Supporting information

Palladium Catalyzed Desulfurative Coupling of Allyl Sulfides with
Organoboronic Acids
 Wen*a
${ }^{\text {a S School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, }}$ China
${ }^{\mathrm{b}}$ Scientific Instrument Center, Shanxi University, Taiyuan 030006, China E-mail: zkwen@sxu.edu.cn
Table of Contents Page
I. General Information S2
II. Experimental Sections S3
2.1 Preparation of allylic sulfides S3
2.2 General procedure for the palladium-catalyzed cross-coupling reaction of allylic sulfides with organoboronic acids S6
2.3 Instant monitoring of the reaction of 1a with stoichiometric PdCl_{2} in CDCl_{3} S7
2.4 Characterization data for the products S9
III. Reference: S28
IV. Copy of ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR Spectra S30

I. General Information

Unless otherwise noted, all chemicals were purchased from Energy Chemical, J \& K Scientific, Adamas-beta and used without further purification. Column chromatography purifications were performed using 200-300 mesh silica gel. Commercial grade solvents and reagents were used without further purification. Experiments involving moisture and/or air sensitive components were performed in oven-dried glassware under a positive pressure of nitrogen using freshly distilled solvents. Analytical thin layer chromatography (TLC) was performed using Merck 60 F254 pre-coated silica gel plate (0.2 mm thickness). Subsequent to elution, plates were visualized using UV radiation (254 nm) on Spectroline Model ENF-24061/F 254 nm . Further visualization was possible by staining with basic solution of potassium permanganate or acidic solution of ceric molybdate. Flash chromatography was performed using 200-300 mesh silica gel with the indicated solvent system. Columns were typically packed as slurry and equilibrated with the appropriate solvent system prior to use. High resolution mass spectral analysis (HRMS) was performed on an Thermo Scientific Q Exactive Instruments and was identified by Q Exactive-Orbitrap MS with an electrospray ionization (ESI) source. The melting point were collected on a WRS-3 melting point apparatus from Shanghai INESA Physico-Optical Instrument Co.,Ltd.. ${ }^{1} \mathrm{H}$

NMR and ${ }^{13} \mathrm{C}$ NMR experiments were performed with a BRUKER AVANCE III HD 600 MHz and 151 MHz NMR spectrometer, respectively (Bruker, Billerica, MA). Chemical shifts for ${ }^{1} \mathrm{H}$ NMR spectra are reported as δ in units of parts per million (ppm) downfield from $\mathrm{SiMe}_{4}(\delta 0.0)$ and relative to the signal of chloroform- $d(\delta 7.2600$, singlet). Multiplicities were given as: s (singlet); d (doublet); t (triplet); q (quartet); dd (doublets of doublet); dt (doublets of triplet); or m (multiplets). The number of protons (n) for a given resonance is indicated by nH . Coupling constants are reported as a J value in Hz . Carbon nuclear magnetic resonance spectra (${ }^{13} \mathrm{C}$ NMR) are reported as δ in units of parts per million (ppm) downfield from $\mathrm{SiMe}_{4}(\delta 0.0)$ and relative to the signal of chloroform- $d(\delta 77.0$, triplet $)$.

II. Experimental Sections

2.1 Preparation of allylic sulfides

The allylic sulfides $\mathbf{1 a}-\mathbf{1 u}, \mathbf{1 a}-d_{7}$ were prepared according to our previously reported synthetic procedure ${ }^{1}$.

A 10 mL reaction tube equipped with a magnetic stirring bar was added with substitute acetophenone ($1 \mathrm{mmol}, 1.0$ equiv), DMSO (1 mL),
$\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ (1 mmol , 1.0 equiv), pyrrolidine (1 mmol , 1.0 equiv), NaOAc ($0.8 \mathrm{mmol}, 0.8$ equiv) in 4 mL HOAc. The tube was stirred at $150{ }^{\circ} \mathrm{C}$ for $2-8 \mathrm{~h}$ monitored by TLC until the starting material was completely consumed. The reaction mixture was cooled to room temperature, followed by the addition of water and ethyl acetate. The organic layer was separated and the aqueous layer was extracted with ethyl acetate $(3 \times 20 \mathrm{~mL})$. The combined organic layer was washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and concentrated in vacuo, the residue was purified through column chromatography on silica gel to give the desired products.

In addition, the compounds $\mathbf{4}$ and $\mathbf{6}$ were also prepared from the reported literature. ${ }^{1}$

Sulfides 1v are commercially available from Energy Chemical. Sulfides $\mathbf{1} \mathbf{w}^{2}$ and $\mathbf{1} \mathbf{x}^{3}$ was synthesized according the reported methods ${ }^{4}$.

To a mixture of a flame-dried flask equipped with a stir bar, PhSNa (0.66 g, 5 mol) and THF (10 mL), substituted allylbromide (4 mmol) was added dropwise while stirring at $0{ }^{\circ} \mathrm{C}$ under water-ice bath. After addition, the mixture was warmed to room temperature and then stirred for 5 h . The
reaction was quenched by addition of 30 mL saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution, then extracted with ethyl acetate ($30 \mathrm{~mL} \times 2$), the extracted organic mixture was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum. The crude product was purified by silica gel column chromatography (hexanes) to afford the corresponding product.

This compound was prepared by the general procedure described above and was obtained as colorless oil (0.72 g, $80 \%)$. Rf (10:1 PE/EtOAc) 0.7; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H})$, $7.32-7.27(\mathrm{~m}, 6 \mathrm{H}), 7.23-7.19(\mathrm{~m}, 2 \mathrm{H}), 6.43(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.28-$ $6.23(\mathrm{~m}, 1 \mathrm{H}), 3.72(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $136.72,135.80,132.76,130.26,128.83,128.50,127.55,126.40,126.31$, 125.04, 37.12 .

This compound was prepared by the general procedure described above and was obtained as colorless oil (375 mg, 45\%). Rf (PE:EtOAc = 10:1): $0.4 ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{t}$, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.21-7.20(\mathrm{~m}, 1 \mathrm{H}), 6.95-6.91(\mathrm{~m}, 1 \mathrm{H}), 5.80(\mathrm{~d}, J=$ $15.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 166.3,143.1,134.5,130.5,129.0,126.9,122.8,51.5,35.6$.

2.2 General procedure for the palladium-catalyzed cross-coupling

 reaction of allylic sulfides with organoboronic acids

A 10 mL reaction tube equipped with a magnetic stirring bar was added allylic sulfides $(0.1 \mathrm{mmol}), \mathrm{PdCl}_{2}(0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathrm{Ag}_{2} \mathrm{CO}_{3}(0.2$ mmol, 2 equiv), organoboronic acids ($0.25 \mathrm{mmol}, 2.5$ equiv), in DMA (1 mL) at $90^{\circ} \mathrm{C}$ in oil bath for 4 h . The reaction mixture was cooled to room temperature, followed by the addition of water and ethyl acetate. The organic layer was separated and the aqueous layer was extracted with ethyl acetate $(3 \times 10 \mathrm{~mL})$. The combined organic layer was washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and concentrated in vacuo, the residue was purified through column chromatography on silica gel to give the desired products.

Detailed procedure for the synthesis of 3a on a 1 mmol scale

A 10 mL reaction tube equipped with a magnetic stirring bar was added allylic sulfide $1 \mathbf{1 a}(1.0 \mathrm{mmol}), \mathrm{PdCl}_{2}(0.1 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathrm{Ag}_{2} \mathrm{CO}_{3}(2$ mmol, 2 equiv) and phenyl boronic acid ($2.5 \mathrm{mmol}, 2.5$ equiv), in DMA $(4 \mathrm{~mL})$ at $90^{\circ} \mathrm{C}$ in oil bath for 4 h . The reaction mixture was cooled to room temperature, followed by the addition of water and ethyl acetate. The organic layer was separated and the aqueous layer was extracted with ethyl acetate $(3 \times 30 \mathrm{~mL})$. The combined organic layer was washed with
brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and concentrated in vacuo, the residue was purified through column chromatography on silica gel to give the desired products $\mathbf{3 a}$ in $74 \%(0.164 \mathrm{~g})$ yields.

2.3 Instant monitoring of the reaction of $\mathbf{1 a}$ with stoichiometric $\mathbf{P d C l}_{\mathbf{2}}$ in CDCl_{3}

A 10 mL reaction tube equipped with a magnetic stirring bar was added allylic sulfides $(0.1 \mathrm{mmol}), \mathrm{PdCl}_{2}\left(0.1 \mathrm{mmol}\right.$, 1equiv), $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ (0.05 mmol, 0.5 equiv) in $\mathrm{CDCl}_{3}(0.5 \mathrm{~mL})$ at $90^{\circ} \mathrm{C}$ for 1 h , the reaction mixture (Complex mixture I) was measured directly by ${ }^{1} \mathrm{H}$ NMR experiment. After that, organoboronic acids ($0.2 \mathrm{mmol}, 2$ equiv) and DMA (1 mL) were added to the reaction mixture stirred at $90^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was cooled to room temperature, followed by the addition of water and ethyl acetate. The organic layer was separated and the aqueous layer was extracted with ethyl acetate $(3 \times 10 \mathrm{~mL})$. The combined organic layer was washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and concentrated in vacuo, the residue was purified through column chromatography on silica gel to give the desired products 3a in 34% yield.

${ }^{1} \mathrm{H}$ NMR spectrum of Complex mixture $\mathrm{I}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum between 1a and Complex mixture I

2.4 Characterization data for the products

2-benzyl-1-phenylprop-2-en-1-one (3a) ${ }^{5}$

This compound was prepared by the general procedure described above and was obtained as yellow oil (17.8 $\mathrm{mg}, 80 \%) . \operatorname{Rf}(\mathrm{PE}: \mathrm{EtOAc}=10: 1): 0.61 ;{ }^{1} \mathrm{H}$ NMR (600
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.72(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{t}$, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.76(\mathrm{~s}, 1 \mathrm{H}), 5.69(\mathrm{~s}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 197.6,147.6,138.7,137.7,132.2,129.5,129.2,128.5$, 128.1, 126.9, 126.3, 38.3; HRMS (ESI) m / z calculated for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{O}$ $[\mathrm{M}+\mathrm{H}]^{+}: 223.1117$, found 223.1116.

2-benzyl-1-(o-tolyl)prop-2-en-1-one (3b)

3b

This compound was prepared by the general procedure described above and was obtained as yellow oil (17.2 mg, 73\%). $\mathrm{Rf}(\mathrm{PE}: E t O A c=10: 1)$:
$0.65 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33(\mathrm{dt}, J=7.2,3.4 \mathrm{~Hz}, 3 \mathrm{H}), 7.28(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.18(\mathrm{~m}, 4 \mathrm{H}), 5.82(\mathrm{~s}, 1 \mathrm{H}), 5.69(\mathrm{~s}, 1 \mathrm{H}), 3.81(\mathrm{~s}$, 2H), $2.28(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 199.8,149.1,138.9$, $138.7,136.3,130.7,130.0,129.8,129.2,128.5,128.0,126.3,125.0,37.0$, 19.6; HRMS (ESI) m / z calculated for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 237.1274$, found 237.1272.

2-benzyl-1-(2-fluorophenyl)prop-2-en-1-one (3c)

This compound was prepared by the general procedure described above and was obtained as yellow oil (18.2 mg, 76\%). Rf (PE:EtOAc = 10:1): $0.58 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.45(\mathrm{dd}, J=13.5,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.40$ $(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.19(\mathrm{t}, J$ $=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{t}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{~s}, 1 \mathrm{H}), 5.80(\mathrm{~s}, 1 \mathrm{H}), 3.80(\mathrm{~s}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 194.6,159.8(\mathrm{~d}, J=251.7 \mathrm{~Hz}), 148.6$, $138.6,132.5(\mathrm{~d}, J=8.4 \mathrm{~Hz}), 130.2(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 129.8(\mathrm{~d}, J=2.2 \mathrm{~Hz})$, $129.2,128.4,127.2(\mathrm{~d}, J=15.2 \mathrm{~Hz}), 126.3,124.0(\mathrm{~d}, J=3.9 \mathrm{~Hz}), 116.1$ $(\mathrm{d}, J=21.8 \mathrm{~Hz}), 36.9 ; \mathrm{HRMS}(\mathrm{ESI}) m / z$ calculated for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{FO}[\mathrm{M}+\mathrm{H}]^{+}$: 241.1023, found 241.1020.

2-benzyl-1-(3-bromophenyl)prop-2-en-1-one (3d)

This compound was prepared by the general procedure described above and was obtained as yellow oil (25.0 mg, 83\%). Rf (PE:EtOAc = 10:1): 0.57; ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.81(\mathrm{t}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.59$ $(\mathrm{m}, 2 \mathrm{H}), 7.30-7.27(\mathrm{~m} \mathrm{3H}), 7.24-7.19(\mathrm{~m}, 3 \mathrm{H}), 5.78(\mathrm{~s}, 1 \mathrm{H}), 5.68(\mathrm{~s}$, $1 \mathrm{H}), 3.77(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}) δ 196.0, 147.3, 139.5, $138.4,135.0,132.2,129.8,129.1,128.6,128.0,127.7,126.5,122.4,38.1 ;$ HRMS (ESI) m / z calculated for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{BrO}[\mathrm{M}+\mathrm{H}]^{+}$: 301.0223, found 301.0220 .

2-benzyl-1-(3-methoxyphenyl)prop-2-en-1-one (3e)

This compound was prepared by the general procedure described above and was obtained as yellow oil (13.0 mg, 52\%). Rf (PE:EtOAc = 10:1): $0.49 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31(\mathrm{dd}, J=15.8,7.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.26$ $-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.21(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{dd}, J=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $5.75(\mathrm{~s}, 1 \mathrm{H}), 5.70(\mathrm{~s}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 197.4,159.4,147.6,139.0,138.6,129.1,129.1,128.5,126.8$, 126.3, 122.2, 118.6, 113.9, 55.4, 38.4; HRMS (ESI) m / z calculated for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 253.1223$, found 253.1221.

2-benzyl-1-(m-tolyl)prop-2-en-1-one (3f) ${ }^{6}$

This compound was prepared by the general procedure described above and was obtained as yellow oil (18.7 mg, 79\%). Rf (PE:EtOAc = 10:1):
$0.58 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.53(\mathrm{~s}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.30(\mathrm{dq}, J=14.8,7.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.26-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.21(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.73(\mathrm{~s}, 1 \mathrm{H}), 5.68(\mathrm{~s}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 2 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 197.9,147.7,138.7,138.0,137.7,133.0,129.9,129.2$, 128.5, 128.0, 126.9, 126.8, 126.3, 38.3, 21.3; HRMS (ESI) m / z calculated for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 237.1274$, found 237.1272.

2-benzyl-1-(p-tolyl)prop-2-en-1-one (3g)

This compound was prepared by the general procedure described above and was obtained as
yellow oil (18.2 mg, 77\%). Rf (PE:EtOAc = 10:1): 0.59; ${ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.65(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}$, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{t}, J=8.4 \mathrm{~Hz}, 3 \mathrm{H}), 5.71(\mathrm{~s}, 1 \mathrm{H}), 5.65(\mathrm{~s}, 1 \mathrm{H}), 3.80$ (s, 2H), $2.40(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.4,147.7,143.0$, $138.7,134.9,129.7,129.2,128.9,128.5,126.3,126.0,38.5,21.6 ;$ HRMS (ESI) m / z calculated for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 237.1274$, found 237.1272.

2-benzyl-1-(4-ethylphenyl)prop-2-en-1-one (3h)

This compound was prepared by the general procedure described above and was obtained as yellow oil ($21.1 \mathrm{mg}, 84 \%$). Rf (PE:EtOAc $=10: 1): 0.63 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.67(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.29(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.23(\mathrm{~m}, 4 \mathrm{H}), 7.20(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $5.71(\mathrm{~s}, 1 \mathrm{H}), 5.66(\mathrm{~s}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 2 \mathrm{H}), 2.69(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.25(\mathrm{t}, J$ $=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 197.4,149.2,147.7,138.7$, $135.1,129.8,129.2,128.5,127.7,126.3,126.1,38.5,28.9,15.2 ;$ HRMS (ESI) m / z calculated for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 251.1430$, found 251.1429.

2-benzyl-1-(4-methoxyphenyl)prop-2-en-1-one (3i)

This compound was prepared by the general procedure described above and was obtained as colorless oil (14.9 mg, 59\%). Rf (PE:EtOAc $=$ 10:1): $0.38 ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.78(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.31$ $(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.92$
$(\mathrm{d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.68(\mathrm{~s}, 1 \mathrm{H}), 5.62(\mathrm{~s}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}) $\delta 196.4,163.1,147.7,138.7,131.9,130.1$, 129.1, 128.5, 126.3, 124.7, 113.4, 55.4, 38.8; HRMS (ESI) m / z calculated for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 253.1223$, found 253.1222.

2-benzyl-1-(4-nitrophenyl)prop-2-en-1-one (3j)

This compound was prepared by the general procedure described above and was obtained as yellow oil ($17.5 \mathrm{mg}, 65 \%$). $\mathrm{Rf}(\mathrm{PE}: \mathrm{EtOAc}=$ 10:1): $0.37 ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.27(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.82$ $(\mathrm{d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.22(\mathrm{~m}, 3 \mathrm{H}), 5.90(\mathrm{~s}$, $1 \mathrm{H}), 5.70(\mathrm{~s}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 195.7, $149.7,147.4,143.1,138.1,130.1,129.1,128.9,128.7,126.6,123.4,37.9$; HRMS (ESI) m / z calculated for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 289.0709$, found 289.0716.

2-benzyl-1-(4-pentylphenyl)prop-2-en-1-one (3k)

This compound was prepared by the general procedure described above and was obtained as yellow oil (20.4 mg, 70\%). Rf (PE:EtOAc $=10: 1): 0.70 ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.66(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, $7.29(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.19(\mathrm{~m}, 3 \mathrm{H}), 5.71(\mathrm{~s}$, $1 \mathrm{H}), 5.66(\mathrm{~s}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 2 \mathrm{H}), 2.64(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.65-1.60(\mathrm{~m}$, $2 \mathrm{H}), 1.37-1.30(\mathrm{~m}, 4 \mathrm{H}), 0.89(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz ,
CDCl_{3}) $\delta 197.4,148.0,147.7,138.7,135.1,129.7,129.2,128.5,128.2$, 126.3, 126.1, 38.5, 35.9, 31.4, 30.8, 22.5, 14.0; HRMS (ESI) m / z calculated for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 293.1900$, found 293.1898.

2-benzyl-1-(4-ethoxyphenyl)prop-2-en-1-one (31)

This compound was prepared by the general procedure described above and was obtained as yellow oil (19.7 mg, 74\%). Rf (PE:EtOAc = 10:1): $0.45 ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.77(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.67$ (s, 1H), $5.61(\mathrm{~s}, 1 \mathrm{H}), 4.10(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}$, $2 \mathrm{H}), 1.45(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.5,162.6$, 147.7, 138.7, 132.0, 129.9, 129.1, 128.5, 126.3, 124.7, 113.9, 63.7, 38.8, 14.7; HRMS (ESI) m / z calculated for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 267.1380$, found 267.1378

methyl 4-(2-benzylacryloyl)benzoate (3m)

This compound was prepared by the general procedure described above and was obtained as white solid ($17.4 \mathrm{mg}, 62 \%$). Rf (PE:EtOAc
$=10: 1): 0.30$; m.p. $77.1-78.9^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.08(\mathrm{~d}, \mathrm{~J}$ $=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-$ $7.21(\mathrm{~m}, 3 \mathrm{H}), 5.83(\mathrm{~s}, 1 \mathrm{H}), 5.69(\mathrm{~s}, 1 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.9,166.3,147.5,141.5,138.4,133.0$,
$129.4,129.2,129.1,128.6,128.2,126.5,52.4,38.0 ;$ HRMS (ESI) m / z calculated for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 281.1172, found 281.1171.

1-([1,1'-biphenyl]-4-yl)-2-benzylprop-2-en-1-one (3n)

This compound was prepared by the general procedure described above and was obtained as white solid ($26.2 \mathrm{mg}, 88 \%$). Rf (PE:EtOAc $=$ 10:1): 0.49; m.p. 87.0-87.7 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.82(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{dd}, J=16.0,7.9 \mathrm{~Hz}, 4 \mathrm{H}), 7.47(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.40$ $(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.23(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.78(\mathrm{~s}$, $1 \mathrm{H}), 5.74(\mathrm{~s}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 197.2, 147.7, 145.0, 140.0, 138.7, 136.3, 130.1, 129.2, 128.9, 128.5, 128.1, 127.2, 126.9, 126.5, 126.4, 38.5; HRMS (ESI) m / z calculated for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{O}$ $[\mathrm{M}+\mathrm{H}]^{+}: 299.1430$, found 299.1428 .

2-benzyl-1-(naphthalen-2-yl)prop-2-en-1-one (30)

This compound was prepared by the general procedure described above and was obtained as pale yellow oil $(22.4 \mathrm{mg}, 82 \%) . \mathrm{Rf}(\mathrm{PE}: \mathrm{EtOAc}=$ 10:1): 0.51; ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.22(\mathrm{~s}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.88(\mathrm{dd}, J=8.2,5.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.85(\mathrm{dd}, J=8.5,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.60-7.57(\mathrm{~m}, 1 \mathrm{H}), 7.55-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.23$ (ddd, $J=8.5,6.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{~s}, 1 \mathrm{H}), 5.76(\mathrm{~s}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}) δ 197.6, 147.8, 138.7, 135.2, 134.9, 132.1,
$131.0,129.3,129.2,128.5,128.2,128.1,127.7,126.7,126.7,126.4$, 125.4, 38.5; HRMS (ESI) m / z calculated for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 273.1274, found 273.1272.

2-benzyl-1-(thiophen-2-yl)prop-2-en-1-one (3p)

This compound was prepared by the general procedure described above and was obtained as white solid (20.5 $\mathrm{mg}, 90 \%)$. Rf (PE:EtOAc $=10: 1$): 0.49; m.p.
63.2-65.4 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.65(\mathrm{ddd}, J=4.8,4.3,1.1$ $\mathrm{Hz}, 2 \mathrm{H}), 7.30(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.11(\mathrm{dd}, J=4.9,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{~s}, 1 \mathrm{H}), 5.65(\mathrm{~s}, 1 \mathrm{H}), 3.80(\mathrm{~s}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 189.1,147.9,143.4,138.3,134.0$, 133.9, 129.1, 128.5, 127.8, 126.4, 124.2, 38.6; HRMS (ESI) m / z calculated for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{OS}[\mathrm{M}+\mathrm{H}]^{+}: 229.0682$, found 229.0681.

2-benzyl-1-(5-chlorothiophen-2-yl)prop-2-en-1-one (3q)

This compound was prepared by the general procedure described above and was obtained as white solid (14.9 mg, 57\%). Rf (PE:EtOAc = 10:1): 0.67; m.p. 63.9-65.8 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41(\mathrm{~d}, J=4.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.29(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.22-7.20(\mathrm{~m}, 3 \mathrm{H}), 6.92(\mathrm{~d}, J=4.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.83(\mathrm{~s}, 1 \mathrm{H}), 5.63(\mathrm{~s}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 188.1,147.2,142.0,139.9,138.1,133.4,129.1,128.5,127.3,126.5$, 124.1, 38.6; HRMS (ESI) m / z calculated for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{ClOS}[\mathrm{M}+\mathrm{H}]^{+}$:
263.0292, found 263.0290 .

2-benzyl-1-(5-bromothiophen-2-yl)prop-2-en-1-one (3r)

This compound was prepared by the general procedure described above and was obtained as yellow solid ($15.9 \mathrm{mg}, 52 \%$). $\mathrm{Rf}(\mathrm{PE}: \mathrm{EtOAc}=$ 10:1): 0.54; m.p. 87.4-87. ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36(\mathrm{~d}, J=$ $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.22-7.19(\mathrm{~m}, 3 \mathrm{H}), 7.06(\mathrm{~d}, J=4.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.83(\mathrm{~s}, 1 \mathrm{H}), 5.63(\mathrm{~s}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 187.9,147.3,144.8,138.1,134.0,131.0,129.1,128.5,126.5$, 124.2, 123.0, 38.6; HRMS (ESI) m / z calculated for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{BrOS}[\mathrm{M}+\mathrm{H}]^{+}$: 306.9787, found 306.9786.

2-benzyl-1-(furan-2-yl)prop-2-en-1-one (3s)

This compound was prepared by the general procedure described above and was obtained as yellow oil (15.3 mg, 72\%). Rf (PE:EtOAc = 10:1):
0.35; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.62(\mathrm{~s}, 1 \mathrm{H}), 7.28(\mathrm{dd}, J=14.4,7.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.21(\mathrm{dd}, J=16.4,7.6 \mathrm{~Hz}, 3 \mathrm{H}), 7.12(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.51-$ $6.50(\mathrm{~m}, 1 \mathrm{H}), 6.05(\mathrm{~s}, 1 \mathrm{H}), 5.65(\mathrm{~s}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 183.5,152.0,147.3,147.0,138.4,129.2,128.5,126.4$, 125.0, 119.9, 111.9, 38.2; HRMS (ESI) m / z calculated for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{O}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+}: 213.0910$, found 213.0909.

2-benzyl-1-(2,6-dichlorophenyl)prop-2-en-1-one (3t)

This compound was prepared by the general procedure described above and was obtained as colorless oil ($17.1 \mathrm{mg}, 59 \%$). Rf (PE:EtOAc = 10:1): $0.52 ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.25-$ $7.23(\mathrm{~m}, 3 \mathrm{H}), 7.21(\mathrm{~s}, 1 \mathrm{H}), 5.86(\mathrm{~s}, 1 \mathrm{H}), 5.72(\mathrm{~s}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}) δ 194.9, 147.9, 139.9, 138.3, 132.7, 131.8, 131.1, 130.8, 129.4, 129.3, 128.5, 128.5, 126.5, 36.3; HRMS (ESI) m / z calculated for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{ONa}[\mathrm{M}+\mathrm{Na}]^{+}: 313.0157$, found 313.0162.

1-(benzofuran-2-yl)-2-benzylprop-2-en-1-one (3u)

This compound was prepared by the general procedure described above and was obtained as white solid (11.6 mg, 44\%). Rf (PE:EtOAc = 10:1): 0.55 ; m.p. $94.5-96.1^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.69(\mathrm{~d}, J=7.9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.59$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.47$ (t, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.43$ (s, 1H), $7.32-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.25(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $6.18(\mathrm{~s}, 1 \mathrm{H}), 5.77(\mathrm{~s}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 185.3, 156.0, 152.0, 147.5, 138.3, 129.2, 128.5, 128.3, 126.8, 126.5, 125.8, 123.9, 123.2, 115.8, 112.5, 38.3; HRMS (ESI) m / z calculated for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 263.1067$, found 263.1065.
methyl 4-allylbenzoate (3v) ${ }^{7}$

$3 v$

This compound was prepared by the general procedure described above in 0.2 mmol scale and
was obtained as colorless oil ($17.5 \mathrm{mg}, 50 \%$). Rf (PE:EtOAc $=10: 1$): 0.7; ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.96(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=7.3$ $\mathrm{Hz}, 2 \mathrm{H}), 5.98-5.92$ (m, 1H), $5.11-5.08$ (m, 2H), 3.90 (s, 3H), 3.43 (d, J $=6.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.1,145.5,136.4,129.7$, 128.6, 128.1, 116.6, 52.0, 40.1; HRMS (ESI) m / z calculated for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{O}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+}: 177.0910$, found 177.0914 .

methyl 4-cinnamylbenzoate (3w) ${ }^{8}$

This compound was prepared by the general procedure described above and was obtained as colorless oil (14.1 mg , 56\%). Rf (PE:EtOAc $=10: 1): 0.45 ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.99(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 2 \mathrm{H}), 7.36$ (d, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.22(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 6.47(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{dt}, J=15.7,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~s}$, $3 \mathrm{H}), 3.60(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.1$, 145.6, 137.2, 131.8, 129.8, 128.7, 128.5, 128.2, 128.0, 127.3, 126.1, 52.0, 39.3; HRMS (ESI) m / z calculated for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{~K}[\mathrm{M}+\mathrm{K}]^{+}$: 291.0782, found 291.0781.

methyl (E)-4-(4-methoxy-4-oxobut-2-en-1-yl)benzoate (3x) ${ }^{9}$

This compound was prepared by the general procedure
described above and was obtained as colorless oil (14.9 mg) of
inseparable mixture ($\mathbf{3 x} / \mathbf{3} \mathbf{x}^{\prime}=87: 13$) in 64% yield. $\operatorname{Rf}(\mathrm{PE}: E t O A c=5: 1)$: 0.40 ; ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR are described for the $\mathbf{3 x}$ isomer: ${ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.99(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.09$ (dt, $J=15.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.83(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}$, 3 H), 3.58 (d, $J=6.7 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.9$, 166.7, 146.3, 143.0, 130.0, 128.8, 128.7, 122.6, 52.1, 51.6, 38.3; HRMS (ESI) m / z calculated for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{O}_{4}[\mathrm{M}-\mathrm{H}]^{-}: 233.0808$, found 233.0818.

1-phenyl-2-(phenylmethyl-d2)prop-2-en-1-one-3,3-d2 (2a- d_{4})

This compound was prepared by the general procedure described above and was obtained as yellow oil ($42.2 \mathrm{mg}, 75 \%$). Rf ($\mathrm{PE}: \mathrm{EtOAc}=15: 1$): $0.49 ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.73(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=$ $7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 197.6, 147.3, 138.6, 137.6, 132.1, 129.4, 129.1, 128.5, 128.1, 126.3, 29.6; HRMS (ESI) m / z calculated for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{D}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 227.1368$, found 227.1368 .

methyl 4-(2-benzoylallyl)benzoate (5a)

This compound was prepared by the general procedure described above and was obtained as yellow oil ($25.2 \mathrm{mg}, 90 \%$). Rf (PE:EtOAc $=10: 1): 0.38 ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.97(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$,
$7.69(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H})$, $7.33(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.80(\mathrm{~s}, 1 \mathrm{H}), 5.73(\mathrm{~s}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}$, 2 H); ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 197.2, 167.0, 146.8, 144.2, 137.5, 132.3, 129.9, 129.4, 129.1, 128.4, 128.2, 127.5, 52.0, 38.4; HRMS (ESI) m / z calculated for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 303.0992$, found 303.0987.

2-(4-bromobenzyl)-1-phenylprop-2-en-1-one (5b) ${ }^{10}$

This compound was prepared by the general procedure described above and was obtained as yellow oil ($22.0 \mathrm{mg}, 73 \%$). $\mathrm{Rf}(\mathrm{PE}: \mathrm{EtOAc}=10: 1)$: 0.60 ; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.69(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{dd}, J=7.5,6.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.14(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.78$ (s, 1H), $5.71(\mathrm{~s}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.3$, $147.0,137.7,137.5,132.3,131.6,130.9,129.4,128.2,127.3,120.3,37.8 ;$ HRMS (ESI) m / z calculated for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{BrO}[\mathrm{M}+\mathrm{H}]^{+}: 301.0223$, found 301.0221.

2-(4-chlorobenzy)-1-phenylprop-2-en-1-one (5c)

This compound was prepared by the general procedure described above and was obtained as yellow oil ($20.3 \mathrm{mg}, 79 \%$). Rf ($\mathrm{PE}: E t O A c=20: 1$):
0.32 ; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.70(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J$ $=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.79(\mathrm{~s}, 1 \mathrm{H}), 5.71(\mathrm{~s}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (151
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 197.4,147.1,137.5,137.1,132.3,132.2,130.5,129.4$, 128.6, 128.2, 127.3, 37.7; HRMS (ESI) m / z calculated for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{ClO}$ $[\mathrm{M}+\mathrm{H}]^{+}: 257.0728$, found 257.0727.

2-(4-fluorobenzyl)-1-phenylprop-2-en-1-one (5d) ${ }^{11}$

This compound was prepared by the general procedure described above and was obtained as yellow oil ($17.2 \mathrm{mg}, 71 \%$). Rf ($\mathrm{PE}: E t O A c=20: 1$): 0.33 ; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.71(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{t}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.78(\mathrm{~s}, 1 \mathrm{H}), 5.70(\mathrm{~s}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 197.5,161.5(\mathrm{~d}, J=244.3 \mathrm{~Hz}), 147.3,137.5,134.2(\mathrm{~d}, J=3.1$ $\mathrm{Hz}), 132.3,130.5(\mathrm{~d}, J=7.9 \mathrm{~Hz}), 129.4,128.1,127.1,115.2(\mathrm{~d}, J=21.3$ Hz), 37.5; HRMS (ESI) m / z calculated for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{FO}[\mathrm{M}-\mathrm{H}]:$ 239.0867, found 239.0867 .

4-(2-benzoylallyl)benzonitrile (5e)

This compound was prepared by the general procedure described above and was obtained as colorless oil ($10.9 \mathrm{mg}, 44 \%$). Rf (PE:EtOAc $=$ 10:1): 0.33 ; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.68$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.59 (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}$), $7.54(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.38$ (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.85(\mathrm{~s}, 1 \mathrm{H}), 5.78(\mathrm{~s}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}) $\delta 196.9,146.1,144.5,137.3,132.5,132.3,129.8$,
129.4, 128.3, 128.2, 118.9, 110.4, 38.5; HRMS (ESI) m / z calculated for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 248.1070$, found 248.1070 .

2-(3-acetylbenzyl)-1-phenylprop-2-en-1-one (5f)

This compound was prepared by the general procedure described above and was obtained as yellow oil ($18.1 \mathrm{mg}, 68 \%$). Rf (PE:EtOAc $=10: 1): 0.25 ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.87(\mathrm{~s}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{dt}, J=12.3,7.7 \mathrm{~Hz}, 3 \mathrm{H}), 5.81(\mathrm{~s}, 1 \mathrm{H}), 5.74(\mathrm{~s}, 1 \mathrm{H})$, $3.86(\mathrm{~s}, 2 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 198.1, 197.3, 146.9, 139.3, 137.5, 137.4, 134.0, 132.3, 129.4, 128.8, 128.8, 128.2, 127.6, 126.6, 38.2, 26.7; HRMS (ESI) m / z calculated for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{O}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+}:$265.1223, found 265.1222.

3-(2-benzoylallyl)benzaldehyde (5g)

This compound was prepared by the general procedure described above and was obtained as yellow oil ($13.1 \mathrm{mg}, 52 \%$). Rf (PE:EtOAc = 10:1): $0.33 ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.00(\mathrm{~s}, 1 \mathrm{H}), 7.79(\mathrm{~s}, 1 \mathrm{H})$, 7.73 (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.71-7.69(\mathrm{~m}, 2 \mathrm{H}), 7.54(\mathrm{dd}, J=18.2,7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.47(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.83(\mathrm{~s}, 1 \mathrm{H}), 5.76$ (s, 1H), 3.88 (s, 2H); ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 197.2, 192.3, 146.7, $140.0,137.5,136.7,135.4,132.3,130.0,129.4,129.2,128.3,128.1$,
127.8, 38.1; HRMS (ESI) m / z calculated for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 251.1067, found 251.1065 .

2-(3-methylbenzyl)-1-phenylprop-2-en-1-one (5h)

This compound was prepared by the general procedure described above and was obtained as yellow oil (14.6 mg, 62\%). Rf (PE:EtOAc $=$ 10:1): $0.65 ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.72(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.52$ $(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.08$ $-7.02(\mathrm{~m}, 3 \mathrm{H}), 5.76(\mathrm{~s}, 1 \mathrm{H}), 5.68(\mathrm{~s}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 2 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}) $\delta 197.7,147.7,138.6,138.1,137.7,132.1$, $130.0,129.5,128.4,128.1,127.1,127.0,126.1,38.2,21.4 ;$ HRMS (ESI) m / z calculated for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 237.1274$, found 237.1272.

2-(3-chlorobenzyl)-1-phenylprop-2-en-1-one (5i) ${ }^{11}$

This compound was prepared by the general procedure described above and was obtained as yellow oil (18.7 mg, 73\%). Rf (PE:EtOAc = 20:1): 0.32; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.71(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.53$ $(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.24-$ $7.21(\mathrm{~m}, 1 \mathrm{H}), 7.20-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{~s}, 1 \mathrm{H})$, $5.73(\mathrm{~s}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.3,146.8$, 140.7, 137.5, 134.2, 132.3, 129.7, 129.4, 129.2, 128.2, 127.7, 127.3, 126.6, 37.9; HRMS (ESI) m / z calculated for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{ClO}[\mathrm{M}+\mathrm{H}]^{+}$:
257.0728, found 257.0726.

2-(2,4-dichlorobenzyl)-1-phenylprop-2-en-1-one (5j)

This compound was prepared by the general procedure described above and was obtained as yellow oil (14.5 mg, 50\%). Rf (PE:EtOAc = 20:1):
$0.34 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.74(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.25(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{~s}, 1 \mathrm{H}), 5.67(\mathrm{~s}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 197.3,145.1,137.4,135.1,135.0,133.0,132.4,129.5,129.4$, 128.2, 127.7, 127.2, 35.3; HRMS (ESI) m / z calculated for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{O}$ $[\mathrm{M}+\mathrm{H}]^{+}: 291.0338$, found 291.0337.

2-(2,6-dimethylbenzyl)-1-phenylprop-2-en-1-one (5k)

This compound was prepared by the general procedure described above and was obtained as colorless oil in (7.2 mg, 29\%). Rf (PE:EtOAc = 10:1): $0.68 ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.78(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.55$ $(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.11-7.06(\mathrm{~m}, 3 \mathrm{H}), 5.60(\mathrm{~s}$, $1 \mathrm{H}), 5.26(\mathrm{~s}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 2 \mathrm{H}), 2.30(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right)$ $\delta 198.3,145.4,137.8,137.2,135.2,132.3,129.5,128.2,128.1,126.5$, 125.7, 31.4, 19.9; HRMS (ESI) m / z calculated for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 251.1430, found 251.1428 .

1-phenyl-2-(2,4,6-trimethylbenzyl)prop-2-en-1-one (5l)

This compound was prepared by the general procedure described above and was obtained as yellow oil ($10.8 \mathrm{mg}, 41 \%$). Rf (PE:EtOAc =10:1): 0.68 ; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.77(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{dd}, J$ $=10.9,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{~s}, 2 \mathrm{H}), 5.59(\mathrm{~s}, 1 \mathrm{H})$, $5.28(\mathrm{~s}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 2 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 198.4,145.7,137.8,137.0,135.9,132.2,132.0,129.5,128.9$, 128.2, 125.7, 31.1, 20.9, 19.8; HRMS (ESI) m / z calculated for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{O}$ $[\mathrm{M}+\mathrm{H}]^{+}: 265.1587$, found 265.1586 .

2-(naphthalen-1-ylmethyl)-1-phenylprop-2-en-1-one (5m)

This compound was prepared by the general procedure described above and was obtained as yellow oil ($14.1 \mathrm{mg}, 52 \%$). Rf (PE:EtOAc $=10: 1$): 0.58 ; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.00(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=$ $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 7.55-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.46-7.42(\mathrm{~m}$, $4 \mathrm{H}), 5.69(\mathrm{~s}, 1 \mathrm{H}), 5.50(\mathrm{~s}, 1 \mathrm{H}), 4.26(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.8,147.0,137.6,134.8,134.0,132.3,132.0,129.6,128.7,128.2$, 127.9, 127.7, 127.4, 126.1, 125.6, 125.6, 124.3, 35.0; HRMS (ESI) m/z calculated for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{20} \mathrm{H}_{17} \mathrm{O} \quad[\mathrm{M}+\mathrm{H}]^{+}: 273.1274$, found 273.1273.

2-(naphthalen-2-ylmethyl)-1-phenylprop-2-en-1-one (5n) ${ }^{11}$

This compound was prepared by the general procedure described above and was obtained as white solid (18.1 mg, 66\%). Rf (PE:EtOAc = 20:1): 0.3; m.p. $78.0-78.7{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.81(\mathrm{t}, J=$ $7.9 \mathrm{~Hz}, 3 \mathrm{H}), 7.75-7.73(\mathrm{~m}, 3 \mathrm{H}), 7.52(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.44(\mathrm{~m}$, $2 \mathrm{H}), 7.43-7.40(\mathrm{~m}, 3 \mathrm{H}), 5.81(\mathrm{~s}, 1 \mathrm{H}), 5.73(\mathrm{~s}, 1 \mathrm{H}), 3.98(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 197.6,147.5,137.6,136.2,133.6,132.2$, $132.2,129.5,128.2,128.1,127.7,127.6,127.6,127.3,126.0,125.4,38.4 ;$ HRMS (ESI) m/z calculated for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 273.1274$, found 273.1273.

(E)-2-methylene-1,5-diphenylpent-4-en-1-one (5o) ${ }^{12}$

 This compound was prepared by the general procedure described above and was obtained as colorless oil (11.6 mg, 47\%). Rf (PE:EtOAc $=$ 50:1): 0.24; ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) $\delta 7.79-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.57-$ $7.53(\mathrm{~m}, 1 \mathrm{H}), 7.47-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.29(\mathrm{~m}$, $2 \mathrm{H}), 7.24-7.20(\mathrm{~m}, 1 \mathrm{H}), 6.52(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.34-6.27(\mathrm{~m}, 1 \mathrm{H})$, $5.95(\mathrm{~s}, 1 \mathrm{H}), 5.72(\mathrm{~s}, 1 \mathrm{H}), 3.40-3.38(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 197.7,146.5,137.6,137.3,132.4,132.2,129.5,128.5,128.2$, $127.2,126.8,126.5,126.1,35.4 ;$ HRMS (ESI) m / z calculated for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{O}$ $[\mathrm{M}+\mathrm{H}]^{+}: 249.1274$, found 249.1276.

1-phenyl-2-(thiophen-3-ylmethyl)prop-2-en-1-one (5p)

This compound was prepared by the general procedure described above and was obtained as yellow oil ($10.6 \mathrm{mg}, 46 \%$). Rf ($\mathrm{PE}: E t O A c=50: 1$):
$0.24 ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.73-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.53(\mathrm{t}, J=7.4$
$\mathrm{Hz}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.06-7.04(\mathrm{~m}$, $1 \mathrm{H}), 6.99-6.98(\mathrm{~m}, 1 \mathrm{H}), 5.80(\mathrm{~s}, 1 \mathrm{H}), 5.69(\mathrm{~s}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.6,147.0,138.8,137.6,132.2,129.5$, 128.5, 128.2, 126.8, 125.7, 121.9, 32.8; HRMS (ESI) m / z calculated for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{OS}[\mathrm{M}+\mathrm{H}]^{+}: 229.0682$, found 229.0683.

III. Reference:

1. Z. K. Wen, X. H. Liu, Y. F. Liu, J. B. Chao, Acid Promoted Direct Cross-Coupling of Methyl Ketones with Dimethyl Sulfoxide: Access to Ketoallyl Methylsulfides and -sulfones. Org. Lett., 2017, 19, 5798-5801.
2. Y. Yatsumonji, Y. Ishida, A. Tsubouchi, T. Takeda, Nickel(0) Triethyl Phosphite Complex-Catalyzed Allylic Substitution with Retention of Regio- and Stereochemistry. Org. Lett., 2007, 9, 4603-4606.
3. T. Bach, C. Körber, Fe(II)-Catalyzed Imidation of Allyl Sulfides and Subsequent [2,3]-Sigmatropic Rearrangement. Preparation of a -Branched N-tert-Butyloxycarbonyl (Boc)-Protected N-Allylamines. J. Org. Chem. 2000, 65, 2358-2367.
4. J. B. Li, K. G. Ji, R. H. Zheng, J. Nelson, L. M. Zhang, Expanding the horizon of intermolecular trapping of in situ generated α-oxo gold carbenes: efficient oxidative union of allylic sulfides and terminal alkynes via $\mathrm{C}-\mathrm{C}$ bond formation. Chem. Commun., 2014, 50, 4130-4133.
5. C.-H. Jun, H. Lee, J.-B. Hong, B.-I. Kwon, Efficient and Selective Hydroacylation of 1-Alkynes with Aldehydes by a ChelationAssisted Catalytic System. Angew. Chem. Int. Ed. 2002, 41,2146-2147.
6. V. Gembus, C. Furman, R. Millet, R. Mansouri, P. Chavatte, V. Levacher, J. F. Brière, Scaffold hopping strategy toward original pyrazolines as selective CB_{2} receptor ligands. Eur. J. Med. Chem., 2012, 58, 396-404.
7. W. P. Su, S. Urgaonkar, J. G. Verkade, $\mathrm{Pd}_{2}(\mathrm{dba})_{3} / \mathrm{P}\left(i-\mathrm{BuNCH}_{2} \mathrm{CH}_{2}\right)_{3} \mathrm{~N}$-Catalyzed Stille Cross-Coupling of Aryl Chlorides. Org. Lett., 2004, 6, 1421-1424.
8. L. L. Anka-Lufford, M. R. Prinsell, D. J. Weix, Selective Cross-Coupling of Organic Halides with Allylic Acetates. J. Org. Chem. 2012, 77, 9989-10000.
9. a) T. D. W. Claridge, S. G. Davies, J. A. Lee, R. L. Nicholson, P. M. Roberts, A. J. Russell, A. D. Smith, S. M. Toms, Highly (E)-Selective Wadsworth-Emmons Reactions Promoted by Methylmagnesium Bromide. Org. Lett., 2008, 10, 5437-5440. b) N. S. Y. Loy, A. Singh, X. X. Xu, C. M. Park, Synthesis of Pyridines by Carbenoid-Mediated Ring Opening of 2H-Azirines.Angew. Chem. Int. Ed. 2013, 52, 2212-2216.
10. T. Nagata, A. Tamaki, K. Kiyokawa, R. Tsutsumi, M. Yamanaka, S. Minakata, Enantioselective Electrophilic Cyanation of Boron Enolates: Scope and Mechanistic Studies. Chem. Eur. J., 2018, 24, 17027-17032.
11. H. Q. Geng, L. C. Wang, C. Y. Hou, X. F. Wu, Palladium-Catalyzed Carbonylative Synthesis of α-Branched Enones from Aryl Iodides and Arylallenes. Org. Lett. 2020, 22, 1160-1163.
12. X. T. Ma, Y. Wang, R. H. Dai, C. R. Liu, S. K. Tian, Catalytic Allylation of Stabilized Phosphonium Ylides with Primary Allylic Amines. J. Org. Chem. 2013, 78, 11071-11075.

IV. Copy of ${ }^{\mathbf{1}} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR Spectra

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 a}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

 NNNNNNNNNNNNNし

3a

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 a}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3a

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 b}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3b

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 b}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3b

${ }^{1} \mathrm{H}$ NMR spectrum of $3 \mathrm{c}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$3 c$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 c}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\stackrel{\square}{\square}$	-	
8	\%\%	¢○¢
¢	$\stackrel{\circ}{\circ}$	
\bigcirc	\bigcirc	$\bigcirc-7$

3c

${ }^{1} \mathrm{H}$ NMR spectrum of $3 \mathrm{~d}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 d}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\stackrel{\circ}{8}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 e}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
 $286 L^{\circ} \varepsilon$
$Z \angle 28^{\circ} \varepsilon$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 e}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^0]${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 f}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $3 \mathrm{f}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^1]${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 g}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 g}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\stackrel{0}{\circ}$	
-	
T	-----7

$\begin{array}{ll}\infty & \infty \\ \stackrel{\infty}{\infty} & \stackrel{\sim}{\infty} \\ \stackrel{\infty}{\infty} \\ \stackrel{\sim}{\sim}\end{array}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 h}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 h}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^2]${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 i}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 i}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 j}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\uparrow \sim{ }^{\circ}$	NONN
${ }_{N}{ }_{N}$	N్లి
$\infty \times$	NNNN

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 j}$（ $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

－	
$\stackrel{\text { ¢ }}{\square}$	¢お寸寸

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 k}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 k}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Mom Now

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 1}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

31

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 I}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

®	$\stackrel{\infty}{\sim}$	
8	\%	Nomom
I	$\stackrel{\square}{+}$	- $\underbrace{-m \sim N}$

${ }^{13} \mathrm{C}$ NMR spectrum of $3 \mathrm{~m}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 n}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 n}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $30\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

かNNNNNNNNNNNNNNNNNNNO

30

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 0}$ ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

\bullet
$\stackrel{\circ}{+}$
$\stackrel{\infty}{\oplus}$

30

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 p}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3p

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 p}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

N
N
N

3p

[^3](
${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 q}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\stackrel{\infty}{\circ}$	तomom oidmon
¢	
\bigcirc	-

$3 q$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 r}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$3 r$

${ }^{13} \mathrm{C}$ NMR spectrum of $3 \mathrm{r}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 s}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3s

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 s}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\stackrel{m}{5}$	¢\％	ᄃ으잉
웅	¢－ m	ㅇoq ¢0\％${ }^{\circ} \mathrm{O}$
¢		
\bigcirc	TFT	「ブ「フ

3s

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 t}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

	$\begin{aligned} & \text { இம ழ } \\ & \\ & \hline \end{aligned}$
N-NNN	¢ ¢

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 t}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

®	
-	万¢\% ${ }^{\circ}$
ホ̇	
	-

O.
$\stackrel{\sim}{0}$
$\underset{\sim}{0}$

${ }^{1} \mathrm{H}$ NMR spectrum of $3 \mathbf{u}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$3 u$

${ }^{13} \mathrm{C}$ NMR spectrum of $3 \mathbf{u}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $3 \mathrm{v}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 v}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$3 v$

${ }^{13} \mathrm{C}$ NMR spectrum of $3 \mathbf{w}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 x}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

\%	8은	\% \% ¢
దิ¢	¢¢¢	¢ ¢ ¢
¢\%	¢\%	¢్ల్ㄲ \sim_{\sim}^{\sim}

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 a - d _ { 4 }}$ ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

2a-d

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 a}-d_{4}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5 a}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5 b}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5 b}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5 c}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

5c

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5 c}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\stackrel{\infty}{\stackrel{\infty}{N}}$

${ }^{13} \mathrm{C}$ NMR spectrum of $5 \mathbf{d}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5 e}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

5e

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5 e}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

89Es ${ }^{\circ} 8 \varepsilon^{-}$

[^4]${ }^{1} \mathrm{H}$ NMR spectrum of $5 \mathrm{f}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5 f}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^5]
$5 f$

$\begin{array}{llllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \text { f1 } & & & & (p p m)\end{array}$
${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5 g}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $5 \mathbf{g}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$5 g$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5 h}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
 NNNNNNNNN以!

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5 h}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

5h

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5 i}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5 i}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5 j}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5 j}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

m
$\stackrel{y}{m}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5 k}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5 k}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of 5 I ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

51

${ }^{1} \mathrm{H}$ NMR spectrum of $5 \mathrm{~m}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $5 \mathrm{~m}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

-35.0276

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5 n}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $50\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

50

${ }^{13} \mathrm{C}$ NMR spectrum of $50\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

50

${ }^{1} \mathrm{H}$ NMR spectrum of $5 \mathrm{p}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

5p

${ }^{13} \mathrm{C}$ NMR spectrum of 5 p $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^0]: $\begin{array}{lllllllllllll}20 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{fl} & (\mathrm{ppm})\end{array}$

[^1]: $\begin{array}{lllllllllllll}20 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \text { f1 (ppm) }\end{array}$

[^2]: $\begin{array}{lllllllllllll}20 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{fl} & (\mathrm{ppm})\end{array}$

[^3]: $\begin{array}{lllllllllllll}20 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \text { f1 (ppm) }\end{array}$

[^4]:

[^5]:

