. **HRMS-ESI** (*m/z*): calcd for C₂₄H₂₅NO₅ [M-H]⁺: 406.1654; found: 406.1666.

5c

The above compound was prepared by following the same procedure as that for **5b**. Purification by silica gel chromatography (ethyl acetate/ dichloromethane /petroleum ether = 1/3/2) afforded **5c** (70% yield) as a yellow oil.

¹**H NMR** (400 MHz, CDCl₃) δ 8.01 (d, J = 7.0 Hz, 1H), 7.40 (dd, J = 11.5, 4.1 Hz, 1H), 7.29 (s, 1H), 7.12 (t, J = 7.4 Hz, 1H), 6.84 (d, J = 5.7 Hz, 1H), 6.50 (s, 2H), 5.84 (d, J = 5.7 Hz, 1H), 3.82 (s, 3H), 3.74 (s, 6H), 3.30 (d, J = 18.6 Hz, 1H), 3.21 (s, 1H), 2.91 (d, J = 18.6 Hz, 1H), 1.46 (s, 9H).

¹³**C** NMR (100 MHz, CDCl₃) δ 207.3, 160.6, 152.9, 151.8, 142.6, 137.8, 135.2, 132.8, 132.1, 130.6, 124.8, 123.7, 116.4, 104.4, 83.8, 82.9, 80.1, 60.8, 56.2, 40.0, 28.3. HRMS-ESI (*m*/*z*): calcd for C₂₆H₂₈NO₇ [M-H]⁺: 466.1866; found: 466.1873.

5d

The above compound was prepared by following the same procedure as that for **5b**. Purification by silica gel chromatography (ethyl acetate/ dichloromethane /petroleum ether = 1/3/2) afforded **5d** (70% yield) as a yellow oil.

¹**H NMR** (400 MHz, CDCl₃) δ 8.03 (d, J = 7.0 Hz, 1H), 7.46 – 7.39 (m, 1H), 7.28 (t, J = 4.2 Hz, 2H), 7.20 (dd, J = 7.4, 1.1 Hz, 1H), 7.13 (td, J = 7.4, 0.7 Hz, 1H), 7.04 (d, J = 7.2 Hz, 1H), 6.81 (d, J = 5.7 Hz, 1H), 5.85 (d, J = 5.7 Hz, 1H), 3.25 (d, J = 18.7 Hz, 1H), 2.98 (s, 1H), 2.94 (d, J = 18.7 Hz, 1H), 2.36 (s, 3H), 1.48 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 207.1, 160.3, 151.8, 142.6, 138.0, 136.1, 134.5, 132.8, 132.5, 130.8, 129.4, 128.8, 125.9, 124.7, 123.8, 116.4, 83.3, 83.0, 80.2, 39.9, 28.3, 20.3. **HRMS-ESI** (*m/z*): calcd for C₂₄H₂₃ClNO₄ [M-H]⁺: 424.1316; found: 424.1324.

The above compound was prepared by following the same procedure as that for **5b**. Purification by silica gel chromatography (ethyl acetate/ dichloromethane /petroleum ether = 1/3/2) afforded **5e** (43% yield) as a yellow oil.

¹**H NMR** (400 MHz, CDCl₃) δ 8.04 (d, J = 5.7 Hz, 1H), 7.41 (s, 1H), 7.26 (d, J = 3.0 Hz, 2H), 7.18 – 7.06 (m, 3H), 6.75 – 6.67 (m, 1H), 5.79 – 5.65 (m, 1H), 3.32 (d, J = 18.8 Hz, 1H), 2.97 (d, J = 18.7 Hz, 1H), 2.48 (s, 1H), 1.47 (s, 9H), 1.26 (s, 18H). ¹³**C NMR** (100 MHz, CDCl₃) δ 205.4, 167.0, 151.8, 140.2, 135.9, 134.8, 128.5, 127.6, 124.8, 123.5, 121.4, 120.7, 120.6, 113.5, 85.4, 73.7, 50.0, 35.5, 31.5, 28.0. **HRMS-ESI** (m/z): calcd for C₃₁H₃₉NO₄ [M+H]⁺: 490.2957; found: 490.2959.

5f

The above compound was prepared by following the same procedure as that for **5b**. Purification by silica gel chromatography (ethyl acetate/ dichloromethane /petroleum ether = 1/3/2) afforded **5f** (72% yield) as a yellow oil.

¹**H** NMR (400 MHz, CDCl₃) δ 8.09 (d, J = 6.8 Hz, 1H), 7.88 – 7.74 (m, 4H), 7.54 – 7.48 (m, 2H), 7.48 – 7.42 (m, 1H), 7.38 (dd, J = 10.7, 6.6 Hz, 1H), 7.25 – 7.21 (m, 1H), 7.15 (td, J = 7.5, 0.9 Hz, 1H), 6.86 (d, J = 5.7 Hz, 1H), 5.75 (d, J = 5.7 Hz, 1H), 3.40 (d, J = 18.8 Hz, 1H), 3.01 (d, J = 18.7 Hz, 1H), 2.52 (s, 1H), 1.47 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 207.0, 151.8, 136.7, 133.0, 133.0, 132.8, 132.6, 130.8, 128.5, 128.1, 127.6, 126.7, 126.5, 126.4, 124.9, 124.6, 123.8, 116.6, 83.8, 83.0, 80.4, 39.8, 28.3.

HRMS-ESI (*m/z*): calcd for C₂₇H₂₄NO₄ [M-H]⁺: 426.1705; found: 426.1705.

The above compound was prepared by following the same procedure as that for **5b**. Purification by silica gel chromatography (ethyl acetate/ dichloromethane /petroleum ether = 1/3/2) afforded **5g** (71% yield) as a yellow oil.

¹**H** NMR (400 MHz, CDCl₃) δ 7.94 (s, 1H), 7.40 – 7.29 (m, 5H), 6.93 (d, *J* = 9.0 Hz, 1H), 6.78 (d, *J* = 5.4 Hz, 1H), 6.74 (s, 1H), 5.79 (d, *J* = 5.1 Hz, 1H), 3.74 (s, 3H), 3.27 (d, *J* = 18.7 Hz, 1H), 2.93 (d, *J* = 18.1 Hz, 2H), 1.45 (s, 9H).

¹³**C NMR** (100 MHz, CDCl₃) *δ* 207.2, 160.3, 156.2, 151.9, 139.1, 136.2, 134.1, 132.2, 128.4, 128.3, 126.9, 117.3, 116.2, 109.9, 83.7, 82.6, 80.3, 55.8, 39.9, 28.3.

HRMS-ESI (*m/z*): calcd for C₂₄H₂₄NO₅ [M-H]⁺: 406.1654; found: 406.1648.

The above compound was prepared by following the same procedure as that for **5a**. Purification by silica gel chromatography (ethyl acetate/ dichloromethane /petroleum ether = 1/3/2) afforded **5h** (65% yield) as a colorless oil.

¹**H** NMR (400 MHz, CDCl₃) δ 7.83 (s, 1H), 7.54 (d, J = 5.8 Hz, 1H), 7.39 – 7.28 (m, 2H), 7.08 (t, J = 7.4 Hz, 1H), 6.26 (d, J = 5.7 Hz, 1H), 3.10 (d, J = 17.7 Hz, 1H), 2.61 (d, J = 17.7 Hz, 2H), 2.04 – 1.84 (m, 1H), 1.73 – 1.57 (m, 1H), 1.51 (s, 9H), 0.94 (t, J = 7.4 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 206.1, 161.5, 151.9, 133.9, 133.2, 132.8, 129.7, 123.8, 123.0, 115.6, 82.7, 82.4, 79.3, 42.2, 30.7, 28.3, 7.6.

HRMS-ESI (m/z): calcd for C₁₉H₂₂NO₄[M-H]⁺: 328.1549; found: 328.1532.

The above compound was prepared by following the same procedure as that for **5a**. Purification by silica gel chromatography (ethyl acetate/ dichloromethane /petroleum ether = 1/3/2) afforded **5i** (70% yield) as a colorless oil.

¹**H** NMR (400 MHz, CDCl₃) δ 7.79 (s, 1H), 7.59 (d, J = 5.7 Hz, 1H), 7.33 (d, J = 7.4 Hz, 1H), 7.26 (d, J = 6.6 Hz, 1H), 7.06 (t, J = 7.4 Hz, 1H), 6.23 (d, J = 5.7 Hz, 1H), 3.40 (s, 1H), 3.06 (d, J = 17.5 Hz, 1H), 2.53 (d, J = 17.5 Hz, 1H), 1.85 (dd, J = 17.3, 8.4 Hz, 1H), 1.50 (s, 9H), 1.37 – 1.15 (m, 5H), 0.85 (t, J = 6.9 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 206.4, 162.4, 152.0, 140.7, 133.2, 132.9, 129.5, 124.0, 122.9, 115.4, 82.6, 82.5, 79.4, 42.5, 38.0, 28.3, 25.1, 23.0, 13.9.

HRMS-ESI (*m/z*): calcd for C₂₁H₂₆NO₄ [M-H]⁺: 356.1832; found: 356.1852.

To a solution of **5a** (0.1 mmol) in CH₃CN (1 mL) at RT was added TFA (0.1 mL, 10 vol%). The reaction was stirred for 12 h at RT. The mixture was concentrated under reduced pressure and purified by silica gel chromatography, eluting with ethyl acetate/petroleum ether = 1/3 to afford the desired product **6a** (83% yield) as a brown oil.

¹**H** NMR (400 MHz, CDCl₃) δ 8.05 (s, 1H), 7.67 – 7.59 (m, 2H), 7.58 – 7.46 (m, 3H), 7.38 (dd, *J* = 7.5, 6.1 Hz, 2H), 7.31 (dd, *J* = 7.1, 1.0 Hz, 1H), 7.02 – 6.93 (m, 1H), 6.89 (d, *J* = 2.2 Hz, 1H), 6.66 (d, *J* = 2.2 Hz, 1H).

¹³**C NMR** (100 MHz, CDCl₃) *δ* 154.3, 141.3, 140.7, 139.8, 138.8, 129.0, 128.4, 127.7, 124.6, 123.1, 121.4, 119.2, 115.2, 110.2, 110.2, 95.6.

HRMS-ESI (*m/z*): calcd for C₁₈H₁₄NO [M+H]⁺: 260.1071; found: 260.1075.

The above compound was prepared by following the same procedure as that for **6a**. Purification by silica gel chromatography (ethyl acetate/petroleum ether = 1/3) afforded **6b** (72% yield) as a colorless oil.

¹**H** NMR (400 MHz, CDCl₃) δ 8.05 (s, 1H), 7.46 – 7.39 (m, 2H), 7.36 (d, *J* = 8.0 Hz, 1H), 7.31 – 7.27 (m, 1H), 7.20 (d, *J* = 7.5 Hz, 1H), 7.17 – 7.14 (m, 1H), 7.03 (dd, *J* = 8.3, 2.6 Hz, 1H), 7.00 – 6.94 (m, 1H), 6.88 (d, *J* = 2.2 Hz, 1H), 6.65 (d, *J* = 2.2 Hz, 1H), 4.97 (s, 1H), 3.86 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) *δ* 159.6, 154.2, 142.0, 141.3, 139.8, 138.6, 129.5, 124.6, 123.1, 121.6, 121.5, 119.2, 115.1, 114.1, 113.8, 110.1, 110.1, 95.7, 55.4.

HRMS-ESI (*m/z*): calcd for C₁₉H₁₆NO₂ [M+H]⁺: 290.1811; found: 290.1811.

The above compound was prepared by following the same procedure as that for **6a**. Purification by silica gel chromatography (ethyl acetate/petroleum ether = 1/3) afforded **6c** (75% yield) as a brown oil.

¹**H** NMR (400 MHz, CDCl₃) δ 8.16 (s, 1H), 7.54 (d, *J* = 7.9 Hz, 1H), 7.38 – 7.29 (m, 2H), 7.01 (t, *J* = 7.4 Hz, 1H), 6.89 (s, 1H), 6.85 (s, 2H), 6.68 (s, 1H), 4.01 (s, 3H), 3.86 (s, 6H).

¹³**C NMR** (100 MHz, CDCl₃) *δ* 154.5, 153.1, 141.4, 139.8, 138.5, 137.4, 137.4, 136.4, 124.6, 123.0, 121.5, 119.2, 110.3, 110.1, 106.1, 95.8, 61.1, 56.2

HRMS-ESI (*m/z*): calcd for C₂₁H₂₀NO₄ [M+H]⁺: 350.1392; found: 350.1389.

The above compound was prepared by following the same procedure as that for **6a**. Purification by silica gel chromatography (ethyl acetate/petroleum ether = 1/3) afforded **6d** (61% yield) as a yellow oil.

¹**H** NMR (400 MHz, CDCl₃) δ 8.04 (s, 1H), 7.51 – 7.43 (m, 2H), 7.41 – 7.32 (m, 3H), 7.32 – 7.26 (m, 1H), 7.02 – 6.94 (m, 1H), 6.86 (d, *J* = 2.2 Hz, 1H), 6.59 (d, *J* = 2.2 Hz, 1H), 2.46 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) *δ* 154.3, 141.3, 139.8, 137.6, 136.4, 136.1, 133.8, 131.5, 129.1, 127.8, 124.7, 123.0, 121.3, 119.3, 115.0, 110.2, 110.1, 95.8, 20.1.

HRMS-ESI (*m/z*): calcd for C₁₉H₁₅ClNO [M+H]⁺: 308.0842; found: 308.0840.

The above compound was prepared by following the same procedure as that for **6a**. Purification by silica gel chromatography (ethyl acetate/petroleum ether = 1/3) afforded **6e** (74% yield) as a brown oil.

¹**H NMR** (400 MHz, CDCl₃) δ 8.04 (s, 1H), 7.54 – 7.50 (m, 1H), 7.47 (d, J = 1.8 Hz, 2H), 7.44 (d, J = 8.0 Hz, 1H), 7.36 – 7.32 (m, 1H), 7.29 – 7.25 (m, 1H), 6.96 – 6.89 (m, 1H), 6.85 (d, J = 2.2 Hz, 1H), 6.69 (d, J = 2.2 Hz, 1H), 5.05 (s, 1H), 1.38 (s, 18H). ¹³**C NMR** (100 MHz, CDCl₃) δ 154.3, 150.7, 141.4, 139.9, 139.8, 139.6, 124.5, 123.5, 123.2, 121.8, 121.4, 119.0, 115.2, 110.2, 110.1, 95.3, 60.5, 35.0, 31.6, 21.1, 14.2. **HRMS-ESI** (m/z): calcd for C₂₆H₃₀NO [M+H]⁺: 372.2327; found: 372.2323.

The above compound was prepared by following the same procedure as that for **6a**. Purification by silica gel chromatography (ethyl acetate/petroleum ether = 1/3) afforded **6f** (81% yield) as a brown oil.

¹**H** NMR (400 MHz, CDCl₃) δ 8.12 – 8.03 (m, 2H), 8.02 – 7.94 (m, 2H), 7.93 – 7.88 (m, 1H), 7.76 (dd, J = 8.4, 1.7 Hz, 1H), 7.60 – 7.51 (m, 2H), 7.36 (d, J = 8.7 Hz, 2H), 7.30 – 7.27 (m, 1H), 6.95 – 6.86 (m, 2H), 6.73 (d, J = 2.1 Hz, 1H), 5.08 (s, 1H).

¹³**C NMR** (100 MHz, CDCl₃) *δ* 154.4, 141.4, 139.9, 138.6, 138.2, 133.5, 132.9, 128.2, 127.9, 127.8, 127.7, 127.5, 126.3, 126.1, 124.6, 123.1, 121.5, 119.3, 115.3, 110.5, 110.2, 95.8.

HRMS-ESI (*m/z*): calcd for C₂₂H₁₆NO [M+H]⁺: 310.1232; found: 310.1231.

The above compound was prepared by following the same procedure as that for **6a**. Purification by silica gel chromatography (ethyl acetate/petroleum ether = 1/3) afforded **6g** (72% yield) as a colorless oil.

¹**H** NMR (400 MHz, CDCl₃) δ 7.91 (s, 1H), 7.62 – 7.57 (m, 2H), 7.54 – 7.43 (m, 3H), 7.22 (d, J = 8.7 Hz, 1H), 6.90 (d, J = 8.6 Hz, 1H), 6.83 (s, 2H), 6.61 (s, 1H), 3.61 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) *δ* 154.3, 153.3, 142.1, 140.5, 138.7, 134.6, 129.1, 128.3, 127.8, 123.6, 115.1, 113.2, 110.7, 109.8, 104.8, 100.0, 95.7, 55.6.

HRMS-ESI (*m/z*): calcd for C₁₉H₁₆NO₂ [M+H]⁺: 290.1181; found: 290.1184.

The above compound was prepared by following the same procedure as that for **6a**. Purification by silica gel chromatography (ethyl acetate/petroleum ether = 1/3) afforded **6h** (46% yield) as a light yellow solid.

¹**H** NMR (400 MHz, CDCl₃) δ 8.01 – 7.86 (m, 2H), 7.35 – 7.23 (m, 2H), 7.15 (t, *J* = 7.4 Hz, 1H), 6.65 (s, 1H), 6.51 (s, 1H), 3.12 (q, *J* = 7.4 Hz, 2H), 1.36 (t, *J* = 7.5 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) *δ* 153.6, 140.1, 140.0, 138.5, 123.0, 122.4, 120.6, 118.5, 114.3, 109.1, 107.1, 93.1, 26.1, 12.8.

HRMS-ESI (*m/z*): calcd for C₁₄H₁₄NO [M+H]⁺: 212.1075; found: 212.1070.

The above compound was prepared by following the same procedure as that for **6a**. Purification by silica gel chromatography (ethyl acetate/petroleum ether = 1/3) afforded **6i** (51% yield) as a white solid.

¹**H** NMR (400 MHz, CDCl₃) δ 7.99 (d, J = 7.9 Hz, 1H), 7.95 (s, 1H), 7.41 – 7.31 (m, 2H), 7.25 – 7.20 (m, 1H), 6.71 (d, J = 2.2 Hz, 1H), 6.55 (d, J = 2.1 Hz, 1H), 4.81 (s, 1H), 3.19 – 3.09 (m, 2H), 1.90 – 1.76 (m, 2H), 1.60 – 1.45 (m, 2H), 1.00 (t, J = 7.3 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) *δ* 154.4, 141.2, 139.8, 139.7, 139.6, 138.5, 124.1, 121.6, 119.6, 110.2, 109.2, 94.2, 34.0, 31.7, 22.8, 14.1.

HRMS-ESI (m/z): calcd for C₁₆H₁₈NO [M+H]⁺: 240.1388; found: 240.1386.

The compound 7 (0.3 mmol) was dissolved in dimethyl carbonate: DCM = 1/10, followed by the addition of PIFA (0.45 mmol) and palladium acetate (0.015 mmol, 5 mol %). The reaction mixture was stirred for overnight at RT. The crude products were purified by silica gel chromatography, eluting with ethyl acetate/petroleum ether = 1/10 to afford the desired product 9 (51% yield) as a white solid. Only one epimer was generated. The relative stereochemistry was not assigned.

¹**H** NMR (400 MHz, Chloroform-*d*) δ 8.27 (d, J = 8.5 Hz, 1H), 7.78 – 7.63 (m, 2H), 7.16 (t, J = 7.4 Hz, 1H), 6.30 – 6.12 (m, 2H), 5.88 (dd, J = 5.5, 1.3 Hz, 1H), 2.81 (dd, J = 13.4, 7.6 Hz, 1H), 2.62 (dd, J = 13.4, 5.7 Hz, 1H), 1.53 (s, 9H).

¹³**C NMR** (100 MHz, Chloroform-*d*) δ 198.1, 156.9 (q, ²*J*_{C-F} =42.4 Hz), 153.3, 150.4, 137.8, 136.7, 131.7, 124.5, 123.5, 121.2, 117.0, 114.4 (q, ¹*J*_{C-F} =285.9 Hz), 83.5, 81.7, 79.0, 39.5, 28.1.

¹⁹F NMR (376 MHz, Chloroform-d) δ -75.0.

HRMS-ESI (*m/z*): calcd for C₁₉H₁₉F₃NO₅ [M+H]⁺: 398.1215; found: 398.122.

To a solution of **9** (44 mg, 0.1 mmol) in THF (1.0 mL) at -78 °C was added PhLi (0.19 mL, 0.3 mmol, 1.6 M in dibutyl ether). The reaction was stirred at -78 °C for 2 h. The reaction was then quenched with brine and extracted with ethyl acetate (3×3 mL). The combined organic layers were dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The crude residue was purified by silica gel chromatography, eluting with ethyl acetate/petroleum ether = 1/2 to afford the desired product **10a** (36 mg, 95%) as a white solid. Only one epimer was generated. The relative stereochemistry was not assigned.

¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.69 (d, J = 8.3 Hz, 1H), 7.42 – 7.26 (m, 6H), 7.15 (dd, J = 7.5, 1.3 Hz, 1H), 7.06 (td, J = 7.4, 1.0 Hz, 1H), 5.66 (d, J = 5.5 Hz, 1H), 5.26 (d, J = 5.5 Hz, 1H), 4.60 (s, 1H), 4.43 (d, J = 7.8 Hz, 1H), 3.16 (dd, J = 16.0, 7.8 Hz, 1H), 2.41 (d, J = 16.0 Hz, 1H), 2.35 (s, 1H), 1.60 (s, 9H).

¹³**C NMR** (100 MHz, Chloroform-*d*) δ 152.0, 142.3, 139.0, 136.5, 134.4, 132.1, 130.1, 127.8, 127.7, 127.6, 125.1, 123.2, 116.3, 86.4, 83.3, 82.9, 75.9, 28.5.

HRMS-ESI (*m/z*): calcd for C₂₃H₂₆NO₄ [M+H]⁺: 380.1862; found: 380.1841.

Computational methods and Results

(1) Computational methods

The calculations were performed with the Gaussian 16 program package^[1]. The geometry optimizations of the substrates, products and transition states were performed using the M062X functional^[2] with Pople's 6-31G(d) basis set^[3] for all atoms. Higher level of single point electronic energies for those structures were calculated at M062X/def2-TZVP^[4] level. The solvent effect in CH₃CN and DCE was evaluated with the SMD method^[5]. The vibrational harmonic frequencies and thermal corrections were calculated using the same level as the optimization; the former confirmed the optimized geometrical structures are the minima of PES, and transition states, the first order saddle points. Intrinsic reaction coordinate (IRC) calculations were performed for the identified

transition states to confirm the reaction path proceeding in both directions (reactant and product), in which the Hessian was recomputed every five predictor steps with a step size along the reaction path of 0.05 Bohr^[6]. All energies mentioned are solvated Gibbs free energies in CH₃CN. To determine the cataytic form of TFA, we calculated the Gibbs free energy change of protonation reaction at the (SMD)-M062X/6-31G(d) level, in CH₃CN solvent.

(2) Determine the catalytic form of the acid

Since TFA is a relatively strong acid and the dielectric constant of the solvent CH₃CN is also relatively large. Therefore, it is necessary to determine whether TFA completely protonated the imine substrate. We calculated the Gibbs free energy change of protonation reaction.

Specics	Trifluoroacetat	Sub1	ProSI-1	Sub2	ProSI-2
	e				
Optimization	(SMD)-M062X/6-31G(d)				
Level					
Electronic	(SMD)-M062X/6-31G(d)				
Energy Level					
Electronic					
Energy	-330163.09	-	-	-	-
(kcal/mol)		799945.7	469763.3	753649.5	423467.7
		3	9	6	0
Imaginaries	0	0	0	0	0
Gsol(kcal/mol	-330164.57	-	-	-	-

Since the $\triangle G$ is positive, TFA should be in the form of hydrogen bonded complex.

)	799793.3	469617.9	753475.1	423302.2	
	6	1	9	1	
(3) Geometries and original energies					
Species	Sub1		Sub	2	
Optimization Level	(SMD)-M062X/6-31G(d)				
Electronic Energy Level	(SMD)-M062X/def2TZVP				
Electronic Energy	-800269.4	7	-753957.91		
(kcal/mol)					
Imaginaries	0		0		
G Correction (kcal/mol)	152.37		174.37		
G _{sol} (kcal/mol)	-800117.10		-753783.54		
Species	TS1		TS	2	
Optimization Level	(SMD)-M062X/6-31G(d)				
Electronic Energy Level	(SMD)-M062X/def2TZVP				
Electronic Energy	-800251.7	'9	-753936.35		
(kcal/mol)					
Imaginaries	1		1		
G Correction (kcal/mol)	152.79		171.9	91	
G _{sol} (kcal/mol)	-800099.0	0	-75376	4.44	
Species	TS3		TS	4	
Optimization Level	(SMD)-M062X/6-31G(d)				
Electronic Energy Level	(SMD)-M062X/def2TZVP				
Electronic Energy	-800246.1	7	-75393	5.39	
(kcal/mol)					
Imaginaries	1		1		
G Correction (kcal/mol)	152.24		172.3	36	
Gsol(kcal/mol)	-800093.9	3	-75376	3.03	
Species	Pro1		Pro	2	
Optimization Level	(SMD)-M062X/6-31G(d)				
Electronic Energy Level	(SMD)-M062X/def2TZVP				
Electronic Energy	-800274.2	20	-75395	7.89	
(kcal/mol)					
Imaginaries	0		0		
G Correction (kcal/mol)	151.56		173.0	00	
G _{sol} (kcal/mol)	-800122.6	4	-75378	4.89	
Specics	Pro3		Pro	4	
Optimization Level	(SMD)-M062X/6-31G(d)				
Electronic Energy Level	(SMD)-M062X/def2TZVP				
Electronic Energy	-800256.4	1	-75394	6.02	
(kcal/mol)					

Imaginaries	0	0	
G Correction (kcal/mol)	154.39	176.55	
Gsol(kcal/mol)	-800102.02	-753769.47	

Sub1

С	0.221338	1.437642	-0.412928
С	1.582917	1.446469	-0.728686
С	2.279336	2.640950	-0.757990
С	1.572564	3.820100	-0.494092
С	0.212537	3.790899	-0.178056
С	-0.495400	2.587313	-0.124631
Н	3.342315	2.664746	-0.979289
Н	2.092002	4.772317	-0.531290
Н	-0.306829	4.720502	0.032341
Н	-1.548923	2.532646	0.131395
С	2.034673	0.007306	-0.842978
Ν	-0.259057	0.102198	-0.461124
С	0.701522	-0.705995	-0.803600
С	2.838108	-0.424540	-2.037518
Η	3.679551	0.197390	-2.329548
С	0.576256	-2.066808	-1.245739
Н	-0.284928	-2.665444	-0.970760
С	2.579015	-1.601471	-2.626170
Η	3.190385	-1.954174	-3.450140
С	1.491752	-2.465709	-2.160232
Η	1.398306	-3.449739	-2.610108
С	2.774512	-0.418887	0.479860
С	2.500473	0.244473	1.680925
С	3.661911	-1.497593	0.490283
С	3.117009	-0.155638	2.863915
Η	1.810333	1.081193	1.707315
С	4.279760	-1.890985	1.675995
Η	3.885112	-2.036331	-0.423530
С	4.012455	-1.222004	2.866749
Η	2.893813	0.375088	3.784427
Η	4.973299	-2.726292	1.661110
Η	4.496696	-1.528678	3.788762
Η	-1.319503	-0.221602	-0.349610
0	-2.648363	-0.813932	-0.257539
С	-3.480817	-0.004606	0.244514
0	-3.333868	1.158805	0.609545
-4.889605	-0.627905	0.383647	
-----------	--	---	
-4.849874	-1.771393	1.086590	
-5.755095	0.187319	0.993663	
-5.400842	-0.926377	-0.823460	
	-4.889605 -4.849874 -5.755095 -5.400842	-4.889605-0.627905-4.849874-1.771393-5.7550950.187319-5.400842-0.926377	

Sub2

С	-0.692383	-0.939882	-0.954782
С	-2.061037	-0.708269	-1.134316
С	-2.887306	-1.737671	-1.552792
С	-2.305614	-2.982680	-1.814528
С	-0.936148	-3.193968	-1.629494
С	-0.096869	-2.170595	-1.185811
Η	-3.954808	-1.582915	-1.680736
Н	-2.928884	-3.799520	-2.164511
Η	-0.515682	-4.174068	-1.831751
Η	0.967026	-2.308917	-1.019142
С	-2.342907	0.684443	-0.637562
Ν	-0.073749	0.257965	-0.523876
С	-0.959826	1.215395	-0.433291
С	-3.223292	1.655013	-1.357127
Η	-4.156441	1.283342	-1.771316
С	-0.723316	2.612856	-0.248549
Η	0.230884	2.972042	0.120441
С	-2.922929	2.965591	-1.330196
Н	-3.595530	3.697592	-1.763987
С	-1.694217	3.444661	-0.709562
Η	-1.534449	4.517953	-0.662128
Η	0.994316	0.412676	-0.365323
С	-3.013731	0.555105	0.811366
Η	-4.027573	0.184049	0.625696
Η	-3.093594	1.571051	1.212694
С	-2.300359	-0.351438	1.809051
Η	-1.260201	-0.028907	1.948439
Η	-2.272425	-1.381706	1.434880
С	-3.013402	-0.328827	3.162751
Η	-3.035855	0.699703	3.543928
Η	-4.057915	-0.636164	3.026073
С	-2.336085	-1.241707	4.180581
Η	-1.297030	-0.937363	4.347866
Η	-2.853611	-1.215816	5.144531
Η	-2.327932	-2.279669	3.830335
0	2.434343	0.827883	-0.098190

С	3.188321	-0.183272	-0.072230
0	2.934460	-1.370992	-0.267924
С	4.655256	0.187381	0.254752
F	4.741042	0.848334	1.421888
F	5.169289	0.994086	-0.690367
F	5.454178	-0.880980	0.342978
TS	1		
С	0.156570	1.380957	-0.401426
С	1.522376	1.393472	-0.752609
С	2.224226	2.598771	-0.804851
С	1.549337	3.770197	-0.487101
С	0.194254	3.739847	-0.114829
С	-0.524980	2.553423	-0.068041
Η	3.265141	2.627731	-1.111213
Η	2.071316	4.720171	-0.533559
Η	-0.307003	4.671118	0.131962
Η	-1.574419	2.508795	0.206387
С	1.887910	-0.007187	-0.986575
Ν	-0.349792	0.094121	-0.482913
С	0.617537	-0.741277	-0.934760
С	3.030304	-0.680546	-1.555956
Н	3.907116	-0.105141	-1.830407
С	0.511859	-2.030512	-1.408581
Η	-0.443598	-2.544071	-1.396825
С	2.866817	-1.997653	-2.074358
Η	3.717883	-2.476428	-2.543624
С	1.653466	-2.640019	-1.978182
Η	1.552008	-3.642833	-2.381327
С	3.056786	-0.606007	0.239529
С	2.657956	-1.677079	1.046011
С	4.025842	0.300676	0.682429
С	3.235347	-1.830266	2.298140
Η	1.906185	-2.382453	0.710077
С	4.597895	0.129305	1.937218
Η	4.349859	1.118941	0.049230
С	4.202167	-0.930197	2.750133
Η	2.919470	-2.656112	2.927049
Η	5.357834	0.827204	2.272676
Η	4.643946	-1.056640	3.733246
Н	-1.363308	-0.178767	-0.406278
0	-2.900221	-0.810378	-0.354124
С	-3.633171	0.019995	0.237487
0	-3.383127	1.145922	0.676415

С	-5.083520	-0.496706	0.420434
F	-5.105619	-1.653906	1.106541
F	-5.872196	0.364194	1.074813
F	-5.664515	-0.740277	-0.769133

TS2

С	0.148360	1.186216	-0.569891
С	1.510583	1.104343	-0.934755
С	2.275058	2.260404	-1.112560
С	1.654203	3.488870	-0.936348
С	0.293838	3.558575	-0.582438
С	-0.480473	2.421382	-0.392770
Η	3.323248	2.193771	-1.389954
Η	2.218332	4.405217	-1.075018
Н	-0.166324	4.534093	-0.454395
Η	-1.530194	2.462055	-0.119187
С	1.816595	-0.310412	-0.996671
Ν	-0.387225	-0.084733	-0.443004
С	0.569616	-1.005254	-0.745499
С	2.966021	-1.062065	-1.361544
Н	3.867651	-0.541006	-1.664777
С	0.488256	-2.378818	-0.882762
Η	-0.447441	-2.898112	-0.703555
С	2.836775	-2.455523	-1.569747
Η	3.698028	-3.020544	-1.906366
С	1.631006	-3.082921	-1.310759
Η	1.550746	-4.156468	-1.449866
Η	-1.391329	-0.321465	-0.250631
С	2.971132	-0.787001	0.617181
Η	2.718879	-1.816310	0.864209
Η	2.307351	-0.083446	1.117794
С	4.414285	-0.384939	0.779396
Η	4.586363	0.590614	0.309416
Η	5.078693	-1.116682	0.310001
С	4.717717	-0.282514	2.282412
Η	4.064101	0.473217	2.732660
Η	4.487117	-1.237949	2.767778
С	6.180583	0.081552	2.521069
Η	6.424246	1.042713	2.056347
Η	6.392769	0.158999	3.591517
Η	6.846979	-0.677191	2.097813
0	-2.934838	-0.911985	0.035497

С	-3.683370	0.060592	0.297779
0	-3.445938	1.270609	0.352463
С	-5.138717	-0.378664	0.603259
F	-5.184172	-1.191957	1.675139
F	-5.668058	-1.064881	-0.426096
F	-5.959018	0.649025	0.854451
TS	3		
С	0.442386	1.614362	-0.163798
С	1.847510	1.719197	-0.300851
С	2.518751	2.895865	0.058196
С	1.767897	3.946995	0.550614
С	0.368482	3.824981	0.700468
С	-0.316266	2.671030	0.361182
Η	3.596002	2.972666	-0.052912
Η	2.253798	4.875265	0.831943
Η	-0.189030	4.667392	1.099486
Η	-1.387913	2.559017	0.489664
С	2.293331	0.466420	-0.856794
Ν	0.017993	0.376356	-0.586546
С	1.112633	-0.366089	-0.969093
С	3.465682	0.145875	-1.626459
Η	4.348376	0.770034	-1.541198
С	1.082357	-1.463781	-1.922773
Н	0.171759	-2.042363	-2.035041
С	3.393959	-0.889576	-2.502498
Н	4.248892	-1.123362	-3.129088
С	2.197813	-1.696912	-2.651271
Н	2.207445	-2.500259	-3.380599
С	2.014915	-0.955174	0.544761
С	1.459856	-0.537994	1.746664
С	2.890069	-2.028394	0.474187
С	1.785718	-1.232718	2.909264
Η	0.774169	0.299713	1.805505
С	3.205418	-2.712693	1.646236
Η	3.331118	-2.348680	-0.462344
С	2.658057	-2.317485	2.864130
Η	1.348386	-0.915507	3.850382
Η	3.885579	-3.556827	1.595570
Н	2.910597	-2.851960	3.774281
Η	-0.964096	-0.006225	-0.545586
Ο	-2.440678	-0.743566	-0.617399
С	-3.265207	-0.016954	-0.009603
0	-3.107059	1.046112	0.596377

-4.708469	-0.579026	-0.069463
-4.767387	-1.836244	0.404688
-5.585855	0.148934	0.631637
-5.154366	-0.621729	-1.339064
	-4.708469 -4.767387 -5.585855 -5.154366	-4.708469-0.579026-4.767387-1.836244-5.5858550.148934-5.154366-0.621729

TS4

С	-0.687955	-0.844974	-1.053672
С	-2.076797	-0.629407	-1.215640
С	-2.918264	-1.678111	-1.608269
С	-2.350867	-2.918632	-1.844982
С	-0.964577	-3.119630	-1.678654
С	-0.113372	-2.102168	-1.277644
Η	-3.985840	-1.515027	-1.724246
Η	-2.975296	-3.749064	-2.157712
Η	-0.551732	-4.106246	-1.868280
Η	0.953103	-2.245188	-1.135272
С	-2.315396	0.748119	-0.864466
Ν	-0.078195	0.324020	-0.644782
С	-1.031771	1.294538	-0.517168
С	-3.428578	1.620278	-1.067722
Η	-4.389841	1.208926	-1.357530
С	-0.851841	2.714122	-0.398688
Η	0.128475	3.118020	-0.168701
С	-3.234495	2.963289	-0.917116
Η	-4.060575	3.650101	-1.069638
С	-1.946169	3.505878	-0.580255
Η	-1.845855	4.582413	-0.487576
Η	0.937834	0.462148	-0.409930
С	-1.981785	0.916865	1.299181
Η	-2.715604	1.717231	1.358004
Η	-1.016182	1.188495	1.721019
С	-2.424961	-0.449811	1.698328
Η	-1.699141	-1.204994	1.374598
Η	-3.400692	-0.695874	1.268810
С	-2.503492	-0.477949	3.239665
Η	-1.514271	-0.259702	3.656970
Η	-3.182170	0.308946	3.587279
С	-2.990418	-1.839131	3.729176
Η	-2.313591	-2.635666	3.403088
Η	-3.041431	-1.862274	4.821865
Η	-3.988592	-2.061491	3.338146
0	2.486956	0.886170	0.024343

С	3.212922	-0.130250	-0.104342
0	2.938692	-1.274103	-0.477126
С	4.688374	0.142932	0.285838
F	4.785974	0.525985	1.572650
F	5.213052	1.136080	-0.455089
F	5.480999	-0.924416	0.131710
Pro	01		
С	-0.219542	1.150700	-0.386172
С	1.195231	1.048110	-0.613605
С	1.989352	2.226699	-0.677710
С	1.367077	3.435311	-0.519958
С	-0.042619	3.515623	-0.297155
С	-0.847740	2.404653	-0.227280
Н	3.059177	2.155463	-0.849017
Η	1.942193	4.354227	-0.562975
Н	-0.489607	4.498401	-0.178636
Η	-1.918706	2.453951	-0.058375
С	1.476447	-0.316933	-0.719806
Ν	-0.770800	-0.084090	-0.352312
С	0.237411	-1.002255	-0.547142
С	2.733992	-1.068626	-0.957306
Η	3.044080	-0.853935	-1.997972
С	0.166778	-2.374963	-0.540051
Η	-0.784896	-2.875168	-0.380697
С	2.554679	-2.550567	-0.915971
Η	3.452123	-3.145243	-1.061521
С	1.352892	-3.151680	-0.732257
Η	1.270520	-4.232453	-0.721715
Η	-1.787763	-0.329063	-0.194598
0	-3.306258	-0.896987	0.036466
С	-4.087601	0.077632	0.172177
0	-3.870771	1.291622	0.152214
С	-5.555128	-0.368025	0.395038
F	-5.665543	-1.156897	1.479122
F	-6.008757	-1.081152	-0.652260
F	-6.395643	0.658812	0.566926
С	3.883949	-0.622375	-0.053850
С	5.068036	-0.123838	-0.594601
С	3.743086	-0.726450	1.332753
С	6.105999	0.275384	0.247611
Η	5.177059	-0.043560	-1.672974
С	4.780236	-0.329082	2.170809
Η	2.818132	-1.117167	1.751628

С	5.963858	0.173699	1.629146
Η	7.024077	0.667184	-0.179638
Η	4.664686	-0.411754	3.247289
Η	6.771878	0.485691	2.283819

Pro2

С	-0.230507	1.315587	-0.284076
С	1.188414	1.344364	-0.499448
С	1.871460	2.590891	-0.531662
С	1.144630	3.735886	-0.340250
С	-0.264969	3.683681	-0.119289
С	-0.967792	2.502558	-0.090091
Н	2.941580	2.623674	-0.712818
Н	1.635809	4.703030	-0.360064
Η	-0.799027	4.618250	0.026070
Η	-2.039606	2.451044	0.072920
С	1.590939	0.011080	-0.655349
Ν	-0.672867	0.036198	-0.307018
С	0.411520	-0.781274	-0.535793
С	2.914712	-0.621867	-0.838594
Н	3.425737	-0.178081	-1.707831
С	0.447769	-2.150307	-0.664648
Н	-0.464018	-2.734753	-0.572988
С	2.841521	-2.092041	-1.036978
Η	3.773867	-2.607988	-1.246088
С	1.688974	-2.803843	-0.933491
Η	1.690251	-3.880830	-1.056785
Η	-1.666410	-0.301031	-0.188022
С	3.834007	-0.300049	0.396557
Η	3.380638	-0.751408	1.285977
Η	3.809515	0.786611	0.531304
С	5.277320	-0.765151	0.231302
Η	5.670212	-0.408765	-0.730603
Η	5.326880	-1.860474	0.210428
С	6.164144	-0.250542	1.365323
Η	6.133735	0.846293	1.377886
Η	5.752518	-0.586143	2.325752
С	7.607902	-0.725207	1.229341
Η	8.044775	-0.381544	0.285141
Η	8.231178	-0.346617	2.045398
Η	7.662874	-1.819340	1.243859
0	-3.139663	-1.014631	-0.019590

С	-3.989819	-0.122362	0.223710
0	-3.867247	1.101289	0.320814
С	-5.414457	-0.700808	0.419375
F	-5.438246	-1.618440	1.402563
F	-5.842300	-1.317511	-0.697928
F	-6.323872	0.231268	0.728050
Pro	53		
С	1.253273	1.652987	-0.117905
С	2.591806	1.193435	0.182398
С	3.533340	2.077236	0.793552
С	3.121339	3.337039	1.105060
С	1.773713	3.766269	0.832804
С	0.837410	2.964385	0.244571
Η	4.541351	1.734685	1.004332
Н	3.802500	4.037801	1.575275
Н	1.495466	4.776685	1.118101
Н	-0.185093	3.276757	0.068521
С	2.682997	-0.099289	-0.296926
Ν	0.562259	0.716268	-0.748420
С	1.316597	-0.528915	-0.744839
С	3.800519	-0.954126	-0.526527
Н	4.750757	-0.756816	-0.041333
С	1.341494	-1.388236	-1.979649
Н	0.407795	-1.527529	-2.517054
С	3.674561	-1.909879	-1.488171
Н	4.531704	-2.526806	-1.741066
С	2.454529	-2.087142	-2.260905
Η	2.462733	-2.797416	-3.080728
Н	-0.449837	0.794668	-1.038194
0	-2.029391	0.751805	-1.472789
С	-2.599892	1.058852	-0.390864
0	-2.193169	1.727689	0.559508
С	-4.007991	0.428115	-0.265490
F	-3.915801	-0.918028	-0.233135
F	-4.788621	0.736664	-1.314082
F	-4.658557	0.804602	0.840274
С	0.641667	-1.451905	0.332666
С	-0.724220	-1.720851	0.185420
С	1.346893	-2.006171	1.400596
С	-1.377009	-2.531664	1.106863
Η	-1.283526	-1.284633	-0.638185
С	0.683107	-2.824868	2.316589
Η	2.402927	-1.807787	1.540515

С	-0.674123	-3.089940	2.174951
Η	-2.439348	-2.721278	0.990183
Η	1.239302	-3.246716	3.148174
Η	-1.185338	-3.722566	2.893973

Pro4

С	1.390212	1.218736	-0.772825
С	2.543399	0.993172	0.057647
С	3.263485	2.091969	0.607766
С	2.807245	3.352287	0.349858
С	1.630018	3.560348	-0.442960
С	0.910591	2.535018	-0.996483
Η	4.143824	1.914651	1.217452
Η	3.323766	4.217150	0.751780
Н	1.297007	4.581615	-0.603854
Н	0.005792	2.697752	-1.568546
С	2.718346	-0.385323	0.125969
Ν	0.899682	0.063478	-1.238677
С	1.568751	-1.025558	-0.560533
С	3.774695	-1.197794	0.620931
Η	4.524982	-0.783275	1.285824
С	1.915981	-2.274255	-1.299170
Η	1.203654	-2.649976	-2.028113
С	3.893287	-2.458082	0.109713
Η	4.728322	-3.080124	0.418512
С	2.993801	-2.978173	-0.903242
Η	3.213734	-3.945132	-1.342794
Η	-0.100469	-0.054522	-1.528041
С	0.545119	-1.556803	0.576383
Η	1.076915	-2.335403	1.130126
Η	-0.270192	-2.015895	0.008923
С	-0.009440	-0.487231	1.506959
Η	-0.267400	0.419915	0.949097
Η	0.736842	-0.210492	2.261503
С	-1.287361	-0.978649	2.192606
Η	-1.991575	-1.323197	1.423809
Η	-1.065278	-1.849495	2.822167
С	-1.937640	0.126226	3.019160
Η	-2.181683	0.978377	2.376426
Η	-2.862585	-0.219202	3.491867
Η	-1.263431	0.474569	3.809476
0	-1.728615	-0.578772	-1.516430

С	-2.334749	0.271936	-0.820104
0	-1.986492	1.396868	-0.443470
С	-3.771977	-0.153816	-0.420523
F	-3.892604	-1.481814	-0.262327
F	-4.651932	0.207260	-1.375266
F	-4.178990	0.415610	0.722863
Pro	SI-1		
С	-1.926448	0.321711	-0.741986
С	-1.333452	0.106985	0.503363
С	-2.019928	-0.587745	1.482679
С	-3.313826	-1.031495	1.188031
С	-3.886161	-0.809343	-0.066409
С	-3.194054	-0.125409	-1.068581
Н	-1.567482	-0.783727	2.450043
Н	-3.881062	-1.560784	1.946698
Η	-4.888177	-1.172601	-0.269770
Н	-3.624513	0.049786	-2.048659
С	0.090918	0.609129	0.428936
Ν	-1.021909	1.070753	-1.538913
С	0.066512	1.367487	-0.874303
С	0.652784	1.442658	1.542103
Н	0.507413	1.084013	2.556859
С	1.047489	2.351361	-1.190910
Η	1.165158	2.718279	-2.204014
С	1.404847	2.518077	1.259578
Н	1.866931	3.095282	2.052867
С	1.658070	2.923807	-0.120280
Η	2.337833	3.754290	-0.287025
С	1.065892	-0.610773	0.163511
С	0.562920	-1.847362	-0.250575
С	2.447876	-0.446443	0.290626
С	1.432152	-2.904906	-0.515037
Н	-0.503004	-2.008367	-0.364155
С	3.310121	-1.506564	0.025133
Η	2.866191	0.503695	0.602899
С	2.806619	-2.741362	-0.376694
Η	1.022456	-3.860050	-0.828663
Н	4.380113	-1.360585	0.136389
Η	3.480369	-3.567925	-0.579875
Н	-1.242855	1.434538	-2.466298

Pro	SI-2		
С	-1.995871	-0.208405	-0.520489
С	-1.002338	-0.430681	0.439781
С	-1.048602	-1.576411	1.218296
С	-2.101409	-2.473258	1.011729
С	-3.072141	-2.238150	0.034691
С	-3.036418	-1.090741	-0.758354
Н	-0.297190	-1.766316	1.978323
Н	-2.165847	-3.367485	1.623029
Η	-3.874020	-2.955236	-0.107429
Η	-3.786371	-0.891143	-1.516241
С	0.003109	0.682942	0.304268
Ν	-1.754944	1.046275	-1.126261
С	-0.708684	1.639792	-0.593297
С	0.676877	1.349453	1.453457
Η	1.010595	0.734144	2.283393
С	-0.273660	2.981855	-0.747069
Η	-0.669807	3.611373	-1.535585
С	0.973238	2.660680	1.371522
Н	1.536919	3.152058	2.156668
С	0.542902	3.457003	0.235935
Н	0.850007	4.498186	0.201536
Η	-2.363452	1.469225	-1.826044
С	1.194172	0.136499	-0.639258
Η	1.801165	1.004168	-0.916725
Η	0.726869	-0.263939	-1.545898
С	2.062391	-0.926801	0.020306
Η	1.448301	-1.780105	0.330675
Η	2.539502	-0.521306	0.920492
С	3.143310	-1.414038	-0.946783
Η	2.666094	-1.813305	-1.850458
Η	3.756356	-0.561518	-1.264635
С	4.031357	-2.482845	-0.316569
Η	3.440119	-3.354686	-0.015847
Η	4.800678	-2.823246	-1.016389
Н	4.535293	-2.096154	0.575973

- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Wallingford, CT, **2016**.
- [2] Y. Zhao, and D. G. Truhlar, The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals, *Theoretical chemistry* accounts. 2008, **120**, 215.
- [3] J. D. Dill, and J. A. Pople, Self-consistent molecular orbital methods. XV. Extended Gaussian-type basis sets for lithium, beryllium, and boron, *The Journal of Chemical Physics*. 1975, **62**, 2921.
- [4] A. Schäfer, C. Huber, and R. Ahlrichs, Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr, *The Journal of Chemical Physics*. 1994, 100, 5829.
- [5] A. V. Marenich, C. J. Cramer, and D. G. Truhlar, Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions, *The Journal* of *Physical Chemistry B.* 2009, **113**, 6378.
- [6] H. P. Hratchian, and H. B. Schlegel, Accurate reaction paths using a Hessian based predictor-corrector integrator, *The Journal of chemical physics*. 2004, 120, 9918.

$\sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{$

fl (ppm)

$\sum_{i=1}^{7,2,8} \left\{ \begin{array}{c} 0.083\\ 0.083\\ 0.084\\ 0.085\\ 0.085\\ 0.085\\ 0.085\\ 0.085\\ 0.085\\ 0.085\\ 0.085\\ 0.085\\ 0.085\\ 0.085\\ 0.085\\ 0.085\\ 0.085\\ 0.085\\ 0.085\\ 0.085\\ 0.085\\ 0.008\\ 0.085\\ 0.008\\ 0.085\\ 0.008\\ 0.008\\ 0.088\\ 0.088\\ 0.00$

8.0.8 8.0.6 8.0.6 8.0.05 8.005 8.005 8.005 8.005 8.005 8.005 8.005 8.005 8.005 8.005 8.005 8.

$\begin{array}{c} 8.0.\% \\ 8.0.6 \\ 8.0.5$

1d

150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

мр-13-1909 мр-17-17 60.99

80 f1 (ppm) 160 150 30 20 0 140 130 120 110 100 90 70 60 50 40 10

90 80 f1 (ppm)

80 70 f1 (ppm) -10

2:07 2:06 2:03 2:03 2:03 1:94 1:94 1:94 1:189 1:189 1:189

150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 fl (ppm)

2014年1月 2

145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 f f1 (ppm)

145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 f1 (ppm)

50 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 f1 (ppm)

139.65 139.65 139.65 138.63 138.63 138.55 138.55 122.65 122.65 122.65 122.65 122.65 122.65 122.65 122.65 122.65 122.65 122.65 122.65 122.65 122.65 123.55 123.55 1

145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 fl (ppm)

— 3.64

150
140
130
120
110
100
90
80
70
60
50
40
30
20
10
0

f1<(ppm)</td>
(ppm)
<

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

0611-ome-y1-20210611	30	20 2 3 4 3 6 2 2 2 3 4 9 2 9 3 4 9 2 9 3 4 9 2 9 3 4 9 2 9 3 4 9 2 9 3 4 9 2 9 3 4 9 2 9 2 9 2 9 2 9 2 9 2 9 2 9 2 9 2 9	51 49	28	95 91 75 70	22
	x	2.2.2.2.2	6 6	có.	ાં ાં ાં ાં	
PROTON CDC13 /home/nm	117/NMR_	DATA ZLY 24	Y	1	SER	1

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

03-53-s-2021 9 412	52	78 78 78 78	280	74	53	35 16	C1
	t- t-	ဖြစ်ဖစ်ဖ	10 10	ei	್ ಲೆ	0 0	
PROTON CDC131/home/nm	-/Mr_i	DATA ZMS 7	Y	I	V	V	

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

3ome-3-20210€	12 9	222	31	8 8	5	66 83	85	68
PROTON CDC13	/home/nmr/NMR	DATA	ri ri ILSIK	30	1-1-1	9 9 4 4 4	1-6.	ر و.

•

_____4.01 _____3.86

- 5. 08

 $\overbrace{1.36}^{1.38}$

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

