Supporting Information

Hydroxyl Group-Directed, Tartaric Acid-Catalyzed Synthesis of meta-Functionalized

Aryl Ethers and Phenols through Domino Conjugate Addition/Aromatization of

para-Quinols

Guo-Shu Chen,^[a] Jia-Hui Li,^[a] Shu-Jie Chen,^{*[a]} Wen-Xia Lin,^[a] Hai Ren,^[b] Dong-Sheng Deng^[c] and Yun-Lin Liu^{*[a]}

^[a] School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P.R. China

^[b] State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, P.R. China

^[c] College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P.R. China

Email: sjchen@gzhu.edu.cn; ylliu@gzhu.edu.cn

Table of Contents

1.	General Information and MaterialsS2
2.	Details for Condition OptimizationS3
3.	Experimental Procedures and Analytical Data ······S4
4.	Single Crystal Diffraction Data ·····S24
5.	Copies of NMR Spectra ······S26

1. General Information and Materials

All reactions were performed in oven-dried glassware in the air unless otherwise noted. ¹H, ¹³C, and ¹⁹F NMR spectra were recorded on an Bruker spectrometer operating at 400 MHz, 100 MHz, and 376 MHz respectively. Chemical shifts (δ) are reported in ppm and the tetramethylsilane peak (TMS: 0.00 ppm) was used as internal standard. Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants (Hz) and integration. High-resolution mass spectrometry (HRMS) was measured with an ESI-TOF method. Flash chromatography was performed on silica gel (200-300 mesh). Thin-layer chromatography (TLC) was carried out using commercial silica gel-precoated glass plates, and compounds were visualized under UV light (254 nm). *p*-Quinol¹, *p*-quinol ether **1c**² were synthesized from corresponding phenols following the literature method. Alkenyl boronic acids were purchased from Energy Chemical, or prepared according to reported procedures.³

^{1. (}a) M. C. Carreño, M. González-López and A. Urbano, *Angew. Chem. Int. Ed.*, 2006, **45**, 2737; (b) R. M. Moriarty and O. Prakash, *Org. React.*, 2001, **57**, 327; (c) S. Husen, A. Chauhan and R. Kumar, *Green Chem.*, 2020, **22**, 1119.

^{2.} P. Wipf and Y. Kim, J. Am. Chem. Soc., 1994, 116, 11678.

^{3. (}a) C. Feng and T.-P. Loh, *Org. Lett.*, 2014, **16**, 3444; (b) A. Boelke, L. D. Caspers and B. J. Nachtsheim, *Org. Lett.*, 2017, **19**, 5344.

2. Details for Condition Optimization

Table S1 Optimization of reaction conditions toward ether products^a

4 50 25 10 C3 (20 mol%) 1.2:1 MeCN 54 50 46 11 C3 (20 mol%) 1.2:1 _ MeOH 14 12 1.2:1 0 DCM 50 0 31 C3 (20 mol%) 13 C4 (20 mol%) 1.2:1 4 DCM 50 0 0 14 C5 (20 mol%) 1.2:1 4 DCM 50 0 0 15 1.2:1 4 DCM 50 75 <5 C6 (20 mol%) 16 C7 (20 mol%) 1.2:1 4 DCM 50 66 15 DCM 50 66 17 17 C8 (20 mol%) 1.2:1 4

^a Reactions were run on a 0.1 mmol scale in 1 mL solvent. ^b Isolated yields based on 2a.

Table S2 Optimization of reaction conditions toward phenol products^a ОН tartaric acid (x mol% solvent temp., 48 h Me `o⊦ Ме 1b 2a 5b 1b:2a (mole ratio) entry cat. (x mol%) solvent temp. (°C) yield of 5b (%)b 1 1:1.5 10 DCM RT 34% 2 49% 10 1:1.2 DCM RT 3 10 1:1 DCM RT 45% 4 20 1:1.2 DCM RT 52% 5 20 1:1.2 DCM/EtOAc (v/v = 9:1) RT 38% 6 20 1:1.2 DCM/THF (v/v = 9:1) RT 23% 7 20 1:1.2 DCM/DMF (v/v = 9:1) RT 48% 8 20 65% 1:1.2 DCM/MeCN (v/v = 9:1) RT 1:1.2 9 20 DCM/MeCN (v/v = 9:1) 50 78% 10 20 50 82% 1.2:1 DCM/MeCN (v/v = 9:1)

^a Reactions were run on a 0.1 mmol scale in 1 mL solvent. ^b Isolated yields.

3. Experimental Procedures and Analytical Data

3.1 Preparation of Starting Materials

(a) p-Quinol

To a flame dried 250 mL round bottom flask equipped with a magnetic stir bar was added *p*-alkyl phenol (5 mmol, 1 equiv), water (85 mL) and CH₃CN (20 mL). Under vigorously stirring, a mixture of Oxone (5 equiv) and NaHCO₃ (15 equiv), which have been ground into powder previously, was added in portions. Then an empty balloon was attached immediately to avoid loss of generated singlet oxygen. The mixture was vigorously stirred until total disappearance of the phenol (ca. 1 h, monitored by TLC). Afterwards, the reaction mixture was diluted with water (20 mL) and Na₂S₂O₃ (10 equiv) was added portionwise in 5 minutes. The mixture was stirred at rt for 30 min and then extracted three times with EtOAc, dried over Na₂SO₄, filtered, and concentrated. The residue was subjected to column chromatography on silica gel using EtOAc/petroleum ether as eluent to give the *p*-quinols.

(b) p-Quinol Ether 1c

To a solution of *p*-cresol (5.0 mmol, 1.0 equiv) in dry MeOH (10 mL) was added PhI(OAc)₂ (5.5 mmol, 1.0 equiv) portionwise at 0 °C. The reaction mixture was then allowed to warm to room temperature and stirred for 30 min. Afterwards, the reaction was diluted with EtOAc (15 mL), washed with NaHCO_{3(sat.)} (2 x 5 mL) and brine. The organic layer was dried over anhydrous Na₂SO₄ and filtered. After evaporation under vacuum, the crude residue was purified by column chromatography over silica gel (EtOAc/ petroleum ether) to give the desired **1c**.

(c) Alkenyl Boronic Acids

The corresponding alkyne (2.0 mmol, 1.0 equiv) was added to catecholborane (1 M in THF, 3 mL, 1.5 equiv) and the mixture was refluxed under nitrogen atmosphere for 16 h. The solvent was evaporated and then H_2O (5 mL) was added. The suspension was vigorously stirred for 4 h at room temperature, then extracted with EtOAc, dried over Na_2SO_4 , filtered, and concentrated. The residue was subjected to

column chromatography on silica gel using EtOAc/petroleum ether as eluent to give the desired alkenyl boronic acids.

3.2 Procedure A: Synthesis of meta-Alkenylated Aryl Alkyl Ethers.

To a flame dried 10 mL reaction tube equipped with a magnetic stir bar was added *p*-quinol **1** (0.12 mmol, 1.2 equiv), alkenyl boronic acid **2** (0.10 mmol, 1.0 equiv), alcohol **3** (0.4 mmol, 4.0 equiv), tartaric acid (0.02 mmol, 0.2 equiv), and DCM (1 mL). After being stirred at 50 °C for 48 h, the mixture was concentrated *in vacuo*, and the residue was directly subjected to column chromatography on silica gel using EtOAc/petroleum ether as eluent to afford the corresponding products **4**.

3.3 Procedure B: Synthesis of *meta*-Functionalized Phenols.

To a flame dried 10 mL reaction tube equipped with a magnetic stir bar was added *p*-quinol **1** (0.12 mmol, 1.2 equiv), boronic acid **2** (0.10 mmol, 1.0 equiv), and tartaric acid (0.02 mmol, 0.2 equiv). To the mixture was added 0.9 mL of DCM and 0.1 mL of MeCN. After being stirred at 50 °C for 48 h, the mixture was concentrated *in vacuo*, and the residue was directly subjected to column chromatography on silica gel using EtOAc/petroleum ether as eluent to afford the corresponding phenols **5**.

3.4 Procedure C: Synthesis of meta-Functionalized Aryl Acetates.

To a flame dried 10 mL reaction tube equipped with a magnetic stir bar was added *p*-quinol **1** (0.12 mmol, 1.2 equiv), boronic acid **2** (0.10 mmol, 1.0 equiv), and tartaric acid (0.02 mmol, 0.2 equiv). To the mixture was added 0.9 mL of DCM and 0.1 mL of MeCN. After being stirred at 50 °C for 48 h, the mixture was cooled to rt. Pyridine (0.5 mmol, 5.0 equiv) and acetic anhydride (0.25 mmol, 2.5 equiv) were added, and the mixture was stirred at 50 °C for 12 h. After being cooled to rt, the mixture was poured into water, and the organic materials were extracted with EtOAc, dried over Na₂SO₄, filtered, and

concentrated. The residue was subjected to column chromatography on silica gel using EtOAc/petroleum ether as eluent to gave aryl acetates **5**.

3.5 Analytical Data

(E)-5-Methoxy-1,2-dimethyl-3-styrylbenzene (4a)

Yield: 92%, white solid

TLC (SiO₂) R_f = 0.72 (hexanes/ethyl acetate = 9:1), [UV light]

mp 61-62℃

¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, J = 7.6 Hz, 2H), 7.41-7.35 (m, 3H), 7.29-7.23 (m, 1H), 6.98 (d, J = 2.0

Hz, 1H), 6.93 (d, J = 16.0 Hz, 1H), 6.71 (d, J = 1.9 Hz, 1H), 3.83 (s, 3H), 2.30 (s, 3H), 2.26 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ = 157.39, 138.29, 137.76, 137.75, 130.56, 128.78, 127.74, 127.68, 126.90,

126.65, 115.57, 108.64, 55.38, 21.07, 14.85.

HRMS (ESI-TOF) m/z $[M + H]^+$ calcd for C₁₇H₁₉O 239.1430, found 239.1426.

(E)-5-Methoxy-1-(3-methoxystyryl)-2,3-dimethylbenzene (4b)

Yield: 90%, pale yellow oil

TLC (SiO₂) R_f = 0.50 (hexanes/ethyl acetate = 19:1), [UV light]

¹H NMR (400 MHz, CDCl₃) δ 7.38 (d, *J* = 16.0 Hz, 1H), 7.28 (t, *J* = 7.9 Hz, 1H), 7.12 (dd, *J* = 7.6, 0.5 Hz, 1H), 7.07-7.04 (m, 1H), 6.97 (d, *J* = 2.7 Hz, 1H), 6.89 (d, *J* = 16.0 Hz, 1H), 6.83 (ddd, *J* = 8.2, 2.5, 0.8 Hz, 1H), 6.70 (d, *J* = 2.6 Hz, 1H), 3.85 (s, 3H), 3.82 (s, 3H), 2.29 (s, 3H), 2.25 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ = 159.97, 157.38, 139.23, 138.30, 137.63, 130.43, 129.75, 128.08, 126.92, 119.34, 115.63, 113.14, 112.08, 108.64, 55.37, 21.06, 14.85.

HRMS (ESI-TOF) m/z $[M + H]^+$ calcd for C₁₈H₂₁O₂ 269.1536, found 269.1531.

(E)-1-(4-Fluorostyryl)-5-methoxy-2,3-dimethylbenzene (4c)

<u>TLC (SiO₂)</u> $R_f = 0.62$ (hexanes/ethyl acetate = 19:1), [UV light]

mp 64-65℃

¹H NMR (400 MHz, CDCl₃) δ 7.50-7.44 (m, 2H), 7.29 (d, *J* = 16.0 Hz, 1H), 7.08-7.01 (m, 2H), 6.94 (d, *J* = 2.7 Hz, 1H), 6.88 (d, *J* = 16.0 Hz, 1H), 6.70 (d, *J* = 2.7 Hz, 1H), 3.82 (s, 3H), 2.29 (s, 3H), 2.24 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ = 162.40 (d, *J* = 247.1 Hz), 157.39, 138.32, 137.57, 133.93 (d, *J* = 3.4 Hz), 129.34 (d, *J* = 1.1 Hz), 128.11 (d, *J* = 8.0 Hz), 127.50 (d, *J* = 2.5 Hz), 126.83, 115.79, 115.57 (d, *J* = 2.3 Hz), 108.61, 55.37, 21.06, 14.84.

¹⁹F NMR (376 MHz, CDCl₃) δ = -114.37.

HRMS (ESI-TOF) m/z $[M + H]^+$ calcd for C₁₇H₁₈FO 257.1336, found 257.1330.

(E)-1-(4-Chlorostyryl)-5-methoxy-2,3-dimethylbenzene (4d)

^{CI} Yield: 93%, white solid

TLC (SiO₂) R_f = 0.63 (hexanes/ethyl acetate = 19:1), [UV light]

mp 74-76℃

¹H NMR (400 MHz, CDCl₃) δ 7.45-7.41 (m, 2H), 7.38-7.30 (m, 3H), 6.95 (d, *J* = 2.7 Hz, 1H), 6.86 (d, *J* = 16.0 Hz, 1H), 6.71 (d, *J* = 2.6 Hz, 1H), 3.82 (s, 3H), 2.29 (s, 3H), 2.24 (s, 3H).

 ^{13}C NMR (100 MHz, CDCl₃) δ = 157.40, 138.37, 137.37, 136.26, 133.20, 129.22, 128.91, 128.31, 127.80,

126.93, 115.75, 108.61, 55.37, 21.06, 14.85.

HRMS (ESI-TOF) m/z $[M + H]^+$ calcd for C₁₇H₁₈ClO 273.1041, found 273.1035.

(E)-5-Methoxy-1,2-dimethyl-3-(4-methylstyryl)benzene (4e)

Yield: 72%, white solid

TLC (SiO₂) R_f = 0.67 (hexanes/ethyl acetate = 19:1), [UV light]

mp 56-58℃

¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, *J* = 7.5 Hz, 2H), 7.33 (d, *J* = 15.7 Hz, 1H), 7.17 (d, *J* = 7.8 Hz, 2H), 6.96 (d, *J* = 1.9 Hz, 1H), 6.90 (d, *J* = 16.0 Hz, 1H), 6.69 (d, *J* = 1.9 Hz, 1H), 3.82 (s, 3H), 2.36 (s, 3H), 2.29 (s, 3H), 2.24 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ = 157.37, 138.23, 137.90, 137.56, 134.98, 130.47, 129.48, 126.78, 126.73, 126.55, 115.40, 108.52, 55.37, 21.35, 21.06, 14.83.

HRMS (ESI-TOF) m/z $[M + H]^+$ calcd for C₁₈H₂₁O 253.1587, found 253.1581.

(E)-5-Ethoxy-1,2-dimethyl-3-styrylbenzene (4f)

Yield: 85%, white solid

TLC (SiO₂) R_f = 0.75 (hexanes/ethyl acetate = 9:1), [UV light]

mp 88-90℃

¹H NMR (400 MHz, CDCl₃) δ 7.54-7.50 (m, 2H), 7.42-7.34 (m, 3H), 7.29-7.24 (m, 1H), 6.98 (d, *J* = 2.7 Hz, 1H), 6.92 (d, *J* = 16.0 Hz, 1H), 6.70 (d, *J* = 2.7 Hz, 1H), 4.06 (q, *J* = 7.0 Hz, 2H), 2.29 (s, 3H), 2.25 (s, 3H), 1.43 (t, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ = 156.72, 138.23, 137.80, 137.71, 130.48, 128.78, 127.75, 127.64, 126.79, 126.63, 116.12, 109.39, 63.50, 21.06, 15.07, 14.84.

HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₁₈H₂₁O 253.1587, found 253.1581.

(E)-1,2-Dimethyl-5-(nonyloxy)-3-styrylbenzene (4g)

Yield: 72%, white solid

TLC (SiO₂) R_f = 0.74 (hexanes/ethyl acetate = 19:1), [UV light]

mp 62-63℃

¹H NMR (400 MHz, CDCl₃) δ 7.54-7.50 (m, 2H), 7.42-7.34 (m, 3H), 7.29-7.24 (m, 1H), 6.98 (d, *J* = 2.6 Hz, 1H), 6.93 (d, *J* = 16.0 Hz, 1H), 6.70 (d, *J* = 2.6 Hz, 1H), 3.98 (t, *J* = 6.6 Hz, 2H), 2.29 (s, 3H), 2.25 (s, 3H), 1.79 (dq, *J* = 13.3, 6.6 Hz, 2H), 1.52-1.42 (m, 2H), 1.36-1.26 (m, 10H), 0.89 (t, *J* = 6.9 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ = 156.94, 138.20, 137.81, 137.68, 130.45, 128.77, 127.76, 127.63, 126.69, 126.63, 116.13, 109.36, 68.08, 32.01, 29.68, 29.55, 29.51, 29.40, 26.20, 22.80, 21.06, 14.84, 14.25. HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₂₅H₃₄NaO 373.2502, found 373.2504.

(E)-5-Isopropoxy-1,2-dimethyl-3-styrylbenzene (4h)

Yield: 70%, faint yellow solid

TLC (SiO₂) R_f = 0.77 (hexanes/ethyl acetate = 9:1), [UV light]

mp 52-53℃

¹H NMR (400 MHz, CDCl₃) δ 7.52 (dd, *J* = 5.3, 3.5 Hz, 2H), 7.41-7.34 (m, 3H), 7.28-7.24 (m, 1H), 6.98 (d, *J* = 2.7 Hz, 1H), 6.91 (d, *J* = 16.0 Hz, 1H), 6.69 (d, *J* = 2.6 Hz, 1H), 4.57 (hept, *J* = 6.1 Hz, 1H), 2.28 (s, 3H),

2.25 (s, 3H), 1.36 (s, 3H), 1.34 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ = 155.58, 138.24, 137.81, 137.77, 130.46, 128.77, 127.75, 127.63, 126.82, 126.62, 117.52, 111.07, 69.91, 22.28, 21.06, 14.85.

HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₁₉H₂₂NaO 289.1563, found 289.1559.

(E)-5-(Cyclohexyloxy)-1,2-dimethyl-3-styrylbenzene (4i)

Yield: 79%, white solid

TLC (SiO₂) R_f = 0.77 (hexanes/ethyl acetate = 9:1), [UV light]

mp 102-104 °C

¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, *J* = 7.5 Hz, 2H), 7.40-7.34 (m, 3H), 7.29-7.24 (m, 1H), 6.99 (d, *J* = 2.2 Hz, 1H), 6.91 (d, *J* = 16.0 Hz, 1H), 6.71 (d, *J* = 2.0 Hz, 1H), 4.30-4.20 (m, 1H), 2.28 (s, 3H), 2.25 (s, 3H), 2.05-1.97 (m, 2H), 1.83-1.80 (m, 2H), 1.58-1.32 (m, 6H).

¹³C NMR (100 MHz, CDCl₃) δ = 155.46, 138.20, 137.82, 137.77, 130.46, 128.77, 127.77, 127.63, 126.84, 126.63, 117.68, 111.38, 75.53, 32.06, 25.79, 23.94, 21.07, 14.88.

HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for $C_{22}H_{26}NaO$ 329.1876, found 329.1884.

(E)-1,2-Dimethyl-3-styryl-5-(4,4,4-trifluorobutoxy)benzene (4j)

85%, white solid

TLC (SiO₂) R_f = 0.75 (hexanes/ethyl acetate = 9:1), [UV light]

mp 80-82°C

¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, *J* = 7.4 Hz, 2H), 7.41-7.34 (m, 3H), 7.29-7.24 (m, 1H), 6.96 (d, *J* = 2.3 Hz, 1H), 6.92 (d, *J* = 16.0 Hz, 1H), 6.69 (d, *J* = 2.1 Hz, 1H), 4.04 (t, *J* = 5.9 Hz, 2H), 2.41-2.29 (m, 2H), 2.29 (s, 3H), 2.25 (s, 3H), 2.09-2.02 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ = 156.42, 138.39, 137.83, 137.69, 130.64, 128.79, 127.73, 127.58, 127.31 (q, *J* = 275 Hz), 127.27, 126.64, 116.02, 109.30, 66.11, 30.86 (q, *J* = 29.1 Hz), 22.38 (q, *J* = 3.0 Hz), 21.04, 14.86.

¹⁹F NMR (376 MHz, CDCl₃) δ = -66.29.

HRMS (ESI-TOF) m/z $[M + H]^+$ calcd for C₂₀H₂₂F₃O 335.1617, found 335.1609.

(E)-1,2-Dimethyl-5-(prop-2-yn-1-yloxy)-3-styrylbenzene (4k)

Yield: 67%, faint yellow solid

TLC (SiO₂) R_f = 0.63 (hexanes/ethyl acetate = 9:1), [UV light]

mp 80-82℃

¹H NMR (400 MHz, CDCl₃) δ 7.53-7.50 (m, 2H), 7.40-7.34 (m, 3H), 7.27 (ddd, *J* = 7.5, 4.0, 1.3 Hz, 1H), 7.05 (d, *J* = 2.7 Hz, 1H), 6.92 (d, *J* = 16.0 Hz, 1H), 6.76 (d, *J* = 2.7 Hz, 1H), 4.71 (d, *J* = 2.4 Hz, 2H), 2.53 (t, *J* = 2.4 Hz, 1H), 2.29 (s, 3H), 2.25 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ = 155.33, 138.39, 137.82, 137.68, 130.79, 128.79, 127.87, 127.73, 127.53, 126.67, 116.37, 109.83, 78.94, 75.47, 55.94, 21.08, 14.91.

HRMS (ESI-TOF) m/z $[M + Na]^+$ calcd for C₁₉H₁₈NaO 285.1250, found 285.1245.

(S,E)-5-(But-3-yn-2-yloxy)-1,2-dimethyl-3-styrylbenzene (41)

Yield: 49%, white solid

TLC (SiO₂) R_f = 0.67 (hexanes/ethyl acetate = 19:1), [UV light]

mp 73-74℃

¹H NMR (400 MHz, CDCl₃) δ 7.53-7.50 (m, 2H), 7.40-7.34 (m, 3H), 7.28-7.24 (m, 1H), 7.09 (d, *J* = 2.7 Hz, 1H), 6.92 (d, *J* = 16.1 Hz, 1H), 6.79 (d, *J* = 2.6 Hz, 1H), 4.91 (qd, *J* = 6.6, 2.0 Hz, 1H), 2.48 (d, *J* = 2.0 Hz, 1H), 2.29 (s, 3H), 2.25 (s, 3H), 1.67 (d, *J* = 6.6 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ = 155.03, 138.24, 137.76, 137.71, 130.67, 128.77, 127.77, 127.67, 127.60, 126.65, 117.21, 110.83, 83.28, 73.81, 63.57, 22.30, 21.07, 14.90.

HRMS (ESI-TOF) m/z $[M + H]^+$ calcd for C₂₀H₂₁O 277.1587, found 277.1581.

(E)-5-(But-3-yn-1-yloxy)-1,2-dimethyl-3-styrylbenzene (4m)

Yield: 66%, white solid

TLC (SiO₂) R_f = 0.48 (hexanes/ethyl acetate = 19:1), [UV light]

mp 96-98℃

¹H NMR (400 MHz, CDCl₃) δ 7.53-7.50 (m, 2H), 7.39-7.34 (m, 3H), 7.29-7.24 (m, 1H), 6.99 (d, J = 2.7 Hz,

1H), 6.92 (d, J = 16.1 Hz, 1H), 6.71 (d, J = 2.6 Hz, 1H), 4.12 (t, J = 7.1 Hz, 2H), 2.69 (td, J = 7.1, 2.7 Hz, 2H), 2.28 (s, 3H), 2.25 (s, 3H), 2.05 (t, J = 2.7 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 156.20$, 138.37, 137.80, 137.70, 130.64, 128.79, 127.71, 127.55, 127.37, 126.65, 116.20, 109.55, 80.70, 69.95, 66.11, 21.06, 19.73, 14.88.

HRMS (ESI-TOF) m/z $[M + H]^+$ calcd for C₂₀H₂₁O 277.1587, found 277.1580.

(E)-1,2-Dimethyl-5-((2-methylallyl)oxy)-3-styrylbenzene (4n)

Yield: 44%, colorless oil

TLC (SiO₂) R_f = 0.79 (hexanes/ethyl acetate = 9:1), [UV light]

¹H NMR (400 MHz, CDCl₃) δ 7.51 (d, *J* = 7.5 Hz, 2H), 7.40-7.34 (m, 3H), 7.29-7.24 (m, 1H), 7.00 (d, *J* = 2.3 Hz, 1H), 6.91 (d, *J* = 16.0 Hz, 1H), 6.72 (d, *J* = 2.1 Hz, 1H), 5.12 (s, 1H), 4.99 (s, 1H), 4.45 (s, 2H), 2.28 (s, 3H), 2.25 (s, 3H), 1.85 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ = 156.59, 141.30, 138.23, 137.77, 137.68, 130.52, 128.77, 127.71, 127.66, 127.02, 126.64, 116.34, 112.70, 109.63, 71.87, 21.07, 19.61, 14.86.

HRMS (ESI-TOF) m/z $[M + H]^+$ calcd for C₂₀H₂₃O 279.1743, found 279.1738.

(S,E)-5-((3,7-Dimethyloct-6-en-1-yl)oxy)-1,2-dimethyl-3-styrylbenzene (40)

Yield: 89%, colorless oil

TLC (SiO₂) R_f = 0.83 (hexanes/ethyl acetate = 9:1), [UV light]

¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, *J* = 7.7 Hz, 2H), 7.42-7.34 (m, 3H), 7.29-7.24 (m, 1H), 6.98 (d, *J* = 2.2 Hz, 1H), 6.93 (d, *J* = 16.0 Hz, 1H), 6.71 (d, *J* = 1.9 Hz, 1H), 5.16-5.07 (m, 1H), 4.07-3.96 (m, 2H), 2.29 (s, 3H), 2.25 (s, 3H), 2.07-1.80 (m, 3H), 1.70 (s, 3H), 1.62 (s, 3H), 1.58-1.20 (m, 4H), 0.98 (d, *J* = 6.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ = 156.93, 138.20, 137.80, 137.69, 131.38, 130.47, 128.77, 127.76, 127.64, 126.71, 126.63, 124.84, 116.14, 109.37, 66.31, 37.28, 36.39, 29.65, 25.86, 25.59, 21.06, 19.68, 17.80, 14.85.

HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₂₆H₃₄NaO 385.2502, found 385.2508.

(E)-1,2-Dimethyl-3-styryl-5-(undec-10-en-1-yloxy)benzene (4p)

Yield: 81%, white solid

TLC (SiO₂) R_f = 0.63 (hexanes/ethyl acetate = 19:1), [UV light]

mp 45-47℃

¹H NMR (400 MHz, CDCl₃) δ 7.53-7.50 (m, 2H), 7.41-7.34 (m, 3H), 7.28-7.24 (m, 1H), 6.98 (d, *J* = 2.6 Hz, 1H), 6.93 (d, *J* = 16.0 Hz, 1H), 6.70 (d, *J* = 2.6 Hz, 1H), 5.82 (ddt, *J* = 16.9, 10.2, 6.7 Hz, 1H), 5.00 (ddt, *J* = 17.1, 2.1, 1.6 Hz, 1H), 4.93 (ddt, *J* = 10.1, 2.3, 1.2 Hz, 1H), 3.97 (t, *J* = 6.6 Hz, 2H), 2.29 (s, 3H), 2.25 (s, 3H), 2.08-2.00 (m, 2H), 1.83-1.74 (m, 2H), 1.51-1.29 (m, 12H).

¹³C NMR (100 MHz, CDCl₃) δ = 156.93, 139.35, 138.20, 137.80, 137.67, 130.45, 128.77, 127.75, 127.64,
126.70, 126.63, 116.12, 114.23, 109.35, 68.06, 33.93, 29.65, 29.55, 29.52, 29.50, 29.24, 29.04, 26.19,
21.07, 14.84.

HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₂₇H₃₆NaO 399.2658, found 399.2653.

(E)-5-(2-Bromoethoxy)-1,2-dimethyl-3-styrylbenzene (4q)

Yield: 67%, white solid

TLC (SiO₂) $R_f = 0.54$ (hexanes/ethyl acetate = 19:1), [UV light]

mp 82-84°C

¹H NMR (400 MHz, CDCl₃) δ 7.53-7.50 (m, 2H), 7.39-7.34 (m, 3H), 7.29-7.24 (m, 1H), 6.98 (d, *J* = 2.7 Hz, 1H), 6.91 (d, *J* = 16.1 Hz, 1H), 6.70 (d, *J* = 2.7 Hz, 1H), 4.31 (t, *J* = 6.3 Hz, 2H), 3.64 (t, *J* = 6.3 Hz, 2H), 2.28 (s, 3H), 2.25 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ = 155.90, 138.49, 137.90, 137.63, 130.76, 128.79, 127.75, 127.73, 127.44, 126.65, 116.28, 109.72, 68.05, 29.50, 21.06, 14.90.

HRMS (ESI-TOF) m/z $[M + H]^+$ calcd for C₁₈H₂₀BrO 331.0692, found 331.0686.

(E)-5-(Benzyloxy)-1,2-dimethyl-3-styrylbenzene (4r)

Yield: 68%, white solid

TLC (SiO₂) R_f = 0.72 (hexanes/ethyl acetate = 9:1), [UV light]

mp 108-110 $^\circ\!\mathrm{C}$

¹H NMR (400 MHz, CDCl₃) δ 7.53-7.50 (m, 2H), 7.49-7.45 (m, 2H), 7.42-7.31 (m, 6H), 7.29-7.25 (m, 1H),

7.07 (d, J = 2.7 Hz, 1H), 6.91 (d, J = 16.0 Hz, 1H), 6.79 (d, J = 2.7 Hz, 1H), 5.09 (s, 2H), 2.30 (s, 3H), 2.26 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ = 156.65, 138.33, 137.78, 137.75, 137.40, 130.63, 128.79, 128.68, 128.00, 127.69, 127.65, 127.19, 126.65, 116.38, 109.75, 70.14, 21.09, 14.88.

HRMS (ESI-TOF) m/z $[M + Na]^+$ calcd for C₂₃H₂₂NaO 337.1563, found 337.1563.

(E)-1,2-Dimethyl-5-((4-methylbenzyl)oxy)-3-styrylbenzene (4s)

Yield: 78%, white solid

TLC (SiO₂) R_f = 0.57 (hexanes/ethyl acetate = 19:1), [UV light]

mp 92-94℃

¹H NMR (400 MHz, CDCl₃) δ 7.52 (dd, *J* = 8.2, 1.0 Hz, 2H), 7.42-7.35 (m, 5H), 7.30-7.25 (m, 1H), 7.21 (d, *J* = 7.8 Hz, 2H), 7.07 (d, *J* = 2.6 Hz, 1H), 6.92 (d, *J* = 16.0 Hz, 1H), 6.79 (d, *J* = 2.6 Hz, 1H), 5.05 (s, 2H), 2.38 (s, 3H), 2.30 (s, 3H), 2.26 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ = 156.71, 138.29, 137.78, 137.76, 137.73, 134.33, 130.58, 129.37, 128.79, 127.80, 127.68, 127.10, 126.66, 116.40, 109.73, 70.06, 21.34, 21.10, 14.89.

HRMS (ESI-TOF) m/z $[M + H]^+$ calcd for C₂₄H₂₅O 329.1900, found 329.1890.

(E)-5-((4-Bromobenzyl)oxy)-1,2-dimethyl-3-styrylbenzene (4t)

Yield: 75%, white solid

TLC (SiO₂) R_f = 0.57 (hexanes/ethyl acetate = 19:1), [UV light]

mp 108-110℃

¹H NMR (400 MHz, CDCl₃) δ 7.53-7.49 (m, 4H), 7.39-7.31 (m, 5H), 7.29-7.24 (m, 1H), 7.02 (d, *J* = 2.7 Hz,

1H), 6.89 (d, J = 16.0 Hz, 1H), 6.74 (d, J = 2.7 Hz, 1H), 5.02 (s, 2H), 2.28 (s, 3H), 2.25 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ = 156.34, 138.41, 137.84, 137.67, 136.42, 131.78, 130.70, 129.21, 128.79,

127.73, 127.56, 127.42, 126.65, 121.86, 116.30, 109.70, 69.34, 21.09, 14.89.

HRMS (ESI-TOF) m/z $[M + H]^+$ calcd for C₂₃H₂₂BrO 393.0849, found 393.0841.

(E)-5-(4-Methoxyphenethoxy)-1,2-dimethyl-3-styrylbenzene (4u)

Yield: 57%, white solid

TLC (SiO₂) R_f = 0.46 (hexanes/ethyl acetate = 19:1), [UV light]

mp 89-91℃

¹H NMR (400 MHz, CDCl₃) δ 7.53-7.49 (m, 2H), 7.40-7.34 (m, 3H), 7.29-7.21 (m, 3H), 6.97 (d, *J* = 2.7 Hz, 1H), 6.93-6.85 (m, 3H), 6.70 (d, *J* = 2.6 Hz, 1H), 4.16 (t, *J* = 7.2 Hz, 2H), 3.80 (s, 3H), 3.05 (t, *J* = 7.2 Hz, 2H), 2.28 (s, 3H), 2.25 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ = 158.35, 156.64, 138.27, 137.76, 137.70, 130.49, 130.46, 130.09, 128.77, 127.66, 126.95, 126.64, 116.23, 114.01, 109.32, 69.08, 55.37, 35.13, 21.06, 14.85.

HRMS (ESI-TOF) m/z $[M + Na]^+$ calcd for $C_{25}H_{26}NaO_2$ 381.1825, found 381.1829.

(E)-1,2-Dimethyl-5-(4-phenylbutoxy)-3-styrylbenzene (4v)

Yield: 80%, white solid

TLC (SiO₂) R_f = 0.76 (hexanes/ethyl acetate = 9:1), [UV light]

mp 79-81℃

¹H NMR (400 MHz, CDCl₃) δ 7.53 (d, *J* = 7.4 Hz, 2H), 7.42-7.36 (m, 3H), 7.33-7.19 (m, 6H), 6.98 (d, *J* = 2.3 Hz, 1H), 6.93 (d, *J* = 16.0 Hz, 1H), 6.71 (d, *J* = 2.2 Hz, 1H), 4.01 (t, *J* = 5.8 Hz, 2H), 2.71 (t, *J* = 6.9 Hz, 2H), 2.30 (s, 3H), 2.26 (s, 3H), 1.85 (dd, *J* = 6.4, 2.8 Hz, 4H).

¹³C NMR (100 MHz, CDCl₃) δ = 156.89, 142.40, 138.24, 137.80, 137.71, 130.50, 128.79, 128.57, 128.44, 127.74, 127.66, 126.80, 126.65, 125.89, 116.14, 109.38, 67.84, 35.74, 29.12, 28.03, 21.08, 14.86. HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₂₆H₂₈NaO 379.2032, found 379.2032.

(E)-4-Methoxy-1-methyl-2-styrylbenzene (4w)

Yield: 48%, pale yellow oil

TLC (SiO₂) R_f = 0.71 (hexanes/ethyl acetate = 19:1), [UV light]

¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, *J* = 7.4 Hz, 2H), 7.41 (t, *J* = 7.6 Hz, 2H), 7.36-7.28 (m, 2H), 7.18 (d, *J* = 2.7 Hz, 1H), 7.13 (d, *J* = 8.3 Hz, 1H), 7.03 (d, *J* = 16.1 Hz, 1H), 6.80 (dd, *J* = 8.3, 2.7 Hz, 1H), 3.88 (s, 3H),

2.40 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ = 158.04, 137.57, 137.26, 131.26, 130.11, 128.71, 128.19, 127.68, 126.61, 126.60, 113.31, 110.56, 55.39, 19.00.

HRMS (ESI-TOF) m/z [M + H] $^{\rm +}$ calcd for C16H17O 255.1274, found 225.1267.

(E)-7-Methoxy-5-styryl-1,2,3,4-tetrahydronaphthalene (4x)

Yield: 60%, white solid

TLC (SiO₂) R_f = 0.52 (hexanes/ethyl acetate = 19:1), [UV light]

mp 68-70℃

¹H NMR (400 MHz, CDCl₃) δ 7.54-7.51 (m, 2H), 7.39-7.31 (m, 3H), 7.29-7.25 (m, 1H), 7.00 (d, *J* = 2.7 Hz, 1H), 6.96 (d, *J* = 16.0 Hz, 1H), 6.61 (d, *J* = 2.7 Hz, 1H), 3.83 (s, 3H), 2.79 (t, *J* = 6.5 Hz, 4H), 1.85-1.76 (m, 4H).

¹³C NMR (100 MHz, CDCl₃) δ = 157.38, 138.89, 137.78, 137.76, 130.42, 128.78, 127.70, 127.42, 126.69, 126.66, 113.88, 109.08, 55.39, 30.61, 26.27, 23.60, 22.90.

HRMS (ESI-TOF) m/z $[M + H]^+$ calcd for C₁₉H₂₁O 265.1587, found 265.1582.

(E)-3,4-Mimethyl-5-styrylphenol (5a)

Yield: 54%, white solid

TLC (SiO₂) R_f = 0.51 (hexanes/ethyl acetate = 8:2), [UV light]

mp 89-91℃

¹H NMR (400 MHz, CDCl₃) δ 7.49-7.47 (m, 2H), 7.36-7.31 (m, 3H), 7.26-7.22 (m, 1H), 6.89 (s, 1H), 6.87

(d, *J* = 15.9 Hz, 1H), 6.60 (d, *J* = 2.7 Hz, 1H), 4.72 (s, 1H), 2.24 (s, 3H), 2.21 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ = 153.17, 138.55, 137.95, 137.68, 130.63, 128.75, 127.68, 127.32, 126.89,

126.63, 116.58, 110.11, 20.85, 14.76.

HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for $C_{16}H_{16}NaO$ 247.1093, found 247.1088.

(E)-4-Methyl-3-styrylphenol (5b)

Yield: 82%, white solid

TLC (SiO₂) R_f = 0.50 (hexanes/ethyl acetate = 8:2), [UV light].

mp 139-141℃

¹H NMR (400 MHz, D₆-Acetone) δ 8.17 (s, 1H), 7.62 (d, *J* = 7.4 Hz, 2H), 7.44-7.37 (m, 3H), 7.28 (t, *J* = 7.3 Hz, 1H), 7.16 (d, *J* = 2.5 Hz, 1H), 7.08-7.02 (m, 2H), 6.71 (dd, *J* = 8.2, 2.6 Hz, 1H), 2.35 (s, 3H). ¹³C NMR (100 MHz, D₆-Acetone) δ = 155.73, 137.75, 137.07, 131.23, 129.50, 128.63, 127.51, 126.65, 126.55, 126.38, 114.85, 111.60, 18.10.

HRMS (ESI-TOF) m/z $[M + Na]^+$ calcd for C₁₅H₁₄NaO 233.0937, found 233.0940.

(E)-3-(2-Chlorostyryl)-4-methylphenol (5c)

Yield: 64%, light orange solid

<u>TLC (SiO₂)</u> $R_f = 0.55$ (hexanes/ethyl acetate = 8:2), [UV light].

mp 81-83℃

¹H NMR (400 MHz, CDCl₃) δ 7.64 (dd, *J* = 7.8, 1.6 Hz, 1H), 7.36 (dd, *J* = 8.0, 1.4 Hz, 1H), 7.33 (d, *J* = 16.4 Hz, 1H), 7.27-7.14 (m, 4H), 7.10 (d, *J* = 2.7 Hz, 1H), 7.02 (d, *J* = 8.2 Hz, 1H), 6.68 (dd, *J* = 8.2, 2.7 Hz, 1H), 4.89 (s, 1H), 2.32 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ = 152.86, 136.14, 134.58, 132.48, 130.51, 128.81, 127.79, 127.59, 127.38, 125.90, 125.65, 125.26, 114.06, 111.15, 17.96.

HRMS (ESI-TOF) m/z $[M + Na]^+$ calcd for C₁₅H₁₃NaClO 267.0547, found 267.0544.

(E)-4-Methyl-3-(3-methylstyryl)phenol (5d)

Yield: 76%, white solid

<u>TLC (SiO₂)</u> $R_f = 0.53$ (hexanes/ethyl acetate = 8:2), [UV light].

mp 96-98℃

¹H NMR (400 MHz, CDCl₃) δ 7.32-7.30 (m, 2H), 7.25 (t, *J* = 8.0 Hz, 2H), 7.09 (d, *J* = 7.7 Hz, 1H), 7.07 (d, *J* = 2.7 Hz, 1H), 7.03 (d, *J* = 8.2 Hz, 1H), 6.92 (d, *J* = 16.1 Hz, 1H), 6.67 (dd, *J* = 8.2, 2.7 Hz, 1H), 4.84 (s, 1H), 2.38 (s, 3H), 2.34 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ = 153.83, 138.29, 137.59, 137.46, 131.45, 130.34, 128.62, 128.57, 128.25, 127.29, 126.04, 123.83, 114.59, 111.82, 21.47, 19.02.

HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for $C_{16}H_{16}NaO$ 247.1093, found 247.1099.

(E)-3-(3-Methoxystyryl)-4-methylphenol (5e)

Yield: 67%, pale yellow oil

TLC (SiO₂) R_f = 0.40 (hexanes/ethyl acetate = 8:2), [UV light]

¹H NMR (400 MHz, CDCl₃) δ 7.28-7.20 (m, 2H), 7.08 (d, *J* = 7.5 Hz, 1H), 7.04-7.00 (m, 3H), 6.88 (d, *J* = 16.2 Hz, 1H), 6.81 (dd, *J* = 8.1, 2.3 Hz, 1H), 6.65 (dd, *J* = 8.2, 2.6 Hz, 1H), 4.96 (s, 1H), 3.83 (s, 3H), 2.31 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ = 158.81, 152.80, 137.95, 136.31, 130.43, 129.00, 128.64, 127.22, 125.55, 118.31, 113.69, 112.11, 111.07, 110.83, 54.27, 17.93.

HRMS (ESI-TOF) m/z $[M + Na]^+$ calcd for $C_{16}H_{16}NaO_2$ 263.1043, found 263.1043.

(E)-3-(3-Fluorostyryl)-4-methylphenol (5f)

Yield: 74%, faint yellow solid

TLC (SiO₂) R_f = 0.46 (hexanes/ethyl acetate = 8:2), [UV light]

mp 106-107℃

¹H NMR (400 MHz, CDCl₃) δ 7.32-7.26 (m, 1H), 7.22 (dd, *J* = 5.8, 1.9 Hz, 2H), 7.20-7.15 (m, 1H), 7.05-7.00 (m, 2H), 6.93 (td, *J* = 8.0, 2.0 Hz, 1H), 6.87 (d, *J* = 16.1 Hz, 1H), 6.67 (dd, *J* = 8.2, 2.7 Hz, 1H), 4.95 (s, 1H), 2.32 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ = 162.15 (d, *J* = 245.2 Hz), 152.81, 138.83 (d, *J* = 7.7 Hz, 1H), 135.94, 130.52, 129.09 (d, *J* = 8.5 Hz), 127.94 (d, *J* = 2.7 Hz), 127.39, 126.48, 121.54 (d, *J* = 2.7 Hz), 114.01, 113.43 (d, *J* = 21.4 Hz), 111.82 (d, *J* = 21.8 Hz), 110.87, 17.92.

¹⁹F NMR (376 MHz, CDCl₃) δ = -113.41.

HRMS (ESI-TOF) m/z $[M + Na]^+$ calcd for C₁₅H₁₃FNaO 251.0843, found 251.0845.

(E)-3-(4-Fluorostyryl)-4-methylphenol (5g)

Yield: 61%, white solid

TLC (SiO₂) R_f = 0.43 (hexanes/ethyl acetate = 8:2), [UV light]

Mp 84-86℃

¹H NMR (400 MHz, CDCl₃) δ 7.49-7.45 (m, 2H), 7.18 (d, *J* = 16.1 Hz, 1H), 7.08-7.03 (m, 4H), 6.91 (d, *J* = 16.1 Hz, 1H), 6.68 (dd, *J* = 8.2, 2.7 Hz, 1H), 4.87 (s, 1H), 2.34 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ = 161.36 (d, *J* = 247.3 Hz), 152.81, 136.29, 132.65 (d, *J* = 3.3 Hz), 130.45, 127.96, 127.17, 127.06 (d, *J* = 8.0 Hz), 124.97 (d, *J* = 2.3 Hz), 114.60 (d, *J* = 21.6 Hz), 113.66, 110.75, 17.94.

¹⁹F NMR (376 MHz, CDCl₃) δ = -114.10.

HRMS (ESI-TOF) m/z $[M + Na]^+$ calcd for C₁₅H₁₃FNaO 251.0843, found 251.0835.

(E)-3-(4-Chlorostyryl)-4-methylphenyl acetate (5h)

^{ci} Yield: 55%, white solid

TLC (SiO₂) R_f = 0.78 (hexanes/ethyl acetate = 8:2), [UV light]

mp 91-92℃

¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, *J* = 8.5 Hz, 2H), 7.32 (d, *J* = 8.5 Hz, 2H), 7.28 (d, *J* = 2.3 Hz, 1H), 7.23 (d, *J* = 15.9 Hz, 1H), 7.17 (d, *J* = 8.2 Hz, 1H), 6.94-6.87 (m, 2H), 2.39 (s, 3H), 2.30 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ = 169.74, 149.13, 137.27, 135.84, 133.47, 131.36, 129.56, 128.90, 127.83, 126.29, 120.72, 118.20, 21.16, 19.37.

HRMS (ESI-TOF) m/z $[M + Na]^+$ calcd for $C_{17}H_{15}CINaO_2$ 309.0653, found 309.0651.

(E)-3-(4-Bromostyryl)-4-methylphenol (5i)

^{Br} Yield: 67%, white solid

TLC (SiO₂) R_f = 0.47 (hexanes/ethyl acetate = 8:2), [UV light]

mp 149-151℃

¹H NMR (400 MHz, CDCl₃) δ 7.51-7.45 (m, 2H), 7.40-7.33 (m, 2H), 7.25 (d, J = 16.1 Hz, 1H), 7.07-7.02 (m,

2H), 6.88 (d, J = 16.1 Hz, 1H), 6.68 (dd, J = 8.2, 2.7 Hz, 1H), 4.70 (s, 1H), 2.34 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 153.83, 137.10, 136.43, 131.80, 131.54, 128.92, 128.33, 128.07, 126.91,

121.43, 114.90, 111.80, 18.98.

HRMS (ESI-TOF) m/z $[M + Na]^+$ calcd for C₁₅H₁₃BrNaO 311.0042, found 311.0040.

(E)-3-(2-([1,1'-Biphenyl]-4-yl)vinyl)-4-methylphenol (5j)

Ph Yield: 58%, white solid

TLC (SiO₂) R_f = 0.46 (hexanes/ethyl acetate = 8:2), [UV light]

mp 149-150℃

¹H NMR (400 MHz, CDCl₃) δ 7.65-7.58 (m, 6H), 7.46 (t, *J* = 7.6 Hz, 2H), 7.37 (d, *J* = 7.4 Hz, 1H), 7.33 (d, *J* = 16.1 Hz, 1H), 7.11 (d, *J* = 2.7 Hz, 1H), 7.06 (d, *J* = 8.2 Hz, 1H), 7.01 (d, *J* = 16.1 Hz, 1H), 6.70 (dd, *J* = 8.2, 2.7 Hz, 1H), 4.81 (s, 1H), 2.38 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 152.82, 139.64, 139.43, 136.44, 135.52, 130.47, 128.68, 127.80, 127.26, 126.36, 126.34, 126.02, 125.92, 125.23, 113.67, 110.77, 17.98.

HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₂₁H₁₈NaO 309.1250, found 309.1250.

(E)-4-Methyl-3-(4-methylstyryl)phenyl acetate (5k)

^{le} Yield: 50%, white solid

TLC (SiO₂) R_f = 0.78 (hexanes/ethyl acetate = 8:2), [UV light]

mp 98-100℃

¹H NMR (400 MHz, CDCl₃) δ 7.40 (d, *J* = 8.1 Hz, 2H), 7.29 (d, *J* = 2.4 Hz, 1H), 7.21 (d, *J* = 16.1 Hz, 1H), 7.18-7.15 (m, 3H), 6.94 (d, *J* = 16.1 Hz, 1H), 6.88 (dd, *J* = 8.2, 2.4 Hz, 1H), 2.39 (s, 3H), 2.36 (s, 3H), 2.30 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ = 169.78, 149.11, 137.82, 134.60, 133.30, 131.25, 130.82, 129.45, 126.60, 124.73, 120.27, 118.06, 21.29, 21.18, 19.40.

HRMS (ESI-TOF) m/z $[M + Na]^+$ calcd for C₁₈H₁₈NaO₂ 289.1199, found 289.1206.

(E)-4-Methyl-3-(4-propylstyryl)phenol (51)

n-Pr Yield: 64%, white solid

TLC (SiO₂) R_f = 0.55 (hexanes/ethyl acetate = 8:2), [UV light]

mp 67-69℃

¹H NMR (400 MHz, CDCl₃) δ 7.43 (d, *J* = 8.1 Hz, 2H), 7.22 (d, *J* = 16.1 Hz, 1H), 7.17 (d, *J* = 8.1 Hz, 2H), 7.07 (d, *J* = 2.7 Hz, 1H), 7.03 (d, *J* = 8.2 Hz, 1H), 6.94 (d, *J* = 16.1 Hz, 1H), 6.66 (dd, *J* = 8.2, 2.7 Hz, 1H), 4.76 (s, 1H), 2.62-2.56 (m, 2H), 2.34 (s, 3H), 1.70-1.60 (m, 3H), 0.95 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ = 153.86, 142.59, 137.76, 135.04, 131.47, 130.24, 128.90, 128.21, 126.58, 125.35, 114.48, 111.79, 37.88, 24.60, 19.05, 13.89.

HRMS (ESI-TOF) m/z $[M + H]^+$ calcd for C₁₈H₂₁O 253.1587, found 253.1582.

Methyl (E)-4-(5-hydroxy-2-methylstyryl)benzoate (5m)

CO₂Me Yield: 60%, white solid

TLC (SiO₂) R_f = 0.31 (hexanes/ethyl acetate = 8:2), [UV light]

mp 166-168℃

¹H NMR (400 MHz, D₆-Acetone) δ 8.15 (s, 1H), 7.96 (d, *J* = 8.1 Hz, 2H), 7.72-7.68 (m, 2H), 7.53 (d, *J* = 16.2 Hz, 1H), 7.14 (d, *J* = 2.5 Hz, 1H), 7.07 (d, *J* = 16.2 Hz, 1H), 7.00 (d, *J* = 8.2 Hz, 1H), 6.69 (dd, *J* = 8.2, 2.5 Hz, 1H), 3.84 (s, 3H), 2.31 (s, 3H).

¹³C NMR (100 MHz, D₆-Acetone) δ = 166.17, 155.81, 142.40, 136.64, 131.43, 129.79, 129.13, 128.96, 128.39, 127.18, 126.60, 115.51, 111.82, 51.45, 18.13.

HRMS (ESI-TOF) m/z $[M + Na]^+$ calcd for $C_{17}H_{16}NaO_3$ 291.0992, found 291.0984.

(E)-3-(3,5-Dimethylstyryl)-4-methylphenol (5n)

Yield: 58%, white solid

TLC (SiO₂) R_f = 0.54 (hexanes/ethyl acetate = 8:2), [UV light]

mp 98-99℃

¹H NMR (400 MHz, CDCl₃) δ 7.25 (d, *J* = 16.1 Hz, 1H), 7.14 (s, 2H), 7.07 (d, *J* = 2.5 Hz, 1H), 7.05 (d, *J* = 8.2 Hz, 1H), 6.94 (s, 1H), 6.91 (d, *J* = 16.4 Hz, 1H), 6.68 (dd, *J* = 8.6, 2.3 Hz, 1H), 4.78 (s, 1H), 2.37 (s, 3H), 2.36 (s, 6H).

¹³C NMR (100 MHz, CDCl₃) δ = 153.77, 138.18, 137.69, 137.42, 131.43, 130.45, 129.54, 128.24, 125.84, 124.52, 114.51, 111.82, 21.34, 19.05.

HRMS (ESI-TOF) m/z $[M + Na]^+$ calcd for C₁₇H₁₈NaO 261.1250, found 261.1257.

(E)-3-(2-(Benzo[d][1,3]dioxol-5-yl)vinyl)-4-methylphenyl acetate (50)

Yield: 31%, white solid

TLC (SiO₂) R_f = 0.61 (hexanes/ethyl acetate = 8:2), [UV light]

mp 78-80℃

¹H NMR (400 MHz, CDCl₃) δ 7.25 (d, *J* = 2.3 Hz, 1H), 7.15 (d, *J* = 8.2 Hz, 1H), 7.08 (d, *J* = 16.2 Hz, 1H), 7.05 (d, *J* = 1.6 Hz, 1H), 6.93-6.85 (m, 3H), 6.79 (d, *J* = 8.0 Hz, 1H), 5.97 (s, 2H), 2.37 (s, 3H), 2.30 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ = 169.87, 149.15, 148.24, 147.58, 137.74, 133.30, 131.95, 131.33, 130.55, 124.03, 121.77, 120.29, 118.00, 108.54, 105.73, 101.27, 21.24, 19.47. HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₁₈H₁₆NaO₄ 319.0941, found 319.0933.

(E)-4-Methyl-3-(2-(naphthalen-2-yl)vinyl)phenol (5p)

Yield: 56%. white solid

TLC (SiO₂) R_f = 0.44 (hexanes/ethyl acetate = 8:2), [UV light]

mp 118-120℃

¹H NMR (400 MHz, CDCl₃) δ 7.82-7.77 (m, 4H), 7.71 (d, *J* = 8.6 Hz, 1H), 7.43 (qd, *J* = 7.1, 3.3 Hz, 2H), 7.37 (d, *J* = 16.1 Hz, 1H), 7.12-7.08 (m, 2H), 7.03 (d, *J* = 8.2 Hz, 1H), 6.67 (dd, *J* = 8.2, 2.4 Hz, 1H), 4.78 (s, 1H), 2.36 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ = 153.94, 137.54, 135.04, 133.76, 133.13, 131.57, 130.32, 128.39, 128.37, 128.08, 127.77, 126.78, 126.56, 126.44, 126.02, 123.65, 114.77, 111.84, 19.11.

HRMS (ESI-TOF) m/z $[M + H]^+$ calcd for C₁₉H₁₇O 261.1274, found 261.1284.

(E)-4-Methyl-3-(5-phenylpent-1-en-1-yl)phenol (5q)

Yield: 29%, yellow oil

TLC (SiO₂) R_f = 0.54 (hexanes/ethyl acetate = 8:2), [UV light]

¹H NMR (400 MHz, CDCl₃) δ 7.29-7.22 (m, 2H), 7.19-7.15 (m, 3H), 6.95 (d, *J* = 8.2 Hz, 1H), 6.87 (d, *J* = 2.5 Hz, 1H), 6.58 (dd, *J* = 8.1, 2.5 Hz, 1H), 6.50 (d, *J* = 15.6 Hz, 1H), 6.10-6.00 (m, 1H), 4.77 (s, 1H), 2.68-2.62 (m, 2H), 2.27-2.21 (m, 5H), 1.82-1.74 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ = 152.67, 141.33, 137.02, 131.11, 130.16, 127.47, 127.30, 126.82, 126.26, 124.72, 112.78, 110.96, 34.33, 31.72, 30.02, 17.88.

HRMS (ESI-TOF) m/z $[M + Na]^+$ calcd for C₁₈H₂₀NaO 275.1406, found 275.1413.

4'-Methoxy-6-methyl-[1,1'-biphenyl]-3-ol (5r)

•Me Yield: 57%, pale yellow oil

TLC (SiO₂) R_f = 0.47 (hexanes/ethyl acetate = 8:2), [UV light]

¹H NMR (500 MHz, CDCl₃) δ 7.24 (dd, *J* = 7.4, 6.3 Hz, 2H), 7.11 (d, *J* = 7.9 Hz, 1H), 6.96-6.92 (m, 2H), 6.74-

6.69 (m, 2H), 4.76 (s, 1H), 3.85 (s, 3H), 2.18 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ = 158.59, 153.46, 142.75, 134.17, 131.45, 130.22, 127.68, 116.76, 113.91, 113.58, 55.40, 19.69.

HRMS (ESI-TOF) m/z $[M + H]^+$ calcd for C₁₄H₁₅O₂ 215.1067, found 215.1069.

3-(Benzo[b]thiophen-2-yl)-4-methylphenol (5s)

Yield: 24%, yellow oil

TLC (SiO₂) R_f = 0.51 (hexanes/ethyl acetate = 8:2), [UV light]

¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, *J* = 7.8 Hz, 1H), 7.78 (d, *J* = 7.4 Hz, 1H), 7.40-7.30 (m, 2H), 7.24 (s, 1H), 7.15 (d, *J* = 8.3 Hz, 1H), 6.97 (d, *J* = 2.7 Hz, 1H), 6.78 (dd, *J* = 8.3, 2.7 Hz, 1H), 4.85 (s, 1H), 2.39 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ = 153.44, 143.08, 140.16, 140.01, 135.16, 131.97, 128.57, 124.39, 124.19, 123.55, 123.10, 122.06, 117.31, 115.33, 20.18.

HRMS (ESI-TOF) m/z $[M + H]^+$ calcd for C₁₅H₁₃OS 241.0682, found 241.0674.

(E)-4-Ethyl-3-styrylphenol (5t)

Yield: 45%, white solid

<u>TLC (SiO₂</u>) $R_f = 0.51$ (hexanes/ethyl acetate = 8:2), [UV light]

mp 86-88℃

¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, *J* = 7.5 Hz, 2H), 7.38-7.24 (m, 4H), 7.08 (d, *J* = 2.6 Hz, 1H), 7.06 (d, *J* = 8.3 Hz, 1H), 6.96 (d, *J* = 16.1 Hz, 1H), 6.71 (dd, *J* = 8.2, 2.7 Hz, 1H), 4.77 (s, 1H), 2.71 (q, *J* = 7.5 Hz, 2H), 1.20 (t, *J* = 7.6 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ = 153.84, 137.63, 136.96, 134.68, 130.38, 130.11, 128.78, 127.75, 126.67, 126.00, 114.93, 112.13, 25.79, 15.86.

HRMS (ESI-TOF) m/z $[M + Na]^+$ calcd for C₁₆H₁₆NaO 247.1093, found 247.1099.

(E)-4-Styryl-5,6,7,8-tetrahydronaphthalen-2-yl acetate (5u)

Yield: 35%, white solid

TLC (SiO₂) R_f = 0.84 (hexanes/ethyl acetate = 8:2), [UV light]

mp 80-82℃

¹H NMR (400 MHz, CDCl₃) (mixture of rotamers) δ 7.49-7.45 (m, 2H), 7.37-7.33 (m, 2H), 7.30-7.24 (m, 2H), 7.13-6.99 (m, 1H), 6.94-6.72 (m, 2H), 2.82-2.71 (m, 4H), 2.30 (s, 2.4H), 2.19 (s, 0.6H), 1.87-1.73 (m, 4H).

¹³C NMR (100 MHz, CDCl₃) (mixture of rotamers) δ = (170.05), 170.03, 148.43, (146.10), 139.12, 138.04, 137.55, (137.19, 135.32, 134.25), 132.55, 131.06, (129.85, 128.96), 128.77, (127.88), 127.82, 126.71, (126.44), 125.86, (122.53), 121.32, (119.59), 116.10, 30.31, (29.80), (27.93), 26.57, 23.25, (23.10), (22.65), 22.56, 21.25, (21.16).

HRMS (ESI-TOF) m/z $[M + Na]^+$ calcd for C₂₀H₂₀NaO₂ 315.1356, found 315.1348.

(E)-4-Hydroxy-3,4-dimethyl-5-styrylcyclohex-2-en-1-one (1aa)

Yield: 81%, pale yellow oil

TLC (SiO₂) R_f = 0.21 (hexanes/ethyl acetate = 4:1), [UV light]

¹H NMR (400 MHz, CDCl₃) δ 7.34-7.26 (m, 4H), 7.25-7.19 (m, 1H), 6.55 (d, *J* = 15.9 Hz, 1H), 6.19 (ddd, *J* = 15.9, 9.4, 1.1 Hz, 1H), 5.83 (s, 1H), 2.93-2.85 (m, 1H), 2.71-2.57 (m, 2H), 2.43 (s, 1H), 1.99 (s, 3H), 1.49 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ = 197.61, 165.32, 136.36, 135.05, 128.73, 128.06, 127.17, 126.53, 126.33, 72.00, 50.84, 41.15, 25.93, 19.38.

HRMS (ESI-TOF) m/z $[M + Na]^+$ calcd for $C_{16}H_{18}NaO_2$ 265.1199, found 265.1197.

4. Single Crystal Diffraction Data

4.1 Crystal structure and X-ray crystallographic data of 5b

A view of the molecular structure of compound **5b** (thermal ellipsoids are shown with a 30% probability level). CCDC deposition number: 2088626.

Empirical formula	C ₁₅ H ₁₄ O		
Formula weight	210.10		
Temperature/K	293(2)		
Crystal system	trigonal		
Space group	R-3		
a/Å	25.237(3)		
b/Å	25.237(3)		
c/Å	10.3671(11)		
α/°	90		
β/°	90		
γ/°	120		
Volume/ų	5718.0(13)		
Z	18		
$\rho_{calc}g/cm^3$	1.153		
µ/mm⁻¹	0.071		
F(000)	2109.0		
Crystal size/mm ³	$0.12 \times 0.1 \times 0.08$		
Radiation	Μο Κα (λ = 0.71073)		
20 range for data collection/° 4.348 to 58.852			
Index ranges	$-32 \le h \le 15, -25 \le k \le 32, -10 \le l \le 14$		
Reflections collected	5104		
Independent reflections	2923 [R _{int} = 0.0295, R _{sigma} = 0.0621]		
Data/restraints/parameters	2923/0/147		
Goodness-of-fit on F ²	1.727		
Final R indexes [I>=2σ (I)]	$R_1 = 0.1099, wR_2 = 0.3249$		
Final R indexes [all data]	R ₁ = 0.1604, wR ₂ = 0.3453		
Largest diff. peak/hole / e Å ⁻³	1.77/-0.24		

4.2 Crystal structure and X-ray crystallographic data of 5u

A view of the molecular structure of compound **5u** (thermal ellipsoids are shown with a 30% probability level). CCDC deposition number: 2088627.

Empirical formula	C ₂₀ H ₂₀ O ₂		
Formula weight	292.36		
Temperature/K	150.00(10)		
Crystal system	monoclinic		
Space group	P21/c		
a/Å	16.0250(17)		
b/Å	23.631(3)		
c/Å	8.4066(7)		
α/°	90		
β/°	96.599(9)		
γ/°	90		
Volume/ų	3162.4(6)		
Z	14		
ρ _{calc} g/cm ³	2.149		
µ/mm ⁻¹	0.136		
F(000)	2184.0		
Radiation	Μο Κα (λ = 0.71073)		
20 range for data collection/° 4.294 to 59.104			
Index ranges	$-21 \le h \le 21, -23 \le k \le 31, -8 \le l \le 11$		
Reflections collected	16755		
Independent reflections	7444 [$R_{int} = 0.0434$, $R_{sigma} = 0.0731$]		
Data/restraints/parameters	7444/0/399		
Goodness-of-fit on F ²	1.030		
Final R indexes [I>=2σ (I)]	R ₁ = 0.0595, wR ₂ = 0.1162		
Final R indexes [all data]	R ₁ = 0.1025, wR ₂ = 0.1361		
Largest diff. peak/hole / e Å ⁻³	0.41/-0.36		

5. Copies of NMR Spectra

S27

250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 fl (ppm)

250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 fl (ppm)

S40

compound 4o

S42

compound 4p

250 240 230 220 210 200 190 180 170 180 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 fl (ppm)

250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 fl (ppm)

S50

S51

¹⁹F NMR (377 MHz, CDCl₃)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: f1 (ppm)

----113.41

Мe

¹⁹F NMR (376 MHz, CDCl₃)

														· · ·							· · · ·	
10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210
	fl (ppm)																					

---114.10

compound 5i

S62

compound 5n

250 240 230 220 210 200 190 180 170 180 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 fl (ppm)

compound 5t

compound 5u

compound 1aa

