Supporting Information

Three-component Coupling Reaction for the Synthesis of Fully Substituted Triazoles: Reactivity Control of Cu-Acetylide toward Alkyl Azides and Diazo Compounds

Fa-Jie Chen,^{a,b} Phani Mamidipalli,^b Venkata Reddy Sabbasani,^b Huaqing Liu,^b Yuanzhi Xia^{a*} and Daesung Lee^{b*}

Table of Contents

Page

I.	General Information	S- 2
II.	General Procedure for the Preparation of Starting Materials	S-3
III.	General Procedure for the Three-component Coupling	S-4
IV.	General Procedure for the Synthesis of Cyclic Triazoles	S-4
V.	Characterization Data	S-5
VI.	¹ H NMR and ¹³ C NMR Spectra	S-20

^a Department College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China

 ^b Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, IL 60607, USA
 [phone: 001-(312)-996-5189; fax number: 001-(312)-996-0431; e-mail address: dsunglee@uic.edu]

I. General Information

All reactions were carried out under an inert nitrogen or argon atmosphere, unless otherwise indicated. Compounds were purchased from Aldrich unless otherwise noted. CH₃CN were purified based on standard procedures. Flash column chromatography was performed using silica gel 60 Å (32-63 mesh) purchased from SiliCycle. Analytical thin layer chromatography (TLC) was performed on 0.25 mm SiliCycle precoated silica gel 60 (particle size 0.040–0.063 mm). Iodide, KMnO₄, UV light (254 nm) and vanillin were used as the TLC stains. ¹H NMR and ¹³C NMR spectra were recorded on a Bruker AV-500 spectrometer. ¹H and ¹³C chemical shifts were referenced to internal solvent resonances and reported relative to SiMe₄; multiplicities are indicated by s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet) and br (broad). Coupling constants, *J*, are reported in Hz (Hertz). Electrospray ionization (ESI) mass spectra were recorded on a Micromass LCT equipped with a time-of-flight analyzer on a Waters Micromass Q-Tof Ultima in the University of Illinois at Urbana-Champaign. Electron impact (EI) mass spectra were obtained using a Micromass AutoSpecTM.

II. General Procedure for the Preparation of Starting Materials

N-Propargylamides **S2** was prepared following the reported procedure by Albert Padwa and coworker.¹ Diazoamides **S3** and **S4** were prepared following a modified procedure of Armido Studers and co-works.²

Preparation of S1: Propargyl bromide (1.0 equiv., 80 wt. % in toluene) was added dropwise to amine (6.0 equiv.) at 0 °C. The mixture was warmed to room temperature and stirred overnight. NaOH (1 M, 4 mL/mmol) and Et₂O (4 mL/mmol) was added and stirred for 5 minutes. The mixture was extracted with Et₂O and the combined organic layer was dried over

¹ Verniest, G.; Padwa, A. Gold- and Silver-Mediated Cycloisomerizations of *N*-Propargylamides. *Org. Lett.* **2008**, *10*, 4379.

² Döben, N.; Yan, H.; Kischkewitz, M.; Mao, J.; Studer, A. Intermolecular Acetoxyaminoalkylation of α-Diazo Amides with (Diacetoxyiodo)benzene and Amines. *Org. Lett.* **2018**, *20*, 7933.

anhydrous Na_2SO_4 , filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography to afford *N*-propargylamine **S1**.

Preparation of S2: To a solution of diketene (5 mmol, 50% in CH_2Cl_2) in dry THF (10 mL) was added a solution of *N*-propargylamine **S1** (5 mmol) in 2 mL of dry THF at rt over 3 min. The solution was stirred for 15 h at rt and then concentrated under reduced pressure. The residue was purified by flash column chromatography to give *N*-propargylamides **S2**.

Preparation of S3: To a solution of *N*-propargylamides **S2** (1.0 equiv.) in CH₃CN (2 mL) was added *p*-TsN₃ (1.0 equiv.) and K₂CO₃ (1.12 equiv.) and the reaction mixture was stirred at room temperature. After the starting material was consumed (monitored by TLC), the mixture was filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography to afford the diazo transfer product **S3**.

Preparation of S4: Diazoamide **S3** (1.0 equiv.) was dissolved in MeCN (1 mL/mmol) and KOH (8% aqueous solution, 1 mL/mmol) was added dropwise over 5 min. The reaction mixture was stirred for 1 hour (monitored by TLC). The reaction mixture was concentrated under reduced pressure and extracted with ethyl acetate. The combined organic layer was washed with sat. NH_4Cl , dried over anhydrous Na_2SO_4 , and concentrated under reduced pressure. The residue was purified by flash column chromatography to afford diazoamide **S4**.

Diazoacetates $\mathbf{S6}$ were synthesized following the reported procedure by Tohru Fukuyama and co-workers.³

Preparation of S5: Bromoacetyl bromide (1.31 mL, 15 mmol, 1.5 equiv.) was added slowly to a mixture of alcohol (10 mmol, 1.0 equiv.) and NaHCO₃ (2.52 g, 30 mmol, 3.0 equiv.) in CH₃CN (50 mL) at 0 °C. After stirring for 10 min at the temperature, the reaction was quenched with H₂O. The mixture was extracted with CH₂Cl₂ three times. The combined organic phase was washed with brine and dried over Na₂SO₄. The solvent was removed under reduced pressure and the residue was purified by flash column chromatography to afford the bromoacetate.

Preparation of S6: The bromoacetate (1.0 mmol, 1.0 equiv.) and *N*,*N*'-ditosylhydrazine (681 mg, 2.0 mmol) were dissolved in THF (5.0 mL) and cooled to 0 °C. DBU (0.75 mL, 5.0 mmol)

³ Toma, T.; Shimokawa, J.; Fukuyama, T. *N,N*'-Ditosylhydrazine: A Convenient Reagent for Facile Synthesis of Diazoacetates. *Org. Lett.* **2007**, *9*, 3195.

was added dropwise and stirred at the temperature for 30 minutes (monitored by TLC). After the quenching of the reaction by the addition of saturated NaHCO₃ solution, this mixture was extracted with Et₂O three times. The organic phase was washed with brine, dried over Na₂SO₄ and evaporated to give the crude diazoacetate. Purification of the crude diazoacetate was performed with neutral silica gel to give 3-phenylpropyl 2-diazoacetate.

III. General Procedure for the Three-component Coupling Reaction

1-Hexyne (16 mg, 0.2 mmol), benzyl azide (53.3 mg, 0.4 mmol, 2.0 equiv.) and ethyl diazoacetate (68.7 mg, 0.6 mmol, 3.0 equiv.) were dissolved in dry CH₃CN (1.0 mL), then dtbpy (16.1 mg, 0.06 mmol, 0.3 equiv.) and CuI (7.6 mg, 0.04 mmol, 0.2 equiv.) were added and the reaction mixture was stirred under N₂ atmosphere for 3 h. On completion of the reaction, 1 mL of aq. NH₄Cl and 1 mL of ethyl acetate were added to the reaction mixture and stirred for 5 min. Then reaction mixture was diluted with EtOAc (10 mL) and organic layer was separated and washed with brine. This organic layer dried over Na₂SO₄, filtered and concentrated under reduced pressure to afford the crude material. The crude material was purified by using flash column chromatography to afford product **4ab**.

IV. General Procedure for the Synthesis of Cyclic Triazoles

Diazoamide **S7** (35.8 mg, 0.2 mmol), benzyl azide (53.3 mg, 0.4 mmol, 2.0 equiv.) were dissolved in dry CH₃CN (1.0 mL) and CuI (7.6 mg, 0.04 mmol, 0.2 equiv.) were added, and the reaction mixture was stirred under N₂ atmosphere for 3 h. On completion of the reaction, 1 mL of aq. NH₄Cl and 1 mL of ethyl acetate were added to the reaction mixture and stirred for 5 min. Then reaction mixture was diluted with EtOAc (10 mL) and organic layer was separated and washed with brine. This organic layer dried over Na₂SO₄, filtered and concentrated under reduced pressure to afford the crude material. The crude material was purified by using flash column chromatography to afford product **S8**.

V. Characterization Data

Ethyl 2-(1-benzyl-4-butyl-1*H*-1,2,3-triazol-5-yl)acetate (4ab): The compound 4ab was N=N prepared according to the general procedure and was purified by flash column chromatography (hexane: ethyl acetate = 5:1 to 1:1). 4ab was obtained as a yellow oil (40.0 mg, 66% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.31 (t, *J* = 7.8 Hz, 3H), 7.14 (d, *J* = 6.7 Hz, 2H), 5.57 (s, 2H), 4.04 (q, *J* = 7.1 Hz, 2H), 3.44 (s, 2H), 2.61 (t, *J* = 7.7 Hz, 2H), 1.69–1.61 (m, 2H), 1.37–1.32 (m, 2H), 1.18 (t, *J* = 7.1 Hz, 3H), 0.91 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 168.28, 147.35, 134.92, 129.09, 128.46, 127.41, 126.25, 61.75, 52.47, 31.69, 28.96, 24.88, 22.50, 14.13, 13.96; HRMS (ESI) calcd for C₁₇H₂₄N₃O₂ [M + H]⁺ 302.1869, found 302.1865.

Ethyl 2-(1-benzyl-4-hexyl-1*H*-1,2,3-triazol-5-yl)acetate (4b): The compound 4b was N=N prepared according to the general procedure and was purified by flash C_6H_{13} N=N column chromatography (hexane: ethyl acetate = 2:1). 4b was obtained as a light-yellow oil (50.8 mg, 77%). ¹H NMR (500 MHz, CDCl₃) δ 7.35-7.28 (m, 3H), 7.14 (d, J = 6.7 Hz, 2H), 5.56 (s, 2H), 4.03 (q, J = 6.9 Hz, 2H), 3.43 (s, 2H), 2.60 (t, J = 7.6 Hz, 2H), 1.70–1.62 (m, 2H), 1.35–1.24 (m, 8H), 1.18 (t, J = 7.0 Hz, 3H), 0.86 (t, J = 6.9 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 168.26, 147.37, 134.91, 129.07, 128.44, 127.38, 126.23, 61.73, 52.46, 31.70, 29.53, 29.09, 28.95, 25.19, 22.66, 14.16, 14.13; HRMS (ESI) calcd for $C_{19}H_{27}N_3O_2$ [M + H]+ 330.2182, found 330.2179.

Ethyl 2-(1-benzyl-4-(trimethylsilyl)-1*H*-1,2,3-triazol-5-yl)acetate (4c): The compound 4c was prepared according to the general procedure and was purified by $Me_3Si \xrightarrow{N=N}_{Bn}$ flash column chromatography (hexane: ethyl acetate = 2:1). 4c was obtained as a light-vellow oil (37.8 mg 60% yield) HLND (500.2 CV

 C_6D_6) δ 7.36 (dd, J = 14.5, 7.8 Hz, 3H), 7.19 (d, J = 6.8 Hz, 2H), 5.64 (s, 2H), 4.05 (q, J = 7.1 Hz, 2H), 3.60 (s, 2H), 1.20 (t, J = 7.1 Hz, 3H), 0.36 (s, 9H); ¹³C NMR (126 MHz, C_6D_6) δ 168.22, 145.84, 135.21, 134.89, 129.01, 128.38, 127.45, 61.72, 51.74, 29.91, 14.07, -0.92; HRMS (ESI) calcd for $C_{16}H_{24}N_3O_2Si [M + H]^+$ 318.1638, found 318.1639.

Ethyl 2-(1-benzyl-4-(3-hydroxypropyl)-1*H*-1,2,3-triazol-5-yl)acetate (4d): The compound HO N=NN=

Hz, 2H), 5.56 (s, 2H), 4.02 (q, *J* = 7.0 Hz, 2H), 3.81–3.58 (m, 2H), 3.51 (s, 2H), 2.80–2.72 (m, 2H), 2.00–1.91 (m, 2H), 1.18 (t, *J* = 7.1 Hz, 3H), 1.12 (s, 1H); ¹³C NMR (126 MHz, CDCl₃) δ

168.24, 134.51, 129.10, 129.02, 128.45, 127.31, 61.80, 61.43, 52.62, 31.40, 28.92, 21.30, 14.03; HRMS (ESI) calcd for $C_{16}H_{22}N_3O_2$ [M + H]⁺ 304.1661, found 304.1663.

1-Benzyl-4-(3-(benzyloxy)propyl)-5-(2-(ethylperoxy)- $2\lambda^2$ -ethyl)-1*H*-1,2,3-triazole (4e):

7.14 (d, J = 6.3 Hz, 2H), 5.55 (s, 2H), 4.46 (s, 2H), 4.01 (q, J = 7.1 Hz, 2H), 3.50 (t, J = 6.1 Hz, 2H), 3.43 (s, 2H), 2.74 (t, J = 7.4 Hz, 2H), 2.06–1.96 (m, 1H), 1.17 (t, J = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 168.27, 146.65, 138.67, 134.85, 129.10, 128.64, 128.49, 128.47, 128.08, 127.82, 127.71, 127.62, 127.41, 126.66, 72.88, 69.32, 61.73, 52.52, 29.28, 28.78, 21.61, 14.13; HRMS (ESI) calcd for C₂₃H₂₈N₃O₂ [M + H]⁺ 394.2131, found 394.2131.

Ethyl 2-(1-benzyl-4-(3-((tert-butyldimethylsilyl)oxy)propyl)-1H-1,2,3-triazol-5-yl)acetate

(4f) : The compound 4f was prepared according to the general procedure and was purified by flash column chromatography (hexane: ethyl acetate = 3:1). 4f was obtained as a yellow oil (54.0 mg, 65% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.35–7.28

(m, 3H), 7.13 (d, J = 6.4 Hz, 2H), 5.55 (s, 2H), 4.03 (q, J = 7.1 Hz, 2H), 3.61 (t, J = 5.7 Hz, 2H), 3.46 (s, 2H), 2.70 (t, J = 7.5 Hz, 2H), 1.91–1.84 (m, 2H), 1.18 (t, J = 7.1 Hz, 3H), 0.87 (s, 9H), 0.01 (s, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 168.26, 146.85, 134.85, 129.07, 128.45, 127.39, 126.63, 62.06, 61.69, 52.50, 32.39, 28.78, 26.03, 22.20, 21.22, 14.12, -5.21; HRMS (ESI) calcd for C₂₂H₃₆N₃O₃Si [M + H]⁺418.2526, found 413.2518.

Ethyl 2-(4-(3-((tert-butyldimethylsilyl)oxy)propyl)-1-octyl-1H-1,2,3-triazol-5-yl)acetate

(4f'): The compound 4f' was prepared according to the general procedure and was purified by flash column chromatography (hexane: ethyl acetate = 1:1). 4f' was obtained as a yellow oil (40.1 mg, 61% yield). ¹H NMR (500 MHz, CDCl₃) δ 4.21 (t,

J = 7.4 Hz, 2H), 4.14 (q, J = 7.1 Hz, 2H), 3.64 (s, 2H), 3.61 (t, J = 6.05 Hz, 4H), 2.70 (t, J = 7.5 Hz, 2H), 1.86 (m, 4H), 1.33–1.18 (m, 13H), 0.9–0.82 (m, 12H), 0.02 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 168.2, 145.8, 126.0, 61.9, 61.6, 48.3, 32.3, 31.7, 29.6, 29.0, 28.7, 26.6, 25.9, 22.5, 21.1, 18.2, 14.0, -5.3; HRMS (ESI) calcd for C₂₃H₄₆N₃O₃Si [M + H]⁺ 440.3308, found 440.3298.

Ethyl 2-(1-benzyl-4-(hydroxymethyl)-1*H*-1,2,3-triazol-5-yl)acetate (4g): The compound 4g HON=N

7.29 (m, 3H), 7.15 (d, J = 6.1 Hz, 2H), 5.57 (s, 2H), 4.77 (s, 2H), 4.03 (q, J = 6.8 Hz, 2H), 3.62 (s, 2H), 2.45 (brs, 1H), 1.18 (t, J = 7.0 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 168.39, 146.78, 134.42, 129.18, 128.66, 128.15, 127.43, 62.07, 56.48, 52.59, 28.94, 14.09; HRMS (ESI) calcd for C₁₄H₁₈N₃O₃ [M + H]⁺ 276.1348, found 276.1349.

Ethyl 2-(4-(hydroxymethyl)-1-octyl-1H-1,2,3-triazol-5-yl)acetate (4g'): The compound 4g'

was prepared according to the general procedure and was purified by flash column chromatography (hexane: ethyl acetate = 1:1 to 1:2). **4g'** was obtained as a light-yellow oil (83.0 mg, 70% yield). ¹H NMR (500 MHz, CDCl₃) δ 4.75 (s, 2H), 4.24 (t, *J* = 7.2 Hz, 2H), 4.17 (g, *J*

= 7.0 Hz, 2H), 3.78 (s, 2H), 2.81 (s, 1H), 1.90–1.81 (m, 2H), 1.32–1.29 (m, 3H), 1.28–1.21 (m, 10H), 0.86 (t, J = 6.5 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 168.54, 146.41, 127.96, 62.10, 56.33, 48.54, 31.77, 30.04, 29.10, 29.09, 28.98, 26.66, 22.65, 14.14, 14.12; HRMS (ESI) calcd for C₁₅H₂₈N₃O₃ [M + H]⁺ 298.2131, found 298.2129.

Ethyl 2-(1-benzyl-4-(((tert-butyldimethylsilyl)oxy)methyl)-1H-1,2,3-triazol-5-yl)acetate

(4h): The compound 4h was prepared according to the general procedure and was purified by flash column chromatography (hexane: ethyl acetate = 5:1). 4h was obtained as a yellow oil (59.7 mg, 77% yield). ¹H NMR (500 MHz, CDCl₃) δ 4.82 (s, 2H), 4.14 (g, *J* = 6.9 Hz,

2H), 3.78 (s, 2H), 3.60 (s, 2H), 1.24 (t, J = 7.0 Hz, 3H), 0.87 (s, 9H), 0.18 (s, 9H), 0.06 (s, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 168.51, 144.94, 128.42, 61.60, 58.25, 38.87, 29.02, 25.98, 14.23, -1.70, -5.29; HRMS (ESI) calcd for C₂₀H₃₂N₃O₃Si [M + H]⁺ 390.2213, found 390.2206.

TBSO N SiM

triazol-5-yl)acetate (**4h'**): The compound **4h'** was prepared according to the general procedure and was purified by flash column chromatography (hexane: ethyl acetate = 1:1). **4h'** was obtained as a yellow oil (59.7 mg, 77% yield). ¹H NMR (500

MHz, CDCl₃) δ 4.83 (s, 2H), 4.15 (q, J = 7.1 Hz, 2H), 3.79 (s, 2H), 3.60 (s, 2H), 1.25 (t, J = 7.1 Hz, 3H), 0.88 (s, 9H), 0.19 (s, 9H), 0.07 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 168.4, 144.8, 128.3, 61.5, 58.1, 38.7, 28.9, 25.9, 18.3, 14.1, -1.7, -5.3; HRMS (ESI) calcd for C₁₇H₃₆N₃O₃Si₂ [M + H]⁺ 386.2295, found 386.2286.

Ethyl 2-(1-benzyl-4-(1-hydroxyethyl)-1H-1,2,3-triazol-5-yl)acetate (4i'): The compound 4i

was prepared according to the general procedure and converted to 4i' after purification. 4i' was purified by flash column chromatography (hexane: ethyl acetate = 1:1). 4i' was obtained as a light-yellow oil (45.7)

mg, 79% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.35–7.27 (m, 3H), 7.14 (d, *J* = 6.4 Hz, 2H), 5.54 (s, 2H), 5.08–5.01 (m, 1H), 4.00 (q, *J* = 7.0 Hz, 2H), 3.66 (s, 2H), 2.48 (brs, 1H), 1.62 (d, *J* = 6.4 Hz, 3H), 1.16 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 168.69, 150.03, 134.52, 129.13, 128.59, 127.41, 126.71, 63.67, 61.96, 52.40, 29.03, 23.31, 14.07; HRMS (ESI) calcd for C₁₅H₂₀N₃O₃ [M + H]⁺ 290.1505, found 290.1506.

$Ethyl \ (E) - 2 - (1 - benzyl - 4 - (1 - ((tert - butyl dimethyl silyl) oxy) - 3, 7 - dimethyl octa - 2, 6 - dien - 1 - yl) - (1 - ((tert - butyl dimethyl silyl) oxy) - 3, 7 - dimethyl octa - 2, 6 - dien - 1 - yl) - (1 - ((tert - butyl dimethyl silyl) oxy) - 3, 7 - dimethyl oxy) - 3, 7 - dimethy$

1*H*-1,2,3-triazol-5-yl)acetate (4j): The compound 4j was prepared according to the general procedure and was purified by flash column chromatography (hexane: ethyl acetate = 5:1). 4j was obtained as a mixture of triazole, light-yellow oil (66.3 mg, 45% yield of 4j).

Characteristic data for **4j**: ¹H NMR (500 MHz, CDCl₃) δ 7.12 (d, *J* = 6.2 Hz, 2H), 5.49 (s, 2H), 4.08 – 3.98 (m, 2H), 3.75 (d, *J* = 17.4 Hz, 1H), 3.53 (d, *J* = 17.4 Hz, 1H), 1.64 (d, *J* = 6.3 Hz, 3H), 1.18 (t, *J* = 7.1 Hz, 3H), 0.81 (s, 9H), -0.02 (s, 3H), -0.08 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 168.47, 148.72, 132.65, 129.03, 127.37, 126.36, 125.61, 69.86, 61.51, 52.38, 28.78, 25.90, 17.57, 14.13, -4.83; HRMS (ESI) calcd for C₂₃H₃₆N₃O₃Si [M + H]⁺ 430.2526, found 430.2517.

2-(1-benzyl-4-(((3aS,7aS)-3-oxo-1,4,7,7a-tetrahydroisobenzofuran-3a(3H)-

Ethvl

yl)methyl)-1*H*-1,2,3-triazol-5-yl)acetate (4k): The compound 4k was prepared according to the general procedure and was purified by flash column chromatography (hexane: ethyl acetate = 5:1 to 1:1). 4k was obtained as a light-yellow oil (43.5 mg, 55% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.37–7.27 (m, 3H), 7.10 (d, *J* = 7.2 Hz,

2H), 5.85–5.79 (m, 1H), 5.78–5.72 (m, 1H), 5.58 (d, J = 15.6 Hz, 1H), 5.41 (d, J = 15.6 Hz, 1H), 4.14 (t, J = 8.3 Hz, 1H), 4.02 (t, J = 7.1 Hz, 2H), 3.85 (t, J = 9.4 Hz, 1H), 3.69 (d, J = 17.5 Hz, 1H), 3.56 (d, J = 17.5 Hz, 1H), 3.05–2.94 (m, 2H), 2.94–2.87 (m, 1H), 2.63–2.53 (m, 1H), 2.35–2.29 (m, 1H), 2.11–2.04 (m, 1H), 2.02–1.92 (m, 1H), 1.17 (t, J = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 181.35, 168.40, 142.61, 134.51, 129.07, 128.99, 128.51, 127.41, 125.51, 123.58, 70.44, 61.64, 52.59, 44.70, 34.91, 29.60, 29.55, 28.58, 22.19, 14.08; HRMS (ESI) calcd for C₂₂H₂₆N₃O₄ [M + H]⁺ 396.1923, found 396.1921.

Ethyl 2-(4-(((3aS,7aS)-3-oxo-1,4,7,7a-tetrahydroisobenzofuran-3a(3H)-yl)methyl)-1-

The compound **4k'** was prepared according to the general procedure and was purified by flash column chromatography (hexane: ethyl acetate = 5: 1 to 1:1). **4k'** was obtained as a light-yellow oil (35.2 mg, 45% yield). ¹H NMR (500 MHz, CDCl₃) δ

((trimethylsilyl)methyl)-1H-1,2,3-triazol-5-yl)acetate (4k'):

5.86–5.75 (m, 2H), 4.21–4.10 (m, 3H), 3.97–3.84 (m, 2H), 3.66 (d, J = 17.4 Hz, 1H), 3.54 (s, 2H), 3.05–2.91 (m, 3H), 2.63–2.55 (m, 1H), 2.34 (d, J = 17.6 Hz, 1H), 2.14–2.06 (m, 1H), 1.98 (d, J = 18.1 Hz, 1H), 1.26 (t, J = 7.1 Hz, 3H), 0.18 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 181.50, 168.77, 141.25, 129.46, 125.52, 123.62, 70.48, 61.68, 44.80, 39.05, 34.82, 29.66, 28.83, 22.18, 14.25, -1.62; HRMS (ESI) calcd for C₁₉H₃₀N₃O₄Si [M + H]⁺ 392.2006, found 392.1996.

2,5-Dioxopyrrolidin-1-yl

3-(1-benzyl-5-(2-ethoxy-2-oxoethyl)-1*H*-1,2,3-triazol-4-yl)propanoate (4l): The compound 4l was prepared according to the general procedure and was purified by flash column chromatography (hexane: ethyl acetate = 1:1 to 1:2).
4l was obtained as a yellow oil (60.1 mg, 73% yield). ¹H

NMR (500 MHz, CDCl₃) δ 7.31 (t, *J* = 7.9 Hz, 3H), 7.13 (d, *J* = 7.1 Hz, 2H), 5.56 (s, 2H), 4.02 (q, *J* = 7.1 Hz, 2H), 3.50 (s, 2H), 3.12 (t, *J* = 6.9 Hz, 2H), 3.04 (t, *J* = 7.5 Hz, 2H), 2.81 (s, 4H), 1.17 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 168.99, 168.29, 167.98, 144.26, 134.62, 129.13, 128.52, 127.40, 127.23, 61.86, 52.58, 30.60, 28.83, 25.70, 20.15, 14.12; HRMS (ESI) calcd for C₁₆H₂₀N₃O₄ [M – OSu + H]⁺ 318.1454, found 318.1454.

Ethyl 1-benzyl-5-(2-ethoxy-2-oxoethyl)-1*H*-1,2,3-triazole-4-carboxylate (4m): The N=N compound 4m was prepared according to the general procedure and was purified by flash column chromatography (hexanea: ethyl acetate = 3:1 to N=N Det 1:1). 4m was obtained as a mixture of triazole, yellow oil (80.0 mg, 30%) yield of 4m). Characteristic data for 4m: ¹H NMR (500 MHz, CDCl₃) δ

5.57 (s, 2H), 4.00 (q, J = 7.1 Hz, 2H), 3.90 (s, 2H), 1.12 (t, J = 7.0 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 167.19, 161.29, 140.53, 129.23, 129.09, 128.21, 127.34, 61.75, 54.38, 52.53, 29.24, 13.95; HRMS (ESI) calcd for C₁₆H₂₀N₃O₄ [M + H]⁺ 318.1454, found 318.1454.

Ethyl 2-(1-benzyl-4-((N-(but-3-en-1-yl)-4-methylphenyl)sulfonamido)-1H-1,2,3-triazol-5-

yl)acetate (4n): The compound 4n was prepared according to the general procedure and was purified by flash column chromatography (hexane: ethyl acetate = 2:1). 4n was obtained as a yellow oil (48.9 mg, 52% yield). ¹H NMR (500 MHz, CDCl₃) δ

7.50 (d, *J* = 8.1 Hz, 2H), 7.39–7.34 (m, 3H), 7.27 (d, *J* = 7.7 Hz, 2H), 7.15 (d, *J* = 6.5 Hz, 2H),

5.62 (s, 2H), 4.94–4.87 (m, 2H), 4.13 (q, J = 7.1 Hz, 2H), 3.67 (t, J = 7.0 Hz, 2H), 3.61 (s, 2H), 2.41 (s, 3H), 2.15 (q, J = 6.6 Hz, 2H), 1.24 (t, J = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 168.19, 144.12, 143.01, 134.74, 134.50, 134.20, 129.75, 129.25, 128.76, 128.06, 127.44, 119.77, 116.98, 61.77, 53.63, 49.53, 32.62, 28.85, 21.74, 14.20; HRMS (ESI) calcd for C₂₄H₂₉N₄O₄S [M + H]⁺469.1910, found 469.1900.

Ethyl 2-(1-benzyl-4-((4-phenyl-1*H*-1,2,3-triazol-1-yl)methyl)-1*H*-1,2,3-triazol-5-

yl)acetate (40): The compound 40 was prepared according to the general procedure and was purified by flash column chromatography (hexane: ethyl acetate = 1:1 to 1:2). 40 was obtained as a brown oil (56.3 mg, 70% yield). ¹H NMR (500

MHz, CDCl₃) δ 7.91 (s, 1H), 7.77 (d, *J* = 7.3 Hz, 2H), 7.38 (t, *J* = 7.1 Hz, 2H), 7.32–7.27 (m, 4H), 7.14 (d, *J* = 5.7 Hz, 2H), 5.67 (s, 2H), 5.54 (s, 2H), 3.93 (q, *J* = 6.8 Hz, 2H), 3.64 (s, 2H), 1.08 (t, *J* = 6.9 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 167.34, 148.24, 140.99, 133.84, 130.45, 129.63, 129.16, 128.84, 128.74, 128.22, 127.46, 125.68, 119.87, 62.00, 52.77, 45.00, 28.62, 13.91; HRMS (ESI) calcd for C₂₂H₂₃N₆O₂ [M + H]⁺403.1882, found 403.1875.

Ethyl 2-(1-benzyl-4-(pyridin-2-yl)-1*H*-1,2,3-triazol-5-yl)acetate (4p): The compound 4p was prepared according to the general procedure and was purified by flash column chromatography (hexane: ethyl acetate = 1:1). 4p was obtained as light-yellow solid (24.9 mg, 37% yield). ¹H NMR (500

MHz, CDCl₃) δ 8.51 (d, *J* = 4.0 Hz, 1H), 8.22 (d, *J* = 7.9 Hz, 1H), 7.74 (t, *J* = 7.7 Hz, 1H), 7.36–7.28 (m, 3H), 7.20 (d, *J* = 7.0 Hz, 2H), 7.17–7.13 (m, 1H), 5.62 (s, 2H), 4.22 (s, 2H), 4.03 (q, *J* = 7.1 Hz, 2H), 1.14 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 168.71, 151.59, 148.96, 144.96, 136.68, 134.56, 129.43, 129.14, 128.57, 127.42, 122.33, 120.95, 61.43, 52.42, 30.02, 14.15; HRMS (ESI) calcd for C₁₈H₁₉N₄O₂ [M + H]⁺ 323.1508, found 323.1505.

Ethyl 2-(1-benzyl-4-(pyridin-3-yl)-1H-1,2,3-triazol-5-yl)acetate (4q): The compound 4q

was prepared according to the general procedure and was purified by flash column chromatography (hexane: ethyl acetate = 1:5). **4q** was obtained as a mixture of triazole, light-yellow solid (43.2 mg, 22% yield of **4q**). Characteristic data for **4q**: ¹H NMR (500 MHz, CDCl₃) δ

8.10 (d, J = 5.4 Hz, 1H), 7.21 (d, J = 6.7 Hz, 2H), 5.66 (s, 2H), 4.06 (q, J = 6.9 Hz, 2H), 3.66 (s, 2H), 1.18 (t, J = 6.9 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 167.76, 148.99, 146.80, 145.69, 144.22, 134.17, 128.97, 128.18, 127.46, 62.14, 52.72, 29.54, 14.05; HRMS (ESI) calcd for C₁₈H₁₉N₄O₂ [M + H]⁺ 323.1508, found 323.1505.

Ethyl 2-(4-butyl-1-octyl-1H-1,2,3-triazol-5-yl)acetate (5a): The compound 5a was prepared

^{N=N} ⁿBu $(-C_8H_{17})$ according to the general procedure and was purified by flash column ⁿBu $(-C_8H_{17})$ chromatography (hexane: ethyl acetate = 2:1). **5a** was obtained as a light-yellow oil (40.0 mg, 62% yield). ¹H NMR (500 MHz, CDCl₃) δ 4.22 (t, *J* = 7.3 Hz, 2H), 4.15 (q, *J* = 6.9 Hz, 2H), 3.61 (s, 2H), 2.62 (t, *J* = 7.5 Hz, 2H), 1.90– 1.82 (m, 2H), 1.68–1.60 (m, 2H), 1.39–1.21 (m, *J* = 24.9, 13.9, 7.0 Hz, 20H), 0.91 (t, *J* = 7.2 Hz, 3H), 0.86 (t, *J* = 6.3 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 168.43, 146.45, 125.80, 61.83, 48.49, 31.83, 31.69, 30.12, 29.18, 29.06, 26.77, 24.89, 22.71, 22.52, 14.17, 13.96; HRMS (ESI) calcd for C₁₈H₃₄N₃O [M + H]⁺ 324.2651, found 324.2648.

Ethyl 2-(4-butyl-1-((trimethylsilyl)methyl)-1*H*-1,2,3-triazol-5-yl)acetate (5b): The ^{n}Bu $^{N=N}$ SiMe_3 compound 5b was prepared according to the general procedure and was purified by flash column chromatography (hexane: ethyl acetate $^{c}CO_2Et$ ^{c}Et ^{c}Et

Ethyl 2-(1-(but-2-en-1-yl)-4-butyl-1*H*-1,2,3-triazol-5-yl)acetate (5c): The compound 5c was prepared according to the general procedure and was purified by flash $\begin{pmatrix} & & \\ & & \\ & & \end{pmatrix}$

prepared according to the general procedure and was purified by flash column chromatography (hexane: ethyl acetate = 1:1 to 2:1). **5c** was obtained as a light-yellow oil (21.5 mg, 40% yield). ¹H NMR (500 MHz, CDCl₃) δ 5.70–5.60 (m, 1H), 5.60–5.50 (m, 1H), 4.88 (d, *J* =

5.5 Hz, 2H), 4.13 (q, J = 7.1 Hz, 2H), 3.61 (s, 2H), 2.60 (t, J = 7.7 Hz, 2H), 1.68 (d, J = 5.7 Hz, 3H), 1.65–1.59 (m, 2H), 1.36–1.31 (m, 2H), 1.23 (t, J = 7.1 Hz, 3H), 0.90 (t, J = 7.3 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 168.41, 146.92, 130.71, 129.37, 124.56, 123.69, 61.72, 50.73, 31.70, 28.93, 24.81, 22.47, 17.72, 14.18, 13.93; HRMS (ESI) calcd for C₁₄H₂₄N₃O₂ [M + H]⁺ 266.1869, found 266.1872.

```
Ethyl 2-(4-butyl-1-(3-methylbut-2-en-1-yl)-1H-1,2,3-triazol-5-yl)acetate (5d): The compound 5d was prepared according to the general procedure and was purified by flash column chromatography (hexane: ethyl acetate = 2:1). 5d was obtained as a light-yellow oil (26.9 mg, 48% yield).
<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) \delta 5.27 (t, J = 6.1 Hz, 1H), 4.96 (d, J =
```

6.7 Hz, 2H), 4.15 (t, *J* = 7.0 Hz, 2H), 3.60 (s, 2H), 2.61 (t, *J* = 7.7 Hz, 2H), 1.79 (s, 3H), 1.75 (s, 3H), 1.68–1.61 (m, 2H), 1.38–1.33 (m, 2H), 1.25 (t, *J* = 7.0 Hz, 3H), 0.91 (t, *J* = 7.3 Hz,

3H); ¹³C NMR (126 MHz, CDCl₃) δ 168.53, 146.95, 138.05, 125.81, 118.12, 61.76, 47.15, 31.77, 28.91, 25.77, 24.89, 22.54, 18.21, 14.23, 13.99; HRMS (ESI) calcd for C₁₅H₂₆N₃O₂ [M + H]⁺ 280.2025, found 280.2020.

Ethyl 2-(1-(but-2-yn-1-yl)-4-butyl-1*H*-1,2,3-triazol-5-yl)acetate (5e): The compound 5e was prepared according to the general procedure and was purified by flash column chromatography (hexane: ethyl acetate = 2:1). 5e was obtained as a yellow oil (40.5 mg, 77% yield). ¹H NMR (500 MHz, CDCl₃) δ 5.13 (s, 2H), 4.17 (q, *J* = 7.1 Hz, 2H), 3.80 (s, 2H), 2.62 (t, *J* = 7.6 Hz, 2H), 1.82 (s, 3H), 1.68–1.62 (m, 2H), 1.37–1.33 (m, 2H), 1.26 (t, *J* = 7.1 Hz, 3H), 0.92 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 168.50, 147.16, 126.18, 83.03, 71.27, 61.84, 39.16, 31.71, 28.99, 24.84, 22.50, 14.24, 13.97, 3.67; HRMS (ESI) calcd for C₁₄H₂₂N₃O₂ [M + H]⁺ 264.1712, found 264.1712.

Ethyl 2-(4-butyl-1-(4-methylbenzyl)-1H-1,2,3-triazol-5-yl)acetate (5f): The compound 5f

was prepared according to the general procedure and was purified by flash column chromatography (hexane: ethyl acetate = 5:1 to 1:1). **5f** was obtained as a yellow oil (44.7 mg, 71% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.12 (d, *J* = 7.4 Hz, 2H), 7.04 (d, *J* = 7.4 Hz, 2H), 5.52 (s, 2H), 4.05 (q, *J* = 6.9 Hz, 2H), 3.43 (s, 2H),

2.60 (t, J = 7.5 Hz, 2H), 2.31 (s, 3H), 1.68–1.60 (m, 2H), 1.35–1.31 (m, 2H), 1.19 (t, J = 7.0 Hz, 3H), 0.90 (t, J = 7.0 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 168.33, 147.30, 138.28, 131.85, 129.73, 127.43, 126.17, 61.72, 52.33, 31.69, 28.94, 24.86, 22.49, 21.21, 14.12, 13.95; HRMS (ESI) calcd for C₁₈H₂₆N₃O₂[M + H]⁺ 316.2025, found 316.2024.

Ethyl 2-(1-(4-bromobenzyl)-4-butyl-1H-1,2,3-triazol-5-yl)acetate (5g): The compound 5g

was prepared according to the general procedure and was purified by flash column chromatography (hexane: ethyl acetate = 3:1 to 1:1). **5g** was obtained as a light-yellow oil (50.4 mg, 66% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.44 (d, *J* = 8.2 Hz, 2H), 7.02 (d, *J* = 8.1 Hz, 2H), 5.50 (s, 2H), 4.03 (q, *J* = 7.1 Hz, 2H), 3.43 (s, 2H),

2.61 (t, J = 7.5 Hz, 2H), 1.69–1.58 (m, 2H), 1.37–1.30 (m, 2H), 1.18 (t, J = 7.1 Hz, 3H), 0.90 (t, J = 7.3 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 168.12, 147.49, 133.87, 132.21, 129.13, 126.24, 122.55, 61.84, 51.76, 31.62, 28.91, 24.82, 22.45, 14.09, 13.91; HRMS (ESI) calcd for C₁₇H₂₃N₃O₂Br[M + H]⁺ 380.0974, found 380.0963.

Ethyl 2-(4-butyl-1-(4-nitrobenzyl)-1H-1,2,3-triazol-5-yl)acetate (5h): The compound 5h

was prepared according to the general procedure and was purified by flash column chromatography (hexane: ethyl acetate = 1:1). **5h** was obtained as a light-yellow oil (45.1 mg, 65% yield). ¹H NMR (500 MHz, CDCl₃) δ 8.18 (d, *J* = 8.4 Hz, 2H), 7.31 (d, *J* = 8.4 Hz, 2H), 5.66 (s, 2H), 4.05 (q, *J* = 7.1 Hz, 2H),

3.47 (s, 2H), 2.63 (t, J = 7.7 Hz, 2H), 1.70–1.62 (m, 2H), 1.39–1.31 (m, 2H), 1.18 (t, J = 7.1 Hz, 3H), 0.91 (t, J = 7.3 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 168.04, 148.02, 147.54, 142.08, 128.26, 126.38, 124.27, 61.99, 51.41, 31.61, 31.55, 28.94, 24.83, 22.46, 14.12, 13.92; HRMS (ESI) calcd for C₁₇H₂₃N₄O₄[M + H]⁺ 347.1719, found 347.1716.

Ethyl 2-(4-butyl-1-(3-cyanopropyl)-1H-1,2,3-triazol-5-yl)acetate (5i): The compound 5i

was prepared according to the general procedure and was purified by flash column chromatography (hexane: ethyl acetate = 1:1 to 0:1). **5i** was obtained as a light-yellow oil (36.7 mg, 66% yield). ¹H NMR (500 MHz, CDCl₃) δ 4.35 (t, *J* = 6.4 Hz, 2H), 4.17 (q, *J*

= 7.1 Hz, 2H), 3.65 (s, 2H), 2.61 (t, J = 7.5 Hz, 2H), 2.47 (t, J = 6.9 Hz, 2H), 2.38–2.32 (m, 2H), 1.67–1.59 (m, 2H), 1.38–1.31 (m, 2H), 1.26 (t, J = 7.1 Hz, 3H), 0.91 (t, J = 7.4 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 168.34, 146.70, 126.46, 118.70, 62.06, 46.25, 31.59, 28.80, 25.39, 24.76, 22.41, 14.82, 14.17, 13.89; HRMS (ESI) calcd for C₁₄H₂₃N₄O₂[M + H]⁺ 279.1821, found 279.1824.

Diethyl 2,2'-(4-butyl-1*H***-1,2,3-triazole-1,5-diyl)diacetate (5j):** The compound **5j** was n_{Bu} N=N CO_2Et CO_2Et CO

(s, 2H), 4.26–4.18 (m, 2H), 4.12 (q, J = 7.1 Hz, 2H), 3.63 (s, 2H), 2.63 (t, J = 7.6 Hz, 2H), 1.67–1.59 (m, 2H), 0.89 (t, J = 7.2 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 168.33, 127.10; HRMS (ESI) calcd for C₁₄H₂₄N₃O₄ [M + H]⁺298.1767, found 298.1764.

Allyl 2-(4-butyl-5-(2-ethoxy-2-oxoethyl)-1*H*-1,2,3-triazol-1-yl)acetate (5k): The compound ^{N=N} ^{N=N} ^{CO2Allyl} ^{N=N} ^{CO2Allyl} ^{Sk} was prepared according to the general procedure and was purified by flash column chromatography (hexane: ethyl acetate = 3:1 to 1:1). 5k was obtained as a mixture of triazole, yellow oil (45.2 mg, 73% yield of 5k). ¹H NMR (500 MHz, CDCl₃) δ 5.91–

5.83 (m, *J* = 7.4, 5.7, 3.8 Hz, 1H), 5.33–5.25 (m, 2H), 5.23 (s, 2H), 4.65 (d, *J* = 5.4 Hz, 2H), 4.13 (q, *J* = 7.0 Hz, 2H), 3.64 (s, 2H), 2.64 (t, *J* = 7.5 Hz, 2H), 1.69–1.61 (m, 2H), 1.36–1.31

(m, 2H), 1.23 (t, J = 7.1 Hz, 3H), 0.90 (t, J = 7.2 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 168.40, 166.49, 146.86, 131.04, 127.12, 122.03, 119.70, 119.61, 66.74, 61.95, 49.66, 31.65, 29.01, 24.81, 22.38, 14.14, 13.92; HRMS (ESI) calcd for C₁₅H₂₄N₃O₄ [M + H]⁺ 310.1767, found 310.1766.

Benzyl 2-(4-butyl-5-(2-ethoxy-2-oxoethyl)-1H-1,2,3-triazol-1-yl)acetate (5l): The

compound **51** was prepared according to the general procedure and was purified by flash column chromatography (hexane: ethyl acetate = 1:1). **51** was obtained as a mixture triazole, yellow oil (50.8 mg, 71% yield of **51**). ¹H NMR (500 MHz, CDCl₃) δ 7.36–7.33 (m, 3H),

7.32–7.29 (m, 2H), 5.24 (s, 2H), 5.19 (s, 2H), 4.10 (q, J = 7.1 Hz, 2H), 3.61 (s, 2H), 2.64 (t, J = 7.6 Hz, 2H), 1.68–1.61 (m, 2H), 1.38–1.32 (m, J = 14.8, 6.8 Hz, 2H), 1.21 (t, J = 7.1 Hz, 3H), 0.91 (t, J = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 168.35, 166.62, 146.83, 134.70, 128.79, 128.50, 127.12, 122.04, 67.92, 61.90, 50.82, 49.70, 31.64, 28.95, 24.78, 22.35, 13.91; HRMS (ESI) calcd for C₁₉H₂₆N₃O₄ [M + H]⁺ 360.1923, found 360.1917.

Ethyl 2-(4-butyl-1-(2-oxo-2-phenylethyl)-1*H*-1,2,3-triazol-5-yl)acetate (5m):

The compound **5m** was prepared according to the general procedure and was purified by flash column chromatography (hexane: ethyl acetate = 1:1). **5m** was obtained as a light-yellow oil (44.1 mg, 67% yield). ¹H NMR (500 MHz, CDCl₃) δ 8.00 (d, *J* = 7.6 Hz, 2H), 7.66

(t, J = 7.3 Hz, 1H), 7.53 (t, J = 7.6 Hz, 2H), 5.94 (s, 2H), 4.11 (q, J = 7.6 Hz, 2H), 3.61 (s, 2H), 2.68 (t, J = 7.6 Hz, 2H), 1.74–1.65 (m, 2H), 1.43–1.33 (m, 2H), 1.21 (t, J = 7.1 Hz, 3H), 0.93 (t, J = 7.3 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 191.06, 168.74, 146.87, 134.63, 134.22, 129.25, 128.33, 127.67, 61.90, 54.72, 31.73, 29.19, 24.90, 22.46, 14.13, 13.98; HRMS (ESI) calcd for C₁₈H₂₄N₃O₃[M + H]⁺ 330.1818, found 330.1817.

Benzyl 2-(1-benzyl-4-butyl-1*H*-1,2,3-triazol-5-yl)acetate (6a): The compound 6a was N=N n_{Bu} N=N N=NN=

2H), 7.11–7.05 (m, 2H), 5.52 (s, 2H), 5.02 (s, 2H), 3.47 (s, 2H), 2.59 (t, J = 7.5 Hz, 2H), 1.65– 1.57 (m, 2H), 1.35–1.26 (m, 2H), 0.87 (t, J = 7.2 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 168.10, 147.43, 135.14, 134.78, 129.10, 128.81, 128.53, 128.48, 127.42, 126.05, 67.49, 52.53, 31.66, 28.93, 24.86, 22.50, 13.93; HRMS (ESI) calcd for C₂₂H₂₆N₃O₂ [M + H]⁺ 364.2025, found 364.2019.

prepared according to the general procedure and was purified by flash column chromatography (hexane: ethyl acetate = 3:1). **6b** was obtained as a light-yellow oil (42.5 mg, 60% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.34–7.28

(m, 3H), 7.14 (d, J = 7.0 Hz, 2H), 5.56 (s, 2H), 3.97 (t, J = 6.7 Hz, 2H), 3.44 (s, 2H), 2.61 (t, J = 7.6 Hz, 2H), 1.69–1.59 (m, 2H), 1.57–1.49 (m, 2H), 1.35–1.24 (m, 8H), 0.93–0.89 (m, 3H), 0.89–0.86 (m, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 168.36, 147.30, 134.91, 129.09, 128.45, 127.40, 126.25, 65.93, 52.45, 31.69, 31.44, 30.75, 28.95, 28.47, 25.56, 24.88, 22.61, 22.52, 14.08, 13.95; HRMS (ESI) calcd for C₂₁H₃₂N₃O₂ [M + H]⁺ 358.2495, found 358.2485.

(1R,3S,5r,7r)-Adamantan-2-yl 2-(1-benzyl-4-butyl-1H-1,2,3-triazol-5-yl)acetate (6c): The

compound **6c** was prepared according to the general procedure and was purified by flash column chromatography (hexane: ethyl acetate = 3:1). **6c** was obtained as a light-yellow oil (45.0 mg, 55% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.34–7.28 (m, 3H), 7.15 (d,

 $J = 6.8 \text{ Hz}, 2\text{H}, 5.58 \text{ (s, 2H)}, 4.86 \text{ (s, 1H)}, 3.47 \text{ (s, 2H)}, 2.63 \text{ (t, } J = 7.6 \text{ Hz}, 2\text{H}), 1.90-1.87 \text{ (m, } 2\text{H}), 1.85-1.80 \text{ (m, } J = 7.9 \text{ Hz}, 4\text{H}), 1.80-1.72 \text{ (m, 6H)}, 1.68-1.62 \text{ (m, 2H)}, 1.54-1.48 \text{ (m, 2H)}, 1.38-1.32 \text{ (m, 2H)}, 0.91 \text{ (t, } J = 7.3 \text{ Hz}, 3\text{H}); {}^{13}\text{C}$ NMR (126 MHz, CDCl₃) δ 167.71, 147.22, 134.91, 129.11, 128.46, 127.41, 126.48, 78.89, 52.44, 37.29, 36.33, 31.85, 31.78, 29.39, 27.11, 26.93, 24.93, 13.94; HRMS (ESI) calcd for C₂₅H₃₄N₃O₂ [M + H]⁺ 408.2651, found 408.2641.

Allyl 2-(1-benzyl-4-butyl-1*H*-1,2,3-triazol-5-yl)acetate (6d): The compound 6d was ^{N=N} ⁿBu ^{N-Bn} ^O ^{N-Bn} ^O ^{N-Bn} ^O ^{N-Bn} ^{N-Bn} ^O ^{N-Bn} ^{N-Bn} ^O ^{N-Bn} ^{N-Bn} ^{N-Bn} ^O ^{N-Bn} ^{N-Bn} ^{N-Bn} ^{N-Bn} ^{N-Bn} ^O ^{N-Bn} ^{N-Dn}

2H), 5.85–5.76 (m, 1H), 5.57 (s, 2H), 5.25 (d, J = 6.0 Hz, 1H), 5.23 (s, 1H), 4.47 (d, J = 5.4 Hz, 2H), 3.47 (s, 2H), 2.62 (t, J = 7.6 Hz, 2H), 1.70–1.62 (m, 2H), 1.39–1.30 (m, 2H), 0.91 (t, J = 7.3 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 167.96, 147.45, 134.87, 131.40, 129.27, 129.13, 128.50, 127.44, 126.07, 119.33, 66.32, 52.53, 31.69, 28.88, 24.90, 22.53, 13.97; HRMS (ESI) calcd for C₁₈H₂₄N₃O₂ [M + H]⁺ 314.1868, found 314.1864.

1-Benzyl-5-butyl-1,4,5,7-tetrahydro-6H-[**1,2,3**]triazolo[**4,5-**c]pyridin-6-one (**8a**): The compound **8a** was prepared according to the general procedure and was purified by flash column chromatography (hexane: ethyl acetate = 1:1). **8a** was obtained as a light-yellow oil (43.2 mg, 76% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.34 (m, 3H), 7.22 (m, 2H), 5.46 (s, 2H),

4.57 (t, J = 2.7 Hz, 2H), 3.47 (m, 2H), 3.37 (t, J = 2.6 Hz, 2H), 1.57 (m, 2H), 1.33 (m, 2H), 0.92 (t, J = 7.3 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 163.9, 137.3, 133.7, 129.2, 128.9, 127.8, 110.2, 52.6, 48.0, 45.4, 28.9, 28.3, 20.1, 13.8; HRMS (ESI) calcd for C₁₆H₂₁N₄O [M + H]⁺ 285.1710, found 285.1711.

5-Butyl-1-octyl-1,4,5,7-tetrahydro-6*H***-[1,2,3]triazolo**[**4,5-***c*]**pyridin-6-one** (**8b**): The

compound **8b** was prepared according to the general procedure and was purified by flash column chromatography (hexane: ethyl acetate = 1:1). **8b** was obtained as a light-yellow oil (44.1 mg, 72% yield). ¹H NMR (500 MHz, CDCl₃) δ 4.60 (s, 2H), 4.22 (t, *J* = 7.1 Hz, 2H), 3.61 (s, 2H), 3.53 (m, 2H), 1.86 (m, 2H), 1.61 (m, 2H), 1.31 (m, 12H), 0.94

 $(t, J = 7.3 \text{ Hz}, 3\text{H}), 0.86 (t, J = 6.6 \text{ Hz}, 3\text{H}); {}^{13}\text{C} \text{ NMR} (125 \text{ MHz}, \text{CDCl}_3) \delta 164.0, 136.6, 127.5, 48.4, 48.0, 45.4, 31.6, 29.8, 29.0, 28.9, 28.3, 26.5, 22.5, 20.1, 14.0, 13.8; HRMS (ESI) calcd for C₁₇H₃₁N₄O [M + H]⁺ 307.2492, found 307.2501.$

Ethyl 2-(5-butyl-6-oxo-4,5,6,7-tetrahydro-1*H*-[1,2,3]triazolo[4,5-c]pyridin-1-yl)acetate

(8c): The compound 8c was prepared according to the general procedure and was purified by flash column chromatography (hexane: ethyl acetate = 1:1). 8c was obtained as a light-yellow oil (40.1 mg, 73% yield). ¹H NMR (500 MHz, CDCl₃) δ 5.06 (s, 2H),

4.61 (s, 2H), 4.26 (q, J = 7.0 Hz, 2H), 3.59 (s, 2H), 3.52 (m, 2H), 1.61 (m, 2H), 1.36 (td, J = 14.9, 7.4 Hz, 2H), 1.30 (t, J = 7.1 Hz, 3H), 0.94 (t, J = 7.3 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 165.8, 163.8, 137.2, 129.1, 62.6, 49.1, 48.0, 45.3, 28.9, 28.1, 20.1, 14.1, 13.8; HRMS (ESI) calcd for C₁₃H₂₁N₄O₃ [M + H]⁺ 281.1608, found 281.1609.

5-Allyl-1-benzyl-1,4,5,7-tetrahydro-6H-[1,2,3]triazolo[4,5-c]pyridin-6-one (8d): The

compound **8d** was prepared according to the general procedure and was purified by flash column chromatography (hexane: ethyl acetate = 1:1). **8d** was obtained as a light-yellow oil (41.9 mg, 78% yield). ¹H NMR (500 MHz, CDCl₃) d 7.35 (m, 3H), 7.22 (m, 2H), 5.77 (tdd, *J* =

16.6, 10.8, 6.1 Hz, 1H), 5.48 (s, 2H), 5.22 (m, 2H), 4.55 (t, J = 2.8 Hz, 2H), 4.12 (d, J = 6.1 Hz, 2H), 3.40 (t, J = 2.8 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 163.9, 137.3, 133.6, 131.6, 129.3, 128.9, 127.8, 127.7, 118.6, 52.6, 50.3, 44.8, 28.3; HRMS (ESI) calcd for C₁₅H₁₇N₄O [M + H]⁺ 269.1397, found 269.1400.

5-Allyl-1-octyl-1,4,5,7-tetrahydro-6*H***-[1,2,3]triazolo**[**4,5-***c*]**pyridin-6-one** (**8e**): The

compound **8e** was prepared according to the general procedure and was purified by flash column chromatography (hexane: ethyl acetate = 1:1). **8e** was obtained as a light-yellow oil (42.9 mg, 74% yield). ¹H NMR (500 MHz, CDCl₃) δ 5.85–5.73 (m, 1H), 5.23 (m,

2H), 4.56 (s, 2H), 4.22 (t, J = 7.1 Hz, 2H), 4.15 (d, J = 6.0 Hz, 2H), 3.63 (s, 2H), 1.85 (m, 2H), 1.26 (m, 10H), 0.85 (t, J = 6.7 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 164.0, 136.6, 131.6, 127.3, 118.6, 50.3, 48.4, 44.9, 31.7, 29.8, 29.0, 28.9, 28.3, 26.5, 22.5, 14.0; HRMS (ESI) calcd for C₁₆H₂₇N₄O [M + H]⁺ 291.2179, found 291.2188.

1-Benzyl-5-(4-methoxybenzyl)-1,4,5,7-tetrahydro-6H-[1,2,3]triazolo[4,5-c]pyridin-6-one

(8f): The compound 8f was prepared according to the general procedure and was purified by flash column chromatography (hexane: ethyl acetate = 1:1). 8f was obtained as a light-yellow oil (53.6 mg, 77% yield). ¹H

NMR (500 MHz, CDCl₃) δ 7.35 (m, 3H), 7.23 (m, 4H), 6.84 (d, J = 7.3 Hz, 2H), 5.46 (s, 2H), 4.64 (s, 2H), 4.49 (s, 2H), 3.77 (s, 3H), 3.43 (s, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 164.1, 159.3, 137.2, 133.6, 130.1, 129.8, 129.2, 129.1, 129.1, 128.9, 128.9, 128.1, 128.0, 127.8, 127.6, 114.1, 55.3, 52.6, 50.5, 44.6, 28.4; HRMS (ESI) calcd for C₂₀H₂₁N₄O₂ [M + H]⁺ 349.1659, found 349.1662.

5-(4-Methoxybenzyl)-1-octyl-1,4,5,7-tetrahydro-6H-[1,2,3]triazolo[4,5-c]pyridin-6-one

(8g): The compound 8g was prepared according to the general procedure and was purified by flash column chromatography (hexane: ethyl acetate = 1:1). 8g was obtained as a light-yellow oil (57.8 mg, 78% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.26 (d, *J* = 8.4 Hz, 2H), 6.86

(d, J = 8.4 Hz, 2H), 4.69 (s, 2H), 4.51 (s, 2H), 4.22 (t, J = 7.2 Hz, 2H), 3.79 (s, 3H), 3.67 (s, 2H), 1.85 (m, 2H), 1.33–1.21 (m, 10H), 0.87 (t, J = 6.8 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 164.2, 159.3, 136.6, 129.9, 128.1, 127.2, 114.1, 55.3, 50.5, 48.4, 44.7, 31.7, 29.8, 29.0, 28.9, 28.4, 26.5, 22.6, 14.0; HRMS (ESI) calcd for C₂₁H₃₁N₄O₂ [M + H]⁺ 371.2442, found 371.2444.

5-(4-Methoxybenzyl)-1-((trimethylsilyl)methyl)-1,4,5,7-tetrahydro-6H-

[1,2,3]triazolo[4,5-*c*]pyridin-6-one (8h): The compound 8h was prepared according to the general procedure and was purified by flash column chromatography (hexane: ethyl acetate = 1:1). 8h was

obtained as a light-yellow oil (55.1 mg, 80% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.26 (d, J =

8.5 Hz, 2H), 6.86 (d, J = 8.5 Hz, 2H), 4.69 (s, 2H), 4.51 (t, J = 2.7 Hz, 2H), 3.79 (s, 3H), 3.62 (m, 4H), 0.17 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 164.5, 159.3, 136.1, 129.9, 128.2, 127.6, 114.1, 55.3, 50.5, 44.9, 39.3, 28.5, -2.0; HRMS (ESI) calcd for C₁₇H₂₅N₄O₂ Si [M + H]⁺ 345.1741, found 345.1746.

Ethyl 2-(5-(4-methoxybenzyl)-6-oxo-4,5,6,7-tetrahydro-1H-[1,2,3]triazolo[4,5-c]pyridin-

1-yl)acetate (8i): The compound 8i was prepared according to the general procedure and was purified by flash column chromatography (hexane: ethyl acetate = 1:1). 8i was obtained as a light-yellow oil (52.5 mg, 76%)

yield). ¹H NMR (500 MHz, CDCl₃) δ 7.25 (d, *J* = 8.6 Hz, 2H), 6.86 (d, *J* = 8.4 Hz, 2H), 5.06 (s, 2H), 4.69 (s, 2H), 4.52 (s, 2H), 4.26 (q, *J* = 7.1 Hz, 2H), 3.78 (s, 3H), 3.67 (s, 2H), 1.30 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 165.8, 164.0, 159.3, 137.1, 129.8, 128.8, 128.1, 114.2, 62.6, 55.3, 50.5, 49.1, 44.6, 28.2, 14.1; HRMS (ESI) calcd for C₁₇H₂₁N₄O₄ [M + H]⁺ 345.1557, found 345.1558.

1-Benzyl-5-(4-bromophenyl)-1,4,5,7-tetrahydro-6H-[1,2,3]triazolo[4,5-c]pyridin-6-one

(8j): The compound 8j was prepared according to the general procedure and was purified by flash column chromatography (hexane: ethyl acetate = 1:1). 8j was obtained as a light-yellow oil (39.7 mg, 52% yield). ¹H NMR (500 MHz, CDCl₃) d 7.58 (d, J = 8.2 Hz, 2H), 7.39 (d, J = 6.6 Hz, 2H), 7.27 (d, J = 6.6 Hz, 2H),

7.15 (d, J = 8.2 Hz, 2H), 5.53 (s, 2H), 4.89 (s, 2H), 3.56 (s, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 164.7, 141.2, 137.2, 133.5, 132.9, 129.3, 129.1, 129.0, 128.4, 127.8, 127.6, 121.6, 52.7, 49.1, 28.8; HRMS (ESI) calcd for C₁₈H₁₆BrN₄O [M + H]⁺ 383.0502, found 383.0512.

7-Acetyl-4,4-dimethyl-1-(4-nitrobenzyl)-4,7-dihydropyrano[3,4-d][1,2,3]triazol-6(1H)-

NO₂ one (8k): The compound 8k was prepared according to the general procedure and was purified by flash column chromatography (hexane: ethyl acetate = 1:1 to 1:3). 8k was obtained as a light-yellow oil (18.6 mg, 27% yield). ¹H NMR (500 MHz, CDCl₃) δ 8.17 (d, *J* = 8.6 Hz, 2H), 7.50 (d, *J* = 8.6

Hz, 2H), 5.91 (s, 1H), 4.99 (s, 2H), 2.40 (s, 3H), 2.08 (s, 3H), 1.89 (s, 3H); 13 C NMR (126 MHz, CDCl₃) δ 167.89, 164.40, 159.49, 147.52, 144.65, 128.60, 124.05, 117.33, 48.49, 28.15, 27.66, 20.93; HRMS (ESI) calcd for C₁₆H₁₇N₂O₅ [M - N₂ + H]⁺ 317.1137, found 317.1135.

N-((1-Benzyl-1H-1,2,3-triazol-4-yl)methyl)-N-butyl-2-diazo-3-oxobutanamide (81'): The

ⁿBuN

compound **8**I' was prepared according to the general procedure with 30 mol % of dtbpy as additive and was purified by flash column chromatography (hexane: ethyl acetate = 2:1 to 1:1). 8l' was obtained as a light-yellow oil (34.0 mg, 48%). ¹H NMR (500 MHz, CDCl₃) δ 7.57 (s, 1H), 7.36–7.31 (m, 3H), 7.24 (d, J = 6.1 Hz, 2H), 5.49 (s, 2H),

4.57 (s, 2H), 3.29 (t, J = 7.5 Hz, 2H), 2.27 (s, 3H), 1.60–1.52 (m, 2H), 1.29–1.20 (m, 2H), 0.87 (t, J = 7.2 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 161.22, 144.14, 134.65, 129.20, 128.86, 128.08, 123.29, 54.30, 48.45, 42.42, 29.84, 27.29, 20.03, 13.75; HRMS (ESI) calcd for $C_{18}H_{23}N_6O_2 [M + H]^+ 355.1882$, found 355.1874.

5-Butyl-3-methyl-5,6-dihydro-4H-furo[3,4-c]pyrrol-4-one (81"): The compound 81" was prepared according to the general procedure and was purified by flash column chromatography (hexane: ethyl acetate = 2:1). 81" was obtained as a Ő light-yellow oil (20.0 mg, 52%). ¹H NMR (500 MHz, CDCl₃) δ 7.10 (s, 1H),

4.21 (s, 2H), 3.45 (t, J = 7.3 Hz, 2H), 2.47 (s, 3H), 1.61–1.52 (m, 2H), 1.39–1.30 (m, 2H), 0.94 (t, J = 7.3 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 164.03, 148.04, 131.18, 129.79, 126.60, 125.52, 44.30, 42.51, 30.30, 20.15, 13.90, 12.83; HRMS (ESI) calcd for C₁₁H₁₆NO₂ [M + H]⁺ 194.1181, found 194.1182.

VI. ¹H NMR and ¹³C NMR Spectra

S-21

S-23

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl(ppm)

mixture of **4m** (R=CH₂CO₂Et) and **4m'** (R=H)

S-38

$$= \frac{1}{2} \frac$$

N=N N-Bn

mixture of 4p (R=CH₂CO₂Et) and 4p' (R=H)

- 7.26

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

$\int_{1.65}^{7.13} \int_{1.65}^{7.13} \int_{1.65}^{7.13} \int_{1.65}^{7.13} \int_{1.65}^{7.13} \int_{1.65}^{7.13} \int_{1.65}^{5.13} \int_{1.65}^{5.13} \int_{1.65}^{5.13} \int_{1.65}^{5.13} \int_{1.65}^{5.25} \int_{1.65}^{2.260} \int_{1.65}^{1.664} \int_{1.65}^{1.667} \int_{0.092}^{1.667} \int_{0.092}^{1.667}$

S-68

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl(ppm)

