Supplementary Information

Brønsted Acid-catalyzed Dynamic Kinetic Resolution of *in situ* Formed Acyclic N,O-hemiaminals: Cascade Synthesis of Chiral Cyclic N,O-aminals

Xue-Jiao Lv,^[a] Yong-Chao Ming,^[a] Hui-Chun Wu^[a] and Yan-Kai Liu*^[a,b]

[a] Molecular Synthesis Center & Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China

[b] Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China

* Email: liuyankai@ouc.edu.cn

Contents

A. General information:	S3
B. General procedures for the synthesis of starting materials:	S4
C. Optimization of racemic cyclic N,O-aminals:	
D. Scope of racemic cyclic N,O-aminals:	S10
E. Optimization of the synthesis of chiral N,O-aminals:	S20
F. Scope of chiral reaction conditions:	S25
G. Other reactions of hemiaminal by desymmetrization:	S34
H. Optimization of oxa-Michael reaction:	S35
I. Determination of absolute configurations of 6 and 7 :	S37
J. The characterization data of 5-7 :	S38
K. Control experiments:	S40
L. The possible mechanism for asymmetric reaction:	
M. Synthetic transformations:	S50
N. Large scale reaction:	S56
0. Failed substrates:	S58
P. The stability of 1a in present of A2 :	S62
Q. NMR spectra and HPLC traces:	S63
R. Single crystal X-Ray diffraction data:	S148
S. Reference:	S153

A. General information:

The ¹H and ¹³C NMR spectra were recorded at 400 MHz or 500 MHz for ¹H and at 101 MHz or 125 MHz for ¹³C. The chemical shifts (δ) for ¹H and ¹³C are given in ppm relative to residual signals of the solvents (CDCl₃ at 7.26 ppm ¹H NMR, 77.16 ppm ¹³C NMR). Coupling constants are given in Hz. The following abbreviations are used to indicate the multiplicity: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet. High-resolution mass spectra (HRMS) were obtained from the Waters Q-Tof Ultima Global. X-ray data were obtained from Zhongke chemical technology service center. Optical rotations are reported as follows: [α]_D²⁰ (c in g per 100 mL, solvent: CHCl₃).

Note: NMR signals containing common solvent contaminants were list. H_2O in CDCl₃ at 1.56 ppm ¹H NMR; Ethyl acetate in CDCl₃ at 2.05 (s), 4.12 (q), 1.26 (t) ppm ¹H NMR; Dichloromethane in CDCl₃ at 5.30 (s) ppm ¹H NMR.

All the reactions were set up under air and using freshly distilled solvents, without any precautions to exclude moisture, unless otherwise noted open air chemistry on the benchtop. Chromatographic purification of products was accomplished using force-flow chromatography (FC) on silica gel (300-400 mesh). For thin layer chromatography (TLC) analysis throughout this work, Merck pre-coated TLC plates (silica gel 60 GF254, 0.25 mm) were used, using UV light as the visualizing agent and a phosphomolybdic acid or basic aqueous potassium permanganate (KMnO₄) as stain developing solutions. Organic solutions were concentrated under reduced pressure on a Büchi rotary evaporator.

HPLC analyses on chiral stationary phase were performed on a Hitachi Chromaster. Daicel Chiralpak IA, IC, ID, or AD columns with *n*-hexane/*i*-PrOH as the eluent were used. HPLC traces were compared to racemic samples which prepared by mixture of two enantiomeric final products obtained using (*S*) and (*R*) catalyst.

Commercial reagents and solvents were purchased from Sigma Aldrich, Fluka, Energy Chemical and Alfa Aesar used as received, without further purification.

B. General procedures for the synthesis of starting materials:

General procedure for synthesis of (E)-7-substituted-7-oxohept-5-enals 1a-1o: ^[1]

The required phosphorane (1.0 equiv) was dissolved in CH_2Cl_2 (0.5 M) and added dropwise to a solution of glutaraldehyde (50% aqueous solution, 3.0 equiv) at room temperature. Then the reaction mixture was allowed to stir at room temperature for 48 h. Upon completion, the reaction mixture was washed with water and CH_2Cl_2 . The organic layer was dried over anhydrous Na_2SO_4 , and the solvent was evaporated under reduced pressure. The crude reaction mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 3:1 to 8:1) to afford the corresponding products **1a-10** in good yields. All these products are known compounds.

Procedure for synthesis of (E)-2-((4-oxo-4-phenylbut-2-en-1yl)oxy)acetaldehyde 1p: [2-3]

Step 1: To the solution of diethylene glycol (10 mmol, 1.0 equiv) were added NaIO₄ (2.14 g, 10 mmol), RuCl₃·H₂O (7 mg, 0.034 mmol) in CH₂Cl₂ (10 mL). The solution was stirred at 40 °C for 10 min. Water (0.54 g, 30 mmol) was added and stirred overnight. After the reaction, the reaction mixture was filtered through a celite and washed with

 CH_2Cl_2 . The filtrate was concentrated and column chromatography (petroleum ether/ethyl acetate = 1:1) to hemiacetal **S1** (521 mg, 50%) as orange oil.

Step 2: The ylide reagent (1.9 g, 5 mmol) was added to the solvent of hemiacetal **S1** in CH_2Cl_2 (10 mL). The result mixture was stirred at room temperature for 48 h until no **S1** remained. After evaporation of the solvent, the reside was purified by column chromatography (petroleum ether/ethyl acetate = 3:1) to afford **S2** as orange oil.

Step 3: To the solvent of **S2** (1.0 equiv) in ethyl acetate, IBX (1.4 g, 1.0 equiv) was added and the reaction mixture stirred at 80 °C for about 10 h. After the reaction, the reaction mixture was filtered through a celite, concentrated and purified by column chromatography (petroleum ether/ethyl acetate = 1:1) to provide **1p** (300 mg, 30% for 2 steps) as a yellow oil.

Procedure for synthesis of 2-((4-oxo-[1,1'-biphenyl]-1(4H)yl)oxy)acetaldehyde 4:^[4]

Step 1: Ethylene glycol (33.4 ml, 600 mmol) was added to the solution of 4-phenylphenol (20 mmol) in CH_2Cl_2 (30 mL). Then $PhI(OAc)_2$ (9.7 g, 30 mmol) was added slowly over 5 min. The solution was then allowed to stir at room temperature for further 1 h. The solution was concentrated in vacuo and the residue was subjected to column chromatography (petroleum ether/ethyl acetate = 2:1) to provide **S3** (2.2 g, 47%) as orange oil.

Step 2: In a flame-dried round bottom flask, **S3** (1.0 equiv) was dissolved in CH_2Cl_2 (0.5 M), Dess Martin periodinane (1.5 equiv) was added to the solution directly and the solution was then allowed to stir at room temperature for 1 h. The solution was filtered through celite and then concentrated in vacuo and the residue was subjected to column chromatography (petroleum ether/ethyl acetate = 2:1) to provide **4** (1.9 g, 89%) as a yellow oil.

Synthesis of amides :

Amides **2a-2b**, **2g-2k**, **2m-2p** and **2r-2s** were obtained from commercial sources and used without further purification. Other amides were prepared according to the following procedures.

Procedure A: [5]

$$\begin{array}{c} O \\ R \end{array} \xrightarrow{\text{SOCI}_2} O \\ R \end{array} \xrightarrow{\text{O}} R \end{array} \xrightarrow{\text{O}} R \xrightarrow{\text{O}} H_2O \xrightarrow{\text{O}} R \xrightarrow{\text{O}} R \xrightarrow{\text{NH}_2} P_2O \xrightarrow{\text{O}} R \xrightarrow{\text{NH}_2} P_2O \xrightarrow{\text{O}} R \xrightarrow{\text{O}} R \xrightarrow{\text{NH}_2} P_2O \xrightarrow{\text{O}} R \xrightarrow{\text{O}$$

In a dry round bottom flask, acid (4 mmol) and $SOCl_2$ (3 mL) were added. The mixture was heated to reflux for 2 h. Then removed the excess $SOCl_2$ and got the crude acyl chloride. It was used to undergo the next step without further purification.

The synthesis of amide was conducted similar to a literature-known procedure. A solution of acyl chloride (prepared above or commercial) in anhydrous CH₂Cl₂ (0.5 M) was added dropwise to an aqueous ammonia solution (25 w%, 10 equiv) at 0 °C. The resulting two-phase system was stirred vigorously at room temperature for 18 h. The reaction mixture was diluted with water, extracted with CH₂Cl₂. The organic layer was combined and dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure and colorless solid was recrystallization from ethyl acetate to afford the desired primary amides **2c-2f** in excellent yields.

Procedure B:^[6-7]

$$\begin{array}{ccc} O & H_2, Pd/C & O \\ PhO-P-N_3 & \xrightarrow{} & PhO-P-N_1 \\ OPh & THF & OPh \\ & & 2l \end{array}$$

The synthesis of diphenylphosphoryl amide was conducted similar to a literature-known procedure. Diphenylphosphoryl azide (275 mg, 1 mmol) was dissolved in dry THF (5 mL) and 10% Pd/C (27 mg) was added. The complex was placed in atmospheric pressure of hydrogen and stirred for 5 h at room temperature. After the reaction was complete, Pd/C was filtered through celite and the filtrate was concentrated under reduced pressure. The

crude product was filtered with dichloromethane to give pure product as a white solid **21** (170 mg, 68%).

Procedure C:^[8]

Step 1: The synthesis of (*R*)-acetoxy mandelamide was conducted similar to a literatureknown procedure. (*R*)-mandelic acid (456 mg) was dissolved in 10 mL MeOH and cooled to 0 °C. Acetyl chloride (0.57 mL) was added and the solution was allowed to warm to room temperature and stirred for 24 h. Concentration in vacuo gave a colorless liquid, which was dissolved in 5 mL NH₃ (in MeOH) and the solution was stirred at 80 °C for 24 h. Concentration in vacuo gave a white solid, which was recrystallized from hot EtOH to yield (*R*)-mandelamide as a white solid (228 mg, 50%).

Step 2: Under a nitrogen atmosphere, (*R*)-mandelamide (228 mg) was dissolved in 8 mL pyridine. Acetic anhydride (0.4 mL) was added and the solution was stirred for 18 h. Concentration in vacuo gave an off-white solid, which was recrystallized from hot EtOH to yield white crystal **2q** (148 mg, 51%).

All materials were known compounds and the characterization data were in accordance with those reported in the literatures. ^[1-8]

C. Optimization of racemic cyclic N,O-aminals:

		< <u>`</u> 0 +	+ NH ₂ cat., add.					
	1a		2a	solvent, 25 °C	U O	U 0 (±)-3aa		
Entry ^[a]	Cat.	Sol.	V (mL)	Add.	T (h)	Y (%) ^[b]	dr ^[c]	
1	TsOH	DCE	0.2	-	4	75	>20:1	
2	TfOH	DCE	0.2	-	5	68	>20:1	
3	MsOH	DCE	0.2	-	5	68	>20:1	
4	TFA	DCE	0.2	-	10	29	>20:1	
5	Zn(OTf) ₂	DCE	0.2	-	>10	9	>20:1	
6	SnCl ₂	DCE	0.2	-	10	24	>20:1	
7	Ti(Oi-Pr) ₄	DCE	0.2	-	NR	-	-	
8	DPP	DCE	0.2	-	10	66	>20:1	
9	TsOH	CH₃CN	0.2	-	5	29	>20:1	
10	TsOH	toluene	0.2	-	4	42	>20:1	
11	TsOH	acetone	0.2	-	4	13	>20:1	
12	TsOH	MTBE	0.2	-	4	37	>20:1	
13	TsOH	DCM	0.2	-	4	56	>20:1	
14	TsOH	Et ₂ 0	0.2	-	5	46	>20:1	
15	TsOH	THF	0.2	-	10	39	>20:1	
16	TsOH	EA	0.2	-	10	51	>20:1	
$17^{[d]}$	TsOH	DCE	0.2	Na_2SO_4	4	62	>20:1	
$18^{[d]}$	TsOH	DCE	0.2	MgSO ₄	3.5	58	>20:1	
19 ^[d]	TsOH	DCE	0.2	3 Å MS	4	59	>20:1	
20 ^[d]	TsOH	DCE	0.2	4 Å MS	NR	-	-	
21 ^[d]	TsOH	DCE	0.2	5 Å MS	NR	-	-	

Table S1. Optimization of catalyst, solvent and additive

[*a*] Unless otherwise specified, all reactions were carried out using 1a (0.05 mmol, 1.0 equiv), 2a (0.06 mmol, 1.2 equiv) in solvent (0.2 mL) with cat. (20 mol%) at 25 °C. After workup, the mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 3:1) to afford product (±)-3aa as a white solid. [*b*] Isolated yield of (±)-3aa. [*c*] Determined by ¹H NMR.
[*d*] The reactions ran with additive (10 mg).

DCE = 1,2-Dichloroethane	MsOH = Methanesulfonic acid
DCM = Dichloromethane	TFA = Trifluoroacetic acid
MTBE = Methyl- <i>tert</i> -butylether	Zn(OTf) ₂ = Zinc trifluoromethanesulfonate
THF = Tetrahydrofuran	Ti(O <i>i</i> -Pr) ₄ = Titanium tetraisopropanolate
EA = Ethyl acetate	DPP = Diphenyl phosphate
TsOH = <i>p</i> -Toluenesulfonic acid	NR = No reaction
TfOH = Trifluoromethanesulfonic acid	

Entry[a]	Scale	Loading of	Sol	V (mI)	ፐ (ኬ)	$\mathbf{V}(0/b]$	dr[c]	
	(mmol)	cat. (equiv)	501.	v (iiil)	I (II)	I (90) ¹⁴	u	
$1^{[d]}$	0.05	0.2	DCE	0.2	5	75	>20:1	
2	0.1	0.2	DCE	0.2	6	59	>20:1	
3	0.1	0.1	DCE	0.2	10	59	>20:1	
4	0.1	0.1	DCE	0.5	10	72	>20:1	
5	0.1	0.1	CHCl ₃	0.5	10	77	>20:1	

Table 52. Optimization of o	other c	conditions
-----------------------------	---------	------------

[*a*] Unless otherwise specified, all reactions were carried out using **1a** (0.1 mmol, 1.0 equiv), **2a** (0.12 mmol, 1.2 equiv) in solvent with TsOH at 25 °C. After workup, the mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 3:1) to afford product **(±)**-**3aa** as a white solid. [*b*] Isolated yield of **(±)**-**3aa**. [*c*] Determined by ¹H NMR. [*d*] The reaction was carried out using **1a** (0.05 mmol, 1.0 equiv), **2a** (0.06 mmol, 1.2 equiv) in DCE (0.2 mL) with TsOH (0.2 equiv) at 25 °C.

D. Scope of racemic cyclic N,O-aminals:

General procedure: A glass vial equipped with a magnetic stirring bar was charged with (E)-7-oxo-7-phenylhept-5-enal **1a** (0.1 mmol, 1.0 equiv), TsOH (1.7 mg, 0.1 equiv) and amide **2** (0.12 mmol, 1.2 equiv) in CHCl₃ (0.5 mL) and the resultant solution was stirred at 25 °C until the material **1a** disappeared. After completion of the reaction, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 7:1 to 1:1) to afford **(±)-3** in good to excellent yield for NMR.

Note: The synthesis of **3ag** and **3ah** were charged with DPP (10 mol%) as catalyst. The synthesis of **3an** and **3ao** were charged with **1a** (2.0 equiv) and amide **2** (1.0 equiv) at 25 °C. The synthesis of **3as** was charged at 0 °C.

(±)-3aa (±)-3aa was obtained as a white solid 25 mg in 77% yield after column chromatography on silica gel (petroleum ether/ethyl acetate = 3/1). ¹H NMR (400 MHz, CDCl₃) δ 7.96 – 7.91 (m, 2H), 7.81 – 7.76 (m, 2H), 7.58 – 7.52 (m, 1H), 7.51 – 7.37 (m, 5H), 6.67 (d, *J* = 8.8 Hz, 1H), 5.41 (ddd, *J* = 10.9, 8.8, 2.1 Hz, 1H), 4.26 – 4.16 (m, 1H), 3.35 (dd, *J* = 16.3, 4.7 Hz, 1H), 3.07 (dd, *J* = 16.3, 7.9 Hz, 1H), 1.96 – 1.87 (m, 2H), 1.83 (ddq, *J* = 13.2, 4.0, 2.0 Hz, 1H), 1.73 (tdd, *J* = 13.3, 10.9, 3.8 Hz, 1H), 1.50 – 1.39 (m, 1H), 1.29 – 1.18 (m, 1H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 197.6, 166.5, 137.0, 134.0, 133.2, 131.8, 128.6, 128.5, 128.2, 127.2, 78.9, 73.9, 45.2, 31.4, 30.6, 22.7 ppm. HRMS: [M+H]⁺ calcd. For C₂₀H₂₂NO₃⁺ 324.1594, found 324.1590. The diastereomeric ratio was determined by NMR *dr* >20:1.

(±)-3ab was obtained as a white solid 19 mg in 56% yield after column chromatography on silica gel (petroleum ether/ethyl acetate = 7/1). ¹H NMR (400 MHz, CDCl₃) δ 12.11 (s, 1H), 7.93 (d, *J* = 7.7 Hz, 2H), 7.55 (t, *J* = 7.3 Hz, 1H), 7.49 – 7.31 (m, 4H), 6.96 (d, *J* = 8.2 Hz, 1H), 6.82 (t, *J* = 7.6 Hz, 1H), 6.71 (d, *J* = 8.6 Hz, 1H), 5.45 – 5.32 (m, 1H), 4.22 (dt, *J* = 11.0, 6.2 Hz, 1H), 3.34 (dd, *J* = 16.5, 5.1 Hz, 1H), 3.07 (dd, *J* = 16.4, 7.4 Hz, 1H), 1.99 – 1.88 (m, 2H), 1.88 – 1.81 (m, 1H), 1.76 – 1.65 (m, 1H), 1.54 – 1.39 (m, 1H), 1.27 (qd, *J* = 13.0, 4.0 Hz, 1H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 197.5, 169.3, 161.9, 137.0, 134.6, 133.3, 128.6, 128.2, 125.7, 118.7, 113.8, 78.5, 74.0, 45.1, 31.3, 30.6, 22.6 ppm. HRMS: [M+H]⁺ calcd. For C₂₀H₂₂NO₄⁺ 340.1543, found 340.1538. The diastereomeric ratio was determined by NMR *dr* >20:1.

(±)-3ac (±)-3ac (±)-3ac was obtained as a white solid 20 mg in 57% yield after column chromatography on silica gel (petroleum ether/ethyl acetate = 2/1). ¹H NMR (400 MHz, CDCl₃) δ 7.97 – 7.91 (m, 2H), 7.65 (d, *J* = 15.6 Hz, 1H), 7.60 – 7.53 (m, 1H), 7.51 – 7.42 (m, 4H), 7.36 (dd, *J* = 5.1, 2.0 Hz, 3H), 6.35 (d, *J* = 15.6 Hz, 1H), 6.07 (d, *J* = 9.0 Hz, 1H), 5.35 (ddd, *J* = 10.9, 9.0, 2.2 Hz, 1H), 4.21 (dddd, *J* = 10.2, 7.2, 4.7, 2.0 Hz, 1H), 3.35 (dd, *J* = 16.3, 4.8 Hz, 1H), 3.08 (dd, *J* = 16.3, 7.8 Hz, 1H), 1.96 – 1.79 (m, 3H), 1.79 – 1.65 (m, 1H), 1.45 – 1.33 (m, 1H), 1.30 – 1.19 (m, 1H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 197.6, 164.9, 142.2, 137.0, 134.68, 133.2, 129.9, 128.9, 128.6, 128.2, 127.9, 120.3, 78.5, 73.8, 45.2, 31.4, 30.6, 22.7 ppm. HRMS: [M+H]⁺ calcd. For C₂₂H₂₄NO₃⁺ 350.1751, found 350.1753. The diastereomeric ratio was determined by NMR *dr* = 10:1.

(±)-3ad (±)-3ad was obtained as a white solid 16 mg in 61% yield after column chromatography on silica gel (petroleum ether/ethyl acetate = 1/1).¹H NMR (400

MHz, CDCl₃) δ 7.94 (dt, *J* = 8.5, 1.7 Hz, 2H), 7.57 (tq, *J* = 6.8, 1.7 Hz, 1H), 7.46 (tt, *J* = 6.6, 1.4 Hz, 2H), 5.92 (d, *J* = 9.1 Hz, 1H), 5.19 (ddd, *J* = 11.1, 9.1, 2.3 Hz, 1H), 4.15 (dddd, *J* = 10.9, 7.8, 4.7, 2.0 Hz, 1H), 3.32 (dd, *J* = 16.4, 4.8 Hz, 1H), 3.07 (dd, *J* = 16.3, 7.9 Hz, 1H), 1.99 (s, 3H), 1.93 – 1.85 (m, 1H), 1.85 – 1.77 (m, 2H), 1.66 (tt, *J* = 13.1, 3.8 Hz, 1H), 1.26 (dtdd, *J* = 42.4, 13.0, 11.0, 4.2 Hz, 2H) ppm. ¹³**C NMR** (101 MHz, CDCl₃) δ 197.6, 169.3, 137.0, 133.2, 128.6, 128.2, 78.2, 73.7, 45.2, 31.3, 30.6, 23.6, 22.7 ppm. **HRMS**: [M+H]⁺ *calcd*. For C₁₅H₂₀NO₃⁺ 262.1438, found 262.1436. The diastereomeric ratio was determined by NMR *dr* = 5:1.

(±)-326 (±)-326 (±)-328 was obtained as a white solid 16 mg in 54% yield after column chromatography on silica gel (petroleum ether/ethyl acetate = 3/1). ¹H NMR (400 MHz, CDCl₃) δ 7.97 – 7.90 (m, 2H), 7.60 – 7.53 (m, 1H), 7.46 (t, *J* = 7.7 Hz, 2H), 6.92 (d, *J* = 8.5 Hz, 1H), 5.19 (ddd, *J* = 11.0, 8.9, 2.3 Hz, 1H), 4.17 (dddd, *J* = 11.1, 7.3, 4.9, 2.0 Hz, 1H), 4.04 (d, *J* = 1.8 Hz, 2H), 3.34 (dd, *J* = 16.5, 5.0 Hz, 1H), 3.07 (dd, *J* = 16.5, 7.6 Hz, 1H), 1.92 (dtd, *J* = 13.6, 4.1, 2.1 Hz, 1H), 1.88 – 1.79 (m, 2H), 1.69 (dddd, *J* = 17.0, 13.2, 8.3, 3.9 Hz, 1H), 1.39 (tdd, *J* = 12.8, 10.8, 4.2 Hz, 1H), 1.24 (tdd, *J* = 13.0, 11.0, 4.0 Hz, 1H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 197.5, 165.2, 137.0, 133.2, 128.6, 128.2, 78.6, 74.0, 45.0, 42.5, 31.1, 30.5, 22.5 ppm. HRMS: [M+H]⁺ calcd. For C₁₅H₁₉ClNO₃⁺ 296.1048, found 296.1054. The diastereomeric ratio was determined by NMR *dr* >20:1.

(±)-3ar (±)-3af was obtained as a colorless oil 17 mg in 56% yield after column chromatography on silica gel (petroleum ether/ethyl acetate = 3/1).¹H NMR (400 MHz, CDCl₃) δ 7.96 (t, *J* = 5.9 Hz, 2H), 7.56 (t, *J* = 7.3 Hz, 1H), 7.46 (t, *J* = 7.6 Hz, 2H), 6.00 (d, *J* = 8.5 Hz, 1H), 5.25 – 5.12 (m, 1H), 4.14 (dd, *J* = 11.2, 5.8 Hz, 1H), 3.34 (dd, *J* = 16.2, 4.7 Hz, 1H), 3.07 (dd, *J* = 16.1, 8.0 Hz, 1H), 1.93 – 1.86 (m, 1H), 1.81 (d, *J* = 13.0 Hz, 2H), 1.75 – 1.63 (m, 1H), 1.35 – 1.25 (m, 2H), 1.19 (s, 9H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 197.9,

177.7, 137.1, 133.1, 128.6, 128.2, 78.6, 73.9, 45.2, 38.7, 31.4, 30.6, 27.4, 22.7 ppm. **HRMS**: [M+H]⁺ *calcd*. For C₁₈H₂₆NO₃⁺ 304.1907, found 304.1910. The diastereomeric ratio was determined by NMR *dr* >20:1.

(±)-3ag (±)-3ag was obtained as a colorless oil 15 mg in 47% yield after column chromatography on silica gel (petroleum ether/ethyl acetate = 6/1). ¹H NMR (500 MHz, CDCl₃) δ 7.95 (d, *J* = 8.1 Hz, 2H), 7.58 – 7.54 (m, 1H), 7.46 (t, *J* = 7.7 Hz, 2H), 5.05 (s, 1H), 4.91 (s, 1H), 4.12 (s, 1H), 3.37 (dd, *J* = 16.3, 4.7 Hz, 1H), 3.16 – 3.02 (m, 1H), 1.89 (d, *J* = 13.9 Hz, 1H), 1.85 – 1.76 (m, 2H), 1.69 (ddd, *J* = 13.3, 8.6, 4.6 Hz, 1H), 1.44 (s, 9H), 1.30 (t, *J* = 10.8 Hz, 1H), 1.18 (dd, *J* = 18.7, 6.9 Hz, 1H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 197.8, 154.5, 137.1, 133.1, 128.6, 128.2, 80.0, 73.5, 66.5, 45.3, 31.2, 30.6, 28.3, 22.9 ppm. HRMS: [M+H]⁺ calcd. For C₁₈H₂₆NO₄⁺ 320.1856, found 320.1853. The diastereomeric ratio was determined by NMR *dr* >20:1.

(±)-san (±)-san (±)-3ah was obtained as a white solid 19 mg in 54% yield after column chromatography on silica gel (petroleum ether/ethyl acetate = 5/1). ¹H NMR (400 MHz, CDCl₃) δ 7.97 – 7.91 (m, 2H), 7.58 – 7.52 (m, 1H), 7.45 (m, 2H), 7.37 – 7.31 (m, 5H), 5.32 – 5.22 (m, 1H), 5.17 – 5.04 (m, 2H), 4.98 (t, *J* = 10.1 Hz, 1H), 4.17 – 4.10 (m, 1H), 3.35 (dd, *J* = 16.5, 4.7 Hz, 1H), 3.07 (dd, *J* = 16.5, 8.1 Hz, 1H), 1.94 – 1.75 (m, 3H), 1.75 – 1.56 (m, 1H), 1.44 – 1.25 (m, 1H), 1.24 – 1.10 (m, 1H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 197.7, 155.2, 137.1, 136.2, 133.2, 128.6, 128.5, 128.2, 80.4, 73.5, 67.0, 45.2, 31.2, 30.5, 22.8 ppm. HRMS: [M+H]⁺ calcd. For C₂₁H₂₄NO₄⁺ 354.1700, found 354.1703. The diastereomeric ratio was determined by NMR *dr* >20:1.

(±)-3ai (±)-3ai was obtained as a colorless oil 32 mg in 81% yield after column chromatography on silica gel (petroleum ether/ethyl acetate = 6/1). ¹H NMR (400 MHz, CDCl₃) δ 7.93 (dt, *J* = 7.2, 1.5 Hz, 2H), 7.58 – 7.53 (m, 1H), 7.45 (dd, *J* = 8.3, 6.9 Hz, 2H), 5.53 (d, *J* = 9.5 Hz, 1H), 5.07 – 4.86 (m, 1H), 4.76 (d, *J* = 12.1 Hz, 1H), 4.65 (d, *J* = 11.8 Hz, 1H), 4.21 – 4.08 (m, 1H), 3.33 (dd, *J* = 16.3, 5.1 Hz, 1H), 3.06 (dd, *J* = 16.4, 7.6 Hz, 1H), 1.97 – 1.73 (m, 3H), 1.73 – 1.61 (m, 1H), 1.36 (ddd, *J* = 20.1, 10.4, 3.5 Hz, 1H), 1.24 (ddt, *J* = 15.4, 11.1, 3.5 Hz, 1H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 197.7, 153.5, 137.1, 133.2, 128.6, 128.2, 95.2, 80.5, 74.6, 73.7, 45.0, 31.1, 30.4, 22.7 ppm. HRMS: [M+H]⁺ calcd. C₁₆H₁₉Cl₃NO₄⁺ 394.0374, found 394.0376. The diastereomeric ratio was determined by NMR *dr* >20:1.

(±)-3aj (±)-3aj was obtained as a white solid 23 mg in 62% yield after column chromatography on silica gel (petroleum ether/ethyl acetate = 3/1). ¹H NMR (400 MHz, CDCl₃) δ 7.88 – 7.82 (m, 2H), 7.73 – 7.67 (m, 2H), 7.61 – 7.55 (m, 1H), 7.46 (dd, *J* = 8.4, 7.1 Hz, 2H), 7.04 (d, *J* = 8.1 Hz, 2H), 5.11 (d, *J* = 10.1 Hz, 1H), 4.82 (td, *J* = 10.4, 2.1 Hz, 1H), 4.13 – 3.99 (m, 1H), 2.97 (dd, *J* = 16.8, 6.5 Hz, 1H), 2.71 (dd, *J* = 16.7, 5.4 Hz, 1H), 2.18 (s, 3H), 1.88 (ddq, *J* = 11.6, 7.1, 2.9, 2.4 Hz, 2H), 1.73 – 1.57 (m, 2H), 1.38 – 1.09 (m, 2H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 197.1, 143.0, 138. 8, 137.1, 133.2, 129.2, 128.6, 128.1, 127.2, 82.7, 73.1, 44.4, 31.7, 30.1, 22.9, 21.3 ppm. HRMS: [M+H]⁺ calcd. For C₂₀H₂₄NO₄S⁺ 374.1421, found 374.1421. The diastereomeric ratio was determined by NMR *dr* >20:1.

(±)-3ak was obtained as a colorless oil 18 mg in 61% yield after column chromatography on silica gel (petroleum ether/ethyl acetate = 2/1). ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, *J* = 7.1 Hz, 2H), 7.60 – 7.55 (m, 1H), 7.47 (t, *J* = 7.5 Hz, 2H), 5.05 (d,

J = 10.4 Hz, 1H), 4.70 (td, *J* = 10.6, 2.2 Hz, 1H), 4.16 (ddd, *J* = 8.9, 3.8, 1.9 Hz, 1H), 3.28 (dd, *J* = 15.8, 8.4 Hz, 1H), 3.01 – 2.91 (m, 1H), 2.81 (s, 3H), 1.98 – 1.82 (m, 2H), 1.75 – 1.64 (m, 3H), 1.36 – 1.27 (m, 1H) ppm. ¹³**C NMR** (101 MHz, CDCl₃) δ 197.8, 137.0, 133.4, 128.7, 128.2, 82.5, 73.9, 44.5, 42.9, 31.2, 30.3, 22.8 ppm. **HRMS**: [M+H]⁺ *calcd*. For C₁₄H₂₀NO₄S⁺ 298.1108, found 298.1107. The diastereomeric ratio was determined by NMR *dr* >20:1.

(±)-3al was obtained as a white solid 37 mg in 82% yield after column chromatography on silica gel (petroleum ether/ethyl acetate = 2/1). ¹H NMR (500 MHz, CDCl₃) δ 7.94 – 7.90 (m, 2H), 7.58 – 7.53 (m, 1H), 7.44 (t, *J* = 7.8 Hz, 2H), 7.37 – 7.28 (m, 3H), 7.27 – 7.18 (m, 5H), 7.16 (tt, *J* = 7.3, 1.2 Hz, 1H), 7.13 – 7.08 (m, 1H), 4.67 (tdd, *J* = 10.6, 8.1, 2.3 Hz, 1H), 4.14 (dtd, *J* = 11.2, 6.3, 2.0 Hz, 1H), 3.83 (dd, *J* = 12.3, 10.8 Hz, 1H), 3.22 (dd, *J* = 16.4, 5.8 Hz, 1H), 2.96 (dd, *J* = 16.4, 6.6 Hz, 1H), 1.90 – 1.83 (m, 1H), 1.78 (dd, *J* = 12.8, 3.0 Hz, 1H), 1.76 – 1.71 (m, 1H), 1.64 (qt, *J* = 13.3, 3.9 Hz, 1H), 1.35 – 1.26 (m, 2H), 1.26 – 1.18 (m, 1H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 197.8, 150.7, 150.6, 137.1, 133.2, 129.6, 129.5, 128.6, 128.2, 125.0, 124.9, 120.5, 120.5, 120.4, 82.0, 73.7, 44.9, 33.2, 30.3, 23.0 ppm. HRMS: [M+H]⁺ calcd. For C₂₅H₂₇NO₅P⁺ 452.1621, found 452.1628. The diastereomeric ratio was determined by NMR *dr* >20:1.

(±)-sam was obtained as a colorless oil 18 mg in 63% yield after column chromatography on silica gel (petroleum ether/ethyl acetate = 1/1). ¹H NMR (400 MHz, CDCl₃) δ 7.96 – 7.91 (m, 2H), 7.58 – 7.51 (m, 1H), 7.44 (dd, *J* = 8.4, 7.0 Hz, 2H), 5.24 (dd, *J* = 9.8, 3.5 Hz, 1H), 4.14 (dddd, *J* = 11.1, 7.4, 5.0, 2.1 Hz, 1H), 3.45 (ddd, *J* = 9.5, 7.7, 6.4 Hz, 1H), 3.36 (dt, *J* = 9.5, 6.9 Hz, 1H), 3.27 (dd, *J* = 15.9, 5.0 Hz, 1H), 3.04 (dd, *J* = 15.9, 7.5 Hz, 1H), 2.41 – 2.32 (m, 2H), 2.01 – 1.94 (m, 2H), 1.90 (dp, *J* = 13.1, 3.1 Hz, 1H), 1.82 – 1.73 (m, 1H), 1.67 (dtd, *J* = 12.9, 8.5, 3.9 Hz, 1H), 1.56 (ddt, *J* = 12.5, 10.2, 4.7 Hz, 2H), 1.20 (tdd, *J* = 12.7, 11.1, 4.1 Hz, 1H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 197.9, 175.0, 137.2, 133.1,

128.5, 128.3, 79.7, 74.2, 45.1, 42.5, 31.6, 30.6, 28.4, 22.6, 18.1 ppm. **HRMS**: [M+H]⁺ *calcd*. For C₁₇H₂₂NO₃⁺ 288.1594, found 288.1596. The diastereomeric ratio was determined by NMR *dr* >20:1.

(±)-3an (±)-3an was obtained as a colorless oil 14 mg in 42% yield after column chromatography on silica gel (petroleum ether/ethyl acetate = 6/1).¹H NMR (400 MHz, CDCl₃) δ 7.95 – 7.91 (m, 2H), 7.55 – 7.50 (m, 1H), 7.40 (dd, *J* = 8.4, 7.1 Hz, 2H), 7.26 – 7.18 (m, 3H), 7.01 (td, *J* = 7.4, 1.4 Hz, 1H), 5.65 (dd, *J* = 11.4, 2.6 Hz, 1H), 4.25 (dddd, *J* = 11.1, 7.3, 5.4, 2.1 Hz, 1H), 3.52 (s, 2H), 3.36 (dd, *J* = 16.2, 5.4 Hz, 1H), 3.12 (dd, *J* = 16.2, 6.9 Hz, 1H), 2.20 (tdd, *J* = 12.9, 11.2, 4.2 Hz, 1H), 2.07 – 1.98 (m, 1H), 1.89 (ddq, *J* = 13.2, 3.8, 1.9 Hz, 1H), 1.81 (tt, *J* = 13.2, 3.9 Hz, 1H), 1.73 – 1.67 (m, 1H), 1.43 (tdd, *J* = 12.8, 11.1, 4.0 Hz, 1H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 197.6, 174.0, 142.5, 137.1, 133.2, 128.5, 128.3, 127.5, 124.4, 124.3, 122.2, 112.0, 80.9, 75.0, 45.0, 36.0, 30.7, 27.4, 22.7 ppm. HRMS: [M+H]⁺ calcd. For C₂₁H₂₂NO₃⁺ 336.1594, found 336.1593. The diastereomeric ratio was determined by NMR *dr* >20:1.

(±)-3a0 (±)-3a0 was obtained as a yellow solid 14 mg in 40% yield after column chromatography on silica gel (petroleum ether/ethyl acetate = 3/1). ¹H NMR (400 MHz, CDCl₃) δ 7.97 – 7.90 (m, 2H), 7.60 (dd, *J* = 7.5, 1.4 Hz, 1H), 7.56 – 7.50 (m, 2H), 7.41 (dd, *J* = 8.4, 7.0 Hz, 2H), 7.27 (d, *J* = 4.4 Hz, 1H), 7.11 (dd, *J* = 7.6, 0.9 Hz, 1H), 5.55 (dd, *J* = 11.4, 2.4 Hz, 1H), 4.28 (dtd, *J* = 11.7, 6.1, 2.1 Hz, 1H), 3.34 (dd, *J* = 16.3, 5.9 Hz, 1H), 3.13 (dd, *J* = 16.3, 6.1 Hz, 1H), 2.22 (tdd, *J* = 13.8, 11.0, 4.3 Hz, 1H), 2.13 – 1.99 (m, 1H), 1.94 – 1.71 (m, 3H), 1.56 – 1.40 (m, 1H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 197.4, 183.1, 156.9, 149.6, 138.2, 137.0, 133.3, 128.6, 128.2, 125.3, 123.7, 117.7, 113.8, 81.5, 75.0, 44.6, 30.4,

27.5, 22.6 ppm. **HRMS**: $[M+H]^+$ *calcd*. For $C_{21}H_{20}NO_4^+$ 350.1387, found 350.1389. The diastereomeric ratio was determined by NMR *dr* >20:1.

(±)-3ap (±)-3ap was obtained as a colorless oil 16 mg in 46% yield after column chromatography on silica gel (petroleum ether/ethyl acetate = 4/1). ¹H NMR (400 MHz, CDCl₃) δ 8.06 (dd, *J* = 7.8, 1.5 Hz, 1H), 7.97 (dq, *J* = 8.6, 1.8 Hz, 2H), 7.57 – 7.52 (m, 1H), 7.47 – 7.37 (m, 3H), 7.32 (td, *J* = 7.6, 1.3 Hz, 1H), 7.16 (d, *J* = 7.5 Hz, 1H), 5.86 (dd, *J* = 10.9, 2.5 Hz, 1H), 4.22 (dddd, *J* = 12.4, 7.3, 5.5, 1.9 Hz, 1H), 3.60 (ddd, *J* = 12.0, 6.7, 5.1 Hz, 1H), 3.44 (ddd, *J* = 12.3, 9.4, 4.8 Hz, 1H), 3.28 (dd, *J* = 15.4, 5.4 Hz, 1H), 3.08 (dd, *J* = 15.4, 6.9 Hz, 1H), 2.87 (qdd, *J* = 15.7, 6.4, 4.9 Hz, 2H), 1.99 – 1.89 (m, 1H), 1.83 – 1.74 (m, 2H), 1.72 – 1.64 (m, 1H), 1.61 – 1.52 (m, 1H), 1.34 – 1.24 (m, 1H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 198.2, 163.7, 138.5, 137.4, 133.1, 131.8, 129.5, 128.6, 128.5, 128.4, 127.0, 126.8, 81.3, 74.7, 45.2, 39.7, 30.7, 28.4, 28.0, 22.6 ppm. HRMS: [M+H]⁺ calcd. For C₂₂H₂₄NO₃⁺ 350.1751, found 350.1750. The diastereomeric ratio was determined by NMR *dr* >20:1.

3aq was obtained as a colorless oil 20 mg in 51% yield after column chromatography on silica gel (petroleum ether/ethyl acetate = 2/1). ¹H NMR (400 MHz, CDCl₃) δ 7.99 – 7.90 (m, 2H), 7.59 – 7.53 (m, 1H), 7.43 (dddd, *J* = 20.1, 10.1, 6.9, 5.0 Hz, 4H), 7.36 – 7.32 (m, 3H), 6.60 (dd, *J* = 31.9, 9.0 Hz, 1H), 6.08 (d, *J* = 3.4 Hz, 1H), 5.19 (dddd, *J* = 11.0, 8.9, 4.0, 2.2 Hz, 1H), 4.19 – 4.06 (m, 1H), 3.31 (ddd, *J* = 16.0, 5.8, 4.9 Hz, 1H), 3.10 – 3.00 (m, 1H), 2.16 (d, *J* = 1.0 Hz, 3H), 1.84 (ddt, *J* = 29.7, 13.8, 3.4 Hz, 3H), 1.67 (qt, *J* = 13.0, 3.8 Hz, 1H), 1.44 – 1.28 (m, 1H), 1.26 – 1.14 (m, 1H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 197.8, 197.6, 169.1, 169.0, 167.6, 137.1, 137.0, 135.5, 135.3, 133.2, 133.2, 129.1, 129.0, 128.8, 128.8 128.6, 128.6, 128.6, 128.2, 128.2, 127.7, 127.4, 78.5, 75.3, 75.2, 74.2, 74.1, 45.1, 45.0, 31.3, 30.5, 30.5, 22.5, 22.5, 21.1, 21.0 ppm. **HRMS**: $[M+H]^+$ *calcd*. For C₂₃H₂₆NO₅+396.1805, found 396.1803. The diastereomeric ratio was determined by NMR *dr* = 1:1.

3ar was obtained as a colorless oil 4 mg in 11% yield after column chromatography on silica gel (petroleum ether/ethyl acetate = 1/1). ¹**H** NMR (400 MHz, CDCl₃) δ 7.91 (dd, *J* = 7.4, 1.7 Hz, 2H), 7.59 – 7.54 (m, 1H), 7.46 (t, *J* = 7.7 Hz, 2H), 5.27 – 5.21 (m, 1H), 4.24 (dd, *J* = 8.9, 1.7 Hz, 1H), 4.10 (ddt, *J* = 21.5, 10.8, 7.1 Hz, 2H), 3.99 (dq, *J* = 10.8, 7.1 Hz, 1H), 3.24 (dd, *J* = 16.4, 5.6 Hz, 1H), 2.90 (dd, *J* = 16.4, 6.9 Hz, 1H), 2.67 (dt, *J* = 16.6, 9.9 Hz, 1H), 2.36 (ddd, *J* = 16.6, 9.6, 2.1 Hz, 1H), 2.22 (dq, *J* = 13.1, 9.6 Hz, 1H), 2.04 (ddt, *J* = 13.2, 9.4, 1.9 Hz, 1H), 1.95 – 1.86 (m, 1H), 1.76 – 1.60 (m, 5H), 1.21 (t, *J* = 7.1 Hz, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 197.2, 174.9, 172.6, 137.0, 133.2, 128.6, 128.1, 81.1, 74.1, 61.1, 57.1, 44.9, 30.6, 30.3, 28.5, 23.5, 22.4, 14.1 ppm. HRMS: [M+H]* calcd. For C₂₀H₂₆NO₅+ 360.1805, found 360.1803. [α]_p²⁰ -8.91 (*c* = 0.78 in CHCl₃). The enantiomeric ratio was determined by HPLC analysis on Daicel Chiralpak IB column [*n*-hexane/*i*-PrOH = 95/5, 1 mL/min], λ = 240 nm, t_{major} = 48.43 min, t_{minor} = 44.37 min, **er** >**99.9:0.1**. The diastereomeric ratio was determined by NMR *dr* >**20:1**.

3ar' was obtained as a colorless oil 7 mg in 19% yield after column chromatography on silica gel (petroleum ether/ethyl acetate = 1/1). ¹H NMR (400 MHz, CDCl₃) δ 7.97 – 7.92 (m, 2H), 7.60 – 7.53 (m, 1H), 7.49 – 7.42 (m, 2H), 5.28 (dd, *J* = 11.3, 2.1 Hz, 1H), 4.36 – 4.30 (m, 1H), 4.26 – 4.11 (m, 3H), 3.28 (dd, *J* = 15.9, 5.4 Hz, 1H), 3.01 (dd, *J* = 15.8, 7.1 Hz, 1H), 2.65 – 2.49 (m, 1H), 2.38 – 2.20 (m, 2H), 2.04 – 1.94 (m, 1H), 1.92 – 1.81 (m, 1H), 1.80 – 1.72 (m, 1H), 1.72 – 1.57 (m, 2H), 1.32 – 1.14 (m, 5H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 197.8, 175.4, 173.3, 137.2, 133.1, 128.5, 128.3, 80.2, 74.4, 61.4, 56.3, 45.1, 30.6, 30.0, 29.0, 24.5, 22.7, 14.2 ppm. HRMS: [M+H]⁺ calcd. For C₂₀H₂₆NO₅⁺ 360.1805, found 360.1811. [α]_D²⁰ -10.86 (*c* = 0.70 in CHCl₃). The enantiomeric ratio was determined

by HPLC analysis on Daicel Chiralpak IB column [*n*-hexane/*i*-PrOH = 95/5, 1 mL/min], λ = 240 nm, t_{major} = 36.29 min, t_{minor} = 34.07 min, **er** >**99.7:0.3**. The diastereomeric ratio was determined by NMR *dr* >**20:1**.

3as was obtained as a colorless oil 28 mg in 74% yield after column chromatography on silica gel (petroleum ether/ethyl acetate = 3/1). ¹H NMR (400 MHz, CDCl₃) δ 7.99 – 7.92 (m, 2H), 7.59 – 7.50 (m, 1H), 7.43 (t, *J* = 7.6 Hz, 2H), 7.36 – 7.21 (m, 3H), 7.17 – 7.10 (m, 2H), 5.05 (dd, *J* = 10.6, 2.7 Hz, 1H), 4.22 – 3.93 (m, 4H), 3.29 (td, *J* = 16.2, 4.6 Hz, 2H), 3.08 (dd, *J* = 15.8, 6.8 Hz, 1H), 2.60 (dd, *J* = 14.0, 9.5 Hz, 1H), 2.01 (dq, *J* = 13.7, 3.4 Hz, 1Hk), 1.92 – 1.64 (m, 4H), 1.31 (tdd, *J* = 14.5, 11.9, 4.9 Hz, 1H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 198.0, 157.0, 137.2, 136.2, 133.2, 129.2, 128.8, 128.6, 128.3, 127.0, 82.8, 74.7, 66.6, 54.5, 44.8, 39.9, 30.6, 28.5, 22.9 ppm. HRMS: [M+H]⁺ calcd. For C₂₃H₂₆NO₄⁺ 380.1856, found 380.1857. [α]_p²⁰ -27.03 (*c* = 1.44 in CHCl₃). The enantiomeric ratio was determined by HPLC analysis on Daicel Chiralpak IB column [*n*-hexane/*i*-PrOH = 65/35, 1 mL/min], λ = 205 nm, t_{major} = 7.55 min, t_{minor} = 8.70 min, **er** >99.9:0.1. The diastereomeric ratio was determined by ¹H NMR *dr* >20:1.

E. Optimization of the synthesis of chiral N,O-aminals:

General procedure: All reactions were carried out using **1a** (0.1 mmol, 1.0 equiv), **2** (0.12 mmol, 1.2 equiv) in DCE (0.5 mL) with **A2** (10 mol%) at 25 °C. After workup, the mixture was purified by column chromatography on silica gel to afford product **3** for HPLC analysis. And pivalic amide **2f** was chosen to optimize other conditions.

entry ^[a]	Cat.	T (d)	Y (%) ^[b]	er ^[c]	$dr^{[d]}$
1	A1	2	36	69:31	>20:1
2	A2	2	64	79:21	>20:1
3	A3	2	64	66:34	>20:1
4	A4	2	<5	66:34	>20:1
5	A5	1	76	58:42	>20:1
6	A6	1	64	57:43	>20:1
7	A7	2	46	62:38	>20:1
8	A8	2	54	72:28	>20:1
9	A9	2	64	55:45	>20:1
10	A10	2	86	57:43	>20:1
11	A11	2	57	59:41	>20:1
12	A12	-	NR	-	
13	A13	2	<5	78:22	>20:1
14	A'1	2	20	53:47	>20:1

15	A'2	2	50	57.5:42.5	>20:1
16	A'3	-	NR	-	-
17	A"1	2	60	75:25	>20:1
18	A"2	2	40	57:43	>20:1
19	A"3	2	40	54:46	>20:1

[*a*] Unless otherwise specified, all reactions were carried out using **1a** (0.1 mmol, 1.0 equiv), **2f** (0.12 mmol, 1.2 equiv) in DCE (0.5 mL) with cat. (10 mol%) at 25 °C. After workup, the mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 3:1) to afford product **3af** as a white solid. [*b*] Isolated yield of **3af**. [*c*] Determined by HPLC analyses of isolated compound **3af** on chiral stationary phases. [*d*] Determined by ¹H NMR.

on true [a]	Tem.	Sal	۸dd	ጠ (ፈ)	$\mathbf{V}(0/0^{[h]})$	on[[]	dr[d]
entry	(°C)	501.	Add.	1 (u)	Y (%) ^[8]	eres	uriu
$1^{[e]}$	25	DCE	-	2	50	77:23	>20:1
2	25	DCE	-	2	78	79:21	>20:1
3[1]	25	DCE	-	2	71	79:21	>20:1
4	0	DCE	-	6	57	90:10	>20:1
5	-20	DCE	-	6	<5	93:7	>20:1
6	40	DCE	-	2	70	73:27	>20:1
7	0	DCM	-	6	29	87:13	>20:1
8	0	toluene	-	6	64	90:10	>20:1
9	0	PhOCH ₃	-	6	52	90:10	>20:1
10	0	Et ₂ O	-	6	29	88:12	>20:1
11	0	EA	-	-	<5	87:13	>20:1
12	0	CH ₃ CN	-	-	NR	-	-
13	0	acetone	-	-	trace	-	-
14	0	THF	-	-	NR	-	-
15	0	MTBE	-	6	59	95:5	>20:1
16	0	MTBE +Et ₂ O	-	6	66	93:7	>20:1
17	0	MTBE	FeCl ₃ (20 mol%)	6	40	64:36	>20:1

18	0	MTBE	3 Å MS (5 mg)	6	29	92:8	>20:1
19	0	MTBE	4 Å MS (5 mg)	6	50	93:7	>20:1
20	0	MTBE	4 Å MS (10 mg)	6	20	90:10	>20:1
21	0	MTBE	4 Å MS (20 mg)	-	NR	-	-
22	0	MTBE	5 Å MS (5 mg)	6	36	89:11	>20:1
23	0	MTBE	MgSO ₄ (5 mg)	6	57	94:6	>20:1
24	0	MTBE	Na ₂ SO ₄ (5 mg)	6	64	91:9	>20:1
25	0	MTBE	(CF ₃)2CHOH (20 mol%)	6	50	91:9	>20:1
26	0	MTBE	(CH ₂ OH) ₂ (20 mol%)	6	50	93:7	>20:1
27	0	MTBE	H ₂ O (1.0 equiv)	6	40	93:7	>20:1
28 ^[g]	0	MTBE	-	6	77	89:11	>20:1
29 ^[h]	0	MTBE	-	6	21	92:8	>20:1
30 ^[i]	0	MTBE	-	9	47	95:5	>20:1

[*a*] Unless otherwise specified, all reactions were carried out using **1a** (0.1 mmol, 1.0 equiv), **2f** (0.12 mmol, 1.2 equiv) in solvent (0.5 mL) with **A2** (10 mol%). After workup, the mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 3:1) to afford product **3af** as a white solid. [*b*] Isolated yield of **3af**. [*c*] Determined by HPLC analyses of isolated compound **3af** on chiral stationary phases. [*d*] Determined by ¹H NMR. [*e*] Reactions were carried out using **1a** (0.2 mmol, 2.0 equiv) and **2f** (0.1 mmol, 1.0 equiv). [*f*] Reactions were carried out using **1a** (0.1 mmol, 1.0 equiv) and **2f** (0.2 mmol, 2.0 equiv). [*g*] Reactions were carried out in MTBE (0.2 mL). [*h*] Reactions were carried out in MTBE (1.0 mL). [*i*] Reactions were carried out with **A2** (5 mol%).

F. Scope of chiral reaction conditions:

General procedure: A glass vial equipped with a magnetic stirring bar was charged with (E)-7-oxo-7-phenylhept-5-enal **1** (0.1 mmol, 1.0 equiv) and amide **2f** (0.12 mmol, 1.2 equiv) in MTBE (0.5 mL) with **A2** (10 mol%) at 0 °C. After completion of the reaction, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 4:1 to 2:1) to afford **3** for NMR and HPLC analysis.

3ar 3af was obtained as a white solid 18 mg in 59% yield after column chromatography on silica gel (petroleum ether/ethyl acetate = 3/1). ¹H NMR (400 MHz, CDCl₃) δ 7.96 (t, *J* = 5.9 Hz, 2H), 7.56 (t, *J* = 7.3 Hz, 1H), 7.46 (t, *J* = 7.6 Hz, 2H), 6.00 (d, *J* = 8.5 Hz, 1H), 5.25 – 5.12 (m, 1H), 4.14 (dd, *J* = 11.2, 5.8 Hz, 1H), 3.34 (dd, *J* = 16.2, 4.7 Hz, 1H), 3.07 (dd, *J* = 16.1, 8.0 Hz, 1H), 1.93 – 1.86 (m, 1H), 1.81 (d, *J* = 13.0 Hz, 2H), 1.75 – 1.63 (m, 1H), 1.35 – 1.25 (m, 2H), 1.19 (s, 9H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 197.9, 177.7, 137.1, 133.1, 128.6, 128.2, 78.6, 73.9, 45.2, 38.7, 31.4, 30.6, 27.4, 22.7 ppm. HRMS: [M+H]⁺ *calcd*. For C₁₈H₂₆NO₃⁺ 304.1907, found 304.1905. [α]_D²⁰ 24.33 (*c* = 3.53 in CHCl₃). The enantiomeric ratio was determined by HPLC analysis on Daicel Chiralpak IC column [*n*-hexane/*i*-PrOH = 70/30, 1 mL/min], λ = 240 nm, t_{major} = 15.26 min, t_{minor} = 20.48 min, **er** = **95:5**. The diastereomeric ratio was determined by ¹H NMR, *dr* >**20:1**.

3bf was obtained as a colorless oil 17 mg in 51% yield after

column chromatography on silica gel (petroleum ether/ethyl acetate = 2/1). ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, *J* = 8.7 Hz, 2H), 6.92 (d, *J* = 8.7 Hz, 2H), 5.97 (d, *J* = 8.5 Hz, 1H), 5.16 (t, *J* = 9.3 Hz, 1H), 4.11 (s, 1H), 3.87 (s, 3H), 3.29 (dd, *J* = 15.9, 4.4 Hz, 1H), 3.01 (dd, *J* = 15.9, 8.2 Hz, 1H), 1.88 (d, *J* = 13.4 Hz, 1H), 1.80 (d, *J* = 12.9 Hz, 2H), 1.73 – 1.63 (m, 1H), 1.28 (dt, *J* = 18.5, 5.5 Hz, 2H), 1.19 (s, 9H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 196.3, 177.7, 163.5, 130.6, 130.3, 113.7, 78.6, 74.1, 55.5, 45.0, 38.7, 31.4, 30.7, 27.4, 22.7 ppm. HRMS: [M+H]⁺ *calcd*. For C₁₉H₂₈NO₄⁺ 334.2013, found 334.2014. [α]_D²⁰ 15.82 (*c* = 1.52 in CHCl₃). The enantiomeric ratio was determined by HPLC analysis on Daicel Chiralpak IC column [*n*-hexane/*i*-PrOH = 70/30, 1 mL/min], λ = 240 nm, t_{major} = 27.10 min, t_{minor} = 32.84 min, **er** = **92:8**. The diastereomeric ratio was determined by ¹H NMR, *dr* >20:1.

3cf was obtained as a white solid 16 mg in 50% yield after column chromatography on silica gel (petroleum ether/ethyl acetate = 3/1). ¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, *J* = 8.2 Hz, 2H), 7.24 (d, *J* = 8.1 Hz, 2H), 5.97 (d, *J* = 8.6 Hz, 1H), 5.20 – 5.11 (m, 1H), 4.16 – 4.07 (m, 1H), 3.31 (dd, *J* = 16.0, 4.5 Hz, 1H), 3.03 (dd, *J* = 16.0, 8.2 Hz, 1H), 2.40 (s, 3H), 1.87 (dd, *J* = 11.4, 4.8 Hz, 1H), 1.79 (d, *J* = 13.2 Hz, 2H), 1.72 – 1.60 (m, 1H), 1.35 – 1.21 (m, 2H), 1.18 (s, 9H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 197.4, 177.6, 143.9, 134.6, 129.2, 128.3, 78.6, 74.0, 45.1, 38.6, 31.4, 30.6, 27.4, 22.7, 21.6 ppm. HRMS: [M+H]⁺ calcd. For C₁₉H₂₈NO₃⁺ 318.2064, found 318.2058. [α]_D²⁰ 18.78 (*c* = 0.62 in CHCl₃). The enantiomeric ratio was determined by HPLC analysis on Daicel Chiralpak IC column [*n*-hexane/*i*-PrOH = 65/35, 1 mL/min], λ = 240 nm, *t_{major}* = 16.13 min, *t_{minor}* = 19.81 min, **er = 95:5**. The diastereomeric ratio was determined by ¹H NMR, *dr* >20:1.

3df was obtained as a yellow oil 26 mg in 77% yield after column chromatography on silica gel (petroleum ether/ethyl acetate = 3/1). ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, *J* = 8.6 Hz, 2H), 7.42 (d, *J* = 8.6 Hz, 2H), 5.96 (d, *J* = 8.6 Hz, 1H), 5.15 (ddd, *J* = 10.9, 9.0, 2.1 Hz, 1H), 4.09 (dddd, *J* = 9.7, 7.0, 4.8, 1.8 Hz, 1H), 3.28 (dd, *J* = 16.0, 4.8 Hz, 1H), 3.02 (dd, *J* = 16.0, 7.7 Hz, 1H), 1.94 – 1.84 (m, 1H), 1.84 – 1.74 (m, 2H), 1.75 – 1.61 (m, 1H), 1.38 – 1.20 (m, 2H), 1.18 (s, 9H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 196.7, 177.7, 139.5, 135.5, 129.7, 128.8, 78.5, 73.9, 45.2, 38.7, 31.2, 30.6, 27.4, 22.7 ppm. HRMS: [M+H]⁺ *calcd*. For C₁₈H₂₅ClNO₃⁺ 338.1517, found 338.1520. [α]_D²⁰ 28.06 (*c* = 1.14 in CHCl₃). The enantiomeric ratio was determined by HPLC analysis on Daicel Chiralpak IC column [*n*-hexane/*i*-PrOH = 70/30, 1 mL/min], λ = 240 nm, *t_{major}* = 11.67 min, *t_{minor}* = 16.04 min, **er** = **93:7**. The diastereomeric ratio was determined by ¹H NMR, *dr* >**20:1**.

3ef was obtained as a white solid 20 mg in 62% yield after column chromatography on silica gel (petroleum ether/ethyl acetate = 3/1). ¹H NMR (400 MHz, CDCl₃) δ 7.98 (ddd, *J* = 8.9, 5.2, 2.5 Hz, 2H), 7.15 – 7.09 (m, 2H), 5.97 (d, *J* = 8.6 Hz, 1H), 5.19 – 5.12 (m, 1H), 4.11 (dd, *J* = 9.5, 4.1 Hz, 1H), 3.29 (dd, *J* = 16.0, 4.7 Hz, 1H), 3.03 (dd, *J* = 16.0, 7.7 Hz, 1H), 1.92 – 1.85 (m, 1H), 1.83 – 1.76 (m, 2H), 1.68 (dt, *J* = 13.1, 3.8 Hz, 1H), 1.37 – 1.22 (m, 2H), 1.18 (s, 9H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 196.3, 177.7, 167.0, 164.5, 133.6, 131.0, 130.9, 115.7, 115.5, 78.5, 73.9, 45.2, 38.7, 31.3, 30.6, 27.4 22.7 ppm. ¹⁹F NMR (376 MHz, CDCl₃) δ -105.3 ppm. HRMS: [M+H]⁺ calcd. For C₁₈H₂₅FNO₃⁺ 322.1813, found 322.1819. [α]_D²⁰ 19.74 (*c* = 1.51 in CHCl₃). The enantiomeric ratio was determined by HPLC analysis on Daicel Chiralpak IC column [*n*-hexane/*i*-PrOH = 70/30, 1 mL/min], λ = 240 nm, *t_{major}* = 12.25 min, *t_{minor}* = 16.09 min, **er** = **94:6**. The diastereomeric ratio was determined by ¹H NMR, *dr* >**20:1**.

3m 3ff was obtained as a white solid 24 mg in 63% yield after column chromatography on silica gel (petroleum ether/ethyl acetate = 3/1). ¹**H NMR** (400 MHz, CDCl₃) δ 7.81 (d, *J* = 8.6 Hz, 2H), 7.58 (d, *J* = 8.6 Hz, 2H), 5.95 (d, *J* = 8.6 Hz, 1H), 5.20 – 5.09 (m, 1H), 4.16 – 4.03 (m, 1H), 3.28 (dd, *J* = 16.0, 4.8 Hz, 1H), 3.01 (dd, *J* = 16.0, 7.6 Hz, 1H), 1.95 – 1.84 (m, 1H), 1.84 – 1.76 (m, 2H), 1.74 – 1.61 (m, 1H), 1.35 – 1.22 (m, 2H), 1.18 (s, 9H) ppm. ¹³**C NMR** (101 MHz, CDCl₃) δ 196.9, 177.7, 135.9, 131.8, 129.8, 128.3, 78.5, 73.8, 45.2, 38.7, 31.2, 30.6, 27.4, 22.6 ppm. **HRMS**: [M+H]⁺ *calcd*. For C₁₈H₂₅BrNO₃⁺ 382.1012, found 382.1013. [**α**]_D²⁰ 40.27 (*c* = 0.89 in CHCl₃). The enantiomeric ratio was determined by HPLC analysis on Daicel Chiralpak IC column [*n*-hexane/*i*-PrOH = 70/30, 1 mL/min], λ = 240 nm, *t_{major}* = 11.95 min, *t_{minor}* = 16.67 min, **er** = **95:5**. The diastereomeric ratio was determined by ¹H NMR, *dr* >**20:1**.

3gf was obtained as a colorless oil 12 mg in 37% yield after column chromatography on silica gel (petroleum ether/ethyl acetate = 2/1). ¹**H** NMR (500 MHz, CDCl₃) δ 8.02 (d, *J* = 8.1 Hz, 2H), 7.74 (d, *J* = 8.1 Hz, 2H), 5.92 (d, *J* = 8.6 Hz, 1H), 5.12 (t, *J* = 9.8 Hz, 1H), 4.08 (dt, *J* = 11.1, 5.9 Hz, 1H), 3.28 (dd, *J* = 15.9, 5.1 Hz, 1H), 3.04 (dd, *J* = 15.9, 7.0 Hz, 1H), 1.90 (d, *J* = 13.5 Hz, 1H), 1.78 (d, *J* = 12.7 Hz, 2H), 1.67 (d, *J* = 12.9 Hz, 1H), 1.33 – 1.20 (m, 2H), 1.16 (s, 9H) ppm. ¹³**C** NMR (101 MHz, CDCl₃) δ 196.9, 177.7, 140.2, 132.4, 128.7, 118.0, 116.3, 78.5, 73.8, 45.5, 38.7, 31.1, 30.6, 27.4, 22.7 ppm. HRMS: [M+H]⁺ *calcd*. For C₁₉H₂₅N₂O₃⁺ 329.1860, found 329.1860. [**α**]_D²⁰ 15.17 (*c* = 0.77 in CHCl₃). The enantiomeric ratio was determined by HPLC analysis on Daicel Chiralpak IC column [*n*-hexane/*i*-PrOH = 65/35, 1 mL/min], λ = 240 nm, *t_{major}* = 17.66 min, *t_{minor}* = 24.69 min, **er** = **95:5**. The diastereomeric ratio was determined by ¹H NMR, *dr* >**20:1**.

3hr 3hr 3hr was obtained as a colorless oil 14 mg in 37% yield after column chromatography on silica gel (petroleum ether/ethyl acetate = 3/1). **¹H NMR** (400 MHz, CDCl₃) δ 8.02 (d, *J* = 8.4 Hz, 2H), 7.67 (d, *J* = 8.4 Hz, 2H), 7.65 – 7.59 (m, 2H), 7.47 (t, *J* = 7.4 Hz, 2H), 7.40 (dd, *J* = 8.3, 6.3 Hz, 1H), 5.97 (d, *J* = 8.7 Hz, 1H), 5.18 (ddd, *J* = 10.9, 9.0, 2.1 Hz, 1H), 4.15 (dt, *J* = 6.1, 3.5 Hz, 1H), 3.37 (dd, *J* = 16.0, 4.6 Hz, 1H), 3.09 (dd, *J* = 16.0, 8.0 Hz, 1H), 1.94 – 1.85 (m, 1H), 1.85 – 1.76 (m, 2H), 1.71 (t, *J* = 3.8 Hz, 1H), 1.37 – 1.21 (m, 2H), 1.19 (s, 9H) ppm. ¹³**C NMR** (125 MHz, CDCl₃) δ 197.4, 177.6, 145.8, 139.9, 135.8, 128.9, 128.8, 128.2, 127.2, 127.2, 78.6, 74.0, 45.3, 38.6, 31.4, 30.6, 27.4, 22.7 ppm. **HRMS**: [M+H]⁺ *calcd*. For C₂₄H₃₀NO₃⁺ 380.2220, found 380.2229. [**α**]_D²⁰ 35.32 (*c* = 0.77 in CHCl₃). The enantiomeric ratio was determined by HPLC analysis on Daicel Chiralpak IC column [*n*-hexane/*i*-PrOH = 65/35, 1 mL/min], λ = 210 nm, *t_{major}* = 13.67 min, *t_{minor}* = 18.93 min, **er = 92:8**. The diastereomeric ratio was determined by ¹H NMR, *dr* >20:1.

3if was obtained as a white solid 20 mg in 60% yield after column chromatography on silica gel (petroleum ether/ethyl acetate = 3/1). ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, *J* = 7.6 Hz, 1H), 7.46 (s, 1H), 7.35 (t, *J* = 7.9 Hz, 1H), 7.09 (dd, *J* = 8.1, 2.5 Hz, 1H), 5.95 (d, *J* = 8.5 Hz, 1H), 5.21 – 5.11 (m, 1H), 4.12 (dt, *J* = 11.0, 5.6 Hz, 1H), 3.84 (s, 3H), 3.31 (dd, *J* = 16.2, 4.6 Hz, 1H), 3.05 (dd, *J* = 16.2, 8.0 Hz, 1H), 1.88 (d, *J* = 13.5 Hz, 1H), 1.80 (d, *J* = 14.0 Hz, 2H), 1.72 – 1.64 (m, 1H), 1.35 – 1.21 (m, 2H), 1.18 (s, 9H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 197.6, 177.7, 159.8, 138.5, 129.5, 120.9, 119.7, 112.3, 78.6, 73.9, 55.4, 45.3, 38.7, 31.4, 30.6, 27.4, 22.7 ppm. HRMS: [M+H]⁺ calcd. For C₁₉H₂₈NO₄⁺ 334.2013, found 334.2010. [α]_D²⁰ 25.19 (*c* = 0.87 in CHCl₃). The enantiomeric ratio was determined by HPLC analysis on Daicel Chiralpak IC column [*n*-hexane/*i*-PrOH = 65/35, 1 mL/min], λ = 210 nm, *t_{major}* = 14.80 min, *t_{minor}* = 17.91 min, **er** = **93:7**. The diastereomeric ratio was determined by ¹H NMR, *dr* >**20:1**.

3i f was obtained as a colorless oil 18 mg in 47% yield after column chromatography on silica gel (petroleum ether/ethyl acetate = 3/1). ¹**H NMR** (400 MHz, CDCl₃) δ 8.07 (t, *J* = 1.7 Hz, 1H), 7.90 – 7.83 (m, 1H), 7.67 (ddd, *J* = 7.9, 1.8, 0.9 Hz, 1H), 7.33 (t, *J* = 7.9 Hz, 1H), 5.96 (d, *J* = 8.7 Hz, 1H), 5.15 (ddd, *J* = 10.9, 9.0, 2.2 Hz, 1H), 4.10 (dddd, *J* = 9.5, 7.1, 5.0, 1.9 Hz, 1H), 3.27 (dd, *J* = 16.0, 5.0 Hz, 1H), 3.02 (dd, *J* = 16.1, 7.4 Hz, 1H), 1.95 – 1.85 (m, 1H), 1.84 – 1.74 (m, 2H), 1.75 – 1.62 (m, 1H), 1.35 – 1.21 (m, 2H), 1.18 (s, 9H) ppm. ¹³**C NMR** (101 MHz, CDCl₃) δ 196.6, 177.7, 138.9, 135.9, 131.4, 130.1, 126.8, 122.9, 78.5, 73.8, 45.2, 38.7, 31.3, 30.6, 27.4, 22.7 ppm. **HRMS**: [M+H]⁺ *calcd*. For C₁₈H₂₅BrNO₃⁺ 382.1012, found 382.1010. [α]_D²⁰ 19.96 (*c* = 0.75 in CHCl₃). The enantiomeric ratio was determined by HPLC analysis on Daicel Chiralpak IC column [*n*-hexane/*i*-PrOH = 70/30, 1 mL/min], λ = 240 nm, *t_{major}* = 11.06 min, *t_{minor}* = 17.72 min, **er** = **94:6**. The diastereomeric ratio was determined by ¹H NMR, *dr* >20:1.

3kf was obtained as a colorless oil 18 mg in 54% yield after column chromatography on silica gel (petroleum ether/ethyl acetate = 3/1). ¹**H** NMR (400 MHz, CDCl₃) δ 7.63 (dd, *J* = 7.7, 1.7 Hz, 1H), 7.48 – 7.40 (m, 1H), 7.03 – 6.89 (m, 2H), 5.97 (d, *J* = 8.5 Hz, 1H), 5.17 – 5.06 (m, 1H), 4.06 (dt, *J* = 5.6, 3.0 Hz, 1H), 3.89 (s, 3H), 3.32 (dd, *J* = 16.4, 4.9 Hz, 1H), 3.11 (dd, *J* = 16.4, 8.0 Hz, 1H), 1.89 – 1.82 (m, 1H), 1.78 (d, *J* = 14.4 Hz, 2H), 1.65 (qd, *J* = 13.1, 3.9 Hz, 1H), 1.28 (ddt, *J* = 23.6, 12.6, 5.4 Hz, 2H), 1.18 (s, 9H) ppm. ¹³**C** NMR (125 MHz, CDCl₃) δ 200.0, 177.5, 158.4, 133.4, 130.2, 120.6, 111.4, 78.6, 74.1, 55.5, 50.4, 38.6, 31.4, 30.6, 27.4, 22.7 ppm. HRMS: [M+H]⁺ *calcd*. For C₁₉H₂₈NO₄⁺ 334.2013, found 334.2015. [α]₀²⁰ 20.45 (*c* = 0.69 in CHCl₃). The enantiomeric ratio was determined by HPLC analysis on Daicel Chiralpak IC column [*n*-hexane/*i*-PrOH = 65/35, 1 mL/min], λ = 240 nm, *t_{major}* = 22.98 min, *t_{minor}* = 26.57 min, **er** = 87:13. The diastereomeric ratio was determined by ¹H NMR, *dr* >20:1.

^{3ff} 3If was obtained as a colorless oil 18 mg in 56% yield after column chromatography on silica gel (petroleum ether/ethyl acetate = 3/1). ¹H NMR (400 MHz, CDCl₃) δ 7.80 (td, *J* = 7.6, 1.8 Hz, 1H), 7.50 (dddd, *J* = 8.3, 7.1, 5.0, 1.8 Hz, 1H), 7.24 – 7.18 (m, 1H), 7.14 – 7.08 (m, 1H), 5.93 (d, *J* = 8.4 Hz, 1H), 5.12 (td, *J* = 9.9, 8.9, 2.1 Hz, 1H), 4.16 – 4.06 (m, 1H), 3.29 (ddd, *J* = 16.9, 5.5, 2.7 Hz, 1H), 3.11 (ddd, *J* = 16.9, 7.2, 2.8 Hz, 1H), 1.88 (dd, *J* = 13.6, 2.6 Hz, 1H), 1.79 (d, *J* = 13.7 Hz, 2H), 1.68 (dt, *J* = 13.2, 3.8 Hz, 1H), 1.34 – 1.21 (m, 2H), 1.18 (s, 9H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 196.3, 177.6, 134.5, 134.4, 130.6, 130.6, 126.0, 124.5, 124.4, 116.7, 116.5, 78.6, 73.6, 50.0, 50.0, 38.6, 31.4, 30.7, 27.4, 22.7 ppm. ¹⁹F NMR (376 MHz, CDCl₃) δ -110.0 ppm. HRMS: [M+H]⁺ calcd. For C₁₈H₂₅FNO₃⁺ 322.1813, found 322.1815. [α]_D²⁰ 12.64 (*c* = 0.50 in CHCl₃). The enantiomeric ratio was determined by HPLC analysis on Daicel Chiralpak IC column [*n*-hexane/*i*-PrOH = 65/35, 1 mL/min], λ = 240 nm, t_{major} = 10.80 min, t_{minor} = 15.10 min, **er** = **92.5:7.5**. The diastereomeric ratio was determined by ¹H NMR, *dr* >20:1.

3mf was obtained as a colorless oil 14 mg in 48% yield after column chromatography on silica gel (petroleum ether/ethyl acetate = 2/1). ¹H NMR (400 MHz, CDCl₃) δ 7.60 – 7.57 (m, 1H), 7.21 – 7.18 (m, 1H), 6.52 (dd, *J* = 3.6, 1.7 Hz, 1H), 5.96 (d, *J* = 8.5 Hz, 1H), 5.15 (ddd, *J* = 10.9, 8.9, 2.2 Hz, 1H), 4.08 (dddd, *J* = 11.1, 7.4, 5.3, 1.7 Hz, 1H), 3.16 (dd, *J* = 15.3, 5.3 Hz, 1H), 2.92 (dd, *J* = 15.3, 7.6 Hz, 1H), 1.88 (ddd, *J* = 13.6, 5.8, 3.1 Hz, 1H), 1.81 – 1.73 (m, 2H), 1.65 (ddd, *J* = 17.0, 8.6, 3.8 Hz, 1H), 1.32 – 1.21 (m, 2H), 1.18 (s, 9H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 186.5, 177.6, 152.8, 146.5, 117.7, 112.2, 78.6, 73.7, 45.2, 38.7, 31.3, 30.6, 27.4, 22.6 ppm. HRMS: [M+H]⁺ calcd. For C₁₆H₂₄NO₄⁺ 294.1700, found 294.1711. [α]_D²⁰ 20.09 (*c* = 0.29 in CHCl₃). The enantiomeric ratio was determined by HPLC analysis on Daicel Chiralpak IC column [*n*-hexane/*i*-PrOH = 65/35, 1 mL/min], λ

= 240 nm, t_{major} = 21.53 min, t_{minor} = 31.77 min, **er** = **93.5:6.5**. The diastereomeric ratio was determined by ¹H NMR, *dr* >20:1.

3nr was obtained as a colorless oil 20 mg in 57% yield after column chromatography on silica gel (petroleum ether/ethyl acetate = 3/1). ¹H NMR (400 MHz, CDCl₃) δ 8.47 (s, 1H), 8.01 (dd, *J* = 8.6, 1.7 Hz, 1H), 7.95 (d, *J* = 8.0 Hz, 1H), 7.87 (dd, *J* = 8.3, 4.5 Hz, 2H), 7.63 – 7.51 (m, 2H), 5.98 (d, *J* = 8.7 Hz, 1H), 5.19 (ddd, *J* = 10.8, 8.9, 2.1 Hz, 1H), 4.19 (dddd, *J* = 11.0, 6.1, 4.7, 2.3 Hz, 1H), 3.47 (dd, *J* = 16.0, 4.6 Hz, 1H), 3.20 (dd, *J* = 16.0, 8.0 Hz, 1H), 1.91 – 1.78 (m, 3H), 1.68 (ddd, *J* = 16.5, 8.4, 3.6 Hz, 1H), 1.38 – 1.23 (m, 2H), 1.17 (s, 9H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 197.8, 177.7, 135.6, 134.5, 132.5, 130.1, 129.6, 128.51, 128.4, 127.8, 126.8, 123.9, 78.6, 74.0, 45.3, 38.7, 31.4, 30.7, 27.4, 22.7 ppm. HRMS: [M+H]⁺ calcd. For C₂₂H₂₈NO₃⁺ 354.2064, found 354.2063. [α]_D²⁰ 42.79 (*c* = 1.05 in CHCl₃). The enantiomeric ratio was determined by HPLC analysis on Daicel Chiralpak IC column [*n*-hexane/*i*-PrOH = 70/30, 1 mL/min], λ = 240 nm, *t_{major}* = 19.19 min, *t_{minor}* = 26.10 min, **er** = **93.5:6.5**. The diastereomeric ratio was determined by ¹H NMR, *dr* >20:1.

3of was obtained as a white solid 10 mg in 41% yield after column chromatography on silica gel (petroleum ether/ethyl acetate = 2/1). ¹H NMR (400 MHz, CDCl₃) δ 5.97 (d, *J* = 8.0 Hz, 1H), 5.13 (ddd, *J* = 10.9, 9.0, 2.1 Hz, 1H), 3.99 – 3.89 (m, 1H), 2.68 (dd, *J* = 15.8, 6.9 Hz, 1H), 2.51 (dd, *J* = 15.8, 6.1 Hz, 1H), 2.17 (s, 3H), 1.92 – 1.85 (m, 1H), 1.78 (d, *J* = 12.3 Hz, 1H), 1.70 – 1.59 (m, 2H), 1.34 – 1.25 (m, 2H), 1.19 (s, 9H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 207.1, 177.9, 78.5, 73.6, 50.2, 38.7, 31.0, 30.5, 30.4, 27.4, 22.7 ppm. HRMS: [M+H]⁺ calcd. For C₁₃H₂₄NO₃⁺ 242.1751, found 242.1756. [α]_D²⁰ 6.46 (*c* = 0.42 in CHCl₃). The enantiomeric ratio was determined by HPLC analysis on Daicel Chiralpak

AD-H column [*n*-hexane/*i*-PrOH = 95/5, 1 mL/min], λ = 202 nm, t_{major} = 17.92 min, t_{minor} = 21.95 min, **er** = **70:30**. The diastereomeric ratio was determined by ¹H NMR, *dr* > 20:1.

3pr 3pf was obtained as a colorless oil 22 mg in 72% yield after column chromatography on silica gel (petroleum ether/ethyl acetate = 3/1). ¹H NMR (400 MHz, CDCl₃) δ 7.97 – 7.91 (m, 2H), 7.61 – 7.54 (m, 1H), 7.50 – 7.43 (m, 2H), 5.80 (d, *J* = 8.9 Hz, 1H), 5.42 (ddd, *J* = 9.9, 8.9, 2.9 Hz, 1H), 4.40 (dddd, *J* = 10.3, 7.6, 4.8, 2.6 Hz, 1H), 3.97 (dd, *J* = 11.4, 2.6 Hz, 1H), 3.85 (dd, *J* = 11.1, 2.9 Hz, 1H), 3.30 (dd, *J* = 16.7, 4.8 Hz, 1H), 3.22 (dd, *J* = 11.4, 10.2 Hz, 1H), 3.17 (dd, *J* = 11.1, 9.8 Hz, 1H), 2.98 (dd, *J* = 16.7, 7.9 Hz, 1H), 1.19 (s, 9H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 196.6, 178.0, 136.7, 133.4, 128.7, 128.2, 75.7, 71.8, 69.8, 68.8, 40.8, 38.9, 27.4 ppm. HRMS: [M+H]⁺ calcd. For C₁₇H₂₄NO₄⁺ 306.1700, found 306.1701. [α]_D²⁰ 33.35 (*c* = 0.83 in CHCl₃). The enantiomeric ratio was determined by HPLC analysis on Daicel Chiralpak AD-H column [*n*-hexane/*i*-PrOH = 70/30, 1 mL/min], $\lambda = 240$ nm, $t_{major} = 5.51$ min, $t_{minor} = 4.98$ min, **er = 97.5:2.5**. The diastereomeric ratio was determined by ¹H NMR, *dr* >20:1.

G. Other reactions of hemiaminal by desymmetrization:

A glass vial equipped with a magnetic stirring bar was charged with **4** (0.1 mmol, 1.0 equiv), **2f** (0.12 mmol, 1.2 equiv) and **A2** (0.01 mmol, 0.1 equiv) in MTBE (0.5 mL) at 0 °C. The reaction stirred at 0 °C until the material **4** disappeared. After completion of the reaction, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 2.5:1) to afford **5** (22 mg, 67%, 62:38 er) as a white solid.

To the solution of **5** (0.05 mmol, 1.0 equiv) in $CHCl_3$ (0.2 mL), TEA (0.02 mmol, 0.4 equiv) was added at 25 °C. The reaction stirred at 25 °C for about 24 h until the material **5** disappeared. After completion of the reaction, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 3:1) to afford (±)-**6** (10 mg, 62%) as a white solid.

A glass vial equipped with a magnetic stirring bar was charged with **4** (0.1 mmol, 1.0 equiv), **2f** (0.12 mmol, 1.2 equiv) and TsOH (0.01 mmol, 0.1 equiv) in $CHCl_3$ (0.5 mL) at 25 °C. The reaction stirred at 25 °C for about 18 h until the material **4** disappeared. After completion of the reaction, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 3:1) to afford **(±)-7** (13 mg, 40%) as a white solid.

Large scale reaction for synthesis of racemic 5 by filtration:

A glass vial equipped with a magnetic stirring bar was charged with **4** (2 mmol, 1.0 equiv), **2f** (2.4 mmol, 1.2 equiv) and DPP (0.02 mmol, 0.01 equiv) in MTBE (2 mL) at 25 °C and stirred until the material **4** disappeared. After completion of the reaction, the reaction mixture was purified by filtration to afford **(±)-5** (414 mg, 63%) as a white solid.

H. Optimization of oxa-Michael reaction:

All reactions were carried out using **5** (0.1 mmol, 1.0 equiv), cat. (0.02 mmol, 0.2 equiv) in $CHCl_3$ (0.5 mL). After workup, the mixture was purified by column chromatography on

silica gel (petroleum ether/ethyl acetate = 3:1) to afford product **6** and **7** as white solids for HPLC analysis.

When **B3** and **B4** were used as the catalysts for the reaction, the amount of compound **7** is trace and **5** could be recycled with excellent stereoselectivity. And the absolute configurations of chiral **5**, **6** and **7** were confirmed by chemical correlation and reported literature.^[9]

0	Ph OH	B1 (20 r sol., add.	nol%) , 25 °C		, N + O +	0	H N O
	(±)-5			6 yield: 49 er: 81:1	9% 9	7 yield: 37 er: 95:	% 5
entry ^[a]	Add.	Sol.	yield of 6 (%) ^[b]	er of 6 ^[c]	yield of 7 (%) ^[b]	er of 7 [c]	dr(6/7) ^[d]
1	-	DCM	54	77:23	25	83:17	>20:1/>20:1
2	-	DCE	45	83:17	33	94:6	>20:1/>20:1
3	-	CHCl ₃	49	81:19	37	95:5	>20:1/>20:1
4	-	toluene	-	-	NR	-	-
5	-	CH ₃ CN	trace	-	trace	-	-
6	-	THF	trace	-	trace	-	-
7	-	EA	-	-	NR	-	-
8	-	MTBE	-	-	NR	-	-
9	-	Et ₂ O	-	-	NR	-	-
10	-	1,4-dioxane	-	-	NR	-	-
11	HFIP (0.8 equiv)	CHCl ₃	44	70:30	25	70:30	>20:1/>20:1

Table S5. Screening of other conditions
12	4 Å MS	СИСІ	20	02.17	10	02.7	<u>20.1/20.1</u>
	(10 mg)	CHCI3	30	03:17	19	95:7	~20.1/~20:1

[*a*] Unless otherwise specified, all reactions were carried out using (±)-5 (0.1 mmol, 1.0 equiv), **B1** (0.02 mmol, 0.2 equiv) in solvent (0.5 mL) with additive at 25 °C. After workup, the mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 3:1) to afford product **6** and **7** as white solids. [*b*] Isolated yield of product. [*c*] Determined by HPLC analyses of isolated compounds on chiral stationary phases. [*d*] Determined by ¹H NMR.

I. Determination of absolute configurations of 6 and 7:

To the solution of (±)-5 (0.1 mmol, 1.0 equiv) in MTBE (0.5 mL), phosphoric acid A2 (10 mol%) was added at 25 °C. Then the reaction stirred at 50 °C until the material 5 consumed completely for about 48 h. The mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 3:1) to afford product *ent*-7 as a white solid (16 mg, 50%, 88:12 er). The absolute configuration of *ent*-7 was confirmed by analyzed. The relative configuration of *ent*-7 was confirmed by NOESY (H¹-H², Ph-H²) and according to the reported reference: similar reaction without amide catalyzed by same catalyst **A2** (*J. Am. Chem. Soc.* **2010**, *132*, 4056-4057)^[9], the absolute configuration.

To the solution of (\pm) -**5** (0.1 mmol, 1.0 equiv) in MTBE (0.5 mL), **B2** (10 mol%) was added at 25 °C. Then the reaction stirred at 25 °C for about 3 d. The mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 3:1) to afford

product *ent-6* a white solid (20 mg, 61%, 75:25 er). And **5** was recyclized in 18% yield with 98:2 er. The relative configuration of *ent-6* was confirmed by NOESY (H¹-H², Ph-H²). The absolute configuration of *ent-6* was confirmed according to the configuration of **5**.

According to the absolute configuration of *ent-6* and *ent-7*, the absolute configuration of **6** and **7** could be confirmed.

J. The characterization data of 5-7:

^{Pn} ⁵ ^{OH} ^O ^I ^H NMR (400 MHz, CDCl₃) δ 7.47 – 7.42 (m, 2H), 7.40 – 7.32 (m, 3H), 6.88 – 6.78 (m, 2H), 6.67 (d, *J* = 7.4 Hz, 1H), 6.45 – 6.38 (m, 2H), 5.54 (dt, *J* = 7.4, 4.5 Hz, 1H), 3.69 (d, *J* = 4.4 Hz, 2H), 1.23 (s, 9H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 185.2, 179.8, 149.5, 149.3, 137.8, 130.2, 130.1, 129.0, 128.6, 125.6, 76.4, 73.3, 66.5, 38.8, 27.4 ppm. HRMS: [M+H]⁺ calcd. For C₁₉H₂₄NO₄⁺ 330.1700, found 330.1694.

Catalyzed by B3: $[\alpha]_{D}^{20}$ 26.50 (c = 0.25 in CHCl₃). The enantiomeric ratio was determined by HPLC analysis on Daicel Chiralpak IA column [n-hexane/i-PrOH = 80/20, 1 mL/min], λ = 230 nm, t_{major} = 5.29 min, t_{minor} = 5.80 min, **er = 98:2**. The diastereomeric ratio was determined by NMR dr > 20:1.

The solvent of racemic **5** (0.1 mmol, 1.0 equiv) was added **B1** (0.02 mmol, 0.2 equiv) in solvent (0.5 mL) at 25 °C. After workup, the mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 3:1) to afford product **6** and **7** as white solids.

6 was obtained as a white solid 16 mg in 49% yield after column chromatography on silica gel (petroleum ether/ethyl acetate = 2.5/1). ¹H NMR (400 MHz, CDCl₃) δ 7.53 – 7.37 (m, 5H), 7.05 (d, *J* = 8.4 Hz, 1H), 6.75 (dd, *J* = 10.4, 2.8 Hz, 1H), 6.53 (dd, *J* = 10.4, 1.0 Hz, 1H), 5.54 (dd, *J* = 8.3, 2.4 Hz, 1H), 4.38 – 4.20 (m, 2H), 3.82 (d, *J* = 12.2 Hz, 1H), 2.59 – 2.38 (m, 2H), 1.31 (s, 9H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 195.3, 178.0, 146.5, 138.1, 134.0, 129.1, 129.0, 126.2, 77.3, 72.3, 72.1, 65.0, 40.1, 39.1, 27.6 ppm. HRMS: [M+H]⁺ *calcd*. For C₁₉H₂₄NO₄⁺ 330.1700, found 330.1702. [α]_D²⁰ -10.19 (*c* = 0.71 in CHCl₃). The enantiomeric ratio was determined by HPLC analysis on Daicel Chiralpak IA column [*n*-hexane/*i*-PrOH = 65/35, 1 mL/min], λ = 210 nm, *t_{major}* = 6.67 min, *t_{minor}* = 5.40 min, **er** = 83: 17. The diastereomeric ratio was determined by NMR *dr* >20:1.

Two provides the solid 12 mg in 37% yield after column chromatography on silica gel (petroleum ether/ethyl acetate = 3/1). ¹H NMR (400 MHz, CDCl₃) δ 7.59 – 7.50 (m, 2H), 7.47 – 7.33 (m, 3H), 6.75 (dd, *J* = 10.4, 2.8 Hz, 1H), 6.50 (dd, *J* = 10.4, 1.1 Hz, 1H), 5.90 (d, *J* = 8.9 Hz, 1H), 5.61 (ddd, *J* = 10.0, 8.9, 2.8 Hz, 1H), 4.28 (q, *J* = 3.0 Hz, 1H), 3.97 (dd, *J* = 11.4, 2.8 Hz, 1H), 3.63 (dd, *J* = 11.4, 10.0 Hz, 1H), 2.61 – 2.38 (m, 2H), 1.21 (s, 9H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 196.3, 178.4, 148.1, 137.7, 133.3, 129.0, 128.8, 126.8, 79.5, 75.9, 75.6, 65.3, 40.9, 38.9, 27.4 ppm. HRMS: [M+H]⁺ calcd. For C₁₉H₂₄NO₄⁺ 330.1700, found 330.1701. [α]_D²⁰ -98.88 (*c* = 0.46 in CHCl₃). The enantiomeric ratio was determined by HPLC analysis on Daicel Chiralpak IC column [*n*-hexane/*i*-PrOH = 65/35, 1 mL/min], λ = 205 nm, t_{major} = 6.35 min, t_{minor} = 11.27 min, **er = 95:5**. The diastereomeric ratio was determined by NMR *dr* >20:1.

K. Control experiments:

To gain further insight into the reaction mechanism, extensive control experiments were carried out as followed.

(1) The reaction of 1a and 2f with 4 Å MS as additive to identify the

importance of H₂O.

To the solution of (*E*)-7-oxo-7-phenylhept-5-enal **1a** (0.1 mmol, 1.0 equiv), amide **2f** (0.12 mmol, 1.2 equiv) in MTBE (0.5 mL) with phosphoric acid **A2** (10 mol%), 4 Å MS (10 mg) was added at 0 °C. After stirred at 0 °C for 7 d, the product **3af** was obtained in 20% yield with 90:10 er. Both yield and stereoselectivity of **3af** reduced obviously (yield: 20% vs 59%, 90:10 vs 95:5 er; contrast to reaction without 4 Å MS). When increase the amount of 4 Å MS to 20 mg, no reaction proceeded even moved to 25 °C.

(2) The reaction of 1a and 2f with MeOH as additive to identify the N-

To the solution of (*E*)-7-oxo-7-phenylhept-5-enal **1a** (0.05 mmol, 1.0 equiv) and amide **2f** (0.06 mmol, 1.2 equiv) in MTBE (0.2 mL) with **A2** (10 mol%), MeOH (1.0 equiv) was added at 25 °C. After completion of the reaction (about 24 h), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 3:1). Acyclic aminal **8** was isolated as a colorless oil (9 mg, 50%) without generation of cyclic **3af**,

which suggested that the formation of N-acyliminium might be involved in the reaction process.

8: ¹H NMR (400 MHz, CDCl₃) δ 7.93 (dd, *J* = 8.3, 1.4 Hz, 2H), 7.58 – 7.54 (m, 1H), 7.47 (t, *J* = 7.7 Hz, 2H), 7.03 (dt, *J* = 15.4, 6.8 Hz, 1H), 6.89 (dt, *J* = 15.3, 1.4 Hz, 1H), 5.71 (d, *J* = 9.6 Hz, 1H), 5.17 (dt, *J* = 10.0, 6.2 Hz, 1H), 3.32 (s, 3H), 2.40 – 2.30 (m, 2H), 1.74 – 1.56 (m, 4H), 1.23 (s, 9H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 190.8, 178.8, 148.9, 137.9, 132.7, 128.5, 128.2, 126.4, 80.8, 55.8, 35.2, 32.3, 27.6, 27.4, 23.6 ppm. HRMS: [M+H]⁺ calcd. For C₁₉H₂₈NO₃⁺ 318.2064, found 318.2063. The diastereomeric ratio was determined by NMR *dr* >20:1.

(3) The reaction of hemiaminal (±)-9 and amide 2f: an attempt to identify the dynamic dynamic resolution and the importance of H₂O.

The racemic hemiaminal **9** was prepared according to the procedure in known literature.^[12] The mixture of **9** and **2f** was obtained in the ratio of 1:3 purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 2:1).

Figure S1. the mixture of (±)-9 and 2f in the ratio of 1:3

The solvent of mixture (±)-9 (0.1 mmol, 1.0 equiv) and 2f (1:3) in MTBE (0.5 mL) was added A2 (10 mol%) at 0 °C. After the reaction completion, the reaction was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 3:1) to afford 3af in 53% yield with 93.5:6.5 er. Meanwhile, with the addition of 4 Å MS (20 mg), the starting (±)-9 disappeared, but neither product 3af or material (±)-9 was detected. That means hemiaminal (±)-9 can't return to material 1a.

(4) The reaction of hemiaminal (±)-9 and amide 2f: an attempt to identify

(*R*)-I undergoes rapid conversion to II, and then (*S*)-I is formed.

The solvent of mixture (±)-9 (0.1 mmol, 1.0 equiv) and 2f (1:3) in MTBE (0.5 mL) was added H_2O^{18} (10.0 equiv) and A2 (10 mol%) at 0 °C. After the reaction completion, the reaction was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 3:1) to afford **3af** and O¹⁸ labeled **3af** in 70% yield with 94:6 er, which was detected by ¹³CNMR and LC-MS.

Figure S2. ¹³C NMR of O^{16/18} labeled 3af (400 MHz, CDCl₃)

Figure S3. The LC-MS spectrum of O^{16/18} labeled 3af

(5)¹H NMR of the reaction mixture: an attempt to identify the hemiaminal 9

intermediate.

A 4 mL vial was charged with **1a** (0.1 mmol, 1.0 equiv), amide **2f** (0.12 mmol, 1.2 equiv) and **A2** (10 mol%) in CDCl₃ (0.5 mL) at 25 °C. Due to the amount of water in CDCl₃ is trace, the reaction became slow. After stirred at 25 °C for 8 d, the reaction solvent was transferred to the nuclear magnetic tube for crude NMR.

According to the crude NMR for the reaction of **1a** and **2f**, N,O-aminal **3af** generated in single configuration, while no hemiaminal **9** was detected, means that the hemiaminal **9** is unstable under acid condition.

Figure S4. Red: crude NMR of **1a** and **2f** under standard conditions; Green: the ¹H NMR of hemiaminal **9** and **2f**; Blue: the ¹H NMR of product **3af**.

(6) Quenching reaction of 1p and 2f under standard conditions: an attempt to identify the hemiaminal intermediate.

Quench the reaction of **1p** (0.1 mmol, 1.0 equiv) and **2f** (0.12 mmol, 1.2 equiv) after 2 d under standard condition (10 mol% **A2**, 0.5 mL MTBE, 0 °C) by column chromatography on silica gel (petroleum ether/ethyl acetate = 3:1 to 2:1) to afford **10** as a colorless oil (12 mg, 40%, 55.5:44.5 er) and **3pf** as a colorless oil (10 mg, 33%, 97.5:2.5 er). If the reaction stirred at 0 °C for 7 d, hemiaminal **10** could be consumed completely and transformed to **3af** (22 mg, 72 %, 97.5:2.5 er).

10: ¹**H NMR** (500 MHz, CDCl₃) δ 7.96 (d, *J* = 7.6 Hz, 2H), 7.60 – 7.55 (m, 1H), 7.48 (t, *J* = 7.7 Hz, 2H), 7.18 (dt, *J* = 15.5, 2.0 Hz, 1H), 7.03 (dt, *J* = 15.6, 4.2 Hz, 1H), 6.75 (d, *J* = 6.8 Hz, 1H), 5.60 (s, 1H), 5.50 (dt, *J* = 7.5, 3.9 Hz, 1H), 4.43 – 4.33 (m, 2H), 3.77 – 3.65 (m, 2H), 1.22 (s, 9H) ppm. ¹³**C NMR** (101 MHz, CDCl₃) δ 196.6, 178.0, 136.7, 133.4, 128.7, 128.2, 75.7, 71.8, 69.8, 68.8, 40.8, 38.9, 27.4 ppm. **HRMS**: [M+H]⁺ *calcd*. For C₁₇H₂₄NO₄⁺ 306.1700, found 306.1704. The enantiomeric ratio was determined by HPLC analysis on Daicel Chiralpak AD-H column [*n*-hexane/*i*-PrOH = 85/15, 1 mL/min], λ = 250 nm, *t_{major}* = 12.95 min, *t_{minor}* = 13.66 min, **er = 55:45**. The diastereomeric ratio was determined by ¹H NMR, *dr* >20:1.

(7) The reaction of 10 under standard conditions: an attempt to identify the dynamic kinetic resolution

Hemiaminal **10** (12 mg, 0.04 mmol, 1.0 equiv) was redissolved in MTBE (0.16 mL), then **A2** (10 mol%) was added to the solvent at 0 °C. After the reaction finished (**10** was consumed monitored by TLC), the mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 3:1) to afford **3af** as a colorless oil (7 mg, 58%, 96.5:3.5 er). These reactions mean that the hemiaminal **10** was the intermediate with poor enantioselectivity during the tandem reaction.

(8) The reaction of ent-10 in standard condition.

Ent-**10** was obtained in 50% yield with 66:34 er by recrystallization of *ent*-**10** with 58:42 from ether and *n*-hexane. Resubject hemiaminal *ent*-**10** (R:S = 66:34) to the standard

reaction condition for about 7 d. Then **3pf** was obtained in 59% with 96:4 er, which means that *ent*-10 could turn to **10** through imide **II**, and the reaction process is a DKR.

(9) The reaction of 11 and amide 2f under standard conditions to identify the poor stereoselectivity of first step.

To a solvent of **11** (0.1 mmol, 1.0 equiv), amide **2f** (0.12 mmol, 1.2 equiv) was added under standard condition (10 mol% **A2**, 0.2 mL MTBE, 0 °C). After the reaction completion, the mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 3:1) to afford **12** as a colorless oil (18 mg, 59%). ¹**H NMR** (400 MHz, CDCl₃) δ 7.96 (d, *J* = 7.0 Hz, 2H), 7.61 – 7.53 (m, 1H), 7.46 (t, *J* = 7.7 Hz, 2H), 6.72 (d, *J* = 6.7 Hz, 1H), 5.41 (dt, *J* = 7.3, 4.0 Hz, 1H), 3.85 (s, 1H), 3.66 – 3.54 (m, 4H), 3.08 (t, *J* = 7.1 Hz, 2H), 2.07 (p, *J* = 6.7 Hz, 2H), 1.19 (s, 9H) ppm. ¹³**C NMR** (101 MHz, CDCl₃) δ 199.8, 180.1, 136.8, 133.1, 128.6, 128.0, 73.2, 71.8, 70.9, 38.7, 35.0, 27.3, 24.2 ppm. **HRMS**: [M+H]⁺ *calcd*. For C₁₇H₂₆NO₄⁺ 308.1856, found 308.1856. The enantiomeric ratio was determined by HPLC analysis on Daicel Chiralpak AD-H column [*n*-hexane/*i*-PrOH = 90/10, 1 mL/min], λ = 240 nm, *t_{major}* = 17.41 min, *t_{minor}* = 22.52 min, **er** = **58:42**. The diastereomeric ratio was determined by NMR *dr* >20:1.

L. The possible mechanism for asymmetric reaction:

Figure S5. Proposed TS of the reaction

The proposed mechanism of this acid-catalyzed reaction sequence is provided in **Scheme S3**. The reaction of **1a** and **2f** led to hemiaminals **I** and **II** with poor enantioselectivities, which was quite unstable and transformed into N-acetylimine **C** after elimination of H_2O ; the formation of **C** can be evidenced by the reaction with MeOH to access aminal **8**. Under the reaction conditions, the water, which was proved to be crucial for this reaction to occur, will attack **III** to regenerate hemiaminal **I**/**II**. Then, hemiaminal **II** could undergo a subsequent intramolecular oxa-Michael addition from the substrate/catalyst matched chair-like conformation, resulting in **3af** bearing two stereogenic centres with a favorable *cis* configuration. At this stage, hemiaminal **I** was converted into **II** by a dynamic kinetic resolution, where N-acetylimine **III** can be considered as the intermediate. And the transient state of the reaction was shown in **Figure S5**. These two substituents of cycloadducts are bigger groups compared with H group. When they are on the *cis*-orientation, they could be equatorial position in a six-membered oxacycle, enabling weaker 1,3-diaxial interactions.

M. Synthetic transformations:

6-(2-oxo-2-phenylethyl)tetrahydro-2*H*-pyran-2-one 13:

To a solvent of (±)-3aa (32 mg, 0.1 mmol) in CH_2Cl_2 (1.0 mL) with a magnetic rotor was added *m*-CPBA (0.12 mmol, 1.2 equiv) and $BF_3 \cdot Et_2O$ (0.2 mmol, 2.0 equiv) at 25 °C and stirred until the reaction completed (detected by TLC) for about 9 h. The mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 3:1) to afford **13** (18 mg, 83%) as a colorless crystalline solid. ¹H NMR (400 MHz, CDCl₃) δ 7.98 – 7.92 (m, 2H), 7.63 – 7.56 (m, 1H), 7.52 – 7.45 (m, 2H), 4.99 (dddd, *J* = 10.6, 7.2, 5.3, 3.1 Hz, 1H), 3.56 (dd, *J* = 17.3, 5.3 Hz, 1H), 3.19 (dd, *J* = 17.3, 7.2 Hz, 1H), 2.66 (dtd, *J* = 17.5, 6.4, 1.0 Hz, 1H), 2.50 (dt, *J* = 17.5, 7.9 Hz, 1H), 2.17 (dtdd, *J* = 13.8, 4.7, 3.1, 1.0 Hz, 1H), 1.96 (tdd, *J* = 7.9, 7.1, 5.7 Hz, 2H), 1.65 – 1.59 (m, 1H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 196.4, 171.4, 136.6, 133.6, 128.8, 128.1, 76.5, 44.3, 29.3, 27.9, 18.4 ppm. HRMS: [M+H]⁺ calcd. For C₁₃H₁₅O₃⁺ 219.1016, found 219.1017. The diastereomeric ratio was determined by NMR *dr* >20:1.

phenyl 2-(6-benzamidotetrahydro-2*H*-pyran-2-yl)acetate (±)-14:

To a solvent of (±)-3aa (32 mg, 0.1 mmol) in CH_2Cl_2 (1.0 mL) with a magnetic rotor was added *m*-CPBA (0.3mmol, 3.0 equiv), Na_2HPO_4 (0.3 mmol, 3.0 equiv) and TFA (0.4 mmol, 4.0 equiv) at 25 °C and stirred until the reaction completed (detected by TLC) for about 3 d. The mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 3:1) to afford (±)-14 (26 mg, 77%) as a colorless oil. ¹H NMR (400

MHz, CDCl₃) δ 7.80 (d, *J* = 8.4 Hz, 2H), 7.54 – 7.47 (m, 1H), 7.43 (dd, *J* = 8.2, 6.7 Hz, 2H), 7.38 – 7.31 (m, 2H), 7.23 – 7.16 (m, 1H), 7.09 (d, *J* = 6.6 Hz, 2H), 6.60 (d, *J* = 9.0 Hz, 1H), 5.45 (ddd, *J* = 10.8, 9.0, 2.1 Hz, 1H), 4.23 – 4.08 (m, 1H), 2.82 (dd, *J* = 14.9, 7.3 Hz, 1H), 2.72 (dd, *J* = 14.9, 6.1 Hz, 1H), 1.96 (ddt, *J* = 16.6, 11.9, 2.7 Hz, 2H), 1.80 – 1.71 (m, 2H), 1.54 – 1.41 (m, 1H), 1.41 – 1.27 (m, 1H) ppm. ¹³**C NMR** (101 MHz, CDCl₃) δ 169.5, 166.6, 150.7, 134.0, 131.9, 129.4, 128.6, 127.1, 125.9, 121.7, 78.8, 74.0, 41.5, 31.2, 30.3, 22.7 ppm. **HRMS**: [M+H]⁺ *calcd*. For C₂₀H₂₂NO₄⁺ 340.1543, found 340.1550. The diastereomeric ratio was determined by ¹H NMR, *dr* >20:1.

phenyl 2-(6-oxotetrahydro-2*H*-pyran-2-yl)acetate 15:

To a solvent of (±)-3aa (32 mg, 0.1 mmol) in CH₂Cl₂ (1.0 mL) with a magnetic rotor was added *m*-CPBA (1.0mmol, 10.0 equiv) and BF₃·Et₂O (0.2 mmol, 2.0 equiv) at 25 °C and stirred until the reaction completed (detected by TLC) for about 36 h. The mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 3:1) to afford **15** (18 mg, 77%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.36 (m, 2H), 7.26 – 7.22 (m, 1H), 7.13 – 7.08 (m, 2H), 4.86 (dddd, *J* = 11.1, 6.8, 6.0, 3.2 Hz, 1H), 3.03 (dd, *J* = 16.3, 6.9 Hz, 1H), 2.86 (dd, *J* = 16.3, 6.0 Hz, 1H), 2.65 (dddd, *J* = 17.8, 6.7, 5.4, 1.1 Hz, 1H), 2.51 (ddd, *J* = 17.7, 8.7, 7.2 Hz, 1H), 2.15 – 2.07 (m, 1H), 2.05 – 1.88 (m, 2H), 1.78 – 1.63 (m, 1H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 170.8, 168.4, 150.4, 129.5, 126.1, 121.5, 76.2, 40.6, 29.3, 27.5, 18.4 ppm. HRMS: [M+H]⁺ calcd. For C₁₃H₁₅O₄⁺ 235.0965, found 235.0964. The diastereomeric ratio was determined by NMR *dr* >20:1.

To a solvent of **(±)-3aa** (48 mg, 0.15 mmol) in MeOH (1.0 mL) with a magnetic rotor was added NaBH₄ (0.23 mmol, 1.5 equiv) at 0 °C and stirred for 0.5 h. After the reaction completed (detected by TLC for about 2 h), the reaction mixture was extracted with ethyl acetate (3 x 3mL) and water (3 x 3mL). Combined the organic layer, dried with Na₂SO₄, filtered and the solvent was removed under vacuum. The mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 2:1) to afford **S6** (46 mg, 94%). To a solvent of **S6** in dry CH₂Cl₂ (0.5 mL) was added TsOH (4.0 equiv) at 25 °C. After the reaction completed (detected by TLC), the mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 25:1) to afford **(±)-16** (12 mg, 39% for 2 steps) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.31 (m, 8H), 7.28 – 7.22 (m, 2H), 5.18 (dd, *J* = 11.5, 1.8 Hz, 2H), 4.77 (d, *J* = 3.7 Hz, 2H), 4.50 (tt, *J* = 11.4, 1.9 Hz, 2H), 2.04 – 1.88 (m, 2H), 1.82 (ddd, *J* = 14.5, 11.5, 1.5 Hz, 2H), 1.75 – 1.55 (m, 10H), 1.38 – 1.24 (m, 2H). ppm. ¹³C NMR (101 MHz, CDCl₃) δ 143.8, 128.3, 127.1, 126.5, 95.5, 74.1, 66.3, 45.3, 31.3, 30.0, 19.2 ppm. HRMS: [M+Na]⁺ calcd. For C₂₆H₃₂NaO₄⁺ 431.2193, found 431.2180. The diastereomeric ratio was determined by NMR *dr* >20:1.

(*R*)-4-benzyl-3-((2*R*,6*S*)-6-((*E*)-2-(hydroxyimino)-2-phenylethyl)tetrahydro-2*H*-pyran-2-yl)oxazolidin-2-one 17:

To a solvent of **3as** (20 mg, 0.05 mmol) in EtOH (0.5 mL) with a magnetic rotor was added NaHCO₃ (0.075 mmol, 1.5 equiv) and NH₂OH·HCl (0.075 mmol, 1.5 equiv) at room

temperature. Then the reaction stirred at 80 °C for 12 h. The mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 2:1) to afford **17** (15 mg, 76%) as a white solid. ¹**H NMR** (400 MHz, CDCl₃) δ 8.14 (s, 1H), 7.66 – 7.60 (m, 2H), 7.35 – 7.27 (m, 5H), 7.26 – 7.21 (m, 1H), 7.13 – 7.08 (m, 2H), 4.98 (dd, *J* = 10.4, 2.9 Hz, 1H), 4.08 – 3.97 (m, 2H), 3.97 – 3.87 (m, 2H), 3.20 (dd, *J* = 14.1, 3.5 Hz, 1H), 3.14 (dd, *J* = 13.3, 5.8 Hz, 1H), 3.02 (dd, *J* = 13.3, 7.1 Hz, 1H), 2.44 (dd, *J* = 14.1, 9.7 Hz, 1H), 2.01 – 1.91 (m, 1H), 1.81 – 1.66 (m, 3H), 1.59 (dt, *J* = 13.0, 4.1 Hz, 1H), 1.36 – 1.26 (m, 1H) ppm. ¹³**C NMR** (101 MHz, CDCl₃) δ 157.1, 136.4, 136.3, 129.2, 129.1, 128.8, 128.4, 127.0, 126.7, 82.7, 75.4, 66.7, 54.4, 39.8, 32.8, 30.6, 28.4, 22.9 ppm. **HRMS**: [M+H]⁺ *calcd*. For C₂₃H₂₇N₂O₄⁺ 395.1965, found 395.1976. **[α]**_D²⁰ -12.75 (*c* = 0.54 in CHCl₃). The diastereomeric ratio was determined by NMR *dr* >20:1.

(*R*)-4-benzyl-3-((2*R*,6*S*)-6-((*S*)-2-hydroxy-2-phenylethyl)tetrahydro-2*H*-pyran-2yl)oxazolidin-2-one 18 and (*R*)-4-benzyl-3-((2*R*,6*S*)-6-((*R*)-2-hydroxy-2phenylethyl)tetrahydro-2*H*-pyran-2-yl)oxazolidin-2-one 19:

To a solvent of **3as** (76 mg, 0.2 mmol) in MeOH (1.0 mL) with a magnetic rotor was added NaBH₄ (0.3 mmol, 1.5 equiv) at 0 °C and stirred for 1 h. After the reaction completed (detected by TLC), the reaction mixture was extracted with ethyl acetate (3 x 3mL) and water (3 x 3mL). Combined the organic layer, dried with Na₂SO₄, filtered and the solvent was removed under vacuum. The mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 2:1) to afford **18** (42 mg, 55%) as a colorless oil and **19** (14 mg, 18%) as a colorless oil for NMR.

18: ¹H NMR (400 MHz, CDCl₃) δ 7.39 (d, *J* = 7.2 Hz, 2H), 7.34 (t, *J* = 7.4 Hz, 4H), 7.27 (t, *J* = 6.6 Hz, 2H), 7.21 (d, *J* = 7.6 Hz, 2H), 5.13 (dd, *J* = 10.5, 2.8 Hz, 1H), 4.99 (dd, *J* = 8.8, 4.2 Hz, 1H), 4.19 - 4.02 (m, 3H), 3.79 - 3.68 (m, 1H), 3.47 (dd, *J* = 14.0, 3.5 Hz, 1H), 3.40 (s, 1H),

2.82 – 2.66 (m, 1H), 2.08 – 1.94 (m, 2H), 1.80 (tq, J = 9.3, 2.7 Hz, 3H), 1.66 (dt, J = 12.9, 4.0 Hz, 1H), 1.62 – 1.54 (m, 1H), 1.34 – 1.23 (m, 1H) ppm. ¹³**C NMR** (101 MHz, CDCl₃) δ 157.2, 144.3, 136.1, 129.2, 129.0, 128.4, 127.4, 127.2, 125.9, 82.5, 78.1, 73.4, 66.8, 54.6, 45.3, 40.4, 31.0, 28.3, 22.8 ppm. **HRMS**: [M+H]⁺ *calcd*. For C₂₃H₂₈NO₄⁺ 382.2013, found 382.2017. [α]_D²⁰ -26.84 (c = 1.83 in CHCl₃). The diastereomeric ratio was determined by NMR dr > 20:1.

19: ¹**H NMR** (400 MHz, CDCl₃) δ 7.40 – 7.31 (m, 6H), 7.29 – 7.26 (m, 2H), 7.24 – 7.19 (m, 2H), 5.08 (dd, *J* = 9.9, 3.4 Hz, 1H), 5.02 (dd, *J* = 7.6, 3.3 Hz, 1H), 4.12 (qq, *J* = 7.7, 3.6 Hz, 3H), 3.76 (ddt, *J* = 11.5, 9.0, 2.6 Hz, 1H), 3.42 (dd, *J* = 14.3, 3.3 Hz, 1H), 2.87 – 2.60 (m, 1H), 1.99 (dt, *J* = 14.6, 4.7 Hz, 2H), 1.90 (ddd, *J* = 14.4, 7.6, 2.9 Hz, 1H), 1.85 – 1.75 (m, 2H), 1.67 (ddd, *J* = 21.0, 10.4, 4.2 Hz, 2H), 1.58 – 1.51 (m, 1H), 1.35 (ddd, *J* = 13.3, 11.4, 4.2 Hz, 1H) ppm. ¹³**C NMR** (101 MHz, CDCl₃) δ 157.3, 144.6, 136.1, 129.2, 128.9, 128.4, 127.1, 127.1, 125.7, 82.5, 75.4, 71.2, 66.7, 54.6, 44.4, 40.2, 30.7, 28.4, 22.9 ppm. **HRMS**: [M+H]⁺ *calcd*. For C₂₃H₂₈NO₄⁺ 382.2013, found 382.2015. [α]_D²⁰ 16.06 (*c* = 0.58 in CHCl₃). The diastereomeric ratio was determined by NMR *dr* >20:1.

To a solvent of **19** (14 mg, 1.0 equiv) in dry CH_2Cl_2 (0.5 mL) was added TsOH (4.0 equiv) at 25 °C. After the reaction completed (detected by TLC for 4 h), the mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 25:1) to afford **16** (4 mg, 53%) as a white solid. **[\alpha]**_D²⁰ 135.18 (c = 0.42 in CHCl₃). The enantiomeric ratio was determined by HPLC analysis on Daicel Chiralpak IC column [n-hexane/i-PrOH = 90/10, 1 mL/min], λ = 210 nm, t_{major} = 3.60 min, t_{minor} = 4.22 min, **er**: >99.9:0.1. The diastereomeric ratio was determined by ¹H NMR, dr >20:1.

phenyl 2-((2R,6S)-6-pivalamidotetrahydro-2H-pyran-2-yl)acetate 20:

To a solvent of **3af** (30 mg, 0.1 mmol) in CH₂Cl₂ (1.0 mL) with a magnetic rotor was added *m*-CPBA (0.3mmol, 3.0 equiv), Na₂HPO₄ (0.3 mmol, 3.0 equiv) and TFA (0.4 mmol, 4.0 equiv) at 25 °C and stirred until the reaction completed (detected by TLC) for about 3 d. The mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 3:1) to afford **20** (23 mg, 72%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.36 (t, *J* = 7.9 Hz, 2H), 7.24 – 7.18 (m, 1H), 7.07 (d, *J* = 7.5 Hz, 2H), 6.04 (d, *J* = 8.8 Hz, 1H), 5.23 (ddd, *J* = 11.1, 8.9, 2.3 Hz, 1H), 4.10 (dddd, *J* = 11.3, 7.8, 6.0, 2.0 Hz, 1H), 2.79 (dd, *J* = 14.7, 7.5 Hz, 1H), 2.70 (dd, *J* = 14.7, 6.1 Hz, 1H), 1.94 (ddd, *J* = 11.0, 4.6, 2.1 Hz, 1H), 1.85 – 1.76 (m, 2H), 1.69 (td, *J* = 9.2, 4.6 Hz, 1H), 1.39 – 1.26 (m, 2H), 1.20 (s, 9H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 177.8, 169.6, 150.7, 129.4, 125.8, 121.7, 78.5, 74.0, 41.6, 38.7, 31.0, 30.3, 27.4, 22.7 ppm. HRMS: [M+H]⁺ calcd. For C₁₈H₂₆NO₄⁺ 320.1856, found 320.1866. [**α**]_D²⁰ 10.55 (*c* = 1.96 in CHCl₃). The enantiomeric ratio was determined by HPLC analysis on Daicel Chiralpak IC column [*n*-hexane/*i*-PrOH = 70/30, 1 mL/min], λ = 205 nm, *t_{major}* = 11.67 min, *t_{minor}* = 11.08 min, **er** = **93:7**. The diastereomeric ratio was determined by ¹H NMR, *dr* >20:1.

N. Large scale reaction:

N1: Large scale for the synthesis of racemic 3aa:

A glass vial equipped with a magnetic stirring bar was charged with (*E*)-7-oxo-7phenylhept-5-enal **1a** (1.0 mmol or 1.5 mmol, 1.0 equiv), TsOH (0.1 equiv) and amide **2a** (1.2 equiv) in CHCl₃ (0.2 M) and the resultant solution was stirred at 25 °C until the material **1a** disappeared. After completion of the reaction, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 3:1) to afford **(±)-3aa** as a white solid (258 mg, 80% for 1.0 mmol; 402 mg, 83% for 1.5 mmol).

N2: Large scale for the synthesis of 3as:

A glass vial equipped with a magnetic stirring bar was charged with (*E*)-7-oxo-7phenylhept-5-enal **1a** (1.0 mmol, 1.0 equiv), TsOH (0.1 equiv) and amide **2s** (1.2 equiv) in CHCl₃ (5 mL) and the resultant solution was stirred at 0 °C until the material **1a** disappeared. After completion of the reaction, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 2:1) to afford **3as** as a colorless oil (258 mg, 68%, >99.9:0.1 er).

N3: Large scale for the synthesis of 3af:

A glass vial equipped with a magnetic stirring bar was charged with (*E*)-7-oxo-7phenylhept-5-enal **1a** (1.0 mmol, 1.0 equiv), **A2** (10 mol%.) and amide **2f** (1.2 equiv) in CHCl₃ (5 mL) and the resultant solution was stirred at 0 °C until the material **1a** disappeared. After completion of the reaction, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 3:1) to afford **3af** as a colorless oil (230 mg, 76%, 93.5:6.5 er).

O. Failed substrates:

O1. Diamides compound:

Diamides compound was obtained when aldehyde **1q-1u** was used as material to react with amide **2f** catalyzed by TsOH (10 mol%) or **A2**(10 mol%).

A glass vial equipped with a magnetic stirring bar was charged with **1q** (0.1 mmol, 1.0 equiv), TsOH (1.7 mg, 0.1 equiv) and amide **2f** (0.12 mmol, 1.2 equiv) in CHCl₃ (0.5 mL) and the resultant solution was stirred at 25 °C until the material **1q** disappeared. After completion of the reaction, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 3:1) to afford **21a** (16 mg, 67%) as a white solid. ¹H **NMR** (400 MHz, CDCl₃) δ 7.62 (dt, *J* = 6.9, 1.5 Hz, 2H), 7.55 – 7.46 (m, 1H), 7.45 – 7.37 (m, 2H), 6.97 (d, *J* = 7.7 Hz, 2H), 6.23 (tq, *J* = 7.3, 1.3 Hz, 1H), 5.05 (p, *J* = 7.6 Hz, 1H), 2.29 (q, *J* = 7.4 Hz, 2H), 1.99 (dd, *J* = 8.8, 6.9 Hz, 5H), 1.42 (tt, *J* = 10.3, 6.5 Hz, 2H), 1.15 (s, 18H) ppm. ¹³C **NMR** (101 MHz, CDCl₃) δ 198.9, 179.2, 145.4, 138.6, 137.0, 131.4, 129.3, 128.1, 58.5, 38.8, 33.1, 28.5, 27.3, 25.3, 12.6 ppm. **HRMS**: [M+H]⁺ *calcd*. For C₂₄H₃₇N₂O₃⁺ 401.2799, found 401.2791. The diastereomeric ratio was determined by NMR *dr* >20:1.

A glass vial equipped with a magnetic stirring bar was charged with 1r (0.1 mmol, 1.0 equiv), TsOH (1.7 mg, 0.1 equiv) and amide 2f (0.12 mmol, 1.2 equiv) in CHCl₃ (0.5 mL) and the resultant solution was stirred at 25 °C until the material 1r disappeared. After completion of the reaction, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 2:1) to afford 21b (10 mg, 45%) as a white solid. The product 32b also could be obtained (8 mg, 36%) catalyzed by A2 (10 mol%)

for about 7 d. ¹**H NMR** (500 MHz, CDCl₃) δ 7.76 – 7.72 (m, 2H), 7.57 – 7.52 (m, 1H), 7.45 (t, *J* = 7.8 Hz, 2H), 7.05 (d, *J* = 7.5 Hz, 2H), 5.95 (d, *J* = 1.1 Hz, 1H), 5.72 (s, 1H), 5.13 (p, *J* = 7.5 Hz, 1H), 2.48 (t, *J* = 7.5 Hz, 2H), 2.17 (q, *J* = 7.5 Hz, 2H), 1.19 (s, 18H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 198.5, 179.2, 146.6, 137.6, 132.3, 129.6, 128.3, 127.8, 58.2, 38.9, 32.5, 28.5, 27.4 ppm. **HRMS**: [M+H]⁺ *calcd*. For C₂₂H₃₃N₂O₃⁺ 373.2486, found 373.2488. The diastereomeric ratio was determined by NMR *dr* >20:1.

A glass vial equipped with a magnetic stirring bar was charged with **1s** (0.1 mmol, 1.0 equiv), TsOH (1.7 mg, 0.1 equiv) and amide **2f** (0.12 mmol, 1.2 equiv) in CHCl₃ (0.5 mL) and the resultant solution was stirred at 25 °C until the material **1s** disappeared. After completion of the reaction, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 3:1) to afford **21c** (10 mg, 47%) as a white solid. **¹H NMR** (500 MHz, CDCl₃) δ 6.90 (p, *J* = 7.7, 6.9 Hz, 3H), 5.80 (d, *J* = 15.7 Hz, 1H), 5.05 (p, *J* = 7.7 Hz, 1H), 4.17 (q, *J* = 7.1 Hz, 2H), 2.21 (q, *J* = 7.4 Hz, 2H), 1.97 (q, *J* = 7.8 Hz, 2H), 1.45 (p, *J* = 7.5 Hz, 2H), 1.28 (t, *J* = 7.1 Hz, 3H), 1.15 (t, *J* = 1.3 Hz, 18H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 179.2, 166.6, 148.3, 121.8, 60.2, 58.4, 38.8, 32.8, 31.5, 27.3, 24.7, 14.3 ppm. **HRMS**: [M+H]⁺ calcd. For C₁₉H₃₅N₂O₄⁺ 355.2591, found 355.2591. The diastereomeric ratio was determined by NMR *dr* >20:1.

A glass vial equipped with a magnetic stirring bar was charged with **1t** (0.1 mmol, 1.0 equiv), TsOH (1.7 mg, 0.1 equiv) and amide **2f** (0.12 mmol, 1.2 equiv) in $CHCl_3$ (0.5 mL) and the resultant solution was stirred at 25 °C until the material **1t** disappeared. After

completion of the reaction, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 2.5:1) to afford **21d** (24 mg, 95%) as a white solid. ¹**H NMR** (400 MHz, CDCl₃) δ 7.54 – 7.43 (m, 3H), 7.23 – 7.15 (m, 2H), 6.93 (dd, *J* = 7.7, 2.4 Hz, 2H), 5.04 (p, *J* = 7.6 Hz, 1H), 3.28 (dt, *J* = 7.7, 6.7 Hz, 1H), 2.14 – 1.92 (m, 2H), 1.60 – 1.36 (m, 2H), 1.20 (d, *J* = 6.9 Hz, 3H), 1.14 (s, 9H), 1.13 (s, 9H) ppm. ¹³**C NMR** (101 MHz, CDCl₃) δ 185.1, 179.4, 133.9, 130.7, 129.0, 126.9, 111.9, 111.8, 87.7, 58.2, 41.4, 38.8, 31.4, 31.3, 27.3, 18.8 ppm. **HRMS**: [M+H]⁺ *calcd*. For C₂₅H₃₅N₄O₂⁺ 423.2755, found 423.2756. The diastereomeric ratio was determined by NMR *dr* >20:1.

A glass vial equipped with a magnetic stirring bar was charged with 1u (0.1 mmol, 1.0 equiv), TsOH (1.7 mg, 0.1 equiv) and amide 2f (0.12 mmol, 1.2 equiv) in CHCl₃ (0.5 mL) and the resultant solution was stirred at 25 °C until the material 1u disappeared. After completion of the reaction, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 3:1) to afford 21e (14 mg, 32%) as a white solid and 21e' (10 mg, 30%) as a yellow solid.

21e: ¹**H NMR** (400 MHz, CDCl₃) δ 8.14 (d, *J* = 15.5 Hz, 1H), 8.07 – 8.01 (m, 2H), 7.73 (dd, *J* = 7.5, 1.7 Hz, 1H), 7.62 – 7.56 (m, 1H), 7.56 – 7.46 (m, 3H), 7.37 – 7.27 (m, 2H), 7.25 (dd, *J* = 7.3, 1.7 Hz, 1H), 6.88 (d, *J* = 7.6 Hz, 2H), 5.30 (p, *J* = 7.6 Hz, 1H), 3.47 (d, *J* = 7.6 Hz, 2H), 1.09 (s, 18H) ppm. ¹³**C NMR** (101 MHz, CDCl₃) δ 190.3, 179.1, 141.5, 138.1, 137.6, 134.2, 132.9, 131.6, 130.2, 128.7, 128.6, 127.5, 126.8, 124.2, 59.2, 38.8, 36.7, 27.3 ppm. **HRMS**: [M+H]⁺ *calcd*. For C₂₇H₃₅N₂O₃⁺ 435.2642, found 435.2648. The diastereomeric ratio was determined by NMR *dr* >20:1.

21e': ¹**H NMR** (400 MHz, CDCl₃) δ 8.18 (d, *J* = 15.4 Hz, 1H), 8.07 – 8.02 (m, 2H), 7.67 (dd, *J* = 7.9, 1.3 Hz, 1H), 7.62 – 7.58 (m, 1H), 7.56 – 7.44 (m, 6H), 7.38 – 7.33 (m, 1H), 7.29 – 7.22 (m, 1H), 6.52 (d, *J* = 14.3 Hz, 1H), 1.30 (s, 9H) ppm. ¹³**C NMR** (101 MHz, CDCl₃) δ 190.1, 175.9, 142.3, 137.0, 133.0, 132.3, 130.6, 128.7, 128.5, 126.9, 126.9, 126.1, 125.7, 123.3, 108.9, 38.9, 27.4 ppm. **HRMS**: [M+H]⁺ *calcd*. For C₂₂H₂₄NO₂⁺ 334.1802, found 334.1812. The diastereomeric ratio was determined by NMR *dr* >20:1.

O2. Amides with no products formed:

Scheme S4. amides with larger steric hindrance

Compared to amides **2d**, **2m**, **2n** and **2p**, the reactions of **1a** and amides with larger steric hindrance all failed, that **1a** disappeared and amides remained without product (**Scheme S4**).

Scheme S5. amides with more acidic N-H

Compared to amides **2a**, **2e**, **2d** and **2s**, the reactions of **1a** and amides with more acidic N-H all failed, that **1a** disappeared and amides remained without product (**Scheme S5**).

P. The stability of 1a in present of A2:

A: 1a in CDCl₃ (with 0.1 M PhOCH₃ as internal standard)

A: 1a (15.5 mg) was dissolved in CDCl₃ (0.55 mL) containing PhOCH₃ (0.1 M) as internal standard. The mixture was used for crude NMR to get the purification of **1a** without **A2** after 12 h, 36 h, 60 h at room temperature.

B: To the solution of **1a** (15.5 mg) in $CDCl_3(0.55 \text{ mL})$ containing $PhOCH_3$ (0.1 M) as internal standard, **A2** (10 mol%) was added. The mixture was used for crude NMR to get the purification of **1a** in present of **A2** after 12 h, 36 h, 60 h at room temperature.

Figure S6. Purity of 1a vs. time in CDCl₃.

As shown on Figure S6, the purity of **1a** decreased sharply with **A2** means that **1a** is unstable in present of **A2**. Thus the reaction yield of **1** and **2f** is just moderate.

Q. NMR spectra and HPLC traces:

The ¹H NMR spectrum of (±)-3aa (400 MHz, CDCl₃)

The ¹³C NMR spectrum of (±)-3aa (101 MHz, CDCl₃)

The ¹H NMR spectrum of (±)-3ab (400 MHz, CDCl₃)

The ¹³C NMR spectrum of (±)-3ab (101 MHz, CDCl₃)

The ¹H NMR spectrum of (±)-3ac (400 MHz, CDCl₃)

The ¹H NMR spectrum of (±)-3ad (400 MHz, CDCl₃)

The ¹³C NMR spectrum of (±)-3ad (101 MHz, CDCl₃)

The ¹H NMR spectrum of (±)-3ae (400 MHz, CDCl₃)

The ¹³C NMR spectrum of (±)-3ae (101 MHz, CDCl₃)

The ¹H NMR spectrum of (±)-3af (400 MHz, CDCl₃)

The ¹³C NMR spectrum of (±)-3af (101 MHz, CDCl₃)

The ¹H NMR spectrum of (±)-3ag (500 MHz, CDCl₃)

The ¹³C NMR spectrum of (±)-3ah (101 MHz, CDCl₃)

The ¹H NMR spectrum of (±)-3ai (400 MHz, CDCl₃)

The ¹H NMR spectrum of (±)-3aj (400 MHz, CDCl₃)

The ¹³C NMR spectrum of (±)-3aj (101 MHz, CDCl₃)

The ¹³C NMR spectrum of (±)-3ak (101 MHz, CDCl₃)

The ¹H NMR spectrum of (±)-3al (500 MHz, CDCl₃)

The ¹³C NMR spectrum of (±)-3al (101 MHz, CDCl₃)

The ¹H NMR spectrum of (±)-3am (400 MHz, CDCl₃)

The ¹H NMR spectrum of (±)-3an (400 MHz, CDCl₃)

The ¹³C NMR spectrum of (±)-3an (101 MHz, CDCl₃)

The ¹H NMR spectrum of (±)-3ao (400 MHz, CDCl₃)

The ¹³C NMR spectrum of (±)-3ao (101 MHz, CDCl₃)

The ¹H NMR spectrum of (±)-3ap (400 MHz, CDCl₃)

The ¹³C NMR spectrum of (±)-3ap (101 MHz, CDCl₃)

The ¹H NMR spectrum of 3aq (400 MHz, CDCl₃)

The ¹³C NMR spectrum of 3ar (101 MHz, CDCl₃)

The HPLC of racemic 3ar

Chrom Type: Fixed WL Chromatogram, 240 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1 2	42.700 49.173	2317260 2283024	50.372 49.628	BB BB
		4600284	100.000	

The HPLC of chiral 3ar

Chrom Type: Fixed WL Chromatogram, 240 nm

The ¹H NMR spectrum of 3ar' (400 MHz, CDCl₃)

The HPLC of racemic 3ar'

Chrom Type: Fixed WL Chromatogram, 240 nm

Chrom Type: Fixed WL Chromatogram, 240 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1 2	34.207 37.040	3531903 3482494	50.352 49.648	BB BB
		7014397	100.000	

The HPLC of chiral 3ar'

The ¹H NMR spectrum of 3as(400 MHz, CDCl₃)

The ¹³C NMR spectrum of 3as (101 MHz, CDCl₃)

The HPLC of racemic 3as

Chrom Type: Fixed WL Chromatogram, 205 nm

Chrom Type: Fixed WL Chromatogram, 205 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1	7.673	4667307	50.775	BV
2	8.493	4524830	49.225	VB
		9192137	100.000	

The HPLC of chiral 3as

Chrom Type: Fixed WL Chromatogram, 205 nm

Calculation Me	chod: AREA%		
No.	RT	Area	Area %

1	7.553	2894074	99.952	BB
2	8.700	1398	0.048	BB
		2895472	100.000	

BC

The HPLC of racemic 3af

Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1 2	14.340 19.167	7934122 7912091	50.070 49.930	BB BB
		15846213	100.000	

The HPLC of chiral 3af

Chrom Type: Fixed WL Chromatogram, 240 nm

Chrom Type: Fixed WL Chromatogram, 240 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1 2	15.260 20.480	3126831 161565	95.087 4.913	BB BB
		3288396	100.000	

The ¹H NMR spectrum of 3bf (400 MHz, CDCl₃)

The HPLC of racemic 3bf

Chrom Type: Fixed WL Chromatogram, 260 nm

Chrom Type: Fixed WL Chromatogram, 260 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1 2	27.140 32.787	11926456 11994932	49.857 50.143	BB BB
		23921388	100.000	

The HPLC of chiral 3bf

Chrom Type: Fixed WL Chromatogram, 240 nm

396768

100.000

The ¹H NMR spectrum of 3cf (400 MHz, CDCl₃)

The HPLC of racemic 3cf

Chrom Type: Fixed WL Chromatogram, 240 nm

Chrom Type: Fixed WL Chromatogram, 240 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1	16.007 19.613	3488880 3501107	49.913 50.087	BB
		6989987	100.000	

The HPLC of chiral 3cf

The ¹H NMR spectrum of 3df (400 MHz, CDCl₃)

The ¹³C NMR spectrum of 3df (101 MHz, CDCl₃)

The HPLC of racemic 3df

Chrom Type: Fixed WL Chromatogram, 240 nm

Chrom Type: Fixed WL Chromatogram, 240 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1 2	11.700 16.000	4268269 4279200	49.936 50.064	BB BB
		8547469	100.000	

The HPLC of chiral 3df

The ¹H NMR spectrum of 3ef (400 MHz, CDCl₃)

The ¹⁹F NMR spectrum of 3ef (376 MHz, CDCl₃)

The HPLC of racemic 3ef

Chrom Type: Fixed WL Chromatogram, 240 nm

The HPLC of chiral 3ef

Chrom Type: Fixed WL Chromatogram, 240 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1 2	12.247 16.093	5575042 347511	94.132 5.868	BB BB
		5922553	100.000	

The ¹H NMR spectrum of 3ff (400 MHz, CDCl₃)

The ¹³C NMR spectrum of 3ff (101 MHz, CDCl₃)

The HPLC of racemic 3ff

The HPLC of chiral 3ff

Chrom Type: Fixed WL Chromatogram, 240 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1 2	11.947 16.673	4353872 231417	94.953 5.047	BB BB
		4585289	100.000	

The ¹H NMR spectrum of 3gf (500 MHz, CDCl₃)

The ¹³C NMR spectrum of 3gf (101 MHz, CDCl₃)

The HPLC of racemic 3gf

The HPLC of chiral 3gf

Chrom Type: Fixed WL Chromatogram, 240 nm

Chrom Type: Fixed WL Chromatogram, 240 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1 2	17.660 24.687	9852866 531851	94.879 5.121	BB BB
		10384717	100.000	

The ¹³C NMR spectrum of 3hf (125 MHz, CDCl₃)

The HPLC of racemic 3hf

Chrom Type: Fixed WL Chromatogram, 210 nm

The HPLC of chiral 3hf

The ¹H NMR spectrum of 3if (400 MHz, CDCl₃)

The ¹³C NMR spectrum of 3if (101 MHz, CDCl₃)

The HPLC of racemic 3if

The HPLC of chiral 3if

0.5

0.4

Chrom Type: Fixed WL Chromatogram, 210 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1 2	14.800 17.907	4639968 358865	92.821 7.179	BB BB
		4998833	100.000	

The ¹³C NMR spectrum of 3jf (101 MHz, CDCl₃)

The HPLC of racemic 3jf

The HPLC of chiral 3jf

Chrom Type: Fixed WL Chromatogram, 240 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1 2	11.060 17.720	3407648 200779	94.436 5.564	BB BB
		3608427	100.000	

The ¹³C NMR spectrum of 3kf (125 MHz, CDCl₃)

The HPLC of racemic 3kf

The HPLC of chiral 3kf

Chrom Type: Fixed WL Chromatogram, 240 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1 2	22.980 26.567	1877307 284768	86.829 13.171	BB BB
		2162075	100.000	
The ¹H NMR spectrum of 3lf (400 MHz, CDCl₃)

The ¹³C NMR spectrum of 3lf (101 MHz, CDCl₃)

The ¹⁹F NMR spectrum of 3lf (376 MHz, CDCl₃)

The HPLC of racemic 3lf

Chrom Type: Fixed WL Chromatogram, 240 nm 2.0 -H 1.5 ö 10.473 Absorbance (AU) rac-3lf 7003528, 14.633 7057827, 1.0 0.5 0.0 9 10 11 12 13 14 15 16 17 Retention Time (min) Chrom Type: Fixed WL Chromatogram, 240 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1 2	10.473 14.633	7057827 7003528	50.193 49.807	BB BB
		14061355	100.000	

The HPLC of chiral 3lf

The ¹H NMR spectrum of 3mf (400 MHz, CDCl₃)

The ¹³C NMR spectrum of 3mf (101 MHz, CDCl₃)

The HPLC of racemic 3mf

Chrom Type: Fixed WL Chromatogram, 240 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1 2	21.227 31.180	609498 612225	49.888 50.112	BB BB
		1221723	100.000	

The HPLC of chiral 3mf

The ¹H NMR spectrum of 3nf (400 MHz, CDCl₃)

The ¹³C NMR spectrum of 3nf (101 MHz, CDCl₃)

The HPLC of racemic 3nf

Chrom Type: Fixed WL Chromatogram, 240 nm

Chrom Type: Fixed WL Chromatogram, 240 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1 2	19.040 25.720	13626124 13695152	49.874 50.126	BB BB
		27321276	100.000	

The HPLC of chiral 3nf

The ¹H NMR spectrum of 3of (400 MHz, CDCl₃)

The HPLC of racemic 3of

Chrom Type: Fixed WL Chromatogram, 202 nm Peak Quantitation: AREA Calculation Method: AREA

No.	RT	Area	Area 🖁	BC
1 2	18.220 22.127	471817 469258	50.136 49.864	BB BB
		941075	100.000	

The HPLC of chiral 3of

The ¹H NMR spectrum of 3pf (400 MHz, CDCl₃)

The ¹³C NMR spectrum of 3pf (101 MHz, CDCl₃)

The HPLC of racemic 3pf

Chrom Type: Fixed WL Chromatogram, 240 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1 2	4.960 5.507	6880542 6987454	Area % 49.615 50.385	BV VB
		13867996	100.000	

The HPLC of chiral 3pf

The ¹H NMR spectrum of 5 (400 MHz, CDCl₃)

The HPLC of racemic 5

Chrom Type: Fixed WL Chromatogram, 230 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1 2	5.520 6.093	3139329 3244277	49.178 50.822	BV VB
		6383606	100.000	

The HPLC of chiral 5 (catalyzed by A2)

The HPLC of chiral 5 (catalyzed by B3)

Chrom Type: Fixed WL Chromatogram, 230 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1 2	5.287 5.807	6740697 120301	98.247 1.753	BB BB
		6860998	100.000	

The ¹H NMR spectrum of 6 (400 MHz, CDCl₃)

The ¹³C NMR spectrum of 6 (125 MHz, CDCl₃)

The noesy spectrum of 6 (500 MHz, CDCl₃)

The HPLC of racemic 6

NO.	RT	Area	Area 🍾	BC
1	5.927	7540057	49.044	BB
2	7.420	7834080	50.956	BB
		15374137	100.000	

The HPLC of chiral 6

1	5.400	1204333	17.133	BB
2	6.667	5824801	82.867	
		7029134	100.000	

The ¹H NMR spectrum of 7 (400 MHz, CDCl₃)

The noesy spectrum of 7 (500 MHz, CDCl₃)

The HPLC of racemic 7

Chrom Type: Fixed WL Chromatogram, 210 nm

No.	RT	Area	Area %	BC
1 2	6.307 10.173	4190371 4342069	49.111 50.889	BB BB
		8532440	100.000	

The HPLC of chiral 7

Chrom Type: Fixed WL Chromatogram, 210 nm

Chrom Type: Fixed WL Chromatogram, 210 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1 2	6.353 11.267	7294150 367187	95.207 4.793	BB BB
		7661337	100.000	

The ¹³C NMR spectrum of 8 (101 MHz, CDCl₃)

The ¹H NMR spectrum of 10 (500 MHz, CDCl₃)

The ¹³C NMR spectrum of 10 (101 MHz, CDCl₃)

The HPLC of racemic 10

The HPLC of chiral 10

Chrom Type: Fixed WL Chromatogram, 250 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1 2	12.947 13.660	3103314 2497712	55.406 44.594	BV VB
		5601026	100.000	

The HPLC of chiral ent-10

The ¹H NMR spectrum of 12 (400 MHz, CDCl₃)

The ¹³C NMR spectrum of 12 (101 MHz, CDCl₃)

The HPLC of racemic 12

Chrom Type: Fixed WL Chromatogram, 240 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1 2	17.387 22.453	2141294 2204496	49.273 50.727	BB BB
		4345790	100.000	

The HPLC of chiral 12

The ¹H NMR spectrum of 13 (400 MHz, CDCl₃)

The ¹³C NMR spectrum of 13 (101 MHz, CDCl₃)

The ¹H NMR spectrum of (±)-14 (400 MHz, CDCl₃)

The ¹³C NMR spectrum of (±)-14 (101 MHz, CDCl₃)

The ¹H NMR spectrum of 15 (400 MHz, CDCl₃)

The ¹H NMR spectrum of 16 (400 MHz, CDCl₃)

The ¹³C NMR spectrum of 16 (101 MHz, CDCl₃)

The HPLC of racemic 16

No.	RT	Area	Area %	BC
1 2	3.600 4.000	976110 969255	50.176 49.824	BB BB
		1945365	100.000	

The HPLC of chiral 16

The ¹H NMR spectrum of 17 (400 MHz, CDCl₃)

The ¹³C NMR spectrum of 17 (101 MHz, CDCl₃)

The ¹H NMR spectrum of 18 (400 MHz, CDCl₃)

The ¹³C NMR spectrum of 18 (101 MHz, CDCl₃)

The ¹H NMR spectrum of 19 (400 MHz, CDCl₃)

The ¹³C NMR spectrum of 19 (101 MHz, CDCl₃)

The ¹H NMR spectrum of 20 (400 MHz, CDCl₃)

The HPLC of racemic 20

The HPLC of chiral 20

The ¹H NMR spectrum of 21a (400 MHz, CDCl₃)

The ¹³C NMR spectrum of 21a (101 MHz, CDCl₃)

The ¹H NMR spectrum of 21b (500 MHz, CDCl₃)

The ¹H NMR spectrum of 21c (500 MHz, CDCl₃)

The ¹³C NMR spectrum of 21c (101 MHz, CDCl₃)

The ¹H NMR spectrum of 21d (400 MHz, CDCl₃)

The ¹³C NMR spectrum of 21d (101 MHz, CDCl₃)

The 1H NMR spectrum of 21e (400 MHz, CDCl3)

The ¹³C NMR spectrum of 21e (101 MHz, CDCl₃)

The ¹H NMR spectrum of 21e' (400 MHz, CDCl₃)

The ¹³C NMR spectrum of 21e' (101 MHz, CDCl₃)

R. Single crystal X-Ray diffraction data:

The absolute configuration of compound **3af** (CCDC 2092457), **17** (CCDC 2092460) and the relative configuration of **(±)-3aj** (CCDC 2092458), **(±)-16** (CCDC 2092459) were unambiguously assigned by single crystal X-ray analysis. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via <u>www.ccdc.cam.ac.uk/data_request/cif.</u>].

	Table S6 . Cr	vstal data and stru	icture refinement for	3af	(CCDC 2092457)
--	----------------------	---------------------	-----------------------	-----	----------------

Identification code	exp_11382
Empirical formula	C9 H12.50 N0.50 O1.50
Formula weight	151.69
Temperature	293(2) K
Wavelength	1.54184 Å
Crystal system	Orthorhombic
Space group	P 21 21 21
Unit cell dimensions	a = 5.63303(18) Å α = 90 °
	b = 9.7271(3) Å β = 90 °
	$c = 32.2704(12) \text{ Å} \qquad \gamma = 90 ^{\circ}$
Volume	1768.20(11) Å ³
Z	8
Density (calculated)	1.140 Mg/m ³
Absorption coefficient	0.615 mm ⁻¹
F(000)	656
Crystal size	$0.120 \ge 0.120 \ge 0.110 \text{ mm}^3$
Radiation	CuKα (λ = 1.54184)
Theta range for data collection	2.739 to 67.218 °
Index ranges	-6<=h<=3, -10<=k<=11, -36<=l<=38
Reflections collected	3735

Independent reflections	2694 [R(int) = 0.0161]
Completeness to theta = 67.218°	99.7 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.00000 and 0.96380
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	2694 / 648 / 234
Goodness-of-fit on F ²	1.068
Final R indices [I>2sigma(I)]	R1 = 0.0439, wR2 = 0.1232
R indices (all data)	R1 = 0.0479, wR2 = 0.1274
Absolute structure parameter	-0.12(14)
Extinction coefficient	0.0128(12)
Largest diff. peak and hole	0.220 and -0.136 e. Å ⁻³

Table S7. Crystal data and structure refinem	nent for (±)-3aj (CCDC 2092458)
--	--

Identification code	exp_11421
Empirical formula	C20 H23 N O4 S
Formula weight	373.45
Temperature	293(2) K
Wavelength	1.54184 Å
Crystal system	Triclinic
Space group	P-1
Unit cell dimensions	a = 8.3710(8) Å α = 72.860(11) °
	b = 11.0434(13) Å β = 70.943(10) °
	$c = 11.6957(15) \text{ Å} \gamma = 76.348(9)^{\circ}$
Volume	964.8(2) Å ³
Z	2
Density (calculated)	1.286 Mg/m ³
Absorption coefficient	1.694 mm ⁻¹

F(000)	396
Crystal size	$0.120 \ge 0.120 \ge 0.110 \text{ mm}^3$
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
Theta range for data collection	4.116 to 67.249 °
Index ranges	-10<=h<=8, -12<=k<=13, -12<=l<=13
Reflections collected	5734
Independent reflections	3337 [R(int) = 0.0345]
Completeness to theta = 67.249°	96.8 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.00000 and 0.80462
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3337 / 1 / 236
Goodness-of-fit on F ²	0.941
Final R indices [I>2sigma(I)]	R1 = 0.0672, wR2 = 0.2758
R indices (all data)	R1 = 0.1008, wR2 = 0.3122
Extinction coefficient	n/a
Largest diff. peak and hole	0.283 and -0.580 e. Å ⁻³

Table **S8**. Crystal data and structure refinement for **(±)-16** – CCDC 2092459

Identification code	HX-LXJ-1478-H-300K
Empirical formula	C26 H32 O4
Formula weight	408.51
Temperature	299.99(10) K
Crystal system	Monoclinic
Space group	C2/c
Unit cell dimensions	a = 16.4248(9) Å α = 90 °
	b = 13.2124(7) Å β = 106.465(6) °
	c = 10.8402(6) Å γ = 90 °
Volume	2256.0(2) Å ³
Z	4

Density (calculated)	1.203 Mg/m ³
Absorption coefficient	0.080 mm ⁻¹
F(000)	880.0
Crystal size	$0.18 \times 0.12 \times 0.11 \text{ mm}^3$
Radiation	ΜοΚα (λ = 0.71073)
Theta range for data collection	4.024 to 50.014 °
Index ranges	-19<=h<=19, -15<=k<=15, -12<=l<=11
Reflections collected	7456
Independent reflections	1993 [R(int) = 0.0187, R(sigma) =
	0.0183]
Data / restraints / parameters	1993/0/136
Goodness-of-fit on F ²	1.046
Final R indices [I>2sigma(I)]	R1 = 0.0343, wR2 = 0.0835
R indices (all data)	R1 = 0.0410, wR2 = 0.0888
Largest diff. peak and hole	0.11 and -0.15 e. Å ⁻³

Table **S9**. Crystal data and structure refinement for **17** (CCDC 2092460)

-	· · · · ·
Identification code	11912
Empirical formula	C23 H26 N2 O4
Formula weight	394.46
Temperature	293(2) K
Wavelength	1.54178 Å
Crystal system	Monoclinic
Space group	P2(1)
Unit cell dimensions	a = $6.3340(3)$ Å $\alpha = 90^{\circ}$
	b = 16.7436(8) Å β = 100.883(6) °
	$c = 10.0625(6) \text{ Å} \gamma = 90 \circ$
Volume	1047.97(10) Å ³
Z	2
Density (calculated)	1.250 Mg/m ³

Absorption coefficient	0.696 mm ⁻¹
F(000)	420
Crystal size	$0.120 \text{ x} 0.120 \text{ x} 0.110 \text{ mm}^3$
Radiation	CuKα (λ = 1.54178)
Theta range for data collection	4.474 to 67.230 °
Index ranges	-7<=h<=7, -17<=k<=19, -11<=l<=12
Reflections collected	3598
Independent reflections	2712 [R(int) = 0.0378]
Completeness to theta = 67.230°	99.8 %
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	2712 / 1 / 263
Goodness-of-fit on F ²	1.008
Final R indices [I>2sigma(I)]	R1 = 0.0486, wR2 = 0.0986
R indices (all data)	R1 = 0.0727, wR2 = 0.1131
Absolute structure parameter	-0.1(3)
Extinction coefficient	n/a
Largest diff. peak and hole	0.136 and -0.174 e. Å ⁻³

S. Reference:

- [1] Parella, R.; Jakkampudi, S.; Arman, H.; Zhao, J. C. G., Adv. Synth. Catal. 2019, 361, 208.
- [2] Boerth, J. A.; Ellman, J. A., Chem. Sci. 2016, 7, 1474.
- [3] Quintavalla, A.; Lombardo, M.; Sanap, S. P.; Trombini, C., *Adv. Synth. Catal.* 2013, 355, 938.
- [4] Liu, Q.; Rovis, T., J. Am. Chem. Soc. 2006, 128, 2552.
- [5] Lei, T.; Zhou, C.; Huang, M.-Y.; Zhao, L.-M.; Yang, B.; Ye, C.; Xiao, H.; Meng, Q.-Y.;
 Ramamurthy, V.; Tung, C.-H.; Wu, L.-Z., *Angew. Chem., Int. Ed.* 2017, *56*, 15407.
- [6] Fan, Y.-S.; Jiang, Y.-J.; An, D.; Sha, D.; Antilla, J. C.; Zhang, S., Org. Lett. **2014**, *16*, 6112.
- [7] Vyas, S.; Muthukrishnan, S.; Kubicki, J.; McCulla, R. D.; Burdzinski, G.; Sliwa, M.; Platz,
 M. S.; Hadad, C. M., *J. Am. Chem. Soc.* **2010**, *132*, 16796.
- [8] Tietze, L. F.; Hölsken, S.; Adrio, J.; Kinzel, T.; Wegner, C., Synthesis 2004, 2004, 2236.
- [9] (a) Ghosh, A. K.; Cheng, X., Org. Lett. 2011, 13, 4108; (b) Gu, Q.; Rong, Z.-Q.; Zheng, C.;
 You, S.-L., J. Am. Chem. Soc. 2010, 132, 4056-4057.
- [10] Hoye, T. R.; Hu, M., J. Am. Chem. Soc. 2003, 125, 9576.