Supplementary Information

Brønsted Acid-catalyzed Dynamic Kinetic Resolution of in situ Formed Acyclic N,O-hemiaminals: Cascade Synthesis of Chiral Cyclic N, \mathbf{O}-aminals

Xue-Jiao Lv, ${ }^{[a]}$ Yong-Chao Ming, ${ }^{[a]}$ Hui-Chun Wu ${ }^{[a]}$ and Yan-Kai Liu*[a,b]
[a] Molecular Synthesis Center \& Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
[b] Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
* Email: liuyankai@ouc.edu.cn

Contents

A. General information: S3
B. General procedures for the synthesis of starting materials: S4
C. Optimization of racemic cyclic N, O-aminals: S8
D. Scope of racemic cyclic N, O-aminals: S10
E. Optimization of the synthesis of chiral N, O-aminals: S20
F. Scope of chiral reaction conditions: S25
G. Other reactions of hemiaminal by desymmetrization: S34
H. Optimization of oxa-Michael reaction: S35
I. Determination of absolute configurations of $\mathbf{6}$ and 7: S37
J. The characterization data of 5-7: S38
K. Control experiments: S40
L. The possible mechanism for asymmetric reaction: S48
M. Synthetic transformations: S50
N. Large scale reaction: S56
O. Failed substrates: S58
P. The stability of 1a in present of A2: S62
Q. NMR spectra and HPLC traces: S63
R. Single crystal X-Ray diffraction data: S148
S. Reference: S153

A. General information:

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 400 MHz or 500 MHz for ${ }^{1} \mathrm{H}$ and at 101 MHz or 125 MHz for ${ }^{13} \mathrm{C}$. The chemical shifts (δ) for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ are given in ppm relative to residual signals of the solvents $\left(\mathrm{CDCl}_{3}\right.$ at $7.26 \mathrm{ppm}{ }^{1} \mathrm{H}$ NMR, $\left.77.16 \mathrm{ppm}{ }^{13} \mathrm{C} \mathrm{NMR}\right)$. Coupling constants are given in Hz . The following abbreviations are used to indicate the multiplicity: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet. High-resolution mass spectra (HRMS) were obtained from the Waters Q-Tof Ultima Global. X-ray data were obtained from Zhongke chemical technology service center. Optical rotations are reported as follows: $[\alpha]_{D}^{20}\left(c\right.$ in g per 100 mL , solvent: CHCl_{3}).

Note: NMR signals containing common solvent contaminants were list. $\mathrm{H}_{2} \mathrm{O}$ in CDCl_{3} at 1.56 ppm ${ }^{1} \mathrm{H}$ NMR; Ethyl acetate in CDCl_{3} at 2.05 (s), 4.12 (q), 1.26 (t) ppm ${ }^{1} \mathrm{H}$ NMR; Dichloromethane in CDCl_{3} at 5.30 (s) ppm ${ }^{1} \mathrm{H}$ NMR.

All the reactions were set up under air and using freshly distilled solvents, without any precautions to exclude moisture, unless otherwise noted open air chemistry on the benchtop. Chromatographic purification of products was accomplished using force-flow chromatography (FC) on silica gel (300-400 mesh). For thin layer chromatography (TLC) analysis throughout this work, Merck pre-coated TLC plates (silica gel 60 GF254, 0.25 mm) were used, using UV light as the visualizing agent and a phosphomolybdic acid or basic aqueous potassium permanganate $\left(\mathrm{KMnO}_{4}\right)$ as stain developing solutions. Organic solutions were concentrated under reduced pressure on a Büchi rotary evaporator.

HPLC analyses on chiral stationary phase were performed on a Hitachi Chromaster. Daicel Chiralpak IA, IC, ID, or AD columns with n-hexane/i-PrOH as the eluent were used. HPLC traces were compared to racemic samples which prepared by mixture of two enantiomeric final products obtained using (S) and (R) catalyst.

Commercial reagents and solvents were purchased from Sigma Aldrich, Fluka, Energy Chemical and Alfa Aesar used as received, without further purification.

B. General procedures for the synthesis of starting materials:

General procedure for synthesis of (E)-7-substituted-7-oxohept-5-enals 1a-

10: [1]

The required phosphorane (1.0 equiv) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{M})$ and added dropwise to a solution of glutaraldehyde (50% aqueous solution, 3.0 equiv) at room temperature. Then the reaction mixture was allowed to stir at room temperature for 48 h. Upon completion, the reaction mixture was washed with water and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was evaporated under reduced pressure. The crude reaction mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate $=3: 1$ to 8:1) to afford the corresponding products 1a10 in good yields. All these products are known compounds.

Procedure for synthesis of (E)-2-((4-oxo-4-phenylbut-2-en-1-
yl)oxy)acetaldehyde 1p: ${ }^{[2-3]}$

Step 1: To the solution of diethylene glycol ($10 \mathrm{mmol}, 1.0$ equiv) were added NaIO_{4} ($2.14 \mathrm{~g}, 10 \mathrm{mmol}$), $\mathrm{RuCl}_{3} \cdot \mathrm{H}_{2} \mathrm{O}(7 \mathrm{mg}, 0.034 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The solution was stirred at $40^{\circ} \mathrm{C}$ for 10 min . Water ($0.54 \mathrm{~g}, 30 \mathrm{mmol}$) was added and stirred overnight. After the reaction, the reaction mixture was filtered through a celite and washed with
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filtrate was concentrated and column chromatography (petroleum ether/ethyl acetate $=1: 1)$ to hemiacetal $\mathbf{S 1}(521 \mathrm{mg}, 50 \%)$ as orange oil.

Step 2: The ylide reagent ($1.9 \mathrm{~g}, 5 \mathrm{mmol}$) was added to the solvent of hemiacetal $\mathbf{S} \mathbf{1}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The result mixture was stirred at room temperature for 48 h until no $\mathbf{S} \mathbf{1}$ remained. After evaporation of the solvent, the reside was purified by column chromatography (petroleum ether/ethyl acetate $=3: 1$) to afford $\mathbf{S} 2$ as orange oil.

Step 3: To the solvent of S2 (1.0 equiv) in ethyl acetate, IBX (1.4 g, 1.0 equiv) was added and the reaction mixture stirred at $80^{\circ} \mathrm{C}$ for about 10 h . After the reaction, the reaction mixture was filtered through a celite, concentrated and purified by column chromatography (petroleum ether/ethyl acetate $=1: 1$) to provide $\mathbf{1 p}(300 \mathrm{mg}, 30 \%$ for 2 steps) as a yellow oil.

Procedure for synthesis of 2-((4-oxo-[1,1'-biphenyl]-1(4H)-

yl)oxy)acetaldehyde 4: ${ }^{[4]}$

Step 1: Ethylene glycol ($33.4 \mathrm{ml}, 600 \mathrm{mmol}$) was added to the solution of 4-phenylphenol (20 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$. Then $\mathrm{PhI}(\mathrm{OAc})_{2}(9.7 \mathrm{~g}, 30 \mathrm{mmol})$ was added slowly over 5 min. The solution was then allowed to stir at room temperature for further 1 h . The solution was concentrated in vacuo and the residue was subjected to column chromatography (petroleum ether/ethyl acetate $=2: 1$) to provide $\mathbf{S 3}(2.2 \mathrm{~g}, 47 \%)$ as orange oil.

Step 2: In a flame-dried round bottom flask, $\mathbf{S 3}$ (1.0 equiv) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5$ M), Dess Martin periodinane (1.5 equiv) was added to the solution directly and the solution was then allowed to stir at room temperature for 1 h . The solution was filtered through celite and then concentrated in vacuo and the residue was subjected to column chromatography (petroleum ether/ethyl acetate $=2: 1$) to provide $4(1.9 \mathrm{~g}, 89 \%)$ as a yellow oil.

Synthesis of amides:

Amides 2a-2b, 2g-2k, 2m-2p and $\mathbf{2 r}$ - $\mathbf{2 s}$ were obtained from commercial sources and used without further purification. Other amides were prepared according to the following procedures.

Procedure A: ${ }^{[5]}$

In a dry round bottom flask, acid (4 mmol) and $\mathrm{SOCl}_{2}(3 \mathrm{~mL})$ were added. The mixture was heated to reflux for 2 h . Then removed the excess SOCl_{2} and got the crude acyl chloride. It was used to undergo the next step without further purification.

The synthesis of amide was conducted similar to a literature-known procedure. A solution of acyl chloride (prepared above or commercial) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (0.5 M) was added dropwise to an aqueous ammonia solution ($25 \mathrm{w} \%, 10$ equiv) at $0{ }^{\circ} \mathrm{C}$. The resulting twophase system was stirred vigorously at room temperature for 18 h . The reaction mixture was diluted with water, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was combined and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and colorless solid was recrystallization from ethyl acetate to afford the desired primary amides $\mathbf{2 c} \mathbf{c} \mathbf{2 f}$ in excellent yields.

Procedure B:[6-7]

The synthesis of diphenylphosphoryl amide was conducted similar to a literature-known procedure. Diphenylphosphoryl azide ($275 \mathrm{mg}, 1 \mathrm{mmol}$) was dissolved in dry THF (5 mL) and $10 \% \mathrm{Pd} / \mathrm{C}(27 \mathrm{mg})$ was added. The complex was placed in atmospheric pressure of hydrogen and stirred for 5 h at room temperature. After the reaction was complete, Pd / C was filtered through celite and the filtrate was concentrated under reduced pressure. The
crude product was filtered with dichloromethane to give pure product as a white solid $\mathbf{2 l}$ ($170 \mathrm{mg}, 68 \%$).

Procedure C: ${ }^{[8]}$

Step 1: The synthesis of (R)-acetoxy mandelamide was conducted similar to a literatureknown procedure. (R)-mandelic acid (456 mg) was dissolved in 10 mL MeOH and cooled to $0^{\circ} \mathrm{C}$. Acetyl chloride (0.57 mL) was added and the solution was allowed to warm to room temperature and stirred for 24 h . Concentration in vacuo gave a colorless liquid, which was dissolved in $5 \mathrm{~mL} \mathrm{NH}_{3}$ (in MeOH) and the solution was stirred at $80^{\circ} \mathrm{C}$ for 24 h. Concentration in vacuo gave a white solid, which was recrystallized from hot EtOH to yield (R)-mandelamide as a white solid (228 mg, 50\%).

Step 2: Under a nitrogen atmosphere, (R)-mandelamide (228 mg) was dissolved in 8 mL pyridine. Acetic anhydride (0.4 mL) was added and the solution was stirred for 18 h . Concentration in vacuo gave an off-white solid, which was recrystallized from hot EtOH to yield white crystal 2q (148 mg, 51\%).

All materials were known compounds and the characterization data were in accordance with those reported in the literatures. ${ }^{[1-8]}$

C. Optimization of racemic cyclic N, O-aminals:

Table S1. Optimization of catalyst, solvent and additive

Entry ${ }^{[a]}$	Cat.	Sol.	V (mL)	Add.	T (h)	$\mathrm{Y}(\%)^{[b]}$	$\mathrm{dr}^{[c]}$
1	TsOH	DCE	0.2	-	4	75	>20:1
2	TfOH	DCE	0.2	-	5	68	>20:1
3	MsOH	DCE	0.2	-	5	68	>20:1
4	TFA	DCE	0.2	-	10	29	>20:1
5	$\mathrm{Zn}(\mathrm{OTf})_{2}$	DCE	0.2	-	>10	9	>20:1
6	SnCl_{2}	DCE	0.2	-	10	24	>20:1
7	$\mathrm{Ti}(\mathrm{Oi}-\mathrm{Pr})_{4}$	DCE	0.2	-	NR	-	-
8	DPP	DCE	0.2	-	10	66	>20:1
9	TsOH	$\mathrm{CH}_{3} \mathrm{CN}$	0.2	-	5	29	>20:1
10	TsOH	toluene	0.2	-	4	42	>20:1
11	TsOH	acetone	0.2	-	4	13	>20:1
12	TsOH	MTBE	0.2	-	4	37	>20:1
13	TsOH	DCM	0.2	-	4	56	>20:1
14	TsOH	$\mathrm{Et}_{2} \mathrm{O}$	0.2	-	5	46	>20:1
15	TsOH	THF	0.2	-	10	39	>20:1
16	TsOH	EA	0.2	-	10	51	>20:1
$17^{[d]}$	TsOH	DCE	0.2	$\mathrm{Na}_{2} \mathrm{SO}_{4}$	4	62	>20:1
$18^{[d]}$	TsOH	DCE	0.2	MgSO_{4}	3.5	58	>20:1
$19{ }^{[d]}$	TsOH	DCE	0.2	3 Å MS	4	59	>20:1
$20^{[d]}$	TsOH	DCE	0.2	$4 \AA$ MS	NR	-	-
$21^{[d]}$	TsOH	DCE	0.2	$5 \AA$ MS	NR	-	-

[a] Unless otherwise specified, all reactions were carried out using 1a ($0.05 \mathrm{mmol}, 1.0$ equiv), 2a ($0.06 \mathrm{mmol}, 1.2$ equiv) in solvent (0.2 mL) with cat. ($20 \mathrm{~mol} \%$) at $25^{\circ} \mathrm{C}$. After workup, the mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate $=3: 1$) to afford product ($\mathbf{\pm} \mathbf{)}$-3aa as a white solid. [b] Isolated yield of ($\mathbf{\pm}$)-3aa. $[c]$ Determined by ${ }^{1} \mathrm{H}$ NMR. [d] The reactions ran with additive (10 mg).

DCE $=1,2$-Dichloroethane

DCM = Dichloromethane

MTBE = Methyl-tert-butylether
THF = Tetrahydrofuran
EA $=$ Ethyl acetate
TsOH $=p$-Toluenesulfonic acid
TfOH = Trifluoromethanesulfonic acid
$\mathrm{MsOH}=$ Methanesulfonic acid

TFA = Trifluoroacetic acid
$\mathrm{Zn}(\mathrm{OTf})_{2}=$ Zinc trifluoromethanesulfonate
$\mathrm{Ti}(\mathrm{Oi}-\mathrm{Pr})_{4}=$ Titanium tetraisopropanolate
DPP = Diphenyl phosphate
$\mathrm{NR}=$ No reaction

Table S2. Optimization of other conditions

Entry $^{[a]}$	Scale	Loading of					
(mmol)	cat. (equiv)	Sol.	$\mathrm{V}(\mathrm{mL})$	$\mathrm{T}(\mathrm{h})$	$\mathrm{Y}(\%)^{[b]}$	$\mathrm{dr}^{[c]}$	
$1^{[d]}$	0.05	0.2	DCE	0.2	5	75	$>20: 1$
2	0.1	0.2	DCE	0.2	6	59	$>20: 1$
3	0.1	0.1	DCE	0.2	10	59	$>20: 1$
4	0.1	0.1	DCE 2	0.5	10	72	$>20: 1$
5	0.1	0.1	CHCl_{3}	0.5	10	77	$>20: 1$

[a] Unless otherwise specified, all reactions were carried out using $\mathbf{1 a}$ ($0.1 \mathrm{mmol}, 1.0$ equiv), 2a ($0.12 \mathrm{mmol}, 1.2$ equiv) in solvent with TsOH at $25^{\circ} \mathrm{C}$. After workup, the mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate $=3: 1$) to afford product ($\mathbf{\pm}$)3aa as a white solid. [b] Isolated yield of ($\mathbf{\pm}$)-3aa. $[c]$ Determined by ${ }^{1} \mathrm{H}$ NMR. $[d]$ The reaction was carried out using 1a ($0.05 \mathrm{mmol}, 1.0$ equiv), 2a ($0.06 \mathrm{mmol}, 1.2$ equiv) in DCE (0.2 mL) with TsOH (0.2 equiv) at $25^{\circ} \mathrm{C}$.

D. Scope of racemic cyclic $\mathbf{N}, \mathbf{0}$-aminals:

General procedure: A glass vial equipped with a magnetic stirring bar was charged with (E)-7-oxo-7-phenylhept-5-enal $1 \mathbf{1 a}(0.1 \mathrm{mmol}, 1.0$ equiv), TsOH ($1.7 \mathrm{mg}, 0.1$ equiv) and amide 2 (0.12 mmol , 1.2 equiv) in $\mathrm{CHCl}_{3}(0.5 \mathrm{~mL})$ and the resultant solution was stirred at $25^{\circ} \mathrm{C}$ until the material 1a disappeared. After completion of the reaction, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate $=7: 1$ to $1: 1)$ to afford $\mathbf{(\pm) - 3}$ in good to excellent yield for NMR.

Note: The synthesis of 3ag and 3ah were charged with DPP (10 mol \%) as catalyst. The synthesis of 3an and 3ao were charged with 1a (2.0 equiv) and amide $\mathbf{2}$ (1.0 equiv) at 25 ${ }^{\circ} \mathrm{C}$. The synthesis of 3 as was charged at $0^{\circ} \mathrm{C}$.

$\mathbf{(\pm) - 3 a a}$ was obtained as a white solid 25 mg in 77% yield after column chromatography on silica gel (petroleum ether/ethyl acetate $=3 / 1$). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~ (4 0 0 ~}$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.96-7.91(\mathrm{~m}, 2 \mathrm{H}), 7.81-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.51-7.37(\mathrm{~m}$, $5 \mathrm{H}), 6.67(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.41$ (ddd, $J=10.9,8.8,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.26-4.16(\mathrm{~m}, 1 \mathrm{H}), 3.35$ (dd, $J=16.3,4.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.07 (dd, $J=16.3,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.96-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.83$ (ddq, $J=$ $13.2,4.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.73$ (tdd, $J=13.3,10.9,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.50-1.39(\mathrm{~m}, 1 \mathrm{H}), 1.29-1.18$ (m, 1H) ppm. ${ }^{13}$ C NMR (101 MHz, CDCl_{3}) $\delta 197.6,166.5,137.0,134.0,133.2,131.8,128.6$, 128.5, 128.2, 127.2, 78.9, 73.9, 45.2, 31.4, 30.6, 22.7 ppm. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{NO}_{3}{ }^{+} 324.1594$, found 324.1590 . The diastereomeric ratio was determined by NMR $d r>20: 1$.

$\mathbf{(\pm) - 3 a b}$ was obtained as a white solid 19 mg in 56% yield after column chromatography on silica gel (petroleum ether/ethyl acetate $=7 / 1$). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~ (4 0 0 ~}$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.11(\mathrm{~s}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.31(\mathrm{~m}$, $4 \mathrm{H}), 6.96(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.45-5.32(\mathrm{~m}$, $1 \mathrm{H}), 4.22(\mathrm{dt}, J=11.0,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{dd}, J=16.5,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{dd}, J=16.4,7.4 \mathrm{~Hz}$, 1H), $1.99-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.88-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.54-1.39(\mathrm{~m}, 1 \mathrm{H}), 1.27$ (qd, $J=13.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) $\delta 197.5,169.3,161.9,137.0$, 134.6, 133.3, 128.6, 128.2, 125.7, 118.7, 113.8, 78.5, 74.0, 45.1, 31.3, 30.6, 22.6 ppm. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{NO}_{4}{ }^{+} 340.1543$, found 340.1538 . The diastereomeric ratio was determined by NMR $\boldsymbol{d r} \boldsymbol{> 2 0 : 1}$.

$\mathbf{(\pm) - 3 a c}$ was obtained as a white solid 20 mg in 57% yield after column chromatography on silica gel (petroleum ether/ethyl acetate $=2 / 1$). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ (400 MHz, CDCl_{3}) $\delta 7.97-7.91(\mathrm{~m}, 2 \mathrm{H}), 7.65(\mathrm{~d}, \mathrm{~J}=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.51$ $-7.42(\mathrm{~m}, 4 \mathrm{H}), 7.36(\mathrm{dd}, J=5.1,2.0 \mathrm{~Hz}, 3 \mathrm{H}), 6.35(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{~d}, J=9.0 \mathrm{~Hz}$, 1H), 5.35 (ddd, $J=10.9,9.0,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.21$ (dddd, $J=10.2,7.2,4.7,2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.35 (dd, $J=16.3,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{dd}, J=16.3,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.96-1.79(\mathrm{~m}, 3 \mathrm{H}), 1.79-1.65(\mathrm{~m}, 1 \mathrm{H})$, $1.45-1.33(\mathrm{~m}, 1 \mathrm{H}), 1.30-1.19(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 197.6, 164.9, $142.2,137.0,134.68,133.2,129.9,128.9,128.6,128.2,127.9,120.3,78.5,73.8,45.2,31.4$, 30.6, 22.7 ppm. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{NO}_{3}{ }^{+}$350.1751, found 350.1753. The diastereomeric ratio was determined by NMR $\boldsymbol{d r}=\mathbf{1 0}: \mathbf{1}$.

$\mathbf{(\pm) - 3 a d}$ was obtained as a white solid 16 mg in 61% yield after column chromatography on silica gel (petroleum ether/ethyl acetate $=1 / 1) .{ }^{\mathbf{1}} \mathbf{H}$ NMR (400
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.94(\mathrm{dt}, J=8.5,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{tq}, J=6.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{tt}, J=6.6,1.4$ $\mathrm{Hz}, 2 \mathrm{H}), 5.92(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.19$ (ddd, $J=11.1,9.1,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.15$ (dddd, $J=10.9$, $7.8,4.7,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{dd}, J=16.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{dd}, J=16.3,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.99(\mathrm{~s}$, $3 \mathrm{H}), 1.93-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.66(\mathrm{tt}, J=13.1,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.26(\mathrm{dtdd}, J=$ $42.4,13.0,11.0,4.2 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.6,169.3,137.0,133.2$, 128.6, 128.2, 78.2, 73.7, 45.2, 31.3, 30.6, 23.6, 22.7 ppm. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NO}_{3}{ }^{+} 262.1438$, found 262.1436 . The diastereomeric ratio was determined by NMR $d r=5: 1$.

$\mathbf{(\pm) - 3 a e}$ was obtained as a white solid 16 mg in 54% yield after column chromatography on silica gel (petroleum ether/ethyl acetate $=3 / 1$). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.97-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.60-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=$ 8.5 Hz, 1H), 5.19 (ddd, $J=11.0,8.9,2.3 \mathrm{~Hz}, 1 \mathrm{H}$), 4.17 (dddd, $J=11.1,7.3,4.9,2.0 \mathrm{~Hz}, 1 \mathrm{H}$), $4.04(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.34(\mathrm{dd}, J=16.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{dd}, J=16.5,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.92$ (dtd, $J=13.6,4.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}$), $1.88-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.69$ (dddd, $J=17.0,13.2,8.3,3.9 \mathrm{~Hz}$, $1 \mathrm{H}), 1.39(\mathrm{tdd}, J=12.8,10.8,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.24(\mathrm{tdd}, J=13.0,11.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 197.5,165.2,137.0,133.2,128.6,128.2,78.6,74.0,45.0,42.5$, 31.1, 30.5, 22.5 ppm. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{ClNO}_{3}{ }^{+}$296.1048, found 296.1054. The diastereomeric ratio was determined by NMR $\boldsymbol{d r} \boldsymbol{> 2 0 : 1}$.

$\mathbf{(\pm) - 3 a f}$ was obtained as a colorless oil 17 mg in 56% yield after column chromatography on silica gel (petroleum ether/ethyl acetate $=3 / 1$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.96(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.00$ $(\mathrm{d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.25-5.12(\mathrm{~m}, 1 \mathrm{H}), 4.14(\mathrm{dd}, J=11.2,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{dd}, J=16.2,4.7$ $\mathrm{Hz}, 1 \mathrm{H}), 3.07(\mathrm{dd}, J=16.1,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.93-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.81(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.75-$ $1.63(\mathrm{~m}, 1 \mathrm{H}), 1.35-1.25(\mathrm{~m}, 2 \mathrm{H}), 1.19(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.9$,
177.7, 137.1, 133.1, 128.6, 128.2, 78.6, 73.9, 45.2, 38.7, 31.4, 30.6, 27.4, 22.7 ppm. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{NO}_{3}{ }^{+} 304.1907$, found 304.1910 . The diastereomeric ratio was determined by NMR $\boldsymbol{d r} \boldsymbol{> 2 0 : 1}$.

$\mathbf{(\pm) - 3 a g}$ was obtained as a colorless oil 15 mg in 47% yield after column chromatography on silica gel (petroleum ether/ethyl acetate $=6 / 1$). ${ }^{1} \mathbf{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.95(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.58-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.05(\mathrm{~s}$, $1 \mathrm{H}), 4.91(\mathrm{~s}, 1 \mathrm{H}), 4.12(\mathrm{~s}, 1 \mathrm{H}), 3.37(\mathrm{dd}, J=16.3,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.16-3.02(\mathrm{~m}, 1 \mathrm{H}), 1.89(\mathrm{~d}, \mathrm{~J}$ $=13.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.85-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.69(\mathrm{ddd}, J=13.3,8.6,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.30$ $(\mathrm{t}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.18(\mathrm{dd}, J=18.7,6.9 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C} \mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 197.8$, 154.5, 137.1, 133.1, 128.6, 128.2, 80.0, 73.5, 66.5, 45.3, 31.2, 30.6, 28.3, 22.9 ppm. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{NO}_{4}{ }^{+} 320.1856$, found 320.1853 . The diastereomeric ratio was determined by NMR $\boldsymbol{d r} \boldsymbol{>} \mathbf{2 0 : 1}$.

$\mathbf{(\pm) - 3 a h}$ was obtained as a white solid 19 mg in 54% yield after column chromatography on silica gel (petroleum ether/ethyl acetate $=5 / 1$). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~ (4 0 0 ~}$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.97-7.91(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.45(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.31(\mathrm{~m}, 5 \mathrm{H})$, $5.32-5.22(\mathrm{~m}, 1 \mathrm{H}), 5.17-5.04(\mathrm{~m}, 2 \mathrm{H}), 4.98(\mathrm{t}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.17-4.10(\mathrm{~m}, 1 \mathrm{H}), 3.35$ (dd, $J=16.5,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{dd}, J=16.5,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.94-1.75(\mathrm{~m}, 3 \mathrm{H}), 1.75-1.56(\mathrm{~m}$, 1H), $1.44-1.25(\mathrm{~m}, 1 \mathrm{H}), 1.24-1.10(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.7$, $155.2,137.1,136.2,133.2,128.6,128.5,128.2,80.4,73.5,67.0,45.2,31.2,30.5,22.8 \mathrm{ppm}$. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{NO}_{4}{ }^{+} 354.1700$, found 354.1703 . The diastereomeric ratio was determined by NMR $\boldsymbol{d r} \boldsymbol{> 2 0 : 1}$.

($\mathbf{\pm}$)-3ai was obtained as a colorless oil 32 mg in 81% yield after column chromatography on silica gel (petroleum ether/ethyl acetate $=6 / 1$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.93(\mathrm{dt}, J=7.2,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.58-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.45(\mathrm{dd}, J=8.3,6.9 \mathrm{~Hz}$, $2 \mathrm{H}), 5.53(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.07-4.86(\mathrm{~m}, 1 \mathrm{H}), 4.76(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~d}, J=11.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.21-4.08(\mathrm{~m}, 1 \mathrm{H}), 3.33(\mathrm{dd}, J=16.3,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{dd}, J=16.4,7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $1.97-1.73(\mathrm{~m}, 3 \mathrm{H}), 1.73-1.61(\mathrm{~m}, 1 \mathrm{H}), 1.36(\mathrm{ddd}, J=20.1,10.4,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.24$ (ddt, J $=15.4,11.1,3.5 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) $\delta 197.7,153.5,137.1,133.2$, 128.6, 128.2, 95.2, 80.5, 74.6, 73.7, 45.0, 31.1, 30.4, 22.7 ppm. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{Cl}_{3} \mathrm{NO}_{4}{ }^{+} 394.0374$, found 394.0376 . The diastereomeric ratio was determined by NMR $\boldsymbol{d r} \boldsymbol{>} \mathbf{2 0 : 1}$.

($\mathbf{\pm}$)-3aj was obtained as a white solid 23 mg in $\mathbf{6 2} \%$ yield after column chromatography on silica gel (petroleum ether/ethyl acetate $=3 / 1$). ${ }^{1} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.88-7.82(\mathrm{~m}, 2 \mathrm{H}), 7.73-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.61-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.46(\mathrm{dd}, J=8.4,7.1$ $\mathrm{Hz}, 2 \mathrm{H}), 7.04(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.11(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{td}, J=10.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.13$ - 3.99 (m, 1H), 2.97 (dd, $J=16.8,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{dd}, J=16.7,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H})$, 1.88 (ddq, $J=11.6,7.1,2.9,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.73-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.09(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 197.1, 143.0, 138. 8, 137.1, 133.2, 129.2, 128.6, 128.1, 127.2, 82.7, 73.1, 44.4, 31.7, 30.1, 22.9, 21.3 ppm. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{NO}_{4} \mathrm{~S}^{+}$ 374.1421, found 374.1421. The diastereomeric ratio was determined by NMR $\boldsymbol{d r}>\mathbf{2 0}: \mathbf{1}$.

$\mathbf{(\pm) - 3 a k}$ was obtained as a colorless oil 18 mg in 61% yield after column chromatography on silica gel (petroleum ether/ethyl acetate $=2 / 1$). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~ (4 0 0 ~}$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.94(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.60-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.47(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.05(\mathrm{~d}$,
$J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{td}, J=10.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{ddd}, J=8.9,3.8,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{dd}$, $J=15.8,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.01-2.91(\mathrm{~m}, 1 \mathrm{H}), 2.81(\mathrm{~s}, 3 \mathrm{H}), 1.98-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.64(\mathrm{~m}$, 3H), $1.36-1.27(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 197.8, 137.0, 133.4, 128.7, 128.2, 82.5, 73.9, 44.5, 42.9, 31.2, 30.3, 22.8 ppm. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NO}_{4} \mathrm{~S}^{+}$ 298.1108, found 298.1107. The diastereomeric ratio was determined by NMR $\boldsymbol{d r} \boldsymbol{> 2 0 : 1}$.

$\mathbf{(} \mathbf{\pm}$-3al was obtained as a white solid 37 mg in 82% yield after column chromatography on silica gel (petroleum ether/ethyl acetate $=2 / 1$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.94-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.44(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.28$ $(\mathrm{m}, 3 \mathrm{H}), 7.27-7.18(\mathrm{~m}, 5 \mathrm{H}), 7.16(\mathrm{tt}, J=7.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.08(\mathrm{~m}, 1 \mathrm{H}), 4.67(\mathrm{tdd}, J=$ $10.6,8.1,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{dtd}, J=11.2,6.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{dd}, J=12.3,10.8 \mathrm{~Hz}, 1 \mathrm{H})$, 3.22 (dd, $J=16.4,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{dd}, J=16.4,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.90-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.78$ (dd, $J=12.8,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.76-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.64(\mathrm{qt}, J=13.3,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.35-1.26(\mathrm{~m}, 2 \mathrm{H})$, $1.26-1.18(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.8,150.7,150.6,137.1,133.2$, 129.6, 129.5, 128.6, 128.2, 125.0, 124.9, 120.5, 120.5, 120.4, 82.0, 73.7, 44.9, 33.2, 30.3, 23.0 ppm. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{NO}_{5} \mathrm{P}^{+}$452.1621, found 452.1628. The diastereomeric ratio was determined by NMR $\boldsymbol{d r} \boldsymbol{> 2 0 : 1}$.

$\mathbf{(\pm) - 3 a m}$ was obtained as a colorless oil 18 mg in 63% yield after column chromatography on silica gel (petroleum ether/ethyl acetate $=1 / 1$). ${ }^{\mathbf{1}} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.96-7.91(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.44(\mathrm{dd}, \mathrm{J}=8.4,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.24$ (dd, $J=9.8,3.5 \mathrm{~Hz}, 1 \mathrm{H}$), 4.14 (dddd, $J=11.1,7.4,5.0,2.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.45 (ddd, $J=9.5,7.7,6.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.36(\mathrm{dt}, J=9.5,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{dd}, J=15.9,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{dd}, J=15.9,7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.41-2.32(\mathrm{~m}, 2 \mathrm{H}), 2.01-1.94(\mathrm{~m}, 2 \mathrm{H}), 1.90(\mathrm{dp}, J=13.1,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.82-1.73$ (m, 1H), 1.67 (dtd, $J=12.9,8.5,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.56$ (ddt, $J=12.5,10.2,4.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.20(\mathrm{tdd}$, $J=12.7,11.1,4.1 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 197.9,175.0,137.2,133.1$,
128.5, 128.3, 79.7, 74.2, 45.1, 42.5, 31.6, 30.6, 28.4, 22.6, 18.1 ppm. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{NO}_{3}{ }^{+}$288.1594, found 288.1596. The diastereomeric ratio was determined by NMR $\boldsymbol{d r} \mathbf{~ > 2 0 : 1 . ~}$

($\mathbf{\pm}$)-3an was obtained as a colorless oil 14 mg in 42% yield after column chromatography on silica gel (petroleum ether/ethyl acetate $=6 / 1$). ${ }^{1} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.95-7.91(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.40(\mathrm{dd}, \mathrm{J}=8.4,7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.26$ - $7.18(\mathrm{~m}, 3 \mathrm{H}), 7.01(\mathrm{td}, J=7.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.65(\mathrm{dd}, J=11.4,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{dddd}, J=$ 11.1, 7.3, 5.4, 2.1 Hz, 1H), 3.52 (s, 2H), 3.36 (dd, $J=16.2,5.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.12 (dd, $J=16.2,6.9$ $\mathrm{Hz}, 1 \mathrm{H}$), 2.20 (tdd, $J=12.9,11.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}$), $2.07-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.89(\mathrm{ddq}, J=13.2,3.8$, $1.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.81(\mathrm{tt}, J=13.2,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.73-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.43(\mathrm{tdd}, J=12.8,11.1,4.0$ $\mathrm{Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.6,174.0,142.5,137.1,133.2,128.5,128.3$, 127.5, 124.4, 124.3, 122.2, 112.0, 80.9, 75.0, 45.0, 36.0, 30.7, 27.4, 22.7 ppm. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{NO}_{3}{ }^{+}$336.1594, found 336.1593. The diastereomeric ratio was determined by NMR $\boldsymbol{d r} \boldsymbol{>} \mathbf{2 0 : 1}$.

($\mathbf{\pm}$)-3ao was obtained as a yellow solid 14 mg in 40% yield after column chromatography on silica gel (petroleum ether/ethyl acetate $=3 / 1$). ${ }^{\mathbf{H}} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.97-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.60(\mathrm{dd}, J=7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.41$ (dd, $J=8.4,7.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.27 (d, $J=4.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.11 (dd, $J=7.6,0.9 \mathrm{~Hz}, 1 \mathrm{H}$), 5.55 (dd, $J=$ 11.4, $2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 4.28 (dtd, $J=11.7,6.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.34 (dd, $J=16.3,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.13$ (dd, $J=16.3,6.1 \mathrm{~Hz}, 1 \mathrm{H}$), 2.22 (tdd, $J=13.8,11.0,4.3 \mathrm{~Hz}, 1 \mathrm{H}$), $2.13-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.94-$ $1.71(\mathrm{~m}, 3 \mathrm{H}), 1.56-1.40(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 197.4, 183.1, 156.9, 149.6, 138.2, 137.0, 133.3, 128.6, 128.2, 125.3, 123.7, 117.7, 113.8, 81.5, 75.0, 44.6, 30.4,
27.5, 22.6 ppm. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{NO}_{4}{ }^{+}$350.1387, found 350.1389. The diastereomeric ratio was determined by NMR $\boldsymbol{d r} \boldsymbol{> 2 0 : 1}$.

$\mathbf{(\pm) - 3 a p}$ was obtained as a colorless oil 16 mg in 46% yield after column chromatography on silica gel (petroleum ether/ethyl acetate $=4 / 1) .{ }^{1} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.06(\mathrm{dd}, J=7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{dq}, J=8.6,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.57-7.52(\mathrm{~m}$, $1 \mathrm{H}), 7.47-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.32(\mathrm{td}, J=7.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.86(\mathrm{dd}, J=$ $10.9,2.5 \mathrm{~Hz}, 1 \mathrm{H}$), 4.22 (dddd, $J=12.4,7.3,5.5,1.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.60 (ddd, $J=12.0,6.7,5.1 \mathrm{~Hz}$, 1 H), 3.44 (ddd, $J=12.3,9.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.28 (dd, $J=15.4,5.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.08 (dd, $J=15.4$, $6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.87$ (qdd, $J=15.7,6.4,4.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.99-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.74(\mathrm{~m}, 2 \mathrm{H})$, $1.72-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.61-1.52(\mathrm{~m}, 1 \mathrm{H}), 1.34-1.24(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 198.2,163.7,138.5,137.4,133.1,131.8,129.5,128.6,128.5,128.4,127.0,126.8$, 81.3, 74.7, 45.2, 39.7, 30.7, 28.4, 28.0, 22.6 ppm. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{NO}_{3}{ }^{+}$ 350.1751, found 350.1750 . The diastereomeric ratio was determined by NMR $\boldsymbol{d r}>\mathbf{2 0 : 1}$.

3aq was obtained as a colorless oil 20 mg in 51% yield after column chromatography on silica gel (petroleum ether/ethyl acetate $=2 / 1) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.99-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.43$ (dddd, $J=20.1,10.1,6.9,5.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.36-7.32(\mathrm{~m}, 3 \mathrm{H}), 6.60(\mathrm{dd}, J=31.9,9.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.08(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.19$ (dddd, $J=11.0,8.9,4.0,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.19-4.06(\mathrm{~m}, 1 \mathrm{H}), 3.31$ (ddd, $J=16.0,5.8,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.10-3.00(\mathrm{~m}, 1 \mathrm{H}), 2.16(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.84$ (ddt, $J=$ 29.7, 13.8, $3.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.67(\mathrm{qt}, J=13.0,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.44-1.28(\mathrm{~m}, 1 \mathrm{H}), 1.26-1.14(\mathrm{~m}$, 1H) ppm. ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) δ 197.8, 197.6, 169.1, 169.0, 167.6, 137.1, 137.0, 135.5, 135.3, 133.2, 133.2, 129.1, 129.0, 128.8, 128.8 128.6, 128.6, 128.6, 128.2, 128.2, $127.7,127.4,78.5,75.3,75.2,74.2,74.1,45.1,45.0,31.3,30.5,30.5,22.5,22.5,21.1,21.0$
ppm. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{NO}_{5}{ }^{+} 396.1805$, found 396.1803. The diastereomeric ratio was determined by NMR $\boldsymbol{d r}=\mathbf{1}: \mathbf{1}$.

3ar was obtained as a colorless oil 4 mg in 11% yield after column chromatography on silica gel (petroleum ether/ethyl acetate $=1 / 1) .{ }^{1} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.91(\mathrm{dd}, J=7.4,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.59-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.27-$ $5.21(\mathrm{~m}, 1 \mathrm{H}), 4.24(\mathrm{dd}, J=8.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{ddt}, J=21.5,10.8,7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.99(\mathrm{dq}, J$ $=10.8,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{dd}, J=16.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{dd}, J=16.4,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{dt}, J$ $=16.6,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{ddd}, J=16.6,9.6,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{dq}, J=13.1,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.04$ (ddt, $J=13.2,9.4,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.95-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.60(\mathrm{~m}, 5 \mathrm{H}), 1.21(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 197.2,174.9,172.6,137.0,133.2,128.6,128.1,81.1$, 74.1, 61.1, 57.1, 44.9, 30.6, 30.3, 28.5, 23.5, 22.4, 14.1 ppm. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{NO}_{5}{ }^{+} 360.1805$, found 360.1803. [$\left.\alpha\right]_{\mathrm{D}}{ }^{20}-8.91$ ($c=0.78$ in CHCl_{3}). The enantiomeric ratio was determined by HPLC analysis on Daicel Chiralpak IB column [n-hexane $/ i-\mathrm{PrOH}$ $=95 / 5,1 \mathrm{~mL} / \mathrm{min}], \lambda=240 \mathrm{~nm}, t_{\text {major }}=48.43 \mathrm{~min}, t_{\text {minor }}=44.37 \mathrm{~min}, \mathrm{er}>99.9: 0.1$. The diastereomeric ratio was determined by NMR $\boldsymbol{d r} \boldsymbol{> 2 0 : 1}$.

3ar' was obtained as a colorless oil 7 mg in 19% yield after column chromatography on silica gel (petroleum ether/ethyl acetate $=1 / 1) .{ }^{1} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.97-7.92(\mathrm{~m}, 2 \mathrm{H}), 7.60-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.42(\mathrm{~m}, 2 \mathrm{H}), 5.28(\mathrm{dd}, J=11.3$, $2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.36-4.30(\mathrm{~m}, 1 \mathrm{H}), 4.26-4.11(\mathrm{~m}, 3 \mathrm{H}), 3.28(\mathrm{dd}, J=15.9,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.01$ $(\mathrm{dd}, J=15.8,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.65-2.49(\mathrm{~m}, 1 \mathrm{H}), 2.38-2.20(\mathrm{~m}, 2 \mathrm{H}), 2.04-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.92$ $-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.32-1.14(\mathrm{~m}, 5 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 197.8,175.4,173.3,137.2,133.1,128.5,128.3,80.2,74.4,61.4,56.3$, 45.1, 30.6, 30.0, 29.0, 24.5, 22.7, 14.2 ppm . HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{NO}_{5}{ }^{+} 360.1805$, found 360.1811. $[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{20}-10.86\left(c=0.70\right.$ in $\left.\mathrm{CHCl}_{3}\right)$. The enantiomeric ratio was determined
by HPLC analysis on Daicel Chiralpak IB column [n-hexane $/ i-\mathrm{PrOH}=95 / 5,1 \mathrm{~mL} / \mathrm{min}], \lambda$ $=240 \mathrm{~nm}, t_{\text {major }}=36.29 \mathrm{~min}, t_{\text {minor }}=34.07 \mathrm{~min}, \mathrm{er}>99.7: 0.3$. The diastereomeric ratio was determined by NMR $\boldsymbol{d r} \boldsymbol{> 2 0 : 1}$.

3as was obtained as a colorless oil 28 mg in 74% yield after column chromatography on silica gel (petroleum ether/ethyl acetate $=3 / 1) .{ }^{1} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.99-7.92(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.21(\mathrm{~m}$, $3 \mathrm{H}), 7.17-7.10(\mathrm{~m}, 2 \mathrm{H}), 5.05(\mathrm{dd}, J=10.6,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.22-3.93(\mathrm{~m}, 4 \mathrm{H}), 3.29(\mathrm{td}, J=$ $16.2,4.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.08(\mathrm{dd}, J=15.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{dd}, J=14.0,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.01(\mathrm{dq}, J=$ 13.7, $3.4 \mathrm{~Hz}, 1 \mathrm{Hk}), 1.92-1.64(\mathrm{~m}, 4 \mathrm{H}), 1.31(\mathrm{tdd}, J=14.5,11.9,4.9 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 198.0,157.0,137.2,136.2,133.2,129.2,128.8,128.6,128.3,127.0$, 82.8, 74.7, 66.6, 54.5, 44.8, 39.9, 30.6, 28.5, 22.9 ppm. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{NO}_{4}{ }^{+}$ 380.1856, found 380.1857. $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{20}-27.03\left(c=1.44\right.$ in $\left.\mathrm{CHCl}_{3}\right)$. The enantiomeric ratio was determined by HPLC analysis on Daicel Chiralpak IB column [n-hexane $/ i-\mathrm{PrOH}=65 / 35$, $1 \mathrm{~mL} / \mathrm{min}], \lambda=205 \mathrm{~nm}, t_{\text {major }}=7.55 \mathrm{~min}, t_{\text {minor }}=8.70 \mathrm{~min}$, er $>99.9: 0.1$. The diastereomeric ratio was determined by ${ }^{1} \mathrm{H}$ NMR $\boldsymbol{d r} \boldsymbol{>} \mathbf{2 0 : 1}$.

E. Optimization of the synthesis of chiral N,O-aminals:

Scheme S1. Screening of amides

General procedure: All reactions were carried out using 1a ($0.1 \mathrm{mmol}, 1.0$ equiv), 2 (0.12 mmol, 1.2 equiv) in DCE (0.5 mL) with $\mathbf{A 2}(10 \mathrm{~mol} \%)$ at $25^{\circ} \mathrm{C}$. After workup, the mixture was purified by column chromatography on silica gel to afford product $\mathbf{3}$ for HPLC analysis. And pivalic amide $\mathbf{2 f}$ was chosen to optimize other conditions.

Table S3. Screening of catalysts

A1: $\mathrm{R}=2,4,6-\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}_{6} \mathrm{H}_{2}$
A2: $\mathrm{R}=2,4,6-(\mathrm{iPr})_{3} \mathrm{C}_{6} \mathrm{H}_{2}$ A3: $\mathrm{R}=9$-anthracenyl
A5: $R=P h$
A6: $\mathrm{R}=4-\mathrm{tBuC} \mathrm{C}_{6} \mathrm{H}_{4}$
A7: $\mathrm{R}=3,5-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}$
A8: $R=2,4,6-\mathrm{Cy}_{3} \mathrm{C}_{6} \mathrm{H}_{2}$
A9: $\mathrm{R}=4-\mathrm{PhC}_{6} \mathrm{H}_{4}$
A10: $R=1$-naphthaleny
A11: $R=2$-naphthaleny
A12: $\mathrm{R}=\mathrm{Si}(\mathrm{Ph})_{3}$

$\mathrm{Ar}=2,4,6-(\mathrm{Pr})_{3} \mathrm{C}_{6} \mathrm{H}_{2}$
A13

$A^{\prime} 1: R=2,4,6-(\operatorname{Pr})_{3} \mathrm{C}_{6} \mathrm{H}_{2}$
$A^{\prime} \mathbf{2}: \mathrm{R}=\mathrm{Ph}$
$A^{\prime} 3: R=3,5-(t B u)_{2} \mathrm{C}_{6} \mathrm{H}_{3}$

A"1: $\mathrm{R}=2,4,6-(\mathrm{Prr})_{3} \mathrm{C}_{6} \mathrm{H}_{2}$
A"2: $\mathrm{R}=\mathrm{Ph}$
A"3: $\mathrm{R}=4-\mathrm{tBuC} \mathrm{C}_{6}$

entry ${ }^{[a]}$	Cat.	T (d)	$\mathrm{Y}(\%)^{[b]}$	$\mathrm{er}^{[c]}$	$\mathrm{dr}^{[d]}$
1	A1	2	36	69:31	>20:1
2	A2	2	64	79:21	>20:1
3	A3	2	64	66:34	>20:1
4	A4	2	<5	66:34	>20:1
5	A5	1	76	58:42	>20:1
6	A6	1	64	57:43	>20:1
7	A7	2	46	62:38	>20:1
8	A8	2	54	72:28	>20:1
9	A9	2	64	55:45	>20:1
10	A10	2	86	57:43	>20:1
11	A11	2	57	59:41	>20:1
12	A12	-	NR	-	--
13	A13	2	<5	78:22	>20:1
14	A'1	2	20	53:47	>20:1

15	$A^{\prime} \mathbf{2}$	2	50	$57.5: 42.5$	$>20: 1$
16	$A^{\prime} 3$	-	NR	-	-
17	$A^{\prime \prime} 1$	2	60	$75: 25$	$>20: 1$
18	$A^{\prime \prime} 2$	2	40	$57: 43$	$>20: 1$
19	$A^{\prime \prime} 3$	2	40	$54: 46$	$>20: 1$

[a] Unless otherwise specified, all reactions were carried out using $\mathbf{1 a}$ ($0.1 \mathrm{mmol}, 1.0$ equiv), $\mathbf{2 f}$ ($0.12 \mathrm{mmol}, 1.2$ equiv) in DCE (0.5 mL) with cat. ($10 \mathrm{~mol} \%$) at $25^{\circ} \mathrm{C}$. After workup, the mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate $=3: 1$) to afford product 3af as a white solid. [b] Isolated yield of 3af. [c] Determined by HPLC analyses of isolated compound 3af on chiral stationary phases. [d] Determined by ${ }^{1} \mathrm{H}$ NMR.

Table S4. Optimization of other reaction conditions

	ω_{0}	 $2 f$	$\xrightarrow[\text { Sol. Tem. }]{\substack{\text { A2 }(10 \mathrm{~mol} \%) \\ \text { ad. }}}$		 3af		
entry ${ }^{[a]}$	Tem. $\left({ }^{\circ} \mathrm{C}\right)$	Sol.	Add.	T (d)	$\mathrm{Y}(\%)^{[b]}$	$\mathrm{er}^{[c]}$	$\mathrm{dr}^{[d]}$
$1{ }^{[\text {e] }}$	25	DCE	-	2	50	77:23	>20:1
2	25	DCE	-	2	78	79:21	>20:1
3 [f]	25	DCE	-	2	71	79:21	>20:1
4	0	DCE	-	6	57	90:10	>20:1
5	-20	DCE	-	6	<5	93:7	>20:1
6	40	DCE	-	2	70	73:27	>20:1
7	0	DCM	-	6	29	87:13	>20:1
8	0	toluene	-	6	64	90:10	>20:1
9	0	PhOCH_{3}	-	6	52	90:10	>20:1
10	0	$\mathrm{Et}_{2} \mathrm{O}$	-	6	29	88:12	>20:1
11	0	EA	-	-	<5	87:13	>20:1
12	0	$\mathrm{CH}_{3} \mathrm{CN}$	-	-	NR	-	-
13	0	acetone	-	-	trace	-	-
14	0	THF	-	-	NR	-	-
15	0	MTBE	-	6	59	95:5	>20:1
16	0	$\begin{aligned} & \text { MTBE } \\ & +\mathrm{Et}_{2} \mathrm{O} \end{aligned}$	-	6	66	93:7	>20:1
17	0	MTBE	$\begin{gathered} \mathrm{FeCl}_{3} \\ (20 \mathrm{~mol} \%) \end{gathered}$	6	40	64:36	>20:1

18	0	MTBE	3 Å MS (5 mg)	6	29	92:8	>20:1
19	0	MTBE	$4 \AA$ MS (5 mg)	6	50	93:7	>20:1
20	0	MTBE	$4 \AA$ MS (10 mg)	6	20	90:10	>20:1
21	0	MTBE	$4 \AA$ MS (20 mg)	-	NR	-	-
22	0	MTBE	5 Å MS (5 mg)	6	36	89:11	>20:1
23	0	MTBE	$\mathrm{MgSO}_{4}(5 \mathrm{mg})$	6	57	94:6	>20:1
24	0	MTBE	$\mathrm{Na}_{2} \mathrm{SO}_{4}(5 \mathrm{mg})$	6	64	91:9	>20:1
25	0	MTBE	$\begin{gathered} \left(\mathrm{CF}_{3}\right)_{2} \mathrm{CHOH} \\ (20 \mathrm{~mol} \%) \end{gathered}$	6	50	91:9	>20:1
26	0	MTBE	$\begin{gathered} \left(\mathrm{CH}_{2} \mathrm{OH}\right)_{2} \\ (20 \mathrm{~mol} \%) \end{gathered}$	6	50	93:7	>20:1
27	0	MTBE	$\begin{gathered} \mathrm{H}_{2} \mathrm{O} \\ (1.0 \text { equiv) } \end{gathered}$	6	40	93:7	>20:1
$28^{[g]}$	0	MTBE	-	6	77	89:11	>20:1
$29^{[h]}$	0	MTBE	-	6	21	92:8	>20:1
$30^{[1]}$	0	MTBE	-	9	47	95:5	>20:1

[a] Unless otherwise specified, all reactions were carried out using 1a ($0.1 \mathrm{mmol}, 1.0$ equiv), 2f ($0.12 \mathrm{mmol}, 1.2$ equiv) in solvent (0.5 mL) with $\mathbf{A 2}$ ($10 \mathrm{~mol} \%$). After workup, the mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate $=3: 1$) to afford product 3af as a white solid. [b] Isolated yield of 3af. [c] Determined by HPLC analyses of isolated compound 3af on chiral stationary phases. [d] Determined by ${ }^{1} \mathrm{H}$ NMR. [e] Reactions were carried out using 1a (0.2 mmol , 2.0 equiv) and $\mathbf{2 f}$ (0.1 mmol , 1.0 equiv). [f] Reactions were carried out using $1 \mathbf{1 a}$ ($0.1 \mathrm{mmol}, 1.0$ equiv) and $\mathbf{2 f}$ ($0.2 \mathrm{mmol}, 2.0$ equiv). $[g]$ Reactions were carried out in MTBE (0.2 mL). [h] Reactions were carried out in MTBE (1.0 mL). [i] Reactions were carried out with A2 (5 mol\%).

F. Scope of chiral reaction conditions:

General procedure: A glass vial equipped with a magnetic stirring bar was charged with (E)-7-oxo-7-phenylhept-5-enal 1 ($0.1 \mathrm{mmol}, 1.0$ equiv) and amide $\mathbf{2 f}$ ($0.12 \mathrm{mmol}, 1.2$ equiv) in MTBE (0.5 mL) with A2 ($10 \mathrm{~mol} \%$) at $0^{\circ} \mathrm{C}$. After completion of the reaction, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate $=4: 1$ to $2: 1$) to afford 3 for NMR and HPLC analysis.

3af was obtained as a white solid 18 mg in 59\% yield after column chromatography on silica gel (petroleum ether/ethyl acetate $=3 / 1$). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.96(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.00(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.25-5.12(\mathrm{~m}, 1 \mathrm{H}), 4.14(\mathrm{dd}, J=11.2,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{dd}, J=16.2,4.7 \mathrm{~Hz}$, $1 \mathrm{H}), 3.07(\mathrm{dd}, J=16.1,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.93-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.81(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.75-1.63$ $(\mathrm{m}, 1 \mathrm{H}), 1.35-1.25(\mathrm{~m}, 2 \mathrm{H}), 1.19(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 197.9, 177.7, 137.1, 133.1, 128.6, 128.2, 78.6, 73.9, 45.2, 38.7, 31.4, 30.6, 27.4, 22.7 ppm. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$ calcd. For $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{NO}_{3}{ }^{+}$304.1907, found 304.1905. $[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{\mathbf{2 0}} 24.33$ ($c=3.53$ in CHCl_{3}). The enantiomeric ratio was determined by HPLC analysis on Daicel Chiralpak IC column [nhexane $/ i-\mathrm{PrOH}=70 / 30,1 \mathrm{~mL} / \mathrm{min}], \lambda=240 \mathrm{~nm}, t_{\text {major }}=15.26 \mathrm{~min}, t_{\text {minor }}=20.48 \mathrm{~min}, \mathbf{e r}=$ 95:5. The diastereomeric ratio was determined by ${ }^{1} \mathrm{H}$ NMR, $\boldsymbol{d r} \boldsymbol{\mathbf { 2 0 } : \mathbf { 1 } \text { . } ~}$

3bf was obtained as a colorless oil 17 mg in 51% yield after column chromatography on silica gel (petroleum ether/ethyl acetate $=2 / 1$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.93(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.97(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.16$ $(\mathrm{t}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{~s}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.29(\mathrm{dd}, J=15.9,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{dd}, J=15.9$, $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.88(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.80(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.73-1.63(\mathrm{~m}, 1 \mathrm{H}), 1.28(\mathrm{dt}$, $J=18.5,5.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.19(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 196.3,177.7,163.5$, 130.6, 130.3, 113.7, 78.6, 74.1, 55.5, 45.0, 38.7, 31.4, 30.7, 27.4, 22.7 ppm. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$ calcd. For $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{NO}_{4}{ }^{+} 334.2013$, found 334.2014. $[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{20} 15.82$ ($c=1.52$ in CHCl_{3}). The enantiomeric ratio was determined by HPLC analysis on Daicel Chiralpak IC column [n hexane $/ i-\operatorname{PrOH}=70 / 30,1 \mathrm{~mL} / \mathrm{min}], \lambda=240 \mathrm{~nm}, t_{\text {major }}=27.10 \mathrm{~min}, t_{\text {minor }}=32.84 \mathrm{~min}, \mathrm{er}=$ 92:8. The diastereomeric ratio was determined by ${ }^{1} \mathrm{H}$ NMR, $\boldsymbol{d r} \boldsymbol{> 2 0 : 1}$.

3cf was obtained as a white solid 16 mg in 50% yield after column chromatography on silica gel (petroleum ether/ethyl acetate $=3 / 1$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.84(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.97(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.20$ - $5.11(\mathrm{~m}, 1 \mathrm{H}), 4.16-4.07(\mathrm{~m}, 1 \mathrm{H}), 3.31(\mathrm{dd}, J=16.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{dd}, J=16.0,8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 1.87(\mathrm{dd}, J=11.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.79(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.72-1.60(\mathrm{~m}$, 1H), $1.35-1.21(\mathrm{~m}, 2 \mathrm{H}), 1.18(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 197.4, 177.6, 143.9, 134.6, 129.2, 128.3, 78.6, 74.0, 45.1, 38.6, 31.4, 30.6, 27.4, 22.7, 21.6 ppm. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{NO}_{3}{ }^{+} 318.2064$, found 318.2058. $[\alpha]_{\mathrm{D}}{ }^{20} 18.78\left(c=0.62\right.$ in $\left.\mathrm{CHCl}_{3}\right)$. The enantiomeric ratio was determined by HPLC analysis on Daicel Chiralpak IC column $[n$-hexane $/ i-\mathrm{PrOH}=65 / 35,1 \mathrm{~mL} / \mathrm{min}], \lambda=240 \mathrm{~nm}, t_{\text {major }}=16.13 \mathrm{~min}, t_{\text {minor }}=19.81 \mathrm{~min}$, er $=\mathbf{9 5}: 5$. The diastereomeric ratio was determined by ${ }^{1} \mathrm{H}$ NMR, $\boldsymbol{d r} \mathbf{> 2 0 : 1}$.

3df was obtained as a yellow oil 26 mg in 77% yield after column chromatography on silica gel (petroleum ether/ethyl acetate $=3 / 1$). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.88(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.96(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.15$ (ddd, $J=10.9,9.0,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{dddd}, J=9.7,7.0,4.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{dd}, J=16.0,4.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.02(\mathrm{dd}, \mathrm{J}=16.0,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.94-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.61(\mathrm{~m}$, 1H), 1.38 - $1.20(\mathrm{~m}, 2 \mathrm{H}), 1.18$ (s, 9H) ppm. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 196.7, 177.7, $139.5,135.5,129.7,128.8,78.5,73.9,45.2,38.7,31.2,30.6,27.4,22.7$ ppm. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$ calcd. For $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{ClNO}_{3}{ }^{+} 338.1517$, found 338.1520. $[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{20} 28.06\left(c=1.14\right.$ in $\left.\mathrm{CHCl}_{3}\right)$. The enantiomeric ratio was determined by HPLC analysis on Daicel Chiralpak IC column [n hexane $/ i-\mathrm{PrOH}=70 / 30,1 \mathrm{~mL} / \mathrm{min}], \lambda=240 \mathrm{~nm}, t_{\text {major }}=11.67 \mathrm{~min}, t_{\text {minor }}=16.04 \mathrm{~min}, \mathrm{er}=$ 93:7. The diastereomeric ratio was determined by ${ }^{1} \mathrm{H}$ NMR, $\boldsymbol{d r}>\mathbf{2 0 : 1}$.

3ef was obtained as a white solid 20 mg in 62% yield after column chromatography on silica gel (petroleum ether/ethyl acetate $=3 / 1$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.98(\mathrm{ddd}, J=8.9,5.2,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.15-7.09(\mathrm{~m}, 2 \mathrm{H}), 5.97(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, 1H), $5.19-5.12(\mathrm{~m}, 1 \mathrm{H}), 4.11(\mathrm{dd}, J=9.5,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{dd}, J=16.0,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.03$ (dd, $J=16.0,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.92-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.68(\mathrm{dt}, J=13.1,3.8 \mathrm{~Hz}$, 1H), 1.37 - $1.22(\mathrm{~m}, 2 \mathrm{H}), 1.18(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 196.3, 177.7, 167.0, 164.5, 133.6, 131.0, 130.9, 115.7, 115.5, 78.5, 73.9, 45.2, 38.7, 31.3, 30.6, 27.422 .7 ppm. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-105.3$ ppm. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{FNO}_{3}{ }^{+}$ 322.1813, found 322.1819. $[\alpha]_{\mathrm{D}}{ }^{20} 19.74\left(c=1.51\right.$ in $\left.\mathrm{CHCl}_{3}\right)$. The enantiomeric ratio was determined by HPLC analysis on Daicel Chiralpak IC column [n-hexane $/ i-\operatorname{PrOH}=70 / 30$, $1 \mathrm{~mL} / \mathrm{min}], \lambda=240 \mathrm{~nm}, t_{\text {major }}=12.25 \mathrm{~min}, t_{\text {minor }}=16.09 \mathrm{~min}$, er $=94: 6$. The diastereomeric ratio was determined by ${ }^{1} \mathrm{H}$ NMR, $\boldsymbol{d r} \mathbf{> 2 0 : 1}$.

3ff was obtained as a white solid 24 mg in 63% yield after column chromatography on silica gel (petroleum ether/ethyl acetate $=3 / 1$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.81(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.95(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.20$ $-5.09(\mathrm{~m}, 1 \mathrm{H}), 4.16-4.03(\mathrm{~m}, 1 \mathrm{H}), 3.28(\mathrm{dd}, J=16.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{dd}, J=16.0,7.6 \mathrm{~Hz}$, 1H), $1.95-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.61(\mathrm{~m}, 1 \mathrm{H}), 1.35-1.22(\mathrm{~m}, 2 \mathrm{H}), 1.18$ (s, 9H) ppm. ${ }^{13}$ C NMR (101 MHz, CDCl_{3}) δ 196.9, 177.7, 135.9, 131.8, 129.8, 128.3, 78.5, 73.8, 45.2, 38.7, 31.2, 30.6, 27.4, 22.6 ppm. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{BrNO}_{3}{ }^{+}$ 382.1012, found 382.1013. $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{20} 40.27\left(c=0.89\right.$ in $\left.\mathrm{CHCl}_{3}\right)$. The enantiomeric ratio was determined by HPLC analysis on Daicel Chiralpak IC column [n-hexane/i-PrOH $=70 / 30$, $1 \mathrm{~mL} / \mathrm{min}], \lambda=240 \mathrm{~nm}, t_{\text {major }}=11.95 \mathrm{~min}, t_{\text {minor }}=16.67 \mathrm{~min}, \mathrm{er}=\mathbf{9 5 : 5}$. The diastereomeric ratio was determined by ${ }^{1} \mathrm{H} N \mathrm{NR}, \boldsymbol{d r} \boldsymbol{> 2 0 : 1}$.

3gf was obtained as a colorless oil 12 mg in 37% yield after column chromatography on silica gel (petroleum ether/ethyl acetate $=2 / 1$). ${ }^{1} \mathbf{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.02(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.92(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.12$ $(\mathrm{t}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{dt}, J=11.1,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{dd}, J=15.9,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{dd}, J=$ $15.9,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.90(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.78(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.67(\mathrm{~d}, J=12.9 \mathrm{~Hz}$, 1H), 1.33 - $1.20(\mathrm{~m}, 2 \mathrm{H}), 1.16(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 196.9, 177.7, 140.2, 132.4, 128.7, 118.0, 116.3, 78.5, 73.8, 45.5, 38.7, 31.1, 30.6, 27.4, 22.7 ppm. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+}$329.1860, found 329.1860. $[\alpha]_{\mathrm{D}}{ }^{20} 15.17\left(c=0.77\right.$ in $\left.\mathrm{CHCl}_{3}\right)$. The enantiomeric ratio was determined by HPLC analysis on Daicel Chiralpak IC column [n-hexane $/ i-\mathrm{PrOH}=65 / 35,1 \mathrm{~mL} / \mathrm{min}], \lambda=240 \mathrm{~nm}, t_{\text {major }}=17.66 \mathrm{~min}, t_{\text {minor }}=24.69 \mathrm{~min}$, er $=$ 95:5. The diastereomeric ratio was determined by ${ }^{1} \mathrm{H}$ NMR, $\boldsymbol{d r} \mathbf{> 2 0 : 1}$.

3hf was obtained as a colorless oil 14 mg in 37% yield after column chromatography on silica gel (petroleum ether/ethyl acetate $=3 / 1$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.02(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.67(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.65-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.47(\mathrm{t}$, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{dd}, J=8.3,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.97(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.18$ (ddd, $J=10.9,9.0$, $2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{dt}, J=6.1,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{dd}, J=16.0,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{dd}, J=16.0$, $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.94-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.71(\mathrm{t}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.37-1.21(\mathrm{~m}$, 2H), 1.19 (s, 9H) ppm. ${ }^{13} \mathbf{C}$ NMR (125 MHz, CDCl_{3}) δ 197.4, 177.6, 145.8, 139.9, 135.8, 128.9, 128.8, 128.2, 127.2, 127.2, 78.6, 74.0, 45.3, 38.6, 31.4, 30.6, 27.4, 22.7 ppm. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{NO}_{3}{ }^{+} 380.2220$, found 380.2229. $[\alpha]_{\mathrm{D}}{ }^{20} 35.32\left(c=0.77\right.$ in $\left.\mathrm{CHCl}_{3}\right)$. The enantiomeric ratio was determined by HPLC analysis on Daicel Chiralpak IC column [n-hexane $/ i-\mathrm{PrOH}=65 / 35,1 \mathrm{~mL} / \mathrm{min}$], $\lambda=210 \mathrm{~nm}, t_{\text {major }}=13.67 \mathrm{~min}, t_{\text {minor }}=18.93 \mathrm{~min}$, er $=$ 92:8. The diastereomeric ratio was determined by ${ }^{1} \mathrm{H}$ NMR, $\boldsymbol{d r} \mathbf{> 2 0 : 1}$.

3if was obtained as a white solid 20 mg in 60% yield after column chromatography on silica gel (petroleum ether/ethyl acetate $=3 / 1) .{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.52(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~s}, 1 \mathrm{H}), 7.35(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{dd}, J=8.1$, $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.95(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.21-5.11(\mathrm{~m}, 1 \mathrm{H}), 4.12(\mathrm{dt}, J=11.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.84$ (s, 3H), 3.31 (dd, $J=16.2,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{dd}, J=16.2,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.88(\mathrm{~d}, J=13.5 \mathrm{~Hz}$, $1 \mathrm{H}), 1.80(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.72-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.35-1.21(\mathrm{~m}, 2 \mathrm{H}), 1.18(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$. ${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 197.6,177.7,159.8,138.5,129.5,120.9,119.7,112.3,78.6$, 73.9, $55.4,45.3,38.7,31.4,30.6,27.4,22.7$ ppm. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{NO}_{4}{ }^{+}$ 334.2013, found 334.2010. $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{20} 25.19\left(c=0.87\right.$ in $\left.\mathrm{CHCl}_{3}\right)$. The enantiomeric ratio was determined by HPLC analysis on Daicel Chiralpak IC column [n-hexane $/ i-\mathrm{PrOH}=65 / 35$, $1 \mathrm{~mL} / \mathrm{min}], \lambda=210 \mathrm{~nm}, t_{\text {major }}=14.80 \mathrm{~min}, t_{\text {minor }}=17.91 \mathrm{~min}, \mathbf{e r}=93: 7$. The diastereomeric ratio was determined by ${ }^{1} \mathrm{H} N \mathrm{NR}, \boldsymbol{d r} \boldsymbol{> 2 0 : 1}$.

3jf was obtained as a colorless oil 18 mg in 47% yield after column chromatography on silica gel (petroleum ether/ethyl acetate $=3 / 1$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.07(\mathrm{t}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.90-7.83(\mathrm{~m}, 1 \mathrm{H}), 7.67(\mathrm{ddd}, J=7.9,1.8,0.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.33(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{ddd}, J=10.9,9.0,2.2 \mathrm{~Hz}, 1 \mathrm{H})$, 4.10 (dddd, $J=9.5,7.1,5.0,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{dd}, J=16.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.02$ (dd, $J=16.1$, $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.95-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.35-1.21(\mathrm{~m}$, 2H), 1.18 (s, 9H) ppm. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 196.6, 177.7, 138.9, 135.9, 131.4, 130.1, 126.8, 122.9, 78.5, 73.8, 45.2, 38.7, 31.3, 30.6, 27.4, 22.7 ppm. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{BrNO}_{3}{ }^{+}$382.1012, found 382.1010. $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{20} 19.96\left(c=0.75\right.$ in CHCl_{3}). The enantiomeric ratio was determined by HPLC analysis on Daicel Chiralpak IC column [n hexane $/ i-\operatorname{PrOH}=70 / 30,1 \mathrm{~mL} / \mathrm{min}], \lambda=240 \mathrm{~nm}, t_{\text {major }}=11.06 \mathrm{~min}, t_{\text {minor }}=17.72 \mathrm{~min}, \mathrm{er}=$ 94:6. The diastereomeric ratio was determined by ${ }^{1} \mathrm{H}$ NMR, $\boldsymbol{d r} \boldsymbol{> 2 0 : 1}$.

3kf was obtained as a colorless oil 18 mg in 54% yield after column chromatography on silica gel (petroleum ether/ethyl acetate $=3 / 1$). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.63(\mathrm{dd}, J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.03-6.89(\mathrm{~m}, 2 \mathrm{H}), 5.97(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.17-5.06(\mathrm{~m}, 1 \mathrm{H}), 4.06(\mathrm{dt}, J=5.6,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.32(\mathrm{dd}, J=16.4$, $4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{dd}, J=16.4,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.89-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.78(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 2 \mathrm{H})$, $1.65(\mathrm{qd}, J=13.1,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.28(\mathrm{ddt}, J=23.6,12.6,5.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.18(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 200.0,177.5,158.4,133.4,130.2,120.6,111.4,78.6,74.1,55.5$, 50.4, 38.6, 31.4, 30.6, 27.4, 22.7 ppm. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{NO}_{4}{ }^{+} 334.2013$, found 334.2015. $[\alpha]_{\mathbf{D}}{ }^{20} 20.45\left(c=0.69\right.$ in $\left.\mathrm{CHCl}_{3}\right)$. The enantiomeric ratio was determined by HPLC analysis on Daicel Chiralpak IC column [n-hexane $/ i-\operatorname{PrOH}=65 / 35,1 \mathrm{~mL} / \mathrm{min}$], λ $=240 \mathrm{~nm}, t_{\text {major }}=22.98 \mathrm{~min}, t_{\text {minor }}=26.57 \mathrm{~min}$, er $=\mathbf{8 7 : 1 3}$. The diastereomeric ratio was determined by ${ }^{1} \mathrm{H}$ NMR, $\boldsymbol{d r} \boldsymbol{>} \mathbf{2 0}$: $\mathbf{1}$.

3If was obtained as a colorless oil 18 mg in 56% yield after column chromatography on silica gel (petroleum ether/ethyl acetate $=3 / 1) \cdot{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.80(\mathrm{td}, J=7.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{dddd}, J=8.3,7.1,5.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.18$ $(\mathrm{m}, 1 \mathrm{H}), 7.14-7.08(\mathrm{~m}, 1 \mathrm{H}), 5.93(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{td}, J=9.9,8.9,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.16$ $-4.06(\mathrm{~m}, 1 \mathrm{H}), 3.29(\mathrm{ddd}, J=16.9,5.5,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{ddd}, J=16.9,7.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.88$ (dd, $J=13.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.79(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.68(\mathrm{dt}, J=13.2,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.34-1.21$ $(\mathrm{m}, 2 \mathrm{H}), 1.18(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 196.3,177.6,134.5,134.4,130.6$, $130.6,126.0,124.5,124.4,116.7,116.5,78.6,73.6,50.0,50.0,38.6,31.4,30.7,27.4,22.7$ ppm. ${ }^{19}$ F NMR (376 MHz, CDCl_{3}) δ-110.0 ppm. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{FNO}_{3}{ }^{+}$ 322.1813, found 322.1815. $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 0}} 12.64\left(c=0.50\right.$ in $\left.\mathrm{CHCl}_{3}\right)$. The enantiomeric ratio was determined by HPLC analysis on Daicel Chiralpak IC column [n-hexane $/ i-\mathrm{PrOH}=65 / 35$, $1 \mathrm{~mL} / \mathrm{min}], \lambda=240 \mathrm{~nm}, t_{\text {major }}=10.80 \mathrm{~min}, t_{\text {minor }}=15.10 \mathrm{~min}, \mathbf{e r}=\mathbf{9 2 . 5 : 7 . 5}$. The diastereomeric ratio was determined by ${ }^{1} \mathrm{H}$ NMR, $\boldsymbol{d r} \boldsymbol{> 2 0 : 1}$.
 3mf was obtained as a colorless oil 14 mg in 48% yield after column chromatography on silica gel (petroleum ether/ethyl acetate $=2 / 1) \cdot{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.60-7.57(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.18(\mathrm{~m}, 1 \mathrm{H}), 6.52(\mathrm{dd}, J=3.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.15$ (ddd, $J=10.9,8.9,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.08$ (dddd, $J=11.1,7.4,5.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), $3.16(\mathrm{dd}, J=15.3,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{dd}, J=15.3,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.88(\mathrm{ddd}, J=13.6,5.8,3.1 \mathrm{~Hz}$, 1H), $1.81-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.65(\mathrm{ddd}, J=17.0,8.6,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.32-1.21(\mathrm{~m}, 2 \mathrm{H}), 1.18(\mathrm{~s}$, 9H) ppm. ${ }^{13}$ C NMR (101 MHz, CDCl_{3}) $\delta 186.5,177.6,152.8,146.5,117.7,112.2,78.6,73.7$, 45.2, 38.7, 31.3, 30.6, 27.4, 22.6 ppm. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{NO}_{4}{ }^{+}$294.1700, found 294.1711. $[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{20} 20.09\left(c=0.29\right.$ in $\left.\mathrm{CHCl}_{3}\right)$. The enantiomeric ratio was determined by HPLC analysis on Daicel Chiralpak IC column [n-hexane $/ i-\mathrm{PrOH}=65 / 35,1 \mathrm{~mL} / \mathrm{min}$], λ
$=240 \mathrm{~nm}, t_{\text {major }}=21.53 \mathrm{~min}, t_{\text {minor }}=31.77 \mathrm{~min}, \mathbf{e r}=\mathbf{9 3 . 5 : 6 . 5}$. The diastereomeric ratio was determined by ${ }^{1} \mathrm{H}$ NMR, $\boldsymbol{d r} \mathbf{> 2 0 : 1}$.

3nf was obtained as a colorless oil 20 mg in 57% yield after column chromatography on silica gel (petroleum ether/ethyl acetate $=3 / 1$). ${ }^{1} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.47(\mathrm{~s}, 1 \mathrm{H}), 8.01(\mathrm{dd}, J=8.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{dd}, J$ $=8.3,4.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.63-7.51(\mathrm{~m}, 2 \mathrm{H}), 5.98(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{ddd}, J=10.8,8.9,2.1$ $\mathrm{Hz}, 1 \mathrm{H}$), 4.19 (dddd, $J=11.0,6.1,4.7,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.47$ (dd, $J=16.0,4.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.20 (dd, $J=16.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.91-1.78(\mathrm{~m}, 3 \mathrm{H}), 1.68(\mathrm{ddd}, J=16.5,8.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.38-1.23$ (m, 2H), 1.17 (s, 9H) ppm. ${ }^{13}$ C NMR (101 MHz, CDCl_{3}) δ 197.8, 177.7, 135.6, 134.5, 132.5, $130.1,129.6,128.51,128.4,127.8,126.8,123.9,78.6,74.0,45.3,38.7,31.4,30.7,27.4,22.7$ ppm. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{NO}_{3}{ }^{+}$354.2064, found 354.2063. $[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{\mathbf{2 0}} 42.79$ ($c=$ 1.05 in CHCl_{3}). The enantiomeric ratio was determined by HPLC analysis on Daicel Chiralpak IC column [n-hexane $/ i-\mathrm{PrOH}=70 / 30,1 \mathrm{~mL} / \mathrm{min}], \lambda=240 \mathrm{~nm}, t_{\text {major }}=19.19 \mathrm{~min}$, $t_{\text {minor }}=26.10 \mathrm{~min}$, er $=$ 93.5:6.5. The diastereomeric ratio was determined by ${ }^{1} \mathrm{H} \mathrm{NMR}, \boldsymbol{d r}$ >20:1.

3of was obtained as a white solid 10 mg in 41% yield after column chromatography on silica gel (petroleum ether/ethyl acetate $=2 / 1) \cdot{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 5.97(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{ddd}, J=10.9,9.0,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.99-3.89(\mathrm{~m}, 1 \mathrm{H})$, $2.68(\mathrm{dd}, J=15.8,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{dd}, J=15.8,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 1.92-1.85(\mathrm{~m}$, $1 \mathrm{H}), 1.78(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.70-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.34-1.25(\mathrm{~m}, 2 \mathrm{H}), 1.19(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$. ${ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 207.1,177.9,78.5,73.6,50.2,38.7,31.0,30.5,30.4,27.4,22.7$ ppm. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{NO}_{3}{ }^{+}$242.1751, found 242.1756. $[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{\mathbf{2 0}} 6.46(c=0.42$ in CHCl_{3}). The enantiomeric ratio was determined by HPLC analysis on Daicel Chiralpak
$\mathrm{AD}-\mathrm{H}$ column $[n$-hexane $/ i-\mathrm{PrOH}=95 / 5,1 \mathrm{~mL} / \mathrm{min}], \lambda=202 \mathrm{~nm}, t_{\text {major }}=17.92 \mathrm{~min}, t_{\text {minor }}=$ $21.95 \mathrm{~min}, \mathrm{er}=\mathbf{7 0}: \mathbf{3 0}$. The diastereomeric ratio was determined by ${ }^{1} \mathrm{H} N M R, \boldsymbol{d r} \mathbf{> 2 0 : 1}$.

3pf was obtained as a colorless oil 22 mg in 72% yield after column chromatography on silica gel (petroleum ether/ethyl acetate $=3 / 1$). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.97-7.91(\mathrm{~m}, 2 \mathrm{H}), 7.61-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.43(\mathrm{~m}, 2 \mathrm{H}), 5.80(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}$, 1 H), 5.42 (ddd, $J=9.9,8.9,2.9 \mathrm{~Hz}, 1 \mathrm{H}$), 4.40 (dddd, $J=10.3,7.6,4.8,2.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.97 (dd, $J=11.4,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{dd}, J=11.1,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{dd}, J=16.7,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{dd}$, $J=11.4,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{dd}, J=11.1,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{dd}, J=16.7,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.19(\mathrm{~s}$, 9H) ppm. ${ }^{13}$ C NMR (101 MHz, CDCl_{3}) $\delta 196.6,178.0,136.7,133.4,128.7,128.2,75.7,71.8$, 69.8, 68.8, 40.8, 38.9, 27.4 ppm. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{NO}_{4}{ }^{+} 306.1700$, found 306.1701. $[\alpha]_{\mathrm{D}}{ }^{20} 33.35\left(c=0.83\right.$ in $\left.\mathrm{CHCl}_{3}\right)$. The enantiomeric ratio was determined by HPLC analysis on Daicel Chiralpak AD-H column [n-hexane $/ i-\mathrm{PrOH}=70 / 30,1 \mathrm{~mL} / \mathrm{min}]$, $\lambda=240 \mathrm{~nm}, t_{\text {major }}=5.51 \mathrm{~min}, t_{\text {minor }}=4.98 \mathrm{~min}, \mathbf{e r}=\mathbf{9 7 . 5 : 2 . 5}$. The diastereomeric ratio was determined by ${ }^{1} \mathrm{H}$ NMR, $\boldsymbol{d r} \boldsymbol{> 2 0 : 1}$.

G. Other reactions of hemiaminal by desymmetrization:

A glass vial equipped with a magnetic stirring bar was charged with $4(0.1 \mathrm{mmol}, 1.0$ equiv), $\mathbf{2 f}$ ($0.12 \mathrm{mmol}, 1.2$ equiv) and $\mathbf{A 2}$ ($0.01 \mathrm{mmol}, 0.1$ equiv) in MTBE (0.5 mL) at $0^{\circ} \mathrm{C}$. The reaction stirred at $0^{\circ} \mathrm{C}$ until the material $\mathbf{4}$ disappeared. After completion of the reaction, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate $=2.5: 1$) to afford $\mathbf{5}(22 \mathrm{mg}, 67 \%, 62: 38 \mathrm{er})$ as a white solid.

To the solution of 5 ($0.05 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CHCl}_{3}(0.2 \mathrm{~mL})$, TEA ($0.02 \mathrm{mmol}, 0.4$ equiv) was added at $25{ }^{\circ} \mathrm{C}$. The reaction stirred at $25{ }^{\circ} \mathrm{C}$ for about 24 h until the material 5 disappeared. After completion of the reaction, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate $=3: 1$) to afford ($\mathbf{\pm}$)6 (10 mg, 62\%) as a white solid.

A glass vial equipped with a magnetic stirring bar was charged with $4(0.1 \mathrm{mmol}, 1.0$ equiv), $\mathbf{2 f}$ ($0.12 \mathrm{mmol}, 1.2$ equiv) and $\mathrm{TsOH}\left(0.01 \mathrm{mmol}, 0.1\right.$ equiv) in $\mathrm{CHCl}_{3}(0.5 \mathrm{~mL})$ at 25 ${ }^{\circ} \mathrm{C}$. The reaction stirred at $25^{\circ} \mathrm{C}$ for about 18 h until the material $\mathbf{4}$ disappeared. After completion of the reaction, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate $=3: 1$) to afford $(\mathbf{~} \mathbf{)} \mathbf{- 7}(13 \mathrm{mg}, 40 \%)$ as a white solid.

Large scale reaction for synthesis of racemic 5 by filtration:

A glass vial equipped with a magnetic stirring bar was charged with 4 ($2 \mathrm{mmol}, 1.0$ equiv), 2f ($2.4 \mathrm{mmol}, 1.2$ equiv) and DPP ($0.02 \mathrm{mmol}, 0.01$ equiv) in MTBE (2 mL) at $25{ }^{\circ} \mathrm{C}$ and stirred until the material 4 disappeared. After completion of the reaction, the reaction mixture was purified by filtration to afford ($\mathbf{\pm}$)-5 ($414 \mathrm{mg}, 63 \%$) as a white solid.

H. Optimization of oxa-Michael reaction:

Scheme S2. Screening of catalysts

All reactions were carried out using 5 ($0.1 \mathrm{mmol}, 1.0$ equiv), cat. ($0.02 \mathrm{mmol}, 0.2$ equiv) in $\mathrm{CHCl}_{3}(0.5 \mathrm{~mL})$. After workup, the mixture was purified by column chromatography on
silica gel (petroleum ether/ethyl acetate $=3: 1$) to afford product 6 and 7 as white solids for HPLC analysis.

When B3 and B4 were used as the catalysts for the reaction, the amount of compound 7 is trace and 5 could be recycled with excellent stereoselectivity. And the absolute configurations of chiral 5, 6 and 7 were confirmed by chemical correlation and reported literature. ${ }^{[9]}$

Table S5. Screening of other conditions

	 (\pm)-5	$<\xrightarrow[\text { sol., add., } 25^{\circ} \mathrm{C}]{\mathbf{B 1}(20 \mathrm{~mol} \%)}$				\qquad yield: er: 95	
entry ${ }^{[a]}$	Add.	Sol.	yield of $6(\%)^{[b]}$	er of $6^{[c]}$	yield of $7(\%)^{[b]}$	er of $7^{[c]}$	$\operatorname{dr}(6 / 7)^{[d]}$
1	-	DCM	54	77:23	25	83:17	>20:1/>20:1
2	-	DCE	45	83:17	33	94:6	>20:1/>20:1
3	-	CHCl_{3}	49	81:19	37	95:5	>20:1/>20:1
4	-	toluene	-	-	NR	-	-
5	-	$\mathrm{CH}_{3} \mathrm{CN}$	trace	-	trace	-	-
6	-	THF	trace	-	trace	-	-
7	-	EA	-	-	NR	-	-
8	-	MTBE	-	-	NR	-	-
9	-	$\mathrm{Et}_{2} \mathrm{O}$	-	-	NR	-	-
10	-	1,4-dioxane	-	-	NR	-	-
11	$\begin{gathered} \text { HFIP } \\ (0.8 \\ \text { equiv }) \end{gathered}$	CHCl_{3}	44	70:30	25	70:30	>20:1/>20:1

$4 \AA \mathrm{MS}$ $(10 \mathrm{mg})$	CHCl_{3}	38	$83: 17$	19	$93: 7$	$>20: 1 />20: 1$

[a] Unless otherwise specified, all reactions were carried out using ($\mathbf{\pm} \mathbf{)} \mathbf{- 5}(\mathbf{0 . 1} \mathbf{~ m m o l}, 1.0$ equiv), B1 ($0.02 \mathrm{mmol}, 0.2$ equiv) in solvent (0.5 mL) with additive at $25^{\circ} \mathrm{C}$. After workup, the mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate $=3: 1$) to afford product $\mathbf{6}$ and $\mathbf{7}$ as white solids. [b] Isolated yield of product. [c] Determined by HPLC analyses of isolated compounds on chiral stationary phases. [d] Determined by ${ }^{1} \mathrm{H}$ NMR.

I. Determination of absolute configurations of 6 and 7:

To the solution of $(\pm)-5(0.1 \mathrm{mmol}, 1.0$ equiv) in MTBE $(0.5 \mathrm{~mL})$, phosphoric acid A2 (10 mol\%) was added at $25{ }^{\circ} \mathrm{C}$. Then the reaction stirred at $50{ }^{\circ} \mathrm{C}$ until the material 5 consumed completely for about 48 h . The mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate $=3: 1$) to afford product ent7 as a white solid ($16 \mathrm{mg}, 50 \%, 88: 12 \mathrm{er}$). The absolute configuration of ent-7 was confirmed by analyzed. The relative configuration of ent-7 was confirmed by NOESY (H ${ }^{1-}$ $\mathrm{H}^{2}, \mathrm{Ph}-\mathrm{H}^{2}$) and according to the reported reference: similar reaction without amide catalyzed by same catalyst A2 (J. Am. Chem. Soc. 2010, 132, 4056-4057) ${ }^{[9]}$, the absolute configurations of phenyl group and H^{1} are (S) and (R) on the cis-orientation.

To the solution of (\pm)-5 ($0.1 \mathrm{mmol}, 1.0$ equiv) in MTBE (0.5 mL), B2 ($10 \mathrm{~mol} \%$) was added at $25^{\circ} \mathrm{C}$. Then the reaction stirred at $25^{\circ} \mathrm{C}$ for about 3 d . The mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate $=3: 1$) to afford
product ent-6 a white solid ($20 \mathrm{mg}, 61 \%, 75: 25 \mathrm{er}$). And 5 was recyclized in 18% yield with 98:2 er. The relative configuration of ent-6 was confirmed by NOESY $\left(\mathrm{H}^{1}-\mathrm{H}^{2}, \mathrm{Ph}-\mathrm{H}^{2}\right)$. The absolute configuration of ent-6 was confirmed according to the configuration of 5.

According to the absolute configuration of ent-6 and ent-7, the absolute configuration of 6 and 7 could be confirmed.

J. The characterization data of 5-7:

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.47-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.32(\mathrm{~m}, 3 \mathrm{H})$, $6.88-6.78(\mathrm{~m}, 2 \mathrm{H}), 6.67(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.45-6.38(\mathrm{~m}, 2 \mathrm{H}), 5.54(\mathrm{dt}, J=7.4,4.5 \mathrm{~Hz}$, 1H), $3.69(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.23(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 185.2, 179.8, 149.5, 149.3, 137.8, 130.2, 130.1, 129.0, 128.6, 125.6, 76.4, 73.3, 66.5, 38.8, 27.4 ppm. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{NO}_{4}{ }^{+} 330.1700$, found 330.1694.

Catalyzed by B3: $[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{20} 26.50\left(c=0.25\right.$ in CHCl_{3}). The enantiomeric ratio was determined by HPLC analysis on Daicel Chiralpak IA column [n-hexane $/ i-\mathrm{PrOH}=80 / 20,1 \mathrm{~mL} / \mathrm{min}$], λ $=230 \mathrm{~nm}, t_{\text {major }}=5.29 \mathrm{~min}, t_{\text {minor }}=5.80 \mathrm{~min}, \mathrm{er}=\mathbf{9 8 : 2}$. The diastereomeric ratio was determined by NMR $\boldsymbol{d r} \mathbf{> 2 0 : 1}$.

The solvent of racemic 5 ($0.1 \mathrm{mmol}, 1.0$ equiv) was added B1 ($0.02 \mathrm{mmol}, 0.2$ equiv) in solvent (0.5 mL) at $25{ }^{\circ} \mathrm{C}$. After workup, the mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate $=3: 1$) to afford product $\mathbf{6}$ and $\mathbf{7}$ as white solids.

6 was obtained as a white solid 16 mg in 49% yield after column chromatography on silica gel (petroleum ether/ethyl acetate $=2.5 / 1$). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.53-7.37(\mathrm{~m}, 5 \mathrm{H}), 7.05(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{dd}, J=10.4,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.53$ $(\mathrm{dd}, J=10.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.54(\mathrm{dd}, J=8.3,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.38-4.20(\mathrm{~m}, 2 \mathrm{H}), 3.82(\mathrm{~d}, J=12.2$ $\mathrm{Hz}, 1 \mathrm{H}), 2.59-2.38(\mathrm{~m}, 2 \mathrm{H}), 1.31(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} .^{13} \mathbf{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 195.3, 178.0, 146.5, 138.1, 134.0, 129.1, 129.0, 126.2, 77.3, 72.3, 72.1, 65.0, 40.1, 39.1, 27.6 ppm. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{NO}_{4}{ }^{+} 330.1700$, found 330.1702. $[\alpha]_{\mathbf{D}}{ }^{\mathbf{2 0}}-10.19\left(c=0.71\right.$ in $\left.\mathrm{CHCl}_{3}\right)$. The enantiomeric ratio was determined by HPLC analysis on Daicel Chiralpak IA column $[n$-hexane $/ i-\mathrm{PrOH}=65 / 35,1 \mathrm{~mL} / \mathrm{min}], \lambda=210 \mathrm{~nm}, t_{\text {major }}=6.67 \mathrm{~min}, t_{\text {minor }}=5.40 \mathrm{~min}, \mathbf{e r}$ = 83: 17. The diastereomeric ratio was determined by NMR $\boldsymbol{d r} \mathbf{> 2 0 : 1}$.

7 was obtained as a white solid 12 mg in 37% yield after column chromatography on silica gel (petroleum ether/ethyl acetate $=3 / 1$). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.59-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.33(\mathrm{~m}, 3 \mathrm{H}), 6.75(\mathrm{dd}, J=10.4,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{dd}, J$ $=10.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.61(\mathrm{ddd}, J=10.0,8.9,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{q}, J=$ $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{dd}, J=11.4,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{dd}, J=11.4,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.61-2.38(\mathrm{~m}$, 2H), 1.21 (s, 9H) ppm. ${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) δ 196.3, 178.4, 148.1, 137.7, 133.3, 129.0, 128.8, 126.8, 79.5, 75.9, 75.6, 65.3, 40.9, 38.9, 27.4 ppm. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{NO}_{4}{ }^{+} 330.1700$, found 330.1701. $[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{20}-98.88\left(c=0.46\right.$ in $\left.\mathrm{CHCl}_{3}\right)$. The enantiomeric ratio was determined by HPLC analysis on Daicel Chiralpak IC column [n-hexane/i-PrOH $=65 / 35,1 \mathrm{~mL} / \mathrm{min}], \lambda=205 \mathrm{~nm}, t_{\text {major }}=6.35 \mathrm{~min}, t_{\text {minor }}=11.27 \mathrm{~min}, \mathbf{e r}=\mathbf{9 5 : 5}$. The diastereomeric ratio was determined by NMR $\boldsymbol{d r} \boldsymbol{> 2 0 : 1}$.

K. Control experiments:

To gain further insight into the reaction mechanism, extensive control experiments were carried out as followed.

(1) The reaction of 1 a and 2 f with $4 \AA$ MS as additive to identify the importance of $\mathrm{H}_{\mathbf{2}} \mathbf{O}$.

To the solution of (E)-7-oxo-7-phenylhept-5-enal 1a ($0.1 \mathrm{mmol}, 1.0$ equiv), amide $\mathbf{2 f}$ (0.12 mmol, 1.2 equiv) in MTBE (0.5 mL) with phosphoric acid A2 ($10 \mathrm{~mol} \%$), $4 \AA \mathrm{MS}(10 \mathrm{mg})$ was added at $0^{\circ} \mathrm{C}$. After stirred at $0^{\circ} \mathrm{C}$ for 7 d , the product 3 af was obtained in 20% yield with 90:10 er. Both yield and stereoselectivity of 3af reduced obviously (yield: 20\% vs 59%, $90: 10$ vs $95: 5$ er; contrast to reaction without $4 \AA \mathrm{MS})$. When increase the amount of $4 \AA$ MS to 20 mg , no reaction proceeded even moved to $25^{\circ} \mathrm{C}$.

(2) The reaction of 1 a and 2 f with MeOH as additive to identify the N -

 acetylimine intermediate.

To the solution of (E)-7-oxo-7-phenylhept-5-enal 1a ($0.05 \mathrm{mmol}, 1.0$ equiv) and amide $\mathbf{2 f}$ ($0.06 \mathrm{mmol}, 1.2$ equiv) in MTBE (0.2 mL) with A2 ($10 \mathrm{~mol} \%$), MeOH (1.0 equiv) was added at $25^{\circ} \mathrm{C}$. After completion of the reaction (about 24 h), the reaction mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate $=3: 1$). Acyclic aminal 8 was isolated as a colorless oil ($9 \mathrm{mg}, 50 \%$) without generation of cyclic 3af,
which suggested that the formation of N -acyliminium might be involved in the reaction process.

8: ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.93(\mathrm{dd}, J=8.3,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.58-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.47(\mathrm{t}, J$ $=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{dt}, J=15.4,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{dt}, J=15.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.71(\mathrm{~d}, J=9.6$ $\mathrm{Hz}, 1 \mathrm{H}), 5.17(\mathrm{dt}, J=10.0,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 2.40-2.30(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.56(\mathrm{~m}, 4 \mathrm{H})$, $1.23(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 190.8,178.8,148.9,137.9,132.7,128.5$, 128.2, 126.4, 80.8, 55.8, 35.2, 32.3, 27.6, 27.4, 23.6 ppm. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{NO}_{3}{ }^{+} 318.2064$, found 318.2063 . The diastereomeric ratio was determined by NMR $d r>20: 1$.

(3) The reaction of hemiaminal (\pm)-9 and amide $2 f$: an attempt to identify the dynamic dynamic resolution and the importance of $\mathbf{H}_{2} \mathbf{O}$.

The racemic hemiaminal 9 was prepared according to the procedure in known literature. ${ }^{[12]}$ The mixture of $\mathbf{9}$ and $\mathbf{2 f}$ was obtained in the ratio of 1:3 purified by column chromatography on silica gel (petroleum ether/ethyl acetate $=2: 1$).

Figure S1. the mixture of $\mathbf{(} \mathbf{\pm} \mathbf{- 9}$ and $\mathbf{2 f}$ in the ratio of $1: 3$

The solvent of mixture $\mathbf{(\pm) - 9}$ ($0.1 \mathrm{mmol}, 1.0$ equiv) and $\mathbf{2 f}(1: 3)$ in MTBE (0.5 mL) was added $\mathbf{A 2}$ ($10 \mathrm{~mol} \%$) at $0{ }^{\circ} \mathrm{C}$. After the reaction completion, the reaction was purified by column chromatography on silica gel (petroleum ether/ethyl acetate $=3: 1$) to afford 3af in 53\% yield with 93.5:6.5 er. Meanwhile, with the addition of $4 \AA$ MS (20 mg), the starting $\mathbf{(\pm) - 9}$ disappeared, but neither product 3af or material ($\mathbf{\pm} \mathbf{)} \mathbf{- 9}$ was detected. That means hemiaminal ($\mathbf{\pm} \mathbf{)}$-9 can't return to material 1a.

(4) The reaction of hemiaminal ($\mathbf{\pm} \mathbf{)}-9$ and amide $2 f$: an attempt to identify

 (R)-I undergoes rapid conversion to II, and then (S)-I is formed.

The solvent of mixture ($\mathbf{\pm} \mathbf{)} \mathbf{- 9}$ ($0.1 \mathrm{mmol}, 1.0$ equiv) and $\mathbf{2 f}(1: 3)$ in MTBE (0.5 mL) was added $\mathrm{H}_{2} \mathrm{O}^{18}$ (10.0 equiv) and $\mathbf{A 2}(10 \mathrm{~mol} \%)$ at $0^{\circ} \mathrm{C}$. After the reaction completion, the reaction was purified by column chromatography on silica gel (petroleum ether/ethyl acetate $=3: 1$) to afford 3af and 0^{18} labeled 3af in 70\% yield with 94:6 er, which was detected by ${ }^{13}$ CNMR and LC-MS.

Figure S2. ${ }^{13} \mathrm{C}$ NMR of $\mathrm{O}^{16 / 18}$ labeled $\mathbf{3 a f}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Figure S3. The LC-MS spectrum of $\mathrm{O}^{16 / 18}$ labeled 3af
(5) ${ }^{1} \mathrm{H}$ NMR of the reaction mixture: an attempt to identify the hemiaminal 9 intermediate.

A 4 mL vial was charged with $\mathbf{1 a}(0.1 \mathrm{mmol}, 1.0$ equiv), amide $\mathbf{2 f}$ ($0.12 \mathrm{mmol}, 1.2$ equiv) and $\mathbf{A 2}(10 \mathrm{~mol} \%)$ in $\mathrm{CDCl}_{3}(0.5 \mathrm{~mL})$ at $25^{\circ} \mathrm{C}$. Due to the amount of water in CDCl_{3} is trace, the reaction became slow. After stirred at $25{ }^{\circ} \mathrm{C}$ for 8 d , the reaction solvent was transferred to the nuclear magnetic tube for crude NMR.

According to the crude NMR for the reaction of 1a and 2f, N,O-aminal 3af generated in single configuration, while no hemiaminal 9 was detected, means that the hemiaminal 9 is unstable under acid condition.

Figure S4. Red: crude NMR of $1 \mathbf{1}$ and 2 f under standard conditions; Green: the ${ }^{1} \mathrm{H}$ NMR of hemiaminal $\mathbf{9}$ and $\mathbf{2 f}$; Blue: the ${ }^{1} \mathrm{H}$ NMR of product 3af.

(6) Quenching reaction of $1 p$ and $2 f$ under standard conditions: an attempt

to identify the hemiaminal intermediate.

Quench the reaction of $\mathbf{1 p}$ ($0.1 \mathrm{mmol}, 1.0$ equiv) and $\mathbf{2 f}(0.12 \mathrm{mmol}, 1.2$ equiv) after 2 d under standard condition ($10 \mathrm{~mol} \% \mathrm{~A} 2,0.5 \mathrm{~mL}$ MTBE, $0^{\circ} \mathrm{C}$) by column chromatography on silica gel (petroleum ether/ethyl acetate $=3: 1$ to 2:1) to afford 10 as a colorless oil (12 $\mathrm{mg}, 40 \%, 55.5: 44.5 \mathrm{er}$) and $\mathbf{3 p f}$ as a colorless oil ($10 \mathrm{mg}, 33 \%, 97.5: 2.5 \mathrm{er}$). If the reaction stirred at $0^{\circ} \mathrm{C}$ for $\mathbf{7 d}$, hemiaminal $\mathbf{1 0}$ could be consumed completely and transformed to 3af ($22 \mathrm{mg}, 72 \%, 97.5: 2.5 \mathrm{er}$).

10: ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.96(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.60-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=7.7$ $\mathrm{Hz}, 2 \mathrm{H}), 7.18(\mathrm{dt}, J=15.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{dt}, J=15.6,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H})$, $5.60(\mathrm{~s}, 1 \mathrm{H}), 5.50(\mathrm{dt}, J=7.5,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.43-4.33(\mathrm{~m}, 2 \mathrm{H}), 3.77-3.65(\mathrm{~m}, 2 \mathrm{H}), 1.22(\mathrm{~s}$, 9H) ppm. ${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) $\delta 196.6,178.0,136.7,133.4,128.7,128.2,75.7,71.8$, 69.8, 68.8, 40.8, 38.9, 27.4 ppm. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{NO}_{4}{ }^{+}$306.1700, found 306.1704. The enantiomeric ratio was determined by HPLC analysis on Daicel Chiralpak AD-H column [n-hexane $/ i-\mathrm{PrOH}=85 / 15,1 \mathrm{~mL} / \mathrm{min}], \lambda=250 \mathrm{~nm}, t_{\text {major }}=12.95 \mathrm{~min}, t_{\text {minor }}$ $=13.66 \mathrm{~min}, \mathrm{er}=\mathbf{5 5 : 4 5}$. The diastereomeric ratio was determined by ${ }^{1} \mathrm{H} N M R, \boldsymbol{d r}>\mathbf{2 0}: \mathbf{1}$.

(7) The reaction of 10 under standard conditions: an attempt to identify the dynamic kinetic resolution

Hemiaminal 10 ($12 \mathrm{mg}, 0.04 \mathrm{mmol}, 1.0$ equiv) was redissolved in MTBE (0.16 mL), then A2 (10 mol \%) was added to the solvent at $0^{\circ} \mathrm{C}$. After the reaction finished ($\mathbf{1 0}$ was consumed monitored by TLC), the mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate $=3: 1$) to afford 3af as a colorless oil ($7 \mathrm{mg}, 58 \%$, 96.5:3.5 er). These reactions mean that the hemiaminal 10 was the intermediate with poor enantioselectivity during the tandem reaction.

(8) The reaction of ent-10 in standard condition.

Ent-10 was obtained in 50\% yield with 66:34 er by recrystallization of ent-10 with 58:42 from ether and n-hexane. Resubject hemiaminal ent-10 $(R: S=66: 34)$ to the standard
reaction condition for about 7 d . Then 3pf was obtained in 59\% with 96:4 er, which means that ent-10 could turn to $\mathbf{1 0}$ through imide II, and the reaction process is a DKR.

(9) The reaction of 11 and amide $2 f$ under standard conditions to identify the poor stereoselectivity of first step.

To a solvent of $\mathbf{1 1}$ ($0.1 \mathrm{mmol}, 1.0$ equiv), amide $\mathbf{2 f}$ ($0.12 \mathrm{mmol}, 1.2$ equiv) was added under standard condition ($10 \mathrm{~mol} \% \mathbf{A 2}, 0.2 \mathrm{~mL}$ MTBE, $0^{\circ} \mathrm{C}$). After the reaction completion, the mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate $=3: 1$) to afford 12 as a colorless oil ($18 \mathrm{mg}, 59 \%$). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.96(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.61-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.72(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H})$, $5.41(\mathrm{dt}, J=7.3,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 1 \mathrm{H}), 3.66-3.54(\mathrm{~m}, 4 \mathrm{H}), 3.08(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.07$ ($\mathrm{p}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}$), $1.19(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 199.8,180.1,136.8$, 133.1, 128.6, 128.0, 73.2, 71.8, 70.9, 38.7, 35.0, 27.3, 24.2 ppm. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{NO}_{4}{ }^{+} 308.1856$, found 308.1856 . The enantiomeric ratio was determined by HPLC analysis on Daicel Chiralpak AD-H column [n-hexane $/ i-\mathrm{PrOH}=90 / 10,1 \mathrm{~mL} / \mathrm{min}$], $\lambda=240$ $\mathrm{nm}, t_{\text {major }}=17.41 \mathrm{~min}, t_{\text {minor }}=22.52 \mathrm{~min}$, er $=58: 42$. The diastereomeric ratio was determined by NMR $\boldsymbol{d r} \boldsymbol{> 2 0 : 1}$.

L. The possible mechanism for asymmetric reaction:

Scheme S3. Proposed mechanism

Weaker 1,3-diaxial interactions
Stronger 1,3-diaxial interactions
$\mathrm{Nu}=$ amide

Figure S5. Proposed TS of the reaction
The proposed mechanism of this acid-catalyzed reaction sequence is provided in Scheme S3. The reaction of 1a and $\mathbf{2 f}$ led to hemiaminals I and II with poor enantioselectivities, which was quite unstable and transformed into N -acetylimine \mathbf{C} after elimination of $\mathrm{H}_{2} \mathrm{O}$; the formation of \mathbf{C} can be evidenced by the reaction with MeOH to access aminal 8. Under the reaction conditions, the water, which was proved to be crucial for this reaction to occur, will attack III to regenerate hemiaminal I/II. Then, hemiaminal II could undergo a
subsequent intramolecular oxa-Michael addition from the substrate/catalyst matched chair-like conformation, resulting in 3af bearing two stereogenic centres with a favorable cis configuration. At this stage, hemiaminal I was converted into II by a dynamic kinetic resolution, where N -acetylimine III can be considered as the intermediate. And the transient state of the reaction was shown in Figure S5. These two substituents of cycloadducts are bigger groups compared with H group. When they are on the cisorientation, they could be equatorial position in a six-membered oxacycle, enabling weaker 1,3-diaxial interactions.

M. Synthetic transformations:

6-(2-oxo-2-phenylethyl)tetrahydro-2H-pyran-2-one 13:

To a solvent of ($\mathbf{\pm}$)-3aa ($32 \mathrm{mg}, 0.1 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ with a magnetic rotor was added m-CPBA ($0.12 \mathrm{mmol}, 1.2$ equiv) and $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ ($0.2 \mathrm{mmol}, 2.0$ equiv) at $25^{\circ} \mathrm{C}$ and stirred until the reaction completed (detected by TLC) for about 9 h . The mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate $=3: 1$) to afford 13 (18 mg, 83\%) as a colorless crystalline solid. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.98$ - $7.92(\mathrm{~m}, 2 \mathrm{H}), 7.63-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.52-7.45(\mathrm{~m}, 2 \mathrm{H}), 4.99$ (dddd, $J=10.6,7.2,5.3,3.1$ $\mathrm{Hz}, 1 \mathrm{H}), 3.56(\mathrm{dd}, J=17.3,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{dd}, J=17.3,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{dtd}, J=17.5$, 6.4, 1.0 Hz, 1H), $2.50(\mathrm{dt}, J=17.5,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.17(\mathrm{dtdd}, J=13.8,4.7,3.1,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.96$ (tdd, $J=7.9,7.1,5.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.65-1.59(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 196.4$, 171.4, 136.6, 133.6, 128.8, 128.1, $76.5,44.3,29.3,27.9,18.4$ ppm. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{O}_{3}{ }^{+}$219.1016, found 219.1017. The diastereomeric ratio was determined by NMR $\boldsymbol{d r} \mathbf{> 2 0 : 1 .}$

phenyl 2-(6-benzamidotetrahydro-2H-pyran-2-yl)acetate (\pm)-14:

To a solvent of ($\mathbf{\pm}$)-3aa ($32 \mathrm{mg}, 0.1 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ with a magnetic rotor was added m-CPBA ($0.3 \mathrm{mmol}, 3.0$ equiv), $\mathrm{Na}_{2} \mathrm{HPO}_{4}(0.3 \mathrm{mmol}, 3.0$ equiv) and TFA (0.4 mmol , 4.0 equiv) at $25^{\circ} \mathrm{C}$ and stirred until the reaction completed (detected by TLC) for about 3 d. The mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate $=3: 1$) to afford $\mathbf{(\pm)} \mathbf{- 1 4}(26 \mathrm{mg}, 77 \%)$ as a colorless oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.80(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.54-7.47(\mathrm{~m}, 1 \mathrm{H}), 7.43(\mathrm{dd}, J=8.2,6.7 \mathrm{~Hz}, 2 \mathrm{H})$, $7.38-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.60(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.45(\mathrm{ddd}, J=10.8,9.0,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.23-4.08(\mathrm{~m}, 1 \mathrm{H}), 2.82(\mathrm{dd}, J=14.9,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.72$ (dd, $J=14.9,6.1 \mathrm{~Hz}, 1 \mathrm{H}$), 1.96 (ddt, $J=16.6,11.9,2.7 \mathrm{~Hz}, 2 \mathrm{H}$), $1.80-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.54-$ $1.41(\mathrm{~m}, 1 \mathrm{H}), 1.41-1.27(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 169.5, 166.6, 150.7, 134.0, 131.9, 129.4, 128.6, 127.1, 125.9, 121.7, 78.8, 74.0, 41.5, 31.2, 30.3, 22.7 ppm. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{NO}_{4}{ }^{+} 340.1543$, found 340.1550 . The diastereomeric ratio was determined by ${ }^{1} \mathrm{H}$ NMR, $\boldsymbol{d r} \boldsymbol{> 2 0 : 1}$.

phenyl 2-(6-oxotetrahydro-2H-pyran-2-yl)acetate 15:

To a solvent of ($\mathbf{\pm}$)-3aa ($\mathbf{3 2} \mathbf{~ m g}, 0.1 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ with a magnetic rotor was added m-CPBA ($1.0 \mathrm{mmol}, 10.0$ equiv) and $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}\left(0.2 \mathrm{mmol}, 2.0\right.$ equiv) at $25{ }^{\circ} \mathrm{C}$ and stirred until the reaction completed (detected by TLC) for about 36 h . The mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate $=3: 1$) to afford 15 ($18 \mathrm{mg}, 77 \%$) as a colorless oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42-7.36(\mathrm{~m}, 2 \mathrm{H})$, $7.26-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.13-7.08(\mathrm{~m}, 2 \mathrm{H}), 4.86(\mathrm{dddd}, J=11.1,6.8,6.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{dd}$, $J=16.3,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{dd}, J=16.3,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{dddd}, J=17.8,6.7,5.4,1.1 \mathrm{~Hz}$, 1H), 2.51 (ddd, $J=17.7,8.7,7.2 \mathrm{~Hz}, 1 \mathrm{H}$), $2.15-2.07(\mathrm{~m}, 1 \mathrm{H}), 2.05-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.78-$ $1.63(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.8,168.4,150.4,129.5,126.1,121.5$, 76.2, 40.6, 29.3, 27.5, 18.4 ppm. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{O}_{4}{ }^{+}$235.0965, found 235.0964. The diastereomeric ratio was determined by NMR $\boldsymbol{d r} \boldsymbol{\mathbf { 2 0 } : \mathbf { 1 } \text { . } ~}$

3,11-diphenyl-2,10,17,18-tetraoxatricyclo[11.3.1.15,9]octadecane (\pm)-16:

To a solvent of ($\mathbf{\pm} \mathbf{)} \mathbf{- 3 a a}(48 \mathrm{mg}, 0.15 \mathrm{mmol})$ in $\mathrm{MeOH}(1.0 \mathrm{~mL})$ with a magnetic rotor was added NaBH_{4} ($0.23 \mathrm{mmol}, 1.5$ equiv) at $0{ }^{\circ} \mathrm{C}$ and stirred for 0.5 h . After the reaction completed (detected by TLC for about 2 h), the reaction mixture was extracted with ethyl acetate ($3 \times 3 \mathrm{~mL}$) and water ($3 \times 3 \mathrm{~mL}$). Combined the organic layer, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was removed under vacuum. The mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate $=2: 1$) to afford $\mathbf{S} 6(46 \mathrm{mg}$, 94\%). To a solvent of $\mathbf{S 6}$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ was added $\mathrm{TsOH}\left(4.0\right.$ equiv) at $25^{\circ} \mathrm{C}$. After the reaction completed (detected by TLC), the mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate $=25: 1$) to afford $\mathbf{(\pm) - 1 6 (1 2}$ $\mathrm{mg}, 39 \%$ for 2 steps) as a white solid. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40-7.31(\mathrm{~m}, 8 \mathrm{H})$, $7.28-7.22(\mathrm{~m}, 2 \mathrm{H}), 5.18(\mathrm{dd}, J=11.5,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.77(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.50(\mathrm{tt}, J=11.4$, $1.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.04-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.82(\mathrm{ddd}, J=14.5,11.5,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.75-1.55(\mathrm{~m}, 10 \mathrm{H})$, 1.38 - $1.24(\mathrm{~m}, 2 \mathrm{H}) . \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.8,128.3,127.1,126.5,95.5$, 74.1, $66.3,45.3,31.3,30.0,19.2$ ppm. HRMS: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd. For $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{NaO}_{4}{ }^{+}$431.2193, found 431.2180. The diastereomeric ratio was determined by NMR $\boldsymbol{d r} \boldsymbol{>} \mathbf{2 0 : 1}$.

(R)-4-benzyl-3-((2R,6S)-6-((E)-2-(hydroxyimino)-2-phenylethyl)tetrahydro-2H-

 pyran-2-yl)oxazolidin-2-one 17:

To a solvent of 3as ($20 \mathrm{mg}, 0.05 \mathrm{mmol}$) in EtOH (0.5 mL) with a magnetic rotor was added $\mathrm{NaHCO}_{3}\left(0.075 \mathrm{mmol}, 1.5\right.$ equiv) and $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}(0.075 \mathrm{mmol}, 1.5$ equiv) at room
temperature. Then the reaction stirred at $80^{\circ} \mathrm{C}$ for 12 h . The mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate $=2: 1$) to afford 17 ($15 \mathrm{mg}, 76 \%$) as a white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.14(\mathrm{~s}, 1 \mathrm{H}), 7.66-7.60(\mathrm{~m}$, 2H), $7.35-7.27(\mathrm{~m}, 5 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.13-7.08(\mathrm{~m}, 2 \mathrm{H}), 4.98(\mathrm{dd}, J=10.4,2.9 \mathrm{~Hz}$, $1 \mathrm{H}), 4.08-3.97(\mathrm{~m}, 2 \mathrm{H}), 3.97-3.87(\mathrm{~m}, 2 \mathrm{H}), 3.20(\mathrm{dd}, J=14.1,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{dd}, J=$ $13.3,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{dd}, J=13.3,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{dd}, J=14.1,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.01-1.91$ (m, 1H), 1.81-1.66(m, 3H), $1.59(\mathrm{dt}, J=13.0,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.36-1.26(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.1,136.4,136.3,129.2,129.1,128.8,128.4,127.0,126.7,82.7$, 75.4, 66.7, 54.4, 39.8, 32.8, 30.6, 28.4, 22.9 ppm. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{4}{ }^{+}$ 395.1965, found 395.1976. $[\alpha]_{D_{0}}{ }^{20}-12.75\left(c=0.54\right.$ in $\left.\mathrm{CHCl}_{3}\right)$. The diastereomeric ratio was determined by NMR $\boldsymbol{d r} \boldsymbol{> 2 0 : 1}$.
(R)-4-benzyl-3-((2R,6S)-6-((S)-2-hydroxy-2-phenylethyl)tetrahydro-2H-pyran-2-yl)oxazolidin-2-one 18 and (R)-4-benzyl-3-((2R,6S)-6-((R)-2-hydroxy-2-phenylethyl)tetrahydro-2H-pyran-2-yl)oxazolidin-2-one 19:

To a solvent of 3as ($76 \mathrm{mg}, 0.2 \mathrm{mmol}$) in $\mathrm{MeOH}(1.0 \mathrm{~mL})$ with a magnetic rotor was added $\mathrm{NaBH}_{4}\left(0.3 \mathrm{mmol}, 1.5\right.$ equiv) at $0{ }^{\circ} \mathrm{C}$ and stirred for 1 h . After the reaction completed (detected by TLC), the reaction mixture was extracted with ethyl acetate ($3 \times 3 \mathrm{~mL}$) and water ($3 \times 3 \mathrm{~mL}$). Combined the organic layer, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was removed under vacuum. The mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate $=2: 1$) to afford 18 ($42 \mathrm{mg}, 55 \%$) as a colorless oil and 19 ($14 \mathrm{mg}, 18 \%$) as a colorless oil for NMR.

18: ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{t}, J=7.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.27(\mathrm{t}, J=$ $6.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.13(\mathrm{dd}, J=10.5,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{dd}, J=8.8,4.2 \mathrm{~Hz}$, 1H), $4.19-4.02(\mathrm{~m}, 3 \mathrm{H}), 3.79-3.68(\mathrm{~m}, 1 \mathrm{H}), 3.47(\mathrm{dd}, J=14.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{~s}, 1 \mathrm{H})$,
$2.82-2.66(\mathrm{~m}, 1 \mathrm{H}), 2.08-1.94(\mathrm{~m}, 2 \mathrm{H}), 1.80(\mathrm{tq}, J=9.3,2.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.66(\mathrm{dt}, J=12.9,4.0$ $\mathrm{Hz}, 1 \mathrm{H}), 1.62-1.54(\mathrm{~m}, 1 \mathrm{H}), 1.34-1.23(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 157.2$, 144.3, 136.1, 129.2, 129.0, 128.4, 127.4, 127.2, 125.9, 82.5, 78.1, 73.4, 66.8, 54.6, 45.3, 40.4, 31.0, 28.3, 22.8 ppm. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{NO}_{4}{ }^{+}$382.2013, found 382.2017. $[\alpha]_{\mathrm{D}}{ }^{20}-26.84\left(c=1.83\right.$ in $\left.\mathrm{CHCl}_{3}\right)$. The diastereomeric ratio was determined by NMR $d r>20: 1$.

19: ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40-7.31$ (m, 6H), $7.29-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.19(\mathrm{~m}$, $2 \mathrm{H}), 5.08(\mathrm{dd}, J=9.9,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{dd}, J=7.6,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{qq}, J=7.7,3.6 \mathrm{~Hz}, 3 \mathrm{H})$, 3.76 (ddt, $J=11.5,9.0,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{dd}, J=14.3,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.87-2.60(\mathrm{~m}, 1 \mathrm{H}), 1.99$ (dt, $J=14.6,4.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.90(\mathrm{ddd}, J=14.4,7.6,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.85-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.67$ (ddd, $J=21.0,10.4,4.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.58-1.51(\mathrm{~m}, 1 \mathrm{H}), 1.35(\mathrm{ddd}, J=13.3,11.4,4.2 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$. ${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.3,144.6,136.1,129.2,128.9,128.4,127.1,127.1,125.7$, 82.5, 75.4, 71.2, 66.7, 54.6, 44.4, 40.2, 30.7, 28.4, 22.9 ppm. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{NO}_{4}{ }^{+}$382.2013, found 382.2015. $[\alpha]_{D^{20}}^{20} 16.06$ ($c=0.58$ in CHCl_{3}). The diastereomeric ratio was determined by NMR $\boldsymbol{d r} \boldsymbol{> 2 0 : 1}$.

To a solvent of $\mathbf{1 9}$ ($14 \mathrm{mg}, 1.0$ equiv) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (0.5 mL) was added TsOH (4.0 equiv) at $25^{\circ} \mathrm{C}$. After the reaction completed (detected by TLC for 4 h), the mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate $=25: 1$) to afford 16 ($4 \mathrm{mg}, 53 \%$) as a white solid. $[\alpha]_{\mathrm{D}}{ }^{20} 135.18\left(c=0.42\right.$ in $\left.\mathrm{CHCl}_{3}\right)$. The enantiomeric ratio was determined by HPLC analysis on Daicel Chiralpak IC column $[n$-hexane $/ i-\operatorname{PrOH}=$ $90 / 10,1 \mathrm{~mL} / \mathrm{min}], \lambda=210 \mathrm{~nm}, t_{\text {major }}=3.60 \mathrm{~min}, t_{\text {minor }}=4.22 \mathrm{~min}, \mathbf{e r}:>99.9: 0.1$. The diastereomeric ratio was determined by ${ }^{1} \mathrm{H}$ NMR, $\boldsymbol{d r} \boldsymbol{> 2 0 : 1}$.

phenyl 2-((2R,6S)-6-pivalamidotetrahydro-2H-pyran-2-yl)acetate 20:

To a solvent of $3 \mathbf{a f}(30 \mathrm{mg}, 0.1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ with a magnetic rotor was added m-CPBA ($0.3 \mathrm{mmol}, 3.0$ equiv), $\mathrm{Na}_{2} \mathrm{HPO}_{4}(0.3 \mathrm{mmol}, 3.0$ equiv) and TFA ($0.4 \mathrm{mmol}, 4.0$ equiv) at $25{ }^{\circ} \mathrm{C}$ and stirred until the reaction completed (detected by TLC) for about 3 d . The mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate $=3: 1$) to afford $\mathbf{2 0}(23 \mathrm{mg}, 72 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.36(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.04(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$, 5.23 (ddd, $J=11.1,8.9,2.3 \mathrm{~Hz}, 1 \mathrm{H}$), 4.10 (dddd, $J=11.3,7.8,6.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.79 (dd, $J=$ $14.7,7.5 \mathrm{~Hz}, 1 \mathrm{H}$), $2.70(\mathrm{dd}, J=14.7,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.94(\mathrm{ddd}, J=11.0,4.6,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.85-$ $1.76(\mathrm{~m}, 2 \mathrm{H}), 1.69(\mathrm{td}, J=9.2,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.39-1.26(\mathrm{~m}, 2 \mathrm{H}), 1.20(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 177.8,169.6,150.7,129.4,125.8,121.7,78.5,74.0,41.6,38.7,31.0$, 30.3, 27.4, 22.7 ppm. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{NO}_{4}{ }^{+} 320.1856$, found 320.1866 . $[\alpha]_{\mathrm{D}}{ }^{20} 10.55\left(c=1.96\right.$ in $\left.\mathrm{CHCl}_{3}\right)$. The enantiomeric ratio was determined by HPLC analysis on Daicel Chiralpak IC column [n-hexane $/ i-\mathrm{PrOH}=70 / 30,1 \mathrm{~mL} / \mathrm{min}$], $\lambda=205 \mathrm{~nm}, t_{\text {major }}=$ $11.67 \mathrm{~min}, t_{\text {minor }}=11.08 \mathrm{~min}$, er $=93: 7$. The diastereomeric ratio was determined by ${ }^{1} \mathrm{H}$ NMR, $\boldsymbol{d r} \boldsymbol{> 2 0 : 1 .}$

N. Large scale reaction:

N1: Large scale for the synthesis of racemic 3aa:

A glass vial equipped with a magnetic stirring bar was charged with (E)-7-oxo-7-phenylhept-5-enal 1a (1.0 mmol or $1.5 \mathrm{mmol}, 1.0$ equiv), TsOH (0.1 equiv) and amide $\mathbf{2 a}$ (1.2 equiv) in $\mathrm{CHCl}_{3}(0.2 \mathrm{M})$ and the resultant solution was stirred at $25{ }^{\circ} \mathrm{C}$ until the material 1a disappeared. After completion of the reaction, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate $=3: 1$) to afford (\pm)-3aa as a white solid ($258 \mathrm{mg}, 80 \%$ for $1.0 \mathrm{mmol} ; 402 \mathrm{mg}, 83 \%$ for 1.5 mmol).

N2: Large scale for the synthesis of 3as:

A glass vial equipped with a magnetic stirring bar was charged with (E)-7-oxo-7-phenylhept-5-enal 1a ($1.0 \mathrm{mmol}, 1.0$ equiv), TsOH (0.1 equiv) and amide $\mathbf{2 s}$ (1.2 equiv) in $\mathrm{CHCl}_{3}(5 \mathrm{~mL})$ and the resultant solution was stirred at $0{ }^{\circ} \mathrm{C}$ until the material 1a disappeared. After completion of the reaction, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate $=2: 1$) to afford 3as as a colorless oil ($258 \mathrm{mg}, 68 \%$, >99.9:0.1 er).

N3: Large scale for the synthesis of 3af:

A glass vial equipped with a magnetic stirring bar was charged with (E)-7-oxo-7-phenylhept-5-enal 1a (1.0 mmol, 1.0 equiv), A2 (10 mol\%.) and amide $\mathbf{2 f}$ (1.2 equiv) in $\mathrm{CHCl}_{3}(5 \mathrm{~mL})$ and the resultant solution was stirred at $0{ }^{\circ} \mathrm{C}$ until the material 1a disappeared. After completion of the reaction, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate $=3: 1$) to afford 3af as a colorless oil ($230 \mathrm{mg}, 76 \%, 93.5: 6.5 \mathrm{er}$).

0. Failed substrates:

01. Diamides compound:

Diamides compound was obtained when aldehyde $\mathbf{1 q - 1 u}$ was used as material to react with amide $\mathbf{2 f}$ catalyzed by TsOH (10 mol\%) or A2(10 mol $\%$).

A glass vial equipped with a magnetic stirring bar was charged with $\mathbf{1 q}$ ($0.1 \mathrm{mmol}, 1.0$ equiv), TsOH ($1.7 \mathrm{mg}, 0.1$ equiv) and amide $\mathbf{2 f}$ ($0.12 \mathrm{mmol}, 1.2$ equiv) in $\mathrm{CHCl}_{3}(0.5 \mathrm{~mL})$ and the resultant solution was stirred at $25{ }^{\circ} \mathrm{C}$ until the material $1 \mathbf{q}$ disappeared. After completion of the reaction, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate $=3: 1$) to afford 21a ($16 \mathrm{mg}, 67 \%$) as a white solid. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.62(\mathrm{dt}, J=6.9,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.55-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.45-$ $7.37(\mathrm{~m}, 2 \mathrm{H}), 6.97(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.23(\mathrm{tq}, J=7.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{p}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $2.29(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.99(\mathrm{dd}, J=8.8,6.9 \mathrm{~Hz}, 5 \mathrm{H}), 1.42(\mathrm{tt}, J=10.3,6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.15(\mathrm{~s}$, $18 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 198.9,179.2,145.4,138.6,137.0,131.4,129.3$, 128.1, 58.5, 38.8, 33.1, 28.5, 27.3, 25.3, 12.6 ppm. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For $\mathrm{C}_{24} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+}$ 401.2799, found 401.2791. The diastereomeric ratio was determined by NMR $\boldsymbol{d r} \boldsymbol{> 2 0 : 1}$.

A glass vial equipped with a magnetic stirring bar was charged with $\mathbf{1 r}(0.1 \mathrm{mmol}, 1.0$ equiv), $\mathrm{TsOH}\left(1.7 \mathrm{mg}, 0.1\right.$ equiv) and amide $2 f\left(0.12 \mathrm{mmol}, 1.2\right.$ equiv) in CHCl_{3} (0.5 mL) and the resultant solution was stirred at $25^{\circ} \mathrm{C}$ until the material $\mathbf{1 r}$ disappeared. After completion of the reaction, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate $=2: 1$) to afford 21b ($10 \mathrm{mg}, 45 \%$) as a white solid. The product 32b also could be obtained ($8 \mathrm{mg}, 36 \%$) catalyzed by $\mathbf{A 2}$ ($10 \mathrm{~mol} \%$)
for about $7 \mathrm{~d} .{ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.76-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.45$ $(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.95(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(\mathrm{~s}, 1 \mathrm{H}), 5.13(\mathrm{p}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.17(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.19(\mathrm{~s}, 18 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 198.5,179.2,146.6,137.6,132.3,129.6,128.3,127.8,58.2,38.9,32.5$, 28.5, 27.4 ppm. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+} 373.2486$, found 373.2488. The diastereomeric ratio was determined by NMR $\boldsymbol{d r} \boldsymbol{> 2 0 : 1}$.

A glass vial equipped with a magnetic stirring bar was charged with $\mathbf{1 s}$ ($0.1 \mathrm{mmol}, 1.0$ equiv), $\mathrm{TsOH}\left(1.7 \mathrm{mg}, 0.1\right.$ equiv) and amide $2 f\left(0.12 \mathrm{mmol}, 1.2\right.$ equiv) in $\mathrm{CHCl}_{3}(0.5 \mathrm{~mL})$ and the resultant solution was stirred at $25{ }^{\circ} \mathrm{C}$ until the material 1 s disappeared. After completion of the reaction, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate $=3: 1$) to afford 21c ($10 \mathrm{mg}, 47 \%$) as a white solid. ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.90(\mathrm{p}, J=7.7,6.9 \mathrm{~Hz}, 3 \mathrm{H}), 5.80(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H})$, $5.05(\mathrm{p}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.21(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.97(\mathrm{q}, J=7.8 \mathrm{~Hz}$, $2 \mathrm{H}), 1.45(\mathrm{p}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.15(\mathrm{t}, J=1.3 \mathrm{~Hz}, 18 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 179.2,166.6,148.3,121.8,60.2,58.4,38.8,32.8,31.5,27.3,24.7,14.3$ ppm. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For $\mathrm{C}_{19} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{4}{ }^{+}$355.2591, found 355.2591. The diastereomeric ratio was determined by NMR $\boldsymbol{d r} \boldsymbol{> 2 0 : 1}$.

A glass vial equipped with a magnetic stirring bar was charged with $\mathbf{1 t}$ ($0.1 \mathrm{mmol}, 1.0$ equiv), $\mathrm{TsOH}\left(1.7 \mathrm{mg}, 0.1\right.$ equiv) and amide $\mathbf{2 f}$ (0.12 mmol , 1.2 equiv) in CHCl_{3} (0.5 mL) and the resultant solution was stirred at $25{ }^{\circ} \mathrm{C}$ until the material $1 \mathbf{t}$ disappeared. After
completion of the reaction, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate $=2.5: 1$) to afford $\mathbf{2 1 d}(24 \mathrm{mg}, 95 \%)$ as a white solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.54-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.23-7.15(\mathrm{~m}, 2 \mathrm{H}), 6.93(\mathrm{dd}, J=$ $7.7,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.04(\mathrm{p}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{dt}, J=7.7,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.14-1.92(\mathrm{~m}, 2 \mathrm{H})$, $1.60-1.36(\mathrm{~m}, 2 \mathrm{H}), 1.20(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.14(\mathrm{~s}, 9 \mathrm{H}), 1.13(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 185.1, 179.4, 133.9, 130.7, 129.0, 126.9, 111.9, 111.8, 87.7, 58.2, 41.4, 38.8, 31.4, 31.3, 27.3, 18.8 ppm. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For $\mathrm{C}_{25} \mathrm{H}_{35} \mathrm{~N}_{4} \mathrm{O}_{2}{ }^{+}$423.2755, found 423.2756. The diastereomeric ratio was determined by NMR $\boldsymbol{d r} \boldsymbol{> 2 0 : 1}$.

A glass vial equipped with a magnetic stirring bar was charged with $\mathbf{1 u}(0.1 \mathrm{mmol}, 1.0$ equiv), TsOH (1.7 mg , 0.1 equiv) and amide $\mathbf{2 f}$ (0.12 mmol , 1.2 equiv) in CHCl_{3} (0.5 mL) and the resultant solution was stirred at $25^{\circ} \mathrm{C}$ until the material $\mathbf{1 u}$ disappeared. After completion of the reaction, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate $=3: 1$) to afford 21e ($14 \mathrm{mg}, 32 \%$) as a white solid and 21e' (10 mg, 30\%) as a yellow solid.

21e: ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.14(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.07-8.01(\mathrm{~m}, 2 \mathrm{H}), 7.73(\mathrm{dd}, J$ $=7.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.56-7.46(\mathrm{~m}, 3 \mathrm{H}), 7.37-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.25(\mathrm{dd}, J$ $=7.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.30(\mathrm{p}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $1.09(\mathrm{~s}, 18 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 190.3,179.1,141.5,138.1,137.6,134.2$, 132.9, 131.6, 130.2, 128.7, 128.6, 127.5, 126.8, 124.2, 59.2, 38.8, 36.7, 27.3 ppm. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For $\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+} 435.2642$, found 435.2648. The diastereomeric ratio was determined by NMR $\boldsymbol{d r} \mathbf{> 2 0 : 1}$.

21e': ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.18(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.07-8.02(\mathrm{~m}, 2 \mathrm{H}), 7.67(\mathrm{dd}, J$ $=7.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.56-7.44(\mathrm{~m}, 6 \mathrm{H}), 7.38-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.29-7.22$ $(\mathrm{m}, 1 \mathrm{H}), 6.52(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.30(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 190.1$, $175.9,142.3,137.0,133.0,132.3,130.6,128.7,128.5,126.9,126.9,126.1,125.7,123.3$, 108.9, 38.9, 27.4 ppm. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{NO}_{2}{ }^{+}$334.1802, found 334.1812. The diastereomeric ratio was determined by NMR $\boldsymbol{d r} \boldsymbol{> 2 0 : 1}$.

02. Amides with no products formed:

Scheme S4. amides with larger steric hindrance
Compared to amides 2d, 2m, 2n and $\mathbf{2 p}$, the reactions of $\mathbf{1 a}$ and amides with larger steric hindrance all failed, that 1a disappeared and amides remained without product (Scheme S4).

Scheme S5. amides with more acidic N-H
Compared to amides $\mathbf{2 a}, \mathbf{2 e}, \mathbf{2 d}$ and $\mathbf{2 s}$, the reactions of $\mathbf{1 a}$ and amides with more acidic $\mathrm{N}-\mathrm{H}$ all failed, that 1a disappeared and amides remained without product (Scheme S5).

P. The stability of 1a in present of A2:

A: 1a in CDCl_{3} (with 0.1 M PhOCH 3 as internal standard)

A: 1a $(15.5 \mathrm{mg})$ was dissolved in $\mathrm{CDCl}_{3}(0.55 \mathrm{~mL})$ containing $\mathrm{PhOCH}_{3}(0.1 \mathrm{M})$ as internal standard. The mixture was used for crude NMR to get the purification of 1a without A2 after $12 \mathrm{~h}, 36 \mathrm{~h}, 60 \mathrm{~h}$ at room temperature.

B: 1a, A2 (10 mol\%) in CDCl_{3} (with 0.1 M PhOCH 3 as internal standard)

B: To the solution of $\mathbf{1 a}(15.5 \mathrm{mg})$ in $\mathrm{CDCl}_{3}(0.55 \mathrm{~mL})$ containing $\mathrm{PhOCH}_{3}(0.1 \mathrm{M})$ as internal standard, A2 (10 mol\%) was added. The mixture was used for crude NMR to get the purification of $\mathbf{1 a}$ in present of $\mathbf{A} \mathbf{2}$ after $12 \mathrm{~h}, 36 \mathrm{~h}, 60 \mathrm{~h}$ at room temperature.

Figure S6. Purity of 1a vs. time in CDCl_{3}.

As shown on Figure S6, the purity of 1a decreased sharply with A2 means that 1a is unstable in present of A2. Thus the reaction yield of $\mathbf{1}$ and $\mathbf{2 f}$ is just moderate.

Q. NMR spectra and HPLC traces:

The ${ }^{1} \mathrm{H}$ NMR spectrum of (\pm)-3aa ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

The ${ }^{13} \mathrm{C}$ NMR spectrum of (\pm)-3aa ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

The ${ }^{1} \mathrm{H}$ NMR spectrum of $\left(\mathbf{~} \mathbf{)}\right.$-3ab ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$)

The ${ }^{13} \mathrm{C}$ NMR spectrum of (\pm)-3ab ($\mathbf{1 0 1} \mathrm{MHz}, \mathrm{CDCl}_{3}$)

The ${ }^{1} \mathrm{H}$ NMR spectrum of (\pm) - $\mathbf{3 a c}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right.$)

The ${ }^{13} \mathrm{C}$ NMR spectrum of (\pm) - $\mathbf{3 a c}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$)

The ${ }^{1} \mathrm{H}$ NMR spectrum of $(\mathbf{~})$ - $\mathbf{3 a d}\left(\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3}\right)$

The ${ }^{13} \mathrm{C}$ NMR spectrum of (\pm) - $\mathbf{3 a d}\left(\mathbf{1 0 1} \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The ${ }^{1} \mathrm{H}$ NMR spectrum of (\pm)-3ae $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The ${ }^{13} \mathrm{C}$ NMR spectrum of (\pm)-3ae ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

The ${ }^{1} \mathrm{H}$ NMR spectrum of (\pm)-3af ($\mathbf{4 0 0} \mathbf{M H z}, \mathrm{CDCl}_{3}$)

The ${ }^{13} \mathrm{C}$ NMR spectrum of (\pm)-3af ($\mathbf{1 0 1} \mathrm{MHz}, \mathrm{CDCl}_{3}$)

The ${ }^{1} \mathrm{H}$ NMR spectrum of $\left(\mathbf{~} \pm\right.$)-3ag ($\mathbf{5 0 0} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3}$)

The ${ }^{13} \mathrm{C}$ NMR spectrum of (\pm) - $\mathbf{3 a g}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The ${ }^{1} \mathrm{H}$ NMR spectrum of (\pm) - $\mathbf{3 a h}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

The ${ }^{13} \mathrm{C}$ NMR spectrum of (\pm)-3ah ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

The ${ }^{1} \mathrm{H}$ NMR spectrum of (\pm)-3ai ($\mathbf{4 0 0} \mathbf{M H z}, \mathrm{CDCl}_{3}$)

The ${ }^{13} \mathrm{C}$ NMR spectrum of (\pm)-3ai ($\mathbf{1 0 1} \mathrm{MHz}, \mathrm{CDCl}_{3}$)

The ${ }^{1} \mathrm{H}$ NMR spectrum of ($\mathbf{~}$)-3aj ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3}$)

The ${ }^{13} \mathrm{C}$ NMR spectrum of (\pm)-3aj ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

The ${ }^{1} \mathrm{H}$ NMR spectrum of $(\mathbf{~})$-3ak ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3}$)

The ${ }^{13} \mathrm{C}$ NMR spectrum of (\pm)-3ak ($\mathbf{1 0 1} \mathrm{MHz}, \mathrm{CDCl}_{3}$)

The ${ }^{1} \mathrm{H}$ NMR spectrum of (\pm) - $\mathbf{3 a l}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$)

The ${ }^{13} \mathbf{C}$ NMR spectrum of (\pm)-3al ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$)

The ${ }^{1} \mathrm{H}$ NMR spectrum of $(\pm)-3 \mathrm{am}\left(\mathbf{4 0 0} \mathbf{M H z}, \mathrm{CDCl}_{3}\right)$

The ${ }^{13}$ C NMR spectrum of ($\mathbf{~}$)-3am ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

The ${ }^{1} \mathrm{H}$ NMR spectrum of (\pm) - $\mathbf{3 a n}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right.$)

The ${ }^{13} \mathrm{C}$ NMR spectrum of (\pm)-3an ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

The ${ }^{1} \mathrm{H}$ NMR spectrum of $\left(\mathbf{~} \mathbf{)}\right.$-3ao ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$)

The ${ }^{13} \mathrm{C}$ NMR spectrum of (\pm)-3ao ($\mathbf{1 0 1} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3}$)

The ${ }^{1} \mathrm{H}$ NMR spectrum of ($\mathbf{~}$)-3ap ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3}$)

The ${ }^{13} \mathrm{C}$ NMR spectrum of (\pm)-3ap ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

The ${ }^{1} \mathrm{H}$ NMR spectrum of $3 \mathrm{aq}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$)

The ${ }^{13} \mathrm{C}$ NMR spectrum of $3 \mathrm{aq}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The ${ }^{1} \mathrm{H}$ NMR spectrum of $3 \mathrm{ar}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right.$)

The ${ }^{13} \mathrm{C}$ NMR spectrum of $\operatorname{3ar}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The NOESY spectrum of $3 \mathrm{ar}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The HPLC of racemic 3ar

The HPLC of chiral 3ar

Chrom Type: Fixed WL Chromatogram, 240 nm

Chrom Type: Fixed WL Chromatogram, 240 nm
Peak Quantitation: AREA
Calculation Method: AREA\%

No.	RT	Area	Area \%	BC
1	44.373	454	0.017	BB
2	48.433	2677665	99.983	BB
		2678119	100.000	

The ${ }^{\mathbf{1}} \mathrm{H}$ NMR spectrum of 3 ar' $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$)

The ${ }^{13} \mathrm{C}$ NMR spectrum of 3ar' $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$)

The HPLC of racemic 3ar'
Chrom Type: Fixed WL Chromatogram, 240 nm

Chrom Type: Fixed WL Chromatogram, 240 nm
Peak Quantitation: AREA
Calculation Method: AREA\%

No.	RT	Area	Area \%	BC
1	34.207	3531903	50.352	BB
2	37.040	3482494	49.648	BB
		7014397	100.000	

The HPLC of chiral 3ar'

Chrom Type: Fixed WL Chromatogram, 240 nm

Chrom Type: Fixed WL Chromatogram, 240 nm
Peak Quantitation: AREA
Calculation Method: AREA:

No.	RT	Area	Area \%	BC
1	34.067	8866	0.266	BV
2	36.293	3326039	99.734	VB
		3334905	100.000	

The ${ }^{\mathbf{1}} \mathrm{H}$ NMR spectrum of $3 \mathrm{as}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The ${ }^{13} \mathrm{C}$ NMR spectrum of 3as ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

The HPLC of racemic 3as

The HPLC of chiral 3as

Chrom Type: Fixed WL Chromatogram, 205 nm

The HPLC of racemic 3af

The HPLC of chiral 3af

Chrom Type: Fixed WL Chromatogram, 240 nm Peak Quantitation: AREA
Calculation Method: AREA\%

No.	RT	Area	Area \%	BC
1	15.260	3126831	95.087	BB
2	20.480	161565	4.913	BB
	3288396	100.000		

The ${ }^{\mathbf{1}} \mathrm{H}$ NMR spectrum of $\mathbf{3 b f}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right.$)

The ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 b f}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The HPLC of racemic 3bf
Chrom Type: Fixed WL Chromatogram, 260 nm

Chrom Type: Fixed WL Chromatogram, 260 nm
Peak Quantitation: AREA
Calculation Method: AREA\%

No.	RT	Area	Area \%	BC
1	27.140	11926456	49.857	BB
2	32.787	11994932	50.143	BB
	23921388	100.000		

$$
100.000
$$

The HPLC of chiral 3bf

The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 c f}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

The ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 c f}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$)

The HPLC of racemic 3cf

The HPLC of chiral 3cf

Chrom Type: Fixed WL Chromatogram, 240 nm

The ${ }^{\mathbf{1}} \mathrm{H}$ NMR spectrum of $\mathbf{3 d f}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

The ${ }^{13} \mathrm{C}$ NMR spectrum of $3 \mathrm{df}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The HPLC of racemic 3df

The HPLC of chiral 3df

The ${ }^{1} \mathrm{H}$ NMR spectrum of 3 ef ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

The ${ }^{13} \mathrm{C}$ NMR spectrum of 3 ef $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The ${ }^{19}$ F NMR spectrum of 3 ef ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

The HPLC of racemic 3ef

Chrom Type: Fixed WL Chromatogram, 240 nm

The HPLC of chiral 3ef
Chrom Type: Fixed WL Chromatogram, 240 nm

Chrom Type: Fixed WL Chromatogram, 240 nm
Peak Quantitation: AREA
Calculation Method: AREA\%

No.	RT	Area	Area \%	BC
1	12.247	5575042	94.132	BB
2	16.093	347511	5.868	BB
	5922553	100.000		

The ${ }^{\mathbf{1}} \mathrm{H}$ NMR spectrum of $\mathbf{3 f f}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

The ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 f f}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The HPLC of racemic 3ff

Chrom Type: Fixed WL Chromatogram, 240 nm

The HPLC of chiral 3ff
Chrom Type: Fixed WL Chromatogram, 240 nm

Chrom Type: Fixed WL Chromatogram, 240 nm
Peak Quantitation: AREA
Calculation Method: AREA\%

No.	RT	Area	Area \%	BC
1	11.947	4353872	94.953	BB
2	16.673	231417	5.047	BB
		4585289	100.000	

The ${ }^{\mathbf{1}} \mathrm{H}$ NMR spectrum of $\mathbf{3 g f}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The ${ }^{13} \mathrm{C}$ NMR spectrum of $3 \mathrm{gf}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$)

The HPLC of racemic 3gf

Chrom Type: Fixed WL Chromatogram, 240 nm

Peak Quantitation: AREA
Calculation Method: AREA:

No.	RT	Area	Area \%	BC
1	17.653	7673793	49.508	BB
2	24.447	7826375	50.492	BB
		15500168	100.000	

The HPLC of chiral 3gf

Chrom Type: Fixed WL Chromatogram, 240 nm

Chrom Type: Fixed WL Chromatogram, 240 nm
Peak Quantitation: AREA
Calculation Method: AREA\%

No.	RT	Area	Area \%	BC
1	17.660	9852866	94.879	BB
2	24.687	531851	5.121	BB
		10384717	100.000	

The ${ }^{\mathbf{1}} \mathrm{H}$ NMR spectrum of $\mathbf{3 h f}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right.$)

The ${ }^{13} \mathrm{C}$ NMR spectrum of $3 \mathrm{hf}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$)
CARBON_01
LXT-T11-59-8

$\omega 0$	$\cdots \omega \forall \omega \nabla N$	
$\stackrel{\infty}{\sim}$		
\|		<1

4~mलNN

| 230 | 220 | 210 | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

The HPLC of racemic 3hf

The HPLC of chiral 3hf

Chrom Type: Fixed WL Chromatogram, 210 nm

Chrom Type: Fixed WL Chromatogram, 210 nm
Peak Quantitation: AREA
Calculation Method: AREA\%

No.	RT	Area	Area \%	BC
1	13.667	6988017	91.821	BB
2	18.927	622452	8.179	BB
		7610469	100.000	

The ${ }^{\mathbf{1}} \mathrm{H}$ NMR spectrum of $\mathbf{3 i f}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

The ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 i f}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The HPLC of racemic 3if

Chrom Type: Fixed WL Chromatogram, 210 nm

The HPLC of chiral 3if

Chrom Type: Fixed WL Chromatogram, 210 nm

The ${ }^{\mathbf{1}} \mathrm{H}$ NMR spectrum of $\mathbf{3} \mathbf{j f} \mathbf{(4 0 0 ~} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$)

The ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 j f} \mathbf{(1 0 1 ~} \mathbf{M H z}, \mathrm{CDCl}_{3}$)

The HPLC of racemic 3jf

The HPLC of chiral 3jf

The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 k f}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$)

The ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 k f}\left(\mathbf{1 2 5} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

The HPLC of racemic 3kf

Chrom Type: Fixed WL Chromatogram, 240 nm

Chrom Type: Fixed WL Chromatogram, 240 nm
Peak Quantitation: AREA
Calculation Method: AREA\%

No.	RT	Area	Area \%	BC
1	22.887	3626946	49.938	BB
2	26.433	3635962	50.062	BB
		7262908	100.000	

The HPLC of chiral 3kf

The ${ }^{\mathbf{1}} \mathrm{H}$ NMR spectrum of 3lf ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

The ${ }^{13} \mathrm{C}$ NMR spectrum of 3 lf ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

The ${ }^{19} \mathrm{~F}$ NMR spectrum of 3 lf ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$)

The HPLC of racemic 3lf

Chrom Type: Fixed WL Chromatogram, 240 nm

The HPLC of chiral 3lf

Chrom Type: Fixed WL Chromatogram, 240 nm

Chrom Type: Fixed WL Chromatogram, 240 nm
Peak Quantitation: AREA
Calculation Method: AREA:

No.	RT	Area	Area s	BC
1	10.800	2852727	92.531	BB
2	15.100	230257	7.469	BB
	3082984	100.000		

The ${ }^{1} \mathrm{H}$ NMR spectrum of $3 \mathrm{mf}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The ${ }^{13} \mathrm{C}$ NMR spectrum of $3 \mathrm{mf}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The HPLC of racemic 3 mf

The HPLC of chiral 3mf

The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 n f}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$)

The ${ }^{13} \mathrm{C}$ NMR spectrum of $3 \mathrm{nf}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

The HPLC of racemic $3 n f$

The HPLC of chiral 3nf

Chrom Type: Fixed WL Chromatogram, 240 nm

Chrom Type: Fixed WL Chromatogram, 240 nm
Peak Quantitation: AREA
Calculation Method: AREA\%

No.	RT	Area	Area \%	BC
1	19.187	16182396	93.500	BB
2	26.100	1124944	6.500	BB
		17307340	100.000	

The ${ }^{\mathbf{1}} \mathrm{H}$ NMR spectrum of 3 of ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$)

The ${ }^{13} \mathrm{C}$ NMR spectrum of 3 of ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

The HPLC of racemic 3of

The HPLC of chiral 3of

Chrom Type: Fixed WL Chromatogram, 202 nm

The ${ }^{1} \mathrm{H}$ NMR spectrum of $3 \mathrm{pf}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$)

The ${ }^{13} \mathrm{C}$ NMR spectrum of $3 \mathrm{pf}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The HPLC of racemic 3pf

Chrom Type: Fixed WL Chromatogram, 240 nm

The HPLC of chiral 3pf

Chrom Type: Fixed WL Chromatogram, 240 nm
Peak Quantitation: AREA
Calculation Method: AREA\%

No.	RI	Area	Area $\%$	BC
1	4.980	135545	2.468	BB
2	5.507	5356456	97.532	BB
	5492001	100.000		

The ${ }^{1} \mathrm{H}$ NMR spectrum of $5\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The ${ }^{13} \mathrm{C}$ NMR spectrum of $5\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The HPLC of racemic 5

The HPLC of chiral 5 (catalyzed by A2)

Chrom Type: Fixed WL Chromatogram, 230 nm

Chrom Type: Fixed WL Chromatogram, 230 nm
Peak Quantitation: AREA
Calculation Method: AREA:

No.	RT	Area	Area 8 8	BC
1	5.533	4782792	61.981	BV
2	6.113	2933725	38.019	VB
		7716517	100.000	

The HPLC of chiral 5 (catalyzed by B3)

The ${ }^{\mathbf{1}} \mathrm{H}$ NMR spectrum of $6\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$)

The ${ }^{13} \mathrm{C}$ NMR spectrum of $6\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
CARBON_01
LXJ-T11-522-B

훞 へ

The noesy spectrum of $6\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The HPLC of racemic 6

The HPLC of chiral 6

The ${ }^{\mathbf{1}} \mathrm{H}$ NMR spectrum of $7\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$)

The ${ }^{13} \mathrm{C}$ NMR spectrum of $7\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The noesy spectrum of $7\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The HPLC of racemic 7

Chrom Type: Fixed wL Chromatogram, 210 nm

The HPLC of chiral 7

Chrom Type: Fixed WL Chromatogram, 210 nm

Chrom Type: Fixed WL Chromatogram, 210 nm
Peak Quantitation: AREA Calculation Method: AREA\%

No.	RT	Area	Area \%	BC
1	6.353	7294150	95.207	BB
2	11.267	367187	4.793	BB
		7661337	100.000	

The ${ }^{1} \mathrm{H}$ NMR spectrum of $8\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The ${ }^{13} \mathrm{C}$ NMR spectrum of $\left.\mathbf{8 (1 0 1 ~ M H z , ~} \mathrm{CDCl}_{3}\right)$

Abstract

LXITI11-0ME-13C. 1.06id

The ${ }^{1} \mathrm{H}$ NMR spectrum of $\left.\mathbf{1 0 (5 0 0 ~ M H z , ~} \mathrm{CDCl}_{3}\right)$

The ${ }^{13} \mathrm{C}$ NMR spectrum of $10\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The HPLC of racemic 10

Chrom Type: Fixed WL Chromatogram, 250 nm

Chrom Type: Fixed WL Chromatogram, 250 nm
Peak Quantitation: AREA
Calculation Method: AREA\%

No.	RT	Area	Area \%	BC
1	13.027	2231033	50.086	BV
2	13.747	2223368	49.914	VB
		4454401	100.000	

The HPLC of chiral 10
Chrom Type: Fixed WL Chromatogram, 250 nm

Chrom Type: Fixed WL Chromatogram, 250 nm
Peak Quantitation: AREA
Calculation Method: AREA\%

No.	RT	Area	Area \%	BC
1	12.947	3103314	55.406	BV
2	13.660	2497712	44.594	VB
	5601026	100.000		

The HPLC of chiral ent-10

Chrom Type: Fixed WL Chromatogram, 250 nm

Chrom Type: Fixed WL Chromatogram, 250 nm
Peak Quantitation: AREA
Calculation Method: AREA\%

No.	RI	Area	Area \%	BC
1	12.613	429312	33.847	BV
2	13.213	839068	66.153	VB
		1268380	100.000	

The ${ }^{1} \mathrm{H}$ NMR spectrum of $12\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The ${ }^{13} \mathrm{C}$ NMR spectrum of $12\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The HPLC of racemic 12

The HPLC of chiral 12

Chrom Type: Fixed WL Chromatogram, 240 nm
Peak Quantitation: AREA
Calculation Method: AREA\%
No.

The ${ }^{1} \mathrm{H}$ NMR spectrum of $13\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The ${ }^{13} \mathrm{C}$ NMR spectrum of $13\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The ${ }^{\mathbf{1}} \mathrm{H}$ NMR spectrum of $(\pm) \mathbf{- 1 4}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

The ${ }^{13} \mathrm{C}$ NMR spectrum of (\pm) - $\mathbf{1 4}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

The ${ }^{1} \mathrm{H}$ NMR spectrum of $15\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The ${ }^{13} \mathrm{C}$ NMR spectrum of $15\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The ${ }^{\mathbf{1}} \mathrm{H}$ NMR spectrum of $16\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The ${ }^{13} \mathrm{C}$ NMR spectrum of $16\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The HPLC of racemic 16

The HPLC of chiral 16

Chrom Type: Fixed WL Chromatogram, 210 nm

Chrom Type: Fixed WL Chromatogram, 210 nm
Peak Quantitation: AREA
Calculation Method: AREA웅

No.	RT	Area	Area \%	BC
1	3.600	5968270	99.993	BB
2	4.220	417	0.007	BB
		5968687	100.000	

The ${ }^{\mathbf{1}} \mathrm{H}$ NMR spectrum of $17\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The ${ }^{13} \mathrm{C}$ NMR spectrum of $17\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The ${ }^{1} \mathrm{H}$ NMR spectrum of $18\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The ${ }^{13} \mathrm{C}$ NMR spectrum of $18\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The ${ }^{\mathbf{1}} \mathrm{H}$ NMR spectrum of $19\left(400 \mathbf{M H z}, \mathrm{CDCl}_{3}\right)$

The ${ }^{13} \mathrm{C}$ NMR spectrum of 19 ($101 \mathbf{M H z}, \mathrm{CDCl}_{3}$)

The ${ }^{\mathbf{1}} \mathrm{H}$ NMR spectrum of $20\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 0}\left(\mathbf{1 0 1} \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The HPLC of racemic 20
Chrom Type: Fixed WL Chromatogram, 205

The HPLC of chiral 20

Chrom Type: Fixed WL Chromatogram, 205 nm

Chrom Type: Fixed WL Chromatogram, 205 nm
Peak Quantitation: AREA
Calculation Method: AREA훙

No.	RT	Area	Area \%	BC
1	11.080	164007	7.090	BV
2	11.667	2149347	92.910	VB
		2313354	100.000	

The ${ }^{1} \mathrm{H}$ NMR spectrum of $21 \mathrm{a}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$)

The ${ }^{13} \mathrm{C}$ NMR spectrum of $21 \mathrm{a}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$)

The ${ }^{1} \mathrm{H}$ NMR spectrum of $21 \mathrm{~b}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$)

The ${ }^{13} \mathrm{C}$ NMR spectrum of $21 \mathrm{~b}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The ${ }^{1} \mathrm{H}$ NMR spectrum of $21 \mathrm{c}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$)

The ${ }^{13} \mathrm{C}$ NMR spectrum of $21 \mathrm{c}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The ${ }^{\mathbf{1}} \mathrm{H}$ NMR spectrum of $21 \mathrm{~d}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$)

The ${ }^{13} \mathrm{C}$ NMR spectrum of $21 \mathrm{~d}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The 1H NMR spectrum of 21 e ($400 \mathrm{MHz}, \mathrm{CDCl} 3$)

The ${ }^{13} \mathrm{C}$ NMR spectrum of $21 \mathrm{e}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The ${ }^{1} \mathrm{H}$ NMR spectrum of $21 \mathrm{e}^{\prime}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The ${ }^{13} \mathrm{C}$ NMR spectrum of $21 \mathrm{e}^{\prime}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

R. Single crystal X-Ray diffraction data:

The absolute configuration of compound 3af (CCDC 2092457), 17 (CCDC 2092460) and the relative configuration of ($\mathbf{\pm}$)-3aj (CCDC 2092458), ($\mathbf{\pm} \mathbf{) - 1 6}$ (CCDC 2092459) were unambiguously assigned by single crystal X-ray analysis. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.].

Table S6. Crystal data and structure refinement for 3af (CCDC 2092457)

Identification code	exp_11382	
Empirical formula	C9 H12.50 N0.50 01.50	
Formula weight	151.69	
Temperature	$293(2) \mathrm{K}$	
Wavelength	$1.54184 \AA$	
Crystal system	Orthorhombic	
Space group	P 212121	
Unit cell dimensions	$\mathrm{a}=5.63303(18) \AA \quad \alpha=90^{\circ}$	
	$\mathrm{b}=9.7271(3) \AA \quad \beta=90^{\circ}$	
	$\mathrm{c}=32.2704(12) \AA \quad \gamma=90^{\circ}$	
Volume	$1768.20(11) \AA^{3}$	
Z	8	
Density (calculated)	$1.140 \mathrm{Mg} / \mathrm{m}^{3}$	
Absorption coefficient	$0.615 \mathrm{~mm}{ }^{-1}$	
F(000)	656	
Crystal size	$0.120 \mathrm{x} 0.120 \mathrm{x} 0.110 \mathrm{~mm}^{3}$	
Radiation	CuK $\alpha(\lambda=1.54184)$	
Theta range for data collection	$2.739 \mathrm{to} 67.218^{\circ}$	
Index ranges	$-6<=\mathrm{h}<=3,-10<=\mathrm{k}<=11,-36<=\mathrm{l}<=38$	
Reflections collected	3735	

Independent reflections	$2694[\mathrm{R}(\mathrm{int})=0.0161]$
Completeness to theta $=67.218^{\circ}$	99.7%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.00000 and 0.96380
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	$2694 / 648 / 234$
Goodness-of-fit on F^{2}	1.068
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0439, \mathrm{wR} 2=0.1232$
R indices (all data)	$\mathrm{R} 1=0.0479, \mathrm{wR} 2=0.1274$
Absolute structure parameter	$-0.12(14)$
Extinction coefficient	$0.0128(12)$
Largest diff. peak and hole	0.220 and $-0.136 \mathrm{e} . \AA^{-3}$

Table S7. Crystal data and structure refinement for ($\mathbf{\pm} \mathbf{)} \mathbf{- 3 a j}$ (CCDC 2092458)

Identification code	exp_11421	
Empirical formula	C20 H 23 N O 4 S	
Formula weight	373.45	
Temperature	$293(2) \mathrm{K}$	
Wavelength	$1.54184 \AA$	
Crystal system	Triclinic	
Space group	$\mathrm{P}-1$	
Unit cell dimensions	$\mathrm{a}=8.3710(8) \AA \quad \alpha=72.860(11)^{\circ}$	
	$\mathrm{b}=11.0434(13) \AA \quad \beta=70.943(10)^{\circ}$	
	$\mathrm{c}=11.6957(15) \AA \quad \gamma=76.348(9)^{\circ}{ }^{\circ}$	
Volume	$964.8(2) \AA^{3}$	
Z	2	
Density (calculated)	$1.286 \mathrm{Mg}^{\circ} \mathrm{m}^{3}$	
Absorption coefficient	$1.694 \mathrm{~mm}^{-1}$	

$\mathrm{F}(000)$	396
Crystal size	$0.120 \times 0.120 \times 0.110 \mathrm{~mm}^{3}$
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54184)$
Theta range for data collection	4.116 to 67.249°
Index ranges	$-10<=\mathrm{h}<=8,-12<=\mathrm{k}<=13,-12<=\mathrm{l}<=13$
Reflections collected	5734
Independent reflections	$3337[\mathrm{R}(\mathrm{int})=0.0345]$
Completeness to theta $=67.249^{\circ}$	96.8%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.00000 and 0.80462
Refinement method	$\mathrm{Full}-\mathrm{matrix}$ least-squares on F^{2}
Data / restraints $/$ parameters	$3337 / 1 / 236$
Goodness-of-fit on F^{2}	0.941
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0672, \mathrm{wR} 2=0.2758$
R indices (all data)	$\mathrm{R} 1=0.1008, \mathrm{wR} 2=0.3122$
Extinction coefficient	n / a
Largest diff. peak and hole	0.283 and $-0.580 \mathrm{e} . \AA^{-3}$

CCDC 2092459

Table S8. Crystal data and structure refinement for ($\mathbf{\pm}$)-16 - CCDC 2092459

Identification code	HX-LXJ-1478-H-300K	
Empirical formula	C26 H32 O4	
Formula weight	408.51	
Temperature	$299.99(10) \mathrm{K}$	
Crystal system	Monoclinic	
Space group	$\mathrm{C} 2 / \mathrm{c}$	
Unit cell dimensions	$\mathrm{a}=16.4248(9) \AA \quad \alpha=90^{\circ}$	
	$\mathrm{b}=13.2124(7) \AA \quad \beta=106.465(6)^{\circ}$	
	$\mathrm{c}=10.8402(6) \AA$	$\gamma=90^{\circ}$
Volume	$2256.0(2) \AA^{3}$	
Z	4	

Density (calculated)	$1.203 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.080 \mathrm{~mm}^{-1}$
$\mathrm{~F}(000)$	880.0
Crystal size	$0.18 \times 0.12 \times 0.11 \mathrm{~mm}^{3}$
Radiation	$\mathrm{MoK} \alpha(\lambda=0.71073)$
Theta range for data collection	4.024 to $50.014{ }^{\circ}$
Index ranges	$-19<=\mathrm{h}<=19,-15<=\mathrm{k}<=15,-12<=\mathrm{l}<=11$
Reflections collected	7456
Independent reflections	$1993[\mathrm{R}(\mathrm{int})=0.0187, \mathrm{R}(\operatorname{sigma})=$
	$0.0183]$
Data / restraints $/$ parameters	$1993 / 0 / 136$
Goodness-of-fit on F^{2}	1.046
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0343, \mathrm{wR} 2=0.0835$
R indices (all data)	$\mathrm{R} 1=0.0410, \mathrm{wR} 2=0.0888$
Largest diff. peak and hole	0.11 and $-0.15 \mathrm{e} . \AA^{-3}$

Table S9. Crystal data and structure refinement for 17 (CCDC 2092460)

Identification code	11912	
Empirical formula	C 23 H 26 N 2 O 4	
Formula weight	394.46	
Temperature	$293(2) \mathrm{K}$	
Wavelength	$1.54178 \AA$	
Crystal system	Monoclinic	
Space group	$\mathrm{P} 2(1)$	
Unit cell dimensions	$\mathrm{a}=6.3340(3) \AA$	$\alpha=90^{\circ}$
	$\mathrm{b}=16.7436(8) \AA$	$\beta=100.883(6)^{\circ}$
	$\mathrm{c}=10.0625(6) \AA$	$\gamma=90^{\circ}$
Volume	$1047.97(10) \AA^{3}$	
Z	2	
Density (calculated)	$1.250 \mathrm{Mg} / \mathrm{m}^{3}$	

Absorption coefficient	$0.696 \mathrm{~mm}^{-1}$
$\mathrm{~F}(000)$	420
Crystal size	$0.120 \times 0.120 \times 0.110 \mathrm{~mm}^{3}$
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54178)$
Theta range for data collection	4.474 to 67.230°
Index ranges	$-7<=\mathrm{h}<=7,-17<=\mathrm{k}<=19,-11<=\mathrm{l}<=12$
Reflections collected	3598
Independent reflections	2712 [R(int) $=0.0378]$
Completeness to theta $=67.230^{\circ}$	99.8%
Refinement method	$\mathrm{Full-matrix} \mathrm{least-squares} \mathrm{on} \mathrm{F}^{2}$
Data / restraints / parameters	$2712 / 1 / 263$
Goodness-of-fit on F^{2}	1.008
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0486, \mathrm{wR} 2=0.0986$
R indices (all data)	$\mathrm{R} 1=0.0727, \mathrm{wR} 2=0.1131$
Absolute structure parameter	$-0.1(3)$
Extinction coefficient	n / a
Largest diff. peak and hole	0.136 and $-0.174 \mathrm{e} . \mathrm{A}^{-3}$

S. Reference:

[1] Parella, R.; Jakkampudi, S.; Arman, H.; Zhao, J. C. G., Adv. Synth. Catal. 2019, 361, 208.
[2] Boerth, J. A.; Ellman, J. A., Chem. Sci. 2016, 7, 1474.
[3] Quintavalla, A.; Lombardo, M.; Sanap, S. P.; Trombini, C., Adv. Synth. Catal. 2013, 355, 938.
[4] Liu, Q.; Rovis, T., J. Am. Chem. Soc. 2006, 128, 2552.
[5] Lei, T.; Zhou, C.; Huang, M.-Y.; Zhao, L.-M.; Yang, B.; Ye, C.; Xiao, H.; Meng, Q.-Y.; Ramamurthy, V.; Tung, C.-H.; Wu, L.-Z., Angew. Chem., Int. Ed. 2017, 56, 15407.
[6] Fan, Y.-S.; Jiang, Y.-J.; An, D.; Sha, D.; Antilla, J. C.; Zhang, S., Org. Lett. 2014, 16, 6112.
[7] Vyas, S.; Muthukrishnan, S.; Kubicki, J.; McCulla, R. D.; Burdzinski, G.; Sliwa, M.; Platz, M. S.; Hadad, C. M., J. Am. Chem. Soc. 2010, 132, 16796.
[8] Tietze, L. F.; Hölsken, S.; Adrio, J.; Kinzel, T.; Wegner, C., Synthesis 2004, 2004, 2236.
[9] (a) Ghosh, A. K.; Cheng, X., Org. Lett. 2011, 13, 4108; (b) Gu, Q.; Rong, Z.-Q.; Zheng, C.; You, S.-L., J. Am. Chem. Soc. 2010, 132, 4056-4057.
[10] Hoye, T. R.; Hu, M., J. Am. Chem. Soc. 2003, 125, 9576.

