Zinc-Brønsted acid mediated practical hydrotrifluoromethylation of alkenes with CF₃Br

Deqian Peng,^a Wu Fan,^b Xueqi Zhao,^a Wei Chen,^c Yuan Wen,^a Li Zhang^a and Suhua Li*^{a,d}

a School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China

b Key Laboratory of Tobacco Flavor Basic Research, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China

c Department of Colorectal Surgery & Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor Disease & Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510655, China.

d Key Lab of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou 510641, China.

*lisuhua5@mail.sysu.edu.cn

Contents

1. General information	3
2. Reaction Conditions Optimization	4
3. Hydroxytrifluoromethylation of Alkenes	8
4. Gram-scale Hydrotrifluoromethyltion Reactions	44
5. Hydrotrifluoromethyltion of Alkenes with Vinyl Bromide or Benzyl Chloride	45
6. Mechanism Studies	46
7. References	52
8. NMR Spectra	53

Page

1. General Information

Acetonitrile was dried over CaH₂. All other reagents were used as received unless otherwise noted. Commercially available chemicals were purchased from Alfa Aesar, Sigma-Aldrich, Energy Chemical, and TCI. The CF₃Br was purchased from Shangfluoro Chemicals. Visualization was accomplished with UV light (254 nm) or KMnO₄ stain. Flash column chromatography was performed using silica gel (300-400 mesh). ¹H NMR Spectra were acquired on a Bruker AscendTM 400 (at 400 MHz) and are reported relative to SiMe₄ (δ 0.00) or the residue solvents from the deuterium solvents. ¹³C NMR spectra were acquired on a Bruker AscendTM 400 (at 101 MHz) and are reported relative to CDCl₃ (δ 77.16) or the residue solvents from the deuterium solvents. ¹⁹F NMR spectra were acquired on a Bruker AscendTM 400 (at 376 MHz) and are reported relative to CFCl₃ (δ 0.00). NMR acquisitions were performed at 295 K unless otherwise noted. Abbreviations are: s, singlet; d, doublet; t, triplet; q, quartet; p, pentet; bs, broad singlet; app., approximate peak. Melting points (m.p.) were determined using a WRS-2 microcomputer melting point meter and are uncorrected. All IR spectra were obtained as a film with Perkin Elmer FT-IR Spectrometer Frontier. Low-resolution mass spectrometry data was acquired by SHIMADZU GCMS-QP2010 SE. High-resolution mass spectrometry (HRMS) data was acquired by Synapt G2 Si or Thermo Scientific Q Exactive GC.

2. Reaction Conditions Optimization

Table S1: Screening of the metals

ſ		I (6 equiv), MeCN	✓ ^{CF} ₃
Į.	al 0.32.	AcOH (3 equiv), rt, 20 h 2-1	
entry	Cat.	yield of 2-1 (%) ^{<i>a</i>}	rsm (%) ^b
1	Zn	61	33
2	In	10	72
3	Cu	< 1	81
4	Mg	< 1	75
5	Fe	< 1	87
6	Ag	< 1	87
7	Sb	< 1	87
8	Al	< 1	87
9	Mn	3	78

The reaction was conducted in 25 mL Schlenk tube with styrene (29 μ L, 0.25 mmol), M (1.5 mmol), AcOH (43 μ L, 0.75 mmol), CF₃Br (6.2 equiv) and MeCN (1 mL) at rt; ^{*a*} the yield was determined by ¹⁹F NMR analysis of the crude reaction mixture with PhCF₃ as the internal standard; ^{*b*} rsm was determined by ¹H NMR analysis of the crude reaction mixture with mesitylene as the internal standard.

		Zn (x equiv), MeCN	CF ₃
	+ CF ₃ Br -	AcOH (3 equiv), rt, 20 h	2-1
entry	Zn (equiv)	yield of 2-1 (%) ^{<i>a</i>}	rsm (%) ^b
1	0	0	75
2	1	18	69
3	2	26	57
4	3	27	54
5	4	41	51
6	5	55	36
7	6	61	33
8	7	61	24

Table S2: Evaluation of the equivalents of Zn needed in the presence of 3 equiv of AcOH.

The reaction was conducted in 25 mL Schlenk tube with styrene (29 μ L, 0.25 mmol), Zn, AcOH (43 μ L, 0.75 mmol), CF₃Br (6.2 equiv) and MeCN (1 mL) at rt; ^{*a*} the yield was determined by ¹⁹F NMR analysis of the crude reaction mixture with PhCF₃ as the internal standard; ^{*b*} rsm was determined by ¹H NMR analysis of the crude reaction mixture with mesitylene as the internal standard.

	+ CE ₂ Br	Zn (6 equiv), MeCN	
	1-1 + CF ₃ Br	AcOH (x equiv), rt, 20 h	2-1
entry	X	yield of 2-1 (%) ^{<i>a</i>}	rsm (%) ^b
1	0	0	84
2	1	55	27
3	2	60	33
4	3	61	33
5	4	60	36
6	5	55	36
7	6	51	39

Table S3: Evaluation of AcOH Needed in the Presence of 6 equiv of Zn.

The reaction was conducted in 25 mL Schlenk tube with styrene (29 μ L, 0.25 mmol), Zn (1.5 mmol), AcOH, CF₃Br (6.2 equiv) and MeCN (1 mL) at rt; ^{*a*} the yield was determined by ¹⁹F NMR analysis of the crude reaction mixture with PhCF₃ as the internal standard; ^{*b*} rsm was determined by ¹H NMR analysis of the crude reaction mixture with mesitylene as the internal standard.

Table S4: Screening of the solvents

		quiv), Solvent	.CF ₃
		H (3 equiv), rt, 20 h 2-1	
entry	Solvents	yield of 2-1 (%) ^{<i>a</i>}	rsm (%) ^b
1	NMP	15	69
2	DMA	30	51
3	DMF	22	63
4	Dioxane	76	0
5	PhCN	89	0
6	Xylene	23	60
7	Tol	35	33
8	Glycol dimethyl ether	84	0
9	CHCl ₃	4	58
10	PE	19	3
11	Cyclooctane	17	45
12	DMSO	2	84
13	MeCN	86	0

The reaction was conducted in 25 mL Schlenk tube with styrene (29 μ L, 0.25 mmol), Zn (1.5 mmol), PhCO₂H (0.75 mmol), CF₃Br (6.2 equiv) and solvent (1 mL) at rt; ^{*a*} the yield was determined by ¹⁹F NMR analysis of the crude reaction mixture with PhCF₃ as the internal standard; ^{*b*} rsm was determined by ¹H NMR analysis of the crude reaction mixture with mesitylene as the internal standard.

			equiv), MeCN	CF ₃
	1-1	01301	H (y equiv), rt, 2 h	
entry	Х	У	yield of 2-1 (%) ^{<i>a</i>}	rsm (%) ^b
1	5.0	2.5	88	0
2	4.0	2.0	86	6
3	3.0	1.5	74	15
4	2.0	1.0	48	42
5	1.0	0.5	26	66
6	0.5	0.25	4	93

Table S5: Optimizing the quantity of Zn and PhCO₂H (2:1)

The reaction was conducted in 25 mL Schlenk tube with styrene (29 μ L, 0.25 mmol), Zn, PhCO₂H, CF₃Br (6.2 equiv) and MeCN (1 mL) at rt; ^{*a*} the yield was determined by ¹⁹F NMR analysis of the crude reaction mixture with PhCF₃ as the internal standard; ^{*b*} rsm was determined by ¹H NMR analysis of the crude reaction mixture with mesitylene as the internal standard.

Table S6: Evaluation of the Equivalents of PhCO₂H Needed in the Presence of 5 equiv of Zn.

	+ CE ₂ Br	Zn (5 equiv), MeCN	
	1-1 + CF ₃ Br	PhCO ₂ H (x equiv), rt, 2 h	2-1
entry	Х	yield of 2-1 (%) ^{<i>a</i>}	rsm (%) ^b
1	0.5	0	78
2	1	2	87
3	1.5	74	3
4	2	81	6
5	2.5	88	0

The reaction was conducted in 25 mL Schlenk tube with styrene (29 μ L, 0.25 mmol), Zn (1.25 mmol), PhCO₂H, CF₃Br (6.2 equiv) and MeCN (1 mL) at rt; ^{*a*} the yield was determined by ¹⁹F NMR analysis of the crude reaction mixture with PhCF₃ as the internal standard; ^{*b*} rsm was determined by ¹H NMR analysis of the crude reaction mixture with mesitylene as the internal standard.

	+ CE ₂ Br	Zn (5 equiv), MeCN	
1-1	+ CF ₃ Br	PhCO ₂ H (2.5 equiv), rt, time	2-1
entry	time (h)	yield of 2-1 (%) ^{<i>a</i>}	rsm (%) ^b
1	0.25	11	84
2	0.5	79	12
3	1.0	87	0
4	2	88	0

Table S7: Optimization of the Reaction Time

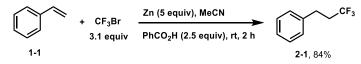
The reaction was conducted in 25 mL Schlenk tube with styrene (29 μ L, 0.25 mmol), Zn (1.25 mmol), PhCO₂H (0.625 mmol), CF₃Br (6.2 equiv) and MeCN (1 mL) at rt; ^{*a*} the yield was determined by ¹⁹F NMR analysis of the crude reaction mixture with PhCF₃ as the internal standard; ^{*b*} rsm was determined by ¹H NMR analysis of the crude reaction mixture with mesitylene as the internal standard.

Hydrotrifluoromethylation of Styrene with Saturated CF₃Br Solution in CH₃CN Calculating the concentration of saturated CF₃Br in CH₃CN:

Saturated CF₃Br solution in CH₃CN were prepared by stirring of CH₃CN (40 mL) under CF₃Br atmosphere in a 50 mL Schlenk flask with a CF₃Br balloon attached for 10 hours. The amount of CF₃Br dissolved in CH₃CN was calculated through weighing by difference with CF₃Br gas above the solvent deducted. The approximate concentration of CF₃Br was calculated as around 0.12 M (in CH₃CN).

	1-1 1 mmol	sat. CF_3Br in CH_3CN (x mL) Zn (5 equiv) PhCO ₂ H (2.5 equiv) rt, 2 h 2-1	CF ₃
entry	Х	yield of 2-1 (%) ^{<i>a</i>}	rsm (%) ^b
1	10	25	69
2	26	54	36

The reaction was conducted in 50 mL Schlenk flask with styrene (1.0 mmol), Zn (5.0 mmol), PhCO₂H (2.5 mmol), sat. CF₃Br in MeCN (10 mL or 26 mL as indicated) at rt; ^{*a*} the yield was determined by ¹⁹F NMR analysis of the crude reaction mixture with PhCF₃ as the internal standard; ^{*b*} rsm was determined by ¹H NMR analysis of the crude reaction mixture with mesitylene as the internal standard.


3. Hydroxytrifluoromethylation of Alkenes

General procedure for the hydrotrifluoromethylation of alkenes:

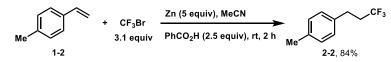
$$\begin{array}{cccc} R^{1} & & Zn (5 \text{ equiv}) \\ R^{2} & & 3.1 \text{ equiv} \\ 1 \text{ mmol} \end{array} \xrightarrow{\begin{array}{c} CF_{3} \\ RCO_{2}H (2.5 \text{ equiv}), \text{ rt} \\ MeCN (3 \text{ mL}) \end{array}} \xrightarrow{\begin{array}{c} CF_{3} \\ R^{1} \\ R^{2} \\ R^{2} \end{array}}$$

To a 50 mL of Schlenk flask was added Zn powder (5.0 mmol, 5 equiv) and RCO₂H (2.5 mmol, 2.5 equiv), and it was sealed and evacuated for 30 s and backfilled with CF₃Br (3.1 equiv). Then the flask was added MeCN (3 mL) and alkene (1.0 mmol, 1 equiv). After stirring for corresponding time at rt, the reaction mixture was filtered through a pad of Celite. The filtrate was concentrated, and the residue was purified by silica gel chromatography.

(3,3,3-trifluoropropyl)benzene (2-1, p4-31)

Prepared according to the general procedure using alkene 1-1 (115 μ L, d = 0.906 g/mL, 1.0 mmol), CF₃Br (3.1 mmol), Zn (327.5 mg, 5.0 mmol), PhCO₂H (305.3 mg, 2.5 mmol) and MeCN (3 mL). After stirring for 2 h at rt, the reaction mixture was added sat. Na₂CO₃ aq. (3 mL) and stirred for 15 min, then directly purified by silica gel chromatography (pentane) to afford 2-1¹ (146.0 mg, 84% yield) as a colorless oil.

TLC: $R_f = 0.79$ in petroleum ether.


¹**H NMR** (400 MHz, CDCl₃) δ 7.34–7.30 (m, 2H), 7.24–7.19 (m, 3H), 2.90–2.85 (m, 2H), 2.45–2.33 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 139.16, 128.87, 128.36, 126.87 (q, *J* = 276.7 Hz), 126.79, 35.80 (q, *J* = 28.4 Hz), 28.35 (q, *J* = 3.3 Hz).

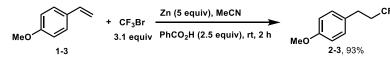
¹⁹**F NMR** (376 MHz, CDCl₃): δ -67.21.

MS (EI): *m/z* (%) 174 (M⁺, 25.60), 91 (100).

1-methyl-4-(3,3,3-trifluoropropyl)benzene (2-2, p4-33)

Prepared according to the general procedure using alkene 1-2 (132 μ L, d = 0.897 g/mL, 1.0 mmol), CF₃Br (3.1 mmol), Zn (328.0 mg, 5.0 mmol), PhCO₂H (305.8 mg, 2.5 mmol) and MeCN (3 mL). After stirring for 2 h at rt, the reaction mixture was added sat. Na₂CO₃ aq. (3 mL) and stirred for 15 min, then directly purified by silica gel chromatography (pentane) to afford 2-2 (158.0 mg, 84% yield) as a colorless oil.

TLC: $R_f = 0.78$ in petroleum ether.


¹H NMR (400 MHz, CDCl₃) δ 7.13–7.07 (m, 4H), 2.85–2.81 (m, 2H), 2.42–2.30 (m, 5H).
¹³C NMR (101 MHz, CDCl₃) δ 136.35, 136.13, 129.54, 128.24, 126.94 (q, *J* = 276.2 Hz), 35.91 (q, *J* = 28.1 Hz), 27.94 (q, *J* = 3.6 Hz), 21.09.
¹⁹F NMR (376 MHz, CDCl₃): δ -67.21.

IR (neat): 2926, 2856, 1455, 1387, 1307, 1257, 1141, 1809, 808.

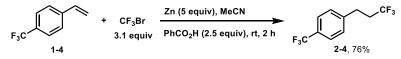
MS (EI): *m/z* (%) 188 (M⁺, 30.96), 105 (100).

HRMS (EI): m/z calc'd for $C_{10}H_{11}F_3$ (M)⁺: 188.0807, found 188.0807.

1-methoxy-4-(3,3,3-trifluoropropyl)benzene (2-3, p4-35)

Prepared according to the general procedure using alkene **1-3** (133 μ L, d = 1.009 g/mL, 1.0 mmol), CF₃Br (3.1 mmol), Zn (328.0 mg, 5.0 mmol), PhCO₂H (305.8 mg, 2.5 mmol) and MeCN (3 mL). After stirring for 2 h at rt, the reaction mixture was added sat. Na₂CO₃ aq. (3 mL) and stirred for 15 min, then directly purified by silica gel chromatography (pentane) to afford **2-3**² (190.0 mg, 93% yield) as a colorless oil.

TLC: $R_f = 0.34$ in petroleum ether.


¹**H NMR** (400 MHz, CDCl₃) δ 7.13–7.09 (m, 2H), 6.87–6.83 (m, 2H), 3.79 (s, 3H), 2.83–2.79 (m, 2H), 2.41–2.29 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 158.51, 131.18, 129.30, 126.89 (q, *J* = 276.7 Hz), 114.24, 55.35, 36.02 (q, *J* = 28.0 Hz), 27.46 (q, *J* = 3.1 Hz).

¹⁹**F NMR** (376 MHz, CDCl₃): δ -67.16.

MS (EI): *m/z* (%) 204 (M⁺, 27.94), 121 (100).

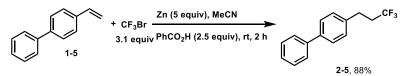
1-(trifluoromethyl)-4-(3,3,3-trifluoropropyl)benzene (2-4, p4-36)

Prepared according to the general procedure using alkene 1-4 (148 μ L, d = 1.165 g/mL, 1.0 mmol), CF₃Br (3.1 mmol), Zn (327.0 mg, 5.0 mmol), PhCO₂H (305.3 mg, 2.5 mmol) and MeCN (3 mL). After stirring for 2 h at rt, the reaction mixture was added sat. Na₂CO₃ aq. (3 mL) and stirred for 15 min, then directly purified by silica gel chromatography (pentane) to afford 2-4 (184.0 mg, 76% yield) as a colorless oil.

TLC: $R_f = 0.72$ in petroleum ether.

¹**H NMR** (400 MHz, CDCl₃) δ 7.58 (d, *J* = 7.9 Hz, 2H), 7.32 (d, *J* = 7.9 Hz, 2H), 2.96–2.92 (m, 2H), 2.47–2.35 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 143.23, 129.36 (q, *J* = 32.7 Hz), 128.78, 126.70 (q, *J* = 276.6 Hz), 125.84 (q, *J* = 3.9 Hz), 124.38 (q, *J* = 271.9 Hz), 35.40 (q, *J* = 28.8 Hz), 28.23 (q, *J* = 3.4 Hz).


¹⁹**F NMR** (376 MHz, CDCl₃): δ -63.05, -67.12.

IR (neat): 2956, 2855, 1327, 1259, 1225, 1168, 1131, 829.

MS (EI): *m/z* (%) 242 (M⁺, 42.56), 159 (100).

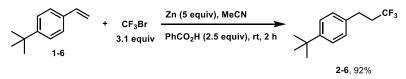
HRMS (EI): m/z calc'd for C₁₀H₈F₆ (M)⁺: 242.0525, found 242.0525.

4-(3,3,3-trifluoropropyl)-1,1'-biphenyl (2-5, p3-195-1)

Prepared according to the general procedure using alkene 1-5 (180.3 mg, 1.0 mmol), CF_3Br (3.1 mmol), Zn (327.0 mg, 5.0 mmol), PhCO₂H (305.3 mg, 2.5 mmol) and MeCN (3 mL). After stirring for 2 h at rt, the reaction mixture was added sat. Na₂CO₃ aq. (3 mL) and stirred for 15 min, then directly purified by silica gel chromatography (pentane) to afford 2-5³ (220.0 mg, 88% yield) as a white solid.

TLC: $R_f = 0.78$ in petroleum ether.

m.p.: 82.8~83.7 °C.


¹**H** NMR (400 MHz, CDCl₃) δ 7.59–7.54 (m, 4H), 7.45–7.42 (m, 2H), 7.36–7.32 (m, 1H), 7.27 (d, *J* = 8.0 Hz, 2H), 2.94–2.90 (m, 2H), 2.49–2.37 (m, 2H).

¹³**C** NMR (101 MHz, CDCl₃) δ 140.89, 139.82, 138.18, 128.93, 128.78, 127.58, 127.41, 127.16, 126.85 (q, *J* = 277.0 Hz), 35.76 (q, *J* = 28.3 Hz), 27.99 (q, *J* = 3.2 Hz).

¹⁹**F NMR** (376 MHz, CDCl₃): δ -67.15.

MS (EI): *m/z* (%) 250 (M⁺, 48.41), 167 (100).

1-(tert-butyl)-4-(3,3,3-trifluoropropyl)benzene (2-6, p4-71)

Prepared according to the general procedure using alkene **1-6** (183 μ L, d = 0.875 g/mL, 1.0 mmol), CF₃Br (3.1 mmol), Zn (328.3 mg, 5.0 mmol), PhCO₂H (306.2 mg, 2.5 mmol) and MeCN (3 mL). After stirring for 2 h at rt, the reaction mixture was added sat. Na₂CO₃ aq. (3 mL) and stirred for 15 min, then directly purified by silica gel chromatography (pentane) to afford **2-6⁴** (211.0 mg, 92% yield) as a colorless oil.

TLC: $R_f = 0.64$ in petroleum ether.

¹H NMR (400 MHz, CDCl₃) δ 7.34 (d, J = 8.1 Hz, 2H), 7.13 (d, J = 8.0 Hz, 2H), 2.86–2.82 (m, 2H), 2.44–2.32 (m, 2H), 1.31 (s, 9H).
¹³C NMR (101 MHz, CDCl₃) δ 149.73, 136.09, 128.31, 126.93 (q, J = 276.7 Hz), 125.76, 35.81 (q, J = 28.4 Hz), 34.58, 31.50, 27.78 (q, J = 3.1 Hz).
¹⁹F NMR (376 MHz, CDCl₃): δ -67.26.
MS (EI): m/z (%) 230 (M⁺, 30.86), 215 (100).

1-fluoro-4-(3,3,3-trifluoropropyl)benzene (2-7, p4-58)

$$F$$

$$F$$

$$1-7$$

$$+ CF_{3}Br$$

$$3.1 equiv$$

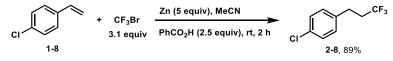
$$- PhCO_{2}H (2.5 equiv), rt, 2 h$$

$$F$$

$$2-7, 78\%$$

Prepared according to the general procedure using alkene 1-7 (119 μ L, d = 1.024 g/mL, 1.0 mmol), CF₃Br (3.1 mmol), Zn (327.0 mg, 5.0 mmol), PhCO₂H (305.3 mg, 2.5 mmol) and MeCN (3 mL). After stirring for 2 h at rt, the reaction mixture was added sat. Na₂CO₃ aq. (3 mL) and stirred for 15 min, then directly purified by silica gel chromatography (pentane) to afford 2-7⁴ (149.0 mg, 78% yield) as a colorless oil.

TLC: $R_f = 0.77$ in petroleum.

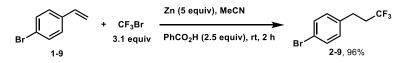

¹**H NMR** (400 MHz, CDCl₃) δ 7.17–7.14 (m, 2H), 7.02–6.98 (m, 2H), 2.87–2.83 (m, 2H), 2.43–2.31 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 161.87 (d, J = 244.8 Hz), 134.82 (d, J = 3.0 Hz), 129.82 (d, J = 8.0 Hz), 126.77 (q, J = 276.8 Hz), 115.67 (d, J = 21.5 Hz), 35.89 (q, J = 28.4 Hz), 27.61 (q, J = 3.3 Hz).

¹⁹**F NMR** (376 MHz, CDCl₃): δ -67.14, -116.93.

MS (EI): *m/z* (%) 192 (M⁺, 39.52), 109 (100).

1-chloro-4-(3,3,3-trifluoropropyl)benzene (2-8, p4-38)


Prepared according to the general procedure using alkene **1-8** (120 μ L, d = 1.155 g/mL, 1.0 mmol), CF₃Br (3.1 mmol), Zn (328.6 mg, 5.0 mmol), PhCO₂H (305.8 mg, 2.5 mmol) and MeCN (3 mL). After stirring for 2 h at rt, the reaction mixture was added sat. Na₂CO₃ aq. (3 mL) and stirred for 15 min, then directly purified by silica gel chromatography (pentane) to afford **2-8**¹ (185.0 mg, 89% yield) as a colorless oil.

TLC: $R_f = 0.77$ in petroleum ether.

¹**H NMR** (400 MHz, CDCl₃) δ 7.30–7.26 (m, 2H), 7.15–7.11 (m, 2H), 2.87–2.83 (m, 2H), 2.43–2.31 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 137.55, 132.65, 129.72, 128.98, 126.70 (q, J = 276.8 Hz), 35.62 (q, J = 28.6 Hz), 27.75 (q, J = 3.2 Hz).
¹⁹F NMR (376 MHz, CDCl₃): δ -67.11.
MS (EI): m/z (%) 208 (M⁺, 33.18), 125 (100).

1-bromo-4-(3,3,3-trifluoropropyl)benzene (2-9, p4-32)

Prepared according to the general procedure using alkene **1-9** (131 μ L, d = 1.40 g/mL, 1.0 mmol), CF₃Br (3.1 mmol), Zn (327.9 mg, 5.0 mmol), PhCO₂H (305.6 mg, 2.5 mmol) and MeCN (3 mL). After stirring for 2 h at rt, the reaction mixture was added sat. Na₂CO₃ aq. (3 mL) and stirred for 15 min, then directly purified by silica gel chromatography (pentane) to afford **2-9**⁴ (244.0 mg, 96% yield) as a colorless oil.

TLC: $R_f = 0.79$ in petroleum ether.

¹**H NMR** (400 MHz, CDCl₃) δ 7.44 (d, *J* = 8.4 Hz, 2H), 7.08 (d, *J* = 8.4 Hz, 2H), 2.85–2.81 (m, 2H), 2.43–2.31 (m, 2H).

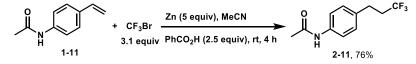
¹³**C NMR** (101 MHz, CDCl₃) δ 138.05, 131.94, 130.11, 126.65 (q, *J* = 276.8 Hz), 120.64, 35.56 (q, *J* = 28.6 Hz), 27.82 (q, *J* = 3.3 Hz).

¹⁹**F NMR** (376 MHz, CDCl₃): δ -67.11.

MS (EI): *m/z* (%) 252 (M⁺ (⁷⁹Br), 59.36), 254 (M⁺ (⁸¹Br), 57.23), 169 (100).

4-(3,3,3-trifluoropropyl)phenyl acetate (2-10, p4-91)

$$\begin{array}{c} O \\ 1-10 \end{array} + \begin{array}{c} CF_{3}Br \\ 3.1 \text{ equiv} \end{array} \begin{array}{c} Zn \text{ (5 equiv), MeCN} \\ PhCO_{2}H \text{ (2.5 equiv), rt, 2 h} \end{array} \begin{array}{c} O \\ O \\ 0 \end{array} \begin{array}{c} CF_{3} \\ 2-10, 72\% \end{array}$$


Prepared according to the general procedure using alkene **1-10** (153 μ L, d = 1.06 g/mL, 1.0 mmol), CF₃Br (3.1 mmol), Zn (327.0 mg, 5.0 mmol), PhCO₂H (305.3 mg, 2.5 mmol) and MeCN (3 mL). After stirring for 2 h at rt, the reaction mixture was added sat. Na₂CO₃ aq. (3 mL) and stirred for 15 min, then filtered through a pad of Celite eluenting with DCM (40 mL). The resulting solution was washed with Na₂CO₃ aq. (2 mL) in H₂O (15 mL) for 3 times. Then the DCM solution was washed with sat. NaCl aq. and dried over anhydrous Na₂SO₄. The solution was concentrated, and the residue was purified by silica gel chromatography (pentane : DCM = 4:1) to afford **2-10¹** (168.0 mg, 72% yield) as a light yellow oil.

TLC: $R_f = 0.34$ in 10:1 petroleum ether/EtOAc.

¹**H NMR** (400 MHz, CDCl₃) δ 7.22–7.19 (m, 2H), 7.05–7.02 (m, 2H), 2.89–2.85 (m, 2H), 2.44–2.31 (m, 2H), 2.30 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 169.62, 149.49, 136.61, 129.30, 126.73 (q, J = 276.6 Hz), 121.91, 35.69 (q, J = 28.4 Hz), 27.71 (q, J = 3.3 Hz), 21.14.
¹⁹F NMR (376 MHz, CDCl₃): δ -67.21.
MS (EI): *m/z* (%) 232 (M⁺, 5.50), 107 (100).

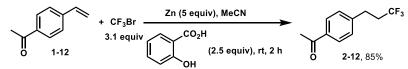
Prepared according to the general procedure using alkene **1-11** (161.2 mg, 1.0 mmol), CF₃Br (3.1 mmol), Zn (328.2 mg, 5.0 mmol), PhCO₂H (305.8 mg, 2.5 mmol) and MeCN (3 mL). After stirring for 4 h at rt, the reaction mixture was added sat. Na₂CO₃ aq. (3 mL) and stirred for 15 min, then filtered through a pad of Celite eluenting with DCM (30 mL). The resulting solution was concentrated, and the residue was purified by silica gel chromatography (DCM : EtOAc = 10 : 1) to afford **2-11** (176.0 mg, 76% yield) as a white solid.

TLC: $R_f = 0.30$ in 1:1 petroleum ether/EtOAc.

m.p.: 149.1~152.2 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.44 (d, *J* = 8.3 Hz, 2H), 7.16–7.14 (m, 3H), 2.86–2.82 (m, 2H), 2.42–2.30 (m, 2H), 2.17 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 168.66, 136.62, 135.06, 128.82, 126.77 (q, *J* = 276.7 Hz), 120.48, 35.73 (q, *J* = 28.1 Hz), 27.74 (q, *J* = 3.4 Hz), 24.59.


¹⁹**F NMR** (376 MHz, CDCl₃): δ -67.14.

IR (neat): 3303, 3264, 3199, 3135, 3085, 2982, 2951, 1686, 1668, 1553, 1516, 1413, 1377, 1324, 1307, 1249, 1212, 1138, 1079, 976, 866, 823, 726.

MS (EI): *m/z* (%) 231 (M⁺, 20.40), 106 (100).

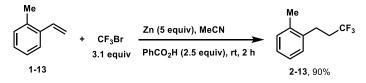
HRMS (ESI⁺): m/z calc'd for C₁₁H₁₃F₃NO (M + H)⁺: 232.0944, found 232.0946.

1-(4-(3,3,3-trifluoropropyl)phenyl)ethan-1-one (2-12, p6-41)

Prepared according to the general procedure using alkene **1-12** (146.2 mg, 1.0 mmol), CF₃Br (3.1 mmol), Zn (327.0 mg, 5.0 mmol), salicylic acid (345.3 mg, 2.5 mmol) and MeCN (3 mL). After stirring for 2 h at rt, the reaction mixture was added sat. Na₂CO₃ aq. (3 mL) and stirred for 15 min and concentrated. The residue was extracted with DCM (20 mL \times 3), washed with sat. NaCl aq., dried over Na₂SO₄ and concentrated. The residue was directly purified by silica gel chromatography (petroleum ether : EtOAc = 15:1) to afford **2-12⁵** (184.7 mg, 85% yield)

as a light yellow oil.

TLC: $R_f = 0.33$ in petroleum ether/EtOAc (10:1).


¹**H NMR** (400 MHz, CDCl₃) δ 7.92 (d, *J* = 8.0 Hz, 2H), 7.30 (d, *J* = 7.9 Hz, 2H), 2.96–2.92 (m, 2H), 2.59 (s, 3H), 2.48–2.36 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 197.59, 144.51, 135.85, 128.85, 128.51, 126.61 (q, *J* = 276.6 Hz), 35.10 (q, *J* = 28.7 Hz), 28.20 (q, *J* = 3.2 Hz), 26.50.

¹⁹**F NMR** (376 MHz, CDCl₃): δ -67.09.

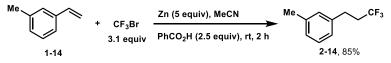
MS (EI): *m/z* (%) 216 (M⁺, 19.15), 201 (100).

1-methyl-2-(3,3,3-trifluoropropyl)benzene (2-13, p4-39)

Prepared according to the general procedure using alkene **1-13** (129 μ L, d = 0.914 g/mL, 1.0 mmol), CF₃Br (3.1 mmol), Zn (329.5 mg, 5.0 mmol), PhCO₂H (307.6 mg, 2.5 mmol) and MeCN (3 mL). After stirring for 2 h at rt, the reaction mixture was added sat. Na₂CO₃ aq. (3 mL) and stirred for 15 min, then directly purified by silica gel chromatography (pentane) to afford **2-13** (170.0 mg, 90% yield) as a colorless oil.

TLC: $R_f = 0.76$ in petroleum ether.

¹H NMR (400 MHz, CDCl₃) δ 7.17–7.11 (m, 4H), 2.88–2.84 (m, 2H), 2.39–2.27 (m, 5H).


¹³**C NMR** (101 MHz, CDCl₃) δ 137.33, 136.02, 130.67, 128.73, 126.98, 126.96 (q, *J* = 276.6 Hz), 126.50, 34.59 (q, *J* = 28.3 Hz), 25.71 (q, *J* = 3.3 Hz), 19.16.

¹⁹**F NMR** (376 MHz, CDCl₃): δ -67.38.

IR (neat): 3070, 3026, 2956, 2932, 1497, 1459, 1382, 1309, 1257, 1140, 1081, 810, 758, 743. **MS** (EI): *m/z* (%) 188 (M⁺, 50.44), 105 (100).

HRMS (EI): m/z calc'd for $C_{10}H_{11}F_3$ (M)⁺: 188.0807, found 188.0807.

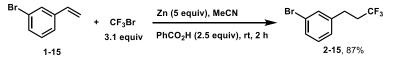
1-methyl-3-(3,3,3-trifluoropropyl)benzene (2-14, p4-49)

Prepared according to the general procedure using alkene **1-14** (131 μ L, d = 0.901 g/mL, 1.0 mmol), CF₃Br (3.1 mmol), Zn (329.5 mg, 5.0 mmol), PhCO₂H (306.6 mg, 2.5 mmol) and MeCN (3 mL). After stirring for 2 h at rt, the reaction mixture was added sat. Na₂CO₃ aq. (3 mL) and stirred for 15 min, then directly purified by silica gel chromatography (pentane) to afford **2-14** (160.0 mg, 85% yield) as a colorless oil.

TLC: $R_f = 0.79$ in petroleum ether.

¹**H NMR** (400 MHz, CDCl₃) δ 7.20 (t, *J* = 7.5 Hz, 1H), 7.06–6.99 (m, 3H), 2.85–2.81 (m, 2H), 2.44–2.28 (m, 5H).

¹³**C NMR** (101 MHz, CDCl₃) δ 139.13, 138.52, 129.17, 128.76, 127.52, 126.93 (q, *J* = 276.8 Hz), 125.35, 35.84 (q, *J* = 28.1 Hz), 28.26 (q, *J* = 3.2 Hz), 21.43.


¹⁹**F NMR** (376 MHz, CDCl₃): δ -67.25.

IR (neat): 3028, 2951, 2928, 2875, 1612, 1488, 1440, 1384, 1312, 1281, 1261, 1245, 1222, 1110, 847, 700.

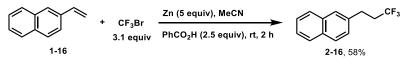
MS (EI): *m/z* (%) 188 (M⁺, 53.90), 105 (100).

HRMS (ESI⁺): m/z calc'd for C₁₀H₁₁F₃ (M)⁺: 188.0807, found 188.0805.

1-bromo-3-(3,3,3-trifluoropropyl)benzene (2-15, p4-50)

Prepared according to the general procedure using alkene **1-15** (132 μ L, d = 1.406 g/mL, 1.0 mmol), CF₃Br (3.1 mmol), Zn (329.3 mg, 5.0 mmol), PhCO₂H (307.5 mg, 2.5 mmol) and MeCN (3 mL). After stirring for 2 h at rt, the reaction mixture was added sat. Na₂CO₃ aq. (3 mL) and stirred for 15 min, then directly purified by silica gel chromatography (pentane) to afford **2-15**¹ (219.0 mg, 87% yield) as a colorless oil.

TLC: $R_f = 0.79$ in petroleum ether.


¹**H NMR** (400 MHz, CDCl₃) δ 7.39–7.36 (m, 2H), 7.21–7.11 (m, 2H), 2.87–2.83 (m, 2H), 2.44–2.32 (m, 2H).

¹³**C NMR** (101 MHz, CDCl₃) δ 141.36, 131.47, 130.41, 129.99, 127.04, 126.64 (q, *J* = 276.6 Hz), 122.85, 35.50 (q, *J* = 28.6 Hz), 28.00 (q, *J* = 3.1 Hz).

¹⁹**F NMR** (376 MHz, CDCl₃): δ -67.17.

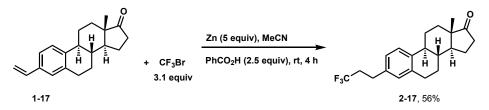
MS (EI): *m/z* (%) 252 (M⁺(⁷⁹Br), 83.81), 254 (M⁺(⁸¹Br), 81.66), 169 (100).

2-(3,3,3-trifluoropropyl)naphthalene (2-16, p4-114)

Prepared according to the general procedure using alkene **1-16** (155.4 mg, 1.0 mmol), CF₃Br (3.1 mmol), Zn (327.0 mg, 5.0 mmol), PhCO₂H (305.8 mg, 2.5 mmol) and MeCN (3 mL). After stirring for 2 h at rt, the reaction mixture was added sat. Na₂CO₃ aq. (3 mL) and stirred for 15 min, then filtered through a pad of Celite eluenting with DCM (30 mL). The resulting solution was concentrated, and the residue was purified by silica gel chromatography (pentane) to afford **2-16¹** (130.0 mg, 58% yield) as a white solid.

TLC: $R_f = 0.52$ in petroleum ether.

¹**H** NMR (400 MHz, CDCl₃) δ 7.83–7.78 (m, 3H), 7.65 (s, 1H), 7.50–7.43 (m, 2H), 7.32 (dd, J = 8.4, 1.8 Hz, 1H), 3.06–3.02 (m, 2H), 2.55–2.43 (m, 2H).


¹³C NMR (101 MHz, CDCl₃) δ 136.56, 133.73, 132.42, 128.56, 127.81, 127.62, 126.89 (q, J

= 276.7 Hz), 126.74, 126.67, 126.39, 125.80, 35.70 (q, *J* = 28.3 Hz), 28.50 (q, *J* = 3.1 Hz).

¹⁹**F NMR** (376 MHz, CDCl₃): δ -67.10.

MS (EI): *m/z* (%) 224 (M⁺, 39.88), 141 (100).

(8*R*,9*S*,13*S*,14*S*)-13-methyl-3-(3,3,3-trifluoropropyl)-6,7,8,9,11,12,13,14,15,16-decahydro-17*H*-cyclopenta[a]phenanthren-17-one (2-17, p5-18)

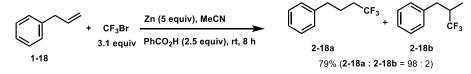
Prepared according to the general procedure using alkene 1-17 (283.2 mg, 1.0 mmol), CF₃Br (3.1 mmol), Zn (327.0 mg, 5.0 mmol), PhCO₂H (305.3 mg, 2.5 mmol) and MeCN (3 mL). After stirring for 4 h at rt, the reaction mixture was filtered through a pad of Celite eluenting with DCM (30 mL) and concentrated. The residue was extracted with DCM (15 mL \times 3), washed with sat. NaCl aq. (20 mL), dried over Na₂SO₄, and concentrated. The residue was purified by silica gel chromatography (petroleum ether : EtOAc = 20:1 to 10:1) to afford 2-17 (196.0 mg, 56% yield) as a white solid.

TLC: $R_f = 0.35$ in 10:1 petroleum ether/EtOAc.

m.p.: 59.9~64.6 °C.

¹**H** NMR (400 MHz, CDCl₃) δ 7.25 (d, J = 9.0 Hz, 1H), 7.01–6.98 (m, 1H), 6.94 (s, 1H), 2.90 (dd, J = 9.0, 4.2 Hz, 2H), 2.83–2.79 (m, 2H), 2.54–2.48 (m, 1H), 2.45–2.26 (m, 4H), 2.19–1.93 (m, 4H), 1.68–1.39 (m, 6H), 0.91 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 220.94, 138.27, 136.99, 136.59, 128.97, 126.86 (q, *J* = 276.5 Hz), 125.84, 125.74, 50.65, 48.12, 44.42, 38.32, 35.98, 35.77 (q, *J* = 28.2 Hz), 31.74, 29.48, 27.76 (q, *J* = 3.3 Hz), 26.62, 25.87, 21.72, 13.97.


¹⁹**F NMR** (376 MHz, CDCl₃): δ -67.25.

IR (neat): 2945, 2922, 2856, 1744, 1500, 1257, 1127, 1096, 975, 888, 823.

MS (ESI): m/z (%) 351 ((M + H)⁺, 5.37), 102 (100).

HRMS (ESI⁺): m/z calc'd for C₂₁H₂₆F₃O (M + H)⁺: 351.1930, found 351.1932.

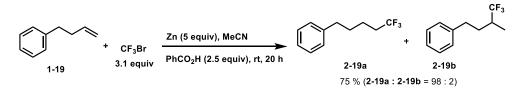
(4,4,4-trifluorobutyl)benzene (2-18a, p4-88)

Prepared according to the general procedure using alkene **1-18** (133 μ L, d = 0.892 g/mL, 1.0 mmol), CF₃Br (3.1 mmol), Zn (328.0 mg, 5.0 mmol), PhCO₂H (305.8 mg, 2.5 mmol) and MeCN (3 mL). After stirring for 8 h at rt, the reaction mixture was added sat. KMnO₄ aq. (1 mL) for 15 min in an ice-bath, and Na₂CO₃ aq. (3 mL) for 15 min, then directly purified by silica gel chromatography (pentane) to afford **2-18** (148.0 mg, 79% yield) as a colorless oil. The NMR of **2-18b** is consistent with the literature.¹ The ratio of **2-18a** and **2-18b** was calculated as 98:2 by ¹H NMR and ¹⁹F NMR.

2-18a⁶

TLC: $R_f = 0.84$ in petroleum ether.

¹**H NMR** (400 MHz, CDCl₃) δ 7.33–7.29 (m, 2H), 7.23–7.17 (m, 3H), 2.69 (t, *J* = 7.6 Hz, 2H), 2.14–2.02 (m, 2H), 1.94–1.86 (m, 2H).


¹³C NMR (101 MHz, CDCl₃) δ 140.84, 128.69, 128.52, 127.37 (q, *J* = 276.2 Hz), 126.40,

34.78, 33.24 (q, *J* = 28.3 Hz), 23.66 (q, *J* = 2.8 Hz).

¹⁹F NMR (376 MHz, CDCl₃): δ -66.70, -74.00 (**2-18b**).

MS (EI): *m/z* (%) 188 (M⁺, 21.84), 91 (100).

(5,5,5-trifluoropentyl)benzene (2-19a, p5-59)

Prepared according to the general procedure using alkene **1-19** (150 μ L, d = 0.88 g/mL, 1.0 mmol), CF₃Br (3.1 mmol), Zn (327.0 mg, 5.0 mmol), PhCO₂H (305.3 mg, 2.5 mmol) and MeCN (3 mL). After stirring for 20 h at rt, the reaction mixture was added basic KMnO₄ aq. (1 mL) for 15 min in an ice-bath, and Na₂CO₃ aq. (3 mL) for 15 min, then resulting mixture directly purified by silica gel chromatography (pentane) to afford **2-19** (151.3 mg, 75% yield) as a colorless oil. The NMR of **2-19b** is consistent with the literature.⁷ The ratio of **2-19a** and **2-19b** was calculated as 98:2 by ¹H NMR and ¹⁹F NMR.

2-19a⁸

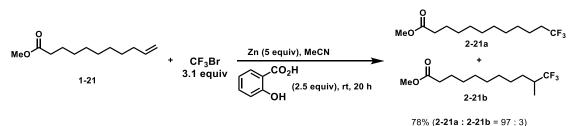
TLC: $R_f = 0.75$ in petroleum ether.

¹**H NMR** (400 MHz, CDCl₃) δ 7.31–7.27 (m, 2H), 7.22–7.16 (m, 3H), 2.64 (t, *J* = 7.5 Hz, 2H), 2.15–2.03 (m, 2H), 1.74–1.66 (m, 2H), 1.64–1.56 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 141.85, 128.55, 128.49, 127.35 (q, J = 276.4 Hz), 126.09, 35.64, 33.76 (q, J = 28.4 Hz), 30.61, 21.69 (q, J = 2.9 Hz).
¹⁹F NMR (376 MHz, CDCl₃): δ -66.85, -73.62 (2-19b).
MS (EI): m/z (%) 202 (M⁺, 7.14), 91 (100).

1,1,1-trifluorotridecane (2-20a, p4-113)

Prepared according to the general procedure using alkene **1-20** (222 μ L, d = 0.758 g/mL, 1.0 mmol), CF₃Br (3.1 mmol), Zn (328.0 mg, 5.0 mmol), PhCO₂H (305.8 mg, 2.5 mmol) and MeCN (3 mL). After stirring for 13 h at rt, the reaction mixture was added basic KMnO₄ aq. (1 mL) for 15 min in an ice-bath and sat. Na₂CO₃ aq. (3 mL) for 15 min, then extracted with pentane (15 mL × 3) and concentrated. The residue was purified by silica gel chromatography (pentane) to afford **2-20** (170.0 mg, 71% yield) as a colorless oil. The ratio of **2-20a** and **2-20b** was calculated as 96:4 by ¹H NMR and ¹⁹F NMR.


¹**H** NMR (400 MHz, CDCl₃) δ 2.12–1.99 (m, 2H), 1.58–1.51 (m, 2H), 1.37–1.26 (m, 18H), 0.88 (t, J = 6.8 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 127.48 (q, *J* = 276.1 Hz), 33.93 (q, *J* = 28.5 Hz), 32.11, 29.81, 29.75, 29.56, 29.54, 29.38, 28.91, 22.87, 22.03 (q, *J* = 2.9 Hz), 14.25.

¹⁹F NMR (376 MHz, CDCl₃): δ -66.95, -73.88 (**2-20b**).

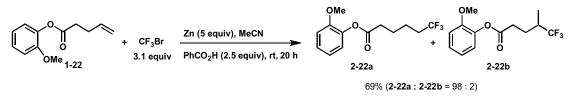
MS (EI): *m/z* (%) 238 (M⁺, 2.37), 57 (100).

methyl 12,12,12-trifluorododecanoate (2-21a, p5-46)

Prepared according to the general procedure using alkene **1-21** (225 μ L, d = 0.882 g/mL, 1.0 mmol), CF₃Br (3.1 mmol), Zn (327.0 mg, 5.0 mmol), salicylic acid (345.3 mg, 2.5 mmol) and MeCN (3 mL). After stirring for 20 h at rt, the reaction mixture was added sat. Na₂CO₃ aq. (3 mL) for 15 min., and filtered through a pad of Celite eluenting with petroleum ether (30 mL). The resulting solution was concentrated, and the residue was dissolved in MeCN (5 mL), and added sat. KMnO₄ aq. (2 mL) for 15 min in an ice-bath. The resulting solution was filtered through a pad of Celite eluenting with DCM (30 mL) and concentrated. The residue was

extracted with petroleum ether (15 mL \times 3), washed with sat. NaCl aq., dried over Na₂SO₄, and concentrated. The residue was purified by silica gel chromatography (petroleum ether : EtOAc = 50:1) to afford 2-21 (209.1 mg, 78% yield) as a light yellow oil. The ratio of 2-21a and 2-21b was calculated as 97:3 by ¹H NMR and ¹⁹F NMR.

2-21a¹⁰


TLC: $R_f = 0.36$ in 30:1 petroleum ether/EtOAc.

¹H NMR (400 MHz, CDCl₃) δ 3.67 (s, 3H), 2.30 (t, J = 7.5 Hz, 2H), 2.12–1.99 (m, 2H), 1.66–1.51 (m, 4H), 1.37–1.28 (m, 12H).
¹³C NMR (101 MHz, CDCl₃) δ 174.20, 127.34 (q, J = 276.3 Hz), 51.31 (t, J = 4.3 Hz), 34.06

(t, J = 2.7 Hz), 33.74 (q, J = 28.4 Hz), 29.37, 29.32, 29.25, 29.20, 29.15, 28.73, 24.97, 21.89. ¹⁹F NMR (376 MHz, CDCl₃): δ -66.94, -73.87 (**2-21b**).

MS (EI): *m*/*z* 268 (%) (M⁺, 2.28), 74 (100).

2-methoxyphenyl 6,6,6-trifluorohexanoate (2-22a, p4-187)

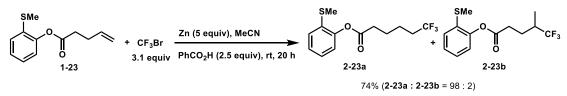
Prepared according to the general procedure using alkene **1-22** (214.6 mg, 1.04 mmol), CF₃Br (3.1 mmol), Zn (328.7 mg, 5.0 mmol), PhCO₂H (306.5 mg, 2.5 mmol) and MeCN (3 mL). After stirring for 20 h at rt, the reaction mixture was added sat. Na₂CO₃ aq. (3 mL) for 15 min., and filtered through a pad of Celite eluenting with DCM (30 mL) and concentrated. The residue was extracted with DCM (15 mL × 3), washed with sat. NaCl aq., dried over Na₂SO₄, and concentrated. The residue was purified by silica gel chromatography (petroleum ether : EtOAc = 40:1 to 30:1) to afford **2-22** (198.6 mg, 69% yield) as a light yellow oil. The ratio of **2-22a** and **2-22b** was calculated as 98:2 by ¹H NMR and ¹⁹F NMR.

2-22a

TLC: $R_f = 0.48$ in 10:1 petroleum ether/EtOAc.

¹**H** NMR (400 MHz, CDCl₃) δ 7.23–7.19 (m, 1H), 7.02 (dd, J = 7.9, 1.8 Hz, 1H), 6.98–6.94 (m, 2H), 3.82 (s, 3H), 2.63 (t, J = 7.1 Hz, 2H), 2.24–2.09 (m, 2H), 1.89–1.82 (m, 2H), 1.77–1.71 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 171.16, 151.20, 139.83, 127.19 (q, *J* = 276.3 Hz), 126.98, 122.81, 120.84, 112.49, 55.77, 33.57, 33.57 (q, *J* = 28.6 Hz), 24.13, 21.40 (q, *J* = 3.1 Hz).


¹⁹F NMR (376 MHz, CDCl₃): δ -66.89, -73.57 (2-22b).

IR (neat): 2957, 2925, 2854, 1763, 1502, 1466, 1458, 1260, 1136, 1112, 1028, 805.

MS (EI): *m/z* (%) 276 (M⁺, 2.97), 124 (100).

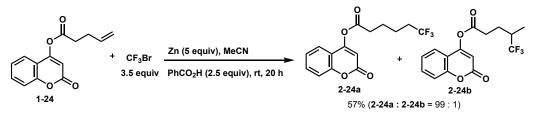
HRMS (ESI⁺): m/z calc'd for C₁₃H₁₅F₃O₃Na (M + Na)⁺: 299.0866, found 299.0871.

2-(methylthio)phenyl 6,6,6-trifluorohexanoate (2-23a, p5-165)

Prepared according to the general procedure using alkene **1-23** (222.3 mg, 1.0 mmol), CF₃Br (3.1 mmol), Zn (327.0 mg, 5.0 mmol), PhCO₂H (305.3 mg, 2.5 mmol) and MeCN (3 mL). After stirring for 20 h at rt, the reaction mixture was added sat. Na₂CO₃ aq. (3 mL) for 15 min., and filtered through a pad of Celite eluenting with DCM (30 mL) and concentrated. The residue was extracted with EtOAc (20 mL \times 3), washed with sat. NaCl aq., dried over Na₂SO₄, and concentrated. The residue was purified by silica gel chromatography (petroleum ether : DCM = 3:1) to afford **2-23** (217.6 mg, 74% yield) as a light yellow oil. The ratio of **2-23a** and **2-23b** was calculated as 98:2 by ¹H NMR and ¹⁹F NMR.

2-23a

TLC: $R_f = 0.33$ in 10:1 petroleum ether/EtOAc.


¹**H** NMR (400 MHz, CDCl₃) δ 7.30–7.27 (m, 1H), 7.24–7.17 (m, 2H), 7.03 (dd, J = 7.8, 1.7 Hz, 1H), 2.66 (t, J = 7.3 Hz, 2H), 2.43 (s, 3H), 2.22–2.10 (m, 2H), 1.92–1.84 (m, 2H), 1.77–1.69 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 170.98, 148.06, 131.48, 127.23, 127.11 (q, J = 276.2 Hz), 126.67, 125.99, 122.36, 33.54, 33.42 (q, J = 28.6 Hz), 23.87, 21.44 (q, J = 3.2 Hz), 15.09. ¹⁹F NMR (376 MHz, CDCl₃): δ -66.85, -73.45 (**2-23b**).

IR (neat): 3068, 2928, 2879, 1763, 1470, 1258, 1201, 1140, 1109, 1071, 1031, 823, 747. **MS** (ESI): *m/z* (%) 293 ((M + H)⁺, 5.90), 102 (100).

HRMS (ESI⁺): m/z calc'd for C₁₃H₁₅F₃O₂SNa (M + Na)⁺: 315.0637, found 315.0640.

2-oxo-2H-chromen-4-yl 6,6,6-trifluorohexanoate (2-24a, p5-62)

Prepared according to the general procedure using alkene **1-24** (215.5 mg, 0.88 mmol), CF₃Br (3.5 mmol), Zn (288.6 mg, 4.4 mmol), PhCO₂H (269.1 mg, 2.2 mmol) and MeCN (3 mL). After stirring for 20 h at rt, the reaction mixture was filtered through a pad of Celite eluenting with EtOAc (30 mL) and concentrated. The residue was extracted with EtOAc (15 mL \times 3), washed with sat. NaCl aq., dried over Na₂SO₄, and concentrated. The residue was purified by silica gel chromatography (petroleum ether : EtOAc = 15:1 (with 5‰ AcOH), 15:1 and 9:1)

to afford 2-24 (158.4 mg, 57% yield) as a white solid. The ratio of 2-24a and 2-24b was calculated as 99:1 by ¹H NMR and ¹⁹F NMR.

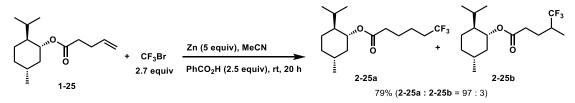
2-24a

TLC: $R_f = 0.66$ in 2:1 petroleum ether/EtOAc.

m.p.: 65.6~66.2 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.62 – 7.57 (m, 2H), 7.39 – 7.37 (m, 1H), 7.33 – 7.29 (m, 1H), 6.53 (s, 1H), 2.76 (t, *J* = 7.3 Hz, 2H), 2.24 – 2.12 (m, 2H), 1.93 – 1.86 (m, 2H), 1.77 – 1.69 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 168.97, 161.48, 158.29, 153.69, 132.92, 126.98 (q, J = 276.2 Hz), 124.46, 122.68, 117.15, 115.42, 105.14, 34.08, 33.47 (q, J = 28.9 Hz), 23.64, 21.48 (q, J = 2.9 Hz).


¹⁹F NMR (376 MHz, CDCl₃): δ -66.79, -73.12 (2-24b).

IR (neat): 3087, 2959, 2881, 1772, 1733, 1718, 1633, 1377, 1264, 1247, 1207, 1157, 1119, 1105, 1082, 1024, 935, 836, 776, 756.

MS (ESI): m/z (%) 315 ((M + H)⁺, 11.47), 163 (100).

HRMS (ESI⁺): m/z calc'd for C₁₅H₁₃F₃O₄Na (M + Na)⁺: 337.0658, found 337.0659.

(1R,2S,5R)-2-isopropyl-5-methylcyclohexyl 6,6,6-trifluorohexanoate (2-25, p5-63)

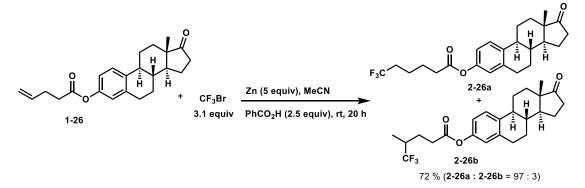
Prepared according to the general procedure using alkene **1-25** (272.8 mg, 1.14 mmol), CF₃Br (3.1 mmol), Zn (327.0 mg, 5.0 mmol), PhCO₂H (305.3 mg, 2.5 mmol) and MeCN (3 mL). After stirring for 20 h at rt, the reaction mixture was added sat. KMnO₄ aq. (1 mL) for 15 min in an ice-bath and Na₂CO₃ aq. (3 mL) for 15 min., and filtered through a pad of Celite eluenting with DCM (30 mL) and concentrated. The residue was extracted with DCM (15 mL \times 3), washed with sat. NaCl aq., dried over Na₂SO₄, and concentrated. The residue was purified by silica gel chromatography (petroleum ether : EtOAc = 50:1) to afford **2-25** (278.1 mg, 79% yield) as a light yellow oil. The ratio of **2-25a** and **2-25b** was calculated as 97:3 by ¹H NMR and ¹⁹F NMR.

2-25a

TLC: $R_f = 0.65$ in 1:1 petroleum ether/EtOAc.

¹**H NMR** (400 MHz, CDCl₃) δ 4.72–4.66 (m, 1H), 2.32 (t, *J* = 7.2 Hz, 2H), 2.16–2.04 (m, 2H), 2.00–1.95 (m, 1H), 1.88–1.80 (m, 1H), 1.75–1.57 (m, 6H), 1.53–1.43 (m, 1H), 1.40–1.33 (m, 1H), 1.08–0.94 (m, 2H), 0.90 (m, 6H), 0.76 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 172.63, 127.12 (q, *J* = 276.3 Hz), 74.31, 47.14, 41.04, 34.36, 34.22, 33.57 (q, *J* = 28.6 Hz), 31.49, 26.42, 24.21, 23.52, 22.05, 21.53 (q, *J* = 3.1 Hz), 20.78, 16.31.


¹⁹F NMR (376 MHz, CDCl₃): δ -66.95, -73.58 (**2-25b**).

IR (neat): 2959, 2873, 1734, 1458, 1389, 1371, 1256, 1179, 1138, 1115, 1033, 842.

MS (ESI): m/z (%) 309 ((M + H)⁺, 0.20), 102 (100).

HRMS (ESI⁺): m/z calc'd for C₁₆H₂₇F₃O₂Na (M + Na)⁺: 331.1855, found 331.1858.

(8*R*,9*S*,13*S*,14*S*)-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6*H*-cyclopenta[a]phenanthren-3-yl 6,6,6-trifluorohexanoate (2-26a, p4-178)

Prepared according to the general procedure using alkene **1-26** (350.0 mg, 1.0 mmol), CF₃Br (3.1 mmol), Zn (329.2 mg, 5.0 mmol), PhCO₂H (308.1 mg, 2.5 mmol) and MeCN (3 mL). After stirring for 20 h at rt, the reaction mixture was added sat. KMnO₄ aq. (2 mL) for 15 min in an ice-bath and Na₂CO₃ aq. (3 mL) for 15 min., and filtered through a pad of Celite eluenting with EtOAc (30 mL) and concentrated. The residue was extracted with EtOAc (15 mL × 3), washed with sat. NaCl aq., dried over Na₂SO₄, and concentrated. The residue was purified by silica gel chromatography (petroleum ether : EtOAc = 10:1) to afford **2-26** (304.2 mg, 72% yield) as a white solid. The ratio of **2-26a** and **2-26b** was calculated as 97:3 by ¹H NMR and ¹⁹F NMR.

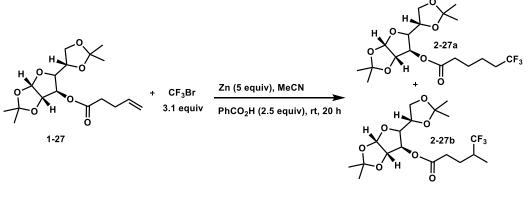
2-26a

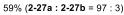
TLC: $R_f = 0.41$ in 5:1 petroleum ether/EtOAc.

m.p.: 83.7~85.1 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.29 (d, *J* = 8.6 Hz, 1H), 6.84 (dd, *J* = 8.5, 2.6 Hz, 1H), 6.80 (d, *J* = 2.5 Hz, 1H), 2.93–2,90 (m, 2H), 2.59 (t, *J* = 7.3 Hz, 2H), 2.55–2.48 (m, 1H), 2.44–2.38 (m, 1H), 2.32–2.26 (m, 1H), 2.21–1.93 (m, 6H), 1.87–1.80 (m, 2H), 1.73–1.40 (m, 8H), 0.91 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 220.73, 171.82, 148.54, 138.10, 137.49, 127.07 (q, *J* = 276.4 Hz), 126.45, 121.54, 118.71, 50.48, 47.98, 44.20, 38.06, 35.88, 33.87, 33.51 (q, *J* = 28.4 Hz), 31.61, 29.45, 26.38, 25.81, 24.00, 21.62, 21.50 (q, *J* = 3.0 Hz), 13.86.


¹⁹F NMR (376 MHz, CDCl₃): δ -66.86, -73.44 (**2-26b**).


IR (neat): 2956, 2882, 1759, 1735, 1494, 1383, 1321, 1269, 1249, 1224, 1198, 1151, 1087, 1029, 824.

MS (ESI): m/z (%) 423 ((M + H)⁺, 89.54), 280 (100).

HRMS (ESI⁺): m/z calc'd for C₂₄H₂₉F₃O₃Na (M + Na)⁺: 445.1961, found 445.1970.

(3a*S*,6*R*,6a*S*)-5-((*S*)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-*d*][1, 3]dioxol-6-yl 6,6,6-trifluorohexanoate (2-27a, p5-84)

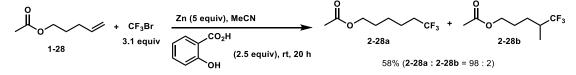
Prepared according to the general procedure using alkene **1-27** (342.4 mg, 1.0 mmol), CF₃Br (3.1 mmol), Zn (327.0 mg, 5.0 mmol), PhCO₂H (305.3 mg, 2.5 mmol) and MeCN (3 mL). After stirring for 20 h at rt, the reaction mixture was added sat. KMnO₄ aq. (1 mL) for 15 min in an ice-bath and Na₂CO₃ aq. (3 mL) for 15 min., and filtered through a pad of Celite eluenting with DCM (30 mL) and concentrated. The residue was extracted with EtOAc (15 mL × 3), washed with sat. NaCl aq., dried over Na₂SO₄, and concentrated. The residue was purified by silica gel chromatography (petroleum ether : EtOAc = 20:1 (5 ‰ AcOH), 20:1 and 10:1, respectively) to afford a light yellow oil containing PhCO₂H and AcOH. The product was dissolved in DCM (30 mL) and washed with Na₂CO₃ aq. (0.5 M, 23 mL × 3). The DCM phase was washed with sat. NaCl aq. and dried over Na₂SO₄. Then solvent was removed to afford **2-27** (243.0 mg, 59% yield) as a light yellow oil. The ratio of **2-27a** and **2-27b** was calculated as 97:3 by ¹H NMR and ¹⁹F NMR.

2-27a

TLC: $R_f = 0.37$ in 10:1 petroleum ether/EtOAc.

¹**H NMR** (400 MHz, CDCl₃) δ 5.87 (d, *J* = 3.7 Hz, 1H), 5.28 (d, *J* = 2.1 Hz, 1H), 4.48 (d, *J* = 3.7 Hz, 1H), 4.21–4.16 (m, 2H), 4.11–4.07 (m, 1H), 4.04–4.00 (m, 1H), 2.45–2.32 (m, 2H), 2.16–2.04 (m, 2H), 1.77–1.68 (m, 2H), 1.66–1.58 (m, 2H), 1.52 (s, 3H), 1.41 (s, 3H), 1.31 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 171.65, 127.06 (q, *J* = 276.2 Hz), 112.41, 109.49, 105.18, 83.50, 79.97, 76.18, 72.55, 67.45, 33.77, 33.51 (q, *J* = 28.6 Hz), 26.93, 26.81, 26.26, 25.25, 23.95, 21.46 (q, *J* = 3.3 Hz).


¹⁹F NMR (376 MHz, CDCl₃): δ -66.85, -73.47 (2-27b).

IR (neat): 2990, 2941, 2881, 1749, 1458, 1384, 1375, 1259, 1219, 1165, 1138, 1114, 1078, 1026, 847.

MS (ESI): m/z (%) 413 ((M + H)⁺, 0.21), 102 (100).

HRMS (ESI⁺): m/z calc'd for C₁₈H₂₈F₃O₇ (M + H)⁺: 413.1782, found 413.1775.

6,6,6-trifluorohexyl acetate (2-28a, p5-68)

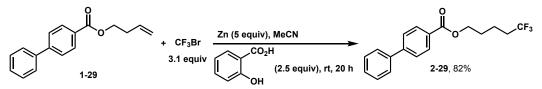
Prepared according to the general procedure using alkene **1-28** (143 μ L, d = 0.911 g/mL, 1.0 mmol), CF₃Br (3.1 mmol), Zn (327.0 mg, 5.0 mmol), salicylic acid (345.3 mg, 2.5 mmol) and MeCN (3 mL). After stirring for 20 h at rt, the reaction mixture was extracted with pentane (20 mL × 4) and the organic phase was concentrated. The residue was dissolved in MeCN (3 mL), added sat. KMnO₄ aq. (2 mL) for 15 min in an ice-bath and Na₂CO₃ aq. (3 mL) for 15 min. respectively. The resulting solution was washed with sat. NaCl aq., dried over Na₂SO₄, and concentrated. The residue was purified by silica gel chromatography (pentane) to afford **2-28** (115.2 mg, 58% yield) as a colorless oil. The ratio of **2-28a** and **2-28b** was calculated as 98:2 by ¹H NMR and ¹⁹F NMR.

2-28a

TLC: $R_f = 0.45$ in 1:1 petroleum ether/DCM.

¹**H NMR** (400 MHz, CDCl₃) δ 4.07 (t, *J* = 6.5 Hz, 2H), 2.15–2.03 (m, 4H), 1.70–1.56 (m, 5H), 1.48–1.42 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 171.17, 127.22 (q, *J* = 276.3 Hz), 64.12, 33.67 (q, *J* = 28.6 Hz), 28.31, 25.25, 21.67 (q, *J* = 2.9 Hz), 20.92.


¹⁹F NMR (376 MHz, CDCl₃): δ -66.92, -73.78 (2-28b).

IR (neat): 2956, 2928, 2857, 1744, 1391, 1369, 1246, 1144, 1044, 856.

MS (EI): *m/z* (%) 198 (M⁺, 0.01), 43 (100).

HRMS (ESI⁺): m/z calc'd for C₈H₁₃F₃O₂Na (M + Na)⁺: 221.0760, found 221.0757.

5,5,5-trifluoropentyl [1,1'-biphenyl]-4-carboxylate (2-29, p5-93)

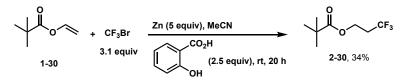
Prepared according to the general procedure using alkene **1-29** (252.3 mg, 1.0 mmol), CF₃Br (3.1 mmol), Zn (327.0 mg, 5.0 mmol), salicylic acid (345.3 mg, 2.5 mmol) and MeCN (3 mL). After stirring for 20 h at rt, the reaction mixture was added sat. Na₂CO₃ aq. (3 mL) for 15 min., and filtered through a pad of Celite eluenting with DCM (30 mL). The resulting solution was concentrated, and the residue was dissolved in MeCN (5 mL), and added sat. KMnO₄ aq. (1 mL) for 15 min in an ice-bath. The resulting solution was filtered through a pad of Celite eluenting with DCM (30 mL) and concentrated. The residue was extracted with DCM (20 mL × 3), washed with sat. NaCl aq., dried over Na₂SO₄, and concentrated. The residue was purified by silica gel chromatography (petroleum ether) to afford **2-29** (263.9 mg, 82% yield) as a white solid.

TLC: $R_f = 0.56$ in 10:1 petroleum ether/EtOAc.

m.p.: 56.4~59.1 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.11–8.09 (m, 2H), 7.68–7.62 (m, 2H), 7.63 (dd, *J* = 7.5, 1.8 Hz, 2H), 7.49–7.46 (m, 2H), 7.42–7.38 (m, 1H), 4.37 (t, *J* = 6.3 Hz, 2H), 2.25–2.13 (m, 2H), 1.92–1.85 (m, 2H), 1.80–1.73 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 166.53, 145.88, 140.09, 130.19, 129.06, 129.01, 128.30, 127.39, 127.21, 127.16 (q, *J* = 276.1 Hz), 64.26, 33.53 (q, *J* = 28.6 Hz), 28.00, 18.95 (q, *J* = 3.0 Hz).


¹⁹**F NMR** (376 MHz, CDCl₃): δ -66.86.

IR (neat): 2959, 2926, 2861, 1709, 1610, 1469, 1407, 1295, 1278, 1255, 1072, 1041, 752, 698.

MS (EI): *m/z* (%) 322 (M⁺, 7.21), 152 (100).

HRMS (ESI⁺): m/z calc'd for C₁₈H₁₇F₃O₂Na (M + Na)⁺: 345.1073, found 345.1075.

3,3,3-trifluoropropyl pivalate (2-30, p5-119)

Prepared according to the general procedure using alkene **1-30** (147 μ L, d = 0.866 g/mL, 1.0 mmol), CF₃Br (3.1 mmol), Zn (327.0 mg, 5.0 mmol), salicylic acid (345.3 mg, 2.5 mmol) and MeCN (3 mL). After stirring for 20 h at rt, the reaction mixture was added sat. Na₂CO₃ aq. (3 mL) for 15 min., and filtered through a pad of Celite eluenting with pentane (30 mL). The

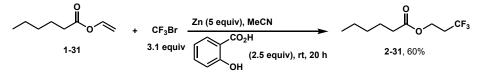
resulting solution was concentrated, and the residue was dissolved in MeCN (3 mL), and added sat. KMnO₄ aq. (1 mL) for 15 min in an ice-bath. The resulting solution was filtered through a pad of Celite eluenting with pentane (30 mL) and concentrated. The residue was extracted with pentane (20 mL \times 3), washed with sat. NaCl aq., dried over Na₂SO₄, and concentrated. The residue was purified by silica gel chromatography (pentane) to afford **2-30** (66.6 mg, 34% yield) as a colorless oil.

TLC: $R_f = 0.70$ in 10:1 petroleum ether/EtOAc.

¹**H NMR** (400 MHz, CDCl₃) δ 4.30–4.27 (m, 2H), 2.52–2.41 (m, 2H), 1.20 (s, 9H).

¹³**C NMR** (101 MHz, CDCl₃) δ 178.27, 126.00 (q, *J* = 276.7 Hz), 57.26 (q, *J* = 3.6 Hz), 38.81,

33.51 (q, *J* = 29.1 Hz), 27.14.


¹⁹**F NMR** (376 MHz, CDCl₃): δ -65.47.

IR (neat): 2959, 2922, 2850, 1739, 1662, 1635, 1469, 1378, 1300, 1261, 804.

MS (EI): *m/z* (%) 198 (M⁺, 1.03), 57 (100).

HRMS (ESI⁺): m/z calc'd for C₈H₁₄F₃O₂ (M + H)⁺: 199.0940, found 199.0940.

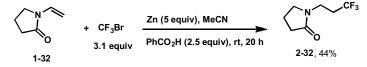
3,3,3-trifluoropropyl hexanoate (2-31, p5-113)

Prepared according to the general procedure using alkene **1-31** (160 μ L, d = 0.887 g/mL, 1.0 mmol), CF₃Br (3.1 mmol), Zn (327.0 mg, 5.0 mmol), salicylic acid (345.3 mg, 2.5 mmol) and MeCN (3 mL). After stirring for 20 h at rt, the reaction mixture was added sat. Na₂CO₃ aq. (3 mL) for 15 min., and filtered through a pad of Celite eluenting with pentane (30 mL). The resulting solution was concentrated, and the residue was dissolved in MeCN (5 mL), and added sat. KMnO₄ aq. (1 mL) for 15 min in an ice-bath. The resulting solution was extracted with pentane (20 mL × 3), washed with sat. NaCl aq., dried over Na₂SO₄, and concentrated. The residue was purified by silica gel chromatography (pentane) to afford **2-31** (127.4 mg, 60% yield) as a colorless oil.

TLC: $R_f = 0.60$ in 1:1 petroleum ether/DCM.

¹**H NMR** (400 MHz, CDCl₃) δ 4.30 (t, *J* = 6.4 Hz, 2H), 2.52–2.41 (m, 2H), 2.32 (t, *J* = 7.5 Hz, 2H), 1.67–1.59 (m, 2H), 1.35–1.26 (m, 4H), 0.90 (t, *J* = 6.7 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 173.54, 125.92 (q, *J* = 276.6 Hz), 57.07 (q, *J* = 3.5 Hz), 34.17, 33.54 (q, *J* = 29.2 Hz), 31.37, 24.62, 22.41, 13.97.


¹⁹**F NMR** (376 MHz, CDCl₃): δ -65.54.

IR (neat): 2964, 2936, 2865, 1745, 1388, 1348, 1297, 1260, 1158, 1010, 842.

MS (EI): *m/z* (%) 212 (M⁺, 0.64), 43 (100).

HRMS (ESI⁺): m/z calc'd for C₉H₁₆F₃O₂ (M + H)⁺: 213.1097, found 213.1095.

1-(3,3,3-trifluoropropyl)pyrrolidin-2-one (2-32, p5-97)

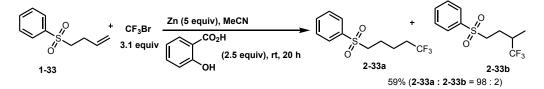
Prepared according to the general procedure using alkene 1-32 (107 μ L, d = 1.04 g/mL, 1.0 mmol), CF₃Br (3.1 mmol), Zn (327.0 mg, 5.0 mmol), PhCO₂H (305.3 mg, 2.5 mmol) and MeCN (3 mL). After stirring for 20 h at rt, the reaction mixture was added sat. Na₂CO₃ aq. (3 mL) for 15 min., and filtered through a pad of Celite eluenting with DCM (30 mL). The resulting solution was concentrated, and the residue was extracted with DCM (20 mL × 3), washed with sat. NaCl aq., dried over Na₂SO₄, and concentrated. The residue was purified by silica gel chromatography (petroleum ether/EtOAc = 10:1 (5‰ AcOH), 10:1 and 1:2, respectively) to afford 2-32 (80.5 mg, 44% yield) as a light yellow oil.

TLC: $R_f = 0.31$ in 5:1 petroleum ether/EtOAc.

¹H NMR (400 MHz, CDCl₃) δ 3.56–3.51 (m, 2H), 3.46–3.42 (m, 2H), 2.45–2.31 (m, 4H),

2.11-2.02 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 175.30, 126.10 (q, *J* = 276.8 Hz), 47.47, 36.31 (q, *J* = 3.9 Hz), 31.68 (q, *J* = 28.3 Hz), 30.70, 18.05.


¹⁹**F NMR** (376 MHz, CDCl₃): δ -65.96.

IR (neat): 2957, 2938, 2889, 1691, 1255, 1216, 1145, 975, 857.

MS (EI): *m/z* (%) 181 (M⁺, 59.76), 98 (100).

HRMS (ESI⁺): m/z calc'd for C₇H₁₀F₃NONa (M + Na)⁺: 204.0607, found 204.0605

((5,5,5-trifluoropentyl)sulfonyl)benzene (2-33a, p6-3)

Prepared according to the general procedure using alkene **1-33** (196.3 mg, 1.0 mmol), CF₃Br (3.1 mmol), Zn (327.0 mg, 5.0 mmol), salicylic acid (345.3 mg, 2.5 mmol) and MeCN (3 mL). After stirring for 20 h at rt, the reaction mixture was added sat. Na₂CO₃ aq. (3 mL) for 15 min., and filtered through a pad of Celite eluenting with DCM (30 mL) and concentrated. The residue was extracted with DCM (20 mL \times 3), washed with sat. NaCl aq., dried over Na₂SO₄, and concentrated. The residue was dissolved in MeCN (3 mL) and added sat. KMnO₄ aq. (3 mL) for 15 min in an ice-bath. The reaction mixture was filtered through a pad of Celite eluenting with DCM (30 mL) and concentrated. The residue was filtered through a pad of Celite eluenting with DCM (3 mL) and added sat. KMnO₄ aq. (3 mL) for 15 min in an ice-bath. The reaction mixture was filtered through a pad of Celite eluenting with DCM (30 mL) and concentrated. The residue was extracted with DCM (20 mL) and concentrated.

× 3), washed with sat. NaCl aq., dried over Na₂SO₄, and concentrated. The residue was purified by silica gel chromatography (petroleum ether:DCM = 1:2) to afford **2-33** (158.0 mg, 59% yield) as a light yellow solid. The ratio of **2-33a** and **2-33b** was calculated as 98:2 by ¹H NMR and ¹⁹F NMR.

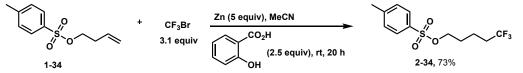
2-33a

TLC: $R_f = 0.29$ in 1:3 petroleum ether/DCM.

m.p.: 48.0~49.3 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.91 (d, *J* = 7.7 Hz, 2H), 7.68 (t, *J* = 7.5 Hz, 1H), 7.58 (t, *J* = 7.6 Hz, 2H), 3.11 (t, *J* = 7.8 Hz, 2H), 2.14–2.02 (m, 2H), 1.86–1.78 (m, 2H), 1.70–1.62 (m, 2H).

¹³**C NMR** (101 MHz, CDCl₃) δ 139.01, 133.96, 129.48, 128.09, 126.77 (q, *J* = 276.4 Hz), 55.78, 33.30 (q, *J* = 28.8 Hz), 21.96, 20.91 (q, *J* = 3.2 Hz).


¹⁹**F NMR** (376 MHz, CDCl₃): δ -66.79, -73.34 (**2-33b**).

IR (neat): 3062, 2994, 2932, 2877, 1729, 1470, 1448, 1410, 1365, 1320, 1288, 1262, 1233, 1150, 1084, 1058, 1017, 929, 890, 836, 723, 689, 657, 606, 529.

MS (ESI): *m/z* (%) 267 ((M + H)⁺, 81.42), 102 (100).

HRMS (ESI⁺): m/z calc'd for C₁₁H₁₃F₃O₂SNa (M + Na)⁺: 289.0481, found 289.0482.

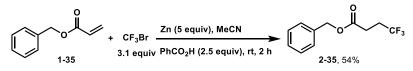
5,5,5-trifluoropentyl 4-methylbenzenesulfonate (2-34, p5-162)

Prepared according to the general procedure using alkene **1-34** (226.3 mg, 1.0 mmol), CF₃Br (3.1 mmol), Zn (327.0 mg, 5.0 mmol), salicylic acid (345.3 mg, 2.5 mmol) and MeCN (3 mL). After stirring for 20 h at rt, the reaction mixture was added sat. Na₂CO₃ aq. (3 mL) for 15 min., and filtered through a pad of Celite eluenting with EtOAc (30 mL) and concentrated. The residue was extracted with EtOAc (20 mL × 3), washed with sat. NaCl aq., dried over Na₂SO₄, and concentrated. The residue was purified by silica gel chromatography (petroleum ether : EtOAc = 20:1) to afford **2-34** (216.1 mg, 73% yield) as a light yellow oil. The regio-selectivity is more than 99:1 if 2-CF₃ product was existed based on ¹⁹F NMR.

2-34¹¹

TLC: $R_f = 0.31$ in 10:1 petroleum ether/EtOAc.

¹**H NMR** (400 MHz, CDCl₃) δ 7.80–7.78 (m, 2H), 7.37–7.35 (m, 2H), 4.05 (t, *J* = 6.1 Hz, 2H), 2.46 (s, 3H), 2.10–1.97 (m, 2H), 1.77–1.70 (m, 2H), 1.64–1.56 (m, 2H).


¹³C NMR (101 MHz, CDCl₃) δ 145.12, 133.01, 130.04, 127.97, 126.96 (q, J = 276.3 Hz),

69.68, 33.10 (q, *J* = 28.9 Hz) 27.95, 21.68, 18.34 (q, *J* = 3.2 Hz).

¹⁹**F NMR** (376 MHz, CDCl₃): δ -66.90.

MS (ESI): m/z (%) 297 ((M + H)⁺, 0.20), 274 (100).

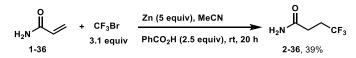
benzyl 4,4,4-trifluorobutanoate (2-35, p4-94)

Prepared according to the general procedure using alkene 1-35 (150 μ L, d = 1.08 g/mL, 1.0 mmol), CF₃Br (3.1 mmol), Zn (327.0 mg, 5.0 mmol), PhCO₂H (305.3 mg, 2.5 mmol) and MeCN (3 mL). After stirring for 2 h at rt, the reaction mixture was added basic KMnO₄ aq. (1 mL) for 15 min in an ice-bath and Na₂CO₃ aq. (3 mL) for 15 min, then filtered through a pad of Celite eluenting with DCM (30 mL). Then solution dissolved in DCM (40 mL), washed with H₂O (10 mL) containing Na₂CO₃ aq. (2 mL) 3 times, washed with sat. NaCl aq., and dried over Na₂SO₄. The residue was purified by silica gel chromatography (pentane : DCM = 4:1) to afford **2-35** (126.0 mg, 54% yield) as a light yellow oil.

TLC: $R_f = 0.56$ in 10:1 petroleum ether/EtOAc.

¹**H NMR** (400 MHz, CDCl₃) δ 7.40–7.33 (m, 5H), 5.15 (s, 2H), 2.65–2.62 (m, 2H), 2.54–2.42 (m, 2H).

¹³**C NMR** (101 MHz, CDCl₃) δ 170.88, 135.60, 128.76, 128.59, 128.45, 126.59 (q, *J* = 275.7 Hz), 67.04, 29.45 (q, *J* = 30.1 Hz), 27.26 (q, *J* = 3.2 Hz).


¹⁹**F NMR** (376 MHz, CDCl₃): δ -67.54.

IR (neat): 3037, 2965, 2936, 2854, 1744, 1446, 1378, 1330, 1264, 1230, 1187, 1142, 1111, 985, 752, 698.

MS (EI): *m/z* (%) 232 (M⁺, 22.07), 108 (100).

HRMS (ESI⁺): m/z calc'd for C₁₁H₁₁F₃O₂Na (M + Na)⁺: 255.0603, found 255.0606.

4,4,4-trifluorobutanamide (2-36, p5-146)

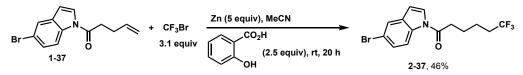
Prepared according to the general procedure using alkene **1-36** (71.1 mg, 1.0 mmol), CF₃Br (3.1 mmol), Zn (327.0 mg, 5.0 mmol), PhCO₂H (305.3 mg, 2.5 mmol) and MeCN (3 mL). After stirring for 20 h at rt, the reaction mixture was added sat. Na₂CO₃ aq. (3 mL) for 15 min., and filtered through a pad of Celite eluenting with EtOAc (30 mL). The resulting solution was concentrated, and the residue was extracted with EtOAc (20 mL \times 3), washed with sat. NaCl aq., dried over Na₂SO₄, and concentrated. The residue was purified by silica gel chromatography (petroleum ether/EtOAc = 10:1 (5‰ AcOH), 2:1 and 1:3, respectively) to afford **2-36** (54.7 mg, 39% yield) as a white solid.

TLC: $R_f = 0.75$ in 1:5 petroleum ether/EtOAc.

m.p.: 135.5~136.9 °C.

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 7.43 (s, 1H), 6.94 (s, 1H), 2.48–2.40 (m, 2H), 2.31 (t, *J* = 7.6 Hz, 2H).

¹³**C NMR** (101 MHz, DMSO-*d*₆) δ 171.24, 127.51 (q, *J* = 276.0 Hz), 28.53 (q, *J* = 28.5 Hz), 27.29 (q, *J* = 2.7, 2.3 Hz).


¹⁹**F NMR** (376 MHz, DMSO-*d*₆): δ -64.79.

IR (neat): 3373, 3204, 2964, 2927, 2855, 1666, 1636, 1447, 1379, 1316, 1291, 1252, 1231, 1148, 1106, 984, 701, 589, 481.

MS (ESI): m/z (%) 142 ((M + H)⁺, 142 (100)).

HRMS (ESI⁺): m/z calc'd for C₄H₇F₃NO (M + H)⁺: 142.0474, found 142.0474.

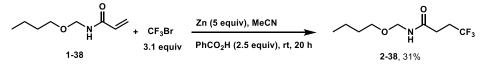
1-(5-bromo-1*H*-indol-1-yl)-6,6,6-trifluorohexan-1-one (2-37, p5-179)

Prepared according to the general procedure using alkene 1-37 (278.2 mg, 1.0 mmol), CF₃Br (3.1 mmol), Zn (327.0 mg, 5.0 mmol), salicylic acid (345.3 mg, 2.5 mmol) and MeCN (3 mL). After stirring for 20 h at rt, the reaction mixture was added sat. Na₂CO₃ aq. (3 mL) for 15 min., and filtered through a pad of Celite eluenting with EtOAc (30 mL) and concentrated. The residue was extracted with DCM (20 mL × 3), washed with sat. NaCl aq., dried over Na₂SO₄, and concentrated. The residue was purified by silica gel chromatography (petroleum ether : EtOAc = 25:1 to 20:1) to afford 2-37 (159.0 mg, 46% yield) as a light yellow solid. TLC: $R_f = 0.33$ in 10:1 petroleum ether/EtOAc.

m.p.: 74.1~75.3 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.34 (d, *J* = 8.8 Hz, 1H), 7.70 (d, *J* = 1.9 Hz, 1H), 7.46–7.44 (m, 2H), 6.59 (d, *J* = 3.8 Hz, 1H), 2.95 (t, *J* = 7.2 Hz, 2H), 2.24–2.12 (m, 2H), 1.97–1.89 (m, 2H), 1.77–1.69 (m, 2H).

¹³**C NMR** (101 MHz, CDCl₃) δ 170.58, 134.44, 132.15, 128.14, 127.09 (q, *J* = 276.3 Hz), 125.52, 123.66, 118.10, 117.12, 108.56, 35.24, 33.75 (q, *J* = 28.8 Hz), 23.51, 21.71 (q, *J* = 3.0 Hz).


¹⁹**F NMR** (376 MHz, CDCl₃): δ -66.82.

IR (neat): 3116, 2953, 2925, 2875, 1704, 1535, 1467, 1445, 1395, 1390, 1309, 1274, 1261, 1245, 1201, 1132, 1114, 1040, 1029, 934, 874, 821, 778, 762, 736, 716.

MS (ESI): m/z (%) 347 ((M + H)⁺(⁷⁹Br), 0.21), 349 ((M + H)⁺(⁸¹Br), 7.21), 102 (100).

HRMS (ESI⁺): m/z calc'd for C₁₄H₁₄BrF₃NO [M + H]⁺: 348.0205 (⁷⁹Br), found 348.0204; 350.0184 (⁸¹Br), found 350.0186.

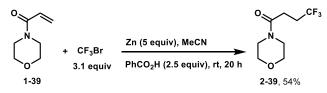
N-(butoxymethyl)-4,4,4-trifluorobutanamide (2-38, p5-139)

Prepared according to the general procedure using alkene **1-38** (162 μ L, d = 0.96 g/mL, 1.0 mmol), CF₃Br (3.1 mmol), Zn (327.0 mg, 5.0 mmol), PhCO₂H (305.3 mg, 2.5 mmol) and MeCN (3 mL). After stirring for 20 h at rt, the reaction mixture was added sat. Na₂CO₃ aq. (3 mL) for 15 min., and filtered through a pad of Celite eluenting with DCM (30 mL). The resulting solution was concentrated, and the residue was extracted with DCM (20 mL × 3), washed with sat. NaCl aq., dried over Na₂SO₄, and concentrated. The residue was purified by silica gel chromatography (petroleum ether/EtOAc = 10:1 (5‰ AcOH), 10:1 and 2:1, respectively) to afford **2-38** (71.3 mg, 31% yield) as a light yellow oil.

TLC: $R_f = 0.62$ in 1:1 petroleum ether/EtOAc.

¹**H** NMR (400 MHz, CDCl₃) δ 6.08 (s, 1H), 4.74 (d, *J* = 6.7 Hz, 2H), 3.48 (t, *J* = 6.7 Hz, 2H), 2.54–2.47 (m, 4H), 1.58–1.51 (m, 2H), 1.40–1.31 (m, 2H), 0.91 (t, *J* = 7.4 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 170.63, 126.85 (q, *J* = 276.0 Hz), 70.32, 68.71, 31.75, 29.44 (q, *J* = 30.1 Hz), 28.92 (q, *J* = 2.9 Hz), 19.35, 13.93.


¹⁹**F NMR** (376 MHz, CDCl₃): δ -67.33.

IR (neat): 3319, 3079, 2962, 2936, 2876, 1670, 1551, 1449, 1341, 1264, 1142, 1110, 1085, 981, 803.

MS (ESI): m/z (%) 228 ((M + H)⁺, 0.36), 102 (100).

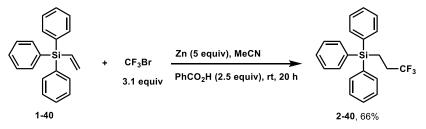
HRMS (ESI⁺): m/z calc'd for C₉H₁₆F₃NO₂Na (M + Na)⁺: 250.1025, found 250.1026.

4,4,4-trifluoro-1-morpholinobutan-1-one (2-39, p5-76)

Prepared according to the general procedure using alkene **1-39** (143 μ L, d = 1.122 g/mL, 1.0 mmol), CF₃Br (3.1 mmol), Zn (327.0 mg, 5.0 mmol), PhCO₂H (305.3 mg, 2.5 mmol) and MeCN (3 mL). After stirring for 20 h at rt, the reaction mixture was added sat. Na₂CO₃ aq. (3 mL) for 15 min., and filtered through a pad of Celite eluenting with DCM (30 mL). The resulting solution was concentrated, and the residue was extracted with DCM (15 mL × 3), washed with sat. NaCl aq., dried over Na₂SO₄, and concentrated. The residue was purified by silica gel chromatography (petroleum ether/EtOAc = 10:1 (5‰ AcOH), 10:1 and 1:1, respectively) to afford **2-39** (114.0 mg, 54% yield) as a light yellow oil.

TLC: $R_f = 0.33$ in 1:1 petroleum ether/EtOAc.

¹H NMR (400 MHz, CDCl₃) δ 3.71–3.62 (m, 6H), 3.48–3.46 (m, 2H), 2.59–2.46 (m, 4H).
¹³C NMR (101 MHz, CDCl₃) δ 168.37, 127.04 (q, *J* = 275.9 Hz), 66.74, 66.41, 45.69, 42.16, 29.44 (q, *J* = 29.4 Hz), 25.69 (q, *J* = 3.4 Hz).


¹⁹**F NMR** (376 MHz, CDCl₃): δ -67.14.

IR (neat): 2962, 2923, 2862, 1648, 1466, 1459, 1399, 1315, 1259, 1229, 1136, 1112, 978, 860, 841.

MS (EI): *m/z* (%) 211 (M⁺, 0.59), 68 (100).

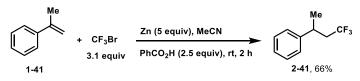
HRMS (EI): *m/z* calc'd for C₈H₁₂F₃NO₂ M⁺: 211.0815, found 211.0814.

triphenyl(3,3,3-trifluoropropyl)silane (2-40, p5-191)

Prepared according to the general procedure using alkene **1-40** (286.5 mg, 1.0 mmol), CF₃Br (3.1 mmol), Zn (327.0 mg, 5.0 mmol), PhCO₂H (305.3 mg, 2.5 mmol) and MeCN (3 mL). After stirring for 20 h at rt, the reaction mixture was added sat. KMnO₄ aq. (2 mL) for 15 min in an ice-bath and Na₂CO₃ aq. (3 mL) for 15 min., and concentrated. The residue was filtered through a pad of Celite eluenting with DCM (30 mL) and concentrated. The residue was extracted with DCM (20 mL \times 3), washed with sat. NaCl aq., dried over Na₂SO₄, and concentrated. The residue was purified by silica gel chromatography (petroleum ether) to afford **2-40**¹² (234.6 mg, 66% yield) as a white solid.

TLC: $R_f = 0.63$ in petroleum ether

m.p.: 112.9~113.9 °C.


¹**H NMR** (400 MHz, CDCl₃) δ 7.53–7.50 (m, 6H), 7.46–7.37 (m, 9H), 2.22–2.09 (m, 2H), 1.61–1.57 (m, 2H).

¹³**C NMR** (101 MHz, CDCl₃) δ 135.63, 133.67, 130.07, 128.33, 127.81 (q, *J* = 276.7 Hz), 29.18 (q, *J* = 30.0 Hz), 5.47 (q, *J* = 2.3 Hz).

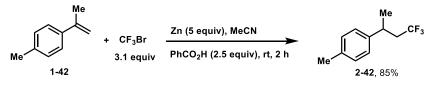
¹⁹**F NMR** (376 MHz, CDCl₃): δ -69.13.

MS (EI): *m/z* (%) 356 (M⁺, 0.47), 258 (100).

(4,4,4-trifluorobutan-2-yl)benzene (2-41, p4-87)

Prepared according to the general procedure using alkene **1-41** (130 μ L, d = 0.909 g/mL, 1.0 mmol), CF₃Br (3.1 mmol), Zn (327.5 mg, 5.0 mmol), PhCO₂H (305.8 mg, 2.5 mmol) and MeCN (3 mL). After stirring for 2 h at rt, the reaction mixture was added sat. Na₂CO₃ aq. (3 mL) and stirred for 15 min, then directly purified by silica gel chromatography (pentane) to afford **2-41**¹ (124.0 mg, 66% yield) as a colorless oil.

TLC: $R_f = 0.86$ in petroleum ether.


¹**H NMR** (400 MHz, CDCl₃) δ 7.34–7.30 (m, 2H), 7.25–7.19 (m, 3H), 3.17–3.08 (m, 1H), 2.57–2.26 (m, 2H), 1.36 (d, *J* = 6.3 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 145.43, 128.82, 126.83, 126.80 (q, *J* = 277.6 Hz), 126.75, 41.81 (q, *J* = 27.2 Hz), 34.32 (q, *J* = 2.6 Hz), 22.26.

¹⁹**F NMR** (376 MHz, CDCl₃): δ-64.43.

MS (EI): *m/z* (%) 188 (M⁺, 37.33), 105 (100).

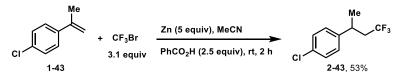
1-methyl-4-(4,4,4-trifluorobutan-2-yl)benzene (2-42, p6-56)

Prepared according to the general procedure using alkene **1-42** (152 μ L, d = 0.904 g/mL, 1.0 mmol), CF₃Br (3.1 mmol), Zn (327.0 mg, 5.0 mmol), PhCO₂H (305.3 mg, 2.5 mmol) and MeCN (3 mL). After stirring for 2 h at rt, the reaction mixture was added sat. Na₂CO₃ aq. (3 mL) and stirred for 15 min, then directly purified by silica gel chromatography (pentane) to afford **2-42** (172.4 mg, 85% yield) as a colorless oil.

TLC: $R_f = 0.50$ in petroleum ether.

¹**H** NMR (400 MHz, CDCl₃) δ 7.14–7.08 (m, 4H), 3.13–3.04 (m, 1H), 2.48–2.24 (m, 5H), 1.34 (dd, J = 7.0, 1.0 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 142.48, 136.36, 129.49, 126.85 (q, *J* = 277.5 Hz), 126.61, 41.87 (q, *J* = 27.1 Hz), 33.91 (q, *J* = 2.8 Hz), 22.33, 21.09.


¹⁹**F NMR** (376 MHz, CDCl₃): δ -64.41.

IR (neat): 2972, 2927, 2858, 1374, 1277, 1254, 1149, 1085, 1033, 814.

MS (EI): *m*/*z* (%) 202 (M⁺, 30.72), 119 (100).

HRMS (EI): *m/z* calc'd for C₁₁H₁₃F₃ (M)⁺: 202.0964, found 202.0962.

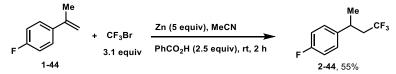
1-chloro-4-(4,4,4-trifluorobutan-2-yl)benzene (2-43, p6-57)

Prepared according to the general procedure using alkene **1-43** (143 μ L, d = 1.065 g/mL, 1.0 mmol), CF₃Br (3.1 mmol), Zn (327.0 mg, 5.0 mmol), PhCO₂H (305.3 mg, 2.5 mmol) and MeCN (3 mL). After stirring for 2 h at rt, the reaction mixture was added sat. Na₂CO₃ aq. (3 mL) and stirred for 15 min, then directly purified by silica gel chromatography (pentane) to afford **2-43** (117.9 mg, 53% yield) as a colorless oil.

TLC: $R_f = 0.67$ in petroleum ether.

¹**H NMR** (400 MHz, CDCl₃) δ 7.31–7.27 (m, 2H), 7.15–7.12 (m, 2H), 3.15–3.06 (m, 1H), 2.47–2.22 (m, 2H), 1.34 (d, *J* = 7.0 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 143.76, 132.53, 128.96, 128.15, 126.61 (q, *J* = 277.5 Hz), 41.69 (q, *J* = 27.2 Hz), 33.84 (q, *J* = 2.9 Hz), 22.27.


¹⁹**F NMR** (376 MHz, CDCl₃): δ -64.41.

IR (neat): 2975, 2934, 2856, 1495, 1374, 1279, 1257, 1149, 1127, 1015, 827.

MS (EI): *m/z* (%) 222 (M⁺, 34.81), 139 (100).

HRMS (EI): *m/z* calc'd for C₁₀H₁₀ClF₃ (M)⁺: 222.0418, found 222.0421.

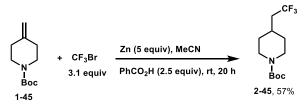
1-fluoro-4-(4,4,4-trifluorobutan-2-yl)benzene (2-44, p6-58)

Prepared according to the general procedure using alkene 1-44 (135 μ L, d = 1.01 g/mL, 1.0 mmol), CF₃Br (3.1 mmol), Zn (327.0 mg, 5.0 mmol), PhCO₂H (305.3 mg, 2.5 mmol) and MeCN (3 mL). After stirring for 2 h at rt, the reaction mixture was added sat. Na₂CO₃ aq. (3 mL) and stirred for 15 min, then directly purified by silica gel chromatography (pentane) to afford 2-44 (113.7 mg, 55% yield) as a colorless oil.

TLC: $R_f = 0.52$ in petroleum ether.

¹**H NMR** (400 MHz, CDCl₃) δ 7.19–7.13 (m, 2H), 7.03–6.97 (m, 2H), 3.16–3.07 (m, 1H), 2.46–2.25 (m, 2H), 1.34 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 161.75 (d, *J* = 244.5 Hz), 141.02 (d, *J* = 3.4 Hz), 128.20 (d, *J* = 7.9 Hz), 126.67 (q, *J* = 277.4 Hz), 115.59 (d, *J* = 21.3 Hz), 41.92 (q, *J* = 27.2 Hz), 33.70 (q, *J* = 2.6 Hz), 22.41.


¹⁹**F NMR** (376 MHz, CDCl₃): δ-64.42, -116.93.

IR (neat): 2970, 2927, 2857, 1607, 1513, 1374, 1254, 1232, 1148, 834.

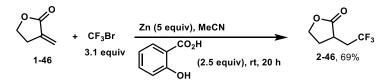
MS (EI): *m/z* (%) 206 (M⁺, 32.49), 123 (100).

HRMS (EI): m/z calc'd for C₁₀H₁₀F₄ (M)⁺: 206.0713, found 206.0711.

tert-butyl 4-(2,2,2-trifluoroethyl)piperidine-1-carboxylate (2-45, p5-79)

Prepared according to the general procedure using alkene **1-45** (197 μ L, d = 1.0 g/mL, 1.0 mmol), CF₃Br (3.1 mmol), Zn (327.0 mg, 5.0 mmol), PhCO₂H (305.3 mg, 2.5 mmol) and MeCN (3 mL). After stirring for 20 h at rt, the reaction mixture was added sat. KMnO₄ aq. (1 mL) for 15 min in an ice-bath and Na₂CO₃ aq. (3 mL) for 15 min., and concentrated. The residue was filtered through a pad of Celite eluenting with DCM (30 mL) and concentrated. The residue was extracted with DCM (15 mL × 3), washed with sat. NaCl aq., dried over Na₂SO₄, and concentrated. The residue was purified by silica gel chromatography (petroleum ether/EtOAc = 15:1) to afford **2-45**¹⁰ (151.4 mg, 57% yield) as a light yellow oil.

TLC: $R_f = 0.34$ in 10:1 petroleum ether/EtOAc.


¹**H** NMR (400 MHz, CDCl₃) δ 4.09 (br s, 2H), 2.72 (t, *J* = 12.9 Hz, 2H), 2.09–1.99 (m, 2H), 1.88–1.74 (m, 3H), 1.46 (s, 9H), 1.30–1.16 (m, 2H).

¹³**C NMR** (101 MHz, CDCl₃) δ 154.80, 126.90 (q, *J* = 277.3 Hz), 79.56, 43.63, 40.14 (q, *J* = 27.4 Hz), 31.99, 30.66 (q, *J* = 2.8 Hz), 28.49.

¹⁹**F NMR** (376 MHz, CDCl₃): δ -63.81.

MS (EI): *m/z* (%) 166 ((M–Boc)⁺, 1.18), 57 (100).

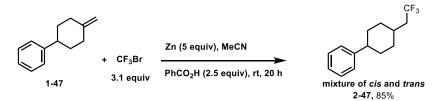
3-(2,2,2-trifluoroethyl)dihydrofuran-2(3*H*)-one (2-46, p5-166)

Prepared according to the general procedure using alkene **1-46** (88 µL, d = 1.119 g/mL, 1.0 mmol), CF₃Br (3.1 mmol), Zn (327.0 mg, 5.0 mmol), salicylic acid (345.3 mg, 2.5 mmol) and MeCN (3 mL). After stirring for 20 h at rt, the reaction mixture was added sat. Na₂CO₃ aq. (3 mL) for 15 min., and filtered through a pad of Celite eluenting with EtOAc (30 mL). The resulting solution was concentrated, and the residue was extracted with EtOAc (20 mL × 3), washed with sat. NaCl aq., dried over Na₂SO₄, and concentrated. The residue was purified by silica gel chromatography (petroleum ether/EtOAc = 8:1) to afford **2-46** (116.4 mg, 69% yield) as a light yellow oil.

TLC: $R_f = 0.36$ in 8:1 petroleum ether/EtOAc.

¹**H NMR** (400 MHz, CDCl₃) δ 4.44 (t, *J* = 9.1 Hz, 1H), 4.26–4.20 (m, 1H), 2.94–2.80 (m, 2H), 2.63–2.56 (m, 1H), 2.22–2.00 (m, 2H).

¹³**C NMR** (101 MHz, CDCl₃) δ 176.79, 126.38 (q, *J* = 276.2 Hz), 66.80, 34.90 (q, *J* = 29.9 Hz), 34.61 (q, *J* = 2.8 Hz), 29.35.


¹⁹**F NMR** (376 MHz, CDCl₃): δ -65.96.

IR (neat): 2958, 2922, 2853, 1774, 1727, 1378, 1286, 1255, 1179, 1137, 1043, 1024, 960, 753, 742.

MS (EI): *m/z* (%) 168 (M⁺, 0.38), 61 (100).

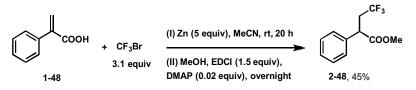
HRMS (ESI⁺): m/z calc'd for C₆H₈F₃O₂ (M + H)⁺: 169.0471, found 169.0468.

(4-(2,2,2-trifluoroethyl)cyclohexyl)benzene (2-47, p5-48)

Prepared according to the general procedure using alkene **1-47** (172.9 mg, 1.0 mmol), CF₃Br (3.1 mmol), Zn (327.0 mg, 5.0 mmol), PhCO₂H (305.3 mg, 2.5 mmol) and MeCN (3 mL). After stirring for 20 h at rt, the reaction mixture was added sat. KMnO₄ aq. (1 mL) for 15 min in an ice-bath, and Na₂CO₃ aq. (3 mL) for 15 min, then filtered through a pad of Celite eluenting with DCM (30 mL). The resulting solution was concentrated, and the residue was directly purified by silica gel chromatography (petroleum ether) to afford **2-47** (206.3 mg, 85% yield) mixture (*cis* and *trans*) as a colorless oil.

TLC: $R_f = 0.55$ in petroleum ether.

¹**H NMR** (400 MHz, CDCl₃) δ 7.32–7.28 (m, 2H), 7.24–7.17 (m, 3H), 2.63–2.44 (m, 1H), 2.26–2.16 (m, 1H), 2.09–1.91 (m, 4H), 1.81–1.60 (m, 3H), 1.53–1.43 (m, 1H), 1.26–1.16 (m, 2H).


¹³**C NMR** (101 MHz, CDCl₃) δ 147.19, 146.81, 128.51, 127.71 (q, *J* = 277.2 Hz), 127.31 (q, J = 277.3 Hz), 126.96, 126.90, 126.16, 126.11, 127.31 (q, *J* = 277.3 Hz), 44.01, 43.14, 40.89 (q, *J* = 27.1 Hz), 36.24 (q, *J* = 26.9 Hz), 33.92, 33.47, 31.98 (q, *J* = 2.2 Hz), 30.32, 28.74, 27.60 (q, *J* = 2.2 Hz).

¹⁹**F NMR** (376 MHz, CDCl₃): δ -63.72, -64.58.

IR (neat): 3028, 2928, 2858, 1452, 1261, 1233, 1161, 1139, 1113, 1050, 833, 756, 699. **MS** (EI): *m/z* (%) 242 (M⁺, 2.77), 91 (100).

HRMS (EI): *m/z* calc'd for C₁₄H₁₇F₃ (M)⁺: 242.1282, found 242.2848.

methyl 4,4,4-trifluoro-2-phenylbutanoate (2-48, p7-42)

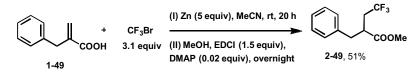
Step I: Prepared according to the general procedure using alkene **1-48** (148.1 mg, 1.0 mmol), CF₃Br (3.1 mmol), Zn (328.2 mg, 5.0 mmol) and MeCN (3 mL). After stirring for 20 h at rt, the reaction mixture was filtered through a pad of Celite eluenting with EtOAc (30 mL) and concentrated. The residue was extracted with EtOAc (30 mL \times 3), washed with sat. NaCl aq., dried over Na₂SO₄, and concentrated.

Step II: The mixture was dissolved in MeOH (3 mL), added EDCI (290.2 mg, 1.5 mmol) and DMAP (2.6 mg). After stirring for overnight, MeOH was removed by concentration, the mixture was dissolved in MeCN (3 mL), and added sat. KMnO₄ aq. (2 mL) for 15 min in an ice-bath. The solution was filtered through a pad of Celite eluenting with DCM (30 mL) and concentrated. The residue was extracted with DCM (30 mL \times 3), washed with sat. NaCl aq., dried over Na₂SO₄, and concentrated. The reaction mixture was purified by silica gel chromatography (petroleum ether/EtOAc = 30:1) to afford **2-48** (105.4 mg, 45%) as a light yellow oil.

TLC: $R_f = 0.55$ in 10:1 petroleum ether/EtOAc.

¹**H NMR** (400 MHz, CDCl₃) δ 7.37–7.28 (m, 5H), 3.90 (dd, *J* = 8.8, 5.4 Hz, 1H), 3.69 (s, 3H), 3.18–3.05 (m, 1H), 2.55–2.42 (m, 1H).

¹³**C NMR** (101 MHz, CDCl₃) δ 172.50, 137.16, 129.14, 128.14, 127.67, 126.12 (q, *J* = 277.0 Hz), 52.63, 45.31 (q, *J* = 2.9 Hz), 37.45 (q, *J* = 28.8 Hz).


¹⁹**F NMR** (376 MHz, CDCl₃): δ -65.92.

IR (neat): 3036, 2958, 2850, 1744, 1457, 1438, 1388, 1341, 1327, 1264, 1208, 1142, 1118, 699.

MS (EI): *m/z* (%) 232 (M⁺, 47.45), 109 (100).

HRMS (ESI⁺): m/z calc'd for C₁₁H₁₁F₃O₂Na (M + Na)⁺: 255.0603, found 255.0604.

methyl 2-benzyl-4,4,4-trifluorobutanoate (2-49, p7-40)

Step I: Prepared according to the general procedure using alkene **1-49** (162.5 mg, 1.0 mmol), CF₃Br (3.1 mmol), Zn (329.2 mg, 5.0 mmol) and MeCN (3 mL). After stirring for 20 h at rt, the reaction mixture was filtered through a pad of Celite eluenting with EtOAc (30 mL) and concentrated. The residue was extracted with Et₂O (30 mL \times 3), washed with sat. NaCl

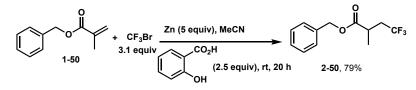
aq., dried over Na₂SO₄, and concentrated.

Step II: The mixture was dissolved in MeOH (3 mL), added EDCI (290.1 mg, 1.5 mmol) and DMAP (2.6 mg). After stirring for overnight, MeOH was removed by concentration, the mixture was dissolved in MeCN (3 mL), and added sat. KMnO₄ aq. (2 mL) for 15 min in an ice-bath. The solution was filtered through a pad of Celite eluenting with DCM (30 mL) and concentrated. The residue was extracted with Et_2O (30 mL × 3), washed with sat. NaCl aq., dried over Na₂SO₄, and concentrated. The residue was purified by silica gel chromatography (petroleum ether/EtOAc = 30:1) to afford **2-49** (125.6 mg, 51%) as a light yellow oil.

TLC: $R_f = 0.64$ in 10:1 petroleum ether/EtOAc.

¹**H** NMR (400 MHz, CDCl₃) δ 7.31 (t, J = 7.5 Hz, 2H), 7.24 (d, J = 7.2 Hz, 1H), 7.15 (d, J = 7.4 Hz, 2H), 3.64 (s, 3H), 3.04–2.96 (m, 2H), 2.85–2.79 (m, 1H), 2.67–2.54 (m, 1H), 2.26–2.13 (m, 1H).

¹³**C NMR** (101 MHz, CDCl₃) δ 173.90, 137.35, 128.97, 128.75, 127.10, 126.31 (q, *J* = 276.7 Hz), 52.04, 41.39 (q, *J* = 2.1 Hz), 38.33, 35.17 (q, *J* = 29.1 Hz).


¹⁹**F NMR** (376 MHz, CDCl₃): δ -65.67.

IR (neat): 3068, 2958, 2856, 1744, 1438, 1379, 1258, 1169, 1144, 1107, 803, 701.

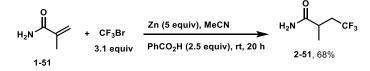
MS (EI): *m/z* (%) 246 (M⁺, 57.19), 90 (100).

HRMS (ESI⁺): m/z calc'd for C₁₂H₁₃F₃O₂Na (M + Na)⁺: 269.0760, found 269.0762.

benzyl 4,4,4-trifluoro-2-methylbutanoate (2-50, p5-36)

Prepared according to the general procedure using alkene **1-50** (169 μ L, d = 1.04 g/mL, 1.0 mmol), CF₃Br (3.1 mmol), Zn (327.0 mg, 5.0 mmol), salicylic acid (345.3 mg, 2.5 mmol) and MeCN (3 mL). After stirring for 20 h at rt, the reaction mixture was added sat. KMnO₄ aq. (2 mL) for 15 min in an ice-bath and Na₂CO₃ aq. (3 mL) for 15 min., and concentrated. The residue was extracted with EtOAc (15 mL × 3), washed with sat. NaCl aq., dried over Na₂SO₄, and concentrated. The residue was purified by silica gel chromatography (petroleum ether) to afford **2-50** (194.7 mg, 79% yield) as a light yellow oil.

TLC: $R_f = 0.38$ in 80:1 petroleum ether/EtOAc.


¹**H NMR** (400 MHz, CDCl₃) δ 7.40–7.31 (m, 5H), 5.15 (s, 2H), 2.89–2.80 (m, 1H), 2.75–2.61 (m, 1H), 2.23–2.10 (m, 1H), 1.31 (d, *J* = 7.2 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 174.27, 135.75, 128.70, 128.46, 128.27, 126.44 (q, *J* = 276.7 Hz), 66.95, 37.05 (q, *J* = 28.8 Hz), 34.19 (q, *J* = 2.7 Hz), 17.55.

¹⁹**F NMR** (376 MHz, CDCl₃): δ -65.34.

IR (neat): 3037, 2957, 2851, 1743, 1258, 1159, 1032, 803, 751, 698.
MS (EI): *m/z* (%) 246 (M⁺, 13.62), 91 (100).
HRMS (EI): *m/z* calc'd for C₁₂H₁₃F₃O₂ (M)⁺: 246.0862, found 246.0864.

4,4,4-trifluoro-2-methylbutanamide (2-51, p5-156)

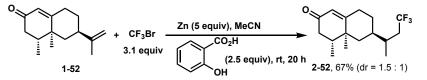
Prepared according to the general procedure using alkene **1-51** (85.1 mg, 1.0 mmol), CF₃Br (3.1 mmol), Zn (327.0 mg, 5.0 mmol), PhCO₂H (305.3 mg, 2.5 mmol) and MeCN (3 mL). After stirring for 20 h at rt, the reaction mixture was added sat. Na₂CO₃ aq. (3 mL) for 15 min., and filtered through a pad of Celite eluenting with EtOAc (30 mL). The resulting solution was concentrated, and the residue was extracted with EtOAc (20 mL \times 3), washed with sat. NaCl aq., dried over Na₂SO₄, and concentrated. The residue was purified by silica gel chromatography (petroleum ether/EtOAc = 10:1 (5‰ AcOH), 2:1 and 1:3, respectively) to afford **2-51** (104.9 mg, 68% yield) as a white solid.

TLC: $R_f = 0.54$ in 1:5 petroleum ether/EtOAc.

m.p.: 91.0~91.8 °C.

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 7.44 (s, 1H), 6.88 (s, 1H), 2.66–2.53 (m, 2H), 2.26–2.14 (m, 1H), 1.10 (d, *J* = 6.1 Hz, 3H).

¹³**C NMR** (101 MHz, DMSO-*d*₆) δ 175.50, 127.06 (q, *J* = 276.9 Hz), 35.92 (q, *J* = 27.2 Hz), 33.62 (q, *J* = 2.9 Hz), 18.46.


¹⁹**F NMR** (376 MHz, DMSO-*d*₆): δ -62.98.

IR (neat): 3368, 3184, 2984, 2923, 1669, 1636, 1371, 1325, 1294, 1270, 1246, 1179, 1149, 1131, 1108, 1057, 1023, 836, 661.

MS (ESI): m/z (%) 156 ((M + H)⁺, 156 (100)).

HRMS (ESI⁺): m/z calc'd for C₅H₈F₃NONa (M + Na)⁺: 178.0450, found 178.0450.

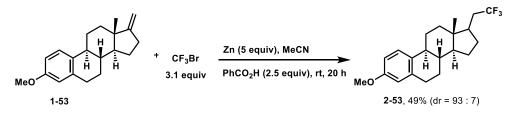
(4*R*,4a*S*,6*R*)-4,4a-dimethyl-6-((*S*)-4,4,4-trifluorobutan-2-yl)-4,4a,5,6,7,8-hexahydronapht halen-2(3*H*)-one (2-52, p6-36)

Prepared according to the general procedure using alkene **1-52** (218.3 mg, 1.0 mmol), CF_3Br (3.1 mmol), Zn (327.0 mg, 5.0 mmol), salicylic acid (345.3 mg, 2.5 mmol) and MeCN (3 mL). After stirring for 20 h at rt, the reaction mixture was added sat. Na₂CO₃ aq. (3 mL) for 15

min., and filtered through a pad of Celite eluenting with DCM (30 mL) and concentrated. The residue was extracted with DCM (20 mL \times 3), washed with sat. NaCl aq., dried over Na₂SO₄, and concentrated. The residue was purified by silica gel chromatography (petroleum ether : EtOAc = 7:1) to afford **2-52**¹³ (193.2 mg, 67% yield, dr 1.5 : 1) as a light yellow oil. Less than 2% of isomer (if any) was observed in ¹⁹F NMR.

TLC: $R_f = 0.69$ in 2:1 petroleum ether/EtOAc.

¹**H NMR** (400 MHz, CDCl₃, dr = 1.5 : 1) δ 5.76 (s, 1H), 2.51–2.33 (m, 2H), 2.30–2.10 (m, 3H), 2.04–1.71 (m, 5H), 1.33–1.11 (m, 3H), 1.09 (d, *J* = 3.2 Hz, 3H), 1.01–0.97 (m, 6H).


¹³**C NMR** (101 MHz, CDCl₃, dr = 1.5 : 1) δ 199.43, 170.23, 127.43 (q, *J* = 277.2 Hz), 124.74, 124.71, 42.39, 42.07, 40.62, 40.59, 40.54, 39.32, 39.20, 38.12 (q, *J* = 27.1 Hz), 37.67 (q, *J* = 27.2 Hz), 37.53, 37.40, 32.97, 32.84, 32.09-31.94 (m), 29.82, 28.12, 16.91, 16.90, 16.40, 16.09, 14.95, 14.93.

¹⁹**F** NMR (376 MHz, CDCl₃, dr = 1.5 : 1): δ -63.97, -64.05.

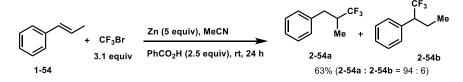
MS (EI): *m/z* (%) 288 (M⁺, 16.17), 91 (100).

HRMS (ESI⁺): m/z calc'd for C₁₆H₂₃F₃ONa (M + Na)⁺: 311.1593, found 311.1590.

(8*S*,9*S*,13*R*,14*S*)-3-methoxy-13-methyl-17-(2,2,2-trifluoroethyl)-7,8,9,11,12,13,14,15,16,17 -decahydro-6*H*-cyclopenta[a]phenanthrene (2-53, p5-32)

Prepared according to the general procedure using alkene **1-53** (282.2 mg, 1.0 mmol), CF₃Br (3.1 mmol), Zn (327.0 mg, 5.0 mmol), PhCO₂H (305.3 mg, 2.5 mmol) and MeCN (3 mL). After stirring for 20 h at rt, the reaction mixture was added sat. KMnO₄ aq. (1 mL) for 15 min in an ice-bath and Na₂CO₃ aq. (3 mL) for 15 min., and filtered through a pad of Celite eluenting with EtOAc (30 mL) and concentrated. The residue was extracted with EtOAc (15 mL × 3), washed with sat. NaCl aq., dried over Na₂SO₄, and concentrated. The residue was purified by silica gel chromatography (petroleum ether) to afford **2-53**¹³ (173.7 mg, 49% yield) as a white solid.

TLC: $R_f = 0.67$ in 10:1 petroleum ether/EtOAc.


m.p.: 102.9~105.3 °C.

¹**H NMR** (400 MHz, CDCl₃, dr = 93 : 7) δ 7.20 (d, *J* = 8.5 Hz, 1H), 6.71 (dd, *J* = 8.5, 2.9 Hz, 1H), 6.63 (d, *J* = 2.8 Hz, 1H), 3.78 (s, 3H), 2.95–2.79 (m, 2H), 2.35–2.15 (m, 3H), 2.09–2.00 (m, 1H), 1.94–1.78 (m, 4H), 1.73–1.65 (m, 1H), 1.51–1.36 (m, 4H), 1.33–1.21 (m, 4H), 0.63 (s, 3H).

¹³C NMR (101 MHz, CDCl₃, dr = 93 : 7) δ 157.64, 138.11, 132.77, 127.97 (q, J = 276.9 Hz), 126.38, 113.98, 111.60, 55.30, 54.22, 44.25 (q, J = 2.4 Hz), 44.14, 42.76, 38.98, 37.25, 34.69 (q, J = 27.6 Hz), 29.98, 28.65, 27.94, 26.44, 24.58, 12.55.
¹⁹F NMR (376 MHz, CDCl₃, dr = 93 : 7): δ -59.20, -64.80.
MS (ESI): m/z (%) 353 ((M + H)⁺, 1.89), 102 (100).

HRMS (ESI⁺): m/z calc'd for C₂₁H₂₈F₃O (M + H)⁺: 353.2087, found 353.2086.

(3,3,3-trifluoro-2-methylpropyl)benzene (2-54a, p4-77)

Prepared according to the general procedure using alkene **1-54** (130 μ L, d = 0.911 g/mL, 1.0 mmol), CF₃Br (3.1 mmol), Zn (327.5 mg, 5.0 mmol), PhCO₂H (305.3 mg, 2.5 mmol) and MeCN (3 mL). After stirring for 24 h at rt, the reaction mixture was added sat. KMnO₄ aq. (1 mL) for 15 min in an ice-bath, and Na₂CO₃ aq. (3 mL) for 15 min, then filtered through a pad of Celite eluenting with pentane (30 mL). The resulting solution was concentrated, and the residue was purified by silica gel chromatography (pentane) to afford **2-54** (119.0 mg, 63% yield) as a colorless oil. The **2-54b** was consistent with the literature.¹⁴ The ratio of **2-54a** and **2-54b** was calculated as 94:6 by ¹H NMR and ¹⁹F NMR.

2-54a¹

TLC: $R_f = 0.84$ in petroleum ether.

¹**H** NMR (400 MHz, CDCl₃) δ 7.34–7.30 (m, 2H), 7.25–7.22 (m, 1H), 7.18–7.16 (m, 2H), 3.17–3.08 (m, 1H), 2.49–2.40 (m, 2H), 1.02 (d, *J* = 6.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 138.30, 129.24, 128.71, 128.34 (q, J = 279.5 Hz), 126.76, 40.20 (q, J = 26.3 Hz), 35.79 (q, J = 2.7 Hz), 12.21 (q, J = 2.9 Hz). ¹⁹F NMR (376 MHz, CDCl₃): δ -70.22 (**2-54b**), -74.00.

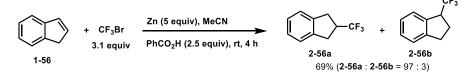
MS (EI): *m/z* (%) 188 (M⁺, 26.66), 91 (100).

1-methoxy-4-(3,3,3-trifluoro-2-methylpropyl)benzene (2-55, p4-25)

Prepared according to the general procedure using alkene **1-55** (150 μ L, d = 0.988 g/mL, 1.0 mmol), CF₃Br (3.1 mmol), Zn (328.0 mg, 5.0 mmol), PhCO₂H (305.8 mg, 2.5 mmol) and MeCN (3 mL). After stirring for 2 h at rt, the reaction mixture was added sat. Na₂CO₃ aq. (3 mL) and stirred for 15 min, then filtered through a pad of Celite eluenting with DCM (30 mL).

The resulting solution was concentrated, and extracted with Et_2O (15 mL × 3). The combined Et_2O phase was washed with sat. NaCl aq., dried over Na₂SO₄, and concentrated. The residue was purified by silica gel chromatography (petroleum ether) to afford **2-55** (160.0 mg, 73% yield) as a light yellow oil. The ratio of **2-55a** and **2-55b** was calculated as 96:4 by ¹H NMR and ¹⁹F NMR.

2-55a¹⁵


TLC: $R_f = 0.46$ in petroleum ether.

¹H NMR (400 MHz, CDCl₃) δ 7.10–7.06 (m, 2H), 6.87–6.83 (m, 2H), 3.81 (s, 3H), 3.09–3.01 (m, 1H), 2.43–2.33 (m, 2H), 1.01 (d, *J* = 6.3 Hz, 3H).
¹³C NMR (101 MHz, CDCl₃) δ 158.49, 130.28, 130.19, 128.36 (q, *J* = 279.6 Hz), 114.11, 55.38, 40.34 (q, *J* = 25.9 Hz), 34.88 (q, *J* = 2.5 Hz), 12.16 (q, *J* = 2.6 Hz).

¹⁹F NMR (376 MHz, CDCl₃): δ -70.65 (**2-55b**), -73.93.

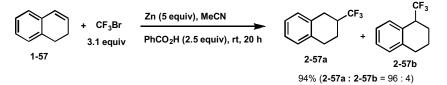
MS (EI): *m/z* (%) 218 (M⁺, 18.83), 121 (100).

2-(trifluoromethyl)-2,3-dihydro-1H-indene (2-56a, p4-124)

Prepared according to the general procedure using alkene **1-56** (117 μ L, d = 0.996 g/mL, 1.0 mmol), CF₃Br (3.1 mmol), Zn (328.0 mg, 5.0 mmol), PhCO₂H (305.8 mg, 2.5 mmol) and MeCN (3 mL). After stirring for 4 h at rt, the reaction mixture was added sat. KMnO₄ aq. (1 mL) for 15 min in an ice-bath, and Na₂CO₃ aq. (3 mL) for 15 min, then filtered through a pad of Celite eluenting with pentane (30 mL). The resulting solution was concentrated, and the residue was directly purified by silica gel chromatography (pentane) to afford **2-56** (129.0 mg, 69% yield) as a colorless oil. The ratio of **2-56a** and **2-56b**¹⁶ was calculated as 97:3 by ¹⁹F NMR.

2-56a¹

TLC: $R_f = 0.67$ in petroleum ether.


¹**H NMR** (400 MHz, CDCl₃) δ 7.24–7.17 (m, 4H), 3.23–3.12 (m, 5H).

¹³**C NMR** (101 MHz, CDCl₃) δ 140.71, 128.24 (q, *J* = 277.0 Hz), 127.07, 124.60, 42.61 (q, *J* = 28.1 Hz), 33.03 (q, *J* = 2.7 Hz).

¹⁹**F NMR** (376 MHz, CDCl₃): δ -71.17 (**2-56b**), -72.12.

MS (EI): *m/z* (%) 186 (M⁺, 58.90), 117 (100).

2-(trifluoromethyl)-1,2,3,4-tetrahydronaphthalene (2-57a, p4-183)

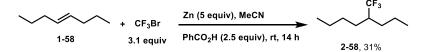
Prepared according to the general procedure using alkene **1-57** (131 μ L, d = 0.997 g/mL, 1.0 mmol), CF₃Br (3.1 mmol), Zn (328.0 mg, 5.0 mmol), PhCO₂H (305.8 mg, 2.5 mmol) and MeCN (3 mL). After stirring for 20 h at rt, the reaction mixture was added sat. KMnO₄ aq. (2 mL) for 15 min in an ice-bath, and Na₂CO₃ aq. (3 mL) for 15 min, then directly purified by silica gel chromatography (pentane) to afford **2-57** (188.2 mg, 94% yield) as a colorless oil. The **2-57b** is consistent with the literature.¹⁷ The ratio of **2-57a** and **2-57b** was calculated as 96:4 by ¹H NMR and ¹⁹F NMR.

2-57a

TLC: $R_f = 0.72$ in petroleum ether.

¹**H NMR** (400 MHz, CDCl₃) δ 7.15–7.09 (m, 4H), 3.03–2.80 (m, 4H), 2.52–2.40 (m, 1H), 2.22–2.15 (m, 1H), 1.77–1.66 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 135.58, 133.74, 129.30, 128.98, 127.99 (q, *J* = 278.3 Hz), 126.39, 126.23, 39.42 (q, *J* = 27.1 Hz), 28.34–28.26 (m), 22.29 (q, *J* = 2.8 Hz).


¹⁹**F NMR** (376 MHz, CDCl₃): δ -68.24 (**2-57b**), -74.20.

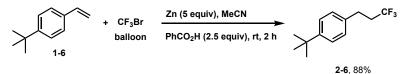
IR (neat): 3025, 2927, 2855, 1498, 1443, 1396, 1330, 1275, 1169, 1143, 1123, 1056, 747.

MS (EI): *m/z* (%) 200 (M⁺, 81.07), 104 (100).

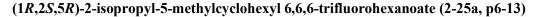
HRMS (EI): m/z calc'd for C₁₁H₁₁F₃ (M)⁺: 200.0807, found 200.0807.

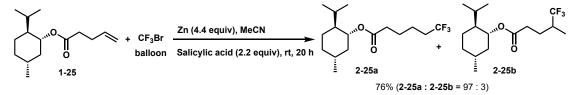
4-(trifluoromethyl)octane (2-58, p4-116)

Prepared according to the general procedure using alkene **1-58** (157 μ L, d = 0.715 g/mL, 1.0 mmol), CF₃Br (3.1 mmol), Zn (328.0 mg, 5.0 mmol), PhCO₂H (305.8 mg, 2.5 mmol) and MeCN (3 mL). After stirring for 14 h at rt, the reaction mixture was added sat. KMnO₄ aq. (1 mL) for 15 min in an ice-bath and Na₂CO₃ aq. (3 mL) for 15 min, then extracted with pentane (15 mL × 3) and concentrated. The residue was purified by silica gel chromatography (pentane) to afford **2-58** (56.0 mg, 31% yield) as a colorless oil.

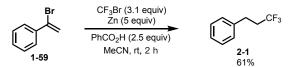

¹**H NMR** (400 MHz, CDCl₃) δ 2.05–1.96 (m, 1H), 1.62–1.51 (m, 2H), 1.48–1.23 (m, 8H), 0.94–0.88 (m, 6H).

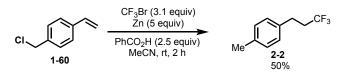
¹³C NMR (101 MHz, CDCl₃) δ 128.95 (q, *J* = 280.2 Hz), 42.50 (q, *J* = 24.6 Hz), 30.20 (q, *J* = 2.5 Hz), 29.20, 27.73 (q, *J* = 2.8 Hz), 22.94, 20.26, 14.28, 14.01.


¹⁹F NMR (376 MHz, CDCl₃): δ -70.74.
IR (neat): 2960, 2926, 2855, 1465, 1379, 1261, 1168, 1143, 1112, 800.sss
MS (EI): *m/z* (%) 182 (M⁺, 0.01), 57 (100).
HRMS (EI⁺): *m/z* calc'd for C₉H₁₇F₃ (M)⁺: 182.1282, found 182.1232.


4. Gram-scale Hydrotrifluoromethyltion Reactions

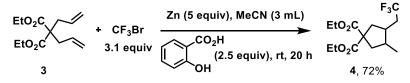
1-(tert-butyl)-4-(3,3,3-trifluoropropyl)benzene (2-6, p6-10)


Prepared in 200 mL Schlenk flask according to the general procedure using alkene **1-6** (1.8 mL, 10 mmol), CF₃Br balloon, Zn (3.27 g, 50 mmol), PhCO₂H (3.05 g, 25 mmol) and MeCN (30 mL). After stirring for 2 h at rt, the reaction mixture was added sat. Na₂CO₃ aq. (15 mL) and stirred for 15 min, then directly purified by silica gel chromatography (pentane) to afford **2-6** (2.04 g, 88% yield) as a colorless oil.



Prepared in 200 mL Schlenk flask according to the general procedure using alkene **1-25** (1.37 g, 5.7 mmol), CF₃Br balloon, Zn (1.63 g, 25 mmol), salicylic acid (1.73 g, 12.5 mmol) and MeCN (15 mL). After stirring for 20 h at rt, the reaction mixture was added sat. Na₂CO₃ aq. (15 mL) and stirred for 15 min at rt, and filtered through a pad of Celite eluenting with DCM (30 mL) and concentrated. The residue was added sat. KMnO₄ aq. (5 mL) for 15 min in an ice-bath and extracted with DCM (50 mL × 3), washed with sat. NaCl aq., dried over Na₂SO₄, and concentrated. The residue was purified by silica gel chromatography (petroleum ether : EtOAc = 90:1 to 60:1) to afford **2-25** (1.33 g, 76% yield) as a light yellow oil.

5. Hydrotrifluoromethyltion of Alkenes with Vinyl Bromide or Benzyl Chloride


Prepared according to the general procedure using alkene **1-59** (130 μ L, d = 1.387g/mL, 1.0 mmol), CF₃Br (3.1 mmol), Zn (327.0 mg, 5.0 mmol), PhCO₂H (305.3 mg, 2.5 mmol) and MeCN (3 mL). After stirring for 2 h at rt, the reaction mixture was added sat. Na₂CO₃ aq. (3 mL) and stirred for 15 min, then directly purified by silica gel chromatography (pentane) to afford **2-1** (106.0 mg, 61% yield) as a colorless oil.

Prepared according to the general procedure using alkene **1-60** (141 μ L, d = , 1.0 mmol), CF₃Br (3.1 mmol), Zn (327.0 mg, 5.0 mmol), PhCO₂H (305.3 mg, 2.5 mmol) and MeCN (3 mL). After stirring for 2 h at rt, the reaction mixture was added sat. Na₂CO₃ aq. (3 mL) and stirred for 15 min, then directly purified by silica gel chromatography (pentane) to afford **2-2** (93.4 mg, 50% yield) as a colorless oil.

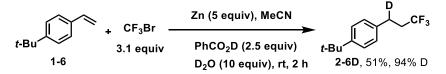
6. Mechanism Studies

Preparation of cyclic product 4 (p6-8-3)

Prepared according to the general procedure using alkene **3** (240.4 mg, 1.0 mmol), CF₃Br (3.1 mmol), Zn (327.0 mg, 5.0 mmol), salicylic acid (345.3 mg, 2.5 mmol) and MeCN (3 mL). After stirring for 20 h at rt, the reaction mixture was added sat. Na₂CO₃ aq. (15 mL) for 15 min., and filtered through a pad of Celite eluenting with DCM (30 mL) and concentrated. The residue was extracted with DCM (20 mL × 3), washed with sat. NaCl aq., dried over Na₂SO₄, and concentrated. The residue was purified by silica gel chromatography (petroleum ether : EtOAc = 20:1 and petroleum ether:DCM = 1:1) to afford 4⁸ (224.0 mg, 72% yield) as a light yellow oil.

TLC: $R_f = 0.33$ in 20:1 petroleum ether/EtOAc.

¹**H NMR** (400 MHz, CDCl₃, dr = 9:1, major product) δ 4.19 (q, *J* = 7.3 Hz, 4H), 2.67–2.43 (m, 2H), 2.34–1.96 (m, 6H), 1.24 (t, *J* = 7.3 Hz, 6H), 1.03–0.86 (m, 3H).

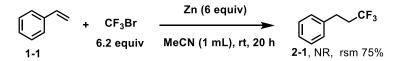

¹³**C NMR** (101 MHz, CDCl₃) δ 172.63, 172.59, 127.26 (q, *J* = 276.8 Hz), 61.61, 61.59, 58.77, 41.26, 38.05, 36.59 (q, *J* = 2.7 Hz), 36.03, 34.03 (q, *J* = 28.0 Hz), 14.92, 14.04.

¹⁹**F NMR (376** MHz, CDCl₃,): δ-65.12 (mior), -65.16 (major).

MS (ESI): m/z (%) 311 ((M + H)⁺, 59.33), 256 (100).

Preparation of PhCO₂D (p6-34)

To a 50 mL of Schlenk flask was added PhCO₂Na (360.3 mg, 2.5 mmol) in N₂. The flask was added anhydrous THF (6 mL) and DCl (470 μ L, 20% in D₂O). After stirring for 0.5 h at rt. The procedure was repeated 3 times to afford PhCO₂D. It was directly used for the next step.


Prepared according to the general procedure using alkene **1-6** (183 μ L, 1.0 mmol), CF₃Br (3.1 mmol), Zn (328.3 mg, 5.0 mmol), PhCO₂D (307.8 mg, 2.5 mmol), D₂O (181 μ L, 10 mmol) and MeCN (3 mL). After stirring for 2 h at rt, the reaction mixture was added sat. Na₂CO₃ aq. (3 mL) and stirred for 15 min, then directly purified by silica gel chromatography (pentane) to afford **2-6D** (118.9 mg, 51% yield) as a colorless oil.

TLC: $R_f = 0.66$ in petroleum ether.

¹**H NMR** (400 MHz, CDCl₃) δ 7.34 (d, *J* = 8.4 Hz, 2H), 7.13 (d, *J* = 8.2 Hz, 2H), 2.86–2.80 (m, 1H), 2.46–2.32 (m, 2H), 1.31 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 149.74, 136.07, 128.04, 131.08–122.83 (m), 125.77, 35.75 (q, J = 28.2 Hz), 34.58, 31.51, 27.85–27.24 (m). ¹⁹F NMR (376 MHz, CDCl₃): δ -67.23, -67.26. IR (neat): 2967, 2910, 2871, 1376, 1367, 1266, 1256, 1141, 1115, 822. MS (EI): m/z (%) 231 ((M)⁺, 2.75), 216 (100). HRMS (ESI⁺): m/z calc'd for C₁₃H₁₇DF₃ (M + H)⁺: 232.1418, found 232.1416.

The Reaction of Styrene with CF₃Br and Zn without PhCO₂H (P3-142)

Prepared in 25 mL Schlenk flask according to the general procedure using alkene 1-1 (29 μ L, d = 0.906 g/mL, 0.25 mmol), CF₃Br (6.2 equiv), Zn (98.1 mg, 1.5 mmol) and MeCN (1 mL). After stirring for 20 h at rt, the reaction mixture was analyzed by NMR analysis of the crude reaction mixture with mesitylene as the internal standard.

Test on the Hydrotrifluoromethylation of Styrene in the Standard Condition with 1 equiv of TMEPO (P5-193)

$$\begin{array}{c|c} & Zn \ (5 \ equiv), \ MeCN \\ & & \\ 1-1 \end{array} \\ \begin{array}{c} & Zn \ (5 \ equiv), \ MeCN \\ & & \\ \hline & PhCO_2H \ (2.5 \ eq.) \\ & & \\ Tempo \ (1 \ equiv), \ rt, \ 2 \ h \end{array} \\ \begin{array}{c} & CF_3 \\ & \\ & \\ 2-1 \end{array} \end{array}$$

Prepared in 50 mL Schlenk flask according to the general procedure using alkene 1-1 (115 μ L, d = 0.906 g/mL, 1.0 mmol), CF₃Br (3.1 mmol), Zn (327.5 mg, 5.0 mmol), PhCO₂H (305.3 mg, 2.5 mmol), TEMPO (156.2 mg, 1.0 mmol) and MeCN (3 mL). After stirring for 2 h at rt, the reaction mixture was analyzed by NMR. The results were showed in Table S8.

Test on the Hydrotrifluoromethylation of Styrene in the Standard Condition with 1 equiv of BHT (P6-100)

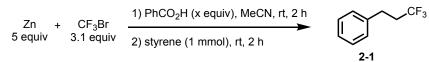

Prepared in 50 mL Schlenk flask according to the general procedure using alkene **1-1** (115 μ L, d = 0.906 g/mL, 1.0 mmol), CF₃Br (3.1 mmol), Zn (327.5 mg, 5.0 mmol), PhCO₂H (305.3 mg, 2.5 mmol), BHT (220.4 mg, 1.0 mmol) and MeCN (3 mL). After stirring for 2 h at rt, the reaction mixture was analyzed by NMR. The results were showed in Table S8.

Table S8:

entry	additive	yield of 2-1 (%) ^{<i>a</i>}	rsm (%) ^b
1	TEMPO	0	97
2	BHT	0	96

^{*a*} The yield was determined by ¹⁹F NMR analysis of the crude reaction mixture with PhCF₃ as the internal standard; ^{*b*} rsm was determined by NMR analysis of the crude reaction mixture with mesitylene as the internal standard.

Tests on the Hydrotrifluoromethylation of Styrene with Premixed Zn, CF₃Br and PhCO₂H (or none) (P6-74, p6-75)

To a 50 mL of Schlenk flask was added Zn (327.0 mg, 5.0 mmol) and PhCO₂H (305.3 mg, 2.5 mmol; or none), CF₃Br (3.1 equiv) and MeCN (3 mL). After stirring for 2 h at rt, the flask was added alkene **1-1** (115 μ L, d = 0.906 g/mL, 1.0 mmol) and stirred for 2 h at rt, the reaction mixture was analyzed by NMR. The results were showed in Table S9.

Table S9:

entry	Х	yield of 2-1 (%) ^{<i>a</i>}	rsm (%) ^b
1	0	0	97
2	2.5	0	95

^{*a*} The yield was determined by ¹⁹F NMR analysis of the crude reaction mixture with PhCF₃ as the internal standard; ^{*b*} rsm was determined by NMR analysis of the crude reaction mixture with mesitylene as the internal standard.

Preparation of CF₃ZnBr•2MeCN (P6-84)¹⁸

Zn +	CF₃Br	MeCN (30 mL)	CF₃ZnBr•2MeCN
(31 mmol)	balloon	l ₂ (0.02 equiv), rt, 36 h	9%

CF₃ZnBr•2MeCN was prepared according to the reference 18 with CF₃Br balloon.

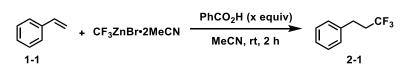
To a 50 mL of Schlenk flask was added Zn powder (2.0 g, 31 mmol) and I₂ (150 mg, 0.6 mmol), and then it was evacuated for 30 s and filled with CF₃Br. The flask was added MeCN (30 mL), and CF₃Br was bubbled to saturate it in the solution for 5 min. Then it was equipped with an CF₃Br balloon for 36 h at rt. The mixture was filtered in glove box. The filtrate was concentrated, and the residue was washed with Cl₃CF and dried to give the CF₃ZnBr•2MeCN (800 mg, 9%) as a white solid.

¹**H NMR** (400 MHz, CD₂Cl₂) δ 2.22 (s, 6H).

¹⁹**F NMR** (376 MHz, CD₂Cl₂): δ -45.55.

Tests on the Stability of CF₃ZnBr•2MeCN (P6-94)

CF₃ZnBr•2MeCN -	PhCO ₂ H (1 equiv)
CF32IIDI*2WECIW -	CD ₂ Cl ₂ (0.6 mL), rt, time
(1 equiv)	CD_2CI_2 (0.0 mL), rt, time


CF₃ZnBr•2MeCN (10.0 mg, 0.034 mmol) and CD₂Cl₂ (0.6 mL) were added to an NMR tube in glove box, and then it was sealed and tested ¹H NMR and ¹⁹F NMR spectra. After that, PhCO₂H (4.2 mg, 0.034 mmol) was added to the tube in the glove box, and then the remaining CF₃ZnBr•2MeCN was monitored through NMR (¹H NMR and ¹⁹F NMR). CF₃ZnBr•2MeCN was fully hydrolyzed in 19 min. The results were showed in Table S10.

entry	time (min)	rsm ^a
1	0	100
2	10.0	28
3	13.0	16
4	14.5	7
5	16.0	2
6	17.5	0.8

Table S10: Stability Experiment of CF₃ZnBr•2MeCN

 $\frac{7}{a^{a}} \frac{19.0}{a^{b}} \frac{0}{a^{b}}$ rsm was determined by ¹⁹F NMR analysis of the crude reaction mixture with CFCl₃ as the internal standard.

Tests on the Hydrotrifluoromethylation of Styrene with CF₃ZnBr•2MeCN (P6-85, p6-86)

To a 25 mL of Schlenk tube was added CF₃ZnBr•2MeCN (296.4 mg, 1.0 mmol), PhCO₂H (61.1 mg, 0.5 mmol; or 0 mg) in the glove box. The flask was sealed and evacuated for 30 s with an oil pump outside and backfilled with CF₃Br, and then added MeCN (1 mL) and alkene **1-1** (23 μ L, d = 0.906 g/mL, 0.2 mmol). After stirring for 2 h at rt, the reaction mixture was analyzed by NMR. The results were showed in Table S11.

Table S11:

entry	Х	yield of 2-1 (%) ^{<i>a</i>}	rsm (%) ^b
1	0	0	100
2	2.5	0	100

^{*a*} The yield was determined by ¹⁹F NMR analysis of the crude reaction mixture with PhCF₃ as the internal standard; ^{*b*} rsm was determined by ¹H NMR analysis of the crude reaction mixture with mesitylene as the internal standard.

Tests on the Hydrotrifluoromethylation of Styrene with CF₃Br in the Presence of ZnCl₂ or NaH (P6-188, P6-189)

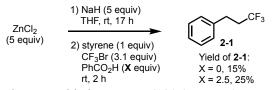

To a 25 mL of Schlenk tube was added NaH (120.0 mg, 5.0 mmol) or ZnCl₂ (681.5 mg, 5.0 mmol), PhCO₂H (305.3 mg, 2.5 mmol or 0 mg) in the glove box. The flask was sealed evacuated for 30 s with an oil pump outside and equipped with CF₃Br balloon, and then added MeCN (1 mL) and alkene **1-1** (115 μ L, d = 0.906 g/mL, 1.0 mmol). After stirring for 2 h at rt, the reaction mixture was analyzed by NMR. The results were showed in Table S12.

Table S12:

entry	Х	yield of 2-1 (%) ^{<i>a</i>}	rsm (%) ^b
1 (ZnCl ₂)	0	0	95
2 (ZnCl ₂)	2.5	0	100
3 (NaH)	0	0	100
4 (NaH)	2.5	0	88

^{*a*} The yield was determined by ¹⁹F NMR analysis of the crude reaction mixture with PhCF₃ as the internal standard; ^{*b*} rsm was determined by ¹H NMR analysis of the crude reaction mixture with mesitylene as the internal standard.

Tests on the Hydrotrifluoromethylation of Styrene with CF₃Br in the Presence of premixed ZnCl₂ and NaH (P6-187)

To a 25 mL of Schlenk tube was added sat. NaH (120.0 mg, 5.0 mmol) and $ZnCl_2$ (681.5 mg, 5.0 mmol) and THF (3 mL) in the glove box. After stirring for 17 h at rt, the reaction solvent was removed and then it was added PhCO₂H (305.3 mg, 2.5 mmol or 0 mg). The flask was sealed and evacuated for 30 s with an oil pump and equipped with CF₃Br balloon. Then,

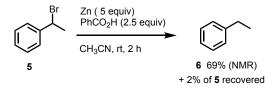
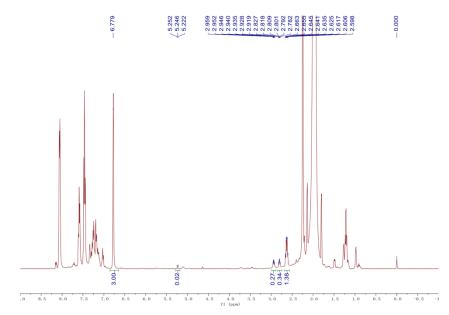
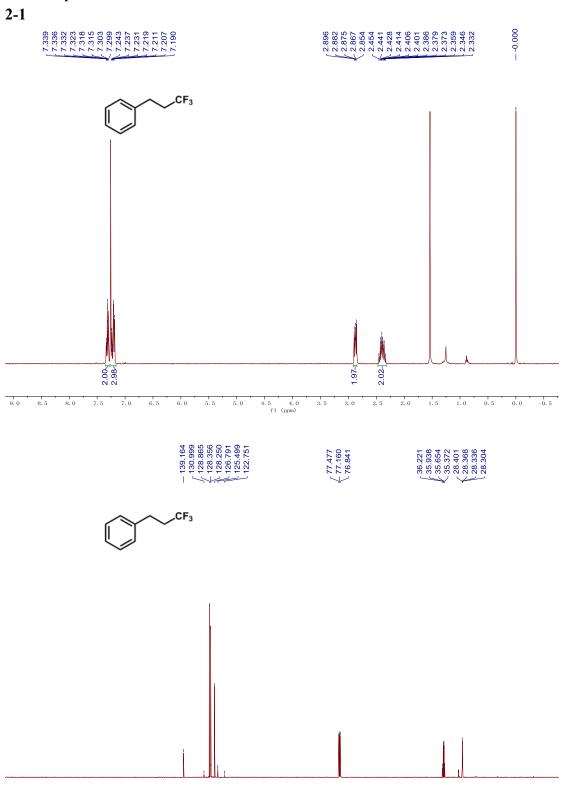

MeCN (3 mL) and alkene 1-1 (115 μ L, d = 0.906 g/mL, 1.0 mmol) were added. After stirring for 2 h at rt, the reaction mixture was analyzed by NMR. The results were showed in Table S13.

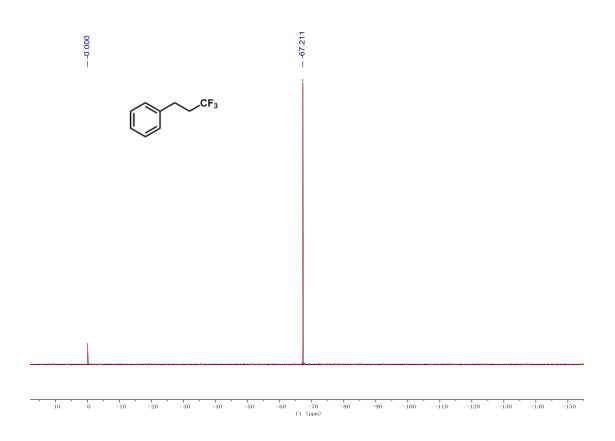
Table S13:


entry	28	yield of 2-1 (%) ^{<i>a</i>}	rsm (%) ^b
1	0	15	65
2	2.5	25	67

^{*a*} the yield was determined by ¹⁹F NMR analysis of the crude reaction mixture with PhCF₃ as the internal standard; ^{*b*} rsm was determined by ¹H NMR analysis of the crude reaction mixture with mesitylene as the internal standard.

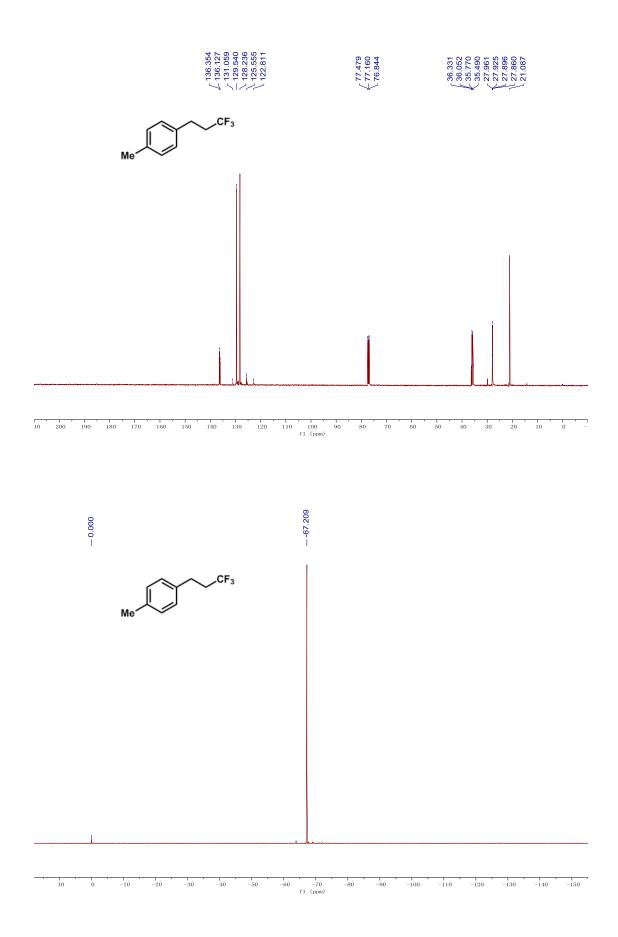
Reduction of (1-bromoethyl)benzene (5) with Zn/PhCO₂H

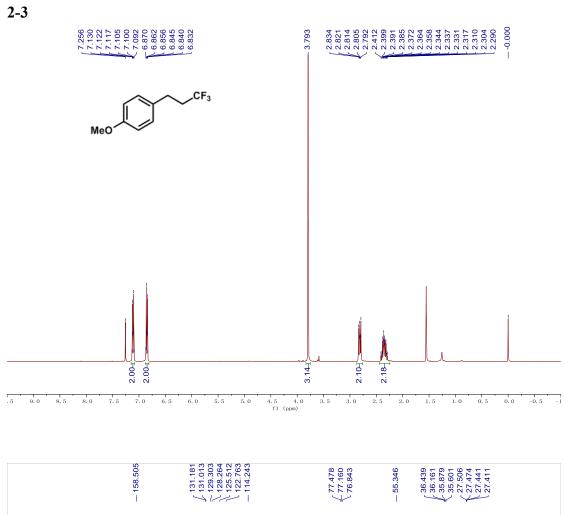

Under N_2 atmosphere, a 25 mL of Schlenk tube was added Zn (327.0 mg, 5.0 mmol), PhCO₂H (305.3 mg, 2.5 mmol) and CH₃CN (3 mL), then (1-bromoethyl)benzene (5) was added. After stirring for 2 h at rt, the reaction mixture was analyzed by ¹H NMR with mesitylene as the internal standard, and 69% of ethylbenzene **6** was formed with 2% of **5** recovered. The crude ¹H NMR is as follow:

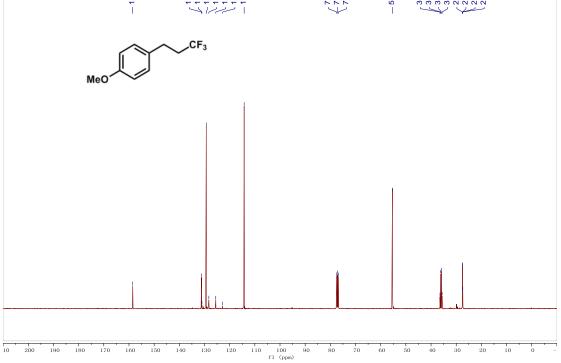

7. References

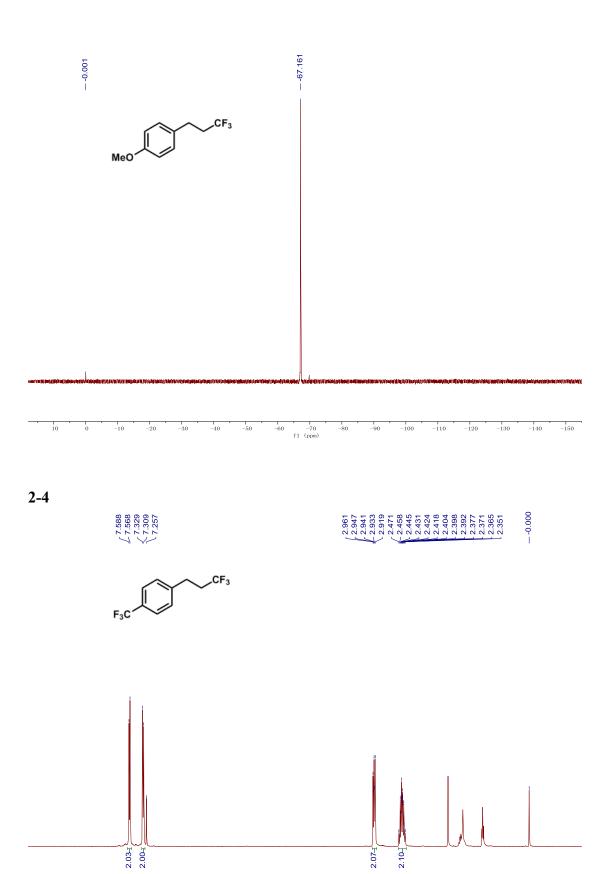
- N. J. W. Straathof, S. E. Cramer, V. Hessel and T. Noël, *Angew. Chem. Int. Ed.*, 2016, 55, 15549-15553.
- 2. X. Zou, J. Zou, L. Yang, G. Li and H. Lu, J. Org. Chem., 2017, 82, 4677-4688.
- 3. K.-Y. Ye, G. Pombar, N. Fu, G. S. Sauer, I. Keresztes and S. Lin, *J. Am. Chem. Soc.*, 2018, **140**, 2438-2441.
- 4. S. Choi, Y. J. Kim, S. M. Kim, J. W. Yang, S. W. Kim and E. J. Cho, *Nat. Commun.*, 2014, **5**, 4881-4887.
- 5. C. Lévêque, L. Chenneberg, V. Corcé, J.-P. Goddard, C. Ollivier and L. Fensterbank, *Org. Chem. Front.*, 2016, **3**, 462-465.
- 6. B. He, Q. Pan, Y. Guo, Q.-Y. Chen and C. Liu, Org. Lett., 2020, 22, 6552-6556.
- X. Tan, Z. Liu, H. Shen, P. Zhang, Z. Zhang and C. Li, J. Am. Chem. Soc., 2017, 139, 12430-12433.
- 8. W. Zhang, Z. Zou, Y. Wang, Y. Wang, Y. Liang, Z. Wu, Y. Zheng and Y. Pan, *Angew. Chem. Int. Ed.*, 2019, **58**, 624-627.
- 9. Y. Imagawa, S. Yoshikawa, T. Fukuhara and S. Hara, *Chem. Commun.*, 2011, 47, 9191-9193.
- 10. J.-X. Xiang, Y. Ouyang, X.-H. Xu and F.-L. Qing, *Angew. Chem. Int. Ed.*, 2019, **58**, 10320-10324.
- N. Erdeljac, G. Kehr, M. Ahlqvist, L. Knerr and R. Gilmour, *Chem. Commun.*, 2018, 54, 12002-12005.
- 12. T. Braun, F. Wehmeier and K. Altenhöner, *Angew. Chem. Int. Ed.*, 2007, 46, 5321-5324.
- 13. A.-L. Barthelemy, G. Dagousset and E. Magnier, *Eur. J. Org. Chem.*, 2020, 2020, 1429-1432.
- 14. M. Engman, P. Cheruku, P. Tolstoy, J. Bergquist, S. F. Völker and P. G. Andersson, *Adv. Synth. Catal.*, 2009, **351**, 375-378.
- 15. D. J. Wilger, N. J. Gesmundo and D. A. Nicewicz, *Chem. Sci.*, 2013, 4, 3160-3165.
- 16. C. Aubert, J.-P. Bégué, D. Bonnet-Delpon and D. Mesureur, J. Chem. Soc., Perkin Trans. 1, 1989, 395-399.
- 17. D. Bonnet-Delpon, C. Cambillau, M. Charpentier-Morize, R. Jacquot, D. Mesureur and M. Ourevitch, *J. Org. Chem.*, 1988, **53**, 754-759.
- D. Naumann, W. Tyrra, B. Kock, W. Rudolph and B. Wilkes, *J. Fluorine Chem.*, 1994, 67, 91-93.

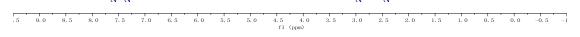
8. NMR spectra

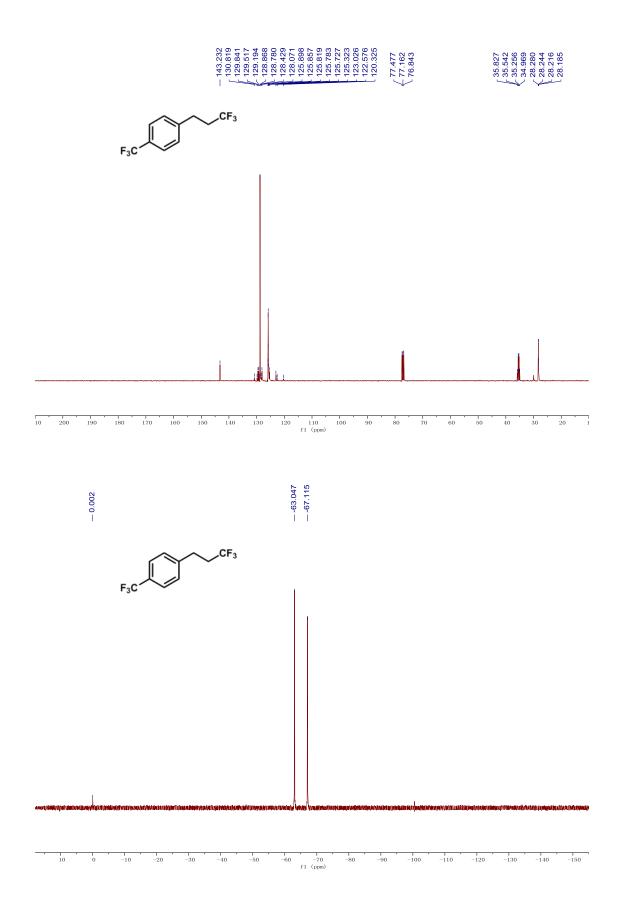


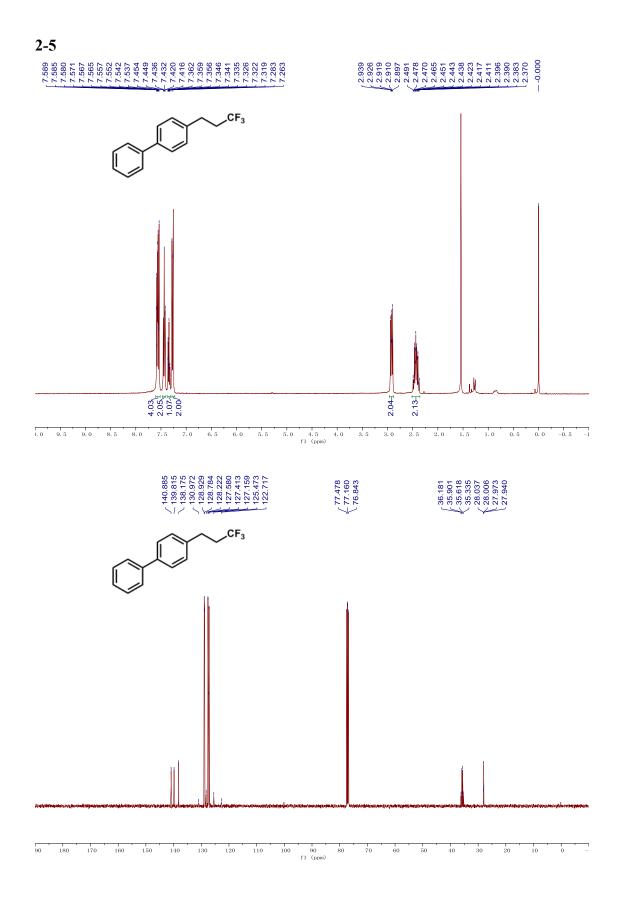

10 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

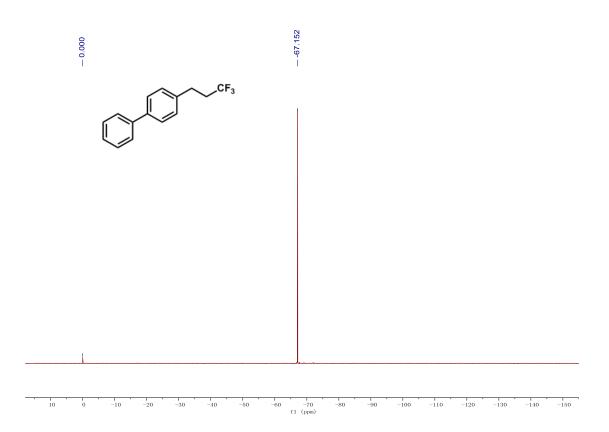


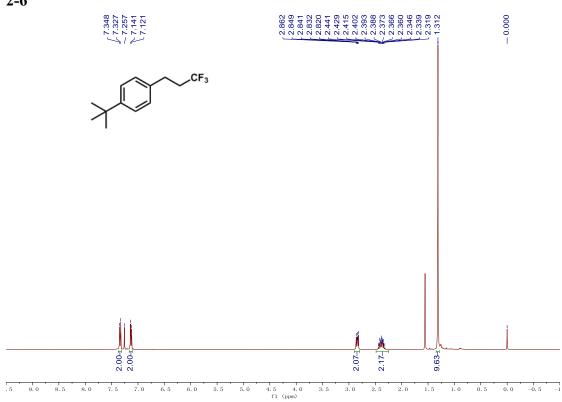


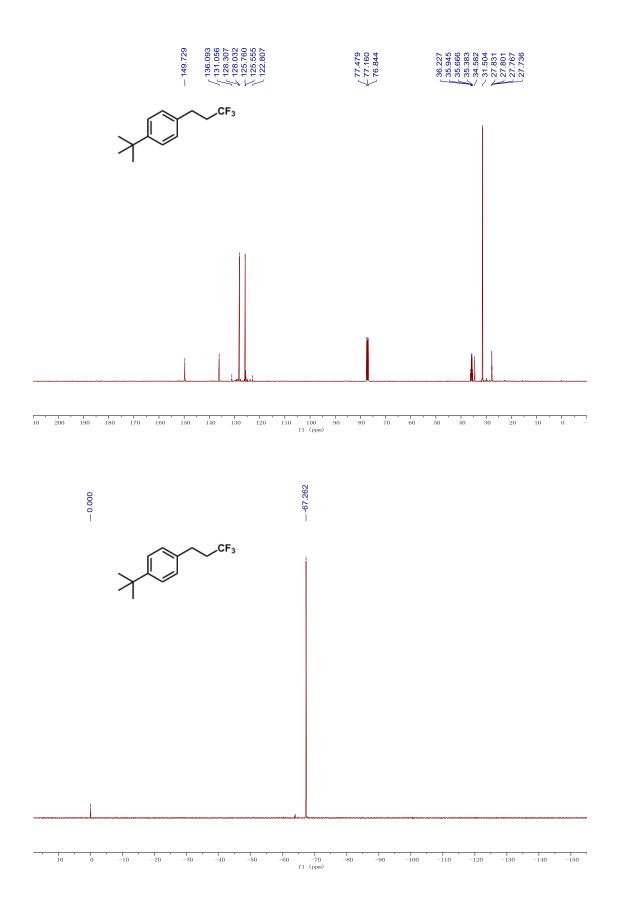


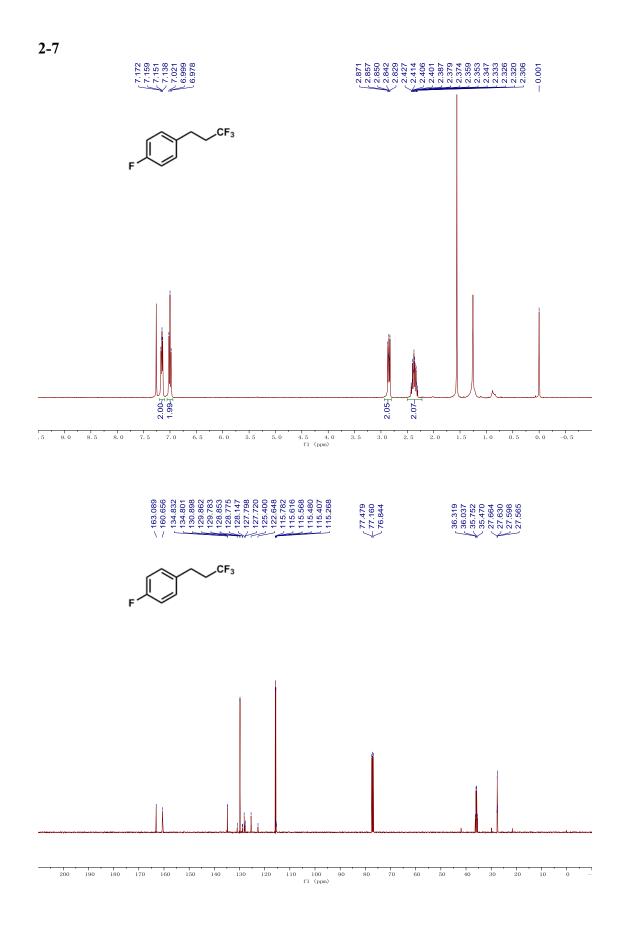


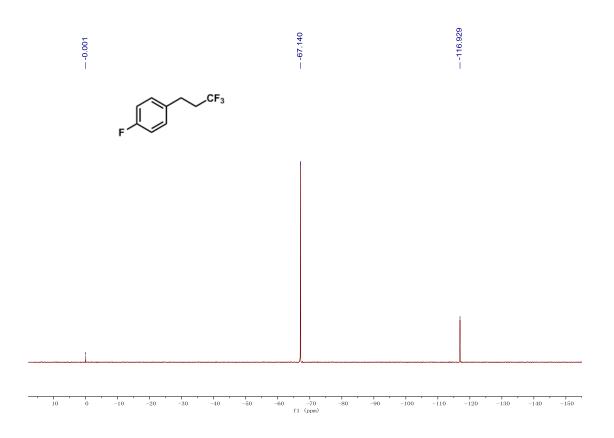


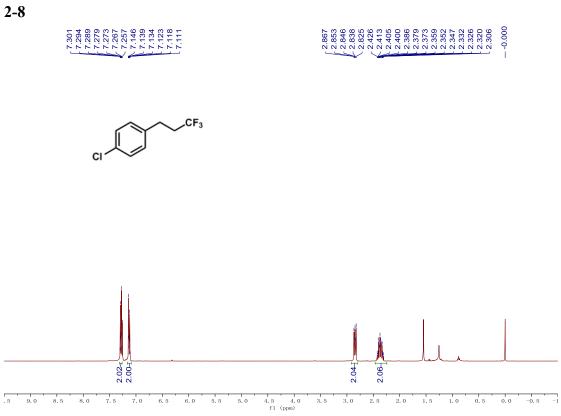


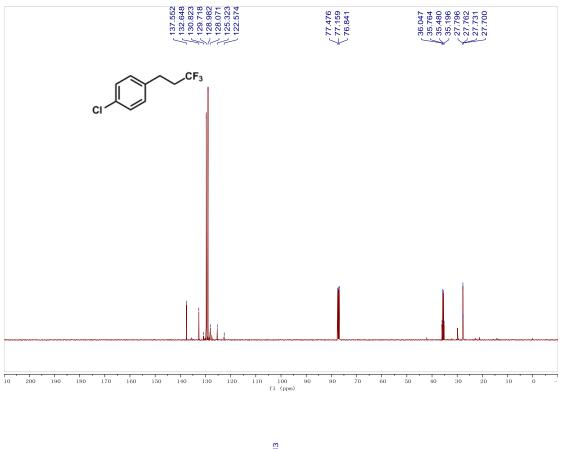


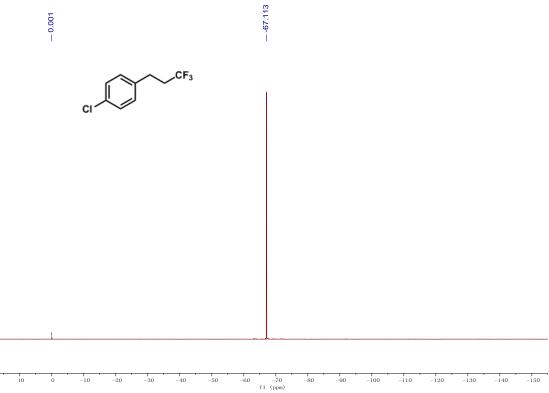


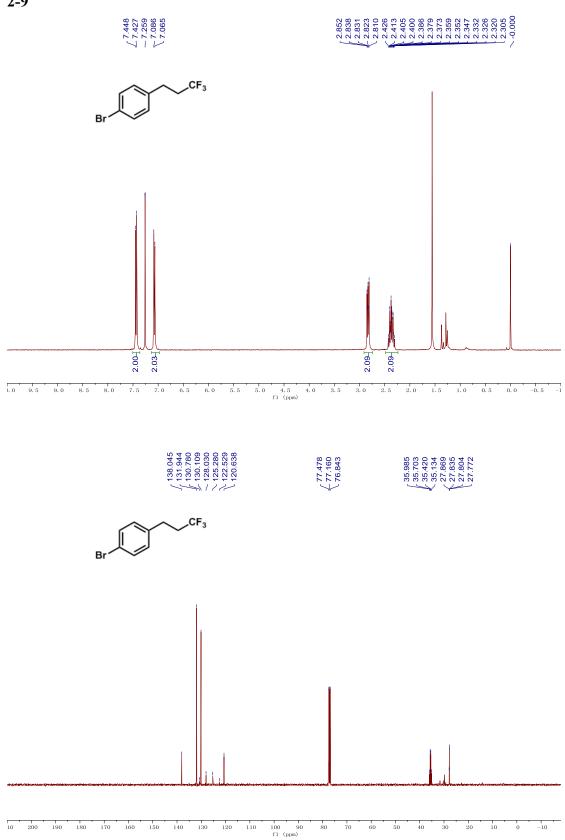


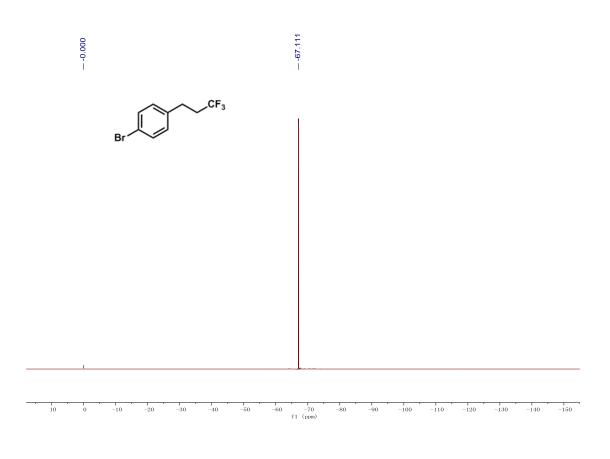


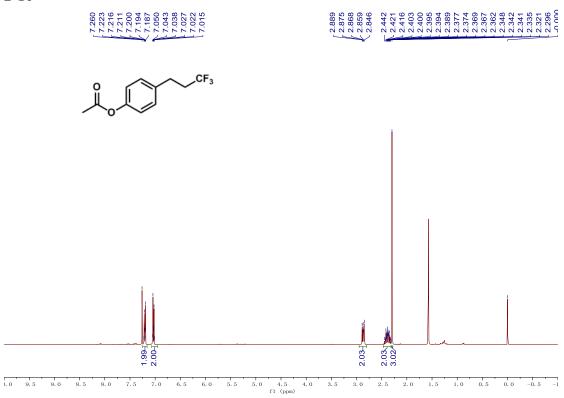


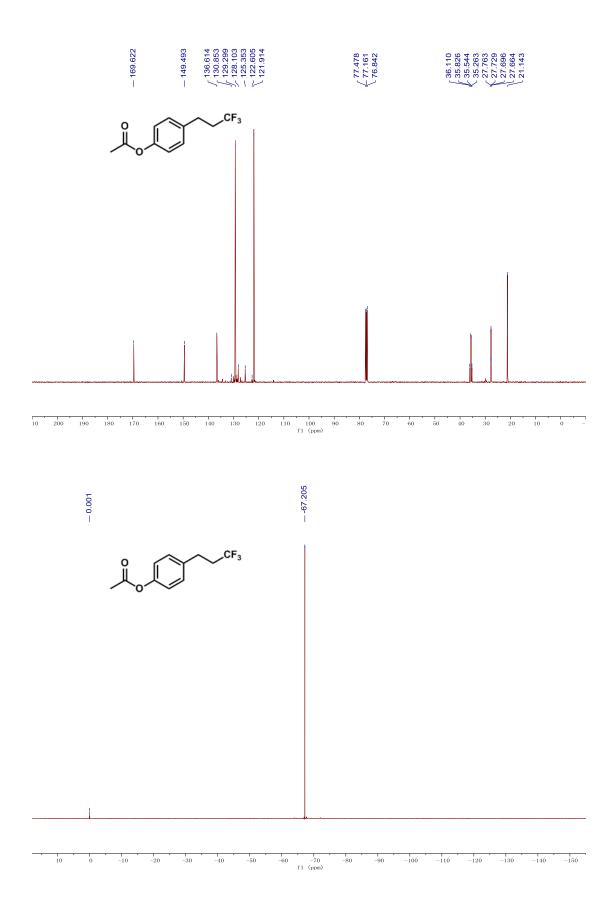


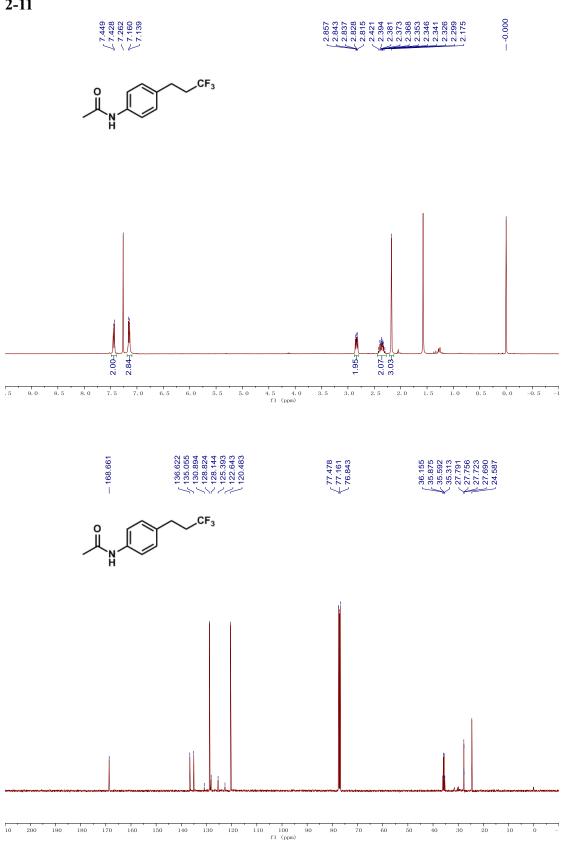


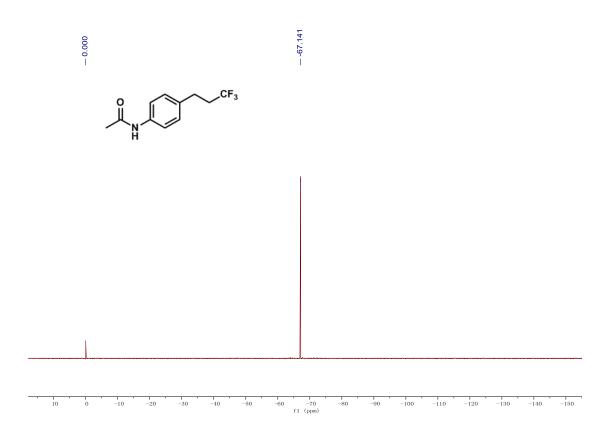


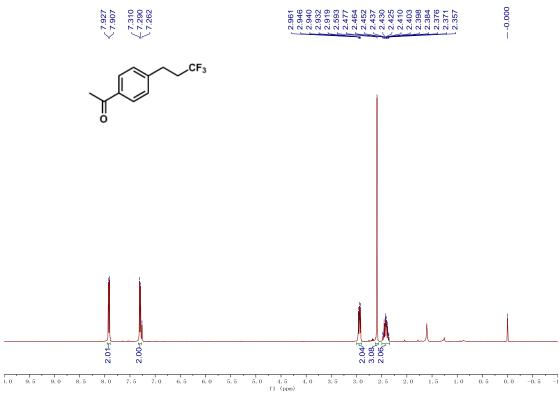


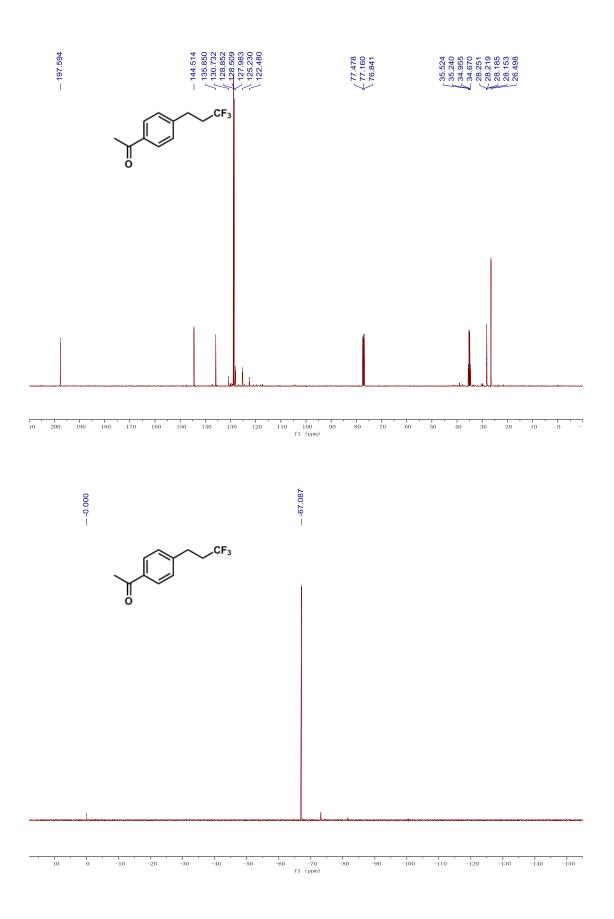


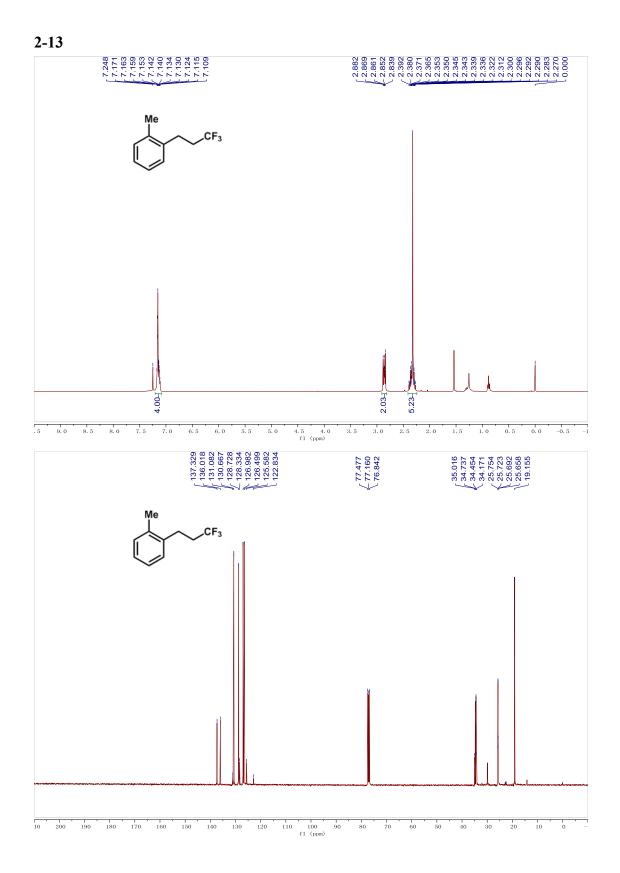


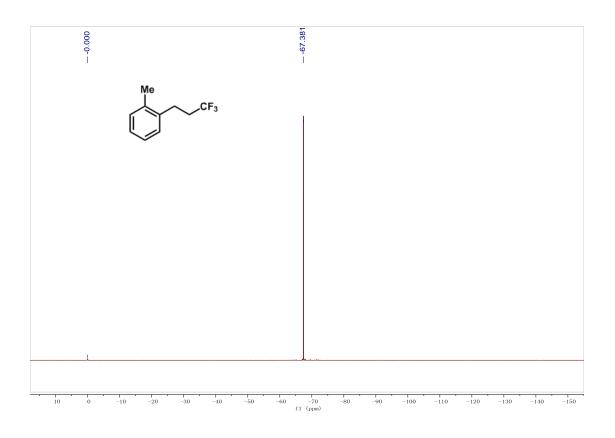

2-9

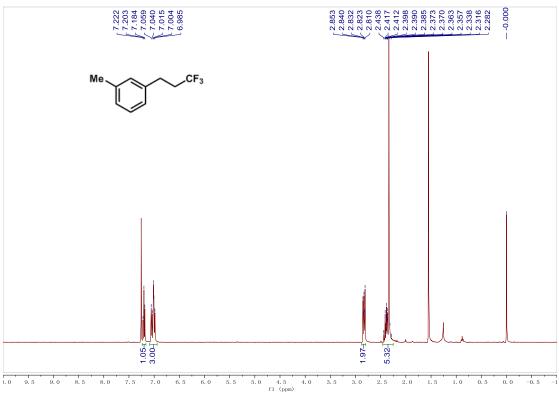


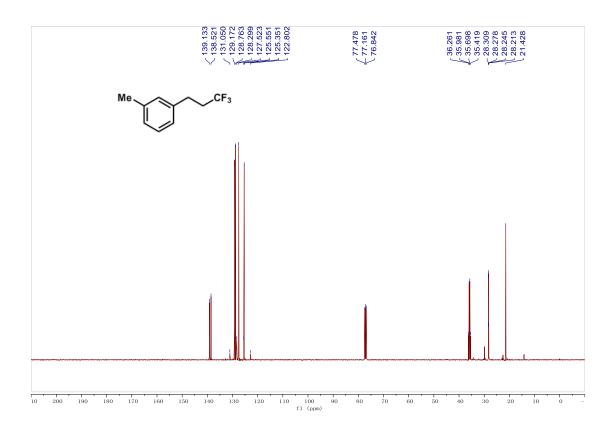


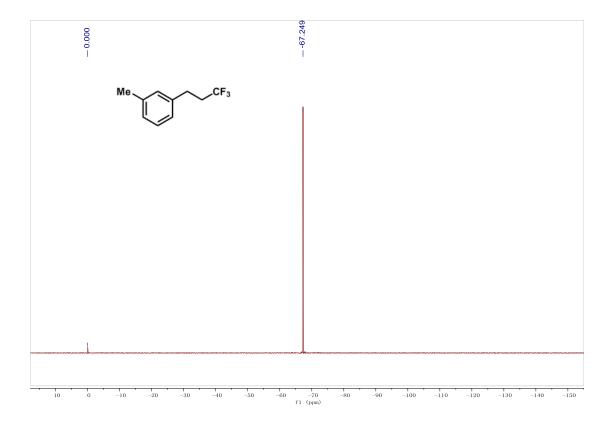


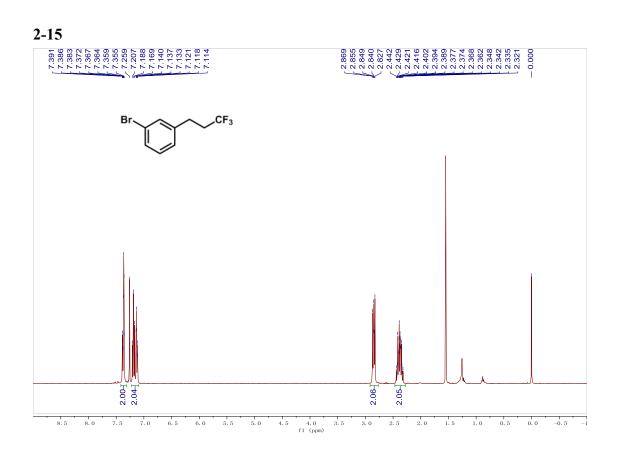

2-11

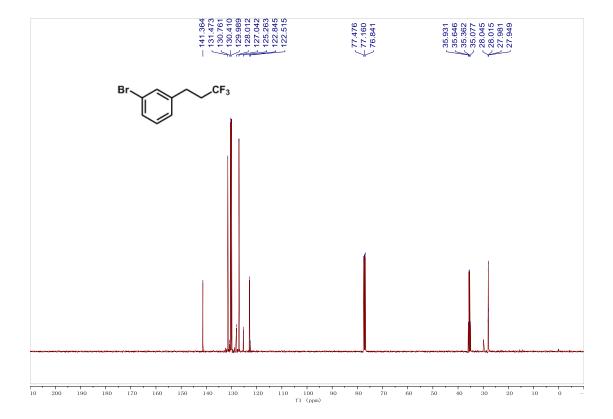


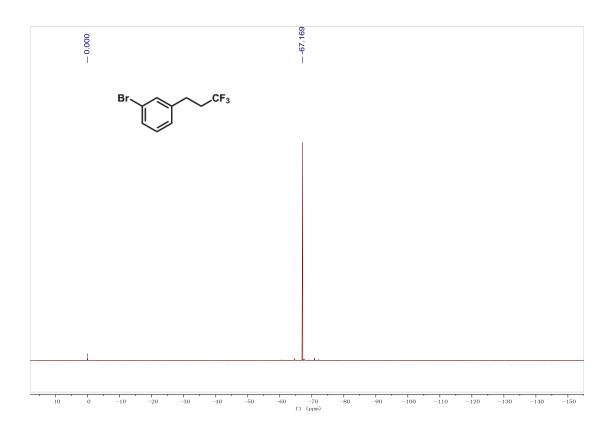


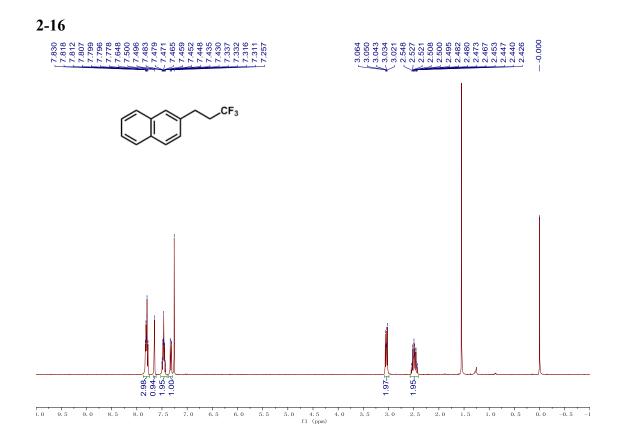


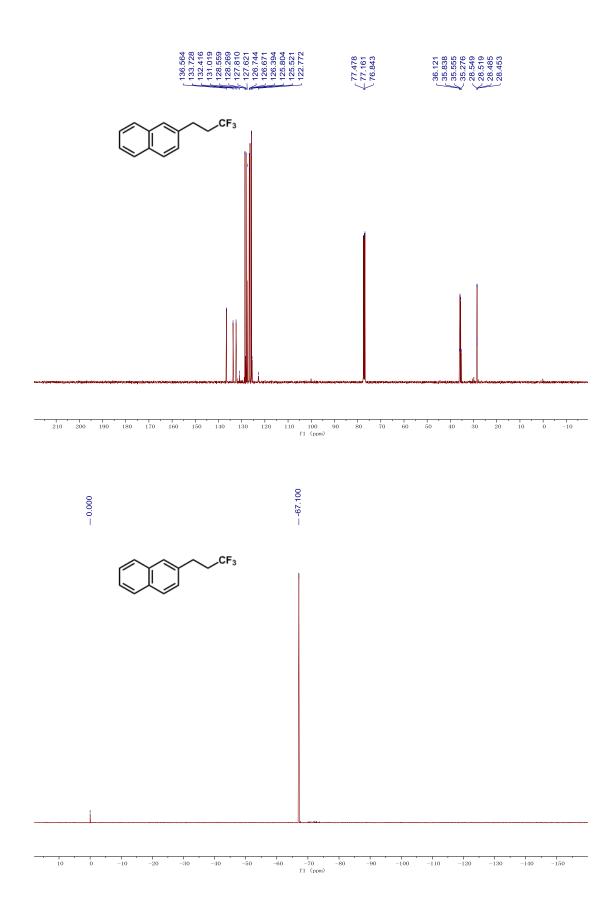


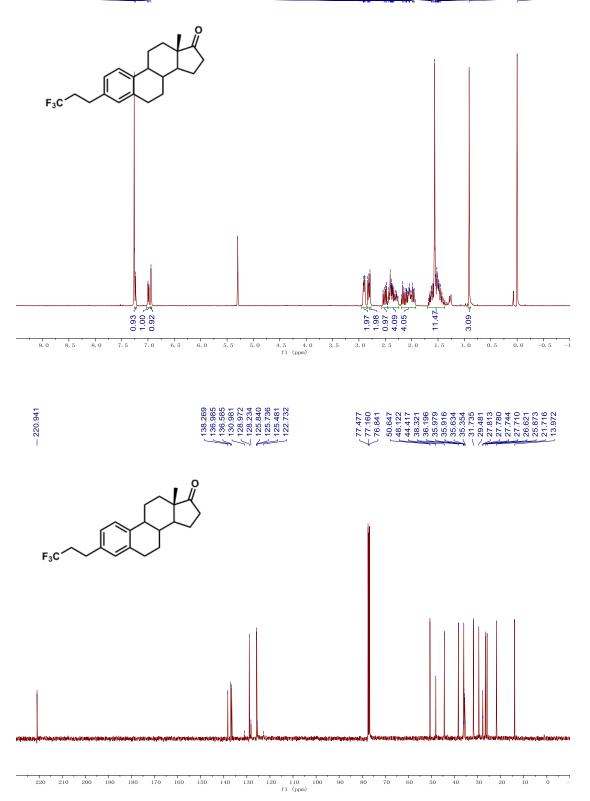


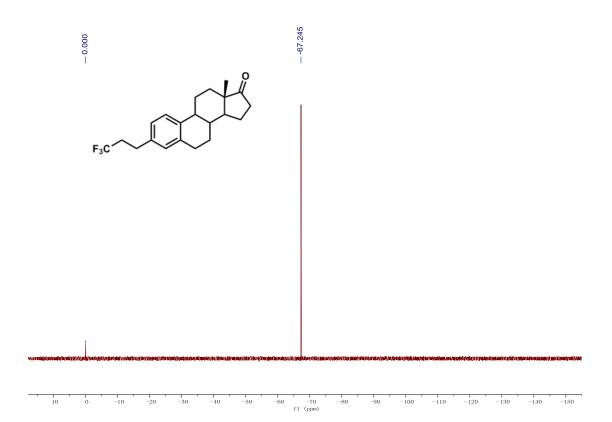


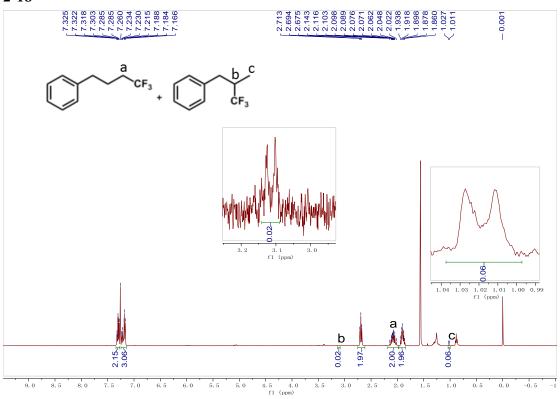


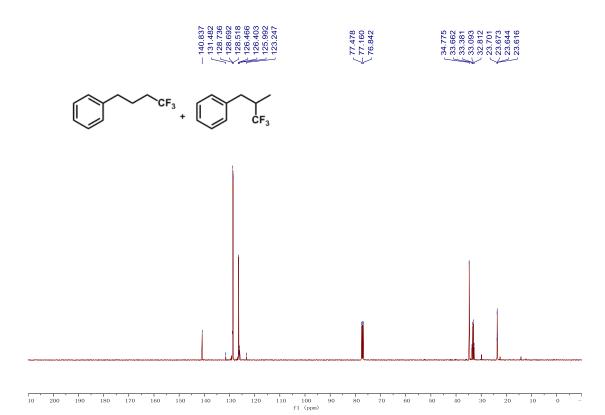


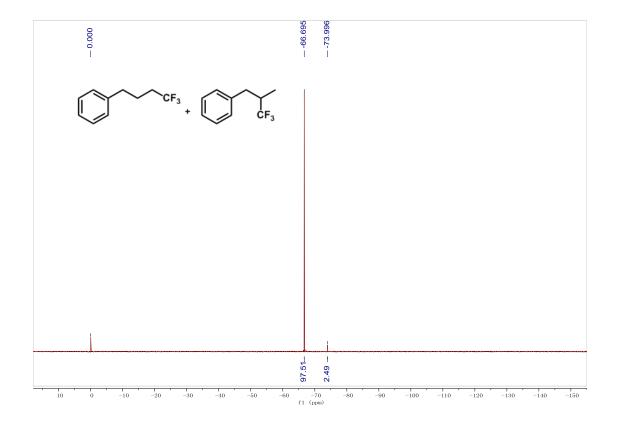


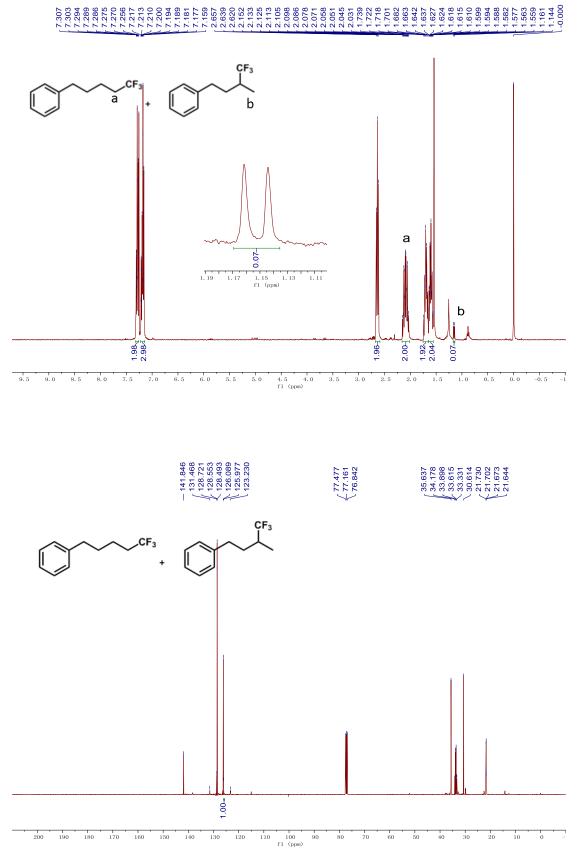


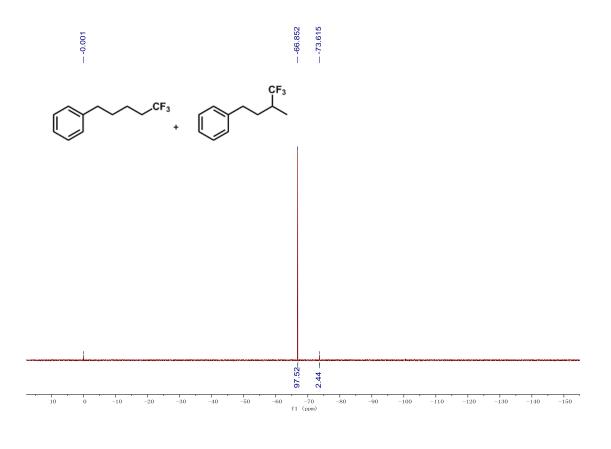


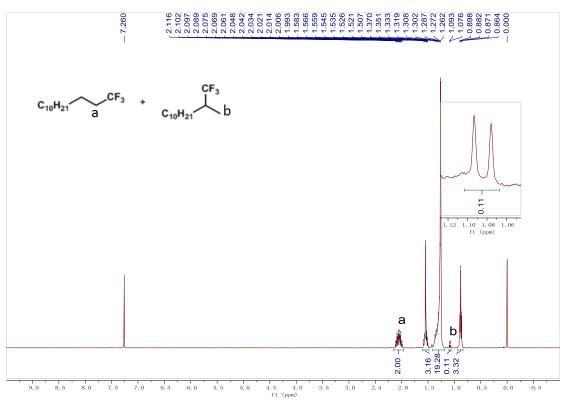


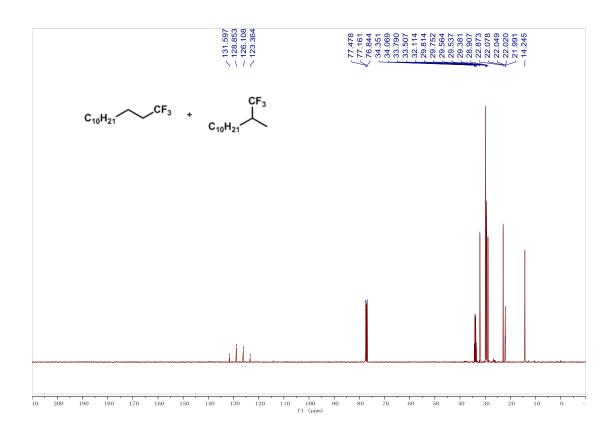


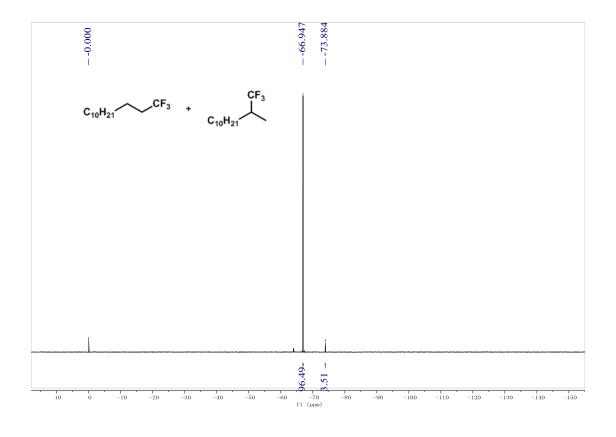


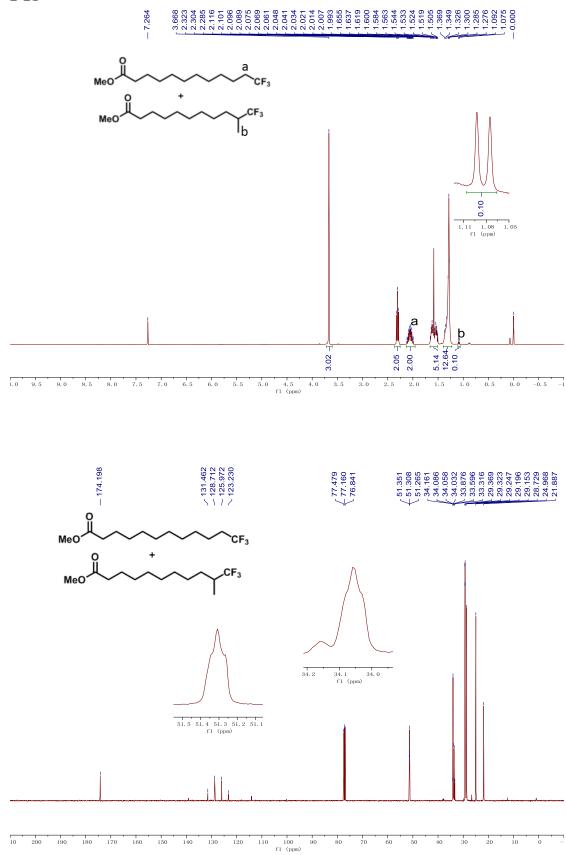


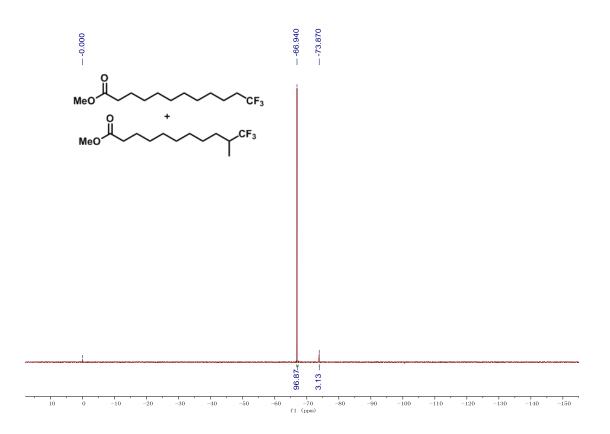


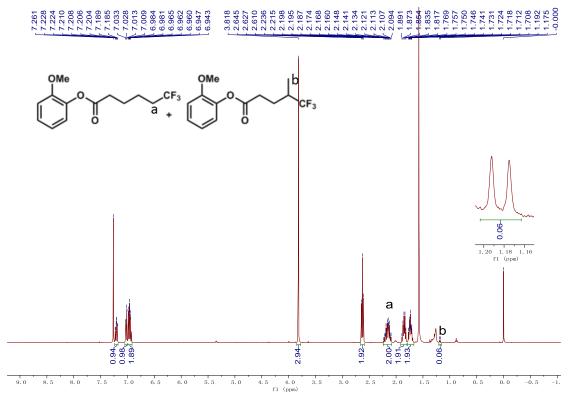


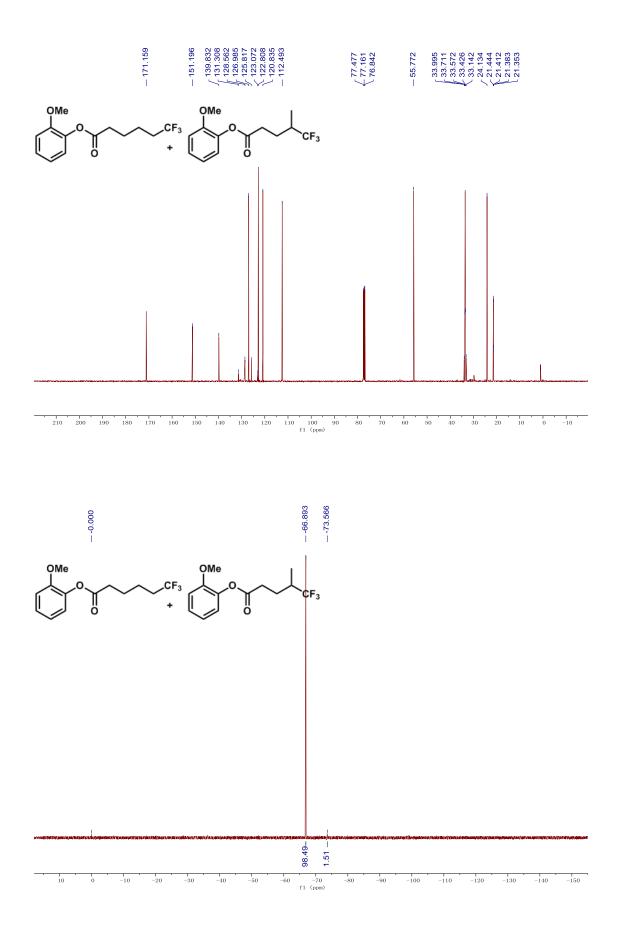


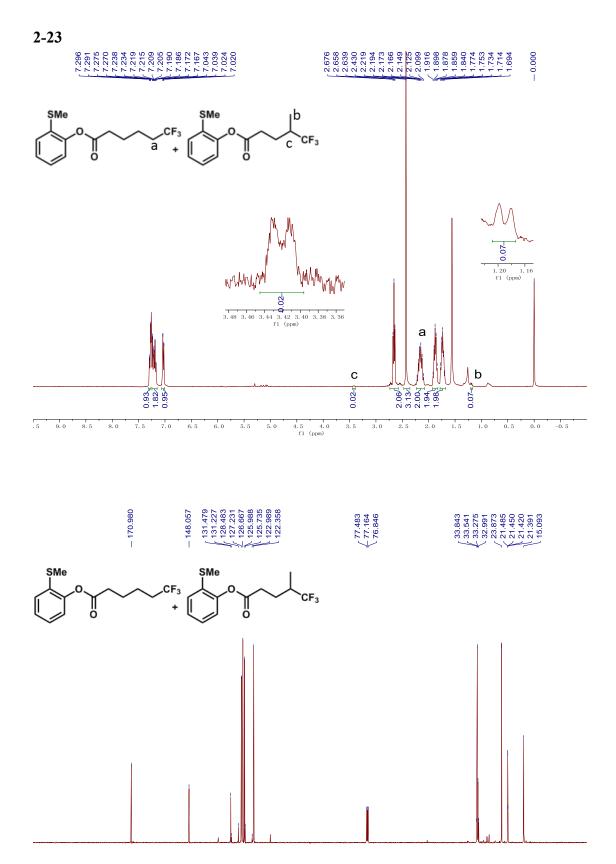


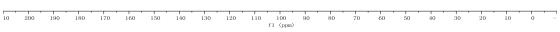


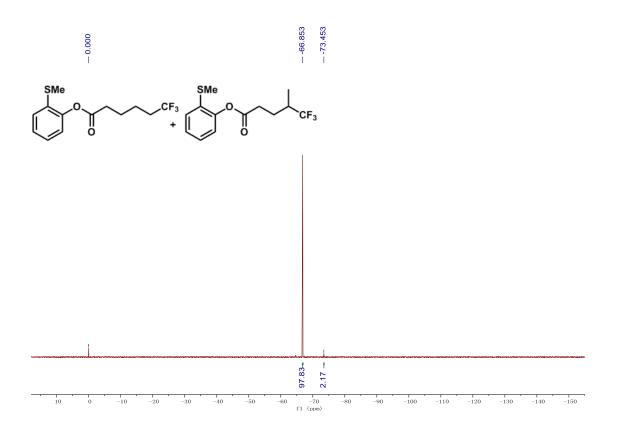


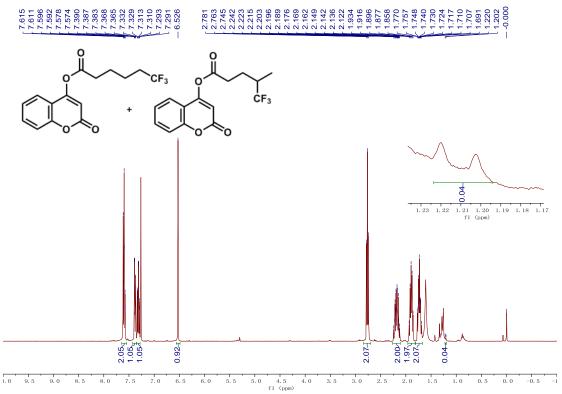


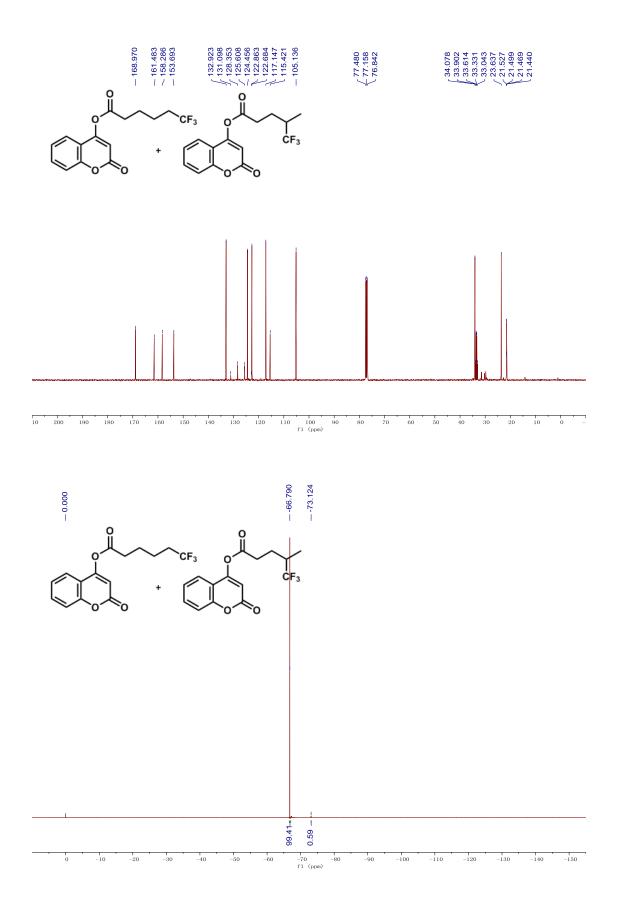


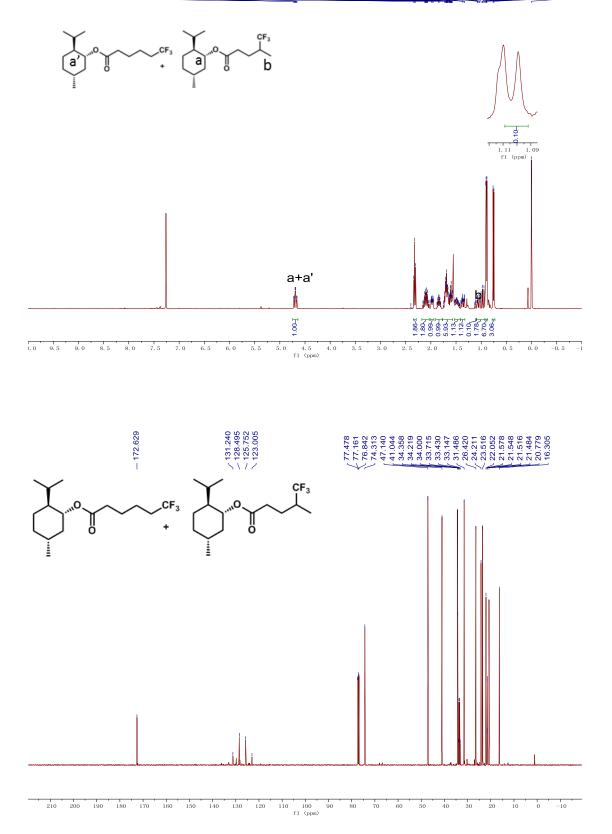


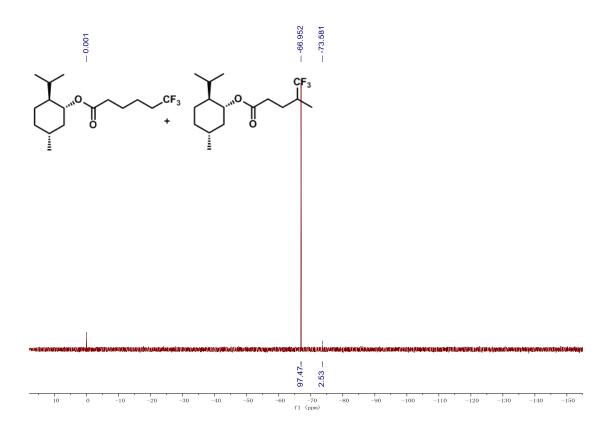


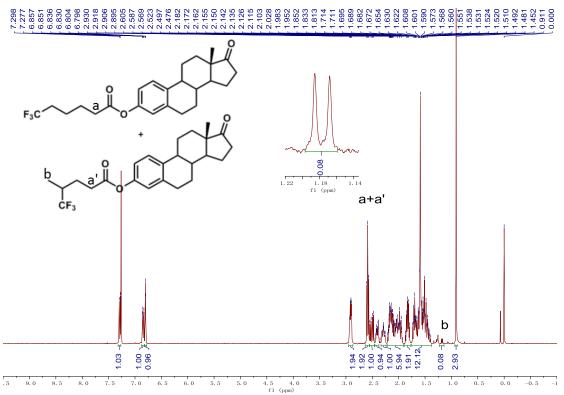


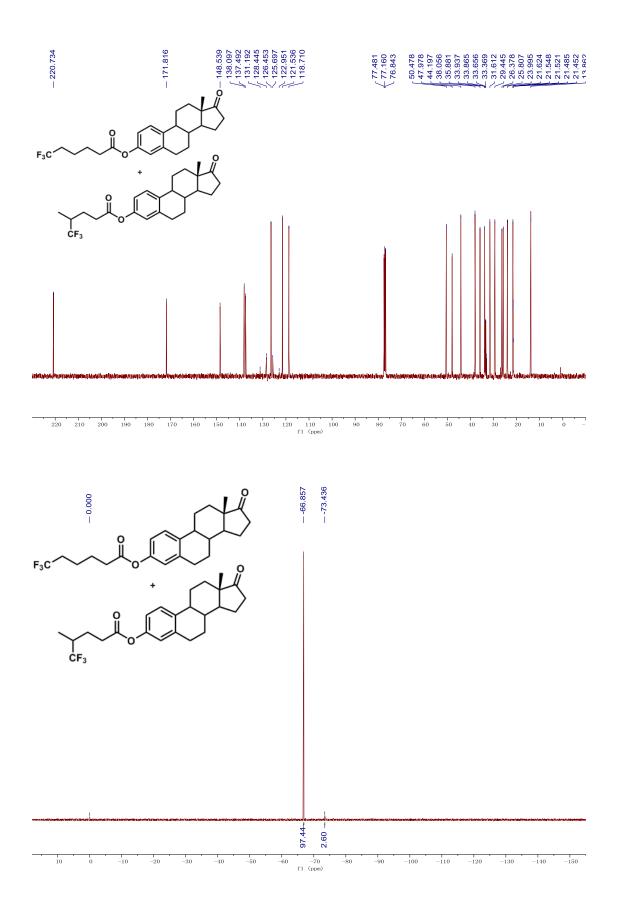


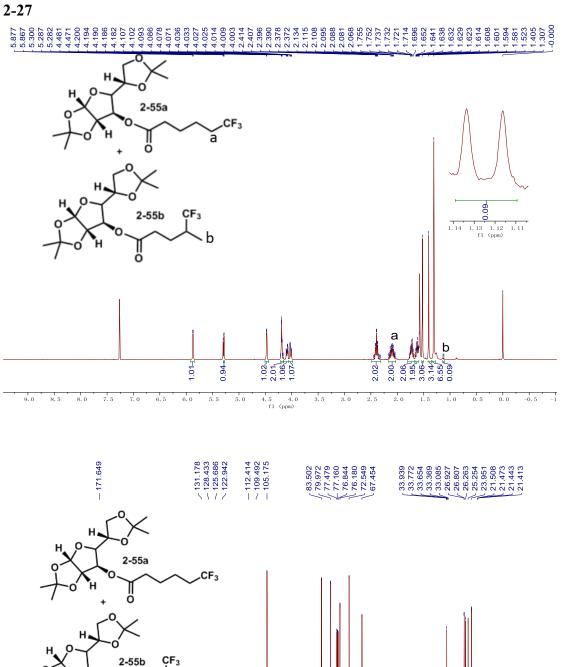








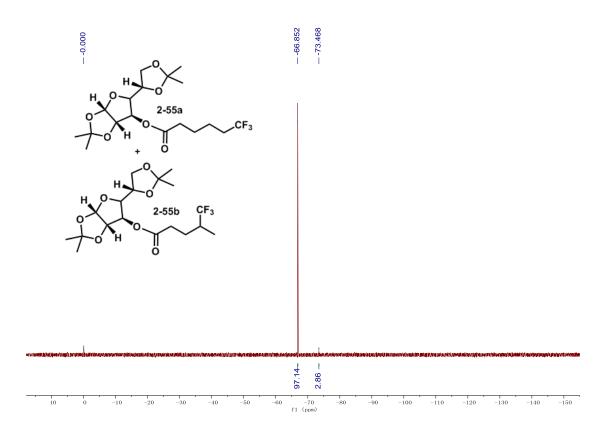




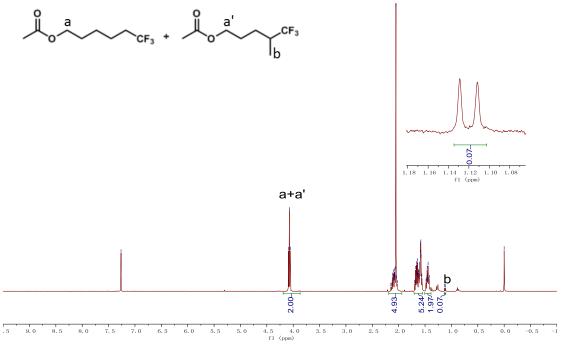
110 100 f1 (ppm)

90 80 70

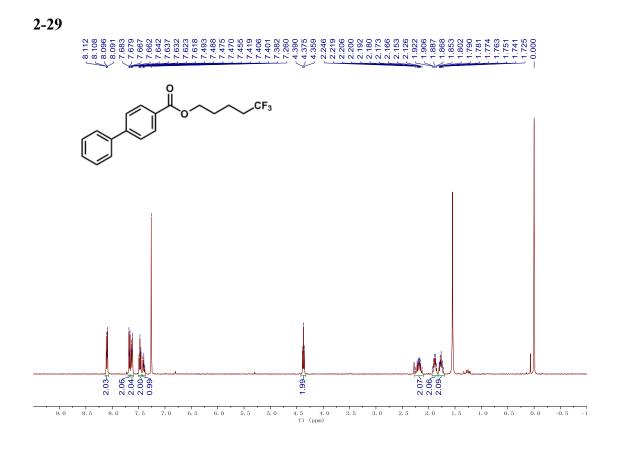
60 50 40

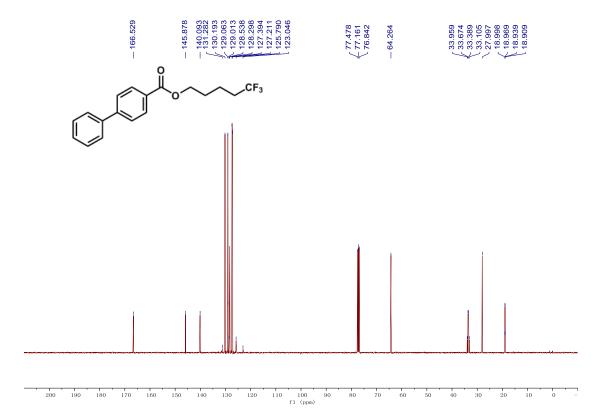

30 20

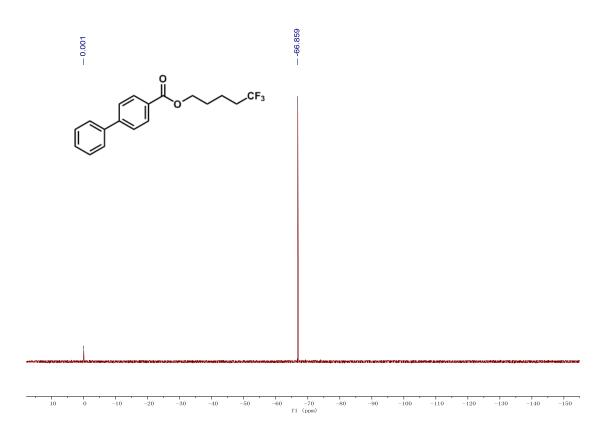
10 0 -

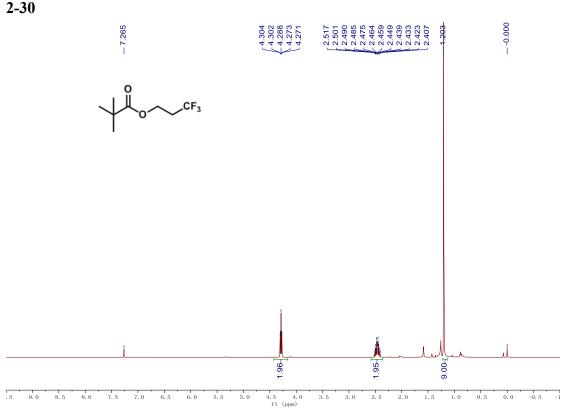

0

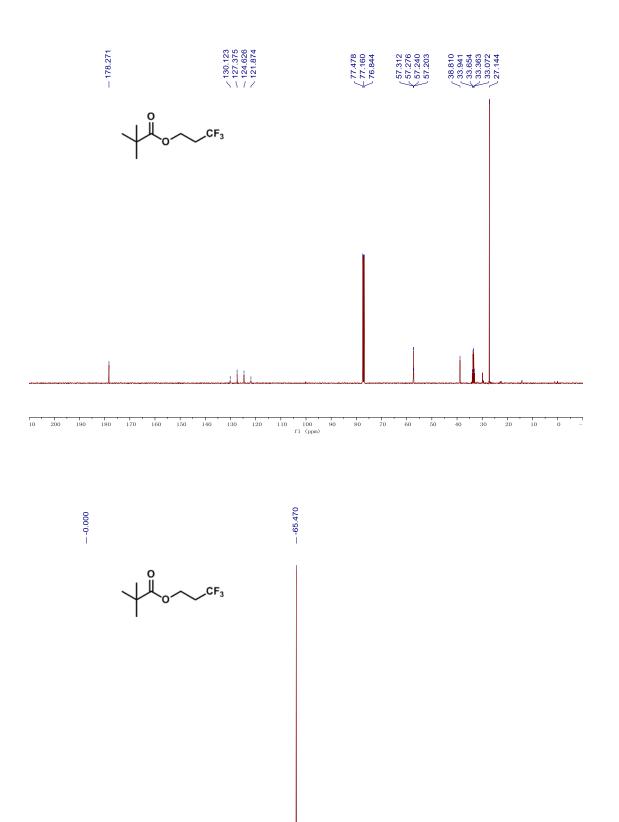
170 160 150 140 130 120

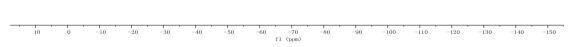

10 200 190 180

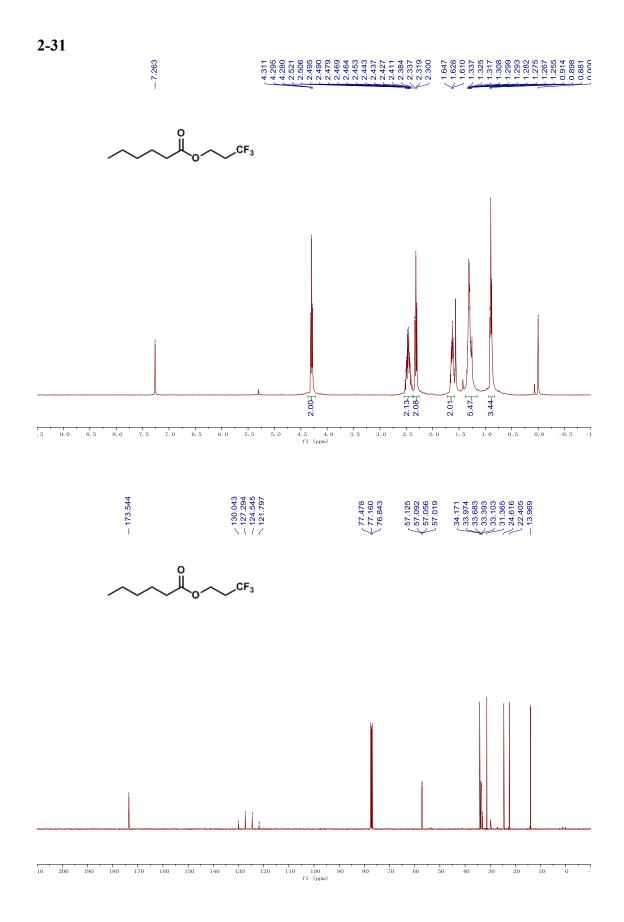


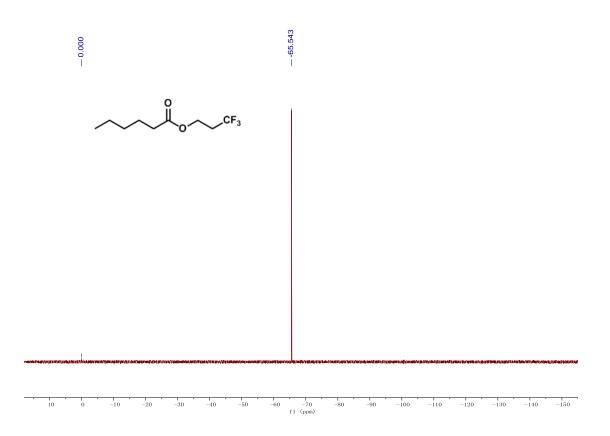

- 7.264 - 7.264 - 7.264 - 4.072 - 4.072 - 4.072 - 2.107 - 2.107 - 2.108 - 2.108 - 2.108 - 2.108 - 2.108 - 2.108 - 2.005 - 2.006 - 2.108 - 2.005 - 2.006 - 2.108 - 2.005 - 2.006 - 2.108 - 1.658 - 1.1687 -

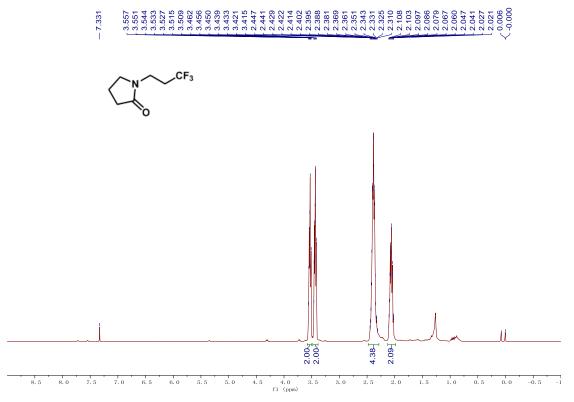


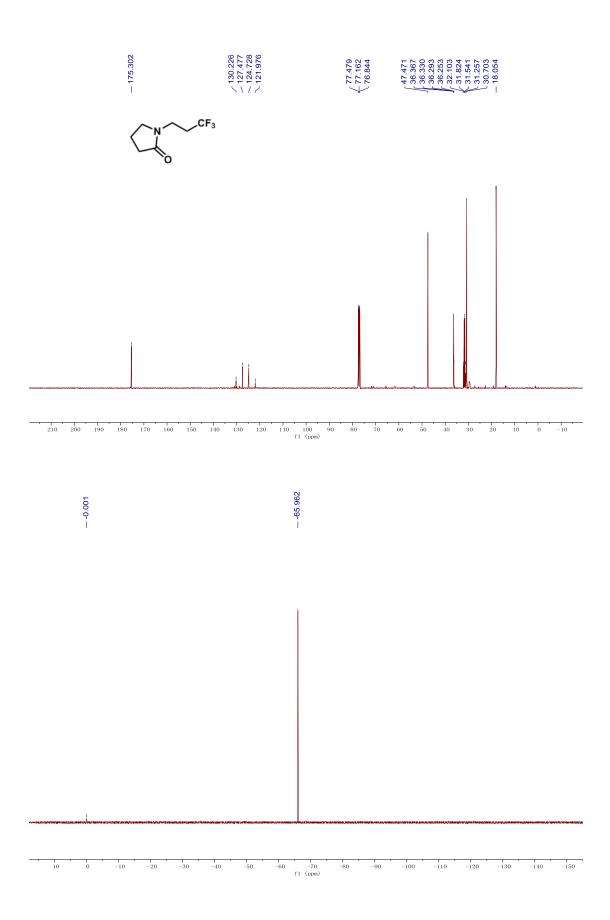


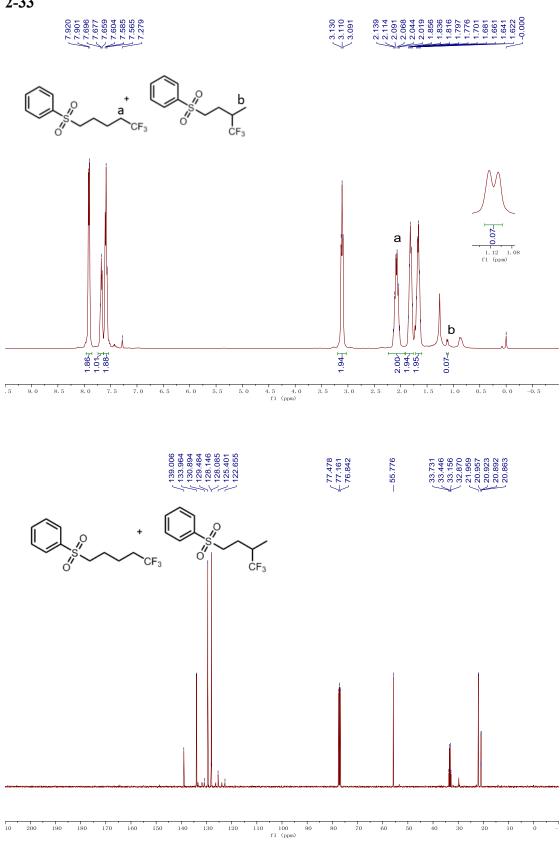


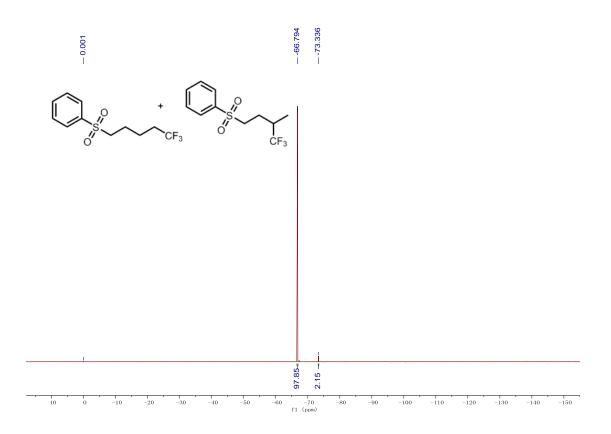


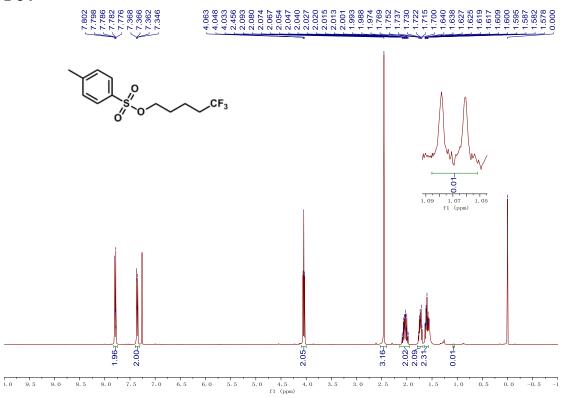

2-30

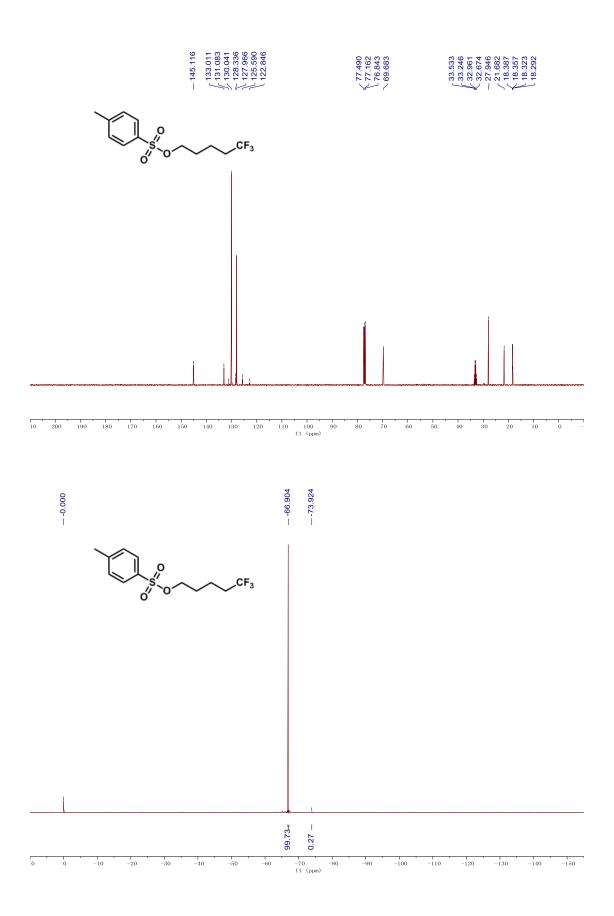


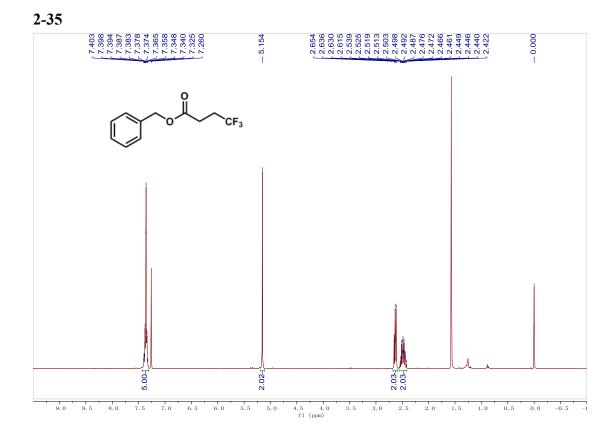


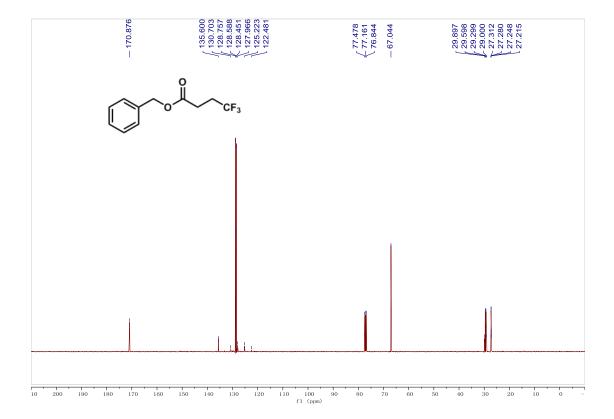


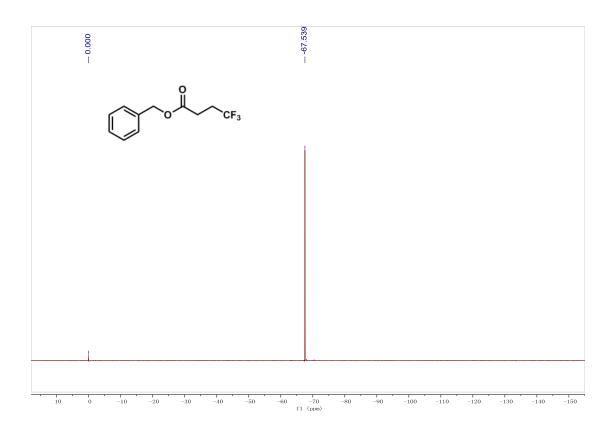


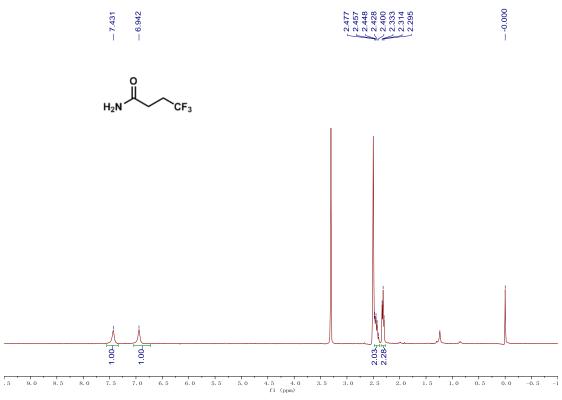


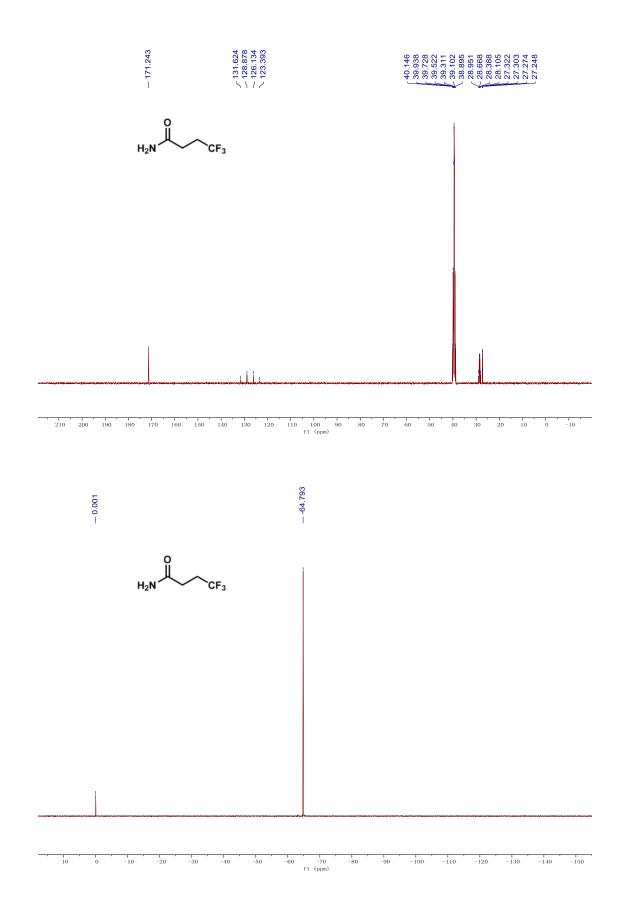


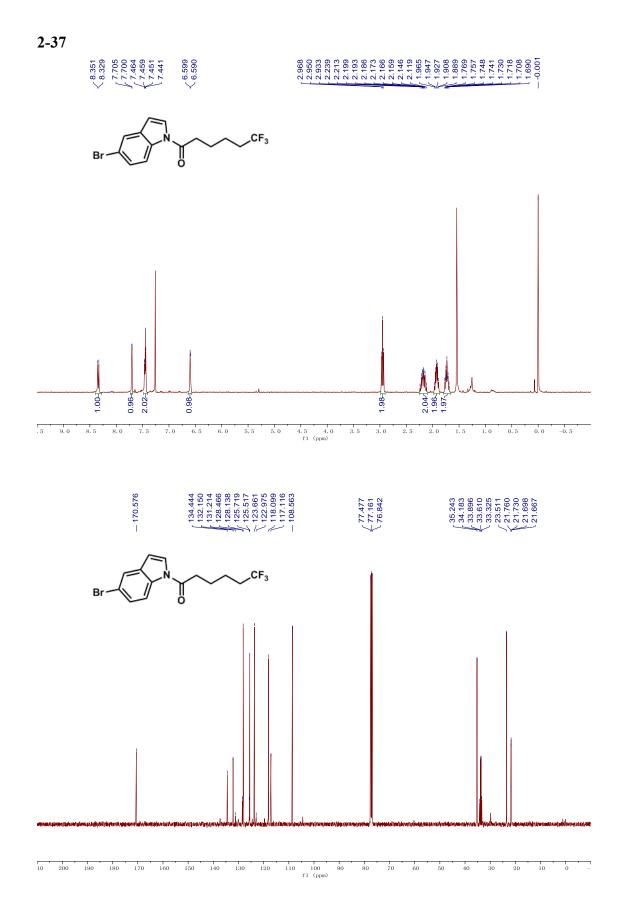


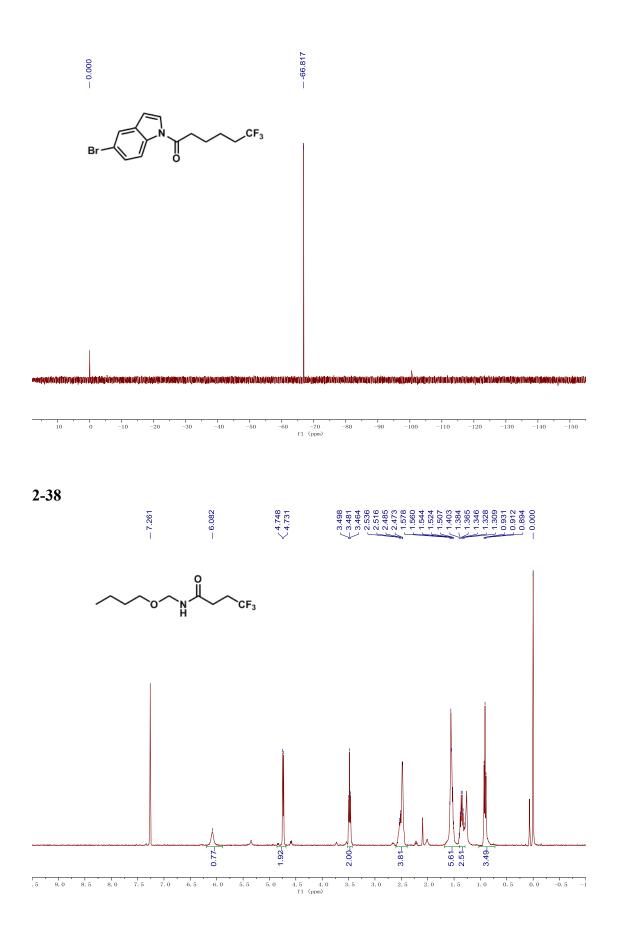


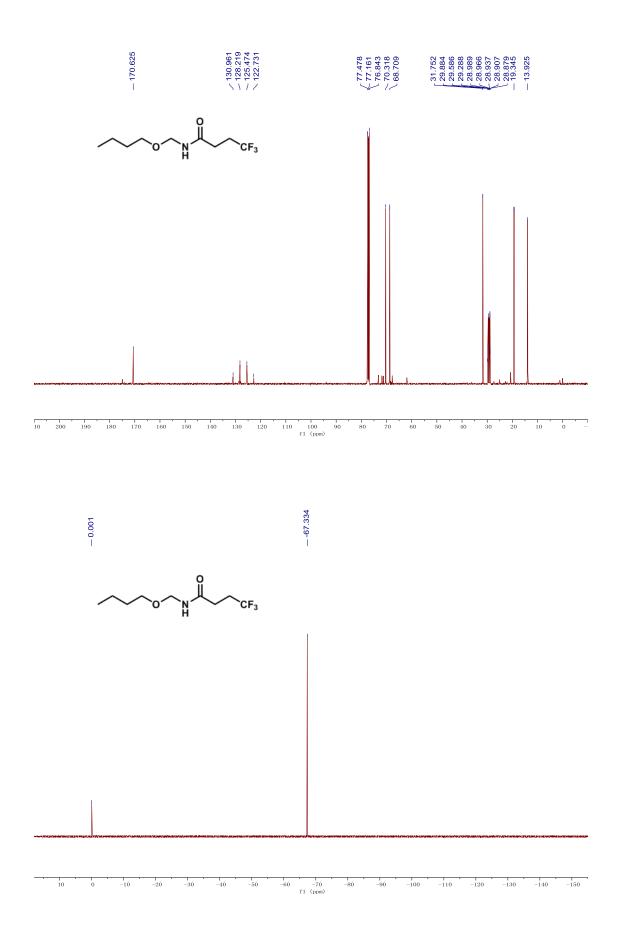


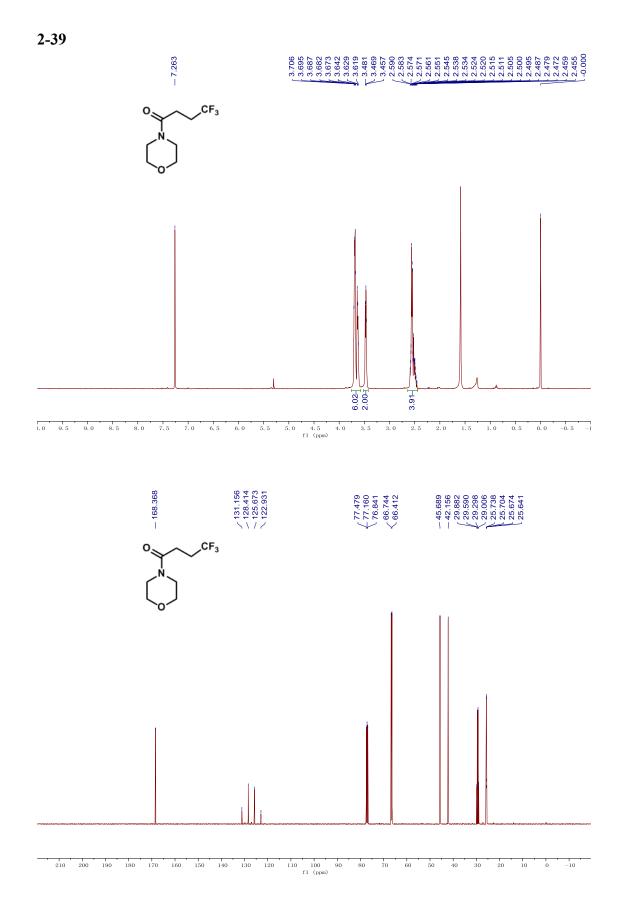


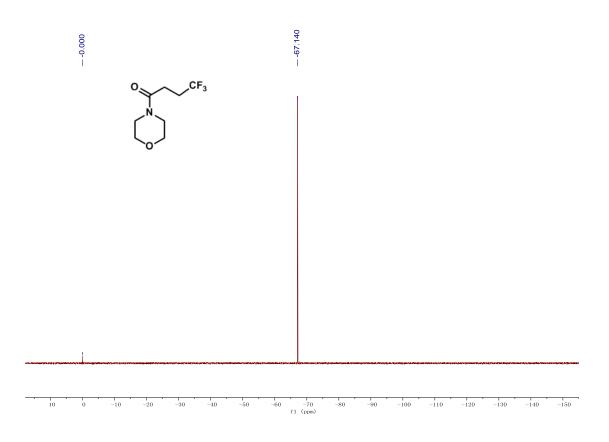


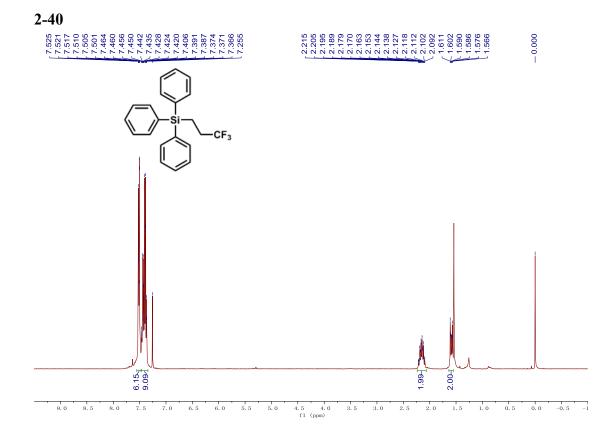


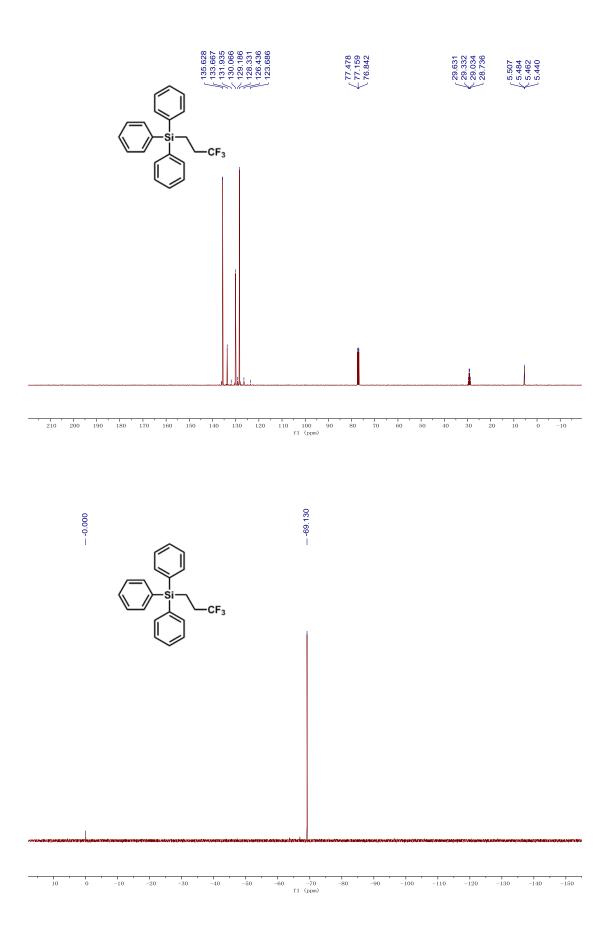


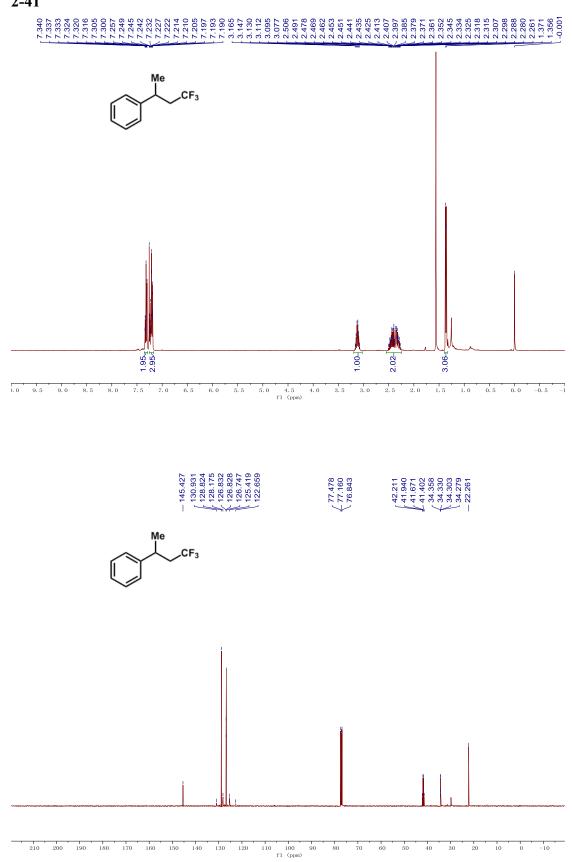


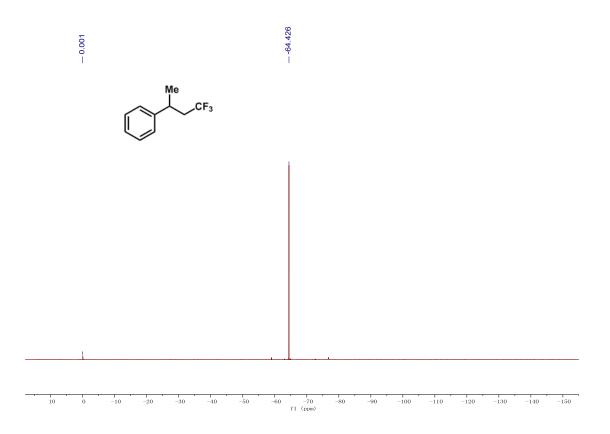


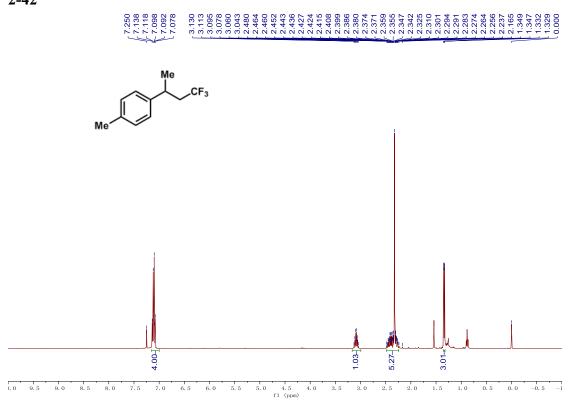


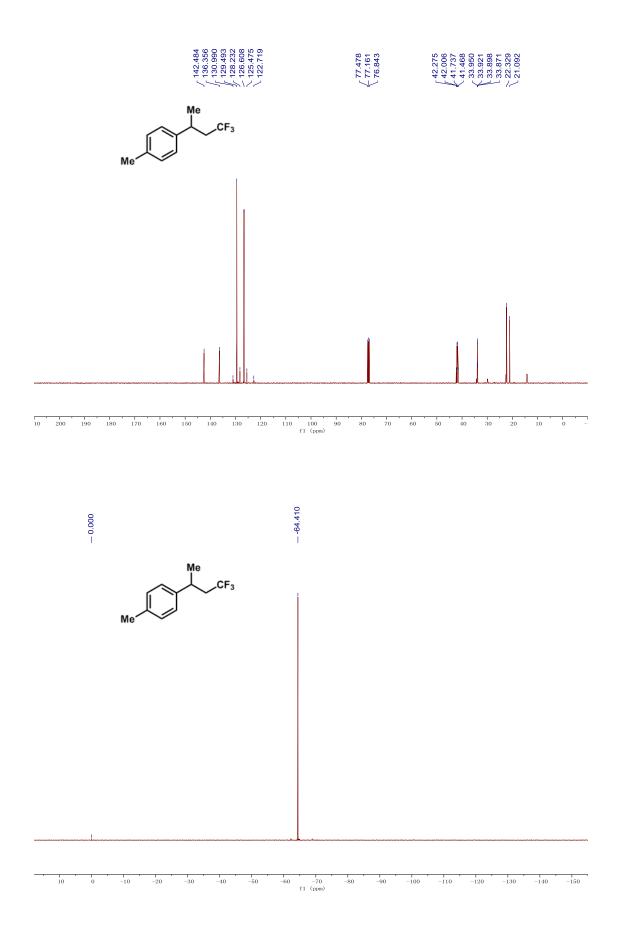


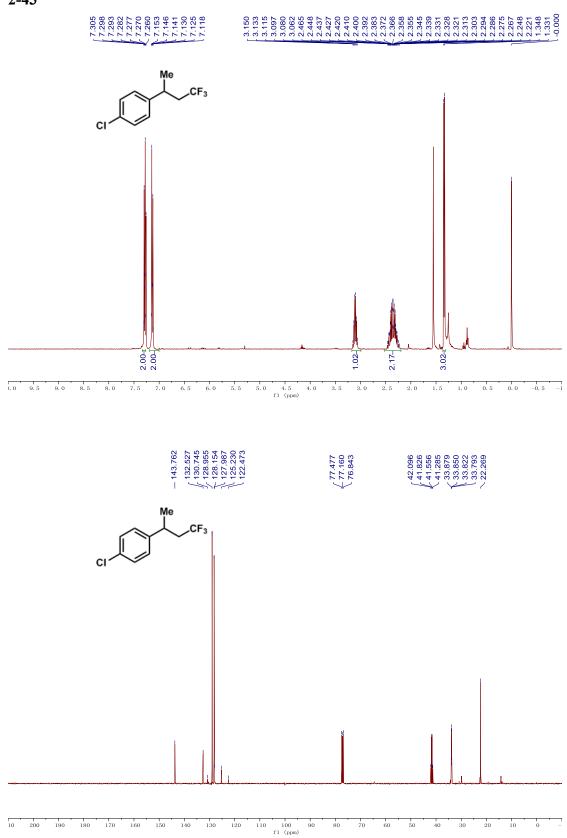


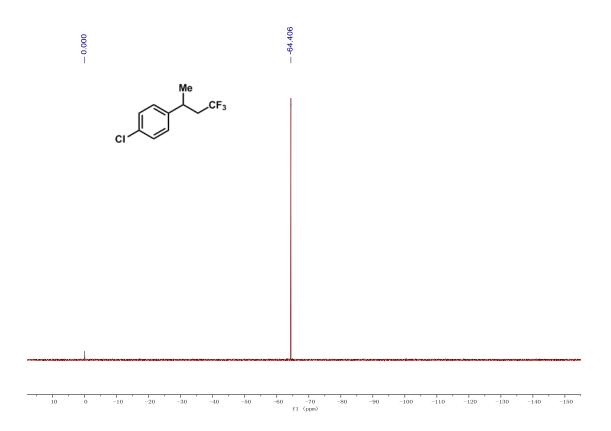












2-44

 7.159

 7.1139

 7.1157

 7.1157

 7.1157

 7.1157

 7.1157

 7.1157

 7.1157

 7.1157

 7.1157

 7.1157

 7.1157

 7.1157

 7.1157

 7.1157

 7.1157

 7.1157

 7.1156

 7.1157

 7.1156

 7.1156

 7.1156

 7.1157

 7.1156

 7.1156

 7.1157

 7.1157

 7.1156

 7.1156

 7.1156

 7.1156

 7.1156

 7.1157

 7.1157

 7.1157

 7.1157

 7.1157

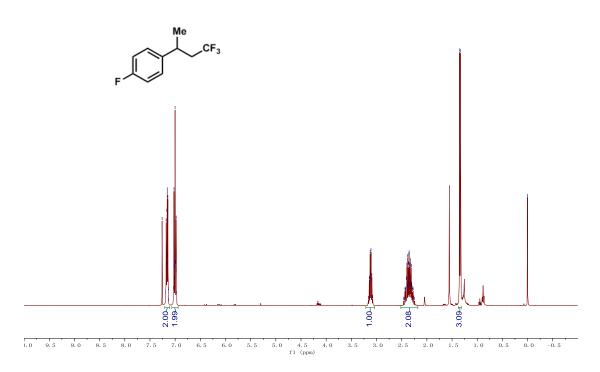
 7.1157

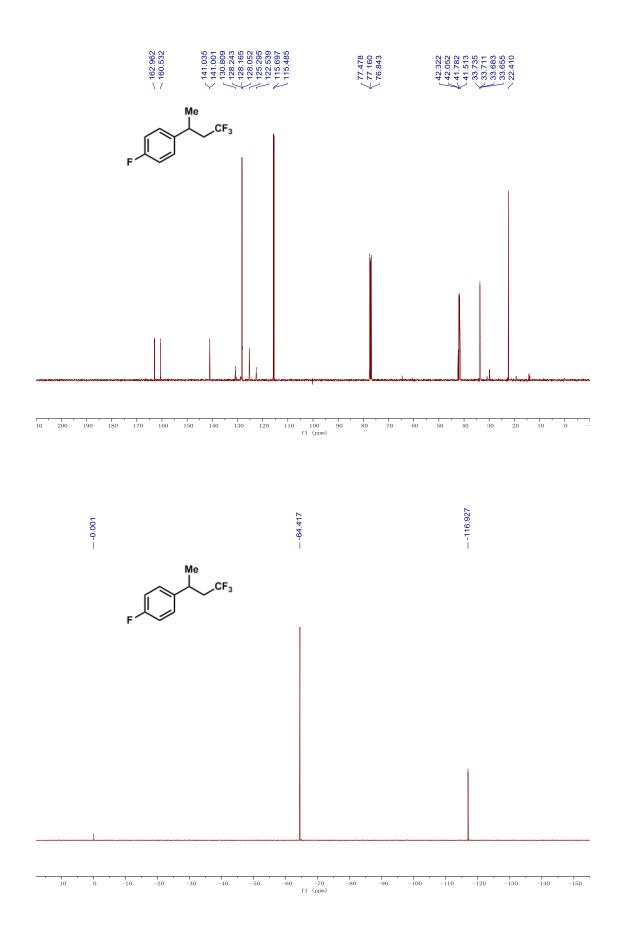
 7.1157

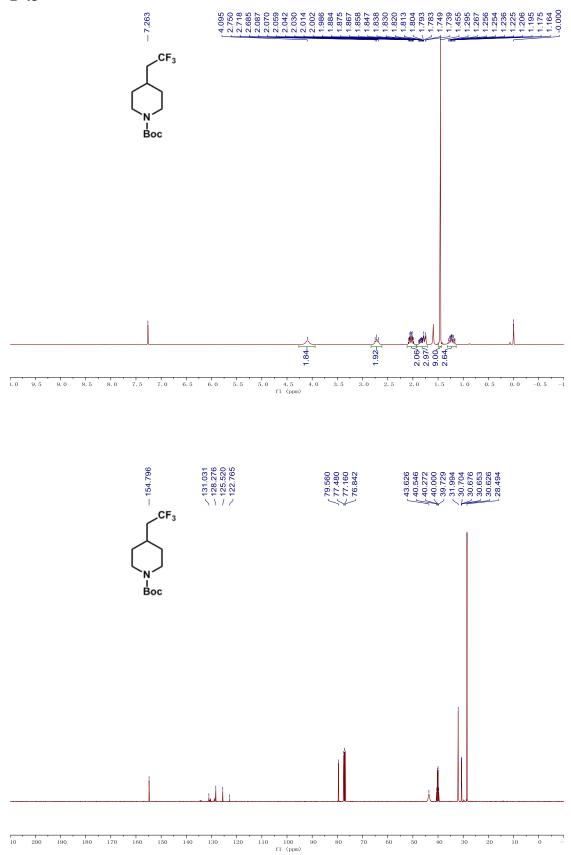
 7.1157

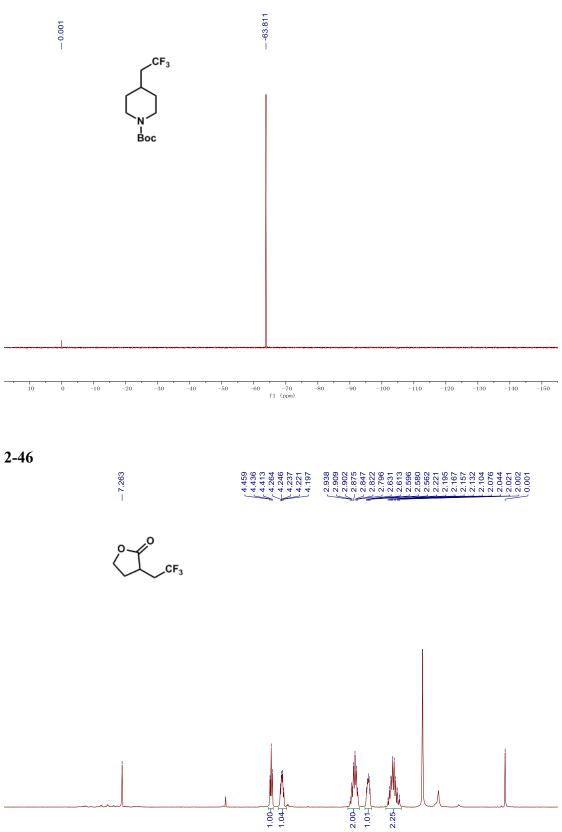
 7.1157

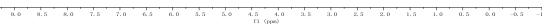
 7.1157

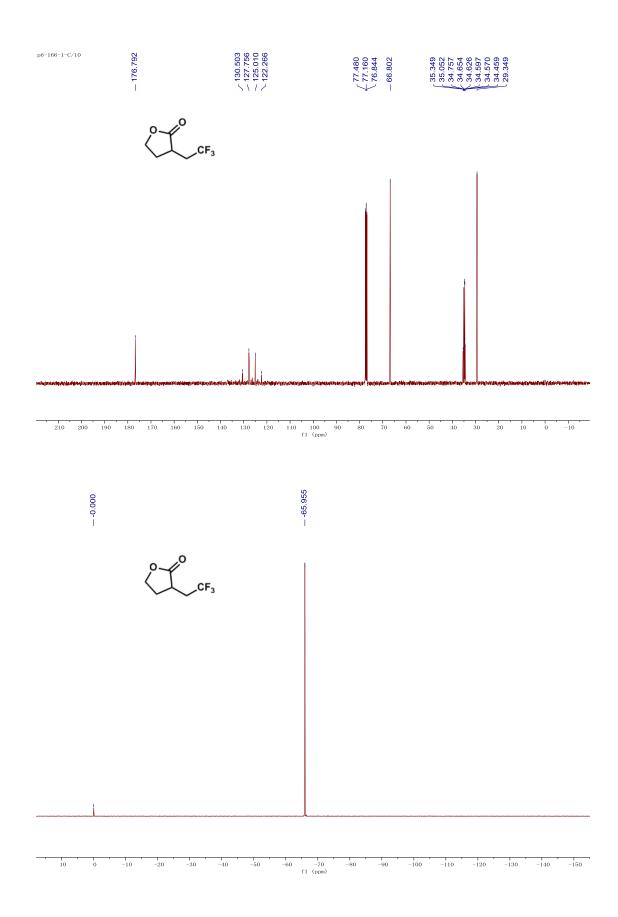

 7.1157

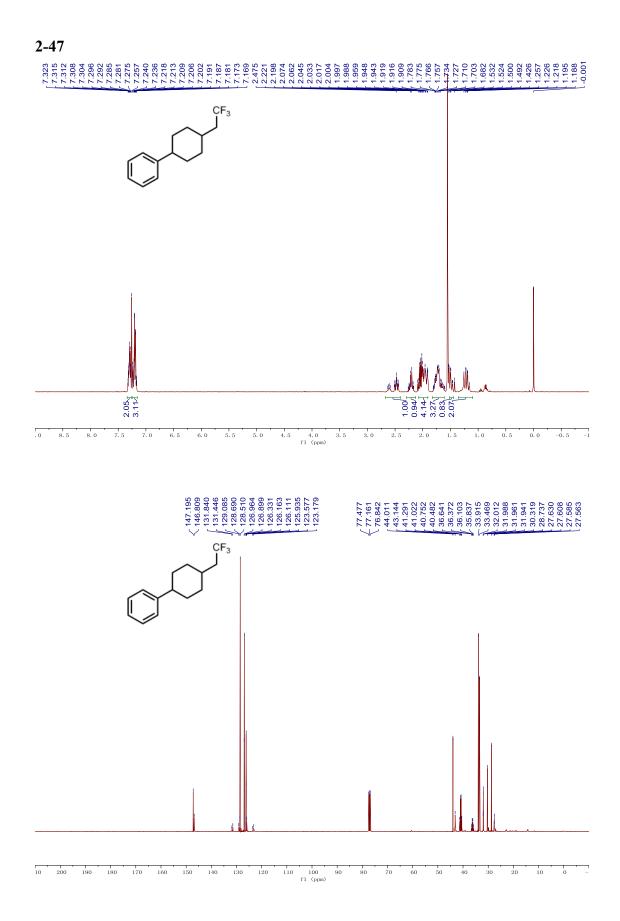

 7.1157

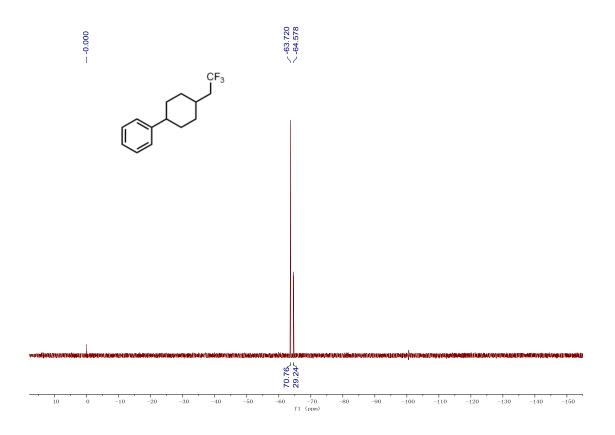

 7.1157

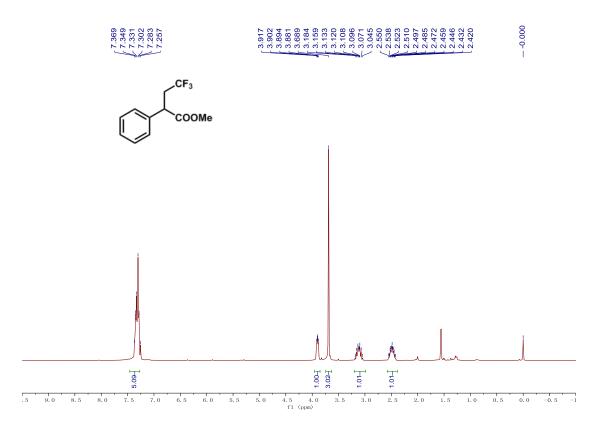

 7.1157

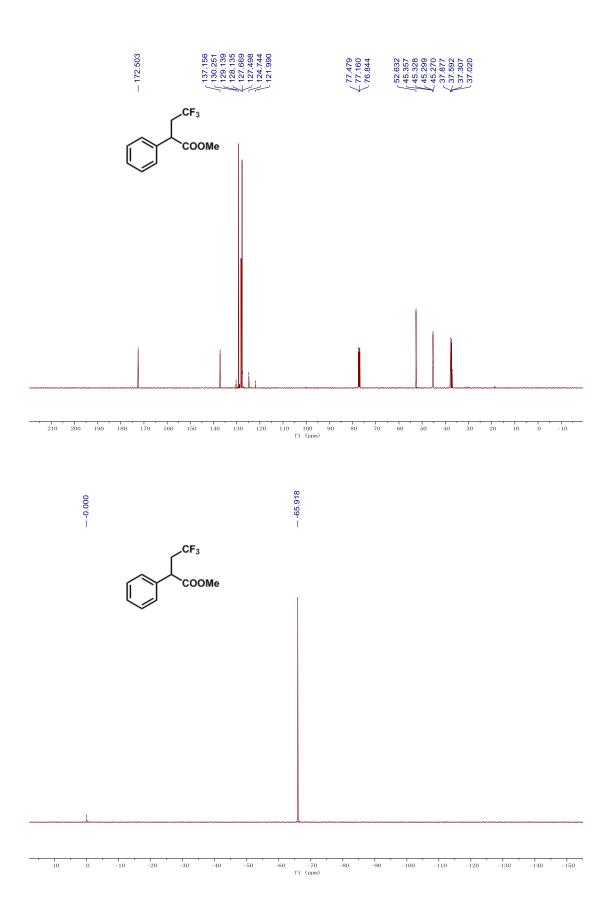

 7.1

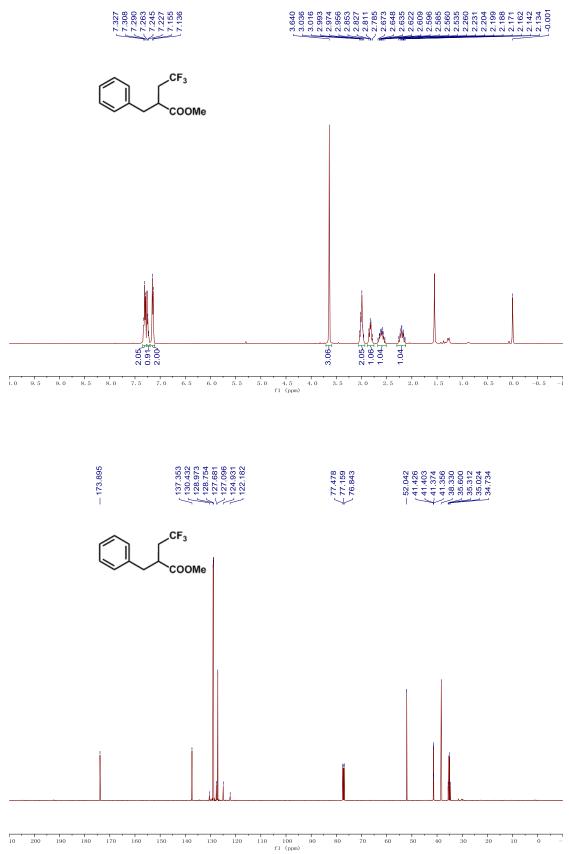


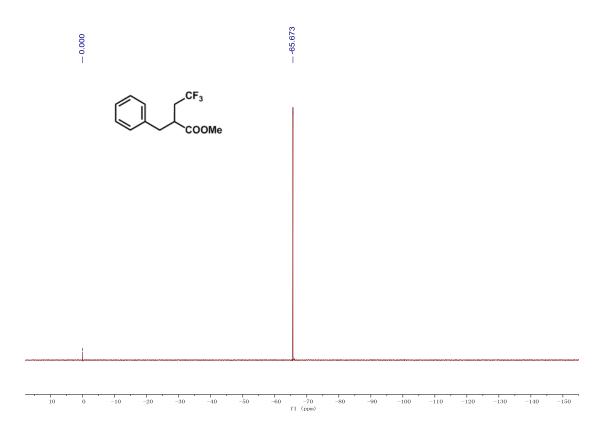


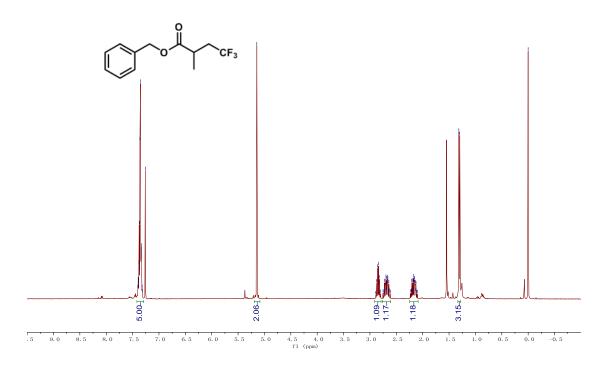


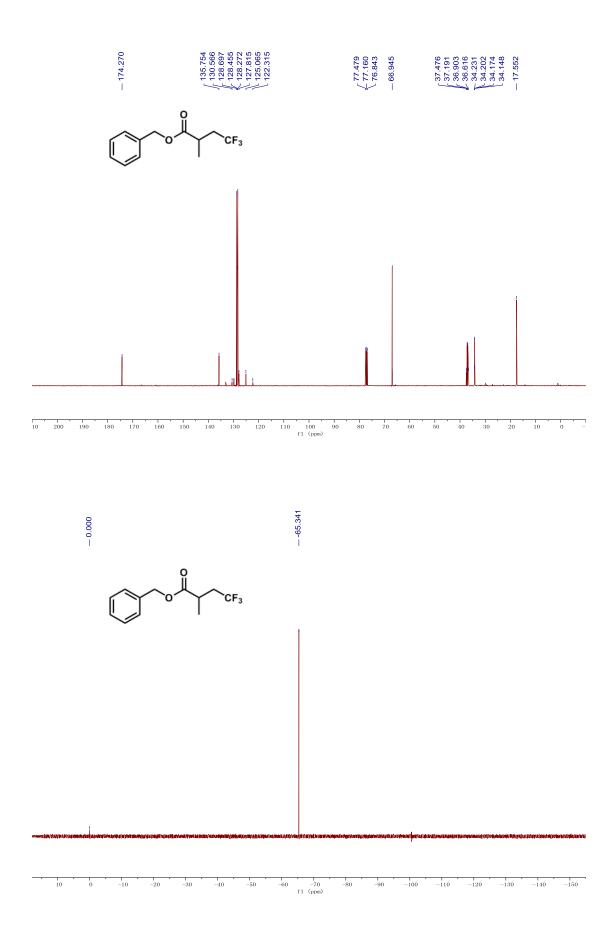


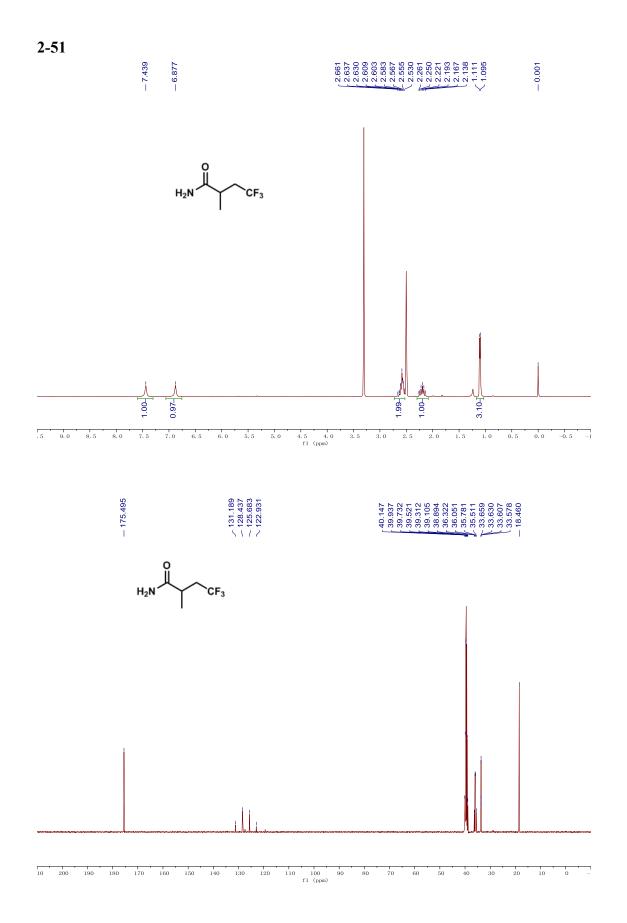


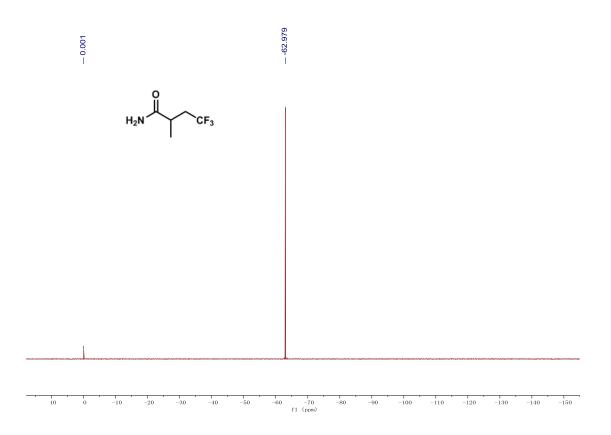


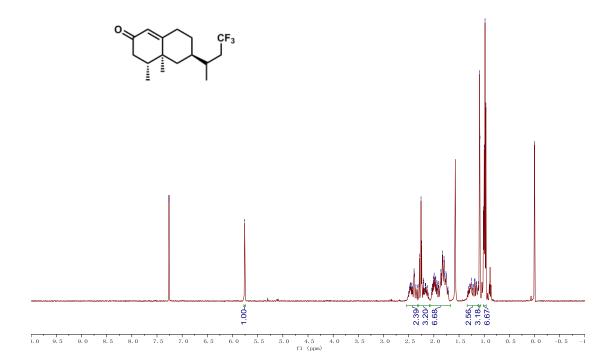


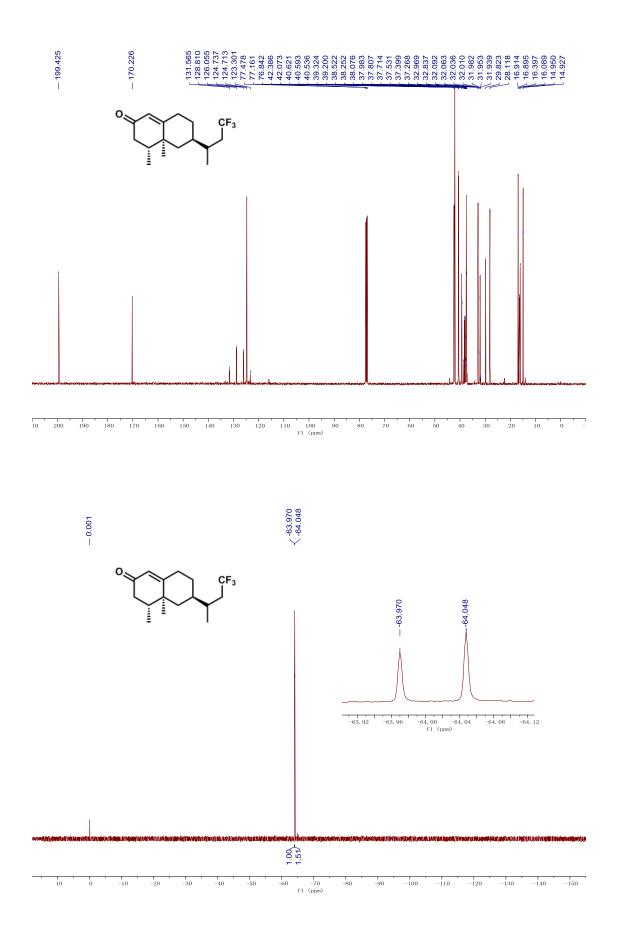


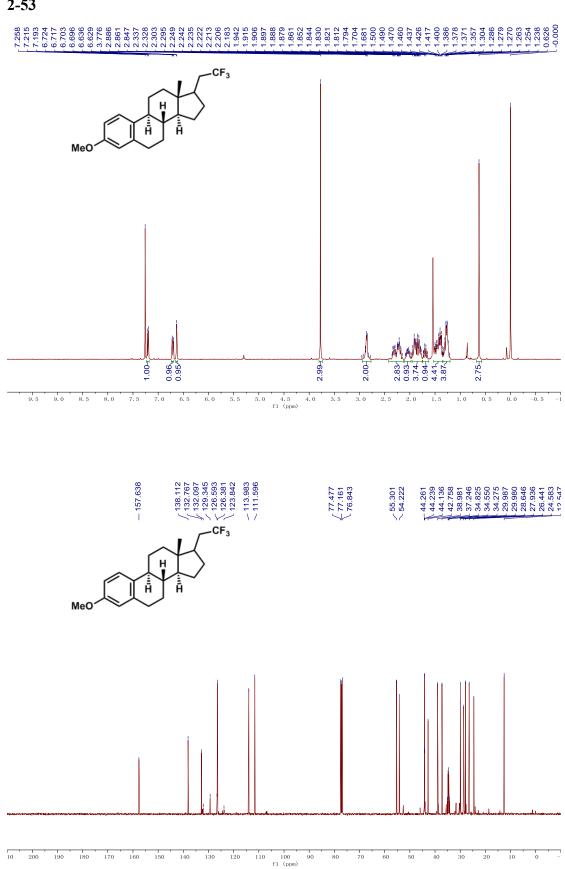


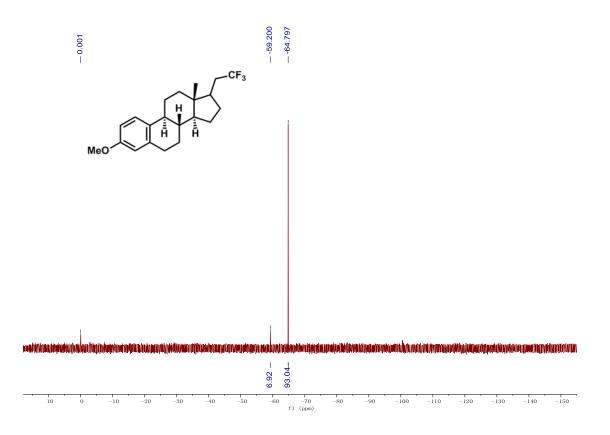


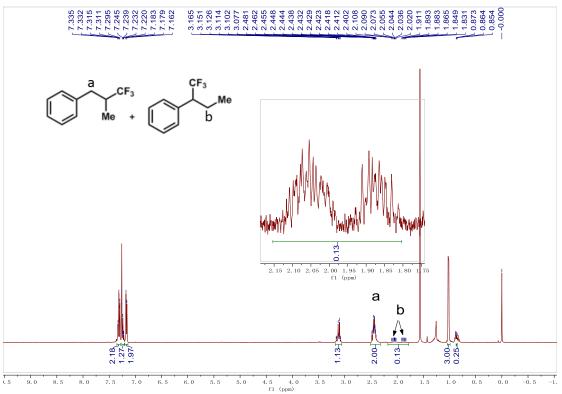


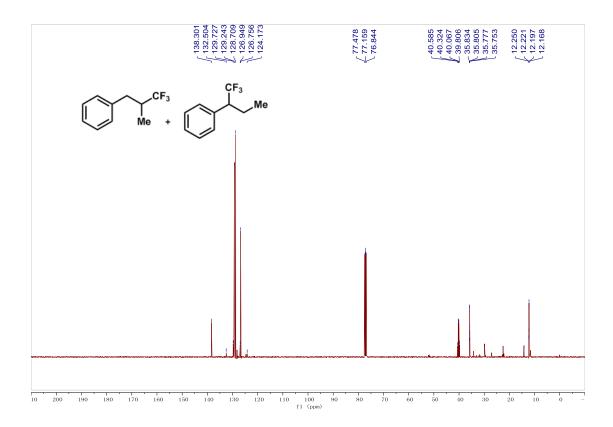


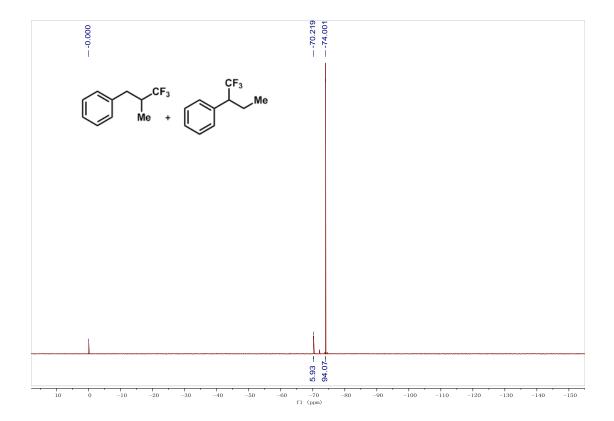


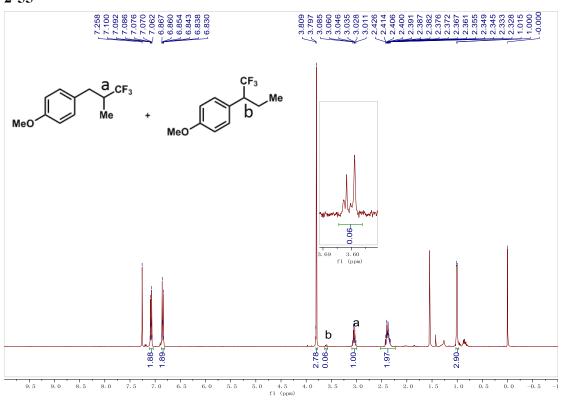


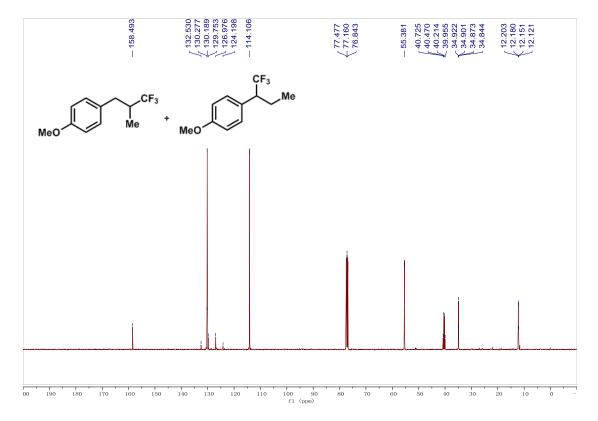


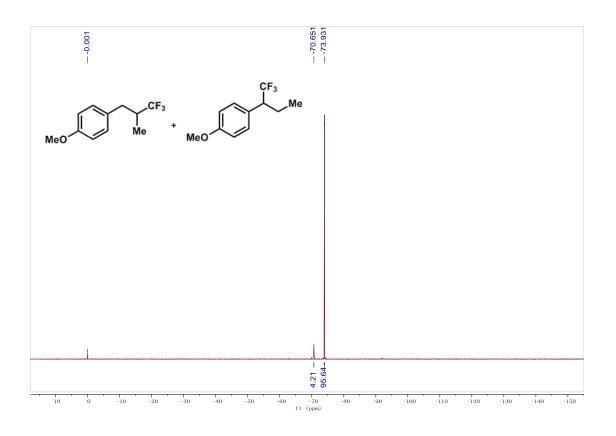


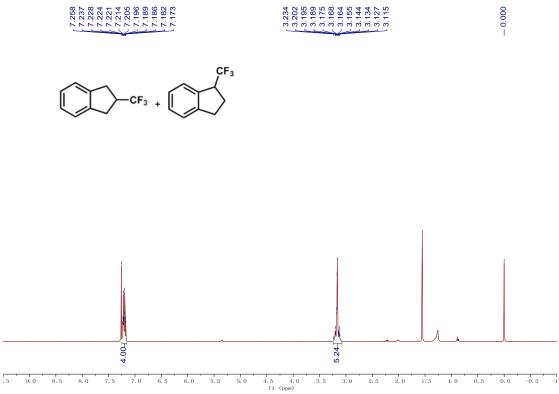


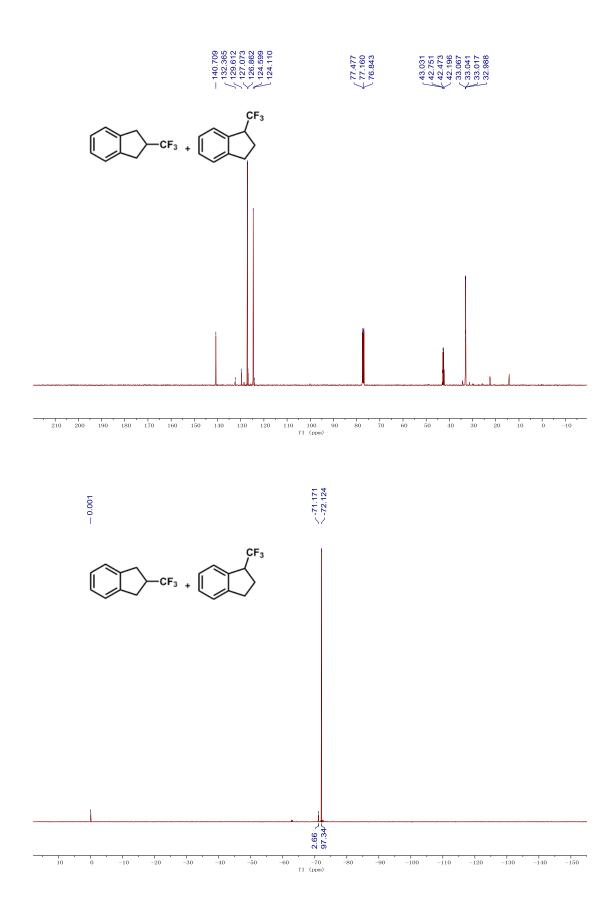

2-53

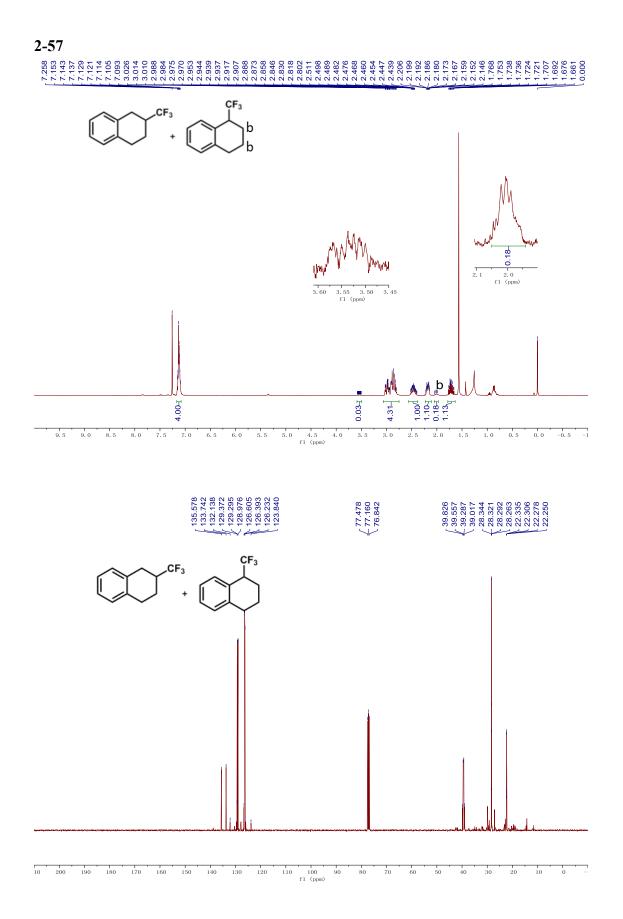


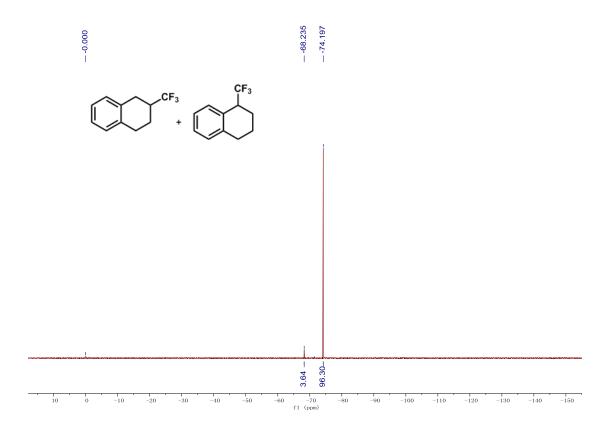


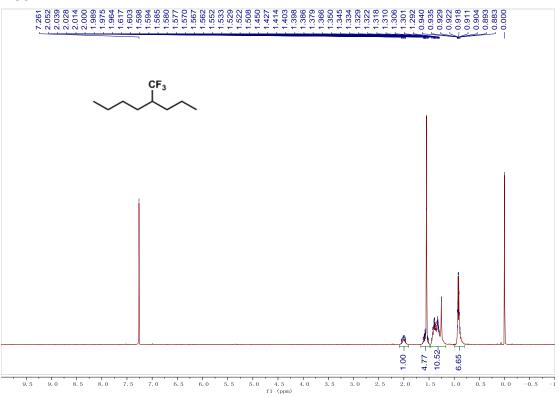


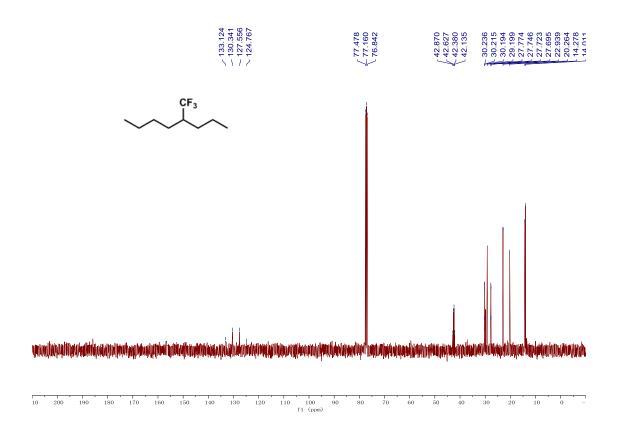


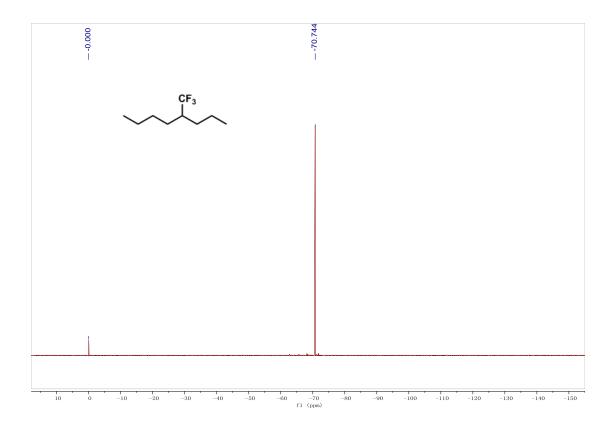


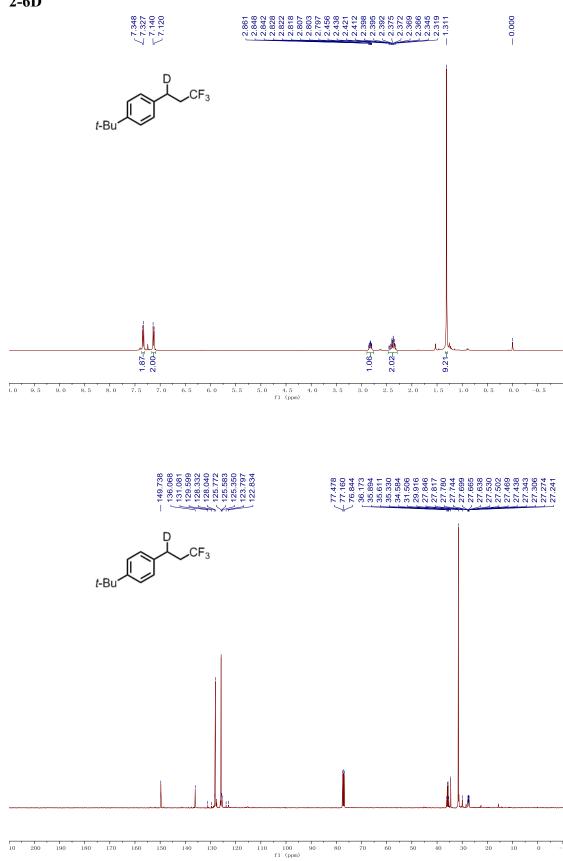


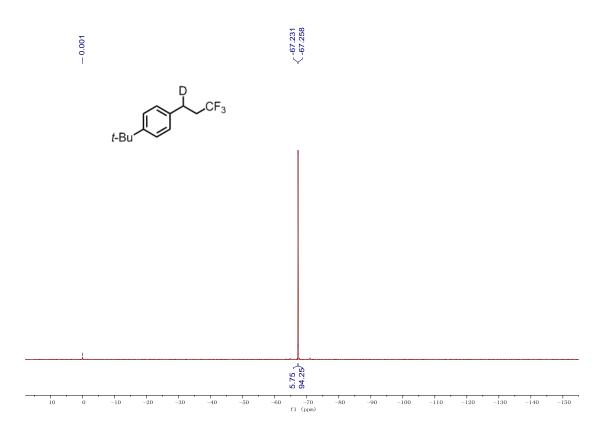


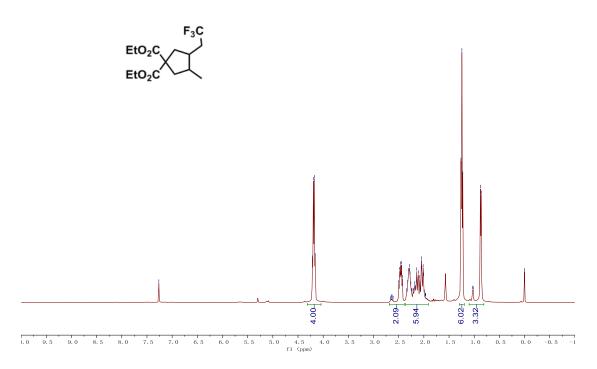


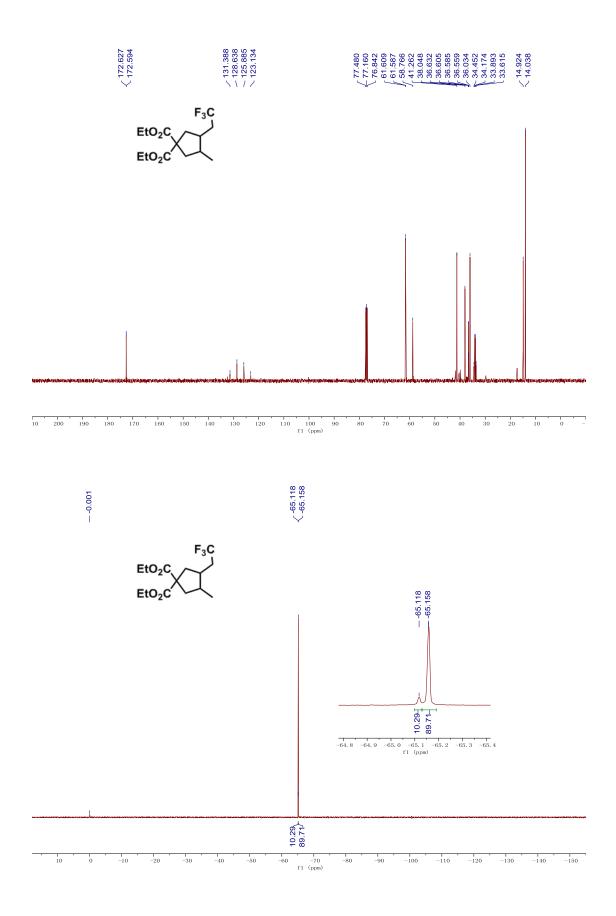


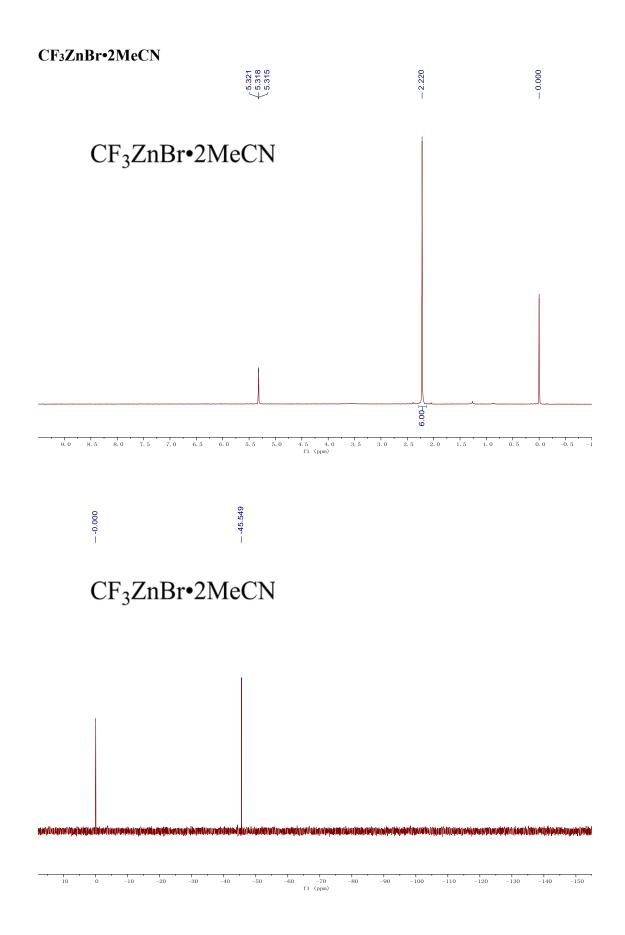











2-6D

