Electronic Supplementary Information

Tandem Strecker/C(sp³)-H Amination Reactions for the Construction of Cyanide-Functionalized Imidazo[1,5-*a*]pyridines with NH₄SCN as a Cyanating Agent

Qing Yang,^{ac} Xiao-Tong Yan,^c Cheng-Tao Feng,^{*ac} De-Xiang Chen,^c Zhong-Zhong Yan^c and Kun Xu^{*b}

^aSchool of Pharmacy, Anhui University of Chinese Medicine; Anhui academy of Chinese medicine, Hefei, 230012,

China.

^bFaculty of Environment and Life, Beijing University of Technology, Beijing, 100124, China. ^cAnhui University of Science and Technology, Huainan, 232001, China.

Email: fengct@mail.ustc.edu.cn; kunxu@bjut.edu.cn

Contents

General Information Experimental Procedure Characterization Data of Products ¹ H NMR and ¹³ C NMR Spectra of synthesized products	S1 	
		S14

1. General Information

All reagents were purchased from commercial sources and used without further purification. Thin layer chromatography (TLC) employed glass 0.20-0.25 mm silica gel plates. Flash chromatography columns were packed with 200-300 mesh silica gel in petroleum (boiling point is between 60-90 °C). Flash chromatography was conducted eluting with with PE/EA, and they are listed as volume/volume ratios. ¹H NMR spectra were determined on 400 MHz spectrometer as solutions in CDCl₃ or DMSO-*d*₆. Chemical shifts are expressed in parts per million (δ) and the signals were reported as s (singlet), d (doublet), t (triplet), m(multiplet), and coupling constants (J) were given in Hz. ¹³C NMR spectra were recorded at 100 MHz in CDCl₃ or DMSO-*d*₆ solution. Chemical shifts as internal standard are referenced to CDCl₃ (δ = 7.26 for ¹H and δ = 77.0 for ¹³C NMR) or DMSO-*d*₆ (δ = 2.50 for ¹H and δ = 39.5 for ¹³C NMR) as internal standard. High resolution mass spectra (HRMS) were measured using electrospray ionization (ESI) and the time-of-flight (TOF) mass analyzer, accurate masses are reported for the molecular ion + hydrogen ([M+H]⁺). Melting point was recorded on a Hanon MP430 Auto Melting Point System and were uncorrected.

2. Experimental Procedure

2.1 General procedure for the synthesis of 4:

An oven-dried reaction vessel was charged with NH₄SCN **3a** (0.6 mmol, 46 mg), aldehyde **1** (0.3 mmol) and amine **2** (0.6 mmol) in DMSO (2 mL). After the mixture was stirred for 5 min at room temperature, I_2O_5 (0.3 mmol, 100 mg) was added, and the mixture was further stirred at 100 °C for 5 h. After completion of the reaction (TLC), the reaction mixture was allowed to cool to room temperature and quenched with saturated Na₂S₂O₃ solution. Then the reaction mixture was extracted with ethyl acetate. The organic phase was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to get the crude residue. Finally, it was purified by column chromatography on silica gel (200-300 mesh) using petroleum ether/ethylacetate as an eluent to afford the pure products **4**.

2.2 A procedure for the synthesis of 4aa at 9 mmol scale

An oven-dried round-bottom flask (150 mL), equipped with reflux condenser, was charged with NH₄SCN **3a** (18 mmol, 1.37 g), pyridine-2-carboxaldehyde **1a** (9 mmol, 856 uL) and benzylamine **2a** (18 mmol, 1965 uL) in DMSO (60 mL). After the mixture was stirred for 5 min at room temperature, I_2O_5 (9 mmol, 3.00 g) was added, and the mixture was further stirred at 100 °C for 5 h. After completion of the reaction (TLC), the reaction mixture was allowed to cool to room temperature and quenched with saturated Na₂S₂O₃ solution. Then the reaction mixture was extracted with ethyl acetate. The organic phase was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to get the crude residue. Finally, it was purified by column chromatography on silica gel (200-300 mesh) using petroleum ether/ethylacetate (P:E = 3:1) as an eluent to afford the pure product **4aa** (1.82 g, 92%).

2.3 One-pot two-step synthesis of cyano-substituted imidazo[1,5-a]quinolones 4

An oven-dried reaction vessel was charged with 2-methylquinoline **5** (0.3 mmol) and I_2O_5 (0.3 mmol, 100 mg) in DMSO (2 mL), and the mixture was stirred at room temperature for 24 hours. After the **5** was completely consumed, amine **2** (0.6 mmol) and NH₄SCN **3a** (0.6 mmol, 46 mg) were added, and the mixture was further stirred at 100 °C for 5 h. After completion of the reaction (TLC), the reaction mixture was allowed to cool to room temperature and quenched

with saturated $Na_2S_2O_3$ solution. Then the reaction mixture was extracted with ethyl acetate. The organic phase was dried over anhydrous Na_2SO_4 and concentrated under reduced pressure to get the crude residue. Finally, it was purified by column chromatography on silica gel (200-300 mesh) using petroleum ether/ethylacetate as an eluent to afford the pure products **4**.

2.4 Preliminary mechanistic studies

1) L(-)-alpha-methybenzylamine was used as substrate.

NH₄SCN **3a** (0.6 mmol, 45.7 mg), pyridine-2-carboxaldehyde **1a** (0.3 mmol, 29 uL) and L(-)-alphamethybenzylamine **2p** (0.6 mmol, 77 uL) in DMSO (2mL) were taken in a sealed tube. Then I_2O_5 (0.3 mmol, 100.1 mg) was added to it and stirred at room temperature for 5 min. Then the mixture was stirred at 100 °C for 5 h. After completion of the reaction (TLC), the reaction mixture was allowed to cool to room temperature and quenched with saturated Na₂S₂O₃ solution. Then the reaction mixture was extracted with ethyl acetate. The organic phase was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to get the crude residue. Finally, it was purified by column chromatography on silica gel (200-300 mesh) using petroleum ether/ethylacetate (P:E = 4:1) as an eluent to afford (Z)-N-(1-phenylethyl)picolinimidoyl cyanide **7** (27 mg, 38%) as an orange oil.

(Z)-N-(1-phenylethyl)picolinimidoyl cyanide 7: ¹H NMR (400 MHz, Chloroform-d) δ 8.75 – 8.72 (m, 1H), 8.16 (dt, J = 8.0, 1.1 Hz, 1H), 7.78 (td, J = 7.8, 1.7 Hz, 1H), 7.51 – 7.48 (m, 2H), 7.42 – 7.35 (m, 3H), 7.31 – 7.27 (m, 1H), 5.28 (q, J = 6.5 Hz, 1H), 1.67 (d, J = 6.6 Hz, 3H); ¹³C NMR (100 MHz, Chloroform-d) δ 151.8, 149.6, 142.9, 141.5, 136.9, 128.8, 127.8, 126.8, 126.1, 121.5, 109.9, 67.7, 24.4; HRMS (ESI): calcd for C₁₅H₁₄N₃ [M+H]⁺ 236.1182, found 236.1180.

2) A procedure for the synthesis of intermediate 6

An oven-dried reaction vessel was charged with **1a** (0.3 mmol, 29 μ L) and **2a** (0.6 mmol, 66 μ L) in DMSO (2 mL), and the mixture was stirred at room temperature for 1 hours. After the **1a** was completely consumed, TMS-CN (0.6 mmol, 80 μ L) was added, and the mixture was further stirred at room temperature for 6 h. After completion of the reaction (TLC), the reaction mixture was quenched with water. Then the reaction mixture was extracted with ethyl acetate. The organic phase was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to get the crude residue. Finally, it was purified by column chromatography on silica gel (200-300 mesh) using petroleum ether/ethylacetate (P:E = 1:1) as an eluent to afford the compound **6** (44 mg, 65%) as a red oil.

2-(benzylamino)-2-phenylacetonitrile **6**: ¹H NMR (400 MHz, Chloroform-d) δ 8.55 (d, J = 5.0 Hz, 1H), 7.66 (td, J = 7.7, 1.6 Hz, 1H), 7.39 – 7.20 (m, 7H), 4.73 (s, 1H), 4.05 – 3.88 (m, 2H), 2.54 (s, 1H). ¹³C NMR (100 MHz, Chloroform-d) δ 153.7, 149.9, 137.9, 137.4, 128.7, 128.5, 127.7, 123.9, 122.1, 118.3, 54.9, 51.5.

3) The synthesis of 4aa from 6

An oven-dried reaction vessel was charged with **6** (0.3mmol, 66.9 mg) and I_2O_5 (0.3mmol, 100.1 mg) in DMSO (2 mL), and the mixture was stirred at 100 °C for 4 h. After completion of the reaction (TLC), the reaction mixture was allowed to cool to room temperature and quenched with saturated $Na_2S_2O_3$ solution. Then the reaction mixture was extracted with ethyl acetate. The organic phase was dried over anhydrous Na_2SO_4 and concentrated under reduced pressure to get the crude residue. Finally, it was purified by column chromatography on silica gel (200-300 mesh) using petroleum ether/ethylacetate (P:E = 3:1) as an eluent to afford the product **4aa** (58.5 mg, 89%).

4) The starch-iodine test

After the reaction, the starch-iodine test of the reaction mixture was carried out. As shown in Fig. S1, an obvious colour change, which suggests the formation of iodine during the reaction.

Fig S1. The result of starch iodine test. (A) Upper liquid: the reaction solution diluted with ethyl acetate; bottom liquid: distilled water. (B) Upper liquid: the reaction solution diluted with ethyl acetate; bottom liquid: aqueous solution of starch.(C) Upper liquid: ethyl acetate; bottom liquid: aqueous solution of starch.

3. Characterization Data of Products

3-Phenylimidazo[1,5-*a*]pyridine-1-carbonitrile (4aa):

Following the general procedure 2.1, compound **4aa** was obtained as a white crystalline solid in 95% yield (62.4 mg) by flash chromatography (P:E = 3:1); mp = 132-133 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.35 (dt, *J* = 7.2, 1.1 Hz, 1H), 7.78 – 7.70 (m, 3H), 7.59 – 7.50 (m, 3H), 7.18 – 7.14 (m, 1H), 6.85 – 6.81 (m, 1H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 140.1, 137.7, 130.0, 129.3, 128.5, 128.4, 124.5, 122.9, 117.4, 115.3, 114.8, 103.6. HRMS (ESI): calcd for C₁₄H₁₀N₃ [M+H]⁺ 220.0869, found 220.0869.

8-Fluoro-3-phenylimidazo[1,5-*a*]pyridine-1-carbonitrile (4ba):

Following the general 2.1, compound **4ba** was obtained as a white crystalline solid in 81% yield (57.6 mg) by flash chromatography (P:E = 3:1); mp = 181-182 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.17 (dd, *J* = 6.6, 1.0 Hz, 1H), 7.77 – 7.73 (m, 2H), 7.60 – 7.54 (m, 3H), 6.84 – 6.77 (m, 2H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 152.9 (^{*I*}*J*_{*CF*} = 256 Hz), 141.5, 130.4, 129.4, 128.6, 128.0, 119.4 (⁴*J*_{*CF*} = 5 Hz), 114.7, 114.5 (³*J*_{*CF*} = 7 Hz), 106.8 (²*J*_{*CF*} = 16 Hz). HRMS (ESI): calcd for C₁₄H₉FN₃ [M+H]⁺ 238.0775, found 238.0768.

6-Fluoro-3-phenylimidazo[1,5-*a*]pyridine-1-carbonitrile (4ca):

Following the general 2.1, compound 4ca was obtained as a white crystalline solid in 92% yield (65.4 mg) by flash chromatography (P:E = 4:1); mp = 112-113 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.28 (dd, *J* = 4.5, 1.9 Hz, 1H), 7.75 – 7.71 (m, 3H), 7.60 – 7.53 (m, 3H), 7.13 – 7.08 (m, 1H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 154.6 (^{*I*}*J_{CF}* = 244 Hz), 140.9, 135.3, 130.3, 129.4, 128.2, 128.0, 118.5 (³*J_{CF}* = 9 Hz), 117.8, 117.5, 114.8, 109.7, 109.2, 104.9; HRMS (ESI): calcd for C₁₄H₉FN₃ [M+H]⁺ 238.0775, found 238.0775.

5-Fluoro-3-phenylimidazo[1,5-*a*]pyridine-1-carbonitrile (**4da**):

Following the general 2.1, compound **4da** was obtained as a white crystalline solid in 62% yield (44.1 mg) by flash chromatography (P:E = 3:1); mp = 167-169 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.64 (ddd, J = 7.9, 3.8, 2.0 Hz, 2H), 7.57 – 7.46 (m, 4H), 7.19 – 7.14 (m, 1H), 6.47 (td, J = 7.0, 0.9 Hz, 1H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 149.3 (¹ $J_{CF} = 272$ Hz), 140.0 ($J_{CF} = 2$ Hz), 138.7 ($J_{CF} = 3$ Hz), 129.89, 129.87, 129.84, 129.78, 129.75, 128.1, 125.7 ($J_{CF} = 5$ Hz), 114.8, 113.1 ($J_{CF} = 6$ Hz), 104.7, 95.2, 95.0. HRMS (ESI): calcd for C₁₄H₉FN₃ [M+H]⁺ 238.0775, found 238.0775.

6-Chloro-3-phenylimidazo[1,5-*a*]pyridine-1-carbonitrile (**4ea**):

Following the general 2.1, compound **4ea** was obtained as a pale yellow crystalline solid in 98% yield (74.4 mg) by flash chromatography (P:E = 8:1); mp = 140-142 °C.

¹H NMR (400 MHz, Chloroform-d) δ 8.36 (t, *J* = 1.3 Hz, 1H), 7.74 – 7.71 (m, 2H), 7.68 (dd, *J* = 9.5, 1.0 Hz, 1H), 7.60 – 7.54 (m, 3H), 7.11 (dd, *J* = 9.6, 1.6 Hz, 1H). ¹³C NMR (100 MHz, Chloroform-d) δ 140.2, 135.7, 130.4, 129.5, 128.4, 127.8, 126.1, 123.7, 120.6, 117.9, 114.7, 104.8; HRMS (ESI): calcd for C₁₄H₉ClN₃ [M+H]⁺ 254.0480, found 254.0480.

5-Chloro-8-fluoro-3-phenylimidazo[1,5-*a*]pyridine-1-carbonitrile (**4fa**):

Following the general 2.1, compound **4fa** was obtained as a white crystalline solid in 87% yield (70.7 mg) by flash chromatography (P:E = 4:1); mp = 178-179 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.53 – 7.43 (m, 5H), 6.78 (d, *J* = 6.5 Hz, 2H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 151.6 (¹*J*_{*CF*} = 256 Hz), 142.7, 131.4, 131.1, 130.2, 129.9, 127.6, 122.5 (*J*_{*CF*} = 5 Hz), 115.4 (*J*_{*CF*} = 7 Hz), 114.0, 107.2 (*J*_{*CF*} = 18 Hz), 103.3 (*J*_{*CF*} = 4 Hz). HRMS (ESI): calcd for C₁₄H₈CIFN₃ [M+H]⁺ 272.0385, found 272.0385.

6-Bromo-3-phenylimidazo[1,5-*a*]pyridine-1-carbonitrile (**4ga**):

Following the general 2.1, compound **4ga** was obtained as a pale yellow crystalline solid in 85% yield (75.7 mg) by flash chromatography (P:E = 8:1); mp = 177-179 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.47 (t, *J* = 1.2 Hz, 1H), 7.75 – 7.72 (m, 2H), 7.65 – 7.53 (m, 4H), 7.22 – 7.19 (m, 1H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 140.1, 135.7, 130.4, 129.5, 128.5, 128.0, 127.8, 122.8, 117.9, 114.7, 110.5, 104.9. HRMS (ESI): calcd for C₁₄H₉BrN₃ [M+H]⁺ 297.9974, found 297.9963.

5-Bromo-3-phenylimidazo[1,5-*a*]pyridine-1-carbonitrile (**4ha**):

Following the general 2.1, compound **4ha** was obtained as a white crystalline solid in 78% yield (69.5 mg) by flash chromatography (P:E = 6:1); mp = 153-155 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.76 (dd, J = 8.9, 1.2 Hz, 1H), 7.53 – 7.43 (m, 5H), 7.08 – 6.98 (m, 2H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 141.9, 139.7, 131.5, 130.6, 130.0, 127.5, 124.6, 121.2, 116.5, 114.7, 113.9, 104.1. HRMS (ESI): calcd for C₁₄H₉BrN₃ [M+H]⁺ 297.9974, found 297.9960.

6-Methyl-3-phenylimidazo[1,5-*a*]pyridine-1-carbonitrile (**4ia**):

Following the general 2.1, compound **4ia** was obtained as a white crystalline solid in 83% yield (58.0 mg) by flash chromatography (P:E = 3:1); mp = 144-145 °C.

¹H NMR (400 MHz, Chloroform-d) δ 8.11 (q, J = 1.3 Hz, 1H), 7.74 – 7.71 (m, 2H), 7.62 – 7.50 (m, 4H), 7.01 (dd, J = 9.3, 1.3 Hz, 1H), 2.31 (d, J = 1.2 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-d) δ 139.5, 136.8, 129.9, 129.2, 128.6, 128.5, 128.1, 124.9, 120.1, 116.6, 115.6, 103.2, 18.5. HRMS (ESI): calcd for C₁₅H₁₂N₃ [M+H]⁺ 234.1026, found 234.1026.

5-Methyl-3-phenylimidazo[1,5-*a*]pyridine-1-carbonitrile (**4ja**):

Following the general 2.1, compound **4ja** was obtained as a white crystalline solid in 56% yield (39.2 mg) by flash chromatography (P:E = 4:1); mp = 141-143 °C.

¹H NMR (400 MHz, Chloroform-d) δ 7.62 (d, *J* = 9.0 Hz, 1H), 7.52 – 7.45 (m, 5H), 7.07 (dd, *J* = 9.1, 6.6 Hz, 1H), 6.54 (d, *J* = 6.7 Hz, 1H), 2.16 (s, 3H). ¹³C NMR (100 MHz, Chloroform-d) δ 140.7, 139.0, 135.3, 132.0, 131.0, 129.9, 127.8, 124.9, 115.7, 115.5, 115.2, 102.7, 21.7. HRMS (ESI): calcd for C₁₅H₁₂N₃ [M+H]⁺ 234.1026, found 234.1019.

5-Methoxy-3-phenylimidazo[1,5-*a*]pyridine-1-carbonitrile (**4ka**):

Following the general 2.1, compound **4ka** was obtained as a gray crystalline solid in 60% yield (44.8 mg) by flash chromatography (P:E = 2:1); mp = 189-192 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.56 – 7.53 (m, 2H), 7.44 – 7.32 (m, 4H), 7.14 (dd, *J* = 8.9, 7.3 Hz, 1H), 6.01 (dd, *J* = 7.3, 0.8 Hz, 1H), 3.84 (s, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 150.4, 139.9, 139.7, 131.9, 130.4, 128.9, 127.2, 126.5, 115.6, 108.9, 103.0, 89.9, 56.3. HRMS (ESI): calcd for C₁₅H₁₂N₃O [M+H]⁺ 250.0975, found 250.0968.

1-Phenylimidazo[1,5-*a*]quinoline-3-carbonitrile (**4la**):

Following the general 2.1, compound **4la** was obtained as a pale yellow crystalline solid in 98% yield (79.1 mg) by flash chromatography (P:E = 8:1); mp = 189-190 °C.

¹H NMR (400 MHz, Chloroform-d) δ 7.76 (dd, J = 7.9, 1.5 Hz, 1H), 7.64 – 7.52 (m, 7H), 7.47 – 7.42 (m, 2H), 7.33 – 7.28 (m, 1H). ¹³C NMR (100 MHz, Chloroform-d) δ 143.6, 137.1, 132.1, 132.0, 130.4, 129.7, 129.4, 129.2, 129.0, 127.0, 126.5, 125.2, 117.5, 115.0, 114.8, 105.8. HRMS (ESI): calcd for C₁₈H₁₂N₃ [M+H]⁺ 270.1026, found 270.1026.

3-(4-Fluorophenyl)imidazo[1,5-*a*]pyridine-1-carbonitrile (**4ab**):

Following the general 2.1, compound **4ab** was obtained as a white crystalline solid in 96% yield (68.3 mg) by flash chromatography (P:E = 3:1); mp = 191-193 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.28 (dt, *J* = 7.2, 1.1 Hz, 1H), 7.77 – 7.72 (m, 3H), 7.29 – 7.26 (m, 2H), 7.19 – 7.15 (m, 1H), 6.87 – 6.83 (m, 1H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 163.5 (^{*I*}*J*_{*CF*} = 253 Hz), 139.1, 137.7, 130.6 (³*J*_{*CF*} = 8 Hz), 124.7, 124.5 (⁴*J*_{*CF*} = 3 Hz), 122.7, 117.5, 116.6 (²*J*_{*CF*} = 22 Hz), 115.3, 115.1, 103.5. HRMS (ESI): calcd for C₁₄H₉FN₃ [M+H]⁺ 238.0775, found 238.0766.

3-(4-Chlorophenyl)imidazo[1,5-*a*]pyridine-1-carbonitrile (**4ac**):

Following the general 2.1, compound **4ac** was obtained as a white crystalline solid in 98% yield (74.4 mg) by flash chromatography (P:E = 2.5:1); mp = 204-205 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.31 (dt, J = 7.2, 1.1 Hz, 1H), 7.77 – 7.71 (m, 3H), 7.57 – 7.53 (m, 2H), 7.20 – 7.16 (m, 1H), 6.88 – 6.85 (m, 1H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 138.9, 137.8, 136.2, 129.7, 129.6, 126.8, 124.7, 122.7, 117.6, 115.2, 115.2, 103.8. HRMS (ESI): calcd for C₁₄H₉ClN₃ [M+H]⁺ 254.0480, found 254.0471.

3-(2-Bromophenyl)imidazo[1,5-*a*]pyridine-1-carbonitrile (4ad):

Following the general 2.1, compound **4ad** was obtained as a pale yellow crystalline solid in 90% yield (80.2 mg) by flash chromatography (P:E = 3:1); mp = 171-173 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.78 – 7.72 (m, 3H), 7.57 – 7.45 (m, 3H), 7.23 – 7.19 (m, 1H), 6.85 (td, *J* = 6.9, 1.2 Hz, 1H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 138.7, 137.1, 133.5, 133.4, 132.1, 129.6, 128.1, 124.9, 124.0, 123.7, 117.1, 115.3, 114.5, 103.0. HRMS (ESI): calcd for C₁₄H₉BrN₃ [M+H]⁺ 297.9974, found 297.9964.

3-(3-Bromophenyl)imidazo[1,5-*a*]pyridine-1-carbonitrile (4ae):

Following the general 2.1, compound **4ae** was obtained as a white crystalline solid in 97% yield (86.4 mg) by flash chromatography (P:E = 3:1); mp = 198-200 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.34 (dt, *J* = 7.2, 1.1 Hz, 1H), 7.94 (t, *J* = 1.8 Hz, 1H), 7.77 – 7.65 (m, 3H), 7.44 (t, *J* = 7.9 Hz, 1H), 7.22 – 7.18 (m, 1H), 6.91 – 6.87 (m, 1H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 138.4, 137.8, 133.1, 131.4, 130.8, 130.3, 126.9, 124.8, 123.4, 122.8, 117.6, 115.3, 115.1, 103.90. HRMS (ESI): calcd for C₁₄H₉BrN₃ [M+H]⁺ 297.9974, found 297.9970.

3-(4-Bromophenyl)imidazo[1,5-*a*]pyridine-1-carbonitrile (**4af**):

Following the general 2.1, compound **4af** was obtained as a white crystalline solid in 97% yield (86.4 mg) by flash chromatography (P:E = 3:1); mp = 204-205 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.31 (dd, *J* = 7.2, 1.1 Hz, 1H), 7.75 – 7.63 (m, 5H), 7.20 – 7.16 (m, 1H), 6.87 (td, *J* = 6.9, 1.2 Hz, 1H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 138.9, 137.8, 132.6, 129.9, 127.3, 124.7, 124.4, 122.7, 117.6, 115.2, 115.1, 103.0. HRMS (ESI): calcd for C₁₄H₉BrN₃ [M+H]⁺ 297.9974, found 297.9973.

3-(4-(Trifluoromethyl)phenyl)imidazo[1,5-*a*]pyridine-1-carbonitrile (**4ag**):

Following the general 2.1, compound **4ag** was obtained as a white crystalline solid in 89% yield (76.6 mg) by flash chromatography (P:E = 2:1); mp = 157-158 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.37 (dt, *J* = 7.2, 1.1 Hz, 1H), 7.94 – 7.92 (m, 2H), 7.84 – 7.77 (m, 3H), 7.24 – 7.20 (m, 1H), 6.93 – 6.89 (m, 1H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 138.4, 137.9, 131.9, 131.88, 131.6, 128.7, 126.3 (q, *J*_{*CF3*} = 4 Hz), 125.0 (d, *J* = 3.0 Hz), 122.7, 122.3, 117.7, 115.5 (d, *J* = 3.0 Hz), 115.0 (d, *J* = 4.0 Hz). HRMS (ESI): calcd for C₁₅H₉F₃N₃ [M+H]⁺ 288.0743, found 288.0745.

3-(4-Cyanophenyl)imidazo[1,5-*a*]pyridine-1-carbonitrile (**4ah**):

Following the general 2.1, compound **4ah** was obtained as a pale yellow crystalline solid in 97% yield (71.0 mg) by flash chromatography (P:E = 1:1.5); mp = 236-238 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.38 (dt, *J* = 7.2, 1.1 Hz, 1H), 7.96 – 7.94 (m, 2H), 7.87 – 7.85 (m, 2H), 7.81 – 7.78 (m, 1H), 7.27 – 7.23 (m, 1H), 6.94 (td, *J* = 6.9, 1.2 Hz, 1H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 138.5, 138.4, 133.5, 132.9, 129.5, 127.2, 125.0, 118.9, 117.0, 116.4, 115.9, 112.3, 102.7. HRMS (ESI): calcd for C₁₅H₉N₄ [M+H]⁺ 245.0822, found 245.0819.

3-(4-Methoxyphenyl)imidazo[1,5-*a*]pyridine-1-carbonitrile (**4ai**):

Following the general 2.1, compound **4ai** was obtained as a pale yellow crystalline solid in 92% yield (68.7 mg) by flash chromatography (P:E = 2.5:1); mp = 129-131 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.29 (dt, *J* = 7.2, 1.1 Hz, 1H), 7.72 – 7.66 (m, 3H), 7.15 – 7.05 (m, 3H), 6.82 – 6.79 (m, 1H), 3.89 (s, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 160.9, 140.1, 137.5, 123.0, 124.4, 123.0, 120.6, 117.4, 115.6, 114.8, 114.7, 103.1, 55.5. HRMS (ESI): calcd for C₁₅H₁₂N₃O [M+H]⁺ 250.0975, found 250.0968.

3-(P-tolyl)imidazo[1,5-*a*]pyridine-1-carbonitrile (**4aj**):

Following the general 2.1, compound **4aj** was obtained as a white crystalline solid in 68% yield (47.6 mg) by flash chromatography (P:E = 1:1); mp = 150-151 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.33 (dd, *J* = 7.3, 1.1 Hz, 1H), 7.73 – 7.63 (m, 3H), 7.36 (d, *J* = 7.9 Hz, 2H), 7.14 (dd, *J* = 9.1, 6.5 Hz, 1H), 6.83 – 6.79 (m, 1H), 2.45 (s, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 140.3, 140.3, 137.6, 130.0, 128.3, 125.4, 124.4, 123.0, 117.4, 115.5, 114.7, 103.3, 21.5. HRMS (ESI): calcd for C₁₅H₁₂N₃ [M+H]⁺ 234.1026, found 234.1023.

3-(Benzo[d][1,3]dioxol-5-yl)imidazo[1,5-*a*]pyridine-1-carbonitrile (**4ak**):

Following the general 2.1, compound **4ak** was obtained as a pale yellow crystalline solid in 40% yield (31.6 mg) by flash chromatography (P:E = 1:1); mp = 189-190 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.30 (dt, *J* = 7.2, 1.1 Hz, 1H), 7.69 (dt, *J* = 9.1, 1.2 Hz, 1H), 7.23 – 7.11 (m, 3H), 6.96 (d, *J* = 8.0 Hz, 1H), 6.82 (td, *J* = 7.0, 1.2 Hz, 1H), 6.07 (s, 2H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 149.1, 148.5, 139.8, 137.6, 124.5, 123.0, 122.6, 121.9, 117.4, 115.5, 114.8, 109.0, 108.9, 103.1, 101.8. HRMS (ESI): calcd for C₁₅H₁₀N₃O₂ [M+H]⁺ 264.0768, found 264.0767.

3-(Thiophen-2-yl)imidazo[1,5-*a*]pyridine-1-carbonitrile (**4al**):

Following the general 2.1, compound **4al** was obtained as a white crystalline solid in 55% yield (37.1 mg) by flash chromatography (P:E = 1:1); mp = 108-109 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.46 (dt, J = 7.2, 1.1 Hz, 1H), 7.72 (dt, J = 9.2, 1.3 Hz, 1H), 7.59 (dd, J = 3.7, 1.1 Hz, 1H), 7.53 (dd, J = 5.1, 1.1 Hz, 1H), 7.23 – 7.16 (m, 2H), 6.92 (td, J = 6.9, 1.2 Hz, 1H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 137.7, 134.7, 129.9, 127.9, 127.9, 126.94, 124.6, 123.2, 117.4, 115.4, 115.1, 103.7. HRMS (ESI): calcd for C₁₂H₈N₃S [M+H]⁺ 226.0433, found 226.0429.

3-(Furan-2-yl)imidazo[1,5-*a*]pyridine-1-carbonitrile (**4am**):

Following the general 2.1, compound **4am** was obtained as a pale yellow crystalline solid in 92% yield (57.7 mg) by flash chromatography (P:E = 2:1); mp = 146-147 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.82 (dt, *J* = 7.2, 1.1 Hz, 1H), 7.69 (dt, *J* = 9.1, 1.2 Hz, 1H), 7.61 (d, *J* = 1.7 Hz, 1H), 7.19 – 7.15 (m, 1H), 7.11 (d, *J* = 3.5 Hz, 1H), 6.91 (td, *J* = 7.0, 1.2 Hz, 1H), 6.62 (dd, *J* = 3.5, 1.8 Hz, 1H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 144.6, 143.1, 137.2, 131,9, 124.8, 124.6, 117.1, 115.3, 115.1, 112.1, 110.8, 103.7. HRMS (ESI): calcd for C₁₂H₈N₃O [M+H]⁺ 210.0662, found 210.0662.

3-(2-Chlorothiazol-5-yl)imidazo[1,5-*a*]pyridine-1-carbonitrile (**4an**):

Following the general 2.1, compound **4an** was obtained as a orange crystalline solid in 98% yield (76.4 mg) by flash chromatography (P:E = 1:2); mp = 207-209 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.34 (dt, *J* = 7.2, 1.1 Hz, 1H), 7.99 (s, 1H), 7.80 (dt, *J* = 9.2, 1.2 Hz, 1H), 7.28 (dd, *J* = 2.5, 0.9 Hz, 1H), 7.04 (td, *J* = 6.9, 1.2 Hz, 1H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 151.9, 139.99, 138.3, 131.2, 129.3, 127.3, 125.6, 117.0, 116.8, 115.4, 102.7. HRMS (ESI): calcd for C₁₁H₆ClN₄S [M+H]⁺ 260.9996, found 260.9995.

1-(4-(Trifluoromethyl)phenyl)imidazo[1,5-*a*]quinoline-3-carbonitrile (**4ap**):

Following the general 2.3, compound **4ap** was obtained as a pale yellow crystalline solid in 83% yield (83.9 mg) by flash chromatography (P:E = 2.5:1); mp = 200-203 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.85 – 7.79 (m, 5H), 7.60 (d, *J* = 9.3 Hz, 1H), 7.53 – 7.48 (m, 3H), 7.38 (td, *J* = 7.8, 1.6 Hz, 1H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 141.9, 137.4, 135.6, 132.4, 132.1, 131.7, 130.2, 129.7, 129.2, 127.4, 126.8, 126.1 (q, *J*_{CF3} = 4 Hz), 125.3, 125.1, 122.4, 117.3, 114.74, 114.72, 106.4. HRMS (ESI): calcd for C₁₉H₁₁F₃N₃ [M+H]⁺ 338.0900, found 338.0900.

1-(4-Methoxyphenyl)imidazo[1,5-*a*]quinoline-3-carbonitrile (**4aq**):

Following the general 2.3, compound **4aq** was obtained as a white crystalline solid in 90% yield (80.8 mg) by flash chromatography (P:E = 1:1); mp = 212-213 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.75 (dd, *J* = 7.8, 1.6 Hz, 1H), 7.62 – 7.53 (m, 4H), 7.47 – 7.40 (m, 2H), 7.35 – 7.30 (m, 1H), 7.09 – 7.06 (m, 2H), 3.93 (s, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 161.1, 143.7, 137.1, 132.2, 131.1, 129.3, 128.9, 126.8, 126.4, 125.2, 124.1, 117.4, 115.2, 114.8, 114.5, 105.6, 55.5. HRMS (ESI): calcd for C₁₉H₁₄N₃O [M+H]⁺ 300.1131, found 300.1129.

8-Chloro-1-phenylimidazo[1,5-*a*]quinoline-3-carbonitrile (**4ma**):

Following the general 2.3, compound **4ma** was obtained as a pale yellow crystalline solid in 55% yield (50.0 mg) by flash chromatography (P:E= 3:2); mp = 197-199 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.70 – 7.57 (m, 7H), 7.48 (d, J = 1.9 Hz, 1H), 7.43 – 7.38 (m, 2H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 143.9, 137.2, 133.5, 132.5, 131.8, 131.6, 131.2, 130.2, 129.7, 127.4, 127.1, 124.1, 117.1, 115.6, 115.2, 104.5; HRMS (ESI): calcd for C₁₈H₁₁ClN₃ [M+H]⁺ 304.0636, found 304.0634.

4. ¹H NMR and ¹³C NMR Spectra of synthesized products

S22

-2.16

-0.00

-1 f1 (ppm)

4ab YQ20201025-2/5 8.20 9.20 1.11

-0.00

8.33 7.77 7.72 6.68 8.88

L/1-520100502Å
L/1-570

-0.00

75 70 f1 (ppm) 140 135 130 125 120 115 110 105 100 95 90 85 80

8.38 1.77 1.75 1.77 1.75 1.77 1.75 1.75 1.77 1.75

140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 f1 (ppm)

8.38 8.38 8.33 7.794 4.4444 7.794 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.36 7.779 7.7720 7.7770 7.7720 7.77700 7.77700 7.77700 7.77700 7.77700 7.77700 7.77700 7.7

-0.00

CEN NC

-0.00

S32

8/2-8201027 8/2-8201027 8/2-8201027 8/2-8201027 8/2-820 8/2-8201027 8/2-820 8/2-820 8/2-820 8/2-820 8/2-820 8/2-8201027 1/1/1 1/

8.33 8.34 8.34 8.35 8.3

-0.00

-0.00

4ap 冯20210110测试/YQ20201125-1

-0.00

145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 f1 (ppm)

-0.00

4ma 冯20210110测试/YQ20201130-1

--0.00

Compound 6

f1 (ppm)

