Electronic Supplementary Information

Tandem Strecker/C(sp $\left.{ }^{3}\right)$-H Amination Reactions for the Construction of CyanideFunctionalized Imidazo[1,5-a]pyridines with $\mathrm{NH}_{4} \mathrm{SCN}$ as a Cyanating Agent

Qing Yang, ${ }^{\text {ac }}$ Xiao-Tong Yan, ${ }^{\text {c }}$ Cheng-Tao Feng, ${ }^{* a c}$ De-Xiang Chen, ${ }^{\text {c }}$ Zhong-Zhong Yan ${ }^{c}$ and Kun Xu*b
${ }^{\text {a }}$ School of Pharmacy, Anhui University of Chinese Medicine; Anhui academy of Chinese medicine, Hefei, 230012, China.
${ }^{\mathrm{b}}$ Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, China.
${ }^{c}$ Anhui University of Science and Technology, Huainan, 232001, China.
Email: fengct@mail.ustc.edu.cn; kunxu@bjut.edu.cn

Contents

\qquad
\qquad
\qquad
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR Spectra of synthesized products S14

1. General Information

All reagents were purchased from commercial sources and used without further purification. Thin layer chromatography (TLC) employed glass $0.20-0.25 \mathrm{~mm}$ silica gel plates. Flash chromatography columns were packed with 200-300 mesh silica gel in petroleum (boiling point is between $60-90^{\circ} \mathrm{C}$). Flash chromatography was conducted eluting with with PE/EA, and they are listed as volume/volume ratios. ${ }^{1} \mathrm{H}$ NMR spectra were determined on 400 MHz spectrometer as solutions in CDCl_{3} or DMSO- d_{6}. Chemical shifts are expressed in parts per million (δ) and the signals were reported as s (singlet), d (doublet), t (triplet), m (multiplet), and coupling constants (J) were given in Hz . ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 100 MHz in CDCl_{3} or DMSO- d_{6} solution. Chemical shifts as internal standard are referenced to $\mathrm{CDCl}_{3}\left(\delta=7.26\right.$ for ${ }^{1} \mathrm{H}$ and $\delta=77.0$ for ${ }^{13} \mathrm{C}$ NMR) or DMSO- $d_{6}\left(\delta=2.50\right.$ for ${ }^{1} \mathrm{H}$ and $\delta=39.5$ for ${ }^{13} \mathrm{C}$ NMR) as internal standard. High resolution mass spectra (HRMS) were measured using electrospray ionization (ESI) and the time-of-flight (TOF) mass analyzer, accurate masses are reported for the molecular ion + hydrogen $\left([\mathrm{M}+\mathrm{H}]^{+}\right)$. Melting point was recorded on a Hanon MP430 Auto Melting Point System and were uncorrected.

2. Experimental Procedure

2.1 General procedure for the synthesis of 4:

An oven-dried reaction vessel was charged with $\mathrm{NH}_{4} \mathrm{SCN} \mathbf{3 a}(0.6 \mathrm{mmol}, 46 \mathrm{mg})$, aldehyde $\mathbf{1}(0.3 \mathrm{mmol})$ and amine $2(0.6 \mathrm{mmol})$ in DMSO (2 mL). After the mixture was stirred for 5 min at room temperature, $\mathrm{I}_{2} \mathrm{O}_{5}(0.3 \mathrm{mmol}, 100 \mathrm{mg})$ was added, and the mixture was further stirred at $100^{\circ} \mathrm{C}$ for 5 h . After completion of the reaction (TLC), the reaction mixture was allowed to cool to room temperature and quenched with saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution. Then the reaction mixture was extracted with ethyl acetate. The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to get the crude residue. Finally, it was purified by column chromatography on silica gel (200-300 mesh) using petroleum ether/ethylacetate as an eluent to afford the pure products 4.
2.2 A procedure for the synthesis of $\mathbf{4 a a}$ at 9 mmol scale

An oven-dried round-bottom flask (150 mL), equipped with reflux condenser, was charged with $\mathrm{NH}_{4} \mathrm{SCN} \mathbf{3 a}$ (18 $\mathrm{mmol}, 1.37 \mathrm{~g}$), pyridine-2-carboxaldehyde $\mathbf{1 a}(9 \mathrm{mmol}, 856 \mathrm{uL})$ and benzylamine $\mathbf{2 a}(18 \mathrm{mmol}, 1965 \mathrm{uL})$ in DMSO (60 $\mathrm{mL})$. After the mixture was stirred for 5 min at room temperature, $\mathrm{I}_{2} \mathrm{O}_{5}(9 \mathrm{mmol}, 3.00 \mathrm{~g})$ was added, and the mixture was further stirred at $100^{\circ} \mathrm{C}$ for 5 h . After completion of the reaction (TLC), the reaction mixture was allowed to cool to room temperature and quenched with saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution. Then the reaction mixture was extracted with ethyl acetate. The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to get the crude residue. Finally, it was purified by column chromatography on silica gel (200-300 mesh) using petroleum ether/ethylacetate ($\mathrm{P}: \mathrm{E}=3: 1$) as an eluent to afford the pure product $\mathbf{4 a a}(1.82 \mathrm{~g}, 92 \%)$.
2.3 One-pot two-step synthesis of cyano-substituted imidazo[1,5-a]quinolones 4

An oven-dried reaction vessel was charged with 2-methylquinoline $\mathbf{5}(0.3 \mathrm{mmol})$ and $\mathrm{I}_{2} \mathrm{O}_{5}(0.3 \mathrm{mmol}, 100 \mathrm{mg})$ in DMSO (2 mL), and the mixture was stirred at room temperature for 24 hours. After the $\mathbf{5}$ was completely consumed, amine $\mathbf{2}(0.6 \mathrm{mmol})$ and $\mathrm{NH}_{4} \mathrm{SCN} 3 \mathrm{3a}(0.6 \mathrm{mmol}, 46 \mathrm{mg})$ were added, and the mixture was further stirred at $100{ }^{\circ} \mathrm{C}$ for 5 h. After completion of the reaction (TLC), the reaction mixture was allowed to cool to room temperature and quenched
with saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution. Then the reaction mixture was extracted with ethyl acetate. The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to get the crude residue. Finally, it was purified by column chromatography on silica gel (200-300 mesh) using petroleum ether/ethylacetate as an eluent to afford the pure products 4.

2.4 Preliminary mechanistic studies

1) L(-)-alpha-methybenzylamine was used as substrate.

$\mathrm{NH}_{4} \mathrm{SCN}$ 3a ($0.6 \mathrm{mmol}, 45.7 \mathrm{mg}$), pyridine-2-carboxaldehyde $1 \mathbf{a}(0.3 \mathrm{mmol}, 29 \mathrm{uL})$ and $\mathrm{L}(-)$-alphamethybenzylamine $\mathbf{2 p}(0.6 \mathrm{mmol}, 77 \mathrm{uL})$ in DMSO $(2 \mathrm{~mL})$ were taken in a sealed tube. Then $\mathrm{I}_{2} \mathrm{O}_{5}(0.3 \mathrm{mmol}, 100.1 \mathrm{mg})$ was added to it and stirred at room temperature for 5 min . Then the mixture was stirred at $100{ }^{\circ} \mathrm{C}$ for 5 h . After completion of the reaction (TLC), the reaction mixture was allowed to cool to room temperature and quenched with saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution. Then the reaction mixture was extracted with ethyl acetate. The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to get the crude residue. Finally, it was purified by column chromatography on silica gel (200-300 mesh) using petroleum ether/ethylacetate ($\mathrm{P}: \mathrm{E}=4: 1$) as an eluent to afford (Z)-N-(1-phenylethyl)picolinimidoyl cyanide 7 ($27 \mathrm{mg}, 38 \%$) as an orange oil.
(Z)-N-(1-phenylethyl)picolinimidoyl cyanide 7: ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 8.75-8.72(\mathrm{~m}, 1 \mathrm{H}), 8.16$ (dt, $J=8.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{td}, J=7.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 1 \mathrm{H}), 5.28$ $(\mathrm{q}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.67(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , Chloroform-d) $\delta 151.8,149.6,142.9,141.5,136.9$, 128.8, 127.8, 126.8, 126.1, 121.5, 109.9, 67.7, 24.4; HRMS (ESI): calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+} 236.1182$, found 236.1180 .
2) A procedure for the synthesis of intermediate 6

An oven-dried reaction vessel was charged with $\mathbf{1 a}(0.3 \mathrm{mmol}, 29 \mu \mathrm{~L})$ and $\mathbf{2 a}(0.6 \mathrm{mmol}, 66 \mu \mathrm{~L})$ in DMSO (2 mL), and the mixture was stirred at room temperature for 1 hours. After the 1a was completely consumed, TMS-CN (0.6 $\mathrm{mmol}, 80 \mu \mathrm{~L}$) was added, and the mixture was further stirred at room temperature for 6 h . After completion of the reaction (TLC), the reaction mixture was quenched with water. Then the reaction mixture was extracted with ethyl acetate. The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to get the crude residue. Finally, it was purified by column chromatography on silica gel (200-300 mesh) using petroleum ether/ethylacetate $(P: E=1: 1)$ as an eluent to afford the compound $6(44 \mathrm{mg}, 65 \%)$ as a red oil.

2-(benzylamino)-2-phenylacetonitrile 6: ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 8.55$ (d, J = $5.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.66 (td, J = 7.7, $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.20(\mathrm{~m}, 7 \mathrm{H}), 4.73(\mathrm{~s}, 1 \mathrm{H}), 4.05-3.88(\mathrm{~m}, 2 \mathrm{H}), 2.54(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , Chloroform-d) $\delta 153.7,149.9,137.9,137.4,128.7,128.5,127.7,123.9,122.1,118.3,54.9,51.5$.
3) The synthesis of 4aa from 6

An oven-dried reaction vessel was charged with $6(0.3 \mathrm{mmol}, 66.9 \mathrm{mg})$ and $\mathrm{I}_{2} \mathrm{O}_{5}(0.3 \mathrm{mmol}, 100.1 \mathrm{mg})$ in DMSO (2 mL), and the mixture was stirred at $100^{\circ} \mathrm{C}$ for 4 h . After completion of the reaction (TLC), the reaction mixture was allowed to cool to room temperature and quenched with saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution. Then the reaction mixture was extracted with ethyl acetate. The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to get the crude residue. Finally, it was purified by column chromatography on silica gel (200-300 mesh) using petroleum ether/ethylacetate $(\mathrm{P}: \mathrm{E}=3: 1)$ as an eluent to afford the product $\mathbf{4 a a}(58.5 \mathrm{mg}, 89 \%)$.

4) The starch-iodine test

After the reaction, the starch-iodine test of the reaction mixture was carried out. As shown in Fig. S1, an obvious colour change, which suggests the formation of iodine during the reaction.

Fig S1. The result of starch iodine test. (A) Upper liquid: the reaction solution diluted with ethyl acetate; bottom liquid: distilled water. (B) Upper liquid: the reaction solution diluted with ethyl acetate; bottom liquid: aqueous solution of starch.
(C) Upper liquid: ethyl acetate; bottom liquid: aqueous solution of starch.

3. Characterization Data of Products

3-Phenylimidazo $[1,5-a]$ pyridine-1-carbonitrile (4aa):
Following the general procedure 2.1, compound 4aa was obtained as a white crystalline solid in 95% yield (62.4 mg) by flash chromatography ($\mathrm{P}: \mathrm{E}=3: 1$) ; $\mathrm{mp}=132-133{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 8.35(\mathrm{dt}, J=7.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.78-7.70(\mathrm{~m}, 3 \mathrm{H}), 7.59-7.50(\mathrm{~m}, 3 \mathrm{H}), 7.18-$ $7.14(\mathrm{~m}, 1 \mathrm{H}), 6.85-6.81(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , Chloroform- d) δ 140.1, 137.7, 130.0, 129.3, 128.5, 128.4, 124.5, 122.9, 117.4, 115.3, 114.8, 103.6. HRMS (ESI): calcd for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+} 220.0869$, found 220.0869.

8-Fluoro-3-phenylimidazo[1,5-a]pyridine-1-carbonitrile (4ba):
Following the general 2.1, compound 4ba was obtained as a white crystalline solid in 81% yield (57.6 mg) by flash chromatography ($\mathrm{P}: \mathrm{E}=3: 1$) ; $\mathrm{mp}=181-182^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, Chloroform-d) $\delta 8.17(\mathrm{dd}, J=6.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.77-7.73(\mathrm{~m}, 2 \mathrm{H}), 7.60-7.54(\mathrm{~m}, 3 \mathrm{H}), 6.84-$ 6.77 (m, 2H). ${ }^{13} \mathrm{C}$ NMR (100 MHz , Chloroform- d) $\delta 152.9\left({ }^{1} J_{C F}=256 \mathrm{~Hz}\right.$), 141.5, 130.4, 129.4, 128.6, 128.0, 119.4 $\left({ }^{4} J_{C F}=5 \mathrm{~Hz}\right), 114.7,114.5\left({ }^{3} J_{C F}=7 \mathrm{~Hz}\right), 106.8\left({ }^{2} J_{C F}=16 \mathrm{~Hz}\right)$. HRMS $(\mathrm{ESI}):$ calcd for $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{FN} 3[\mathrm{M}+\mathrm{H}]^{+} 238.0775$, found 238.0768 .

6-Fluoro-3-phenylimidazo[1,5-a]pyridine-1-carbonitrile (4ca):
Following the general 2.1, compound 4ca was obtained as a white crystalline solid in 92% yield (65.4 mg) by flash chromatography ($\mathrm{P}: \mathrm{E}=4: 1$) ; $\mathrm{mp}=112-113{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.28(\mathrm{dd}, J=4.5,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.75-7.71(\mathrm{~m}, 3 \mathrm{H}), 7.60-7.53(\mathrm{~m}, 3 \mathrm{H}), 7.13-$ $7.08(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , Chloroform- d) $\delta 154.6\left({ }^{1} J_{C F}=244 \mathrm{~Hz}\right.$), 140.9, 135.3, 130.3, 129.4, 128.2, 128.0, $118.5\left({ }^{3} J_{C F}=9 \mathrm{~Hz}\right), 117.8,117.5,114.8,109.7,109.2$, 104.9; HRMS (ESI): calcd for $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{FN}_{3}[\mathrm{M}+\mathrm{H}]^{+} 238.0775$, found 238.0775.

5-Fluoro-3-phenylimidazo [1,5-a]pyridine-1-carbonitrile (4da):
Following the general 2.1, compound 4da was obtained as a white crystalline solid in 62% yield (44.1 mg) by flash chromatography ($\mathrm{P}: \mathrm{E}=3: 1$); $\mathrm{mp}=167-169{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.64(\mathrm{ddd}, J=7.9,3.8,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.57-7.46(\mathrm{~m}, 4 \mathrm{H}), 7.19-7.14(\mathrm{~m}, 1 \mathrm{H})$, 6.47 (td, $J=7.0,0.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , Chloroform- d) $\delta 149.3\left({ }^{1} J_{C F}=272 \mathrm{~Hz}\right.$), $140.0\left(J_{C F}=2 \mathrm{~Hz}\right), 138.7$ $\left(J_{C F}=3 \mathrm{~Hz}\right), 129.89,129.87,129.84,129.78,129.75,128.1,125.7\left(J_{C F}=5 \mathrm{~Hz}\right), 114.8,113.1\left(J_{C F}=6 \mathrm{~Hz}\right), 104.7,95.2$, 95.0. HRMS (ESI): calcd for $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{FN}_{3}[\mathrm{M}+\mathrm{H}]^{+} 238.0775$, found 238.0775 .

6-Chloro-3-phenylimidazo[1,5-a]pyridine-1-carbonitrile (4ea):
Following the general 2.1, compound 4 ea was obtained as a pale yellow crystalline solid in 98% yield (74.4 mg) by flash chromatography ($\mathrm{P}: \mathrm{E}=8: 1$); $\mathrm{mp}=140-142^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 8.36(\mathrm{t}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}$), $7.74-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.68(\mathrm{dd}, J=9.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.60$ $-7.54(\mathrm{~m}, 3 \mathrm{H}), 7.11$ (dd, $J=9.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , Chloroform-d) $\delta 140.2,135.7,130.4,129.5,128.4$, 127.8, 126.1, 123.7, 120.6, 117.9, 114.7, 104.8; HRMS (ESI): calcd for $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{ClN}_{3}[\mathrm{M}+\mathrm{H}]^{+} 254.0480$, found 254.0480 .

5-Chloro-8-fluoro-3-phenylimidazo[1,5-a] pyridine-1-carbonitrile (4fa):
Following the general 2.1, compound $\mathbf{4 f}$ a was obtained as a white crystalline solid in 87% yield (70.7 mg) by flash chromatography ($\mathrm{P}: \mathrm{E}=4: 1$); $\mathrm{mp}=178-179{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.53-7.43(\mathrm{~m}, 5 \mathrm{H}), 6.78(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , Chloroform- d) $\delta 151.6\left({ }^{I} J_{C F}=256 \mathrm{~Hz}\right), 142.7,131.4,131.1,130.2,129.9,127.6,122.5\left(J_{C F}=5 \mathrm{~Hz}\right), 115.4\left(J_{C F}=7 \mathrm{~Hz}\right), 114.0,107.2$ $\left(J_{C F}=18 \mathrm{~Hz}\right)$, $103.3\left(J_{C F}=4 \mathrm{~Hz}\right)$. HRMS (ESI): calcd for $\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{ClFN}_{3}[\mathrm{M}+\mathrm{H}]^{+} 272.0385$, found 272.0385 .

6-Bromo-3-phenylimidazo[1,5-a]pyridine-1-carbonitrile (4ga):
Following the general 2.1, compound $\mathbf{4 g a}$ was obtained as a pale yellow crystalline solid in 85% yield (75.7 mg) by flash chromatography ($\mathrm{P}: \mathrm{E}=8: 1$); $\mathrm{mp}=177-179^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.47(\mathrm{t}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.75-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.65-7.53(\mathrm{~m}, 4 \mathrm{H}), 7.22-7.19(\mathrm{~m}$, $1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , Chloroform- d) $\delta 140.1,135.7,130.4,129.5,128.5,128.0,127.8,122.8,117.9,114.7,110.5$, 104.9. HRMS (ESI): calcd for $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{BrN}_{3}[\mathrm{M}+\mathrm{H}]^{+} 297.9974$, found 297.9963 .

5-Bromo-3-phenylimidazo[1,5-a]pyridine-1-carbonitrile (4ha):
Following the general 2.1, compound 4ha was obtained as a white crystalline solid in 78% yield (69.5 mg) by flash chromatography ($\mathrm{P}: \mathrm{E}=6: 1$); $\mathrm{mp}=153-155{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.76$ (dd, $J=8.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), $7.53-7.43(\mathrm{~m}, 5 \mathrm{H}), 7.08-6.98(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, Chloroform- d) $\delta 141.9,139.7$, 131.5, 130.6, 130.0, 127.5, 124.6, 121.2, 116.5, 114.7, 113.9, 104.1. HRMS (ESI): calcd for $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{BrN}_{3}[\mathrm{M}+\mathrm{H}]^{+}$297.9974, found 297.9960.

6-Methyl-3-phenylimidazo[1,5-a]pyridine-1-carbonitrile (4ia):
Following the general 2.1 , compound $4 \mathbf{i a}$ was obtained as a white crystalline solid in 83% yield (58.0 mg) by flash chromatography ($\mathrm{P}: \mathrm{E}=3: 1$); $\mathrm{mp}=144-145{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, Chloroform-d) $\delta 8.11(\mathrm{q}, ~ J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.74-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.62-7.50(\mathrm{~m}, 4 \mathrm{H}), 7.01(\mathrm{dd}, J=$ $9.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , Chloroform-d) $\delta 139.5,136.8,129.9,129.2$, 128.6, $128.5,128.1,124.9,120.1,116.6,115.6,103.2,18.5$. HRMS (ESI): calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+}$234.1026, found 234.1026.

5-Methyl-3-phenylimidazo[1,5-a]pyridine-1-carbonitrile (4ja):
Following the general 2.1, compound $\mathbf{4 j a}$ was obtained as a white crystalline solid in 56% yield (39.2 mg) by flash chromatography ($\mathrm{P}: \mathrm{E}=4: 1$); $\mathrm{mp}=141-143{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.62(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.45(\mathrm{~m}, 5 \mathrm{H}), 7.07(\mathrm{dd}, J=9.1,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.54$ $(\mathrm{d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , Chloroform-d) $\delta 140.7$, 139.0, 135.3, 132.0, 131.0, 129.9, 127.8, 124.9, 115.7, 115.5, 115.2, 102.7, 21.7. HRMS (ESI): calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+}$234.1026, found 234.1019.

5-Methoxy-3-phenylimidazo[1,5-a]pyridine-1-carbonitrile (4ka):
Following the general 2.1 , compound 4ka was obtained as a gray crystalline solid in 60% yield (44.8 mg) by flash chromatography ($\mathrm{P}: \mathrm{E}=2: 1$) ; $\mathrm{mp}=189-192^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.56-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.32(\mathrm{~m}, 4 \mathrm{H}), 7.14(\mathrm{dd}, J=8.9,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.01$ (dd, $J=7.3,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , Chloroform- d) $\delta 150.4,139.9,139.7,131.9,130.4,128.9,127.2$, 126.5, 115.6, 108.9, 103.0, 89.9, 56.3. HRMS (ESI): calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 250.0975$, found 250.0968.

1-Phenylimidazo[1,5-a]quinoline-3-carbonitrile (4la):
Following the general 2.1, compound 4la was obtained as a pale yellow crystalline solid in 98% yield (79.1 mg) by flash chromatography ($\mathrm{P}: \mathrm{E}=8: 1$); $\mathrm{mp}=189-190{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, Chloroform-d) $\delta 7.76(\mathrm{dd}, J=7.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.64-7.52(\mathrm{~m}, 7 \mathrm{H}), 7.47-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.33-$ $7.28(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , Chloroform-d) $\delta 143.6,137.1,132.1,132.0,130.4,129.7,129.4,129.2,129.0$, 127.0, 126.5, 125.2, 117.5, 115.0, 114.8, 105.8. HRMS (ESI): calcd for $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+} 270.1026$, found 270.1026.

3-(4-Fluorophenyl)imidazo[1,5-a]pyridine-1-carbonitrile (4ab):
Following the general 2.1 , compound $4 \mathbf{a b}$ was obtained as a white crystalline solid in 96% yield (68.3 mg) by flash chromatography ($\mathrm{P}: \mathrm{E}=3: 1$) ; $\mathrm{mp}=191-193{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.28(\mathrm{dt}, J=7.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.77-7.72(\mathrm{~m}, 3 \mathrm{H}), 7.29-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.19-$ $7.15(\mathrm{~m}, 1 \mathrm{H}), 6.87-6.83(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , Chloroform- d) $\delta 163.5\left({ }^{1} J_{C F}=253 \mathrm{~Hz}\right.$), 139.1, 137.7, 130.6 $\left({ }^{3} J_{C F}=8 \mathrm{~Hz}\right), 124.7,124.5\left({ }^{4} J_{C F}=3 \mathrm{~Hz}\right), 122.7,117.5,116.6\left({ }^{2} J_{C F}=22 \mathrm{~Hz}\right), 115.3,115.1,103.5$. HRMS (ESI): calcd for $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{FN}_{3}[\mathrm{M}+\mathrm{H}]^{+}$238.0775, found 238.0766.

3-(4-Chlorophenyl)imidazo[1,5- a]pyridine-1-carbonitrile (4ac):
Following the general 2.1, compound 4ac was obtained as a white crystalline solid in 98% yield (74.4 mg) by flash chromatography ($\mathrm{P}: \mathrm{E}=2.5: 1$); $\mathrm{mp}=204-205^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.31$ (dt, $J=7.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}$), $7.77-7.71(\mathrm{~m}, 3 \mathrm{H}), 7.57-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.20-$ $7.16(\mathrm{~m}, 1 \mathrm{H}), 6.88-6.85(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , Chloroform-d) $\delta 138.9,137.8,136.2,129.7,129.6$, 126.8, 124.7, 122.7, 117.6, 115.2, 115.2, 103.8. HRMS (ESI): calcd for $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{ClN}_{3}[\mathrm{M}+\mathrm{H}]^{+} 254.0480$, found 254.0471.

3-(2-Bromophenyl)imidazo[1,5-a]pyridine-1-carbonitrile (4ad):
Following the general 2.1 , compound $\mathbf{4} \mathbf{a d}$ was obtained as a pale yellow crystalline solid in 90% yield (80.2 mg) by flash chromatography ($\mathrm{P}: \mathrm{E}=3: 1$) ; $\mathrm{mp}=171-173{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.78-7.72(\mathrm{~m}, 3 \mathrm{H}), 7.57-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.23-7.19(\mathrm{~m}, 1 \mathrm{H}), 6.85(\mathrm{td}, J=6.9$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, Chloroform- d) $\delta 138.7,137.1,133.5,133.4,132.1,129.6,128.1,124.9,124.0,123.7$, 117.1, 115.3, 114.5, 103.0. HRMS (ESI): calcd for $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{BrN}_{3}[\mathrm{M}+\mathrm{H}]^{+}$297.9974, found 297.9964.

3-(3-Bromophenyl)imidazo[1,5-a]pyridine-1-carbonitrile (4ae):
Following the general 2.1 , compound $4 \mathbf{a e}$ was obtained as a white crystalline solid in 97% yield (86.4 mg) by flash chromatography ($\mathrm{P}: \mathrm{E}=3: 1$); $\mathrm{mp}=198-200^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta 8.34(\mathrm{dt}, J=7.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.77-7.65(\mathrm{~m}, 3 \mathrm{H}), 7.44$ $(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.18(\mathrm{~m}, 1 \mathrm{H}), 6.91-6.87(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , Chloroform-d) $\delta 138.4,137.8,133.1$, $131.4,130.8,130.3,126.9,124.8,123.4,122.8,117.6,115.3,115.1,103.90$. HRMS (ESI): calcd for $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{BrN}_{3}$ $[\mathrm{M}+\mathrm{H}]^{+}$297.9974, found 297.9970.

3-(4-Bromophenyl)imidazo[1,5-a]pyridine-1-carbonitrile (4af):
Following the general 2.1, compound 4af was obtained as a white crystalline solid in 97% yield (86.4 mg) by flash chromatography ($\mathrm{P}: \mathrm{E}=3: 1$); $\mathrm{mp}=204-205^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.31$ (dd, $J=7.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}$), $7.75-7.63(\mathrm{~m}, 5 \mathrm{H}), 7.20-7.16(\mathrm{~m}, 1 \mathrm{H}), 6.87$ (td, $J=6.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , Chloroform- d) δ 138.9, 137.8, 132.6, 129.9, 127.3, 124.7, 124.4, 122.7, 117.6, 115.2, 115.1, 103.0. HRMS (ESI): calcd for $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{BrN}_{3}[\mathrm{M}+\mathrm{H}]^{+}$297.9974, found 297.9973.

3-(4-(Trifluoromethyl)phenyl)imidazo[1,5-a]pyridine-1-carbonitrile (4ag):
Following the general 2.1, compound 4ag was obtained as a white crystalline solid in 89% yield (76.6 mg) by flash chromatography ($\mathrm{P}: \mathrm{E}=2: 1$); $\mathrm{mp}=157-158^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 8.37$ (dt, $J=7.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}$), $7.94-7.92(\mathrm{~m}, 2 \mathrm{H}), 7.84-7.77(\mathrm{~m}, 3 \mathrm{H}), 7.24-$ $7.20(\mathrm{~m}, 1 \mathrm{H}), 6.93-6.89(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , Chloroform-d) $\delta 138.4,137.9,131.9,131.88,131.6,128.7$, $126.3\left(\mathrm{q}, J_{C F 3}=4 \mathrm{~Hz}\right), 125.0(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 122.7,122.3,117.7,115.5(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 115.0(\mathrm{~d}, J=4.0 \mathrm{~Hz}) . \mathrm{HRMS}$ (ESI): calcd for $\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+}$288.0743, found 288.0745.

3-(4-Cyanophenyl)imidazo[1,5-a]pyridine-1-carbonitrile (4ah):
Following the general 2.1, compound $4 \mathbf{a h}$ was obtained as a pale yellow crystalline solid in 97% yield (71.0 mg) by flash chromatography ($\mathrm{P}: \mathrm{E}=1: 1.5$); $\mathrm{mp}=236-238^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 8.38(\mathrm{dt}, J=7.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}$), $7.96-7.94(\mathrm{~m}, 2 \mathrm{H}), 7.87-7.85(\mathrm{~m}, 2 \mathrm{H}), 7.81-$ $7.78(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 1 \mathrm{H}), 6.94(\mathrm{td}, J=6.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) $\delta 138.5,138.4,133.5$, $132.9,129.5,127.2,125.0,118.9,117.0,116.4,115.9,112.3,102.7$. HRMS (ESI): calcd for $\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{~N}_{4}[\mathrm{M}+\mathrm{H}]^{+} 245.0822$, found 245.0819.

3-(4-Methoxyphenyl)imidazo[1,5- a]pyridine-1-carbonitrile (4ai):
Following the general 2.1, compound 4ai was obtained as a pale yellow crystalline solid in 92% yield (68.7 mg) by flash chromatography ($\mathrm{P}: \mathrm{E}=2.5: 1$) ; $\mathrm{mp}=129-131^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.29(\mathrm{dt}, J=7.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.72-7.66(\mathrm{~m}, 3 \mathrm{H}), 7.15-7.05(\mathrm{~m}, 3 \mathrm{H}), 6.82-$ $6.79(\mathrm{~m}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , Chloroform- d) $\delta 160.9,140.1,137.5,123.0,124.4,123.0,120.6,117.4$, 115.6, 114.8, 114.7, 103.1, 55.5. HRMS (ESI): calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 250.0975$, found 250.0968.

3-(P-tolyl)imidazo[1,5-a]pyridine-1-carbonitrile (4aj):
Following the general 2.1, compound 4aj was obtained as a white crystalline solid in 68% yield (47.6 mg) by flash chromatography ($\mathrm{P}: \mathrm{E}=1: 1$) ; $\mathrm{mp}=150-151^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.33$ (dd, $J=7.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}$), $7.73-7.63(\mathrm{~m}, 3 \mathrm{H}), 7.36(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.14$ $(\mathrm{dd}, J=9.1,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.83-6.79(\mathrm{~m}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , Chloroform- d) $\delta 140.3,140.3$, 137.6, $130.0,128.3,125.4,124.4,123.0,117.4,115.5,114.7,103.3,21.5$. HRMS (ESI): calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+} 234.1026$, found 234.1023.

3-(Benzo[d][1,3]dioxol-5-yl)imidazo[1,5-a]pyridine-1-carbonitrile (4ak):
Following the general 2.1 , compound 4 ak was obtained as a pale yellow crystalline solid in 40% yield (31.6 mg) by flash chromatography ($\mathrm{P}: \mathrm{E}=1: 1$) ; $\mathrm{mp}=189-190^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, Chloroform- d) $\delta 8.30(\mathrm{dt}, J=7.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{dt}, J=9.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.11(\mathrm{~m}, 3 \mathrm{H})$, $6.96(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{td}, J=7.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , Chloroform- d) $\delta 149.1,148.5$, $139.8,137.6,124.5,123.0,122.6,121.9,117.4,115.5,114.8,109.0,108.9,103.1,101.8$. HRMS (ESI): calcd for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$264.0768, found 264.0767.

3-(Thiophen-2-yl)imidazo[1,5-a]pyridine-1-carbonitrile (4al):
Following the general 2.1, compound 4al was obtained as a white crystalline solid in 55% yield (37.1 mg) by flash chromatography ($\mathrm{P}: \mathrm{E}=1: 1$); $\mathrm{mp}=108-109^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.46(\mathrm{dt}, J=7.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{dt}, J=9.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{dd}, J=3.7,1.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.53(\mathrm{dd}, J=5.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.16(\mathrm{~m}, 2 \mathrm{H}), 6.92(\mathrm{td}, J=6.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , Chloroform- d) $\delta 137.7,134.7,129.9,127.9,127.9,126.94,124.6,123.2,117.4,115.4,115.1,103.7$. HRMS (ESI): calcd for $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$226.0433, found 226.0429.

3-(Furan-2-yl)imidazo[1,5-a]pyridine-1-carbonitrile (4am):
Following the general 2.1, compound 4am was obtained as a pale yellow crystalline solid in 92% yield (57.7 mg) by flash chromatography ($\mathrm{P}: \mathrm{E}=2: 1$); $\mathrm{mp}=146-147{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.82(\mathrm{dt}, J=7.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{dt}, J=9.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=1.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.19-7.15(\mathrm{~m}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{td}, J=7.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{dd}, J=3.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , Chloroform- d) $\delta 144.6,143.1,137.2,131,9,124.8,124.6,117.1,115.3,115.1,112.1,110.8,103.7$. HRMS (ESI): calcd for $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$210.0662, found 210.0662.

3-(2-Chlorothiazol-5-yl)imidazo[1,5-a]pyridine-1-carbonitrile (4an):
Following the general 2.1, compound 4an was obtained as a orange crystalline solid in 98% yield $(76.4 \mathrm{mg})$ by flash chromatography ($\mathrm{P}: \mathrm{E}=1: 2$); $\mathrm{mp}=207-209^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, Chloroform- d) $\delta 8.34(\mathrm{dt}, J=7.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~s}, 1 \mathrm{H}), 7.80(\mathrm{dt}, J=9.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{dd}$, $J=2.5,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{td}, J=6.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \operatorname{DMSO}-d_{6}\right) \delta 151.9,139.99,138.3,131.2$, 129.3, 127.3, 125.6, 117.0, 116.8, 115.4, 102.7. HRMS (ESI): calcd for $\mathrm{C}_{11} \mathrm{H}_{6} \mathrm{ClN}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$260.9996, found 260.9995.

1-(4-(Trifluoromethyl)phenyl)imidazo[1,5-a]quinoline-3-carbonitrile (4ap):
Following the general 2.3, compound 4ap was obtained as a pale yellow crystalline solid in 83% yield (83.9 mg) by flash chromatography ($\mathrm{P}: \mathrm{E}=2.5: 1$) ; $\mathrm{mp}=200-203{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.85-7.79(\mathrm{~m}, 5 \mathrm{H}), 7.60(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.38(\mathrm{td}, J=$ $7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, Chloroform-d) $\delta 141.9,137.4,135.6,132.4,132.1,131.7,130.2,129.7$, 129.2, $127.4,126.8,126.1\left(\mathrm{q}, J_{C F 3}=4 \mathrm{~Hz}\right), 125.3,125.1,122.4,117.3,114.74,114.72,106.4$. HRMS (ESI): calcd for $\mathrm{C}_{19} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+} 338.0900$, found 338.0900 .

1-(4-Methoxyphenyl)imidazo[1,5-a]quinoline-3-carbonitrile (4aq):
Following the general 2.3 , compound $4 \mathbf{a q}$ was obtained as a white crystalline solid in 90% yield (80.8 mg) by flash chromatography ($\mathrm{P}: \mathrm{E}=1: 1$) ; $\mathrm{mp}=212-213{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta 7.75(\mathrm{dd}, J=7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.53(\mathrm{~m}, 4 \mathrm{H}), 7.47-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.35-$ $7.30(\mathrm{~m}, 1 \mathrm{H}), 7.09-7.06(\mathrm{~m}, 2 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , Chloroform-d) $\delta 161.1,143.7,137.1$, 132.2, 131.1, 129.3, 128.9, 126.8, 126.4, 125.2, 124.1, 117.4, 115.2, 114.8, 114.5, 105.6, 55.5. HRMS (ESI): calcd for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 300.1131$, found 300.1129 .

8-Chloro-1-phenylimidazo[1,5- a]quinoline-3-carbonitrile (4ma):
Following the general 2.3, compound 4 ma was obtained as a pale yellow crystalline solid in 55% yield (50.0 mg) by flash chromatography ($\mathrm{P}: \mathrm{E}=3: 2$); $\mathrm{mp}=197-199{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.70-7.57(\mathrm{~m}, 7 \mathrm{H}), 7.48(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.38(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}) $\delta 143.9,137.2,133.5,132.5,131.8,131.6,131.2,130.2,129.7,127.4,127.1,124.1,117.1,115.6$, 115.2, 104.5; HRMS (ESI): calcd for $\mathrm{C}_{18} \mathrm{H}_{11} \mathrm{ClN}_{3}[\mathrm{M}+\mathrm{H}]^{+}$304.0636, found 304.0634.

4. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR Spectra of synthesized products

4 aa

360\$0/8

[^0]4ba
360\$1/17

$360 \$ 2 / 18$

$\left\{\begin{array}{l}77.35 \mathrm{CDCl} 3 \\ \left\{\begin{array}{l}77.23 \\ 77.03 \mathrm{CDCl} \\ 76.71 \mathrm{CDCl} 3\end{array}\right.\end{array}\right.$

	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	-
60	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

4ca

360\$1/27

$360 \$ 2 / 28$

$\begin{aligned} & \text { Ren } \\ & \text { in } \end{aligned}$	

$\stackrel{8}{i}$

4da
360\$6/16

$360 \$ 5 / 10$

 104.74 $\times \quad 95.17$ $\mathbf{9 4 . 9 9}$

$360 \$ 1 / 18$

 $\stackrel{\bar{\infty}}{\stackrel{+}{i}}$

$\stackrel{8}{i}$

$360 \$ 8 / 24$

,	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

360\$0/3

4ha

360\$13/10

360\$2/2

$\stackrel{8}{-}$

4ia
360\$3/15

$\underbrace{\infty} \boldsymbol{x}$

$360 \$ 2 / 12$

Novan on
 $\stackrel{n}{\stackrel{n}{6}}$

$\stackrel{\stackrel{\infty}{\infty}}{\stackrel{\infty}{\infty}}$

4ja
360\$9/11
응

$360 \$ 3 / 4$

$\stackrel{N}{\stackrel{N}{1}}$

4ka
360\$15/9

$360 \$ 4 / 6$

$\begin{gathered} \infty \\ \stackrel{\infty}{i} \\ \stackrel{i}{i} \end{gathered}$	$\begin{aligned} & \stackrel{\circ}{\theta} \\ & \text { ले } \\ & \end{aligned}$		$\begin{aligned} & \text { N} \\ & \stackrel{1}{n} \\ & \underset{I}{1} \end{aligned}$	$\begin{aligned} & \pm \\ & \dot{0} \\ & \stackrel{1}{1} \end{aligned}$	\%

4la
360\$6/25

F F

$360 \$ 1 / 26$

4ab
YQ20201025-2/5

YQ20201025-2/17

YQ20201102-2/12

 $\stackrel{\bar{\infty}}{\stackrel{\oplus}{\dot{~}}}$

YQ20201025-1/16

 -103.04

4ae

YQ20201028-1/6

$360 \$ 1 / 32$

$\stackrel{\infty}{\infty}$

YQ20201103-1/13

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		
140	135	130	125	120	115	110	105	100	95	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	0

4ah

冯20210110测试／YQ20201123

$360 \$ 2 / 34$

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	＋	1	1	1	1	1	1	1	1	1		Γ
140	135	130	125	120	115	110	105	100	95	90	85	80	75	$\begin{gathered} 70 \\ (\mathrm{ppm}) \end{gathered}$	65	60	55	50	45	40	35	30	25	20	15	10	5	0

4aj
江20210110测试／QQ20201217－3
冯20210110测试／YQ20201217－3

$\stackrel{+}{+}$

YQ20201217－3／13

$\stackrel{i n}{\underset{1}{1}}$
$\stackrel{\circ}{i}$

4ak
冯20210110测试／YQ20201216－2

YQ20201216－2／14

YQ20201224－1／21
$\stackrel{\underbrace{}}{\circ}$
$\stackrel{\rightharpoonup}{6}$
$\stackrel{\oplus}{\bullet}$

[^1]$\stackrel{8}{\circ}$

4am

360\$9/14

360\$8/13

4an
河20210110测试／YQ20201210－2

YQ20201210－2／33

4ap
江20210110测试／YQ20201125－1

$360 \$ 0 / 27$

[^2]4 aq
沽20210110测试／YQ20201125－2

YQ20201125－2／24

\bar{n}
i
i

4ma
河20210110测试／YQ20201130－1
 ยเวสว $9 z^{\circ} L$

3.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4． 0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0

360\＄2／32－DMS0

30	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	－］

Compound 6

20210119-nj-2101153286-cdx20210114-4. 10. fid

年皆

Compound 7

冯20210110测试／YQ20201228－1

YQ20201228－1／20

$\underset{\substack{\text { I } \\ \text { I }}}{\substack{2}}$
$\underset{i}{8}$

[^0]:

[^1]:

[^2]: $\begin{array}{llllllllllllllll}145 & 140 & 135 & 130 & 125 & 120 & 115 & 110 & 105 & 100 & 95 & 90 & 85 & 80 & 75 & 70 \\ \mathrm{fl} & (\mathrm{ppm})\end{array}$

