Rh(III)-Catalyzed Tandem C(sp²)-H Allylation/N-Alkylation An-

nulation of Arene Amides with 2-Alkylidenetrimethylene Carbonates

Hui Xie^a, Jin-Yi Liang^a, Zhuo-Jun Huang^a, Bing Shu^b, Yi-Chuan Zheng^a, Yan-Zhi Liu^a, Shao-Yong Chen^a, Xu-Ge Liu^c* & Shang-Shi Zhang^a*

^aCenter for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China

^bSchool of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China

^cKey Laboratory of Brain Targeted Nanodrugs of Henan Province, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China.

*Email: <u>zhangshangshi@gdpu.edu.cn</u>.

*Email: <u>liuxg7@henu.edu.cn</u>.

Supporting Information

Table of content

1.	General information	2
2.	Synthesis of substrates 1, 2,	3
3.	General procedure and characterization of products	4
4.	Synthetic application of the product	.18
5.	Mechanistic experiments	.23
6.	NMR Spectra for New Compounds	.29
7.	Reference	.73

1. General information

Unless otherwise noted, all reactions were carried out at room temperature under an atmosphere of nitrogen with flame-dried glassware. If reaction was not conducted at room temperature, reaction temperatures are reported as the temperature of the bath surrounding the vessel unless otherwise stated. The dry solvents used were purified by distillation over the drying agents indicated in parentheses and were transferred under nitrogen: THF (Na-benzophenone), 1,2-dichloroethane (CaH₂), dichloromethane (CaH₂). Anhydrous CF₃CH₂OH, CH₃CN, DMF and MeOH were purchased from Acros Organics and stored under nitrogen atmosphere. Commercially available chemicals were obtained from commercial suppliers and used without further purification unless otherwise stated.

Proton NMR (¹H) were recorded at 400 MHz, and Carbon NMR (¹³C) at 101 MHz NMR spectrometer unless otherwise stated. The following abbreviations are used for the multiplicities: s: singlet, d: doublet, t: triplet, q: quartet, m: multiplet, br s: broad singlet for proton spectra. Coupling constants (*J*) are reported in Hertz (Hz).

High-resolution mass spectra (HRMS) were recorded on a BRUKER VPEXII spectrometer with EI and ESI mode unless otherwise stated.

Analytical thin layer chromatography was performed on Polygram SIL G/UV₂₅₄ plates. Visualization was accomplished with short wave UV light, or KMnO₄ staining solutions followed by heating. Flash column chromatography was performed using silica gel (200-300 mesh) with solvents distilled prior to use.

No attempts were made to optimize yields for substrate synthesis.

2. Synthesis of substrates 1, 2

The substrates of *N*-methoxy-1*H*-indole-1-carboxamide **1** and 5-methylene-1,3-dioxan-2-one **2** were prepared accroding to the previous procedure.^[1-2] All the characteristic data are consistent with the data reported before.^[1-2]

3. General procedure and characterization of products

(1) General procedure A

In an oven-dried Schlenk tube under air, a mixture of *N*-methoxy-1*H*-indole-1-carboxamide derivatives **1** (0.2 mmol, 1.0 equiv), 5-methylene-1,3-dioxan-2-one **2** (0.4 mmol, 2.0 equiv), $[Cp*RhCl_2]_2$ (3.1 mg, 0.005 mmol, 2.5 mmol%), AgSbF₆ (6.9 mg, 0.02 mmol, 10.0 mmol%), NaOAc (32.8 mg, 0.4 mmol, 2.0 equiv), and PhCl (1.0 mL) was stirred at 35 °C for 4 h. The reaction mixture was then diluted with DCM (10.0 mL) and washed with H₂O. The aqueous phase was extracted with DCM again. The organic layers were combined, washed with brine and dried over Na₂SO₄. The pure product was purified by flash column chromatography on silica with an appropriate solvent to afford the pure product **3**.

(2) General procedure B

In an oven-dried Schlenk tube under air, a mixture of *N*-methoxy-1*H*-indole-1-carboxamide derivatives **1** (0.2 mmol, 1.0 equiv), 5-methylene-1,3-dioxan-2-one **2** (0.24 mmol, 1.2 equiv), $[Cp*RhCl_2]_2$ (3.1 mg, 0.005 mmol, 2.5 mmol%), AgSbF₆ (6.9 mg, 0.02 mmol, 10.0 mmol%), Li_2CO_3 (29.5 mg, 0.4 mmol, 2.0 equiv), and PhCl (1.0 mL) was stirred at 80 °C for 24 h. The reaction mixture was then diluted with DCM (10.0 mL) and washed with H₂O. The aqueous phase was extracted with DCM again. The organic layers were combined, washed with brine and dried over Na₂SO₄. The pure product was purified by flash column chromatography on silica with an appropriate solvent to afford the pure product **4**.

Characterization of products

2-(2-(hydroxymethyl)allyl)-N-methoxy-1H-indole-1-carboxamide (3a)

Following the general procedure A, the product **3a** was obtained in 92% yield (47.7 mg, 0.20 mmol) as a white solid after column chromatography (eluent = Petroleum ether/EtOAc 2:1 v/v). RF (Petroleum ether/EtOAc 2:1): 0.18. ¹H NMR (400 MHz, CDCl₃) δ 8.89

(s, 1H), 7.76 (d, J = 8.2 Hz, 1H), 7.50 (d, J = 7.6 Hz, 1H), 7.25 – 7.15 (m, 2H), 6.45 (s, 1H), 5.16 (s, 1H), 4.87 (s, 1H), 4.15 (s, 2H), 3.90 (s, 3H), 3.75 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 152.56, 146.21, 137.19, 136.04, 128.97, 123.28, 122.35, 120.38, 112.87, 112.84, 108.01, 65.46, 64.69, 31.66. ESI-MS: calculated C₁₄H₁₆N₂O₃Na [M+Na]⁺ 283.1053; Found 283.1055.

2-(2-(hydroxymethyl)allyl)-N-methoxy-3-methyl-1H-indole-1-carboxamide (3b)

Following the general procedure A, the product **3b** was obtained in 79% yield (43.4 mg, 0.20 mmol) as a yellow oil after column chromatography (eluent = Petroleum ether/EtOAc 2:1 v/v). RF (Petroleum ether/EtOAc 2:1): 0.20. ¹H NMR (400 MHz, CDCl₃) δ 8.97 (s, 1H), 7.75 (m, 1H),

 $7.53 - 7.41 \text{ (m, 1H)}, 7.30 - 7.05 \text{ (m, 2H)}, 5.11 \text{ (s, 1H)}, 4.74 \text{ (s, 1H)}, 4.09 \text{ (s, 2H)}, 3.86 \text{ (s, 3H)}, 3.71 \text{ (s, 2H)}, 2.18 \text{ (s, 3H)}. {}^{13}\text{C} \text{ NMR} (101 \text{ MHz}, \text{CDCl}_3) \delta 152.83, 146.23, 135.28, 131.83, 130.23, 123.57, 122.11, 118.67, 115.43, 112.99, 112.50, 65.76, 64.77, 29.24, 8.68. ESI-MS: calculated C_{15}H_{18}N_2O_3Na [M+Na]^+ 297.1209; Found 297.1210.$

4-bromo-2-(2-(hydroxymethyl)allyl)-N-methoxy-1H-indole-1-carboxamide (3c)

Following the general procedure A, the product **3c** was obtained in 58% yield (39.2 mg, 0.20 mmol) as a yellow solid after column chromatography (eluent = Petroleum ether/EtOAc 2:1 v/v). RF (Petroleum ether/EtOAc 2:1): 0.19. ¹H NMR (400 MHz, CDCl₃) δ 9.40

(s, 1H), 7.66 (d, J = 8.3 Hz, 1H), 7.32 (d, J = 7.7 Hz, 1H), 7.06 (t, J = 8.0 Hz, 1H), 6.48 (s, 1H), 5.15 (s, 1H), 4.90 (s, 1H), 4.11 (s, 2H), 3.86 (s, 3H), 3.70 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 151.96, 145.65, 137.81, 136.36, 129.55, 125.24, 124.22, 114.15, 113.73, 111.98, 107.69, 65.61,

64.80, 31.66. ESI-MS: calculated C₁₄H₁₅BrN₂O₃Na [M+Na]⁺ 361.0158; Found 361.0157.

2-(2-(hydroxymethyl)allyl)-N,5-dimethoxy-1H-indole-1-carboxamide (3d)

Following the general procedure A, the product **3d** was obtained in 88% yield (50.8 mg, 0.20 mmol) as a yellow solid after column chromatography (eluent = Petroleum ether/EtOAc 2:1 v/v). RF (Petroleum ether/EtOAc 2:1): 0.16. ¹H NMR (400 MHz, CDCl₃) δ

7.62 (d, J = 8.6 Hz, 1H), 6.94 (s, 1H), 6.83 (d, J = 9.0 Hz, 1H), 6.35 (s, 1H), 5.12 (s, 1H), 4.81 (s, 1H), 4.05 (s, 2H), 3.84 (dd, J = 12.3, 2.8 Hz, 6H), 3.68 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 155.52, 152.87, 146.45, 137.99, 130.85, 129.74, 113.75, 112.32, 112.13, 107.92, 102.64, 65.25, 64.53, 55.76, 31.75. ESI-MS: calculated C₁₅H₁₈N₂O₄Na [M+Na]⁺ 313.1159; Found 313.1162.

5-fluoro-2-(2-(hydroxymethyl)allyl)-*N*-methoxy-1*H*-indole-1-carboxamide (3e)

Following the general procedure A, the product **3e** was obtained in 70% yield (39.1 mg, 0.20 mmol) as a yellow solid after column chromatography (eluent = Petroleum ether/EtOAc 2:1 v/v). RF (Petroleum ether/EtOAc 2:1): 0.18. ¹H NMR (400 MHz, CDCl₃) δ

9.15 (s, 1H), 7.70 (dd, J = 9.0, 4.4 Hz, 1H), 7.13 (dd, J = 8.8, 2.5 Hz, 1H), 6.95 (td, J = 9.1, 2.5 Hz, 1H), 6.39 (s, 1H), 5.16 (s, 1H), 4.87 (s, 1H), 4.14 (s, 2H), 3.87 (s, 3H), 3.72 (s, 2H).¹³C NMR (101 MHz, CDCl₃) δ 159.09 (d, J = 238.5 Hz), 152.36, 146.02, 138.60, 132.59, 129.75 (d, J = 10.1 Hz), 114.04 (d, J = 9.3 Hz), 113.51, 111.24 (d, J = 25.5 Hz), 108.05 (d, J = 4.0 Hz), 105.67 (d, J = 23.7 Hz), 65.68, 64.81, 31.80. ¹⁹F NMR (471 MHz, CDCl₃) δ -121.37. ESI-MS: calculated C₁₄H₁₅FN₂O₃Na [M+Na]⁺ 301.0959; Found 301.0960.

5-chloro-2-(2-(hydroxymethyl)allyl)-N-methoxy-1H-indole-1-carboxamide (3f)

Following the general procedure A, the product **3f** was obtained in 58% yield (34.3 mg, 0.20 mmol) as a yellow liquid after column chromatography (eluent = Petroleum ether/EtOAc 2:1 v/v). RF (Petroleum ether/EtOAc 2:1): 0.20. ¹H NMR (400 MHz, CDCl₃) δ

9.25 (s, 1H), 7.66 (d, J = 8.8 Hz, 1H), 7.43 (d, J = 2.0 Hz, 1H), 7.16 (dd, J = 8.8, 2.1 Hz, 1H), 5.15 (s, 1H), 4.86 (s, 1H), 4.11 (s, 2H), 3.86 (s, 3H), 3.70 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 152.56, 146.21, 137.19, 136.04, 128.97, 123.28, 122.35, 120.38, 112.87, 112.84, 108.01, 65.46, 64.69, 31.66. ESI-MS: calculated C₁₄H₁₅ClN₂O₃Na [M+Na]⁺ 317.0663; Found 317.0665.

5-bromo-2-(2-(hydroxymethyl)allyl)-N-methoxy-1H-indole-1-carboxamide (3g)

Following the general procedure A, the product **3g** was obtained in 53% yield (36.2 mg, 0.20 mmol) as a yellow liquid after column chromatography (eluent = Petroleum ether/EtOAc 2:1 v/v). RF (Petroleum ether/EtOAc 2:1): 0.25. ¹H NMR (400 MHz, CDCl₃) δ

9.23 (s, 1H), 7.61 (dd, J = 6.7, 5.4 Hz, 2H), 7.29 (dd, J = 8.8, 2.0 Hz, 1H), 6.36 (s, 1H), 5.16 (s, 1H),
4.87 (s, 1H), 4.12 (s, 2H), 3.87 (s, 3H), 3.71 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 152.09, 145.90,
138.24, 134.91, 130.66, 126.13, 122.93, 115.64, 114.50, 113.61, 107.36, 65.67, 64.84, 31.68. ESI-MS: calculated C₁₄H₁₅BrN₂O₃Na [M+Na]⁺ 361.0158; Found 361.0157.

2-(2-(hydroxymethyl)allyl)-5-iodo-N-methoxy-1H-indole-1-carboxamide (3h)

Following the general procedure A, the product **3h** was obtained in 54% yield (41.9 mg, 0.20 mmol) as a yellow liquid after column chromatography (eluent = Petroleum ether/EtOAc 2:1 v/v). RF (Petroleum ether/EtOAc 2:1): 0.25. ¹H NMR (500 MHz, CDCl₃) δ

9.26 (s, 1H), 7.80 (s, 1H), 7.48 (dd, J = 19.8, 8.6 Hz, 2H), 6.34 (s, 1H), 5.14 (s, 1H), 4.85 (s, 1H), 4.10 (s, 2H), 3.85 (s, 3H), 3.69 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 152.05, 145.92, 137.87, 135.46, 131.76, 131.32, 129.18, 114.94, 113.64, 107.11, 86.25, 65.71, 64.87, 31.64. ESI-MS: calculated C₁₄H₁₅IN₂O₃Na [M+Na]⁺ 409.0019; Found 409.0024.

2-(2-(hydroxymethyl)allyl)-N-methoxy-5-nitro-1H-indole-1-carboxamide (3i)

Following the general procedure A, the product **3i** was obtained in 49% yield (30.0 mg, 0.20 mmol) as a yellow oil after column chromatography (eluent = Petroleum ether/EtOAc 2:1 v/v). RF (Petroleum ether/EtOAc 2:1): 0.20. ¹H NMR (400 MHz, CDCl₃) δ 9.53 (s, 1H), 8.36 (d, J = 2.2 Hz, 1H), 8.07 (dd, J = 9.1, 2.3 Hz, 1H), 7.82 (d, J = 9.1 Hz, 1H), 6.57 (s, 1H), 5.23 (d, J = 0.9 Hz, 1H), 4.97 (s, 1H), 4.19 (s, 2H), 3.93 (s, 3H), 3.78 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 151.10, 145.27, 143.42, 140.06, 139.44, 128.45, 118.70, 116.77, 114.64, 113.19, 108.49, 65.80, 64.99, 31.71. ESI-MS: calculated C₁₄H₁₅N₃O₅Na [M+Na]⁺ 328.0904; Found 328.0908.

2-(2-(hydroxymethyl)allyl)-N-methoxy-6-(trifluoromethyl)-1H-indole-1-carboxamide (3j)

Following the general procedure A, the product **3j** was obtained in 44% yield (28.8 mg, 0.20 mmol) as a yellow liquid after column chromatography (eluent = Petroleum ether/EtOAc 2:1 v/v). RF (Petroleum ether/EtOAc 2:1): 0.16. ¹H NMR (400 MHz, CDCl₃)

δ 9.26 (s, 1H), 8.07 (d, J = 0.7 Hz, 1H), 7.57 (d, J = 8.2 Hz, 1H), 7.42 (dd, J = 8.2, 1.0 Hz, 1H), 6.49 (d, J = 0.5 Hz, 1H), 5.19 (d, J = 1.1 Hz, 1H), 4.91 (s, 1H), 4.16 (s, 2H), 3.90 (s, 3H), 3.77 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 151.76, 145.75, 139.61, 135.41, 131.40, 125.43 (q, J = 32.0 Hz), 124.93 (q, J = 271.9 Hz), 120.68, 119.23 (q, J = 3.4 Hz), 114.00, 110.65 (q, J = 4.4 Hz), 107.87, 65.77, 64.93, 31.76. ¹⁹F NMR (376 MHz, CDCl₃) δ -60.85. ESI-MS: calculated C₁₅H₁₅F₃N₂O₃Na [M+Na]⁺ 351.0927; Found 351.0935.

methyl 2-(2-(hydroxymethyl)allyl)-1-(methoxycarbamoyl)-1H-indole-6-carboxylate (3k)

Following the general procedure A, the product **3k** was obtained in 68% yield (43.3 mg, 0.20 mmol) as a yellow oil after column chromatography (eluent = Petroleum ether/EtOAc 1:1 v/v). RF (Petroleum ether/EtOAc 1:1): 0.21.

¹H NMR (400 MHz, CDCl₃) δ 9.31 (s, 1H), 8.41 (s, 1H), 7.83 (dd, J = 8.2, 1.4 Hz, 1H), 7.49 (d, J = 8.2 Hz, 1H), 6.48 (s, 1H), 5.17 (d, J = 0.9 Hz, 1H), 4.88 (s, 1H), 4.14 (s, 2H), 3.93 (s, 3H), 3.88 (s, 3H), 3.76 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 167.98, 151.77, 145.81, 140.93, 135.47, 132.76, 124.80, 123.52, 120.05, 114.64, 113.51, 107.86, 65.75, 64.92, 52.30, 31.78. ESI-MS: calculated C₁₆H₁₈N₂O₅Na [M+Na]⁺ 341.1108; Found 341.1115.

2-(2-(hydroxymethyl)allyl)-N-methoxy-6-(4-methoxyphenyl)-1H-indole-1-carboxamide (31)

Following the general procedure A, the product **31** was obtained in 84% yield (61.2 mg, 0.20 mmol) as a yellow liquid after column chromatography (eluent = Petroleum ether/EtOAc 2:1 v/v). RF (Petroleum

ether/EtOAc 2:1): 0.21. ¹H NMR (400 MHz, CDCl₃) δ 9.21 (s, 1H), 7.90 (s, 1H), 7.50 (m, J = 13.4, 8.5 Hz, 3H), 7.36 (dd, J = 8.1, 1.5 Hz, 1H), 6.95 (d, J = 8.8 Hz, 2H), 6.40 (s, 1H), 5.12 (s, 1H), 4.86 (s, 1H), 4.09 (s, 2H), 3.85 (s, 3H), 3.83 (s, 3H), 3.67 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 158.98, 152.47, 146.25, 137.42, 136.73, 136.48, 134.34, 128.39, 127.78, 121.77, 120.53, 114.32, 113.04, 111.06, 107.89, 65.61, 64.77, 55.45, 31.72. ESI-MS: calculated C₂₁H₂₂N₂O₄Na [M+Na]⁺ 389.1472; Found 389.1471.

6-(4-fluoro-3-methylphenyl)-2-(2-(hydroxymethyl)allyl)-N-methoxy-1H-indole-1-

carboxamide (3m)

Following the general procedure A, the product **3m** was obtained in 84% yield (62.1 mg, 0.20 mmol) as a yellow solid after column chromatography (eluent = Petroleum ether/EtOAc 2:1 v/v). RF (Petroleum ether/EtOAc 2:1):

0.19. ¹H NMR (400 MHz, CDCl₃) δ 9.21 (s, 1H), 7.92 (s, 1H), 7.50 (d, J = 8.1 Hz, 1H), 7.44 – 7.32 (m, 3H), 7.08 – 7.00 (m, 1H), 6.42 (s, 1H), 5.15 (s, 1H), 4.88 (s, 1H), 4.12 (s, 2H), 3.86 (s, 3H), 3.70 (s, 2H), 2.33 (d, J = 1.7 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 160.98 (d, J = 244.8 Hz), 152.38, 146.23, 137.62 (d, J = 3.6 Hz), 137.39, 136.77, 136.16, 130.46 (d, J = 5.1 Hz), 128.08, 126.18 (d, J = 8.0 Hz), 125.16 (d, J = 17.4 Hz), 121.99, 120.55, 115.34 (d, J = 22.4 Hz), 113.35, 111.49, 107.97, 65.71, 64.82, 31.78, 14.83 (d, J = 3.5 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -120.47. ESI-MS: calculated C₂₁H₂₁FN₂O₃Na [M+Na]⁺ 391.1428; Found 391.1433.

6-(benzo[d][1,3]dioxol-5-yl)-2-(2-(hydroxymethyl)allyl)-*N*-methoxy-1*H*-indole-1carboxamide (3n)

Following the general procedure A, the product **3n** was obtained in 80% yield (61.1 mg, 0.20 mmol) as a yellow oil after column chromatography (eluent = Petroleum ether/EtOAc 2:1 v/v). RF (Petroleum ether/EtOAc 2:1):

0.18. ¹H NMR (400 MHz, CDCl₃) δ 9.32 (s, 1H), 7.85 (s, 1H), 7.46 (d, J = 8.1 Hz, 1H), 7.31 (dd, J = 8.1, 1.5 Hz, 1H), 7.10 – 7.00 (m, 2H), 6.85 (d, J = 8.2 Hz, 1H), 6.38 (s, 1H), 5.96 (s, 2H), 5.11 (s, 1H), 4.84 (s, 1H), 4.07 (s, 2H), 3.83 (s, 3H), 3.66 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 152.41, 148.16, 146.91, 146.22, 137.51, 136.66, 136.58, 136.20, 127.96, 121.89, 120.83, 120.51, 113.11, 111.25, 108.68, 107.94, 107.88, 101.23, 65.62, 64.79, 31.73. ESI-MS: calculated C₂₁H₂₀N₂O₅Na [M+Na]⁺ 403.1264; Found 403.1268.

2-(2-(hydroxymethyl)allyl)-N-methoxy-7-methyl-1H-indole-1-carboxamide (30)

Following the general procedure A, the product **30** was obtained in 74% yield (40.4 mg, 0.20 mmol) as a yellow liquid after column chromatography (eluent = Petroleum ether/EtOAc 2:1 v/v). RF (Petroleum ether/EtOAc 2:1): 0.18. ¹H NMR (400 MHz, CDCl₃) δ 9.45

(s, 1H), 7.35 (d, J = 7.7 Hz, 1H), 7.07 (t, J = 7.5 Hz, 1H), 6.98 (d, J = 7.2 Hz, 1H), 6.35 (s, 1H), 5.15 (s, 1H), 4.98 (s, 1H), 4.09 (s, 2H), 3.87 (s, 3H), 3.58 (s, 2H), 2.49 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 152.59, 145.49, 138.13, 136.89, 129.46, 125.37, 121.98, 118.12, 113.96, 109.00, 105.67, 65.36, 64.13, 31.03, 18.55. ESI-MS: calculated C₁₅H₁₈N₂O₃Na [M+Na]⁺ 297.1209; Found 297.1210.

2-(2-(hydroxymethyl)allyl)-N,5,6-trimethoxy-1H-indole-1-carboxamide (3p)

Following the general procedure A, the product **3p** was obtained in 80% yield (51.1 mg, 0.20 mmol) as a pale yellow solid after column chromatography (eluent = Petroleum ether/EtOAc 2:1 v/v). RF (Petroleum ether/EtOAc 2:1): 0.19. ¹H NMR (400 MHz,

CDCl₃) δ 9.36 (s, 1H), 7.38 (s, 1H), 6.87 (s, 1H), 6.27 (s, 1H), 5.12 (s, 1H), 4.85 (s, 1H), 4.09 (s, 2H), 3.85 – 3.79 (m, 9H), 3.64 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 152.82, 147.07, 146.57, 146.26, 134.57, 130.53, 121.64, 113.20, 108.25, 101.77, 97.60, 65.53, 64.60, 56.25, 56.18, 31.82.

ESI-MS: calculated C₁₆H₂₀N₂O₅Na [M+Na]⁺ 343.1264; Found 343.1269.

6-chloro-5-fluoro-2-(2-(hydroxymethyl)allyl)-N-methoxy-1H-indole-1-carboxamide (3q)

Following the general procedure A, the product **3q** was obtained in 29% yield (18.0 mg, 0.20 mmol) as a yellow liquid after column chromatography (eluent = Petroleum ether/EtOAc 2:1 v/v). RF (Petroleum ether/EtOAc 2:1): 0.17. ¹H NMR (400 MHz, CDCl₃) δ

7.79 (d, J = 6.3 Hz, 1H), 7.18 (d, J = 9.1 Hz, 1H), 6.34 (s, 1H), 5.13 (s, 1H), 4.83 (s, 1H), 4.06 (s, 2H), 3.86 (s, 3H), 3.69 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 154.27 (d, J = 240.9 Hz), 151.98, 145.84, 139.11, 132.49, 127.96 (d, J = 9.3 Hz), 116.53 (d, J = 20.6 Hz), 114.70, 113.34, 107.45, 106.42 (d, J = 23.4 Hz), 65.30, 64.67, 31.71. ¹⁹F NMR (376 MHz, CDCl₃) δ -123.69. ESI-MS: calculated C₁₄H₁₄ClFN₂O₃Na [M+Na]⁺ 335.0569; Found 335.0567.

6-(2-(hydroxymethyl)allyl)-N-methoxy-5H-[1,3]dioxolo[4,5-f]indole-5-carboxamide (3r)

Following the general procedure A, the product **3r** was obtained in 68% yield (41.5 mg, 0.20 mmol) as a white solid after column chromatography (eluent = Petroleum ether/EtOAc 1:1 v/v). RF (Petroleum ether/EtOAc 1:1): 0.18. ¹H NMR (400 MHz, CDCl₃) δ

7.23 (s, 1H), 6.80 (s, 1H), 6.23 (s, 1H), 5.88 (s, 2H), 5.08 (s, 1H), 4.79 (s, 1H), 4.02 (s, 2H), 3.81 (s, 3H), 3.61 (s, 2H). 13 C NMR (101 MHz, CDCl₃) δ 152.71, 146.56, 145.34, 144.14, 135.36, 130.92, 122.83, 112.60, 108.10, 101.01, 99.02, 94.90, 65.25, 64.55, 31.76. ESI-MS: calculated C₁₅H₁₆N₂O₅Na [M+Na]⁺ 327.0951; Found 327.0952.

2-(2-(hydroxymethyl)allyl)-N-methoxy-7,8-dihydrocyclopenta[g]indole-1(6H)-carboxamide

(3s)

Following the general procedure A, the product 3s was obtained in 87% yield (52.2 mg, 0.20 mmol) as a yellow solid after column chromatography (eluent = Petroleum ether/EtOAc 2:1 v/v). RF

(Petroleum ether/EtOAc 2:1): 0.20. ¹H NMR (400 MHz, CDCl₃) δ 7.28 (d, J = 8.1 Hz, 1H), 7.07 (d,

J = 7.8 Hz, 1H), 6.33 (s, 1H), 5.12 (s, 1H), 4.89 (s, 1H), 4.02 (s, 2H), 3.85 (s, 3H), 3.59 (s, 2H), 3.05 (t, J = 7.1 Hz, 2H), 2.98 (t, J = 7.2 Hz, 2H), 2.17 – 2.07 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 152.56, 146.21, 137.19, 136.04, 128.97, 123.28, 122.35, 120.38, 112.87, 112.84, 108.01, 65.46, 64.69, 31.66. ESI-MS: calculated C₁₇H₂₀N₂O₃Na [M+Na]⁺ 323.1366; Found 323.1369.

3-(hydroxymethyl)-2-methoxy-3-methyl-3,4-dihydropyrimido[1,6-a]indol-1(2H)-one (4a)

Following the general procedure B, the product **4a** was obtained in 77% yield (40.0 mg, 0.20 mmol) as a yellow solid after column chromatography (eluent = Petroleum ether/EtOAc 4:1 v/v). RF

(Petroleum ether/EtOAc 4:1): 0.21. ¹H NMR (500 MHz, CDCl₃) δ 8.36 (d, J = 8.1 Hz, 1H), 7.46 (d, J = 7.6 Hz, 1H), 7.28 (dd, J = 11.0, 3.9 Hz, 1H), 7.21 (t, J = 7.1 Hz, 1H), 6.29 (s, 1H), 3.96 (s, 3H), 3.81 (d, J = 11.3 Hz, 1H), 3.66 (d, J = 11.3 Hz, 1H), 3.38 (d, J = 16.1 Hz, 1H), 3.04 (d, J = 16.1 Hz, 1H), 1.36 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 153.27, 135.54, 131.94, 130.04, 124.01, 123.27, 120.08, 115.49, 104.57, 66.50, 65.03, 32.31, 19.91. ESI-MS: calculated C₁₄H₁₆N₂O₃Na [M+Na]⁺ 283.1053; Found 283.1055.

3-(hydroxymethyl)-2-methoxy-3,5-dimethyl-3,4-dihydropyrimido[1,6-a]indol-1(2H)-one (4b)

Following the general procedure B, the product **4b** was obtained in 63% yield (34.7 mg, 0.20 mmol) as a yellow solid after column chromatography (eluent = Petroleum ether/EtOAc 4:1 v/v). RF (Petroleum ether/EtOAc 4:1): 0.20. ¹H NMR (500 MHz, CDCl₃) δ 8.33

(d, J = 7.8 Hz, 1H), 7.42 (d, J = 7.2 Hz, 1H), 7.29 – 7.26 (m, 1H), 7.24 (td, J = 7.4, 1.1 Hz, 1H), 3.95 (s, 3H), 3.80 (d, J = 11.2 Hz, 1H), 3.69 (d, J = 11.2 Hz, 1H), 3.29 (d, J = 16.1 Hz, 1H), 2.94 (d, J = 16.0 Hz, 1H), 2.16 (s, 3H), 1.36 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 153.39, 134.95, 131.12, 127.19, 124.15, 122.98, 118.20, 115.38, 112.21, 66.68, 65.01, 64.73, 30.49, 19.87, 8.36. ESI-MS: calculated C₁₅H₁₈N₂O₃Na [M+Na]⁺ 297.1209; Found 297.1214.

6-bromo-3-(hydroxymethyl)-2-methoxy-3-methyl-3,4-dihydropyrimido[1,6-a]indol-1(2*H*)one (4c)

Following the general procedure B, the product **4c** was obtained in 87% yield (59.5 mg, 0.20 mmol) as a yellow oil after column chromatography (eluent = Petroleum ether/EtOAc 4:1 v/v). RF (Petroleum ether/EtOAc 4:1): 0.20. ¹H NMR (500 MHz, CDCl₃) δ 8.31

(d, J = 8.2 Hz, 1H), 7.37 (d, J = 7.8 Hz, 1H), 7.13 (t, J = 8.0 Hz, 1H), 6.38 (s, 1H), 3.97 (s, 3H), 3.84 (d, J = 10.8 Hz, 1H), 3.66 (d, J = 11.1 Hz, 1H), 3.40 (d, J = 16.2 Hz, 1H), 3.07 (d, J = 16.2 Hz, 1H), 1.37 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 152.99, 135.81, 132.87, 130.68, 126.14, 125.03, 114.54, 113.77, 104.33, 66.41, 65.10, 65.04, 32.37, 20.12. ESI-MS: calculated C₁₄H₁₅BrN₂O₃Na [M+Na]⁺ 361.0158; Found 361.0158.

3-(hydroxymethyl)-2-methoxy-3-methyl-1-oxo-1,2,3,4-tetrahydropyrimido[1,6-a]indole-6-

carbonitrile (4d)

Following the general procedure B, the product **4d** was obtained in 56% yield (32.0 mg, 0.20 mmol) as a yellow solid after column chromatography (eluent = Petroleum ether/EtOAc 4:1 v/v). RF (Petroleum ether/EtOAc 4:1): 0.21. ¹H NMR (500 MHz, CDCl₃) δ

8.50 (d, J = 8.3 Hz, 1H), 7.46 (d, J = 7.6 Hz, 1H), 7.24 (d, J = 8.4 Hz, 1H), 6.46 (s, 1H), 3.90 (s, 3H), 3.77 (d, J = 11.2 Hz, 1H), 3.52 (d, J = 11.3 Hz, 1H), 3.40 (d, J = 16.5 Hz, 1H), 3.09 (d, J = 16.5 Hz, 1H), 1.32 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 152.91, 135.68, 135.25, 132.05, 127.57, 123.74, 119.93, 118.09, 102.57, 102.30, 65.80, 65.36, 64.95, 32.50, 20.45. ESI-MS: calculated C₁₅H₁₅N₃O₃Na [M+Na]⁺ 308.1005; Found 308.1010.

7-fluoro-3-(hydroxymethyl)-2-methoxy-3-methyl-3,4-dihydropyrimido[1,6-a]indol-1(2*H*)-one (4e)

Following the general procedure B, the product 4e was obtained in 79% yield (40.9 mg, 0.20 mmol) as a pale yellow solid after column chromatography (eluent = Petroleum ether/EtOAc 4:1 v/v). RF

(Petroleum ether/EtOAc 4:1): 0.20. ¹H NMR (500 MHz, CDCl₃) δ 8.24 (dd, J = 9.0, 4.8 Hz, 1H), 7.08 (dd, J = 8.9, 2.5 Hz, 1H), 6.95 (td, J = 9.2, 2.6 Hz, 1H), 6.22 (s, 1H), 3.92 (s, 3H), 3.77 (d, J = 11.3 Hz, 1H), 3.58 (d, J = 11.3 Hz, 1H), 3.35 (d, J = 16.3 Hz, 1H), 3.03 (d, J = 16.3 Hz, 1H), 1.34 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 159.61 (d, J = 238.8 Hz), 153.28, 133.88, 131.78, 130.96 (d, J = 10.1 Hz), 116.18 (d, J = 9.2 Hz), 111.45 (d, J = 24.9 Hz), 105.69 (d, J = 24.1 Hz), 104.03 (d, J = 3.9 Hz), 65.95, 65.23, 64.94, 32.38, 20.16. ¹⁹F NMR (471 MHz, CDCl₃) δ -120.49. ESI-MS: calculated C₁₄H₁₅FN₂O₃Na [M+Na]⁺ 301.0959; Found 301.0965.

7-chloro-3-(hydroxymethyl)-2-methoxy-3-methyl-3,4-dihydropyrimido[1,6-a]indol-1(2*H*)-one (4f)

Following the general procedure B, the product **4f** was obtained in 65% yield (38.0 mg, 0.20 mmol) as a yellow oil after column chromatography (eluent = Petroleum ether/EtOAc 4:1 v/v). RF

(Petroleum ether/EtOAc 4:1): 0.19. ¹H NMR (500 MHz, CDCl₃) δ 8.26 (d, J = 8.8 Hz, 1H), 7.42 (d, J = 2.0 Hz, 1H), 7.21 (dd, J = 8.8, 2.1 Hz, 1H), 6.22 (s, 1H), 3.95 (s, 3H), 3.82 (d, J = 11.3 Hz, 1H), 3.64 (d, J = 11.3 Hz, 1H), 3.37 (dd, J = 16.3, 0.8 Hz, 1H), 3.04 (dd, J = 16.2, 1.0 Hz, 1H), 1.36 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 153.00, 133.84, 133.51, 131.25, 128.81, 124.07, 119.70, 116.38, 103.72, 66.39, 65.13, 65.02, 32.34, 20.11. ESI-MS: calculated C₁₄H₁₅ClN₂O₃Na [M+Na]⁺ 317.0663; Found 317.0668.

7-bromo-3-(hydroxymethyl)-2-methoxy-3-methyl-3,4-dihydropyrimido[1,6-a]indol-1(2*H*)-

Following the general procedure B, the product 4g was obtained in 74% yield (50.3 mg, 0.20 mmol) as a yellow solid after column chromatography (eluent = Petroleum ether/EtOAc 4:1 v/v). RF

(Petroleum ether/EtOAc 4:1): 0.22. ¹H NMR (400 MHz, CDCl₃) δ 8.21 (d, *J* = 8.8 Hz, 1H), 7.59 (s, 1H), 7.35 (d, *J* = 8.7 Hz, 1H), 6.23 (s, 1H), 3.96 (s, 3H), 3.84 (d, *J* = 7.3 Hz, 1H), 3.65 (d, *J* = 11.0 Hz, 1H), 3.38 (d, *J* = 16.3 Hz, 1H), 3.05 (d, *J* = 16.3 Hz, 1H), 2.17 (s, 1H), 1.71 (s, 2H), 1.37 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 153.19, 134.16, 133.56, 131.79, 127.82, 126.66, 122.71, 116.71, 103.46, 65.95, 65.23, 64.95, 32.36, 20.25. ESI-MS: calculated C₁₄H₁₅BrN₂O₃Na [M+Na]⁺ 314.0158; Found 314.0153.

3-(hydroxymethyl)-7-iodo-2-methoxy-3-methyl-3,4-dihydropyrimido[1,6-a]indol-1(2H)-one

(4h)

Following the general procedure B, the product **4h** was obtained in 60% yield (46.5 mg, 0.20 mmol) as a white solid after column chromatography (eluent = Petroleum ether/EtOAc 4:1 v/v). RF

(Petroleum ether/EtOAc 4:1): 0.21. ¹H NMR (500 MHz, CDCl₃) δ 8.01 (d, J = 8.6 Hz, 1H), 7.72 (s, 1H), 7.45 (d, J = 8.7 Hz, 1H), 6.15 (s, 1H), 3.86 (d, J = 3.6 Hz, 3H), 3.69 (d, J = 11.3 Hz, 1H), 3.49 (d, J = 11.3 Hz, 1H), 3.32 (d, J = 16.3 Hz, 1H), 2.98 (d, J = 16.3 Hz, 1H), 1.27 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 153.26, 134.60, 133.28, 132.35, 132.16, 128.77, 116.98, 103.19, 87.08, 65.19, 65.14, 64.72, 31.95, 19.88. ESI-MS: calculated C₁₄H₁₆IN₂O₃ [M+H]⁺ 387.0200; Found 387.0206.

3-(hydroxymethyl)-2,7-dimethoxy-3-methyl-3,4-dihydropyrimido[1,6-a]indol-1(2H)-one (4i)

OH Following the general procedure B, the product **4i** was obtained in 50% yield (29.0 mg, 0.20 mmol) as a yellow solid after column chromatography (eluent = Petroleum ether/EtOAc 4:1

v/v). RF (Petroleum ether/EtOAc 4:1): 0.20. ¹H NMR (400 MHz, CDCl₃) δ 8.23 (d, *J* = 8.9 Hz, 1H), 6.95 (d, *J* = 2.3 Hz, 1H), 6.89 (dd, *J* = 8.9, 2.4 Hz, 1H), 6.23 (s, 1H), 3.97 (s, 3H), 3.84 (s, 3H), 3.81 (s, 1H), 3.68 (d, *J* = 11.2 Hz, 1H), 3.37 (d, *J* = 16.1 Hz, 1H), 3.02 (d, *J* = 16.2 Hz, 1H), 2.00 (s, 1H), 1.64 (s, 2H), 1.37 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 156.25, 153.36, 132.79, 130.96, 130.17, 116.01, 112.15, 104.30, 103.21, 66.14, 65.17, 64.96, 55.80, 32.34, 19.98. ESI-MS: calculated C₁₅H₁₈N₂O₄Na [M+Na]⁺ 313.1159; Found 313.1161.

3-(hydroxymethyl)-2-methoxy-3-methyl-8-(trifluoromethyl)-3,4-dihydropyrimido[1,6-

a]indol-1(2*H*)-one (4j)

Following the general procedure B, the product 4j was obtained in 43% yield (43.4 mg, 0.20 mmol) as a yellow solid after column chromatography (eluent = Petroleum ether/EtOAc 4:1 v/v). RF

(Petroleum ether/EtOAc 4:1): 0.21. ¹H NMR (400 MHz, CDCl₃) δ 8.69 (s, 1H), 7.54 (d, J = 8.2 Hz,

1H), 7.46 (d, J = 8.2 Hz, 1H), 6.35 (s, 1H), 3.97 (s, 3H), 3.88 (dd, J = 11.2, 5.6 Hz, 1H), 3.66 (dd, J = 11.3, 4.6 Hz, 1H), 3.43 (d, J = 16.3 Hz, 1H), 3.11 (d, J = 16.4 Hz, 1H), 2.13 (t, J = 5.5 Hz, 1H), 1.38 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 153.17, 135.17, 134.59, 132.61, 125.78 (q, J = 31.9 Hz), 124.93 (q, J = 271.8 Hz), 120.27, 119.95 (q, J = 3.6 Hz), 112.82 (q, J = 4.3 Hz), 103.85, 65.89, 65.26, 64.93, 32.52, 20.38. ¹⁹F NMR (471 MHz, CDCl₃) δ -60.97. ESI-MS: calculated C₁₅H₁₅F₃N₂O₃Na [M+Na]⁺ 351.0927; Found 351.0930.

methyl 3-(hydroxymethyl)-2-methoxy-3-methyl-1-oxo-1,2,3,4-tetrahydropyrimido[1,6a]indole-8-carboxylate (4k)

OH Following the general procedure B, the product **4k** was obtained in 42% yield (27.0 mg, 0.20 mmol) as a yellow solid after column chromatography (eluent = Petroleum

ether/EtOAc 4:1 v/v). RF (Petroleum ether/EtOAc 4:1): 0.21. ¹H NMR (500 MHz, CDCl₃) δ 8.31 (d, J = 8.2 Hz, 1H), 7.37 (d, J = 7.8 Hz, 1H), 7.13 (t, J = 8.0 Hz, 1H), 6.38 (s, 1H), 3.97 (s, 3H), 3.84 (d, J = 10.8 Hz, 1H), 3.66 (d, J = 11.1 Hz, 1H), 3.40 (d, J = 16.2 Hz, 1H), 3.07 (d, J = 16.2 Hz, 1H), 1.37 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 167.88, 152.90, 135.56, 134.91, 133.86, 125.57, 124.60, 119.71, 117.15, 104.29, 66.30, 65.11, 64.96, 52.15, 32.49, 20.18. ESI-MS: calculated C₁₆H₁₈N₂O₅Na [M+Na]⁺ 341.1108; Found 341.1107.

8-chloro-7-fluoro-3-(hydroxymethyl)-2-methoxy-3-methyl-3,4-dihydropyrimido[1,6-a]indol-1(2*H*)-one (4l)

Following the general procedure B, the product **41** was obtained in 37% yield (23.3 mg, 0.20 mmol) as a yellow oil after column chromatography (eluent = Petroleum ether/EtOAc 4:1 v/v). RF

(Petroleum ether/EtOAc 4:1): 0.21. ¹H NMR (500 MHz, CDCl₃) δ 8.37 (d, J = 6.6 Hz, 1H), 7.15 (d, J = 9.1 Hz, 1H), 6.20 (s, 1H), 3.91 (s, 3H), 3.77 (d, J = 11.3 Hz, 1H), 3.54 (d, J = 11.3 Hz, 1H), 3.34 (d, J = 16.4 Hz, 1H), 3.03 (d, J = 16.4 Hz, 1H), 1.33 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 154.83 (d, J = 241.7 Hz), 153.06, 134.39, 131.43, 129.28 (d, J = 9.0 Hz), 116.91 (d, J = 19.9 Hz), 116.85, 106.55 (d, J = 23.9 Hz), 103.62 (d, J = 3.7 Hz), 65.87, 65.30, 64.92, 32.44, 20.34 . ¹⁹F NMR (471

MHz, CDCl₃) δ -122.03. ESI-MS: calculated C₁₄H₁₄ClFN₂O₃Na [M+Na]⁺ 335.0569; Found 335.0579.

3-(hydroxymethyl)-2,7,8-trimethoxy-3-methyl-3,4-dihydropyrimido[1,6-a]indol-1(2*H*)-one (4m)

Following the general procedure B, the product **4m** was obtained in 97% yield (61.8 mg, 0.20 mmol) as a yellow solid after column chromatography (eluent = Petroleum ether/EtOAc

2:1 v/v). RF (Petroleum ether/EtOAc 2:1): 0.23. ¹H NMR (500 MHz, CDCl₃) δ 7.96 (s, 1H), 6.91 (s, 1H), 6.16 (s, 1H), 3.93 (d, J = 6.5 Hz, 6H), 3.88 (s, 3H), 3.78 (d, J = 11.2 Hz, 1H), 3.64 (d, J = 11.2 Hz, 1H), 3.32 (d, J = 16.0 Hz, 1H), 2.98 (d, J = 16.0 Hz, 1H), 1.34 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 153.51, 147.29, 146.63, 130.17, 129.59, 122.52, 112.42, 104.28, 101.96, 99.14, 66.37, 65.15, 64.98, 64.78, 56.25, 56.23, 32.23, 19.84. ESI-MS: calculated C₁₆H₂₀N₂O₅Na [M+Na]⁺ 343.1264; Found 343.1266.

4. Synthetic application of the product

4.1 Gram- Scale Synthesis

In an oven-dried Schlenk tube under air, a mixture of *N*-methoxy-1*H*-indole-1-carboxamide **1a** (1.0 mmol, 1.0 equiv), 5-methylene-1,3-dioxan-2-one **2** (2.0 mmol, 2.0 equiv), $(Cp*RhCl_2)_2$ (0.025 mmol, 2.5 mmol%), AgSbF₆ (0.1 mmol, 10.0 mmol%), NaOAc (2.0 mmol, 2.0 equiv), and PhCl (5.0 mL) was stirred at 35 °C for 6 h. The reaction mixture was then diluted with DCM (50.0 mL) and washed with H₂O. The aqueous phase was extracted with DCM again. The organic layers were combined, washed with brine and dried over Na₂SO₄. The crude material was purified by flash column chromatography (silica gel; petroleum ether : ethyl acetate = 2:1) to give **3a** (235.8 mg, 91%).

In an oven-dried Schlenk tube under air, a mixture of *N*-methoxy-1*H*-indole-1-carboxamide **1a** (5.0 mmol, 1.0 equiv), 5-methylene-1,3-dioxan-2-one **2** (10.0 mmol, 2.0 equiv), $(Cp*RhCl_2)_2$ (0.125 mmol, 2.5 mmol%), AgSbF₆ (0.5 mmol, 10.0 mmol%), NaOAc (10.0 mmol, 2.0 equiv), and PhCl (25.0 mL) was stirred at 35 °C for 6 h. The reaction mixture was then diluted with DCM (250.0 mL) and washed with H₂O. The aqueous phase was extracted with DCM again. The organic layers were combined, washed with brine and dried over Na₂SO₄. The crude material was purified by flash column chromatography (silica gel; petroleum ether : ethyl acetate = 2:1) to give **3a** (986.3 mg, 76%).

In an oven-dried Schlenk tube under air, a mixture of *N*-methoxy-1*H*-indole-1-carboxamide **1a** (1.0 mmol, 1.0 equiv), 5-methylene-1,3-dioxan-2-one **2** (1.2 mmol, 1.2 equiv), $(Cp*RhCl_2)_2$ (0.025 mmol, 2.5 mmol%), AgSbF₆ (0.1 mmol, 10.0 mmol%), Li₂CO₃ (2.0 mmol, 2.0 equiv), and PhCl (5.0 mL) was stirred at 80 °C for36 h. The reaction mixture was then diluted with DCM (50.0 mL) and washed with H₂O. The aqueous phase was extracted with DCM again. The organic layers were combined, washed with brine and dried over Na₂SO₄. The crude material was purified by flash column chromatography (silica gel; petroleum ether : ethyl acetate = 3:1) to give **4a** (192.8 mg, 74%).

4.2 Application of the product 3

General procedure C

In an oven-dried Schlenk tube under air, a mixture of 2-(2-(hydroxymethyl)allyl)-*N*-methoxy-1*H*-indole-1-carboxamide derivatives **3** (0.1 mmol, 1.0 equiv), diisopropylamine (0.2 mmol, 2.0 equiv), and PhCl (0.5 mL) was stirred at 80 °C for10 h. The reaction mixture was then diluted with DCM (10.0 mL) and washed with H₂O. The aqueous phase was extracted with DCM again. The organic layers were combined, washed with brine and dried over Na₂SO₄. The pure product was purified by flash column chromatography on silica with an appropriate solvent to afford the pure product **5**.

4-methylene-4,5-dihydro-1H,3H-[1,3]oxazepino[3,4-a]indol-1-one (5a)

Following the general procedure C, the product **5a** was obtained in 44% yield (9.4 mg, 0.10 mmol) as a pale yellow liquid after column chromatography (eluent = Petroleum ether/EtOAc 16:1 v/v).

RF (Petroleum ether/EtOAc 16:1): 0.21. ¹H NMR (500 MHz, CDCl₃) δ 8.09 (d, J = 8.2 Hz, 1H), 7.52 (d, J = 7.7 Hz, 1H), 7.34 (t, J = 7.4 Hz, 1H), 7.30 -7.26 (m, 1H), 6.44 (s, 1H), 5.13 (s, 1H), 5.05 (s, 1H), 4.83 (s, 2H), 3.84 (

2H). ¹³C NMR (126 MHz, CDCl₃) δ 151.86, 141.11, 137.14, 134.68, 129.47, 124.48, 123.72, 120.36, 114.91, 111.14, 107.16, 73.51, 33.05. ESI-MS: calculated C₁₃H₁₂NO₂ [M+H]⁺ 214.0863; Found 214.0866.

8-fluoro-4-methylene-4,5-dihydro-1*H*,3*H*-[1,3]oxazepino[3,4-a]indol-1-one (5b)

Following the general procedure C, the product **5b** was obtained in 27% yield (6.2 mg, 0.10 mmol) as a pale yellow solid after column chromatography (eluent = Petroleum ether/EtOAc 16:1 v/v). RF

(Petroleum ether/EtOAc 16:1): 0.20. ¹H NMR (500 MHz, CDCl₃) δ 8.01 (dd, J = 9.0, 4.6 Hz, 1H), 7.15 (dd, J = 8.7, 2.5 Hz, 1H), 7.03 (td, J = 9.1, 2.6 Hz, 1H), 6.39 (s, 1H), 5.12 (s, 1H), 5.04 (s, 1H), 4.82 (s, 2H), 3.82 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 159.89 (d, J = 240.0 Hz), 151.74, 140.80, 136.36, 133.42, 130.36 (d, J = 10.3 Hz), 115.95 (d, J = 9.1 Hz), 112.23 (d, J = 25.0 Hz), 111.43, 106.91 (d, J = 3.9 Hz), 106.02 (d, J = 24.1 Hz), 73.57, 33.17. ¹⁹F NMR (471 MHz, CDCl₃) δ -119.65. ESI-MS: calculated C₁₃H₁₁FNO₂ [M+H]⁺ 232.0769; Found 232.0772.

8-methoxy-4-methylene-4,5-dihydro-1H,3H-[1,3]oxazepino[3,4-a]indol-1-one (5c)

Following the general procedure C, the product **5c** was obtained in 32% yield (7.7 mg, 0.10 mmol) as a white solid after column chromatography (eluent = Petroleum ether/EtOAc 16:1 v/v). RF

(Petroleum ether/EtOAc 16:1): 0.20. ¹H NMR (500 MHz, CDCl₃) δ 7.96 (d, *J* = 9.0 Hz, 1H), 6.96 (d, *J* = 2.4 Hz, 1H), 6.92 (dd, *J* = 9.0, 2.5 Hz, 1H), 6.35 (s, 1H), 5.09 (s, 1H), 5.01 (s, 1H), 4.80 (s, 2H), 3.85 (s, 3H), 3.80 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 156.69, 151.90, 141.25, 135.39, 131.72, 130.34, 115.69, 112.89, 111.03, 107.12, 103.32, 73.53, 55.87, 33.19. ESI-MS: calculated C₁₄H₁₄NO₃ [M+H]⁺ 244.0968; Found 244.0968.

8,9-dimethoxy-4-methylene-4,5-dihydro-1*H*,3*H*-[1,3]oxazepino[3,4-a]indol-1-one (5d)

Following the general procedure C, the product **5d** was obtained in 86% yield (23.6 mg, 0.10 mmol) as a white solid after column chromatography (eluent = Petroleum ether/EtOAc 4:1 v/v). RF

(Petroleum ether/EtOAc 4:1): 0.22. ¹H NMR (500 MHz, CDCl₃) δ 7.66 (s, 1H), 6.94 (s, 1H), 6.31 (s, 1H), 5.08 (s, 1H), 5.00 (s, 1H), 4.80 (s, 2H), 3.95 (s, 3H), 3.91 (s, 3H), 3.78 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 152.16, 147.92, 147.16, 141.46, 133.09, 131.27, 121.96, 110.86, 107.02, 102.12, 98.79, 73.69, 56.39, 56.35, 33.07. ESI-MS: calculated C₁₅H₁₆NO₄ [M+H]⁺ 274.1074; Found 274.1070.

9-(4-methoxyphenyl)-4-methylene-4,5-dihydro-1H,3H-[1,3]oxazepino[3,4-a]indol-1-one (5e)

Following the general procedure C, the product **5e** was obtained in 39% yield (12.5 mg, 0.10 mmol) as a pale yellow solid after column chromatography (eluent = Petroleum ether/EtOAc 16:1 v/v). RF (Petroleum ether/EtOAc 16:1): 0.22. ¹H NMR (500

MHz, CDCl₃) δ 8.28 (s, 1H), 7.60 (d, J = 8.8 Hz, 2H), 7.52 (d, J = 8.1 Hz, 1H), 7.47 (d, J = 8.1 Hz, 1H), 6.99 (d, J = 8.8 Hz, 2H), 6.43 (s, 1H), 5.11 (s, 1H), 5.03 (s, 1H), 4.83 (s, 2H), 3.86 (s, 3H), 3.84 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 159.19, 151.88, 141.11, 137.85, 137.72, 134.94, 134.21, 128.59, 128.21, 122.97, 120.48, 114.35, 113.06, 111.16, 107.00, 73.53, 55.51, 33.15. ESI-MS: calculated C₂₀H₁₈NO₃ [M+H]⁺ 320.1281; Found 320.1277.

9-(benzo[d][1,3]dioxol-5-yl)-4-methylene-4,5-dihydro-1H,3H-[1,3]oxazepino[3,4-a]indol-1one (5f)

Following the general procedure C, the product **5f** was obtained in 40% yield (13.4 mg, 0.10 mmol) as a yellow solid after column chromatography (eluent = Petroleum ether/EtOAc 16:1 v/v). RF (Petroleum ether/EtOAc 16:1): 0.24. ¹H NMR (500 MHz, CDCl₃) δ

8.24 (s, 1H), 7.51 (d, *J* = 8.1 Hz, 1H), 7.43 (d, *J* = 8.1 Hz, 1H), 7.13 (d, *J* = 9.7 Hz, 2H), 6.89 (d, *J* = 7.9 Hz, 1H), 6.42 (s, 1H), 6.00 (s, 2H), 5.11 (s, 1H), 5.03 (s, 1H), 4.82 (s, 2H), 3.83 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 151.83, 148.24, 147.09, 141.06, 137.81, 137.76, 136.06, 135.11, 128.41,

123.09, 121.09, 120.48, 113.27, 111.20, 108.69, 108.14, 106.96, 101.26, 73.53, 33.15. ESI-MS: calculated C₂₀H₁₆NO₄ [M+H]⁺ 334.1074; Found 334.1070.

9-methylene-9,10-dihydro-6H,8H-[1,3]dioxolo[4,5-f][1,3]oxazepino[3,4-a]indol-6-one (5g)

Following the general procedure C, the product **5g** was obtained in 36% yield (9.3 mg, 0.10 mmol) as a pale yellow solid after column chromatography (eluent = Petroleum ether/EtOAc 16:1 v/v). RF

(Petroleum ether/EtOAc 16:1): 0.23. ¹H NMR (500 MHz, CDCl₃) δ 7.59 (s, 1H), 6.86 (s, 1H), 6.28 (s, 1H), 5.97 (s, 2H), 5.08 (s, 1H), 5.00 (s, 1H), 4.79 (s, 2H), 3.76 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 151.97, 146.20, 145.19, 141.38, 133.35, 131.85, 123.34, 110.91, 107.25, 101.30, 99.31, 96.88, 73.66, 33.10. ESI-MS: calculated C₁₄H₁₂NO₄ [M+H]⁺ 258.0761; Found 258.0760.

8-methylene-1,2,3,7,8,9-hexahydro-11H-cyclopenta[g][1,3]oxazepino[3,4-a]indol-11-one (5h)

Following the general procedure C, the product **5h** was obtained in 95% yield (24.1 mg, 0.10 mmol) as a yellow solid after column chromatography (eluent = Petroleum ether/EtOAc 2:1 v/v). RF (Petroleum ether/EtOAc 2:1):

0.20. ¹H NMR (500 MHz, CDCl₃) δ 7.36 (d, J = 7.9 Hz, 1H), 7.01 (d, J = 7.9 Hz, 1H), 6.30 (s, 1H), 5.18 (s, 1H), 5.07 (s, 1H), 4.11 (s, 2H), 3.58 (s, 2H), 3.02 (dt, J = 10.6, 7.4 Hz, 4H), 2.21 (dd, J = 14.7, 7.3 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 146.40, 138.03, 135.34, 133.44, 127.40, 125.03, 118.08, 116.71, 112.70, 101.66, 65.57, 33.22, 32.97, 30.03, 25.62. ESI-MS: calculated C₁₆H₁₆NO₂ [M+H]⁺ 254.1176; Found 254.1182.

5. Mechanistic experiments

(1) Preparation of Rhodium Complex

The intermediate **6** was prepared from the *N*-methoxy-1*H*-indole-1-carboxamide **1a** and (Cp*RhCl₂)₂ according to the reported procedure.^[1]

(2) Mechanistic experiments

In an oven-dried Schlenk tube under air, a mixture of *N*-methoxy-1*H*-indole-1-carboxamide **1a** (0.2 mmol, 1.0 equiv), 5-methylene-1,3-dioxan-2-one **2** (0.4 mmol, 2.0 equiv), rhodium complex **6** (4.3 mg, 0.01 mmol, 5 mmol%), NaOAc (32.8 mg, 0.4 mmol, 2.0 equiv), and PhCl (1.0 mL) was stirred at 35 °C for 6 h. The reaction mixture was then diluted with DCM (10.0 mL) and washed with H₂O. The aqueous phase was extracted with DCM again. The organic layers were combined, washed with brine and dried over Na₂SO₄. The crude material was purified by flash column chromatography (silica gel; petroleum ether : ethyl acetate = 2:1) to give **3a** (40.8 mg, 78%).

In an oven-dried Schlenk tube under air, a mixture of *N*-methoxy-1*H*-indole-1-carboxamide **1a** (0.2 mmol, 1.0 equiv), 5-methylene-1,3-dioxan-2-one **2** (0.24 mmol, 1.2 equiv), rhodium complex **6** (4.3 mg, 0.01 mmol, 5 mmol%), Li_2CO_3 (29.5 mg, 0.4 mmol, 2.0 equiv), and PhCl (1.0 mL) was stirred at 80 °C for 24 h. The reaction mixture was then diluted with DCM (10.0 mL) and washed with H₂O. The aqueous phase was extracted with DCM again. The organic layers were combined,

washed with brine and dried over Na_2SO_4 . The crude material was purified by flash column chromatography (silica gel; petroleum ether : ethyl acetate = 3:1) to give **4a** (36.0 mg, 69%).

In an oven-dried Schlenk tube under air, a mixture of *N*-methoxy-1*H*-indole-1-carboxamide **1a** (0.2 mmol, 1.0 equiv), D_2O (1.0 mmol, 5.0 equiv), $(Cp*RhCl_2)_2$ (0.005 mmol, 2.5 mmol%), AgSbF₆ (0.02 mmol, 10.0 mmol%), Li₂CO₃ (0.4 mmol, 2.0 equiv), and PhCl (1.0 mL) was stirred at 80 °C for 12 h. The reaction mixture was then diluted with DCM (50.0 mL) and washed with H₂O. The aqueous phase was extracted with DCM again. The organic layers were combined, washed with brine and dried over Na₂SO₄. The crude material was purified by flash column chromatography (silica gel; petroleum ether : ethyl acetate = 4:1) to give [D]-**1a** (24.7 mg, 65%).

In an oven-dried Schlenk tube under air, a mixture of *N*-methoxy-1*H*-indole-1-carboxamide **1a** (0.2 mmol, 1.0 equiv), 5-methylene-1,3-dioxan-2-one **2** (0.24 mmol, 1.2 equiv), $(Cp*RhCl_2)_2$ (0.005 mmol, 2.5 mmol%), AgSbF₆ (0.02 mmol, 10.0 mmol%), D₂O (1.0 mmol, 5.0 equiv) Li₂CO₃ (0.4 mmol, 2.0 equiv), and PhCl (1.0 mL) was stirred at 80 °C for 21 h. The reaction mixture was then diluted with DCM (50.0 mL) and washed with H₂O. The aqueous phase was extracted with DCM again. The organic layers were combined, washed with brine and dried over Na₂SO₄. The crude material was purified by flash column chromatography (silica gel; petroleum ether : ethyl acetate = 3:1) to give [D]-**4a** (31.6 mg).

In an oven-dried Schlenk tube under air, a mixture of 2-(2-(hydroxymethyl)allyl)-*N*-methoxy-1*H*-indole-1-carboxamide **3a** (0.2 mmol, 1.0 equiv), $[Cp*RhCl_2]_2$ (3.1 mg, 0.005 mmol, 2.5 mmol%), AgSbF₆ (6.9 mg, 0.02 mmol, 10.0 mmol%), Li₂CO₃ (29.5 mg, 0.4 mmol, 2.0 equiv), and PhCl (1.0 mL) was stirred at 80 °C for 12 h. The reaction mixture was then diluted with DCM (10.0 mL) and washed with H₂O. The aqueous phase was extracted with DCM again. The organic layers were combined, washed with brine and dried over Na₂SO₄. The crude material was purified by flash column chromatography (silica gel; petroleum ether : ethyl acetate = 3:1) to give **4a** (29.2 mg, 56%). The raw material was purified by flash column chromatography (silica gel; petroleum ether : ethyl acetate = 2:1) to give **3a** (6.3 mg, 12%).

In an oven-dried Schlenk tube under air, a mixture of 2-(2-(hydroxymethyl)allyl)-*N*-methoxy-1*H*-indole-1-carboxamide **3a** (0.2 mmol, 1.0 equiv), AgSbF₆ (6.9 mg, 0.02 mmol, 10.0 mmol%), Li_2CO_3 (29.5 mg, 0.4 mmol, 2.0 equiv), and PhCl (1.0 mL) was stirred at 80 °C for 12 h. No product **4a** can be detected by TLC. The raw material was purified by flash column chromatography (silica gel; petroleum ether : ethyl acetate = 2:1) to give **3a** (24.5 mg, 47%).

In an oven-dried Schlenk tube under air, a mixture of 2-(2-(hydroxymethyl)allyl)-*N*-methoxy-1*H*-indole-1-carboxamide **3a** (0.2 mmol, 1.0 equiv), [Cp*RhCl₂]₂ (3.1 mg, 0.005 mmol, 2.5 mmol%), Li₂CO₃ (29.5 mg, 0.4 mmol, 2.0 equiv), and PhCl (1.0 mL) was stirred at 80 °C for 12 h. The reaction mixture was then diluted with DCM (10.0 mL) and washed with H₂O. The aqueous phase was extracted with DCM again. The organic layers were combined, washed with brine and dried over Na₂SO₄. The crude material was purified by flash column chromatography (silica gel; petroleum ether : ethyl acetate = 3:1) to give **4a** (8.3 mg, 16%). The raw material was purified by flash column chromatography (silica gel; petroleum ether : ethyl acetate = 2:1) to give **3a** (16.6 mg, 32%).

In an oven-dried Schlenk tube under air, a mixture of 2-(2-(hydroxymethyl)allyl)-*N*-methoxy-1*H*-indole-1-carboxamide **3a** (0.2 mmol, 1.0 equiv), $[Cp*RhCl_2]_2$ (3.1 mg, 0.005 mmol, 2.5 mmol%), AgSbF₆ (6.9 mg, 0.02 mmol, 10.0 mmol%), and PhCl (1.0 mL) was stirred at 80 °C for 12 h. The organic layers were combined, washed with brine and dried over Na₂SO₄. The crude material was purified by flash column chromatography (silica gel; petroleum ether : ethyl acetate = 3:1) to give **4a** (10.5 mg, 20%). The raw material was purified by flash column chromatography (silica gel; petroleum ether : ethyl acetate = 2:1) to give **3a** (5.2 mg, 10%).

In an oven-dried Schlenk tube under air, a mixture of 2-(2-(hydroxymethyl)allyl)-*N*-methoxy-1*H*-indole-1-carboxamide **3a** (0.2 mmol, 1.0 equiv), $[Cp*RhCl_2]_2$ (3.1 mg, 0.005 mmol, 2.5 mmol%), and PhCl (1.0 mL) was stirred at 80 °C for 12 h. The reaction mixture was then diluted with DCM (10.0 mL) and washed with H₂O. The aqueous phase was extracted with DCM again. The organic layers were combined, washed with brine and dried over Na₂SO₄. The crude material was purified by flash column chromatography (silica gel; petroleum ether : ethyl acetate = 3:1) to give **4a** (9.4 mg, 18%). The raw material was purified by flash column chromatography (silica gel; petroleum ether : ethyl acetate = 2:1) to give **3a** (27.6 mg, 53%).

In an oven-dried Schlenk tube under air, a mixture of 2-(2-(hydroxymethyl)allyl)-*N*-methoxy-1*H*indole-1-carboxamide **3a** (0.2 mmol, 1.0 equiv), Li₂CO₃ (29.5 mg, 0.4 mmol, 2.0 equiv), and PhCl (1.0 mL) was stirred at 80 °C for 12 h. No product **4a** can be detected by TLC. The raw material was purified by flash column chromatography (silica gel; petroleum ether : ethyl acetate = 2:1) to give **3a** (30.5 mg, 59%).

In an oven-dried Schlenk tube under air, a mixture of 2-(2-(hydroxymethyl)allyl)-*N*-methoxy-1*H*-indole-1-carboxamide **3a** (0.2 mmol, 1.0 equiv), AgSbF₆ (6.9 mg, 0.02 mmol, 10.0 mmol%), and PhCl (1.0 mL) was stirred at 80 °C for 12 h. No product **4a** and **3a** can be detected by TLC.

6. NMR Spectra for New Compounds

¹³C NMR (101 MHz, CDCl₃)

¹³C NMR (101 MHz, CDCl₃)

¹³C NMR (101 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃)

¹H NMR (500 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃)

¹³C NMR (101 MHz, CDCl₃)

¹³C NMR (101 MHz, CDCl₃)

¹³C NMR (101 MHz, CDCl₃)

¹³C NMR (101 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃)

¹H NMR (500 MHz, CDCl₃)

¹H NMR (500 MHz, CDCl₃)

¹H NMR (500 MHz, CDCl₃)

¹H NMR (500 MHz, CDCl₃)

¹⁹F NMR (471 MHz, CDCl₃)

---60.97

¹⁹F NMR (471 MHz, CDCl₃)

-1.34

¹³C NMR (101 MHz, CDCl₃)

¹³C NMR (126 MHz, CDCl₃)

¹H NMR (500 MHz, CDCl₃)

¹H NMR (500 MHz, CDCl₃)

¹H NMR (500 MHz, CDCl₃)

¹H NMR (500 MHz, CDCl₃)

¹H NMR (500 MHz, CDCl₃)

7. Reference

- [1] J. Zhang, H. Xie, H. Zhu, S. Zhang, M. R. Lonka, H. Zou, ACS Catal. 2019, 9, 10233-10244.
- [2] Ryo Shintani, Kohei Moriya, Tamio Hayashi. Chem. Commun., 2011, 47, 3057-3059.