Materials and methods.

Unless stated otherwise, reactions were conducted in dry glassware using anhydrous solvents (passed through activated alumina columns). All commercially available reagents were used as received unless otherwise specified. Reaction temperatures were controlled using an IKA mag temperature modulator, and unless stated otherwise, reactions were performed at room temperature (RT, approximately $23^{\circ} \mathrm{C}$). Thin layer chromatography (TLC) was conducted on plates (GF254) supplied by Yantai Chemicals (China) and visualized using a combination of UV, anisaldehyde, iodine, and potassium permanganate staining. Silica gel (200-300 mesh) supplied by Tsingtao Haiyang Chemicals (China) was used for flash column chromatography. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on Bruker spectrometers (at 400 MHz) and are reported relative to deuterated solvent signals. Data for ${ }^{1} \mathrm{H}$ NMR spectra are reported as follows: chemical shift (δ ppm), multiplicity, coupling constant (Hz) and integration. ${ }^{13} \mathrm{C}$ NMR spectra are reported in terms of chemical shift. High resolution mass spectra were obtained from the Tsinghua University Mass Spectrometry Facility.

To a solution of $\mathbf{S 1}(3.1 \mathrm{~g}, 10.88 \mathrm{mmol})$ in dichloromethane $(108.0 \mathrm{~mL})$ at RT was added N-Iodosuccinimide ($4.9 \mathrm{~g}, 21.76 \mathrm{mmol}$). The mixture was stirred for 30 min , and then trifluoroacetic acid (10.8 mL) was added. The reaction was stirred for 3 h at RT. The reaction was quenched with saturated sodium carbonate solution and saturated sodium sulfite solution, and extracted with dichloromethane ($3 \times 100 \mathrm{~mL}$). The combined organic layers were dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The crude residue was purified by silica gel chromatography, eluting with ethyl acetate/petroleum ether $=1 / 4$ to afford the desired product $\mathbf{S 2}(3.67 \mathrm{~g}, 95 \%$ yield) as a white solid.
${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.22(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.81 (dd, $J=7.7,1.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.75(\mathrm{ddd}, J=8.5,7.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{t}, J=1.7$ $\mathrm{Hz}, 1 \mathrm{H}), 4.56$ (ddd, $J=7.7,4.7,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{dd}, J=13.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.91$ (ddd, $J=15.2,8.1,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{dd}, J=15.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.19-2.08(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13}$ C NMR (100 MHz , Chloroform- d) δ 194.5, 150.5, 147.0, 138.1, 124.7, 124.4, 123.0, 117.1, 88.3, 73.2, 49.4, 33.6, 18.2.

HRMS-ESI (m / z): calcd for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{INO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 355.9784$; found: 355.9785.

To a solution of $\mathbf{S} \mathbf{2}(3.67 \mathrm{~g}, 10.34 \mathrm{mmol})$ in THF $(130 \mathrm{~mL})$ at RT was added $1,8-$ Diazabicyclo [5.4.0] undec-7-ene ($10.8 \mathrm{~mL}, 72 \mathrm{mmol}$). The reaction was stirred for 3 h at reflux and then cooled to RT. The reaction was quenched with saturated ammonium chloride solution and extracted with ethyl acetate ($3 \times 100 \mathrm{~mL}$). The combined organic layers were dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The crude residue was purified by silica gel chromatography, eluting with ethyl acetate/petroleum ether $=1 / 3$ to afford the desired product $\mathbf{S 3}(1.3 \mathrm{~g}, 55 \%$ yield $)$ as a white solid.
${ }^{1}$ H NMR (400 MHz , Chloroform- d) $\delta 8.17(\mathrm{dd}, J=8.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{dt}, J=7.7$, $1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.71$ (ddd, $J=8.5,7.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.08(\mathrm{~m}, 1 \mathrm{H}), 6.64(\mathrm{dd}, J=5.5$, $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.39(\mathrm{dt}, J=5.5,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.47-5.46(\mathrm{~m}, 1 \mathrm{H}), 2.60(\mathrm{dd}, J=11.4,2.5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.13(\mathrm{dd}, J=11.4,1.1 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13}$ C NMR (100 MHz , Chloroform- d) δ 196.2, 151.0, 147.5, 138.4, 138.1, 136.5, 124.3, 124.2, 122.7, 117.1, 82.5, 73.5, 43.1.

HRMS-ESI (m / z) : calcd for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 228.0661$; found: 228.0657.

To a solution of $\mathbf{S 3}(900 \mathrm{mg}, 3.96 \mathrm{mmol})$ in THF $(20.0 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added $\mathrm{n}-\mathrm{BuLi}$ ($3.72 \mathrm{~mL}, 5.95 \mathrm{mmol}, 1.6 \mathrm{M}$ in hexanes). The reaction was stirred at $-78^{\circ} \mathrm{C}$ for 2 h . The reaction was quenched with saturated ammonium chloride solution and extracted with ethyl acetate ($3 \times 40 \mathrm{~mL}$). The combined organic layers were dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The crude residue was purified by silica gel chromatography, eluting with ethyl acetate/petroleum ether $=1 / 3$ to afford the desired product 1a' as the major epimer ($661 \mathrm{mg}, 59 \%$ combined yield, dr $=4: 1$).
The major (colorless oil): ${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.84$ (d, $J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.35(\mathrm{dd}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{td}, J=7.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{td}, J=7.5,1.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{dd}, J=5.7,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.32-5.30(\mathrm{~m}, 1 \mathrm{H})$, 2.46 ($\mathrm{s}, 1 \mathrm{H}$), $2.34(\mathrm{dd}, J=11.2,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.86-1.71$ (m, $2 \mathrm{H}), 1.47-1.22(\mathrm{~m}, 4 \mathrm{H}), 0.87(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz , Chloroform- d) $\delta 148.9,141.0,139.6,132.6,132.6,129.8,124.0$, 123.6, 115.3, 81.3, 80.5, 78.9, 39.5, 39.0, 24.9, 23.0, 14.0.

HRMS-ESI (m / z) : calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 286.1443$; found: 286.1443 .

To a solution of $\mathbf{1} \mathrm{a}^{\prime}(350 \mathrm{mg}, 1.23 \mathrm{mmol})$ in EtOH $(13 \mathrm{~mL})$ at RT was added sodium hydroxide ($492 \mathrm{mg}, 12.3 \mathrm{mmol}$). The reaction was stirred for 3 h at $80^{\circ} \mathrm{C}$ and then cooled to RT. The reaction was quenched with saturated ammonium chloride solution and extracted with ethyl acetate ($3 \times 26 \mathrm{~mL}$). The combined organic layers were dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The crude residue was purified by silica gel chromatography, eluting with ethyl acetate/petroleum ether $=1 / 3$ to afford the desired product $\mathbf{1 a}(212 \mathrm{mg}, 60 \%$ yield $)$ as a brown oil.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}\right.$, Methanol- $\left.d_{4}\right) \delta 7.18(\mathrm{dd}, J=7.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{td}, J=7.6$, $1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{td}, J=7.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\mathrm{dd}, J=5.7$, $2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{dd}, J=5.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.68-4.66(\mathrm{~m}, 1 \mathrm{H}), 3.60-3.52(\mathrm{~m}, 2 \mathrm{H})$, $2.50(\mathrm{dd}, J=14.3,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.06(\mathrm{dd}, J=14.3,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.92-1.84(\mathrm{~m}, 1 \mathrm{H})$, $1.70-1.40(\mathrm{~m}, 3 \mathrm{H}), 1.35-1.23(\mathrm{~m}, 2 \mathrm{H}), 1.19(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{t}, J=7.3 \mathrm{~Hz}$, 3H).
${ }^{13} \mathbf{C}$ NMR (100 MHz, Methanol- d_{4}) δ 149.2, 136.6, 133.5, 133.2, 128.3, 123.7, 118.1,
109.8, 82.7, 82.7, 81.0, 64.1, 38.1, 36.2, 25.2, 23.2, 14.4, 13.0.

HRMS-ESI (m / z): calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 288.1964$; found: 288.1958.

To a solution of $\mathbf{S} \mathbf{2}(300 \mathrm{mg}, 1.33 \mathrm{mmol})$ in THF $(13.0 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added EtMgBr $\left(2.66 \mathrm{~mL}, 2.66 \mathrm{mmol}, 1 \mathrm{M}\right.$ in THF). The reaction was stirred at $0^{\circ} \mathrm{C}$ for 2 h . The reaction was quenched with saturated ammonium chloride solution and extracted with ethyl acetate ($3 \times 25 \mathrm{~mL}$). The combined organic layers were dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The crude residue was purified by silica gel chromatography, eluting with ethyl acetate/petroleum ether $=1 / 2$ to afford the desired product $\mathbf{1 b}^{\prime}$ as the major epimer ($198 \mathrm{mg}, 58 \%$ combined yield, $\mathrm{dr}=4.5: 1$).
The major (colorless oil): ${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.79$ (d, $J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.35(\mathrm{dd}, J=7.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.07(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.73$ (d, $J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\mathrm{dd}, J=5.7,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.28-5.27(\mathrm{~m}, 1 \mathrm{H}), 3.04(\mathrm{~s}, 1 \mathrm{H})$, $2.33(\mathrm{dd}, J=11.2,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.90(\mathrm{dq}, J=14.6,7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 1.75(\mathrm{dq}, J=14.5,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 0.97(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (100 MHz , Chloroform- d) $\delta 148.9,141.2,139.5,132.4,132.3,129.6,124.1$, 123.5, 115.1, 81.4, 80.4, 78.9, 39.3, 31.9, 7.3.

HRMS-ESI $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 258.1130$; found: 258.1129.

1b

The above compound was prepared by following the same procedure as that for $\mathbf{1 a}$. Purification by silica gel chromatography, eluting with ethyl acetate/petroleum ether = $1 / 3$ to afford the desired product 1b (58% yield) as a white solid. The relative stereochemistry of 1 b was confirmed by X-ray analysis.
${ }^{1} H$ NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta 7.25-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.09(\mathrm{td}, J=7.6,1.3 \mathrm{~Hz}$, $1 \mathrm{H}), 6.81(\mathrm{td}, J=7.4,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{dd}, J=7.7,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.07$ (d, $J=5.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.03(\mathrm{dd}, J=5.7,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.58-4.55(\mathrm{~m}, 1 \mathrm{H}), 3.63(\mathrm{~s}, 1 \mathrm{H}), 3.61-3.51(\mathrm{~m}$, $2 \mathrm{H}), 2.37(\mathrm{~s}, 1 \mathrm{H}), 2.30(\mathrm{dd}, J=13.9,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.13(\mathrm{dd}, J=13.9,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.91$ $-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.23(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz , Chloroform- d) $\delta 148.2$, 139.1, 133.0, 132.3, 128.5, 124.6, 119.2, 110.1, 83.3, 82.2, 81.9, 64.3, 37.6, 30.8, 15.6, 7.8.

HRMS-ESI (m / z) : calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 260.1651$; found: 260.1630 .

The above compound was prepared by following the same procedure as that for $\mathbf{S 2}$. Purification by silica gel chromatography, eluting with ethyl acetate/petroleum ether $=$ $1 / 4$ to afford the desired product $\mathbf{S 5}$ (91% yield) as a white solid.
${ }^{1}$ H NMR (400 MHz , Chloroform- d) $\delta 8.07$ (dd, $J=9.2,2.5 \mathrm{~Hz}, 1 \mathrm{H}$), $7.34-7.25$ (m, $1 \mathrm{H}), 7.17(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~s}, 1 \mathrm{H}), 4.58-4.48(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.99-$ $2.83(\mathrm{~m}, 2 \mathrm{H}), 2.70(\mathrm{dt}, J=15.3,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.09(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz , Chloroform- d) δ 194.3, 157.0, 146.9, 145.1, 127.2, 123.7, 118.1, 104.8, 88.2, 73.6, 55.8, 49.3, 33.6, 18.3.

HRMS-ESI $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 385.9889$; found: 385.9896.

The above compound was prepared by following the same procedure as that for $\mathbf{S 3}$. Purification by silica gel chromatography, eluting with ethyl acetate/petroleum ether $=$ $1 / 3$ to afford the desired product $\mathbf{S 6}(48 \%$ yield) as a brown solid.
${ }^{1}$ H NMR (400 MHz , Chloroform- d) $\delta 8.05$ (d, $\left.J=9.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.32-7.25(\mathrm{~m}, 1 \mathrm{H})$, $7.16(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{dd}, J=5.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.37(\mathrm{dt}, J=5.5,0.8 \mathrm{~Hz}, 1 \mathrm{H})$, $5.47-5.42(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.57(\mathrm{dd}, J=11.3,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{dd}, J=11.3$, $1.1 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13}$ C NMR (100 MHz, Chloroform- d) δ 196.1, 156.7, 147.5, 145.8, 138.3, 136.3, 127.1, 123.4, 118.2, 104.7, 82.4, 73.8, 55.7, 43.2.

HRMS-ESI $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 258.0766$; found: 258.0761.

The above compound was prepared by following the same procedure as that for $\mathbf{1 b}^{\mathbf{\prime}}$. Purification by silica gel chromatography, eluting with ethyl acetate/petroleum ether = $1 / 2$ to afford the desired product $\mathbf{1} \mathbf{c}^{\prime}$ as the major epimer (53% combined yield, $\mathrm{dr}=$ 6:1).

The major(colorless oil): ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.72$ (d, $J=8.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.90(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{dd}, J=8.7,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{dd}, J=5.7,1.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.29$ (dd, $J=5.7,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.29-5.28(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.80(\mathrm{~s}, 1 \mathrm{H}), 2.31$ (dd, $J=11.2,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.84-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.34$ (m, 2H), 0.89 (t, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR (100 MHz, Chloroform- d) δ 156.3, 148.8, 141.1, 134.1, 133.1, 132.5, 115.8, $114.3,110.2,81.2,80.6,78.8,55.7,41.4,39.4,16.2,14.3$.
HRMS-ESI (m / z): calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 302.1392$; found: 302.1389.

The above compound was prepared by following the same procedure as that for 1a. Purification by silica gel chromatography, eluting with ethyl acetate/petroleum ether $=$ $1 / 3$ to afford the desired product $\mathbf{1 c}$ (72% yield) as a yellow oil.
${ }^{1}$ H NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta 6.84$ (d, $J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.67$ (dd, $J=8.4,2.6$ $\mathrm{Hz}, 1 \mathrm{H}), 6.54(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.08-5.98(\mathrm{~m}, 2 \mathrm{H}), 4.56-4.53(\mathrm{~m}, 1 \mathrm{H}), 3.76(\mathrm{~s}$, $3 \mathrm{H}), 3.60-3.53$ (m, 2H), 2.52 (s, 1H), 2.29 (dd, $J=14.0,3.1 \mathrm{~Hz}, 1 \mathrm{H}$), 2.11 (dd, $J=$ $14.0,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.79$ (ddd, $J=13.5,11.8,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.65(\mathrm{ddd}, J=13.5,11.7,4.5$ $\mathrm{Hz}, 1 \mathrm{H}), 1.49-1.27(\mathrm{~m}, 2 \mathrm{H}), 1.23(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (100 MHz , Chloroform- d) δ 153.7, 141.7, 139.3, 134.1, 132.9, 114.1, 110.9, $110.5,83.8,82.1,81.8,64.3,55.9,40.6,37.6,16.6,15.6,14.5$.
HRMS-ESI $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 304.1913$; found: 304.1911.

To a solution of $\mathbf{S 7}(515 \mathrm{mg}, 1 \mathrm{mmol})$ in dichloromethane (10.0 mL) at RT was added N-Iodosuccinimide ($450 \mathrm{mg}, 2.0 \mathrm{mmol}$). The reaction was stirred for 4 h at RT. The reaction was quenched with saturated sodium carbonate solution and saturated sodium sulfite solution, and extracted with dichloromethane ($3 \times 20 \mathrm{~mL}$). The combined organic layers were dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The crude residue was purified by silica gel chromatography, eluting with ethyl acetate/petroleum ether $=1 / 2$ to afford the desired product $\mathbf{S 8}$ as a mixture of two epimers ($497 \mathrm{mg}, 85 \%$ combined yield, $\mathrm{dr}=3: 1$).
The mixture (yellow solid): ${ }^{1}$ H NMR (400 MHz , Chloroform- d) $\delta 8.24-8.16$ (m, 0.35 H), 8.05 (dd, $J=7.3,2.0 \mathrm{~Hz}, 1.03 \mathrm{H}), 7.94-7.83(\mathrm{~m}, 1.43 \mathrm{H}), 7.83-7.69(\mathrm{~m}$,
$4.20 \mathrm{H}), 7.32(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 0.80 \mathrm{H}), 7.25-7.22(\mathrm{~m}, 0.80 \mathrm{H}) ., 7.11(\mathrm{t}, J=7.6 \mathrm{~Hz}, 0.36 \mathrm{H})$, $6.98(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1.04 \mathrm{H}), 6.88(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1.02 \mathrm{H}), 6.44-6.32(\mathrm{~m}, 1.35 \mathrm{H}), 5.04$ (s, $1.02 \mathrm{H}), 4.90(\mathrm{~s}, 0.34 \mathrm{H}), 4.52-4.37(\mathrm{~m}, 1.39 \mathrm{H}), 3.81(\mathrm{~s}, 0.91 \mathrm{H}), 3.59-3.44(\mathrm{~m}, 0.87 \mathrm{H})$, $3.36(\mathrm{~s}, 0.38 \mathrm{H}), 3.31-3.14(\mathrm{~m}, 2.13 \mathrm{H}), 2.82-2.74(\mathrm{~m}, 1.06 \mathrm{H}), 2.71(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, 2.06 H), $2.67-2.55(\mathrm{~m}, 0.93 \mathrm{H}), 2.52-2.34(\mathrm{~m}, 1.23 \mathrm{H}), 2.27-2.13(\mathrm{~m}, 2.13 \mathrm{H}), 2.10-$ $2.00(\mathrm{~m}, 0.30 \mathrm{H}), 1.86-1.77(\mathrm{~m}, 1.13 \mathrm{H})$.
${ }^{13}$ C NMR (100 MHz , Chloroform- d) δ 148.4, 148.3, 148.0, 148.0, 138.8, 138.0, 133.8, 133.7, 133.2, 133.1, 133.0, 133.0, 132.9, 131.6, 131.2, 131.1, 130.9, 130.2, 125.5, 125.4, $124.5,123.9,123.6,122.9,116.2,115.9,86.4,85.7,79.9,79.7,79.2,77.9,48.9,46.9$, 39.4, 39.0, 36.5, 34.5, 32.0, 30.7, 20.1, 18.8 .

HRMS-ESI $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{IN}_{3} \mathrm{O}_{7} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 586.0145$; found: 586.0145 .

The above compound was prepared by following the same procedure as that for $\mathbf{S 3}$. Purification by silica gel chromatography, eluting with ethyl acetate/petroleum ether = $1 / 1$ to afford the desired product $\mathbf{1 d}^{\prime}$ and its epimer $(83 \%, \mathrm{dr}=3: 1)$ as a colorless oil. The major: ${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.05-8.00(\mathrm{~m}, 1 \mathrm{H}), 7.85-7.80(\mathrm{~m}$, $1 \mathrm{H}), 7.79-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.66(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{td}, J=7.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.01$ (dd, $J=7.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{td}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{dd}, J=5.7,1.1 \mathrm{~Hz}, 1 \mathrm{H})$, $6.37(\mathrm{t}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{dd}, J=5.7,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.31-5.25(\mathrm{~m}, 1 \mathrm{H}), 4.19(\mathrm{~s}$, $1 \mathrm{H}), 3.25(\mathrm{q}, J=5.1,3.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.35(\mathrm{dd}, J=11.3,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.22-2.10(\mathrm{~m}, 2 \mathrm{H})$, $1.84-1.78(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz , Chloroform- d) δ 149.1, 147.9, 140.4, 139.2, 133.7, 133.2, 133.0, $132.8,131.2,131.0,130.0,125.3,123.8,123.6,115.3,81.5,80.7,78.9,39.3,39.1,36.5$. HRMS-ESI $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 458.1022$; found: 458.1006.

1d
The above compound was prepared by following the same procedure as that for $\mathbf{1 a}$. Purification by silica gel chromatography, eluting with ethyl acetate/petroleum ether $=$ $1 / 1$ to afford the desired product $\mathbf{1 d}$ (60% yield) as a brown oil.
${ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta 8.07-8.01(\mathrm{~m}, 1 \mathrm{H}), 7.88-7.83(\mathrm{~m}, 1 \mathrm{H}), 7.78-$ 7.67 (m, 2H), $7.02(\mathrm{td}, J=7.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{dd}, J=7.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.58-6.54$ $(\mathrm{m}, 3 \mathrm{H}), 6.03(\mathrm{dd}, J=5.6,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.52-4.50(\mathrm{~m}, 1 \mathrm{H})$, $3.70(\mathrm{~s}, 1 \mathrm{H}), 3.61-3.47(\mathrm{~m}, 2 \mathrm{H}), 3.15-3.05(\mathrm{~m}, 3 \mathrm{H}), 2.28(\mathrm{dd}, J=14.1,2.7 \mathrm{~Hz}, 1 \mathrm{H})$,
$2.11-1.99(\mathrm{~m}, 3 \mathrm{H}), 1.22(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (100 MHz, Chloroform-d) $\delta 148.1,147.8,138.3,134.1,133.5,133.3,132.5$, 131.1, 131.0, 128.9, 125.0, 123.7, 119.5, 110.6, 83.6, 81.7, 81.6, 64.5, 39.9, 37.3, 35.7, 15.5.

HRMS-ESI (m / z) : calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 460.1542$; found: 460.1554 .

S10
The above compound was prepared by following the same procedure as that for $\mathbf{S 8}$. Purification by silica gel chromatography, eluting with ethyl acetate/petroleum ether $=$ $1 / 3$ to afford the desired product $\mathbf{S 1 0}$ as a mixture of two epimers (96% combined yield, $\mathrm{dr}=4: 1$).
The mixture(colorless oil): ${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.89-7.85$ (m, 0.28 H), 7.82 (dd, $J=8.0,0.9 \mathrm{~Hz}, 0.96 \mathrm{H}), 7.45-7.31(\mathrm{~m}, 6.70 \mathrm{H}), 7.30-7.23(\mathrm{~m}$, 1.65 H), $7.13-7.00(\mathrm{~m}, 2.27 \mathrm{H}), 5.04(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 2.00 \mathrm{H}), 4.96(\mathrm{dd}, J=3.0,1.1 \mathrm{~Hz}$, $0.26 \mathrm{H}), 4.71(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 0.29 \mathrm{H}), 4.61(\mathrm{~s}, 2.07 \mathrm{H}), 4.52-4.42(\mathrm{~m}, 1.29 \mathrm{H}), 3.99-$ 3.87 (m, 0.54H), 3.81 (s, 0.26H), $3.76-3.67$ (m, 1.02H), $3.67-3.60$ (m, 1.02H), 2.87 (dd, $J=15.5,5.2 \mathrm{~Hz}, 1.05 \mathrm{H}), 2.78(\mathrm{dd}, J=12.6,2.9 \mathrm{~Hz}, 1.17 \mathrm{H}), 2.74-2.62(\mathrm{~m}, 1.56 \mathrm{H})$, $2.61-2.53(\mathrm{~m}, 0.46 \mathrm{H}), 2.42-2.36(\mathrm{~m}, 0.31 \mathrm{H}), 2.32-2.25(\mathrm{~m}, 1.03 \mathrm{H}), 2.21(\mathrm{dq}, J=$ $12.7,1.2 \mathrm{~Hz}, 1.03 \mathrm{H}), 2.11-1.99(\mathrm{~m}, 0.31 \mathrm{H}), 1.75-1.65(\mathrm{~m}, 1.23 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, Chloroform-d) $\delta 148.2,139.2,137.9,137.1,136.7,133.6,133.0$, $130.4,129.4,128.7,128.6,128.3,128.3,128.2,128.1,124.0,123.8,123.8,122.8,116.1$, $115.6,86.2,85.8,79.6,79.3,79.3,77.9,73.9,73.7,66.0,65.6,48.7,46.4,36.7,34.3$, 31.6, 30.5, 20.6, 19.6.

HRMS-ESI (m / z): calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{INO}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 492.0672$; found: 492.0671.

The above compound was prepared by following the same procedure as that for $\mathbf{1 d}^{\prime}$. Purification by silica gel chromatography, eluting with ethyl acetate/petroleum ether $=$ $1 / 2$ to afford the desired product $\mathbf{1 e}^{\prime}$ as a mixture of two epimers (71% yield, $\mathrm{dr}=$ 4:1).
The mixture(colorless oil): ${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.88-7.85$ (m, $1.37 \mathrm{H}), 7.44-7.30(\mathrm{~m}, 7.44 \mathrm{H}), 7.28(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 0.29 \mathrm{H}), 7.24(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 0.30 \mathrm{H})$, 7.14 (dd, $J=7.6,1.3 \mathrm{~Hz}, 0.99 \mathrm{H}), 7.09$ (td, $J=7.5,1.1 \mathrm{~Hz}, 0.41 \mathrm{H}), 7.03$ (td, $J=7.5,1.1$ $\mathrm{Hz}, 1.00 \mathrm{H}), 6.73(\mathrm{dd}, J=5.7,1.1 \mathrm{~Hz}, 1.00 \mathrm{H}), 6.33-6.26(\mathrm{~m}, 1.68 \mathrm{H}), 5.32-5.27(\mathrm{~m}$,
$1.03 \mathrm{H}), 5.24-5.19(\mathrm{~m}, 0.37 \mathrm{H}), 5.04(\mathrm{~s}, 1.00 \mathrm{H}), 4.62(\mathrm{~s}, 2.05 \mathrm{H}), 4.59-4.50(\mathrm{~m}, 0.65 \mathrm{H})$, 4.19 (s, 0.32 H$), 3.86-3.78(\mathrm{~m}, 1.72 \mathrm{H}), 3.69-3.65(\mathrm{~m}, 1.04 \mathrm{H}), 2.84-2.75(\mathrm{~m}, 0.43 \mathrm{H})$, $2.44-2.26(\mathrm{~m}, 2.44 \mathrm{H}), 2.25-2.13(\mathrm{~m}, 1.22 \mathrm{H}), 2.10(\mathrm{dd}, J=11.9,2.8 \mathrm{~Hz}, 0.60 \mathrm{H}), 1.79$ $-1.66(\mathrm{~m}, 1.30 \mathrm{H})$.
${ }^{13}$ C NMR (100 MHz , Chloroform- d) δ 148.8, 148.4, 141.4, 140.1, 139.7, 139.2, 136.9, $136.8,133.4,133.0,132.5,132.2,130.4,129.4,128.7,128.6,128.3,128.1,128.0,124.0$, $123.8,123.5,123.2,115.6,115.1,81.1,80.3,80.1,79.9,78.8,77.8,73.9,73.7,66.6$, 66.2, 40.2, 39.3, 36.5, 35.0.

HRMS-ESI $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 364.1549$; found: 364.1566.

1 e
The above compound was prepared by following the same procedure as that for $\mathbf{1 a}$. Purification by silica gel chromatography, eluting with ethyl acetate/petroleum ether $=$ $1 / 1$ to afford the desired product $\mathbf{1 e}$ as a mixture of two epimers (52% yield).
The mixture (brown oil): ${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.42-7.30(\mathrm{~m}, 4.99 \mathrm{H}$), $7.12-7.06(\mathrm{~m}, 1.87 \mathrm{H}), 6.80-6.76(\mathrm{~m}, 1.00 \mathrm{H}), 6.60-6.57(\mathrm{~m}, 1.02 \mathrm{H}), 6.10(\mathrm{~d}, J=5.9$ $\mathrm{Hz}, 1.02 \mathrm{H}), 5.97(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1.02 \mathrm{H}), 4.71-4.68(\mathrm{~m}, 0.90 \mathrm{H}), 4.55-4.52(\mathrm{~m}, 2.23 \mathrm{H})$, $4.18(\mathrm{~s}, 0.86 \mathrm{H}), 3.87-3.78(\mathrm{~m}, 0.44 \mathrm{H}), 3.75-3.69(\mathrm{~m}, 0.98 \mathrm{H}), 3.65-3.51(\mathrm{~m}, 3.87 \mathrm{H})$, $2.70(\mathrm{dd}, J=14.5,3.0 \mathrm{~Hz}, 0.17 \mathrm{H}), 2.37-2.19(\mathrm{~m}, 2.81 \mathrm{H}), 2.13-2.03(\mathrm{~m}, 0.28 \mathrm{H}), 2.00$ $-1.86(\mathrm{~m}, 1.06 \mathrm{H}), 1.24(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3.82 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, Chloroform-d) δ 148.2, 147.9, 137.9, 137.5, 137.4, 137.2, 134.4, 133.2, 132.5, 132.3, 128.7, 128.4, 128.3, 128.2, 127.8, 127.8, 127.7, 127.6, 124.3, 124.1, 119.2, 119.0, 110.1, 109.8, 83.2, 83.0, 82.5, 82.1, 81.7, 81.1, 73.4, 73.2, 67.1, 66.8, 64.5, 64.1, 38.8, 37.6, 35.7, 34.8, 15.5, 15.4.

HRMS-ESI $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 366.2069$; found: 366.2072.

The above compound was prepared by following the same procedure as that for $\mathbf{1 a}^{\prime}$. Purification by silica gel chromatography, eluting with ethyl acetate/petroleum ether = $1 / 3$ to afford the desired product $\mathbf{1 f}^{\prime}$ as a mixture of two epimers (86% combined yield, $\mathrm{dr}=2.5: 1$).
The mixture (white solid): ${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.97-7.89$ (m, 1.37H), $7.53(d, \mathrm{~J}=7.2 \mathrm{~Hz}, 1.00 \mathrm{H}), 7.46-7.35(\mathrm{~m}, 2.93 \mathrm{H}), 7.34-7.20(\mathrm{~m}, 5.48 \mathrm{H}), 7.17-7.11$ (m, 3.42H), 6.94 (d, $J=5.6 \mathrm{~Hz}, 1.05 \mathrm{H}$), 6.34 (dd, $J=5.8,2.5 \mathrm{~Hz}, 1.00 \mathrm{H}), 6.06$ (dd, $J=$ $5.8,2.5 \mathrm{~Hz}, 0.42 \mathrm{H}$), 5.87 (d, $J=5.7 \mathrm{~Hz}, 0.40 \mathrm{H}), 5.32-5.24(\mathrm{~m}, 0.42 \mathrm{H}), 5.14-5.07$
$(\mathrm{m}, 0.98 \mathrm{H}), 3.32(\mathrm{~s}, 1.00 \mathrm{H}), 2.69(\mathrm{~s}, 0.44 \mathrm{H}), 2.46(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 0.47 \mathrm{H}), 2.37(\mathrm{dd}, J=$ $11.8,2.6 \mathrm{~Hz}, 0.45 \mathrm{H}), 1.72(\mathrm{dd}, J=11.7,2.7 \mathrm{~Hz}, 1.11 \mathrm{H}), 1.38(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1.16 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR (100 MHz, Chloroform-d) $\delta 149.0,148.7,142.9,141.4,140.8,140.5,140.4$, $139.3,133.8,132.9,132.6,132.2,130.9,130.4,128.5,128.4,128.3,127.9,127.3,125.9$, $125.1,124.5,124.2,124.1,115.9,115.4,81.3,81.2,81.1,80.9,80.7,42.2,38.9$.
HRMS-ESI $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 306.113$; found: 306.1147.

$1 f$
The above compound was prepared by following the same procedure as that for $\mathbf{1 a}$. Purification by silica gel chromatography, eluting with ethyl acetate/petroleum ether $=$ $1 / 3$ to afford the desired product $\mathbf{1 f}$ as a mixture of two epimers (72% yield).
The mixture (brown oil): ${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.42-7.34$ (m, 1.92H), $7.34-7.27(\mathrm{~m}, 3.29 \mathrm{H}), 7.25-7.22(\mathrm{~m}, 1.13 \mathrm{H}), 7.21-7.20(\mathrm{~m}, 0.30 \mathrm{H}), 7.19-7.18(\mathrm{~m}$, $0.40 \mathrm{H}), 7.17-7.15(\mathrm{~m}, 0.96 \mathrm{H}), 7.13-7.11(\mathrm{~m}, 1.04 \mathrm{H}), 6.85-6.80(\mathrm{~m}, 1.33 \mathrm{H}), 6.75-$ 6.72 (m, 1.28H), $6.22(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1.00 \mathrm{H}), 6.08(\mathrm{dd}, J=5.6,2.3 \mathrm{~Hz}, 0.98 \mathrm{H}), 5.79$ (dd, $J=5.7,2.4 \mathrm{~Hz}, 0.34 \mathrm{H}), 5.42(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 0.34 \mathrm{H}), 4.56-4.50(\mathrm{~m}, 0.36 \mathrm{H}), 4.48$ $-4.40(\mathrm{~m}, 1.00 \mathrm{H}), 4.11(\mathrm{~s}, 0.34 \mathrm{H}), 3.80(\mathrm{~s}, 1.26 \mathrm{H}), 3.64-3.43(\mathrm{~m}, 0.83 \mathrm{H}), 3.39-3.23$ (m, 2.09H), $3.05(\mathrm{~s}, 1.03 \mathrm{H}), 2.84(\mathrm{dd}, J=14.2,2.4 \mathrm{~Hz}, 0.40 \mathrm{H}), 1.95$ (dd, $J=14.1,6.0$ $\mathrm{Hz}, 0.41 \mathrm{H}), 1.83-1.71(\mathrm{~m}, 2.09 \mathrm{H}), 1.25(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1.44 \mathrm{H}), 1.15(\mathrm{t}, J=7.0 \mathrm{~Hz}$, 2.98 H).
${ }^{13} \mathbf{C}$ NMR (100 MHz , Chloroform- d) δ 149.1, 148.9, 143.6, 142.6, 139.9, 138.1, 134.7, 134.1, 133.6, 132.2, 129.2, 129.1, 127.9, 127.7, 127.1, 126.6, 126.1, 125.0, 124.6, 120.1, $119.8,110.5,109.9,84.3,84.2,84.1,83.9,82.2,81.4,64.4,64.2,39.9,39.3,15.5,15.4$.
HRMS-ESI (m / z): calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 308.1651$; found: 308.1642.

To a solution of 4-bromochlorobenzene ($256 \mathrm{mg}, 1.34 \mathrm{mmol}$) in THF (10 mL) at -78 ${ }^{\circ} \mathrm{C}$ was added $\mathrm{n}-\mathrm{BuLi}(0.83 \mathrm{~mL}, 1.34 \mathrm{mmol}, 1.6 \mathrm{M}$ in hexane $)$. After stirring for 0.5 h , $\mathbf{S 3}(150 \mathrm{mg}, 0.67 \mathrm{mmol}$, dissolved in 3 mL THF) was added. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 2 h . The reaction was quenched with saturated ammonium chloride and extracted with ethyl acetate ($3 \times 20 \mathrm{~mL}$). The combined organic layers were dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The crude residue was purified by silica gel chromatography, eluting with ethyl acetate/petroleum ether =
$1 / 3$ to afforded the desired product $\mathbf{1 g}^{\prime}$ as a mixture of two epimers ($190 \mathrm{mg}, 84 \%$ combined yield, $\mathrm{dr}=4: 1$).
The mixture (colorless oil): ${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.91$ - 7.89 (m, $1.23 \mathrm{H}), 7.50-7.45(\mathrm{~m}, 0.51 \mathrm{H}), 7.43-7.35(\mathrm{~m}, 1.77 \mathrm{H}), 7.31-7.26(\mathrm{~m}, 2.22 \mathrm{H}), 7.22$ (dd, $J=7.6,1.3 \mathrm{~Hz}, 1.00 \mathrm{H}$), $7.17-7.05$ (m, 3.14H), 6.92 (d, $J=5.6 \mathrm{~Hz}, 1.00 \mathrm{H}), 6.34$ (dd, $J=5.7,2.6 \mathrm{~Hz}, 0.96 \mathrm{H}$), 6.09 (dd, $J=5.7,2.6 \mathrm{~Hz}, 0.25 \mathrm{H}), 5.85(\mathrm{~d}, J=5.7 \mathrm{~Hz}$, $0.26 \mathrm{H}), 5.30-5.24(\mathrm{~m}, 0.24 \mathrm{H}), 5.16-5.06(\mathrm{~m}, 0.98 \mathrm{H}), 3.40(\mathrm{~s}, 0.99 \mathrm{H}), 2.76(\mathrm{~s}, 0.26 \mathrm{H})$, $2.49-2.40(\mathrm{~m}, 0.26 \mathrm{H}), 2.33(\mathrm{dd}, J=11.9,2.7 \mathrm{~Hz}, 0.26 \mathrm{H}), 1.71(\mathrm{dd}, J=11.6,2.7 \mathrm{~Hz}$, $1.01 \mathrm{H}), 1.40(\mathrm{dd}, J=11.6,1.1 \mathrm{~Hz}, 1.02 \mathrm{H})$.
${ }^{13}$ C NMR (100 MHz , Chloroform- d) δ 149.0, 148.7, 141.5, 141.3, 140.7, 140.3, 140.2, $137.9,134.4,133.9,133.4,133.0,132.5,132.2,131.1,130.6,128.8,128.6,128.5,127.5$, $124.9,124.7,124.2,124.1,116.0,115.5,81.2,81.0,80.9,80.8,80.8,80.7,42.2,38.9$.
HRMS-ESI (m / z) : calcd for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{ClNO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 340.0740$; found: 340.0740 .

1g
The above compound was prepared by following the same procedure as that for $\mathbf{1 a}$. Purification by silica gel chromatography, eluting with ethyl acetate/petroleum ether $=$ $1 / 3$ to afforded the desired product $\mathbf{1 g}$ as a mixture of two epimers (73% yield).
The mixture (brown oil): ${ }^{1}$ H NMR (400 MHz , Chloroform-d) $\delta 7.38-7.32$ (m, 2.29H), $7.29-7.23(\mathrm{~m}, 2.78 \mathrm{H}), 7.21-7.14(\mathrm{~m}, 1.11 \mathrm{H}), 7.08(\mathrm{dd}, J=7.5,1.2 \mathrm{~Hz}, 0.99 \mathrm{H}), 6.97$ (d, $J=8.6 \mathrm{~Hz}, 0.08 \mathrm{H}), 6.81(\mathrm{td}, J=7.4,1.0 \mathrm{~Hz}, 1.07 \mathrm{H}), 6.73(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 0.99 \mathrm{H})$, $6.18(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1.00 \mathrm{H}), 6.08(\mathrm{dd}, J=5.6,2.3 \mathrm{~Hz}, 0.94 \mathrm{H}), 5.82(\mathrm{dd}, J=5.7,2.4 \mathrm{~Hz}$, 0.09 H), 5.42 (d, $J=5.7 \mathrm{~Hz}, 0.10 \mathrm{H}), 4.53-4.48$ (m, 0.14H), $4.46-4.41$ (m, 0.94H), $3.81(\mathrm{~s}, 0.95 \mathrm{H}), 3.63-3.46(\mathrm{~m}, 0.42 \mathrm{H}), 3.42-3.26(\mathrm{~m}, 2.02 \mathrm{H}), 3.23(\mathrm{~s}, 0.71 \mathrm{H}), 2.80$ (dd, $J=14.2,2.3 \mathrm{~Hz}, 0.11 \mathrm{H}), 1.93(\mathrm{dd}, J=14.2,6.0 \mathrm{~Hz}, 0.15 \mathrm{H}), 1.81$ (dd, $J=14.2,5.9$ $\mathrm{Hz}, 1.01 \mathrm{H}), 1.71(\mathrm{dd}, J=14.2,3.1 \mathrm{~Hz}, 1.00 \mathrm{H}), 1.25(\mathrm{t}, J=7.0 \mathrm{~Hz}, 0.62 \mathrm{H}), 1.15(\mathrm{t}, J=$ $7.0 \mathrm{~Hz}, 2.81 \mathrm{H})$
${ }^{13}$ C NMR (100 MHz , Chloroform- d) δ 148.7, 142.3, 141.3, 139.7, 137.9, 134.3, 134.2, 133.2, 132.8, 132.5, 129.3, 129.3, 128.0, 128.0, 127.9, 127.9, 127.8, 127.7, 127.6, 124.8, $124.4,120.2,119.8,110.6,110.0,84.1,83.9,83.9,83.7,82.1,81.3,64.3,60.4,39.9$, 39.3, 15.3, 14.1.

HRMS-ESI (m / z) : calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{ClNO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 340.1104$; found: 340.1124.

The above compound was prepared by following the same procedure as that for $\mathbf{1 g}^{\prime}$. Purification by silica gel chromatography, eluting with ethyl acetate/petroleum ether $=$ $1 / 3$ to afforded the desired product $\mathbf{1 h}^{\prime}$ as a mixture of two epimers (76% combined yield, $d r=4: 1$).
The mixture (yellow solid): ${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.86$ (d, $J=8.0 \mathrm{~Hz}$, $1.27 \mathrm{H}), 7.41-7.26(\mathrm{~m}, 1.93 \mathrm{H}), 7.29-7.17(\mathrm{~m}, 2.21 \mathrm{H}), 7.14-7.05(\mathrm{~m}, 1.56 \mathrm{H}), 7.03$ (d, $J=7.9 \mathrm{~Hz}, 0.30 \mathrm{H}), 6.94(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 0.97 \mathrm{H}), 6.89(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 0.29 \mathrm{H}), 6.83-$ $6.76(\mathrm{~m}, 1.97 \mathrm{H}), 6.60(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 0.96 \mathrm{H}), 6.30(\mathrm{dd}, J=5.4,2.6 \mathrm{~Hz}, 0.96 \mathrm{H}), 6.07-$ $6.01(\mathrm{~m}, 0.27 \mathrm{H}), 5.88(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 0.28 \mathrm{H}), 5.23(\mathrm{~s}, 0.28 \mathrm{H}), 5.07(\mathrm{~s}, 1.00 \mathrm{H}), 3.79-$ $3.77(\mathrm{~m}, 1.84 \mathrm{H}), 3.73(\mathrm{~s}, 2.96 \mathrm{H}), 3.06(\mathrm{~s}, 0.29 \mathrm{H}), 2.42-2.30(\mathrm{~m}, 0.58 \mathrm{H}), 1.74(\mathrm{~d}, J=$ $11.7 \mathrm{~Hz}, 1.02 \mathrm{H}), 1.41$ (d, $J=11.6 \mathrm{~Hz}, 1.02 \mathrm{H})$.
${ }^{13}$ C NMR (100 MHz , Chloroform- d) $\delta 159.6,159.5,149.1,148.8,144.7,141.3,141.1$, 140.7, 140.6, 133.8, 132.7, 132.6, 132.1, 130.7, 130.2, 129.4, 129.3, 125.2, 124.5, 124.3, 124.0, 119.7, 118.6, 115.8, 115.3, 113.3, 113.3, 112.8, 111.9, 81.2, 81.2, 81.1, 81.0, 80.8, 80.7, 55.3, 55.2, 42.1, 38.9.

HRMS-ESI (m / z): calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 336.1236$; found: 336.1243.

1h
The above compound was prepared by following the same procedure as that for $\mathbf{1 a}$. Purification by silica gel chromatography, eluting with ethyl acetate/petroleum ether $=$ $1 / 3$ to afforded the desired product $\mathbf{1 h}$ as a mixture of two epimers (65% yield).
The mixture (brown oil): ${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.23-7.09(\mathrm{~m}, 3.94 \mathrm{H}$), $7.03(\mathrm{dd}, J=2.6,1.7 \mathrm{~Hz}, 1.00 \mathrm{H}), 6.99-6.90(\mathrm{~m}, 1.29 \mathrm{H}), 6.89-6.69(\mathrm{~m}, 4.04 \mathrm{H}), 6.21$ (dd, $J=5.6,0.7 \mathrm{~Hz}, 1.00 \mathrm{H}), 6.08(\mathrm{dd}, J=5.6,2.2 \mathrm{~Hz}, 1.02 \mathrm{H}), 5.79(\mathrm{dd}, J=5.7,2.4 \mathrm{~Hz}$, $0.23 \mathrm{H}), 5.48(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 0.24 \mathrm{H}), 4.56-4.50(\mathrm{~m}, 0.25 \mathrm{H}), 4.48-4.42(\mathrm{~m}, 1.00 \mathrm{H})$, $3.76(\mathrm{~s}, 4.49 \mathrm{H}), 3.61-3.44(\mathrm{~m}, 0.71 \mathrm{H}), 3.36-3.32(\mathrm{~m}, 2.14 \mathrm{H}), 3.07(\mathrm{~s}, 1.02 \mathrm{H}), 2.82$ (dd, $J=14.1,2.5 \mathrm{~Hz}, 0.28 \mathrm{H}), 1.96(\mathrm{dd}, J=14.1,6.0 \mathrm{~Hz}, 0.27 \mathrm{H}), 1.90-1.73(\mathrm{~m}, 2.10 \mathrm{H})$, $1.24(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1.01 \mathrm{H}), 1.15(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3.13 \mathrm{H})$.
${ }^{13}$ C NMR (100 MHz , Chloroform- d) δ 159.2, 159.1, 149.1, 148.8, 145.4, 144.3, 139.7, $138.1,134.5,134.1,133.4,132.2,129.2,129.1,128.8,128.6,125.0,124.5,120.1,119.7$, 64.2, 55.1, 39.8, 39.4, 15.4, 15.4 .

HRMS-ESI (m / z): calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 338.1756$; found: 338.1748 .

The above compound was prepared by following the same procedure as that for $\mathbf{1 g}^{\prime}$. Purification by silica gel chromatography, eluting with ethyl acetate/petroleum ether = $1 / 3$ to afforded the desired product $1 \mathbf{i}^{\prime}$ and its epimer (71% combined yield, $\mathrm{dr}=6: 1$). The major (white solid): ${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.91$ (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}$), 7.38 (td, $J=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.21(\mathrm{dd}, J=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.13$ (td, $J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.90-6.86$ $(\mathrm{m}, 1 \mathrm{H}), 6.34(\mathrm{dd}, J=5.7,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.14-5.08(\mathrm{~m}, 1 \mathrm{H}), 3.32(\mathrm{~s}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H})$, 1.72 (dd, $J=11.6,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.42(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13}$ C NMR (100 MHz , Chloroform- d) δ 149.0, 141.5, 140.7, 140.4, 136.0, 134.1, 133.5, 133.0, 130.6, 128.9, 128.4, 124.9, 124.6, 124.1, 115.6, 81.2, 81.0, 80.8, 42.3, 20.2.

HRMS-ESI (m / z) : calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{ClNO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 354.0897$; found: 354.0906.

1i
The above compound was prepared by following the same procedure as that for $\mathbf{1 a}$. Purification by silica gel chromatography, eluting with ethyl acetate/petroleum ether $=$ $1 / 4$ to afforded the desired product $\mathbf{1 i}$ (72% yield) as a brown oil.
${ }^{1} H$ NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta 7.30(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H})$, 7.16 (td, $J=7.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.07(\mathrm{~m}, 2 \mathrm{H}), 6.81(\mathrm{td}, J=7.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.73$ (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{dd}, J=5.6,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.44-4.41$ $(\mathrm{m}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 1 \mathrm{H}), 3.42-3.26(\mathrm{~m}, 2 \mathrm{H}), 3.05(\mathrm{~s}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.81$ (dd, $J=14.2$, $5.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.73(\mathrm{dd}, J=14.2,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.16(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz , Chloroform- d) $\delta 148.8,142.4,138.1,135.2,134.4,134.2,133.0$, $129.2,128.5,128.5,125.2,124.4,120.2,110.6,84.2,83.9,82.2,64.3,39.4,20.2,15.4$. HRMS-ESI $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{ClNO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 356.1417$; found: 356.1401.

The above compound was prepared by following the same procedure as that for $\mathbf{1 a}^{\prime}$. Purification by silica gel chromatography, eluting with ethyl acetate/petroleum ether = $1 / 3$ to afforded the desired product $\mathbf{1} \mathbf{j}^{\prime}$ as a mixture of two epimers (82% combined yield, $\mathrm{dr}=6.5: 1$).
The mixture (colorless oil): ${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.82-7.76$ (m, $1.15 \mathrm{H}), 7.54-7.49(\mathrm{~m}, 0.34 \mathrm{H}), 7.43-7.40(\mathrm{~m}, 0.52 \mathrm{H}), 7.35-7.27(\mathrm{~m}, 3.92 \mathrm{H}), 7.18-$ $7.10(\mathrm{~m}, 1.99 \mathrm{H}), 6.96-6.86(\mathrm{~m}, 2.15 \mathrm{H}), 6.83(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 0.19 \mathrm{H}), 6.77(\mathrm{~d}, J=2.6$ $\mathrm{Hz}, 1.00 \mathrm{H}), 6.30(\mathrm{dd}, J=5.7,2.6 \mathrm{~Hz}, 1.00 \mathrm{H}), 6.02(\mathrm{dd}, J=5.7,2.6 \mathrm{~Hz}, 0.15 \mathrm{H}), 5.86$ (d, $J=5.8 \mathrm{~Hz}, 0.15 \mathrm{H}), 5.25-5.20(\mathrm{~m}, 0.15 \mathrm{H}), 5.11-5.05(\mathrm{~m}, 1.00 \mathrm{H}), 3.75(\mathrm{~s}, 0.44 \mathrm{H})$, $3.71(\mathrm{~s}, 3.01 \mathrm{H}), 3.65(\mathrm{~s}, 1.05 \mathrm{H}), 3.05(\mathrm{~s}, 0.14 \mathrm{H}), 2.37(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 0.15 \mathrm{H}), 2.32$ (dd, $J=11.8,2.6 \mathrm{~Hz}, 0.15 \mathrm{H}), 1.76-1.65(\mathrm{~m}, 1.41 \mathrm{H}), 1.35(\mathrm{dd}, J=11.6,1.1 \mathrm{~Hz}, 1.01 \mathrm{H})$.
${ }^{13}$ C NMR (100 MHz , Chloroform- d) $\delta 157.0,156.6,149.0,142.8,140.6,140.5,135.0$, $134.3,132.7,132.0,128.5,128.3,127.9,127.2,125.9,116.6,116.3,116.1,115.9,110.4$, 109.4, 81.3, 81.1, 81.1, 81.0, 55.8, 55.7, 42.2, 38.9.

HRMS-ESI (m / z): calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 336.1236$; found: 336.1233.

1j
The above compound was prepared by following the same procedure as that for $\mathbf{1 a}$. Purification by silica gel chromatography, eluting with ethyl acetate/petroleum ether $=$ $1 / 3$ to afforded the desired product $\mathbf{1} \mathbf{j}$ and its epimer (52% yield).
The major (brown oil): ${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.38-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.32$ $-7.20(\mathrm{~m}, 3 \mathrm{H}), 6.77-6.66(\mathrm{~m}, 3 \mathrm{H}), 6.20(\mathrm{dd}, J=5.7,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.10-6.05(\mathrm{~m}, 1 \mathrm{H})$, $4.45-4.38(\mathrm{~m}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.39-3.24(\mathrm{~m}, 3 \mathrm{H}), 1.84-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.17(\mathrm{t}, J$ $=7.0 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR (100 MHz , Chloroform- d) δ 154.3, 143.6, 142.4, 138.6, 136.0, 133.9, 127.9, $127.0,126.0,115.5,111.6,109.5,84.6,84.4,82.1,64.2,55.7,39.1,15.4$.
HRMS-ESI (m / z): calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 338.1756$; found: 338.1761.

The above compound was prepared by following the same procedure as that for $\mathbf{1 g}^{\prime}$. Purification by silica gel chromatography, eluting with ethyl acetate/petroleum ether $=$ $1 / 3$ to afford the desired product $\mathbf{1} \mathbf{k}^{\prime}$ as a mixture of two epimers (82% combined yield, $\mathrm{dr}=7: 1$).
The mixture (white foam): ${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.05-7.99$ (m, $0.13 \mathrm{H}), 7.95(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1.08 \mathrm{H}), 7.87-7.85(\mathrm{~m}, 0.30 \mathrm{H}), 7.84-7.80(\mathrm{~m}, 1.11 \mathrm{H})$, $7.79-7.70(\mathrm{~m}, 1.99 \mathrm{H}), 7.62(\mathrm{~s}, 0.89 \mathrm{H}), 7.59-7.57(\mathrm{~m}, 0.23 \mathrm{H}), 7.56-7.53(\mathrm{~m}, 0.25 \mathrm{H})$, $7.52-7.45(\mathrm{~m}, 2.06 \mathrm{H}), 7.42-7.39(\mathrm{~m}, 1.04 \mathrm{H}), 7.33-7.29(\mathrm{~m}, 0.29 \mathrm{H}), 7.26-7.20(\mathrm{~m}$, $2.96 \mathrm{H}), 7.18-7.13(\mathrm{~m}, 0.17 \mathrm{H}), 7.12(\mathrm{td}, J=7.5,1.0 \mathrm{~Hz}, 1.05 \mathrm{H}), 6.98(\mathrm{~d}, J=5.6 \mathrm{~Hz}$, 1.02 H), 6.29 (dd, $J=5.7,2.5 \mathrm{~Hz}, 1.00 \mathrm{H}), 5.97$ (dd, $J=5.8,2.5 \mathrm{~Hz}, 0.13 \mathrm{H}), 5.86$ (d, J $=5.7 \mathrm{~Hz}, 0.14 \mathrm{H}), 5.24-5.20(\mathrm{~m}, 0.15 \mathrm{H}), 5.06-5.01(\mathrm{~m}, 1.01 \mathrm{H}), 3.72(\mathrm{~s}, 1.02 \mathrm{H}), 2.96$ $(\mathrm{s}, 0.13 \mathrm{H}), 2.51-2.37(\mathrm{~m}, 0.26 \mathrm{H}), 1.71(\mathrm{dd}, J=11.7,2.7 \mathrm{~Hz}, 1.09 \mathrm{H}), 1.37(\mathrm{~d}, J=11.6$ $\mathrm{Hz}, 1.10 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz , Chloroform- d) δ 149.1, 148.9, 141.5, 140.8, 140.7, 140.5, 140.4, $136.9,134.0,133.0,132.9,132.8,132.7,132.2,130.9,130.4,128.4,128.3,128.2,128.1$, $127.6,127.5,126.6,126.6,126.5,126.4,126.4,125.2,124.9,124.8,124.6,124.4,124.1$, 124.1, 116.0, 115.5, 81.4, 81.2, 81.1, 80.9, 80.9, 42.2, 39.1.

HRMS-ESI (m / z): calcd for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 356.1287$; found: 356.1287.

The above compound was prepared by following the same procedure as that for $\mathbf{1 a}$. Purification by silica gel chromatography, eluting with ethyl acetate/petroleum ether $=$ $1 / 3$ to afford the desired product $1 \mathbf{k}$ as a mixture of two epimers (58% yield).
The mixture (brown oil): ${ }^{1}$ H NMR (400 MHz , Chloroform- d) $\delta 7.98$ (s, 0.99 H), 7.86 7.77 (m, 2.72H), $7.77-7.71(\mathrm{~m}, 1.27 \mathrm{H}), 7.52-7.40(\mathrm{~m}, 3.73 \mathrm{H}), 7.25-7.12(\mathrm{~m}, 2.39 \mathrm{H})$, $6.88-6.75(\mathrm{~m}, 2.40 \mathrm{H}), 6.27(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1.00 \mathrm{H}), 6.09(\mathrm{dd}, J=5.6,2.3 \mathrm{~Hz}, 0.99 \mathrm{H})$, $5.76(\mathrm{dd}, J=5.7,2.3 \mathrm{~Hz}, 0.18 \mathrm{H}), 5.50(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 0.17 \mathrm{H}), 4.57-4.50(\mathrm{~m}, 0.18 \mathrm{H})$, $4.42-4.41(\mathrm{~m}, 1.00 \mathrm{H}), 4.27(\mathrm{~s}, 0.18 \mathrm{H}), 3.85(\mathrm{~s}, 1.06 \mathrm{H}), 3.61-3.46(\mathrm{~m}, 0.49 \mathrm{H}), 3.34$ -3.17 (m, 2.96H), 2.93 (dd, $J=14.2,2.4 \mathrm{~Hz}, 0.19 \mathrm{H}), 1.99$ (dd, $J=14.2,6.0 \mathrm{~Hz}, 0.20 \mathrm{H})$,
$1.84(\mathrm{dd}, J=14.2,5.7 \mathrm{~Hz}, 1.00 \mathrm{H}), 1.78(\mathrm{dd}, J=14.2,3.3 \mathrm{~Hz}, 1.04 \mathrm{H}), 1.26(\mathrm{t}, J=7.0$ $\mathrm{Hz}, 0.82 \mathrm{H}), 1.10(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3.00 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz , Chloroform- d) δ 149.2, 148.9, 141.6, 140.4, 139.9, 138.3, 134.6, $133.9,133.6,133.0,132.9,132.8,132.6,132.3,129.3,129.2,128.6,128.4,128.4,128.0$, $127.9,127.5,127.5,127.4,127.3,127.2,126.3,126.1,126.1,125.9,125.8,125.7,125.2$, 125.1, 125.0, 124.6, 124.1, 123.3, 120.6, 120.1, 119.8, 110.5, 110.0, 84.4, 84.2, 84.0, 82.2, 81.4, 64.3, 64.2, 40.1, 39.4, 15.4, 15.3.

HRMS-ESI $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 358.1807$; found: 358.1797 .

The above compound was prepared by following the same procedure as that for $\mathbf{1 \mathbf { g } ^ { \prime }}$. Purification by silica gel chromatography, eluting with ethyl acetate/petroleum ether $=$ $1 / 2$ to afford the desired product $\mathbf{1 1}^{\prime}$ and its epimer (82% combined yield, $\mathrm{dr}=5: 1$).
The major (colorless oil): ${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.65-8.63(\mathrm{~m}, 1 \mathrm{H})$, 7.98 (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{td}, J=7.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.40-7.28$ (m, 2H), 7.19 (dd, $J=7.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.13$ (td, $J=7.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.16-7.14$ (m, $1 \mathrm{H}), 5.90-5.88(\mathrm{~m}, 1 \mathrm{H}), 5.74(\mathrm{~s}, 1 \mathrm{H}), 5.28-5.27(\mathrm{~m}, 1 \mathrm{H}), 2.46(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H})$, 2.30 (dd, $J=11.8,2.7 \mathrm{~Hz}, 1 \mathrm{H}$).
${ }^{13}$ C NMR (100 MHz , Chloroform- d) δ 158.1, 148.7, 148.5, 142.2, 139.6, 137.1, 133.2, 131.1, 130.9, 125.5, 124.2, 123.5, 122.3, 115.8, 80.7, 80.6, 80.3, 39.5 .

HRMS-ESI (m / z) : calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 307.1083$; found: 307.1082.

The above compound was prepared by following the same procedure as that for $\mathbf{1 a}$. Purification by silica gel chromatography, eluting with ethyl acetate/petroleum ether $=$ $1 / 3$ to afford the desired product $\mathbf{1 1}(80 \%$ yield) as a yellow oil.
${ }^{1}$ H NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta 8.55-8.50(\mathrm{~m}, 1 \mathrm{H}), 7.56(\mathrm{td}, J=7.7,1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.21-7.10(\mathrm{~m}, 3 \mathrm{H}), 7.07(\mathrm{dd}, J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.69$ (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.38-6.30(\mathrm{~m}, 2 \mathrm{H}), 5.97(\mathrm{dd}, J=5.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.61-4.58(\mathrm{~m}$, $1 \mathrm{H}), 3.71(\mathrm{~s}, 1 \mathrm{H}), 3.53-3.32(\mathrm{~m}, 2 \mathrm{H}), 1.90(\mathrm{dd}, J=13.7,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.41(\mathrm{dd}, J=$ $13.7,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.14(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (100 MHz , Chloroform- d) δ 160.3, 149.1, 146.7, 137.3, 137.0, 133.2, 132.6, $129.2,124.5,122.5,121.8,120.0,110.4,83.3,83.0,82.6,64.1,39.3,15.4$.

HRMS-ESI (m / z): calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 309.1603$; found: 309.1595.

The above compound was prepared by following the same procedure as that for $\mathbf{1 g}^{\mathbf{\prime}}$. Purification by silica gel chromatography, eluting with ethyl acetate/petroleum ether = $1 / 3$ to afford the desired product $\mathbf{1} \mathbf{m}^{\prime}$ as a mixture of two epimers (88% combined yield, $\mathrm{dr}=5: 1$).
The mixture (white solid): ${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.96-7.86(\mathrm{~m}, 1.18 \mathrm{H})$, $7.53-7.48(\mathrm{~m}, 0.41 \mathrm{H}), 7.43-7.30(\mathrm{~m}, 3.37 \mathrm{H}), 7.15-7.11(\mathrm{~m}, 1.25 \mathrm{H}), 7.04$ (t, J = 1.2 $\mathrm{Hz}, 0.94 \mathrm{H}), 6.88(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1.00 \mathrm{H}), 6.41-6.40(\mathrm{~m}, 0.20 \mathrm{H}), 6.37$ (dd, $J=5.7,2.6$ $\mathrm{Hz}, 0.99 \mathrm{H}), 6.23-6.22(\mathrm{~m}, 0.97 \mathrm{H}), 6.19(\mathrm{dd}, J=5.7,2.6 \mathrm{~Hz}, 0.27 \mathrm{H}), 6.07(\mathrm{~d}, J=5.6$ $\mathrm{Hz}, 0.23 \mathrm{H}), 5.34-2.31(\mathrm{~m}, 0.21 \mathrm{H}), 5.22-5.20(\mathrm{~m}, 1.00 \mathrm{H}), 3.02(\mathrm{~s}, 0.97 \mathrm{H}), 2.51(\mathrm{~s}$, 0.20 H), 2.45 (d, $J=11.8 \mathrm{~Hz}, 0.23 \mathrm{H}), 2.38(\mathrm{dd}, J=11.8,2.6 \mathrm{~Hz}, 0.24 \mathrm{H}), 2.06$ (dd, $J=$ $11.5,2.7 \mathrm{~Hz}, 1.03 \mathrm{H}), 1.73$ (dd, $J=11.6,1.1 \mathrm{~Hz}, 1.04 \mathrm{H})$.
${ }^{13}$ C NMR (100 MHz , Chloroform- d) δ 149.0, 148.7, 143.8, 143.8, 141.0, 140.8, 140.7, $140.4,140.0,139.9,133.0,132.9,132.5,132.2,131.1,130.4,129.4,125.5,124.4,124.2$, $124.0,115.8,115.4,109.7,108.9,81.2,81.2,80.7,80.5,77.3,77.2,42.0,39.0$.
HRMS-ESI (m / z): calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 296.0923$; found: 296.0915.

1m
The above compound was prepared by following the same procedure as that for $\mathbf{1 a}$. Purification by silica gel chromatography, eluting with ethyl acetate/petroleum ether $=$ $1 / 3$ to afford the desired product $\mathbf{1 m}$ and its epimer (60% yield).
The major (brown oil): ${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.33$ - 7.29 (m, 2H), 7.20 (dd, $J=7.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{td}, J=7.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{td}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H})$, 6.69 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.33$ - 6.29 (m, 1H), 6.16 (d, $J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.10$ (dd, $J=$ 5.7, 2.3 Hz, 1H), $4.49-4.48(\mathrm{~m}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 1 \mathrm{H}), 3.43(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.18(\mathrm{~s}$, $1 \mathrm{H}), 2.05(\mathrm{dd}, J=14.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.92(\mathrm{dd}, J=14.1,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.18(\mathrm{t}, J=7.0 \mathrm{~Hz}$, 3H).
${ }^{13}$ C NMR (100 MHz , Chloroform- d) δ 148.3, 142.9, 139.1, 138.1, 134.2, 133.7, 129.9, 129.1, 124.1, 120.0, 110.5, 109.6, 83.8, 82.1, 80.8, 64.3, 39.5, 15.4.

HRMS-ESI (m / z) : calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 298.1443$; found: 298.1441 .

Condition 1: To a solution of $\mathbf{1 a}(0.1 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(1 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added trifluoroacetic acid ($8 \mu \mathrm{~L}, 0.1 \mathrm{mmol}$). The reaction was stirred for 12 h at $0^{\circ} \mathrm{C}$. The mixture was concentrated under reduced pressure and purified by silica gel chromatography, eluting with ethyl acetate/petroleum ether $=1 / 10$ to afford the desired product $\mathbf{2 a}$ and $\mathbf{3 a}(78 \%$ yield, $\mathbf{2 a}: \mathbf{3 a}=3: 1)$.
Condition 2: To a solution of $\mathbf{1 a}(0.1 \mathrm{mmol})$ in 1,2 -dichloroethane $(1 \mathrm{~mL})$ at RT was added $\mathbf{4 c}(20 \mathrm{mg}, 0.02 \mathrm{mmol})$. The reaction was stirred for 12 h at RT. The mixture was concentrated under reduced pressure and purified by silica gel chromatography, eluting with ethyl acetate/petroleum ether $=1 / 10$ to afford the desired product 2a and $\mathbf{3 a}(80 \%$ yield, 2a:3a $<1: 10$).

2 (white solid): ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.12(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.08$ (s, 1H), $7.48-7.39$ (m, 2H), $7.37-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.03$ (d, $J=7.1$ $\mathrm{Hz}, 1 \mathrm{H}), 3.29-3.18(\mathrm{~m}, 2 \mathrm{H}), 1.84(\mathrm{tt}, J=7.8,6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.59-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.01$ (t, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13}$ C NMR (100 MHz , Chloroform- d) $\delta 139.8,139.4,138.4,125.6,125.1,123.3,122.6$, 121.2, 120.1, 119.4, 110.4, 108.1, 34.2, 31.9, 22.9, 14.1.

HRMS-ESI (m / z): calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}: 224.1439$; found: 224.1432.
3a (white solid): ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.08$ (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.99 (s, 1H), $7.95(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.27-$ 7.17 (m, 3H), 2.91 (t, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.83-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.41$ (m, 2H), 0.99 (t, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13}$ C NMR (100 MHz , Chloroform- d) δ 139.3, 138.3, 125.6, 125.4, 124.6, 123.8, 123.0, 120.4, 119.5, 119.4, 117.9, 110.6, 31.7, 31.2, 22.7, 14.0.

HRMS-ESI $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}: 224.1439$; found: 224.1433.

Condition 1: Purification by silica gel chromatography, eluting with ethyl acetate/petroleum ether $=1 / 10$ to afford the desired product $\mathbf{2 b}$ and $\mathbf{3 b}(85 \%$ yield, $\mathbf{2 b}: \mathbf{3 b}=3: 1$).
Condition 2: Purification by silica gel chromatography, eluting with ethyl acetate/petroleum ether $=1 / 10$ to afford the desired product $\mathbf{2 b}$ and $\mathbf{3 b}(82 \%$ yield, $\mathbf{2 b}: \mathbf{3 b}<1: 10$).

2b (white solid): ${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.16$ (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$), 8.08 (s, 1H), $7.47-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.07$ (d, $J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.29(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.48(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (100 MHz , Chloroform- d) δ 139.7, 139.5, 125.8, 125.1, 123.3, 122.7, 121.1, 119.4, 119.0, 110.4, 108.2, 27.3, 14.1.

HRMS-ESI (m / z) : calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$: 196.1126; found: 196.1119.
3b (white solid): ${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.08$ (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.99 (s, 1H), $7.95(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.30$ $-7.15(\mathrm{~m}, 3 \mathrm{H}), 2.95(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.43(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (100 MHz , Chloroform- d) δ 139.4, 138.2, 125.9, 125.6, 124.4, 123.9, 123.0, 120.4, 119.7, 119.4, 117.9, 110.6, 24.2, 13.8.

HRMS-ESI $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}: 196.1126$; found: 196.1124 .

Condition 1: Purification by silica gel chromatography, eluting with ethyl acetate/petroleum ether $=1 / 10$ to afford the desired product $\mathbf{2 c}$ and $\mathbf{3 c}(75 \%$ yield, $\mathbf{2 c}: \mathbf{3 c}$ $=2.5: 1$).
Condition 2: The reaction was stirred for 12 h at $50^{\circ} \mathrm{C}$. Purification by silica gel chromatography, eluting with ethyl acetate/petroleum ether $=1 / 10$ to afford the desired product $\mathbf{2 c}$ and $\mathbf{3 c}(60 \%$ yield, $\mathbf{2 c}: 3 \mathbf{c}<1: 10)$.

2c (white solid): ${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.91-7.85(\mathrm{~m}, 2 \mathrm{H}), 7.54$ (d, J $=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.06$ (dd, $J=8.9,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 2.86(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.82(\mathrm{~h}, J=$ $7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.04(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (100 MHz , Chloroform- d) $\delta 153.8,139.2,134.2,125.4,124.6,124.2,123.0$, 119.2, 117.9, 114.9, 111.3, 103.1, 56.0, 33.5, 22.7, 14.2.

HRMS-ESI $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 240.1388$; found: 240.1383.
3c (white solid): ${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.96$ (s, 1H), 7.62 (d, $J=2.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.33$ (dd, $J=13.8,8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.08(\mathrm{dd}, J=8.9,2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.99$ (d, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.94$ (s, 3H), $3.23-3.14$ (m, 2H), 1.89 (h, $J=7.4 \mathrm{~Hz}$, $2 \mathrm{H}), 1.12$ ($\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13}$ C NMR (100 MHz , Chloroform- d) δ 153.6, 140.7, 138.1, 134.4, 125.6, 123.7, 121.2, $119.8,113.6,110.8,108.4,106.4,56.1,36.5,23.0,14.3$.
HRMS-ESI (m / z): calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 240.1388$; found: 240.138 .

Condition 1: Purification by silica gel chromatography, eluting with ethyl acetate/petroleum ether $=1 / 4$ to afford the desired product $\mathbf{2 d}$ and $\mathbf{3 d}$ (68% yield, $\mathbf{2 d}: \mathbf{3 d}$ $=3.5: 1$).
Condition 2: The reaction was stirred for 12 h at $50{ }^{\circ} \mathrm{C}$. Purification by silica gel chromatography, eluting with ethyl acetate/petroleum ether $=1 / 4$ to afford the desired product $\mathbf{2 d}$ and $\mathbf{3 d}$ (61% yield, $\mathbf{2 d : 3 d}<1: 10$).

2d (yellow solid): ${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.10$ (s, 1H), $7.99-7.93$ (m, $2 \mathrm{H}), 7.70(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{td}, J=7.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{td}, J=7.6,1.4 \mathrm{~Hz}$, 1H), $7.45-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.28$ (m, 2H), $7.23-7.19$ (m, 1H), $6.97-6.95$ (m, $1 \mathrm{H}), 5.43(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{q}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.48(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13}$ C NMR (100 MHz , Chloroform- d) $\delta 147.5,140.0,139.5,133.5,133.2,132.5,132.4$, 130.9, 126.0, 125.6, 125.2, 122.5, 122.1, 121.0, 119.8, 110.7, 109.6, 43.2, 34.3.

HRMS-ESI (m / z): calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 396.1018$; found: 396.1014.
3d (yellow solid): ${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.40$ (s, 1H), 8.01 (d, $J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.97-7.88(\mathrm{~m}, 2 \mathrm{H}), 7.68-7.62(\mathrm{~m}, 1 \mathrm{H}), 7.56-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.39(\mathrm{~m}$, $2 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.18-7.09(\mathrm{~m}, 2 \mathrm{H}), 5.61(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{q}, J=6.8$ $\mathrm{Hz}, 2 \mathrm{H}), 3.20(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, Chloroform-d) $\delta 147.5,139.5,138.5,133.5,133.3,132.7,130.3$, 126.0, 126.0, 125.2, 123.5, 120.3, 119.7, 119.6, 119.6, 119.2, 110.9, 44.0, 32.7.

HRMS-ESI $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 396.1018$; found: 396.1015 .

Condition 1: Purification by silica gel chromatography, eluting with ethyl acetate/petroleum ether $=1 / 20$ to afford the desired product $\mathbf{2 e}$ and $\mathbf{3 e}$ (70% yield, $\mathbf{2 e}: \mathbf{3 e}$ $=2.7: 1$).
Condition 2: The reaction was stirred for 12 h at $50^{\circ} \mathrm{C}$. Purification by silica gel chromatography, eluting with ethyl acetate/petroleum ether $=1 / 20$ to afford the desired product $\mathbf{2 e}$ and $\mathbf{3 e}$ (60% yield, $\mathbf{2 e}: 3 \mathbf{e}<1: 10$).

2e (colorless oil): ${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.16-8.07$ (m, 2H), 7.46 $7.39(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.25(\mathrm{~m}, 7 \mathrm{H}), 7.29-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.60$ (s, 2H), $3.96-3.91(\mathrm{~m}, 2 \mathrm{H}), 3.59(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13}$ C NMR (100 MHz, Chloroform- d) δ 139.8, 139.5, 138.4, 133.8, 128.4, 127.7, 127.6, 125.7, 125.3, 123.1, 122.4, 121.6, 120.8, 119.6, 110.5, 108.8, 73.1, 69.8, 34.8 .

HRMS-ESI (m / z): calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 302.1545$; found: 302.1543.
3e (colorless oil): ${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 9.29$ ($\mathrm{s}, 1 \mathrm{H}$), $8.13-8.06$ (m, 1 H), 8.01 (dd, $J=7.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.31$ (m, 6H), $7.27-7.15$ (m, 4H), 4.57 (s, $2 \mathrm{H}), 4.09-3.85(\mathrm{~m}, 2 \mathrm{H}), 3.27(\mathrm{t}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13}$ C NMR (100 MHz , Chloroform- d) $\delta 139.7$, 137.7, 128.6, 128.1, 128.0, 126.5, 125.5, 123.6, 123.4, 123.1, 120.2, 119.1, 119.0, 118.7, 110.9, 73.7, 72.1, 34.1.

HRMS-ESI $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 302.1545$; found: 302.1543.

Condition 1: Purification by silica gel chromatography, eluting with ethyl acetate/petroleum ether $=1 / 10$ to afford the desired product $\mathbf{2 f}(87 \%$ yield $)$ as a white solid.
${ }^{1}$ H NMR (400 MHz , Chloroform- d) $\delta 8.06$ (s, 1H), $7.71-7.65$ (m, 2H), $7.61-7.46$ (m, 5H), $7.43-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.16(\mathrm{dd}, J=7.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.06-7.00(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13}$ C NMR (100 MHz , Chloroform- d) $\delta 141.2,139.8,139.7,137.7,129.2,128.4,127.5$, 125.6, 125.6, 122.9, 122.4, 121.1, 120.7, 119.0, 110.4, 109.5 .

HRMS-ESI (m / z) : calcd for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}: 244.1126$; found: 244.1121.

2 g
Condition 1: Purification by silica gel chromatography, eluting with ethyl acetate/petroleum ether $=1 / 10$ to afford the desired product $\mathbf{2 g}(82 \%$ yield $)$ as a white solid.
${ }^{1}$ H NMR (400 MHz , Chloroform- d) $\delta 8.16(\mathrm{~s}, 1 \mathrm{H}), 7.60-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.47$ $(\mathrm{m}, 3 \mathrm{H}), 7.48-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.38-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.08(\mathrm{dd}, \mathrm{J}=6.1,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.05$ $-7.01(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13}$ C NMR (100 MHz , Chloroform- d) $\delta 139.8,139.7,139.6,136.3,133.4,130.5,128.6$, $125.8,125.6,122.6,122.2,121.0,120.6,119.1,110.5,109.8$.
HRMS-ESI $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{ClN}[\mathrm{M}+\mathrm{H}]^{+}: 278.0737$; found: 278.0736.

Condition 1: Purification by silica gel chromatography, eluting with ethyl acetate/petroleum ether $=1 / 10$ to afford the desired product $\mathbf{2 h}(88 \%$ yield) as a colorless oil.
${ }^{1}$ H NMR (400 MHz , Chloroform-d) $\delta 8.12(\mathrm{~s}, 1 \mathrm{H}), 7.57(\mathrm{dt}, J=8.1,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.50$ $-7.34(\mathrm{~m}, 5 \mathrm{H}), 7.28-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.15(\mathrm{dd}, J=7.1,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.09-6.99(\mathrm{~m}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (100 MHz , Chloroform- d) δ 159.5, 142.6, 139.7, 139.6, 137.5, 129.4, 125.7, $125.5,122.8,122.5,121.6,120.9,120.6,119.0,114.3,113.5,110.4,109.6,55.3$.
HRMS-ESI $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 274.1232$; found: 274.1231.

Condition 1: Purification by silica gel chromatography, eluting with ethyl acetate/petroleum ether $=1 / 10$ to afford the desired product $\mathbf{2 i}(78 \%$ yield $)$ as a white solid.
${ }^{1}$ H NMR (400 MHz , Chloroform- d) $\delta 8.13$ (s, 1H), $7.55-7.48$ (m, 3H), $7.48-7.34$ (m, 5H), 7.09 (dd, $J=6.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.05-7.01(\mathrm{~m}, 1 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (100 MHz , Chloroform- d) $\delta 139.8,139.8,139.7,136.6,136.0,133.6,131.7$, 129.0, 127.9, 125.8, 125.6, 122.8, 122.3, 121.0, 120.6, 119.2, 110.5, 109.7, 20.1.

HRMS-ESI $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{ClN}[\mathrm{M}+\mathrm{H}]^{+}: 292.0893$; found: 292.0901.

2j

Condition 1: Purification by silica gel chromatography, eluting with ethyl acetate/petroleum ether $=1 / 10$ to afford the desired product $\mathbf{2 j}(89 \%$ yield $)$ as a white solid.
${ }^{1}$ H NMR (400 MHz , Chloroform- d) $\delta 8.00(\mathrm{~s}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.59-$ 7.31 (m, 6H), $7.16-6.90(\mathrm{~m}, 3 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (100 MHz , Chloroform- d) $\delta 153.1,141.0,140.5,137.6,134.5,129.3,128.2$, $127.5,125.5,123.3,120.7,120.5,114.8,111.0,109.7,105.2,55.5$.
HRMS-ESI $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 274.1232$; found: 274.1228.

Condition 1: Purification by silica gel chromatography, eluting with ethyl acetate/petroleum ether $=1 / 10$ to afford the desired product $\mathbf{2 k}(75 \%$ yield $)$ as a yellow soil.
${ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta 8.16-8.09$ (m, 2H), $8.06-7.98$ (m, 2H), $7.97-$ $7.92(\mathrm{~m}, 1 \mathrm{H}), 7.82(\mathrm{dd}, J=8.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.52(\mathrm{dd}, J=8.1,6.5$ $\mathrm{Hz}, 2 \mathrm{H}), 7.48-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.27-7.22(\mathrm{~m}, 1 \mathrm{H}), 6.96$ (ddd, $J=8.1,6.9,1.2 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{13}$ C NMR (100 MHz , Chloroform- d) $\delta 139.9$, 139.7, 138.8, 137.6, 133.5, 132.8, 128.2, $127.8,127.8,127.7,126.2,126.0,125.7,122.9,122.5,121.4,120.9,119.1,110.4,109.6$. HRMS-ESI (m / z): calcd for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}: 294.1283$; found: 294.1283.

21
Condition 1: Purification by silica gel chromatography, eluting with ethyl acetate/petroleum ether $=1 / 3$ to afford the desired product 21 (89% yield) as a yellow solid.
${ }^{1}$ H NMR (400 MHz , Chloroform-d) $\delta 8.86-8.54(\mathrm{~m}, 1 \mathrm{H}), 8.54(\mathrm{~s}, 1 \mathrm{H}), 7.87(\mathrm{td}, J=$ $7.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{dt}, J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.57(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.27(\mathrm{~m}$, $6 \mathrm{H}), 7.04-7.00(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13}$ C NMR (100 MHz , Chloroform- d) $\delta 159.5,149.4,140.1,139.9,136.5,136.0,125.7$, $125.5,124.2,122.7,122.4,122.4,121.0,120.4,118.9,110.8,110.5$.
HRMS-ESI (m / z): calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}:$245.1079; found: 245.1077.

2m
Condition 1: Purification by silica gel chromatography, eluting with ethyl acetate/petroleum ether $=1 / 5$ to afford the desired product $\mathbf{2 m}(64 \%$ yield) as a brown oil.
${ }^{1}$ H NMR (400 MHz , Chloroform- d) $\delta 8.12$ ($\mathrm{s}, 1 \mathrm{H}$), $7.96(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.72 (s, $1 \mathrm{H}), 7.64(\mathrm{t}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.36(\mathrm{~m}, 4 \mathrm{H}), 7.17-7.08(\mathrm{~m}, 2 \mathrm{H}), 6.79(\mathrm{dd}, J=$ $1.8,0.9 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13}$ C NMR (100 MHz , Chloroform- d) $\delta 142.8,140.0,139.9,139.6,128.1,125.7,125.6$, $125.4,123.0,122.5,121.4,121.3,119.2,112.2,110.4,109.8$.
HRMS-ESI $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 234.0919$; found: 234.0922.

The corresponding compound $7(0.3 \mathrm{mmol})$ was dissolved in pyridine (3.0 mL), followed by the addition of PDC (1.5 mmol). Then, the reaction mixture was stirred for 10 h at $100^{\circ} \mathrm{C}$. After completion, the reaction solution was concentrated under reduced pressure. The crude products were purified by silica gel chromatography, eluting with ethyl acetate/petroleum ether $=1 / 5$ to afford the desired product $\mathbf{8}(55 \%$ yield $)$ as a yellow solid.
${ }^{\mathbf{1}} \mathbf{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.31(\mathrm{~s}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{t}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.21(\mathrm{dd}, J=15.1,6.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.48(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{~d}, J=17.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.70(\mathrm{~d}, J=17.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.50(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.1,196.0,158.4,150.1,138.1,136.1,124.8,123.7$, 121.8, 117.1, 83.8, 74.8, 43.3, 28.1.

HRMS-ESI (m / z) : calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{NO}_{4}[\mathrm{M}-\mathrm{H}]^{+}: 298.1079$; found: 298.1083.

The above compound 7a was prepared by following the same procedure as that for $\mathbf{8 a}$. Purification by silica gel chromatography, eluting with ethyl acetate/petroleum ether $=$ $1 / 5$ to afford the desired product 8 a (51% yield) as a white solid.
${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.30(\mathrm{~s}, 1 \mathrm{H}), 7.39-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=5.9 \mathrm{~Hz}$, $2 \mathrm{H}), 6.50(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 2.93(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{~d}, J=17.8$ $\mathrm{Hz}, 1 \mathrm{H}), 1.52$ (s, 9H).
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.1,195.9,158.5,156.3,150.0,136.0,127.4,122.5$, 118.3, 105.1, 83.5, 75.1, 55.8, 43.3, 28.1.

HRMS-ESI (m / z): calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 330.1341$; found: 330.1346.

To a solution of $\mathbf{8}(90 \mathrm{mg}, 0.30 \mathrm{mmol})$ in THF $(3.0 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ under N_{2} were added LiHMDS ($0.35 \mathrm{~mL}, 0.45 \mathrm{mmol}, 1.3 \mathrm{M}$ in THF), and then PhLi ($0.23 \mathrm{~mL}, 0.45 \mathrm{mmol}$, 2.0 M in dibutyl ether). The mixture was stirred for 2 h . After completion, the reaction was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with ethyl acetate (3×20 mL). The combined organic layers were dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The crude residue was purified by silica gel chromatography, eluting with ethyl acetate/dichloromethane/petroleum ether $=1 / 3 / 2$ to yield the desired product $\mathbf{5 a}(70 \mathrm{mg}, 80 \%$ yield) as a yellow oil. Only one epimer was generated. The stereochemistry should be analogous to that of $\mathbf{1 a}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.02(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.32$ $(\mathrm{s}, 5 \mathrm{H}), 7.21(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.78$ (d, $J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{~d}, J=18.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{~s}, 1 \mathrm{H}), 2.91(\mathrm{~d}, J=18.7 \mathrm{~Hz}, 1 \mathrm{H})$, 1.46 ($\mathrm{s}, 9 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 207.4,160.7,151.9,142.7,139.5,133.1,132.2,130.5$, 128.3, 126.9, 124.9, 123.7, 116.3, 83.6, 82.9, 80.2, 39.9, 28.3.

HRMS-ESI (m / z): calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{NO}_{4}[\mathrm{M}-\mathrm{H}]^{+}: 376.1549$; found: 376.1556.

8

5b

To a solution of $\mathbf{8}(90 \mathrm{mg}, 0.30 \mathrm{mmol})$ in THF $(3.0 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ under N_{2} was added LiHMDS ($0.35 \mathrm{~mL}, 0.45 \mathrm{mmol}, 1.3 \mathrm{M}$ in THF). The reaction was stirred for 1 h , and then 3-OMePhLi [made by the treatment of 1-bromo-3-methoxybenzene (0.45 mmol) in THF with n-BuLi $(0.4 \mathrm{mmol})$ at $\left.-78^{\circ} \mathrm{C}\right]$ was added. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 2 h . The reaction was quenched with saturated ammonium chloride and extracted
with ethyl acetate $(3 \times 20 \mathrm{~mL})$. The combined organic layers were dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The crude residue was purified by silica gel chromatography, eluting with ethyl acetate/dichloromethane/petroleum ether $=1 / 3 / 2$ to afforded the desired product $\mathbf{5 b}$ ($86 \mathrm{mg}, 75 \%$ yield) as a colorless oil.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.05(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.25$ (dd, $J=10.3,5.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}), 6.91-6.79(\mathrm{~m}, 3 \mathrm{H})$, 5.84 (d, $J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.32(\mathrm{~d}, J=18.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{~d}, J=18.7 \mathrm{~Hz}$, 1 H), 2.74 ($\mathrm{s}, 1 \mathrm{H}$), 1.49 ($\mathrm{s}, 9 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 207.2,160.2,159.5,151.8,142.7,141.0,132.9,132.3$, 130.6, 129.3, 124.8, 123.7, 119.4, 116.4, 113.4, 113.1, 83.6, 82.9, 80.2, 55.3, 39.7, 28.3. HRMS-ESI (m / z): calcd for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{NO}_{5}[\mathrm{M}-\mathrm{H}]^{+}: 406.1654$; found: 406.1666.

The above compound was prepared by following the same procedure as that for $\mathbf{5 b}$. Purification by silica gel chromatography (ethyl acetate/ dichloromethane /petroleum ether $=1 / 3 / 2)$ afforded $\mathbf{5 c}(70 \%$ yield $)$ as a yellow oil.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.01(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{dd}, J=11.5,4.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.29(\mathrm{~s}, 1 \mathrm{H}), 7.12(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~s}, 2 \mathrm{H}), 5.84(\mathrm{~d}, J$ $=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 6 \mathrm{H}), 3.30(\mathrm{~d}, J=18.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{~s}, 1 \mathrm{H}), 2.91$ (d, $J=18.6 \mathrm{~Hz}, 1 \mathrm{H}$), 1.46 (s, 9H).
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 207.3,160.6,152.9,151.8,142.6,137.8,135.2,132.8$, $132.1,130.6,124.8,123.7,116.4,104.4,83.8,82.9,80.1,60.8,56.2,40.0,28.3$.
HRMS-ESI (m / z) : calcd for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{NO}_{7}[\mathrm{M}-\mathrm{H}]^{+}: 466.1866$; found: 466.1873.

5d
The above compound was prepared by following the same procedure as that for $\mathbf{5 b}$. Purification by silica gel chromatography (ethyl acetate/ dichloromethane /petroleum ether $=1 / 3 / 2)$ afforded $\mathbf{5 d}(70 \%$ yield $)$ as a yellow oil.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.03(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.28(\mathrm{t}, J$ $=4.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{dd}, J=7.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{td}, J=7.4,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J$ $=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{~d}, J=18.7 \mathrm{~Hz}$, $1 \mathrm{H}), 2.98(\mathrm{~s}, 1 \mathrm{H}), 2.94(\mathrm{~d}, J=18.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 207.1,160.3,151.8,142.6,138.0,136.1,134.5,132.8$, $132.5,130.8,129.4,128.8,125.9,124.7,123.8,116.4,83.3,83.0,80.2,39.9,28.3,20.3$. HRMS-ESI $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{ClNO}_{4}[\mathrm{M}-\mathrm{H}]^{+}: 424.1316$; found: 424.1324.

5e
The above compound was prepared by following the same procedure as that for $\mathbf{5 b}$. Purification by silica gel chromatography (ethyl acetate/ dichloromethane /petroleum ether $=1 / 3 / 2)$ afforded $\mathbf{5 e}(43 \%$ yield $)$ as a yellow oil.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.04(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~s}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=3.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.18-7.06(\mathrm{~m}, 3 \mathrm{H}), 6.75-6.67(\mathrm{~m}, 1 \mathrm{H}), 5.79-5.65(\mathrm{~m}, 1 \mathrm{H}), 3.32(\mathrm{~d}, J=$ $18.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.97 (d, $J=18.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{~s}, 1 \mathrm{H}), 1.47$ (s, 9H), 1.26 (s, 18H).
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.4,167.0,151.8,140.2,135.9,134.8,128.5,127.6$, $124.8,123.5,121.4,120.7,120.6,113.5,85.4,73.7,50.0,35.5,31.5,28.0$.
HRMS-ESI (m / z): calcd for $\mathrm{C}_{31} \mathrm{H}_{39} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 490.2957$; found: 490.2959.

5f
The above compound was prepared by following the same procedure as that for $\mathbf{5 b}$. Purification by silica gel chromatography (ethyl acetate/ dichloromethane /petroleum ether $=1 / 3 / 2)$ afforded $\mathbf{5 f}(72 \%$ yield $)$ as a yellow oil.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.09(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.88-7.74(\mathrm{~m}, 4 \mathrm{H}), 7.54-$ $7.48(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.38(\mathrm{dd}, J=10.7,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 1 \mathrm{H})$, 7.15 (td, $J=7.5,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.75(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.40$ (d, $J=18.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{~d}, J=18.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{~s}, 1 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 207.0,151.8,136.7,133.0,133.0,132.8,132.6,130.8$, 128.5, 128.1, 127.6, 126.7, 126.5, 126.4, 124.9, 124.6, 123.8, 116.6, 83.8, 83.0, 80.4, 39.8, 28.3 .

HRMS-ESI $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{NO}_{4}[\mathrm{M}-\mathrm{H}]^{+}: 426.1705$; found: 426.1705.

$5 g$
The above compound was prepared by following the same procedure as that for $\mathbf{5 b}$. Purification by silica gel chromatography (ethyl acetate/ dichloromethane /petroleum ether $=1 / 3 / 2)$ afforded $\mathbf{5 g}(71 \%$ yield) as a yellow oil.
${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.94(\mathrm{~s}, 1 \mathrm{H}), 7.40-7.29(\mathrm{~m}, 5 \mathrm{H}), 6.93(\mathrm{~d}, J=9.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.78(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~s}, 1 \mathrm{H}), 5.79(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.27$ (d, $J=18.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.93$ (d, $J=18.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 207.2,160.3,156.2,151.9,139.1,136.2,134.1,132.2$, $128.4,128.3,126.9,117.3,116.2,109.9,83.7,82.6,80.3,55.8,39.9,28.3$.
HRMS-ESI (m / z) : calcd for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{NO}_{5}[\mathrm{M}-\mathrm{H}]^{+}: 406.1654$; found: 406.1648 .

5h
The above compound was prepared by following the same procedure as that for $\mathbf{5 a}$. Purification by silica gel chromatography (ethyl acetate/ dichloromethane /petroleum ether $=1 / 3 / 2$) afforded $\mathbf{5 h}(65 \%$ yield $)$ as a colorless oil.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.83(\mathrm{~s}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.28(\mathrm{~m}$, $2 \mathrm{H}), 7.08(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{~d}, J=17.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.61$ (d, $J=17.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.04-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.51(\mathrm{~s}, 9 \mathrm{H}), 0.94(\mathrm{t}, J$ $=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 206.1,161.5,151.9,133.9,133.2,132.8,129.7,123.8$, 123.0, 115.6, 82.7, 82.4, 79.3, 42.2, 30.7, 28.3, 7.6.

HRMS-ESI $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NO}_{4}[\mathrm{M}-\mathrm{H}]^{+}: 328.1549$; found: 328.1532.

$5 i$
The above compound was prepared by following the same procedure as that for $\mathbf{5 a}$. Purification by silica gel chromatography (ethyl acetate/ dichloromethane /petroleum ether $=1 / 3 / 2$) afforded $\mathbf{5 i}(70 \%$ yield $)$ as a colorless oil.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.79(\mathrm{~s}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H})$, $3.40(\mathrm{~s}, 1 \mathrm{H}), 3.06(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.85(\mathrm{dd}, J=17.3$, $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.50(\mathrm{~s}, 9 \mathrm{H}), 1.37-1.15(\mathrm{~m}, 5 \mathrm{H}), 0.85(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 206.4,162.4,152.0,140.7,133.2,132.9,129.5,124.0$, $122.9,115.4,82.6,82.5,79.4,42.5,38.0,28.3,25.1,23.0,13.9$.
HRMS-ESI (m / z) : calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{NO}_{4}[\mathrm{M}-\mathrm{H}]^{+}: 356.1832$; found: 356.1852.

6a
To a solution of $\mathbf{5 a}(0.1 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(1 \mathrm{~mL})$ at RT was added TFA $(0.1 \mathrm{~mL}, 10$ $\mathrm{vol} \%$). The reaction was stirred for 12 h at RT. The mixture was concentrated under reduced pressure and purified by silica gel chromatography, eluting with ethyl acetate/petroleum ether $=1 / 3$ to afford the desired product $\mathbf{6 a}(83 \%$ yield) as a brown oil.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.05(\mathrm{~s}, 1 \mathrm{H}), 7.67-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.46(\mathrm{~m}, 3 \mathrm{H})$, $7.38(\mathrm{dd}, J=7.5,6.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{dd}, J=7.1,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.02-6.93(\mathrm{~m}, 1 \mathrm{H}), 6.89$ (d, $J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.3,141.3,140.7,139.8,138.8,129.0,128.4,127.7$, 124.6, 123.1, 121.4, 119.2, 115.2, 110.2, 110.2, 95.6.

HRMS-ESI $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 260.1071$; found: 260.1075 .

The above compound was prepared by following the same procedure as that for $\mathbf{6 a}$. Purification by silica gel chromatography (ethyl acetate/petroleum ether $=1 / 3$) afforded $\mathbf{6 b}$ (72% yield) as a colorless oil.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.05(\mathrm{~s}, 1 \mathrm{H}), 7.46-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.36(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.14(\mathrm{~m}, 1 \mathrm{H}), 7.03$ (dd, $J=$ $8.3,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.00-6.94(\mathrm{~m}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H})$, 4.97 ($\mathrm{s}, 1 \mathrm{H}$), 3.86 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.6,154.2,142.0,141.3,139.8,138.6,129.5,124.6$, 123.1, 121.6, 121.5, 119.2, 115.1, 114.1, 113.8, 110.1, 110.1, 95.7, 55.4.

HRMS-ESI (m / z) : calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 290.1811; found: 290.1811.

6c
The above compound was prepared by following the same procedure as that for $\mathbf{6 a}$. Purification by silica gel chromatography (ethyl acetate/petroleum ether $=1 / 3$) afforded 6c (75% yield) as a brown oil.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.16(\mathrm{~s}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.29(\mathrm{~m}$, $2 \mathrm{H}), 7.01(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~s}, 1 \mathrm{H}), 6.85(\mathrm{~s}, 2 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 4.01(\mathrm{~s}, 3 \mathrm{H}), 3.86$ ($\mathrm{s}, 6 \mathrm{H}$).
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.5,153.1,141.4,139.8,138.5,137.4,137.4,136.4$, 124.6, 123.0, 121.5, 119.2, 110.3, 110.1, 106.1, 95.8, 61.1, 56.2

HRMS-ESI (m / z): calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 350.1392$; found: 350.1389.

6d
The above compound was prepared by following the same procedure as that for $\mathbf{6 a}$. Purification by silica gel chromatography (ethyl acetate/petroleum ether $=1 / 3$) afforded 6d (61\% yield) as a yellow oil.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.04(\mathrm{~s}, 1 \mathrm{H}), 7.51-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.32(\mathrm{~m}, 3 \mathrm{H})$, $7.32-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.02-6.94(\mathrm{~m}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=2.2 \mathrm{~Hz}$, 1H), 2.46 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.3,141.3,139.8,137.6,136.4,136.1,133.8,131.5$, 129.1, 127.8, 124.7, 123.0, 121.3, 119.3, 115.0, 110.2, 110.1, 95.8, 20.1.

HRMS-ESI $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{ClNO}[\mathrm{M}+\mathrm{H}]^{+}: 308.0842$; found: 308.0840.

The above compound was prepared by following the same procedure as that for $\mathbf{6 a}$. Purification by silica gel chromatography (ethyl acetate/petroleum ether $=1 / 3$) afforded 6e (74% yield) as a brown oil.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.04(\mathrm{~s}, 1 \mathrm{H}), 7.54-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=1.8 \mathrm{~Hz}$, $2 \mathrm{H}), 7.44(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.29-7.25(\mathrm{~m}, 1 \mathrm{H}), 6.96-6.89(\mathrm{~m}$, $1 \mathrm{H}), 6.85(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~s}, 1 \mathrm{H}), 1.38(\mathrm{~s}, 18 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.3,150.7,141.4,139.9,139.8,139.6,124.5,123.5$, 123.2, 121.8, 121.4, 119.0, 115.2, 110.2, 110.1, 95.3, 60.5, 35.0, 31.6, 21.1, 14.2.

HRMS-ESI $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 372.2327$; found: 372.2323.

The above compound was prepared by following the same procedure as that for $\mathbf{6 a}$. Purification by silica gel chromatography (ethyl acetate/petroleum ether $=1 / 3$) afforded 6 (81% yield) as a brown oil.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.12-8.03(\mathrm{~m}, 2 \mathrm{H}), 8.02-7.94(\mathrm{~m}, 2 \mathrm{H}), 7.93-7.88$ $(\mathrm{m}, 1 \mathrm{H}), 7.76(\mathrm{dd}, J=8.4,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.36(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H})$, $7.30-7.27(\mathrm{~m}, 1 \mathrm{H}), 6.95-6.86(\mathrm{~m}, 2 \mathrm{H}), 6.73(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.4,141.4,139.9,138.6,138.2,133.5,132.9,128.2$, $127.9,127.8,127.7,127.5,126.3,126.1,124.6,123.1,121.5,119.3,115.3,110.5,110.2$, 95.8.

HRMS-ESI $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 310.1232$; found: 310.1231.

6 g

The above compound was prepared by following the same procedure as that for $\mathbf{6 a}$. Purification by silica gel chromatography (ethyl acetate/petroleum ether $=1 / 3$) afforded $\mathbf{6 g}(72 \%$ yield) as a colorless oil.
${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.91(\mathrm{~s}, 1 \mathrm{H}), 7.62-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.43(\mathrm{~m}, 3 \mathrm{H})$, $7.22(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~s}, 2 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H}), 3.61(\mathrm{~s}$, 3H).
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 154.3,153.3,142.1,140.5,138.7,134.6,129.1,128.3$, $127.8,123.6,115.1,113.2,110.7,109.8,104.8,100.0,95.7,55.6$.
HRMS-ESI (m / z) : calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 290.1181$; found: 290.1184 .

6h
The above compound was prepared by following the same procedure as that for $\mathbf{6 a}$. Purification by silica gel chromatography (ethyl acetate/petroleum ether $=1 / 3$) afforded 6h (46\% yield) as a light yellow solid.
${ }^{1} \mathbf{H ~ N M R ~}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.01-7.86(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.15(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H}), 6.51(\mathrm{~s}, 1 \mathrm{H}), 3.12(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.36(\mathrm{t}, J=7.5 \mathrm{~Hz}$, 3H).
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 153.6,140.1,140.0,138.5,123.0,122.4,120.6,118.5$, 114.3, 109.1, 107.1, 93.1, 26.1, 12.8.

HRMS-ESI $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 212.1075$; found: 212.1070 .

$6 i$
The above compound was prepared by following the same procedure as that for $\mathbf{6 a}$. Purification by silica gel chromatography (ethyl acetate/petroleum ether $=1 / 3$) afforded $6 \mathbf{i}(51 \%$ yield) as a white solid.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.99(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{~s}, 1 \mathrm{H}), 7.41-7.31(\mathrm{~m}$, $2 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{~s}$, 1H), $3.19-3.09(\mathrm{~m}, 2 \mathrm{H}), 1.90-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.00(\mathrm{t}, J=7.3 \mathrm{~Hz}$, 3H).
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.4,141.2,139.8,139.7,139.6,138.5,124.1,121.6$, 119.6, 110.2, 109.2, 94.2, 34.0, 31.7, 22.8, 14.1 .

HRMS-ESI $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 240.1388$; found: 240.1386.

The compound $7(0.3 \mathrm{mmol})$ was dissolved in dimethyl carbonate: $\mathrm{DCM}=1 / 10$, followed by the addition of PIFA (0.45 mmol) and palladium acetate $(0.015 \mathrm{mmol}, 5$ $\mathrm{mol} \%$). The reaction mixture was stirred for overnight at RT. The crude products were purified by silica gel chromatography, eluting with ethyl acetate/petroleum ether $=1 / 10$ to afford the desired product 9 (51% yield) as a white solid. Only one epimer was generated. The relative stereochemistry was not assigned.
${ }^{1}$ H NMR (400 MHz , Chloroform- d) $\delta 8.27$ (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}$), $7.78-7.63(\mathrm{~m}, 2 \mathrm{H})$, $7.16(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.30-6.12(\mathrm{~m}, 2 \mathrm{H}), 5.88(\mathrm{dd}, J=5.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{dd}, J$ $=13.4,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{dd}, J=13.4,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.53(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13}$ C NMR (100 MHz , Chloroform- d) δ 198.1, 156.9 (q, ${ }^{2} J_{\mathrm{C}-\mathrm{F}}=42.4 \mathrm{~Hz}$), 153.3, 150.4, $137.8,136.7,131.7,124.5,123.5,121.2,117.0,114.4\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=285.9 \mathrm{~Hz}\right), 83.5,81.7$, 79.0, 39.5, 28.1.
${ }^{19}$ F NMR (376 MHz , Chloroform- d) δ-75.0.
HRMS-ESI (m / z): calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 398.1215$; found: 398.122.

To a solution of $9(44 \mathrm{mg}, 0.1 \mathrm{mmol})$ in THF $(1.0 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added $\mathrm{PhLi}(0.19$ $\mathrm{mL}, 0.3 \mathrm{mmol}, 1.6 \mathrm{M}$ in dibutyl ether). The reaction was stirred at $-78^{\circ} \mathrm{C}$ for 2 h . The reaction was then quenched with brine and extracted with ethyl acetate ($3 \times 3 \mathrm{~mL}$). The combined organic layers were dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The crude residue was purified by silica gel chromatography, eluting with ethyl acetate/petroleum ether $=1 / 2$ to afford the desired product 10a (36 $\mathrm{mg}, 95 \%$) as a white solid. Only one epimer was generated. The relative stereochemistry was not assigned.
${ }^{1}$ H NMR (400 MHz , Chloroform- d) $\delta 7.69(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.26(\mathrm{~m}, 6 \mathrm{H})$, $7.15(\mathrm{dd}, J=7.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{td}, J=7.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.66(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H})$, $5.26(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~s}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{dd}, J=16.0,7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 2.41(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 1 \mathrm{H}), 1.60(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13}$ C NMR (100 MHz , Chloroform-d) $\delta 152.0,142.3,139.0,136.5,134.4,132.1,130.1$, 127.8, 127.7, 127.6, 125.1, 123.2, 116.3, 86.4, 83.3, 82.9, 75.9, 28.5.

HRMS-ESI (m / z) : calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 380.1862$; found: 380.1841.

Computational methods and Results

(1) Computational methods

The calculations were performed with the Gaussian 16 program package ${ }^{[1]}$. The geometry optimizations of the substrates, products and transition states were performed using the M062X functional ${ }^{[2]}$ with Pople's $6-31 G(d)$ basis set ${ }^{[3]}$ for all atoms. Higher level of single point electronic energies for those structures were calculated at M062X/def2-TZVP ${ }^{[4]}$ level. The solvent effect in $\mathrm{CH}_{3} \mathrm{CN}$ and DCE was evaluated with the SMD method ${ }^{[5]}$. The vibrational harmonic frequencies and thermal corrections were calculated using the same level as the optimization; the former confirmed the optimized geometrical structures are the minima of PES, and transition states, the first order saddle points. Intrinsic reaction coordinate (IRC) calculations were performed for the identified
transition states to confirm the reaction path proceeding in both directions (reactant and product), in which the Hessian was recomputed every five predictor steps with a step size along the reaction path of 0.05 Bohr $^{[6]}$. All energies mentioned are solvated Gibbs free energies in $\mathrm{CH}_{3} \mathrm{CN}$. To determinie the cataytic form of TFA, we calculated the Gibbs free energy change of protonation reaction at the (SMD)-M062X/6-31G(d) level, in $\mathrm{CH}_{3} \mathrm{CN}$ solvent.
(2) Determine the catalytic form of the acid

Since TFA is a relatively strong acid and the dielectric constant of the solvent $\mathrm{CH}_{3} \mathrm{CN}$ is also relatively large. Therefore, it is necessary to determine whether TFA completely protonated the imine substrate. We calculated the Gibbs free energy change of protonation reaction.

Since the $\triangle G$ is positive, TFA should be in the form of hydrogen bonded complex.

Specics	Trifluoroacetat e	Sub1	ProSI-1	Sub2	ProSI-2
Optimization Level		(SMD)-M062X/6-31G(d)			
Electronic Energy Level					
Electronic					
Energy	-330163.09	-	-	-	
(kcal/mol)		799945.7	469763.3	753649.5	423467.7
		3	9	6	0
Imaginaries	0	0	0	0	0
Gsol(kcal/mol	-330164.57	-	-	-	-

Imaginaries	0	0
G Correction (kcal/mol)	154.39	176.55
Gsol $\left.^{(k c a l} / \mathbf{m o l}\right)$	-800102.02	-753769.47

Sub1

C	0.221338	1.437642	-0.412928
C	1.582917	1.446469	-0.728686
C	2.279336	2.640950	-0.757990
C	1.572564	3.820100	-0.494092
C	0.212537	3.790899	-0.178056
C	-0.495400	2.587313	-0.124631
H	3.342315	2.664746	-0.979289
H	2.092002	4.772317	-0.531290
H	-0.306829	4.720502	0.032341
H	-1.548923	2.532646	0.131395
C	2.034673	0.007306	-0.842978
N	-0.259057	0.102198	-0.461124

C	0.701522	-0.705995	-0.803600

C	2.838108	-0.424540	-2.037518

H	3.679551	0.197390	-2.329548

C $0.576256-2.066808-1.245739$

H	-0.284928	-2.665444	-0.970760

C	2.579015	-1.601471	-2.626170

H $\quad 3.190385$-1.954174 -3.450140
C $\quad 1.491752-2.465709 \quad-2.160232$
H 1.398306 -3.449739 -2.610108
C $2.774512-0.418887 \quad 0.479860$

C	2.500473	0.244473	1.680925

C 3.661911 -1.497593 0.490283
C $3.117009 \quad-0.155638 \quad 2.863915$

H	1.810333	1.081193	1.707315

C $4.279760-1.890985 \quad 1.675995$

H	3.885112	-2.036331	-0.423530

C $4.012455-1.222004 \quad 2.866749$

H	2.893813	0.375088	3.784427

H 4.973299 -2.726292 $\quad 1.661110$

H	4.496696	-1.528678	3.788762

H $\quad-1.319503-0.221602 \quad-0.349610$
$\begin{array}{llll}\text { O } & -2.648363 & -0.813932 & -0.257539\end{array}$
$\begin{array}{llll}\text { C } & -3.480817 & -0.004606 & 0.244514\end{array}$
$\begin{array}{llll}\text { O } & -3.333868 & 1.158805 & 0.609545\end{array}$

C	-4.889605	-0.627905	0.383647
F	-4.849874	-1.771393	1.086590
F	-5.755095	0.187319	0.993663
F	-5.400842	-0.926377	-0.823460

Sub2

C	-0.692383	-0.939882	-0.954782
C	-2.061037	-0.708269	-1.134316
C	-2.887306	-1.737671	-1.552792
C	-2.305614	-2.982680	-1.814528
C	-0.936148	-3.193968	-1.629494
C	-0.096869	-2.170595	-1.185811
H	-3.954808	-1.582915	-1.680736
H	-2.928884	-3.799520	-2.164511
H	-0.515682	-4.174068	-1.831751
H	0.967026	-2.308917	-1.019142
C	-2.342907	0.684443	-0.637562
N	-0.073749	0.257965	-0.523876
C	-0.959826	1.215395	-0.433291
C	-3.223292	1.655013	-1.357127
H	-4.156441	1.283342	-1.771316
C	-0.723316	2.612856	-0.248549
H	0.230884	2.972042	0.120441

C	-2.922929	2.965591	-1.330196

H	-3.595530	3.697592	-1.763987

$\begin{array}{llll}\text { C } & -1.694217 & 3.444661 & -0.709562\end{array}$

H	-1.534449	4.517953	-0.662128

H $\quad 0.994316 \quad 0.412676 \quad-0.365323$
$\begin{array}{llll}\text { C } & -3.013731 & 0.555105 & 0.811366\end{array}$
H
$\begin{array}{llll}\mathrm{H} & -3.093594 & 1.571051 & 1.212694\end{array}$
$\begin{array}{llll}\text { C } & -2.300359 & -0.351438 & 1.809051\end{array}$
$\begin{array}{llll}\mathrm{H} & -1.260201 & -0.028907 & 1.948439\end{array}$
$\begin{array}{llll}\mathrm{H} & -2.272425 & -1.381706 & 1.434880\end{array}$
$\begin{array}{llll}\text { C } & -3.013402 & -0.328827 & 3.162751\end{array}$
$\begin{array}{llll}\mathrm{H} & -3.035855 & 0.699703 & 3.543928\end{array}$
H $\quad-4.057915$-0.636164 3.026073
C $\begin{array}{llll}-2.336085 & -1.241707 & 4.180581\end{array}$
H $\quad-1.297030 \quad-0.937363 \quad 4.347866$
$\begin{array}{llll}\mathrm{H} & -2.853611 & -1.215816 & 5.144531\end{array}$
$\begin{array}{llll}\mathrm{H} & -2.327932 & -2.279669 & 3.830335\end{array}$
$\begin{array}{llll}\text { O } & 2.434343 & 0.827883 & -0.098190\end{array}$

C	3.188321	-0.183272	-0.072230
O	2.934460	-1.370992	-0.267924
C	4.655256	0.187381	0.254752
F	4.741042	0.848334	1.421888
F	5.169289	0.994086	-0.690367
F	5.454178	-0.880980	0.342978

TS1

C	0.156570	1.380957	-0.401426
C	1.522376	1.393472	-0.752609
C	2.224226	2.598771	-0.804851
C	1.549337	3.770197	-0.487101
C	0.194254	3.739847	-0.114829
C	-0.524980	2.553423	-0.068041
H	3.265141	2.627731	-1.111213
H	2.071316	4.720171	-0.533559
H	-0.307003	4.671118	0.131962
H	-1.574419	2.508795	0.206387
C	1.887910	-0.007187	-0.986575
N	-0.349792	0.094121	-0.482913
C	0.617537	-0.741277	-0.934760
C	3.030304	-0.680546	-1.555956
H	3.907116	-0.105141	-1.830407
C	0.511859	-2.030512	-1.408581

H $\quad-0.443598 \quad-2.544071 \quad-1.396825$
$\begin{array}{llll}\text { C } & 2.866817 & -1.997653 & -2.074358\end{array}$
H $\quad 3.717883$-2.476428 $\quad-2.543624$
$\begin{array}{llll}\text { C } & 1.653466 & -2.640019 & -1.978182\end{array}$
$\begin{array}{llll}\text { H } & 1.552008 & -3.642833 & -2.381327\end{array}$
C $3.056786-0.606007 \quad 0.239529$
C $2.657956-1.677079 \quad 1.046011$
C 4.0258420 .3006760 .682429
C $3.235347-1.830266 \quad 2.298140$
$\begin{array}{llll}\text { H } & 1.906185 & -2.382453 & 0.710077\end{array}$
C $4.5978950 .129305 \quad 1.937218$
$\begin{array}{llll}\text { H } & 4.349859 & 1.118941 & 0.049230\end{array}$
C $4.202167 \quad-0.930197 \quad 2.750133$
$\begin{array}{llll}\mathrm{H} & 2.919470 & -2.656112 & 2.927049\end{array}$
$\begin{array}{llll}\mathrm{H} & 5.357834 & 0.827204 & 2.272676\end{array}$
$\begin{array}{llll}\mathrm{H} & 4.643946 & -1.056640 & 3.733246\end{array}$
$\begin{array}{llll}\mathrm{H} & -1.363308 & -0.178767 & -0.406278\end{array}$
$\begin{array}{llll}\text { O } & -2.900221 & -0.810378 & -0.354124\end{array}$
$\begin{array}{llll}\text { C } & -3.633171 & 0.019995 & 0.237487\end{array}$
$\begin{array}{llll}\text { O } & -3.383127 & 1.145922 & 0.676415\end{array}$

C	-5.083520	-0.496706	0.420434
F	-5.105619	-1.653906	1.106541
F	-5.872196	0.364194	1.074813
F	-5.664515	-0.740277	-0.769133

TS2

C	0.148360	1.186216	-0.569891
C	1.510583	1.104343	-0.934755
C	2.275058	2.260404	-1.112560
C	1.654203	3.488870	-0.936348
C	0.293838	3.558575	-0.582438
C	-0.480473	2.421382	-0.392770
H	3.323248	2.193771	-1.389954
H	2.218332	4.405217	-1.075018
H	-0.166324	4.534093	-0.454395
H	-1.530194	2.462055	-0.119187
C	1.816595	-0.310412	-0.996671

N $\quad-0.387225 \quad-0.084733 \quad-0.443004$
$\begin{array}{llll}\text { C } & 0.569616 & -1.005254 & -0.745499\end{array}$
C 2.966021 -1.062065 -1.361544
$\begin{array}{llll}\text { H } & 3.867651 & -0.541006 & -1.664777\end{array}$
C $\quad 0.488256-2.378818 \quad-0.882762$
H $\quad-0.447441 \quad-2.898112 \quad-0.703555$
C $2.836775-2.455523-1.569747$
H $\quad 3.698028$-3.020544 -1.906366
C $\quad 1.631006 \quad-3.082921 \quad-1.310759$
H 1.550746 -4.156468 -1.449866
H $\quad-1.391329 \quad-0.321465 \quad-0.250631$
$\begin{array}{llll}\text { C } & 2.971132 & -0.787001 & 0.617181\end{array}$
$\begin{array}{llll}\mathrm{H} & 2.718879 & -1.816310 & 0.864209\end{array}$
$\begin{array}{llll}\mathrm{H} & 2.307351 & -0.083446 & 1.117794\end{array}$
C $4.414285-0.3849390 .779396$
$\begin{array}{llll}\mathrm{H} & 4.586363 & 0.590614 & 0.309416\end{array}$
H $5.078693-1.116682 \quad 0.310001$
C $4.717717-0.282514 \quad 2.282412$
$\begin{array}{llll}\mathrm{H} & 4.064101 & 0.473217 & 2.732660\end{array}$
$\begin{array}{llll}\text { H } & 4.487117 & -1.237949 & 2.767778\end{array}$
$\begin{array}{llll}\text { C } & 6.180583 & 0.081552 & 2.521069\end{array}$
$\begin{array}{llll}\mathrm{H} & 6.424246 & 1.042713 & 2.056347\end{array}$
$\begin{array}{llll}\mathrm{H} & 6.392769 & 0.158999 & 3.591517\end{array}$
$\begin{array}{llll}\mathrm{H} & 6.846979 & -0.677191 & 2.097813\end{array}$
$\begin{array}{llll}\text { O } & -2.934838 & -0.911985 & 0.035497\end{array}$

C	-3.683370	0.060592	0.297779
O	-3.445938	1.270609	0.352463
C	-5.138717	-0.378664	0.603259
F	-5.184172	-1.191957	1.675139
F	-5.668058	-1.064881	-0.426096
F	-5.959018	0.649025	0.854451

TS3

C	0.442386	1.614362	-0.163798
C	1.847510	1.719197	-0.300851
C	2.518751	2.895865	0.058196
C	1.767897	3.946995	0.550614
C	0.368482	3.824981	0.700468
C	-0.316266	2.671030	0.361182
H	3.596002	2.972666	-0.052912
H	2.253798	4.875265	0.831943
H	-0.189030	4.667392	1.099486
H	-1.387913	2.559017	0.489664
C	2.293331	0.466420	-0.856794
N	0.017993	0.376356	-0.586546
C	1.112633	-0.366089	-0.969093
C	3.465682	0.145875	-1.626459
H	4.348376	0.770034	-1.541198
C	1.082357	-1.463781	-1.922773
H	0.171759	-2.042363	-2.035041
C	3.393959	-0.889576	-2.502498
H	4.248892	-1.123362	-3.129088
C	2.197813	-1.696912	-2.651271
H	2.207445	-2.500259	-3.380599
C	2.014915	-0.955174	0.544761
C	1.459856	-0.537994	1.746664
C	2.890069	-2.028394	0.474187
C	1.785718	-1.232718	2.909264
H	0.774169	0.299713	1.805505
C	3.205418	-2.712693	1.646236
H	3.331118	-2.348680	-0.462344
C	2.658057	-2.317485	2.864130
H	1.348386	-0.915507	3.850382
H	3.885579	-3.556827	1.595570
H	2.910597	-2.851960	3.774281
H	-0.964096	-0.006225	-0.545586
O	-2.440678	-0.743566	-0.617399
C	-3.265207	-0.016954	-0.009603
O	-3.107059	1.046112	0.596377

C	-4.708469	-0.579026	-0.069463
F	-4.767387	-1.836244	0.404688
F	-5.585855	0.148934	0.631637
F	-5.154366	-0.621729	-1.339064

TS4

C	-0.687955	-0.84497	-1.053672
C	-2.076797	-0.629407	-1.215640
C	-2.918264	-1.678111	-1.608269
C	-2.350867	-2.918632	-1.844982
C	-0.964577	-3.119630	-1.678654
C	-0.113372	-2.102168	-1.277644
H	-3.985840	-1.515027	-1.724246
H	-2.975296	-3.74906	-2.157712
H	-0.551732	-4.106246	-1.868280
H	0.953103	-2.245188	-1.135272
C	-2.315396	0.748119	-0.86
N	-0.078195	0.324020	-0.6
C	-1.031771	1.294538	-0.5
C	-3.428578	1.620278	-1.06
H	-4.389841	1.208926	-1.357530
C	-0.851841	2.714122	-0.398688
H	0.128475	3.118020	-0.168701
C	-3.234495	2.96328	-0.917116
H	-4.060575	3.650101	-1.0696
C	-1.946169	3.505878	-0.580255
H	-1.845855	4.582413	-0.487576
H	0.937834	0.462148	-0.409930
C	-1.981785	0.916865	1.2991
H	-2.715604	1.717231	1.358004
H	-1.016182	1.188495	1.72101
C	-2.424961	-0.449811	1.69832
H	-1.699141	-1.204994	1.374598
H	-3.400692	-0.695874	1.2688
C	-2.503492	-0.477949	3.239665
H	-1.514271	-0.259702	3.656970
H	-3.182170	0.308946	3.587279
C	-2.990418	-1.839131	3.729176
H	-2.313591	-2.635666	3.403088
H	-3.041431	-1.862274	4.821865
H	-3.988592	-2.061491	3.338146
O	2.486956	0.886170	0.02

C	3.212922	-0.130250	-0.104342
O	2.938692	-1.274103	-0.477126
C	4.688374	0.142932	0.285838
F	4.785974	0.525985	1.572650
F	5.213052	1.136080	-0.455089
F	5.480999	-0.924416	0.131710

Prol
$\begin{array}{llll}\text { C } & -0.219542 & 1.150700 & -0.386172\end{array}$
$\begin{array}{llll}\text { C } & 1.195231 & 1.048110 & -0.613605\end{array}$
C $1.989352 \quad 2.226699 \quad-0.677710$
C $1.367077 \quad 3.435311 \quad-0.519958$
C $\quad-0.042619 \quad 3.515623 \quad-0.297155$
C $-0.847740 \quad 2.404653-0.227280$
$\begin{array}{llll}\text { H } & 3.059177 & 2.155463 & -0.849017\end{array}$
$\begin{array}{llll}\text { H } & 1.942193 & 4.354227 & -0.562975\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.489607 & 4.498401 & -0.178636\end{array}$
$\begin{array}{llll}\mathrm{H} & -1.918706 & 2.453951 & -0.058375\end{array}$
C $1.476447-0.316933-0.719806$
$\mathrm{N} \quad-0.770800 \quad-0.084090 \quad-0.352312$
$\begin{array}{llll}\text { C } & 0.237411 & -1.002255 & -0.547142\end{array}$
С $2.733992-1.068626-0.957306$
$\begin{array}{llll}\text { H } & 3.044080 & -0.853935 & -1.997972\end{array}$
C $\quad 0.166778$-2.374963 -0.540051
H $\quad-0.784896$-2.875168 $\quad-0.380697$
$\begin{array}{llll}\text { C } & 2.554679 & -2.550567 & -0.915971\end{array}$
H $\quad 3.452123 ~-3.145243-1.061521$
C $\quad 1.352892-3.151680 \quad-0.732257$
$\begin{array}{llll}\text { H } & 1.270520 & -4.232453 & -0.721715\end{array}$
H -1.787763 -0.329063 -0.194598
$\begin{array}{llll}\text { O } & -3.306258 & -0.896987 & 0.036466\end{array}$
$\begin{array}{llll}\text { C } & -4.087601 & 0.077632 & 0.172177\end{array}$
$\begin{array}{llll}\mathrm{O} & -3.870771 & 1.291622 & 0.152214\end{array}$
C $\begin{array}{llll}-5.555128 & -0.368025 & 0.395038\end{array}$
$\begin{array}{llll}\text { F } & -5.665543 & -1.156897 & 1.479122\end{array}$
F $\quad-6.008757 \quad-1.081152 \quad-0.652260$
$\begin{array}{llll}\text { F } & -6.395643 & 0.658812 & 0.566926\end{array}$
C $3.883949-0.622375 \quad-0.053850$
C $\quad 5.068036-0.123838 \quad-0.594601$
C $3.743086-0.726450 \quad 1.332753$
$\begin{array}{llll}\text { C } & 6.105999 & 0.275384 & 0.247611\end{array}$
H $5.177059 \quad-0.043560-1.672974$
C $4.780236-0.329082 \quad 2.170809$
$\begin{array}{llll}\text { H } & 2.818132 & -1.117167 & 1.751628\end{array}$

C	5.963858	0.173699	1.629146
H	7.024077	0.667184	-0.179638
H	4.664686	-0.411754	3.247289
H	6.771878	0.485691	2.283819

Pro2
$\begin{array}{llll}\text { C } & -0.230507 & 1.315587 & -0.284076\end{array}$
C $1.188414 \quad 1.344364-0.499448$
C $1.871460 \quad 2.590891 \quad-0.531662$
C $1.144630 \quad 3.735886-0.340250$
$\begin{array}{llll}\text { C } & -0.264969 & 3.683681 & -0.119289\end{array}$
C $\quad-0.967792 \quad 2.502558 \quad-0.090091$
$\begin{array}{llll}\mathrm{H} & 2.941580 & 2.623674 & -0.712818\end{array}$
$\begin{array}{llll}\mathrm{H} & 1.635809 & 4.703030 & -0.360064\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.799027 & 4.618250 & 0.026070\end{array}$
$\begin{array}{llll}\mathrm{H} & -2.039606 & 2.451044 & 0.072920\end{array}$
$\begin{array}{llll}\text { C } & 1.590939 & 0.011080 & -0.655349\end{array}$
$\begin{array}{llll}\mathrm{N} & -0.672867 & 0.036198 & -0.307018\end{array}$
$\begin{array}{llll}\text { C } & 0.411520 & -0.781274 & -0.535793\end{array}$
$\begin{array}{llll}\text { C } & 2.914712 & -0.621867 & -0.838594\end{array}$
$\begin{array}{llll}\text { H } & 3.425737 & -0.178081 & -1.707831\end{array}$
$\begin{array}{llll}\text { C } & 0.447769 & -2.150307 & -0.664648\end{array}$
H $\quad-0.464018$-2.734753 -0.572988
C $\quad 2.841521-2.092041 \quad-1.036978$
H $\quad 3.773867$-2.607988 -1.246088
$\begin{array}{llll}\text { C } & 1.688974 & -2.803843 & -0.933491\end{array}$
H $1.690251 \quad-3.880830-1.056785$
$\begin{array}{llll}\mathrm{H} & -1.666410 & -0.301031 & -0.188022\end{array}$
$\begin{array}{llll}\text { C } & 3.834007 & -0.300049 & 0.396557\end{array}$
$\begin{array}{llll}\mathrm{H} & 3.380638 & -0.751408 & 1.285977\end{array}$
$\begin{array}{llrr}\mathrm{H} & 3.809515 & 0.786611 & 0.531304\end{array}$
C $5.277320 \quad-0.765151 \quad 0.231302$
$\begin{array}{llll}\text { H } & 5.670212 & -0.408765 & -0.730603\end{array}$
H 5.326880 -1.860474 0.210428
C $6.164144 \quad-0.250542 \quad 1.365323$
$\begin{array}{llll}\mathrm{H} & 6.133735 & 0.846293 & 1.377886\end{array}$
H $\quad 5.752518 \quad-0.586143 \quad 2.325752$
C $7.607902-0.725207 \quad 1.229341$
$\begin{array}{llll}\mathrm{H} & 8.044775 & -0.381544 & 0.285141\end{array}$
$\begin{array}{llll}\text { H } & 8.231178 & -0.346617 & 2.045398\end{array}$
H 7.662874 -1.819340 $\quad 1.243859$
$\begin{array}{llll}\text { O } & -3.139663 & -1.014631 & -0.019590\end{array}$

C	-3.989819	-0.122362	0.223710
O	-3.867247	1.101289	0.320814
C	-5.414457	-0.700808	0.419375
F	-5.438246	-1.618440	1.402563
F	-5.842300	-1.317511	-0.697928
F	-6.323872	0.231268	0.728050

Pro3
$\begin{array}{llll}\text { C } & 1.253273 & 1.652987 & -0.117905\end{array}$
C $2.591806 \quad 1.193435 \quad 0.182398$
C $3.533340 \quad 2.077236 \quad 0.793552$
$\begin{array}{llll}\text { C } & 3.121339 & 3.337039 & 1.105060\end{array}$
$\begin{array}{llll}\text { C } & 1.773713 & 3.766269 & 0.832804\end{array}$
$\begin{array}{llll}\text { C } & 0.837410 & 2.964385 & 0.244571\end{array}$
$\begin{array}{llll}\mathrm{H} & 4.541351 & 1.734685 & 1.004332\end{array}$
$\begin{array}{llll}\mathrm{H} & 3.802500 & 4.037801 & 1.575275\end{array}$
$\begin{array}{llll}\mathrm{H} & 1.495466 & 4.776685 & 1.118101\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.185093 & 3.276757 & 0.068521\end{array}$
$\begin{array}{llll}\text { C } & 2.682997 & -0.099289 & -0.296926\end{array}$
$\begin{array}{llll}\mathrm{N} & 0.562259 & 0.716268 & -0.748420\end{array}$
$\begin{array}{llll}\text { C } & 1.316597 & -0.528915 & -0.744839\end{array}$
$\begin{array}{llll}\text { C } & 3.800519 & -0.954126 & -0.526527\end{array}$
$\begin{array}{llll}\text { H } & 4.750757 & -0.756816 & -0.041333\end{array}$
C $1.341494-1.388236-1.979649$
H $\quad 0.407795$-1.527529 -2.517054
C $\quad 3.674561-1.909879-1.488171$
H $\quad 4.531704$-2.526806 -1.741066
$\begin{array}{llll}\text { C } & 2.454529 & -2.087142 & -2.260905\end{array}$
$\begin{array}{llll}\text { H } & 2.462733 & -2.797416 & -3.080728\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.449837 & 0.794668 & -1.038194\end{array}$
$\begin{array}{llll}\text { O } & -2.029391 & 0.751805 & -1.472789\end{array}$
$\begin{array}{llll}\text { C } & -2.599892 & 1.058852 & -0.390864\end{array}$
$\begin{array}{llll}\text { O } & -2.193169 & 1.727689 & 0.559508\end{array}$
C $\quad-4.007991 \quad 0.428115 \quad-0.265490$
F $\quad-3.915801 \quad-0.918028 \quad-0.233135$
$\begin{array}{llll}\text { F } & -4.788621 & 0.736664 & -1.314082\end{array}$
F $\quad-4.658557 \quad 0.804602 \quad 0.840274$
C $0.641667-1.4519050 .332666$
C $\quad-0.724220-1.720851 \quad 0.185420$
C $1.346893-2.006171 \quad 1.400596$
C $\quad-1.377009 \quad-2.531664 \quad 1.106863$
H $\quad-1.283526-1.284633 \quad-0.638185$
$\begin{array}{llll}\text { C } & 0.683107 & -2.824868 & 2.316589\end{array}$
$\begin{array}{llll}\text { H } & 2.402927 & -1.807787 & 1.540515\end{array}$

C	-0.674123	-3.089940	2.174951
H	-2.439348	-2.721278	0.990183
H	1.239302	-3.246716	3.148174
H	-1.185338	-3.722566	2.893973

Pro4

C	1.390212	1.218736	-0.772825
C	2.543399	0.993172	0.057647
C	3.263485	2.091969	0.607766
C	2.807245	3.352287	0.349858
C	1.630018	3.560348	-0.442960
C	0.910591	2.535018	-0.996483
H	4.143824	1.914651	1.217452
H	3.323766	4.217150	0.751780
	1.297007	4.581615	-0.603854
	0.005792	2.697752	-1.568546
C	2.718346	-0.385323	0.125969
N	0.899682	0.063478	-1.238677
C	1.568751	-1.025558	-0.560533
C	3.774695	-1.197794	0.620931
H	4.524982	-0.783275	1.285824
C	1.915981	-2.274255	-1.299170
H	1.203654	-2.649976	-2.028113
C	3.893287	-2.458082	0.109713
H	4.728322	-3.080124	0.418512
C	2.993801	-2.978173	-0.903242
H	3.213734	-3.945132	-1.342794
	-0.100469	-0.054522	-1.528041
C	0.545119	-1.556803	0.576383
	1.076915	-2.335403	1.130126
	-0.270192	-2.015895	0.008923
C	-0.009440	-0.487231	1.506959
	-0.267400	0.419915	0.949097
	0.736842	-0.210492	2.261503
C	-1.287361	-0.978649	2.192606
H	-1.991575	-1.323197	1.423809
H	-1.065278	-1.849495	2.822167
C	-1.937640	0.126226	3.019160
H	-2.181683	0.978377	2.376426
H	-2.862585	-0.219202	3.491867
H	-1.263431	0.474569	3.809476
O	-1.728615	-0.578772	1.5

C	-2.334749	0.271936	-0.820104
O	-1.986492	1.396868	-0.443470
C	-3.771977	-0.153816	-0.420523
F	-3.892604	-1.481814	-0.262327
F	-4.651932	0.207260	-1.375266
F	-4.178990	0.415610	0.722863

ProSI-1

C $\quad-1.926448 \quad 0.321711 \quad-0.741986$
$\begin{array}{llll}\text { C } & -1.333452 & 0.106985 & 0.503363\end{array}$
$\begin{array}{llll}\text { C } & -2.019928 & -0.587745 & 1.482679\end{array}$
C $\begin{array}{llll}-3.313826 & -1.031495 & 1.188031\end{array}$
C $\quad-3.886161 \quad-0.809343-0.066409$
C $\quad-3.194054 ~-0.125409 \quad-1.068581$
$\begin{array}{llll}\mathrm{H} & -1.567482 & -0.783727 & 2.450043\end{array}$
$\begin{array}{llll}\mathrm{H} & -3.881062 & -1.560784 & 1.946698\end{array}$
$\begin{array}{llll}\mathrm{H} & -4.888177 & -1.172601 & -0.269770\end{array}$
$\begin{array}{llll}\mathrm{H} & -3.624513 & 0.049786 & -2.048659\end{array}$
$\begin{array}{llll}\text { C } & 0.090918 & 0.609129 & 0.428936\end{array}$
$\mathrm{N} \quad-1.021909 \quad 1.070753 \quad-1.538913$
$\begin{array}{llll}\text { C } & 0.066512 & 1.367487 & -0.874303\end{array}$
C $\quad 0.652784 \quad 1.442658 \quad 1.542103$
$\begin{array}{llll}\mathrm{H} & 0.507413 & 1.084013 & 2.556859\end{array}$
$\begin{array}{llll}\text { C } & 1.047489 & 2.351361 & -1.190910\end{array}$
$\begin{array}{llll}\text { H } & 1.165158 & 2.718279 & -2.204014\end{array}$
C $1.404847 \quad 2.518077 \quad 1.259578$
H $\quad 1.866931 \quad 3.095282 \quad 2.052867$
C $1.658070 \quad 2.923807$-0.120280
$\begin{array}{llll}\mathrm{H} & 2.337833 & 3.754290 & -0.287025\end{array}$
C $1.065892-0.610773 \quad 0.163511$
C $0.562920-1.847362 \quad-0.250575$
C $2.447876-0.446443 \quad 0.290626$
$\begin{array}{llll}\text { C } & 1.432152 & -2.904906 & -0.515037\end{array}$
$\begin{array}{llll}\text { H } & -0.503004 & -2.008367 & -0.364155\end{array}$
C $3.310121-1.506564 \quad 0.025133$
$\begin{array}{llrr}\mathrm{H} & 2.866191 & 0.503695 & 0.602899\end{array}$
$\begin{array}{llll}\text { C } & 2.806619 & -2.741362 & -0.376694\end{array}$
$\begin{array}{llll}\text { H } & 1.022456 & -3.860050 & -0.828663\end{array}$
$\begin{array}{llll}\mathrm{H} & 4.380113 & -1.360585 & 0.136389\end{array}$
$\begin{array}{llll}\mathrm{H} & 3.480369 & -3.567925 & -0.579875\end{array}$
$\begin{array}{llll}\mathrm{H} & -1.242855 & 1.434538 & -2.466298\end{array}$

ProSI-2

C	-1.995871	-0.208405	-0.520489
C	-1.002338	-0.430681	0.439781
C	-1.048602	-1.576411	1.218296
C	-2.101409	-2.473258	1.011729
C	-3.072141	-2.238150	0.034691
C	-3.036418	-1.090741	-0.758354
H	-0.297190	-1.766316	1.978323
H	-2.165847	-3.367485	1.623029
H	-3.874020	-2.955236	-0.107429
H	-3.786371	-0.891143	-1.516241
C	0.003109	0.682942	0.304268
N	-1.754944	1.046275	-1.126261
C	-0.708684	1.639792	-0.593297
C	0.676877	1.349453	1.453457
H	1.010595	0.734144	2.283393
C	-0.273660	2.981855	-0.747069
H	-0.669807	3.611373	-1.535585
C	0.973238	2.660680	1.371522
H	1.536919	3.152058	2.156668
C	0.542902	3.457003	0.235935
H	0.850007	4.498186	0.201536
H	-2.363452	1.469225	-1.826044
C	1.194172	0.136499	-0.639258
H	1.801165	1.004168	-0.916725
H	0.726869	-0.263939	-1.545898
C	2.062391	-0.926801	0.020306
H	1.448301	-1.780105	0.330675
H	2.539502	-0.521306	0.920492
C	3.143310	-1.414038	-0.946783
H	2.666094	-1.813305	-1.850458
H	3.756356	-0.561518	-1.264635
C	4.031357	-2.482845	-0.316569
H	3.440119	-3.354686	-0.015847
H	4.800678	-2.823246	-1.016389
H	4.535293	-2.096154	0.575973

[1] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery J.., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Wallingford, CT, 2016.
[2] Y. Zhao, and D. G. Truhlar, The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals, Theoretical chemistry accounts. 2008, 120, 215.
[3] J. D. Dill, and J. A. Pople, Self-consistent molecular orbital methods. XV. Extended Gaussian-type basis sets for lithium, beryllium, and boron, The Journal of Chemical Physics. 1975, 62, 2921.
[4] A. Schäfer, C. Huber, and R. Ahlrichs, Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr , The Journal of Chemical Physics. 1994, 100, 5829.
[5] A. V. Marenich, C. J. Cramer, and D. G. Truhlar, Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions, The Journal of Physical Chemistry B. 2009, 113, 6378.
[6] H. P. Hratchian, and H. B. Schlegel, Accurate reaction paths using a Hessian based predictor-corrector integrator, The Journal of chemical physics. 2004, 120, 9918.

S2

[^0]

				简管	Now		$\begin{aligned} & \text { H. } \\ & \stackrel{\circ}{\circ} \\ & \text { O. } \end{aligned}$		$\stackrel{\text { ®'山 }}{\stackrel{\circ}{\circ}}$						$\stackrel{+}{\circ}$	$\stackrel{+}{+}$					
9． 5	9． 0	8.5	8.	0	7.5	7.0	6.5	6． 0	5.5	$\begin{aligned} & 5.0 \\ & \text { f1 } \end{aligned}$	$\begin{gathered} 4.5 \\ (\mathrm{ppm}) \end{gathered}$	4． 0	3.5	3.0	2.5	2.0	1.5	1． 0	0.5	0． 0	－0．

wb－2－100－a－170610－．11．fid

－¢0	¢ \％O N	
㐫	$\stackrel{\infty}{\sim} \stackrel{\infty}{\sim} \stackrel{\infty}{\sim}$	
｜｜	V＇	Y／

$\stackrel{\curvearrowleft}{\check{(}}$

[^1]

wb-3-5-a-170615-. 11.fid

1a

160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	o

wb-13-28-11-202N201-. fido M N M O N
$\stackrel{-}{\circ}$
$\stackrel{+}{i}$
$\underset{\infty}{\infty} \underset{\infty}{\infty} \underset{\infty}{\infty} \underset{\infty}{\infty}$
0
$\dot{\circ}$
1

[^2]

S6

[^3]

wb-13-91-1-202104m

$\stackrel{\infty}{\infty} \underset{\substack{\infty \\ \infty \\ \sim}}{\sim}$

$\stackrel{\infty}{\circ}$
N
$\stackrel{\ominus}{\circ} \stackrel{\dot{\circ}}{\dot{\sim}}$

1c

160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
								(ppm)								

Nが
Nٌ ¿
∞

1d'

1d

む
๗்べ心
$\stackrel{8}{\stackrel{8}{4}}$

1d

[^4]

$1 e$

150	140	130	120	110	100	90	80	70	60	50	40	30	20

1f

$\stackrel{\infty}{\sim}$

[^5]

n	O.
	0
1	1

ゅi
$\stackrel{m}{\circ} \stackrel{n}{\dot{-}}$
๗్ల
$\stackrel{6}{5}$
| \ | |

[^6]

$1 h^{\prime}$

70	160	150	140	130	120	110	100	90	80	70	60	50	10	30	20	10	0

1h

180
160 ${ }^{90}{ }^{90}(\mathrm{ppm}) 80$

N
N
N

$\begin{array}{lllllllllllllllllllllll}160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

$1 i$

 $\stackrel{6}{\stackrel{0}{\circ}}$
$\stackrel{\infty}{\square} \stackrel{\infty}{\square}$ $\underset{\infty}{\dot{\infty}} \underset{\infty}{\sim}$

ल
$\stackrel{y}{+}$
$\dot{\omega}$
$\underset{\substack{j \\ \hline \\ \hline \\ \hline}}{ }$

$1 i$

160	150	140	130	120	110	100		1	70	60	50			10		
160	150	140	130	120	110	100	90	80	70	60		40	30	20	10	0

$\underset{\sim}{\infty}$

$\stackrel{m}{\infty}$
$\stackrel{0}{\infty}$

1j

160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

wb-13-1-

 $\underbrace{\infty}$
\bullet
$\dot{\circ}$
$\stackrel{+}{\circ}$
1
$\stackrel{N}{\text { N/ }}$
$\stackrel{+}{9}$
$\stackrel{6}{6}$
$\stackrel{1}{2}$

		1	1	1	1		10										
170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

150	140	130	120	110	100	90	80	1	60	5	10	1	1		
							11					30	20	10	0

 wb-11-81-0p-210

2a

3a

3a

150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

3b

150	140	130	120	110	100	${ }_{90}$	80	${ }_{70}$	60	50	40	30	1	10	0
150	140	130	120	110	100	90	1 (p	70	60	50	40	30	20	10	

wb-13-92-1-11-20210419-ND. fid
$\stackrel{\stackrel{\infty}{\bullet}}{\stackrel{\infty}{1}}$

[^7]

180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

3c

3d

$\stackrel{\sim}{\dot{j}}$

[^8]
$3 e$

$3 e$

$\begin{array}{lllllllllllllllllll}145 & 140 & 135 & 130 & 125 & 120 & 115 & 110 & 105 & 100 & 95 & 90 & 85 & 80 & 75 & 70 & 65 & 60 & 5 \\ \mathrm{fl} & (\mathrm{ppm}) & & & & & & \end{array}$

[^9]

150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

 $\stackrel{\circ}{\sim} \quad$ ソ

2h

170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
								$f 1$									

$2 i$

$\begin{array}{lllllllllllllllllllllllllllllllllll}145 & 140 & 135 & 130 & 125 & 120 & 115 & 110 & 105 & 100 & 95 & 90 & 85 & 80 & 75 & 70 & 65 & 60 & 55 & 50 & 45 & 40 & 35 & 30 & 25 & 20 & 15 & 10 & 5 & 0 \\ \mathrm{f} 1 & (\mathrm{ppm})\end{array}$

$\stackrel{\sim}{\sim} \quad \dot{\sim}$
$\stackrel{N}{\sim}$

2k

PROTON CDC13 /home/nmr/NMindifita itis 31 V

8

[^10]0611-ome-yl-20210611 PROTON CDCl3 /home/nmr/NMR_DATA ZLS/ $\frac{\infty}{2}$

8a

1	1	1	1		1	1			1			1	T	T	1	T	1	1	T	1	
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

5b

D－02870	98	※	98.	おボ		8－¢	\bigcirc	N	\bigcirc
岕	8ig	$\underline{\square}$	훙			¢im	品	¢\％	$\stackrel{\infty}{\sim}$
｜	V	，	11	V1／	11144	\1／	｜	｜	

5b

$\begin{array}{lllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 \\ & & & & & & (\mathrm{pmm})\end{array}$

03-183-2-20210313

5e

$5 f$

$5 f$
$\begin{array}{lllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ & & & & & & & & & & \\ \text { (ppm) }\end{array}$

5g

[^11]
5h

ジ タू

$5 i$

D-02-83-R

6b

6b

170	160	150	140	130	120		100		80	70	60	50	40	30	20	10	
		150	140			110		90				5		30	20		0

13R-1

60	150	140	130	120	110	100		80								
60	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

$6 \mathbf{g}$

PROTON CDC13 /home/nmrlWMR DATATLUSA1

为呙

6h

9

$\begin{gathered} \text { wb-14-2- } \underset{\mid}{\infty}-20210513-.3 . \mathrm{fid} \\ \stackrel{\infty}{\infty} \\ \stackrel{\infty}{\mid} \end{gathered}$	 	ㅇㅇㅇㅇㅇ $\infty \infty$	N N0 N

9

wb-14-2-2-20210513-. 2. fid

[^12](

$\stackrel{\sim}{\sim} \underset{\sim}{\infty} \underset{\sim}{\infty} \underset{\sim}{\infty}$
$\stackrel{\infty}{\infty}$

[^0]: $\begin{array}{llllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \text { f1 } & (\mathrm{ppm})\end{array}$

[^1]: $\begin{array}{lllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ & & & & & & & & & \end{array}$

[^2]:

[^3]: $+200$
 $180 \quad 170$
 $170 \quad 160$
 $50 \quad 140$
 $130 \quad 120$
 $\begin{array}{rr}110 & 100 \\ \text { f1 } & (\mathrm{ppm})\end{array}$

[^4]:

[^5]: $\begin{array}{llllllllllllllll}150 & 140 & 130 & 120 & 110 & 100 & 90 & \begin{array}{c}80 \\ f 1(\mathrm{ppm})\end{array} & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

[^6]: $\begin{array}{lllllllll}150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 \\ \text { f1 (ppm) }\end{array}$

[^7]: N

[^8]:

[^9]:

[^10]: $\begin{array}{llllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ & & & & & & & & & & \\ \text { f1 } 100\end{array}$

[^11]: $\begin{array}{llllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ & & & & & & & & & & (\mathrm{ppm})\end{array}$

[^12]:

