Supporting Information

Amino-assisted synthesis of alkynylthioethers via a visible-light-induced $\mathrm{C}_{(\mathrm{sp})}-\mathbf{S}^{\mathrm{II}}$ coupling between bromoalkynes and 2,2'-diaminodiaryldisulfides

Ruyi Ye, ${ }^{a}$ Hongjie Ruan, ${ }^{a}$ Hailong Xu, ${ }^{a}$ Ziyang Li, ${ }^{a}$ Ling-Guo Meng, ${ }^{*}{ }^{a}$ and Lei Wang ${ }^{* a, b, c}$${ }^{a}$ Department of Chemistry; Key Laboratory of Green and Precise Synthetic Chemistry, Ministry ofEducation, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China${ }^{b}$ Advanced Research Institute and Department of Chemistry, Taizhou University, Taizhou, Zhejiang318000, P. R. China${ }^{c}$ State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, ChineseAcademy of Sciences, Shanghai 200032, P R Chinamilig@126.com; leiwang88@hotmail.com
Table of Contents

1. General remarks 2
2. Representative procedure for the synthesis of alkynylthioethers. 3
3. Representative procedure General for synthesis of dihydrobenzothiazoles. 4
4. Optimization conditions for the reaction of 2,2'-diaminodiphenyl disulfide and ketone. 5
5. The effect of concentration on the yield of 3aa 6
6. Free-radical trapping experiment using TEMPO 6
7. Cyclic voltammetry (CV) measurements 9
8. HRMS spectrum of 3aw 10
9. The cross-radical-coupling of homolytic cleavage of different disulfides. 11
10. Characteristic data of the products 15
11. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of the products 27
12. References. 58

1. General remarks

All reactions were conducted in clean glassware with magnetic stirring. Chromatographic purification was performed on silica gel (400~500 mesh) or neutral alumina (200-300 mesh) and analytical thin layer chromatography (TLC) on silica gel HG/T2354-2010 GF254 (Qindao), which was detected by fluorescence. ${ }^{1} \mathrm{H}$ NMR (600 MHz) and ${ }^{13} \mathrm{C}$ NMR (150 MHz) spectra were measured with a Bruker Avance Neo 600 spectrometer with CDCl_{3} as solvent and recorded in ppm relative to internal tetramethylsilane standard. NMR data are reported as follows: δ, chemical shift; coupling constants (J are given in Hertz, Hz) and integration. Abbreviations to denote the multiplicity of a particular signal were s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), and br (broad singlet). High resolution mass spectra were obtained with a Thermo Scientific LTQ Orbitrap XL mass spectrometer (ESI). Cyclic voltammetry (oxidation potential) data was obtained by using Shanghai Chenhua electrochemical workstation. Melting points were determined on a digital melting point apparatus and temperatures were uncorrected.

2. Representative procedure for the synthesis of alkynylthioethers

2.1 Representative procedure for the synthesis of alkynylthioethers in $\mathbf{0 . 1 0}$ mmol scale

To a solution of $2,2^{\prime}$-diaminodiphenyldisulfide (1a, 0.10 mmol) in 4 mL of dichloromethane was added bromoalkyne (2a, 0.10 mmol) under nitrogen atmosphere. The reaction mixture was stirred under blue LEDs (450-455 nm) irradiation for 12 h at room temperature. The residue was then purified by column chromatography on silica gel (petroleum ether/EtOAc $=10: 1$) to give the pure product $\mathbf{3 a}$ in 83% yield.

2.2 Representative procedure for the synthesis of alkynylthioethers in 5.0 mmol scale

2,2'-Diaminodiphenyldisulfide (1a, $1.24 \mathrm{~g}, 5.0 \mathrm{mmol}$) and bromoalkyne (2a, $905 \mathrm{mg}, 5.0 \mathrm{mmol})$ were added in dichloromethane (30.0 mL) under nitrogen atmosphere, and the reaction mixture was stirred under blue LEDs (450-455 nm) irradiation for 48 h at room temperature. The residue was then purified by silica gel column chromatography (petroleum ether/EtOAc $=10: 1$) to give pure product compound 3aa (768 mg , 68% yield).
3. Representative procedure General for synthesis of

dihydrobenzothiazoles

3.1 Representative procedure for the synthesis of dihydrobenzothiazoles in

 0.10 mmol scale

To a solution of 2,2'-diaminodiphenyldisulfide ($\mathbf{1} \mathbf{a}, 0.10 \mathrm{mmol}$) in 2 mL of dichloromethane was added 1-cyclopropylethan-1-one ($\mathbf{6 a}, 0.30 \mathrm{mmol}$) under nitrogen atmosphere, the mixture was stirred for 4 h at room temperature. Subsequently, $\mathrm{T}(p-\mathrm{Cl})$ PPT ($5 \mathrm{~mol} \%$) was added to the reaction system and the mixture was stirred under the blue LEDs ($450-455 \mathrm{~nm}$) irradiation at room temperature for 6 h . The residue was then purified by column chromatography on neutral alumina (petroleum ether/EtOAc 20:1) to obtain the pure product 7aa in 67% yield.

3.1 Representative procedure for the synthesis of dihydrobenzothiazoles in

5.0 mmol scale

To a solution of $2,2^{\prime}$-diaminodiphenyldisulfide ($\mathbf{1 a}, 1.24 \mathrm{~g}, 5.0 \mathrm{mmol}$) in 20 mL of dichloromethane was added 1-cyclopropylethan-1-one ($\mathbf{6 a}, 1.26 \mathrm{~g}, 15.0 \mathrm{mmol}$) under nitrogen atmosphere, the mixture was stirred for 8 h at room temperature. Subsequently, T(p-Cl)PPT ($125 \mathrm{mg}, 5 \mathrm{~mol} \%$) was added to the reaction system and the mixture was stirred under the blue LEDs ($450-455 \mathrm{~nm}$) irradiation at room temperature for 12 h . The residue was then purified by column chromatography on neutral alumina (petroleum ether/EtOAc 20:1) to obtain the pure product $7 \mathbf{7 a a}$ ($516 \mathrm{mg}, 54 \%$ yield).

4. Optimization conditions for the reaction of $\mathbf{2 , 2}$ '-diaminodiphenyl

 disulfide and ketone

Entry	Light source	Solvent	Photosensitizer	Yield ${ }^{\text {b }}$ (\%)
1	blue LED (450-455 nm)	DCM	Mes- $\mathrm{Acr}^{+} \mathrm{ClO}_{4}{ }^{-}$	N.R
2	blue LED (450-455 nm)	DCM	Eosin Y	N.R
3	blue LED ($450-455 \mathrm{~nm}$)	DCM	[Ir]	N.R
4	blue LED (450-455 nm)	DCM	T(p-Cl)PPT	67
5	blue LED ($450-455 \mathrm{~nm}$)	DCM	[Ru]	ND^{c}
6	blue LED (450-455 nm)	DCM	$\mathrm{T}(p-\mathrm{Cl}) \mathrm{PPT}$	65^{d}
7	blue LED ($450-455 \mathrm{~nm}$)	DCM	$\mathrm{T}(p-\mathrm{Cl}) \mathrm{PPT}$	64^{e}
8	blue LED ($450-455 \mathrm{~nm}$)	DCM	$\mathrm{T}(p-\mathrm{Cl}) \mathrm{PPT}$	52
9	purple LED (380-385 nm)	DCM	$\mathrm{T}(p-\mathrm{Cl}) \mathrm{PPT}$	ND
10	green LED (480-570 nm)	DCM	$\mathrm{T}(p$-Cl)PPT	ND
11	yellow LED ($570-610 \mathrm{~nm}$)	DCM	T(p-Cl)PPT	ND
12	-	DCM	T(p-Cl)PPT	ND
13	blue LED (450-455 nm)	THF	T p - Cl) PPT	32
14	blue LED ($450-455 \mathrm{~nm}$)	DMF	$\mathrm{T}(p-\mathrm{Cl}) \mathrm{PPT}$	23
15	blue LED (450-455 nm)	$\mathrm{CH}_{3} \mathrm{CN}$	T(p-Cl)PPT	27
16	blue LED ($450-455 \mathrm{~nm}$)	EtOH	T(p-Cl)PPT	13
17	blue LED ($450-455 \mathrm{~nm}$)	DMSO	$\mathrm{T}(p-\mathrm{Cl}) \mathrm{PPT}$	21

[^0]
5. The effect of concentration on the yield of 3aa (Figure S1)

Figure S1. Analysis diagram of the effect of concentration on the product yield ${ }^{a, b}$
[${ }^{a}$ Reaction conditions: 1a $(0.10 \mathrm{mmol})$, 2a $(0.10 \mathrm{mmol})$, blue LED $(450-455 \mathrm{~nm}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{X} \mathrm{mL})$, room temperature, N_{2} atmosphere, 12 h . ${ }^{b}$ Isolated yield.]

6. Free-radical trapping experiment using TEMPO

To elaborate the reaction clearly and ascertain the coupling reaction initiated by disulfide 1a or bromoalkyne 2a, a control experiment was carried out. The coupling reaction was halted when a radical scavenger 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) was added to the reaction system, and this significant suppression implied that a radical process might be involved in the reaction. A free-radical trapping product with TEMPO, 2-(((2,2,6,6-tetramethylpiperidin-1-yl)oxy)thio)aniline was isolated. It believes
that the transformation was initiated by homolytic cleavage of 1a under the present reaction conditions.

TEMPO (2.0 equiv)

Blue LEDs (450-455 nm)
$\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~N}_{2}, 12 \mathrm{~h}$

3aa, 0\%

2-(((2,2,6,6-Tetramethylpiperidin-1-yl)oxy)thio)aniline (4)

White solid. Mp: 152-154 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.22$ (dd, $J=7.8,1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.05(\mathrm{td}, J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.65-6.62(\mathrm{~m}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, 5.14 ($\mathrm{s}, 2 \mathrm{H}$), 1.63-1.27 (m, 18H). ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 145.8, 130.6, 128.2, 127.6 117.3, 117.0, 60.9, 43.5, 30.7, 17.1. HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{OS}(\mathrm{M}+\mathrm{Na})^{+}: 303.1502$; Found: 303.1499

7. Cyclic voltammetry (CV) measurements

(1) Preparation of the samples

(a): Blank control experiment
(b): To a solution of 1,2 -diphenyldisulfane ($\mathbf{1 a}, 0.30 \mathrm{mmol}, 74.4 \mathrm{mg}$) in 10 mL of dichloromethane under nitrogen atmosphere, and then the mixture was stirred for 4 h at room temperature.
(c): To a solution of 1,2 -diphenyldisulfane ($\mathbf{1 a}, 0.30 \mathrm{mmol}, 74.4 \mathrm{mg}$) in 10 mL of dichloromethane was added 1-cyclopropylethan-1-one (6a, 0.90 $\mathrm{mmol}, 75.7 \mathrm{mg}$) under nitrogen atmosphere, and then the mixture was stirred for 4 h at room temperature.
(d): To a solution of 1,2 -diphenyldisulfane ($\mathbf{1 a}, 0.30 \mathrm{mmol}, 74.4 \mathrm{mg}$) in 10 mL of dichloromethane was added 3-pentanone ($\mathbf{6 c}, 0.9 \mathrm{mmol}, 77.5 \mathrm{mg}$) under nitrogen atmosphere, and then the mixture was stirred for 4 h at room temperature.

(2) Cyclic voltammetry measurements

Cyclic voltammetry (CV) measurements were recorded by using $\mathrm{Ag} / \mathrm{AgCl}$ as the reference electrode, tetrabutylammonium tetrafluoroborate (0.5 $\mathrm{mmol}, 165 \mathrm{mg}$) as the electrolyte. The results are summarized in Figure S2.

Figure S2. Cyclic voltammetry (CV) measurements

8. HRMS spectrum of 3aw

9. The cross-radical-coupling of homolytic cleavage of different disulfides

To elaborate the reaction clearly and ascertain that the coupling reaction is initiated by disulfide 1a or bromoalkyne 2a, the cross-radical-couplings of homolytic cleavage of $\mathbf{1 a}$ with $\mathbf{1 b} / \mathbf{1 z}$ were carried out. To our delight, the corresponding cross-radical-coupling products (1e and 1f) were obtained in 45% and 31% yields, respectively, implying that a radical process might be involved in the reaction and the coupling reaction is initiated by disulfide. In addition, the obtained products ($\mathbf{1}$ e and $\mathbf{1 f}$) could be used as substrates for the control experiments.

To a solution of 1,2-diphenyldisulfide (1b, 0.20 mmol) or 1,2-bis(4-(tert-butyl)phenyl)disulfide ($\mathbf{1 z}, \quad 0.20 \mathrm{mmol}$) in 2 mL of dichloromethane was added 2,2'-diaminodiphenyldisulfide (1a, 0.2 mmol) under nitrogen atmosphere. The reaction mixture was stirred at room temperature under blue LEDs (450-455 nm) irradiation for 12 h . The residue was then purified by column chromatography on silica gel (petroleum ether/EtOAc $=10: 1$) to give the pure product.

2－（Phenyldisulfanyl）aniline（1e）

Pale yellow solid．Mp：72－74 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR（ $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：$\delta 7.52(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.31-7.24(\mathrm{~m}, 4 \mathrm{H}), 7.14(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.61$ $(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR（150 MHz， $\left.\mathrm{CDCl}_{3}\right): \delta 148.0,137.2$, 135．3，131．2，130．3，129．0，127．9，118．9，118．4，115．5．HRMS（ESI）calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{NS}_{2}(\mathrm{M}+\mathrm{H})^{+}: 234.0406$ ；Found：234．0405．

1e

2-((4-(tert-Butyl)phenyl)disulfanyl)aniline (1f)

Pale yellow solid. $\mathrm{Mp}: 87-89{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.48-7.46(\mathrm{~m}$, $2 \mathrm{H}), 7.36-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{dd}, J=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{td}, J=7.5,1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.73(\mathrm{dd}, J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{td}, J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{~s}, 2 \mathrm{H}), 1.33$ ($\mathrm{s}, 9 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 151.4,147.9,135.4,133.8,131.1,130.5$, 126.0, 119.3, 118.3, 115.4, 34.6, 31.2. HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NS}_{2}(\mathrm{M}+\mathrm{H})^{+}$: 290.1032; Found: 290.1034.

un

Bu

10. Characterization data for the products

2-((Phenylethynyl)thio)aniline (3aa) ${ }^{2}$

Yellow oil (17 mg, 83\% yield). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.53$ (d, $J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.44-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.3-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.61(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.79-6.75(\mathrm{~m}$, $2 \mathrm{H}), 4.28(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz, CDCl_{3}): $\delta 146.5,132.9,131.6,130.1$, $128.4,128.3,123.0,119.1,115.9,114.2,93.1,76.7$.

2-(((4-Methoxyphenyl)ethynyl)thio)aniline (3ab) ${ }^{\mathbf{2}}$

Yellow solid ($20 \mathrm{mg}, 78 \%$ yield). Mp: $97-99{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $7.52(\mathrm{dd}, J=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.17(\mathrm{td}, J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, 6.83-6.81 (m, 2H), 6.78-6.74 (m, 2H), $4.27(\mathrm{~s}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 159.8,146.4,133.6,132.7,129.9,119.0,115.9,115.0,114.6$, 113.9, 93.5, 74.6, 55.3.

2-((p-Tolylethynyl)thio)aniline (3ac) ${ }^{2}$

Yellow solid ($20 \mathrm{mg}, 82 \%$ yield). Mp: $99-101{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $7.54(\mathrm{dd}, J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{td}, J=7.5,1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.12(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.79-6.75(\mathrm{~m}, 2 \mathrm{H}), 4.27(\mathrm{~s}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz, CDCl_{3}): $\delta 146.4,138.6,132.7,131.7,130.0,129.0,128.9,119.8$,
$119.0,115.8,114.3,93.6,75.6,21.5$.

2-(((4-Ethylphenyl)ethynyl)thio)aniline (3ad)

Yellow solid (19 mg, 74\% yield). Mp:103-105 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.52 (dd, $J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.17(\mathrm{td}, J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.13(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.78-6.74(\mathrm{~m}, 2 \mathrm{H}), 4.25(\mathrm{~s}, 2 \mathrm{H}), 2.65(\mathrm{q}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $1.23(\mathrm{t}, J=7.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 146.4,145.0,132.7,131.8$, 130.0, 127.8, 120.1, 119.1, 115.9, 114.5, 99.7, 75.6, 28.8, 15.3. HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{NS}(\mathrm{M}+\mathrm{H})^{+}: 254.0998$; Found: 254.0999.

2-(((4-(n-Propyl)phenyl)ethynyl)thio)aniline (3ae)

Yellow soild (20 mg, 76\% yield). Mp: 103-105 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.53 (dd, $J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.17-7.14(\mathrm{~m}, 1 \mathrm{H}), 7.11(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.78-6.74(\mathrm{~m}, 2 \mathrm{H}), 4.25(\mathrm{~s}, 2 \mathrm{H}), 2.58(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, 1.65-1.59 (m, 2H), $0.94(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 146.4$, $143.5,132.7,131.7,130.0,128.4,120.1,119.1,115.9,114.5,93.7,75.6,37.9,24.3$, 13.7. HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NS}(\mathrm{M}+\mathrm{H})^{+}$: 268.1155; Found: 268.1154.

2-(((4-(n-Butyl)phenyl)ethynyl)thio)aniline (3af)

Yellow oil (21 mg, 75% yield). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.54$ (dd, $J=7.8$,
$1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{td}, J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 6.78-6.74(\mathrm{~m}, 2 \mathrm{H}), 4.25(\mathrm{~s}, 2 \mathrm{H}), 2.61(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.61-1.56(\mathrm{~m}$, $2 \mathrm{H}), 1.37-1.33(\mathrm{~m}, 2 \mathrm{H}), 0.94(\mathrm{t}, J=7.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 146.4, 143.7, 132.7, 131.7, 130.0, 128.4, 120.0, 119.0, 115.9, 114.4, 93.7, 75.5, 35.5, 33.3, 22.2, 13.9. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{NS}(\mathrm{M}+\mathrm{H})^{+}: 282.1311$; Found: 282.1312 .

2-(((4-tert-Butyl)phenyl)ethynyl)thio)aniline (3ag) ${ }^{2}$

Yellow oil ($20 \mathrm{mg}, 72 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.53$ (dd, $J=7.8$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.17(\mathrm{td}, J=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H})$, 6.78-6.74 (m, 2H), $4.26(\mathrm{~s}, 2 \mathrm{H}), 1.30(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta$ $151.8,146.4,132.6,131.5,130.0,125.3,119.9,119.0,115.9,114.4,93.7,75.5$, 34.8, 31.1, 31.1, 31.1.

2-(((4-Fluorophenyl)ethynyl)thio)aniline (3ah)

Yellow liquid (15 mg, 60% yield). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.52$ (d, $J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.42-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.19(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, 6.79-6.75 (m, 2H), $4.28(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 163.4(J=249$ $\mathrm{Hz}), 146.5,133.7(J=8.1 \mathrm{~Hz}), 133.0,130.2,119.1,119.0(J=3.3 \mathrm{~Hz}), 115.9,115.6$ $(J=22.4 \mathrm{~Hz}), 113.9,92.1,76.4$. HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{FNS}(\mathrm{M}+\mathrm{H})^{+}$: 244.0591; Found: 244.0591.

2-(((4-Chlorophenyl)ethynyl)thio)aniline (3ai) ${ }^{2}$

Yellow solid ($18 \mathrm{mg}, 70 \%$ yield). Mp: $95-97{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.52 (dd, $J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.34$ (m, 2H), 7.27-7.26 (m, 2H), 7.20 (td, $J=$ $7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.79-6.76(\mathrm{~m}, 2 \mathrm{H}), 4.13(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $146.6,134.4,133.1,132.8,130.4,128.6,121.5,119.1,115.9,113.7,92.4,78.1$.

2-(((4-Bromophenyl)ethyny)thio)aniline (3aj) ${ }^{2}$

Yellow solid ($20 \mathrm{mg}, 64 \%$ yield). Mp: 97-99 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.51 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.42$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.26$ (m, 2H), 7.19 (t, $J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.22(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $146.6,133.2,133.0,131.5,130.4,122.6,121.9,119.0,115.9,113.6,92.1,78.3$.

4-(((2-Aminophenyl)thio)ethynyl)benzonitrile (3ak) ${ }^{2}$

Yellow solid ($16 \mathrm{mg}, 62 \%$ yield). Mp: 141-143 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $7.56-7.55$ (m, 2H), 7.50 (dd, $J=8.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.44$ (m, 2H), 7.19 (td, $J=$ $7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.79-6.76(\mathrm{~m}, 2 \mathrm{H}), 4.30(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 146.8, 133.5, 131.9, 131.5, 130.8, 127.8, 119.1, 118.4, 115.9, 112.7, 111.1, 91.5, 83.0.

2-(((4-Nitrophenyl)ethynyl)thio)aniline (3al)

Yellow solid (11 mg, 40% yield). Mp: $109-111{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $8.15(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.50-7.49(\mathrm{~m}, 3 \mathrm{H}), 7.45(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.79-6.77(\mathrm{~m}$, $2 \mathrm{H}), 4.31(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz, CDCl_{3}): $\delta 146.9,146.6,133.6,131.6$, 130.9, 129.8, 123.5, 119.1, 116.0, 112.5, 91.4, 84.4. HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}: 271.0536$; Found: 271.0536.

2-((o-tolylethynyl)thio) aniline (3am)

Yellow solid ($15 \mathrm{mg}, 63 \%$ yield). Mp: $104-106{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $7.56-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.17(\mathrm{~m}, 3 \mathrm{H}), 7.14(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.80-6.76(\mathrm{~m}, 2 \mathrm{H}), 4.28(\mathrm{~s}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $146.3,140.3,132.7,131.9,130.0,129.4,128.3,125.5,122.8,119.0,115.8,114.5$, 92.5, 80.1, 20.7. HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{NS}(\mathrm{M}+\mathrm{H})^{+}: 240.0842$; Found: 240.0842 .

2-(((2-Chlorophenyl)ethynyl)thio)aniline (3an) ${ }^{2}$

Yellow solid ($14 \mathrm{mg}, 54 \%$ yield). Mp:97-99 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $7.56(\mathrm{dd}, J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{dd}, J=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{dd}, J=7.8,1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.24-7.16(\mathrm{~m}, 3 \mathrm{H}), 6.79-6.75(\mathrm{~m}, 2 \mathrm{H}), 4.29(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 146.6,135.8,133.2,132.9,130.2,129.2,129.2,126.4,123.0,119.1$, 116.0, 113.8, 90.3, 82.5.

2-(((3-Methoxyphenyl)ethynyl)thio)aniline (3ao)

Yellow solid (19 mg, 75% yield). Mp: 107-109 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $7.52(\mathrm{dd}, J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.03-7.01(\mathrm{~m}, 1 \mathrm{H}), 6.95-.94(\mathrm{~m}$, $1 \mathrm{H}), 6.87-6.85(\mathrm{~m}, 1 \mathrm{H}), 6.78-6.75(\mathrm{~m}, 2 \mathrm{H}), 4.28(\mathrm{~s}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz, CDCl_{3}): $\delta 159.2,146.5,133.0,130.2,129.3,124.2,123.9,119.1,116.3$, 115.9, 115.1, 114.0, 93.3, 76.5, 55.3. HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{NOS}(\mathrm{M}+\mathrm{H})^{+}$: 256.0791; Found: 256.0791.

2-(((3-Chlorophenyl)ethynyl)thio)aniline (3ap)

Yellow solid ($16 \mathrm{mg}, 80 \%$ yield). Mp: $98-100{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $7.51-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.40-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.29(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.20(\mathrm{td}, J=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{t}, J=7.8,2 \mathrm{H}), 4.06(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 146.7,134.1,133.2,131.3,130.4,129.6,129.5,128.5,124.7$, 119.1, 115.9, 113.5, 91.7, 78.7. HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClNS}(\mathrm{M}+\mathrm{H})^{+}$: 260.0295; Found: 260.0298.

2-(((3,5-Dimethoxyphenyl)ethynyl)thio)aniline (3aq)

Yellow solid (21 mg, 72% yield). Mp: $129-131{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ
7.53 (dd, $J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.19$ (td, $J=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.79-6.75$ (m, 2H), $6.59(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.44(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{~s}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 160.4,146.6,133.0,130.2,124.1,119.0,115.9,113.8$, 109.3, 101.9, 93.3, 76.4, 55.4, 55.4. HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{NSO}_{2}(\mathrm{M}+\mathrm{H})^{+}$: 286.0896; Found: 286.0896.

2-(([1,1'-Biphenyl]-4-ylethynyl)thio)aniline (3ar)

Yellow solid ($17 \mathrm{mg}, 57 \%$ yield). Mp: $142-144{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.59-7.57 (m, 2H), 7.54-7.53 (m, 3H), 7.50-7.49 (m, 2H), 7.45-7.43 (m, 2H), $7.37-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.19(\mathrm{td}, J=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.80-6.76(\mathrm{~m}, 2 \mathrm{H}), 4.29(\mathrm{~s}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (150 MHz, CDCl_{3}): $\delta 146.5,141.1,140.2,132.9,132.1,130.2,128.8$, 127.7, 127.0, 126.9, 121.9, 119.1, 115.9, 114.2, 93.3, 77.3. HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{NS}(\mathrm{M}+\mathrm{H})^{+}: 302.0998$; Found: 302.0998.

2-((Thiophen-2-ylethynyl)thio)aniline (3as)

Yellowish brown solid ($13 \mathrm{mg}, 54 \%$ yield). Mp: 53-55 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (600 MHz , CDCl_{3}): $\delta 7.41$ (dd, $\left.J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.17-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.08(\mathrm{td}, J=7.8,1.8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.87-6.85(\mathrm{~m}, 1 \mathrm{H}), 6.68-6.63(\mathrm{~m}, 2 \mathrm{H}), 4.17(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 146.5,133.4,133.0,130.3,128.2,126.9,123.0,119.0,115.9,113.8,86.1$, 81.1. HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{NS}_{2}(\mathrm{M}+\mathrm{H})^{+}: 232.0249$; Found: 232.0251 .

2-(Hept-1-yn-1-ylthio)aniline (3at)

Yellow oil (14 mg, 64\% yield). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.45$ (dd, $J=7.2$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{td}, J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.75-6.70(\mathrm{~m}, 2 \mathrm{H}), 4.18(\mathrm{~s}, 2 \mathrm{H}), 2.32(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.55-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.37-1.27(\mathrm{~m}, 4 \mathrm{H}), 0.90(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 146.1,132.3,129.6,118.9,115.7,115.1,95.5,65.5$, 31.0, 28.3, 22.1, 20.1, 13.9. HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NS}(\mathrm{M}+\mathrm{H})^{+}: 220.1155$; Found: 220.1155.

2-(Pent-1-yn-1-ylthio) aniline (3au)

Yellow oil (10 mg, 53\% yield). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.47-7.46(\mathrm{~m}, 1 \mathrm{H})$, 7.15-7.12 (m, 1H), 6.76-6.72 (m, 2H), 4.21(s, 2H), $2.32(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, 1.59-1.53 (m, 2H), $1.00(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 146.1$, 132.3, 129.6, 118.9, 115.7, 115.1, 95.3, 65.7, 22.1, 22.1, 13.5. HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{NS}(\mathrm{M}+\mathrm{H})^{+}: 192.0842$; Found: 192.0843 .

2-(((4-(bromoethynyl)phenyl)ethynyl)thio)aniline (3av)

Yellow solid ($27 \mathrm{mg}, 82 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.51$ (dd, $J=8.4$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.33(\mathrm{~m}, 4 \mathrm{H}), 6.19(\mathrm{td}, J=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.78-6.75(\mathrm{~m}, 2 \mathrm{H})$, 4.27 ($\mathrm{s}, 2 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 145.6, 132.1, 130.8, 130.3, 129.4, 122.3, 121.4, 118.1, 114.9, 112.6, 91.7, 78.6, 78.4, 50.9. HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{BrNS}(\mathrm{M}+\mathrm{H})^{+}: 327.9790$; Found: 327.9791.

N-(2-((Phenylethynyl)thio)phenyl)benzamide (3ca)

White solid ($15 \mathrm{mg}, 45 \%$ yield). Mp: $122-124{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $8.82(\mathrm{~s}, 1 \mathrm{H}), 8.44(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.57(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.44(\mathrm{~m}, 3 \mathrm{H}), 7.36-7.26(\mathrm{~m}, 5 \mathrm{H}), 7.19(\mathrm{t}, J=$ 7.2 Hz, 1H). ${ }^{13} \mathrm{C}$ NMR (150 MHz, CDCl_{3}): $\delta 165.3,138.0,134.6,132.5,132.1$, $131.8,130.3,128.9,128.8,128.3,127.2,125.0,122.5,122.2,120.8,94.6,75.6$. HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{NSO}(\mathrm{M}+\mathrm{H})^{+}: 330.0947$; Found: 330.0942.

\boldsymbol{N}-(2-(((4-Methoxyphenyl)ethynyl)thio)phenyl)benzamide (3da)

Brown solid (16 mg, 45\% yield). Mp: 137-139 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $8.84(\mathrm{~s}, 1 \mathrm{H}), 8.40(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.68(\mathrm{dd}, J=7.8$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.43(\mathrm{td}, J=7.8,1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.28(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.16-7.13(\mathrm{~m}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.75(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 165.3,160.2,137.8,134.6,133.7,132.3$, $132.0,130.1,128.8,127.2,125.0,122.5,121.2,114.1,113.9,94.7,73.7,55.2$. HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{NSO}_{2}(\mathrm{M}+\mathrm{H})^{+}: 360.1053$; Found: 360.1054.

2-Cyclopropyl-2-methyl-2,3-dihydrobenzo[d]thiazole (7aa)

Pale yellow oil ($26 \mathrm{mg}, 67 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.03$ (d, $J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.91(\mathrm{td}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.75-6.72(\mathrm{~m}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.88(\mathrm{~s}, 1 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.37-1.32(\mathrm{~m}, 1 \mathrm{H}), 0.56-0.50(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 143.5,125.3,122.2,119.1,118.0,108.3,75.8,27.0,20.2,-1.7$. HRMS (ESI) calcd for C11H14NS (M+H) ${ }^{+}: 192.0842$; Found: 192.0842.

2,2-Dimethyl-2,3-dihydrobenzo[d]thiazole (7ab) ${ }^{3}$

Pale yellow oil ($21 \mathrm{mg}, 64 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.07$ (dd, $J=$ $7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{td}, J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{td}, J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.57$ (dd, $J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{~s}, 1 \mathrm{H}), 1.73(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 145.8,128.5,125.0,122.1,121.0,111.4,74.6,31.6$.

2,2-Diethyl-2,3-dihydrobenzo[d]thiazole (7ac) ${ }^{3}$

Pale yellow oil ($24 \mathrm{mg}, 63 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.03$ (dd, $J=$ $7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{td}, J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{td}, J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.60$ $(\mathrm{dd}, J=7.8,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 1 \mathrm{H}), 1.92(\mathrm{q}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 1.04(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz, CDCl_{3}): $\delta 146.6,127.1,124.8,121.6,120.0,82.6,34.5$, 9.1.

2-Butyl-2-ethyl-2,3-dihydrobenzo[d]thiazole (7ad)

Pale yellow oil ($23 \mathrm{mg}, 52 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.99$ (d, $J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.87(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.82(\mathrm{~s}, 1 \mathrm{H}), 1.87-1.82(\mathrm{~m}, 4 \mathrm{H}), 1.47-1.29(\mathrm{~m}, 4 \mathrm{H}), 1.00(\mathrm{t}, J=7.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 146.5,126.9,124.7,121.5,119.8$, 82.0, 41.4, 34.8, 26.9, 22.8, 13.9, 9.0. HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{NS}(\mathrm{M}+\mathrm{H})^{+}$: 222.1311; Found: 222.1312.

3H-Spiro[benzo[d]thiazole-2,1'-cyclopentane] (3ae) ${ }^{3}$

Pale yellow oil ($20 \mathrm{mg}, 51 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.01$ (d, $J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 6.93-6.90(\mathrm{~m}, 1 \mathrm{H}), 6.77(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.81$ $(\mathrm{s}, 1 \mathrm{H}), 2.22-2.17(\mathrm{~m}, 2 \mathrm{H}), 2.05-2.01(\mathrm{~m}, 2 \mathrm{H}), 1.81-1.78(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 145.9,128.1,124.9,121.7,120.6,110.8,84.1,42.5,22.8$.

3H-Spiro[benzo[d]thiazole-2,1'-cyclohexane] (7af) ${ }^{3}$

Pale yellow oil ($19 \mathrm{mg}, 46 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.05$ (d, $J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 6.91(\mathrm{td}, J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.85(\mathrm{~s}, 1 \mathrm{H}), 2.22-2.20(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.70(\mathrm{~m}, 4 \mathrm{H}), 1.62-1.55(\mathrm{~m}, 3 \mathrm{H})$, 1.32-1.26 (m, 1H). ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 145.9,127.1,124.9,121.9$, $120.4,110.8,79.9,40.9,24.9,24.0$.

3H-Spiro[benzo[d]thiazole-2,1'-cycloheptane] (7ag)

Pale yellow oil ($20 \mathrm{mg}, 46 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.05$ (d, $J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 6.91(\mathrm{td}, J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{td}, J=7.2,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{~s}, 1 \mathrm{H}), 2.35-2.31(\mathrm{~m}, 2 \mathrm{H}), 2.08-2.04(\mathrm{~m}, 2 \mathrm{H}), 1.66-1.58(\mathrm{~m}$, $8 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz, CDCl_{3}): $\delta 145.9,127.7,124.9,122.0,120.7,111.2,83.2$, 43.7, 28.1, 22.9. HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NS}(\mathrm{M}+\mathrm{H})^{+}: 220.1154$; Found: 220.1152.
11. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and HRMS spectra of products and selected starting materials

$\stackrel{\text { N }}{\stackrel{\text { I }}{1}}$

$\stackrel{\infty}{\stackrel{\infty}{\pi}}$

$\begin{array}{llllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$ ppm

3am

 すo / M////ll

-20.670

3am

3an

3an

3ar

$\underbrace{\text { 耳~N No }}$

3as

$\stackrel{\circ}{\infty}$
V

7ac

7ac

パー

7ad

7 ae

N

7ag

	Nָণ	$\stackrel{\sim}{\sim}$	운웅․․․ 	¢
			•	

7 ag

[^1]
12. References

1. K. Wang, L.-G. Meng and L. Wang, Org. Lett., 2017, 19, 1958-1961.
2. B. R. Mandapati and A. Ramasamy, Chem. Commun., 2020, 56, 3781-3784.
3. K. Mitsuo, S. Akihito, N. Ryo and A. Tadashi, Synth. Commun., 2007, 37, 3329-3335.

[^0]: ${ }^{a}$ Reaction conditions: 1a $(0.1 \mathrm{mmol})$, $6(0.3 \mathrm{mmol})$, $\mathrm{T}(p-\mathrm{Cl})$ PPT ($5 \mathrm{~mol} \%$), light source, solvent (2.0 mL), room temperature, N_{2} atmosphere, 6 h . ${ }^{b}$ Isolated yield. ${ }^{c} \mathrm{ND}=$ No desired product was detected. ${ }^{d}$ The mixture was stirred for $24 \mathrm{~h} .{ }^{e} 10 \mathrm{~mol} \%$ of $\mathrm{T}(p-\mathrm{Cl})$ PPT was used.

[^1]:

