Supporting Information

Synthesis of Chiral Piperazin-2-ones through
Palladium-Catalyzed Asymmetric Hydrogenation of Pyrazin-2-ols
Guang-Shou Feng, Zi-Biao Zhao, Lei Shi* and Yong-Gui Zhou*
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, ChineseAcademy of Sciences, Dalian 116023, China; Zhang Dayu School of Chemistry,Dalian University of Technology, Dalian 116024, P. R. China.E-mail: shileichem@dlut.edu.cn; ygzhou@dicp.ac.cn
Table of Contents

1. General and Materials. S1
2. Synthesis of Pyrazin-2-ol Derivatives S1-4
3. Palladium-Catalyzed Asymmetric Hydrogenation of Pyrazin-2-ols S5-9
4. Asymmetric Hydrogenation at Gram Scale. S10
5. Mechanistic Investigation. S11-12
6. The Determination of Structure of (+)-2a and 1m S13-17
7. Product Elaboration. S18
8. References S19
9. Copy of NMR and HPLC. S20-92

1. General and Materials

General: All reactions were carried out under an atmosphere of nitrogen using the standard Schlenk techniques, unless otherwise noted. Commercially available reagents were used without further purification. Solvents were treated prior to use according to the standard methods. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR spectra were recorded at room temperature in CDCl_{3} or DMSO-d d_{6} on 400 MHz instrument with TMS as internal standard. Enantiomeric excess was determined by HPLC analysis, using chiral column described below in detail. Optical rotations were measured by polarimeter. Flash column chromatography was performed on silica gel (200-300 mesh). The heat source for all heating reactions is the oil bath. High-resolution mass spectrometry (HRMS) was measured on an electrospray ionization (ESI) apparatus using the time-of-flight (TOF) mass spectrometry. All reactions were monitored by TLC analysis.

Materials: Commercially available reagents and solvents were used throughout without further purification.

2. Synthesis of Pyrazin-2-ol Derivatives

The pyrazin-2-ol derivatives 1 could be synthesized in two methods. One is from commercially available dichloropyrazine through 2,3-diarylpyrazines intermediate $\mathbf{S 1}$ according to the literature procedure. ${ }^{1}$ Subsequently, pyrazin-2-ol derivatives could be prepared from the intermediate S1 through oxidation and rearrangement according to the literature procedure with slight modification. ${ }^{2}$ The pyrazin-2-ol derivatives $\mathbf{1 a},{ }^{3 \mathrm{a}} \mathbf{1 c},{ }^{3 \mathrm{~b}} \mathbf{1 e},{ }^{3 \mathrm{c}} \mathbf{1} \mathbf{j},{ }^{3 \mathrm{~d}} \mathbf{1} \mathbf{n}^{3 \mathrm{e}}$ and $\mathbf{1 0}{ }^{3 \mathrm{f}}$ are the known compounds. The other is from readily available 1,2 -diketone and glycinamide hydrochloride according to the literature procedure, ${ }^{3 \mathrm{~b}} 5,6$-di-m-tolylpyrazin-2-ol 1b could be conveniently prepared.

Typical procedure: Under the nitrogen atmosphere, 1,2-di-m-tolylethane-1,2-dione (1.195 g, $5.0 \mathrm{mmol})$, glycinamide hydrochloride $(0.663 \mathrm{~g}, 6.0 \mathrm{mmol})$, sodium hydroxide $(0.480 \mathrm{~g}, 12.0$ $\mathrm{mmol})$ and methanol $(10 \mathrm{~mL})$ were added to a dry flask. This mixture was heated under reflux for 3 hours. Then, the temperature of the flask was cooled to room temperature, concentrated hydrochloric acid (1.0 mL) was added to this mixture, and stirring was performed for 30 minutes. Subsequently, the mixture pH was adjusted to 7 with the saturated potassium bicarbonate solution. Filtration was performed to give a solid, and washed with water and cool methanol. The crude product was recrystallized with toluene to give pale yellow solid.

5,6-Di-m-tolylpyrazin-2-ol (1b): $0.845 \mathrm{~g}, 68 \%$ yield, pale yellow solid, new compound, mp : $178-179{ }^{\circ} \mathrm{C}, \mathrm{R}_{f}=0.49$ (ethyl acetate). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 12.17(\mathrm{~s}, 1 \mathrm{H}), 8.12(\mathrm{~s}, 1 \mathrm{H})$,
 7.24-7.16 (m, 4H), 7.09-7.02 (m, 3H), $6.91(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{~s}$, $3 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d $_{6}$) $\delta 157.3,138.3,137.9$, $137.4,130.6,130.2,130.0,128.5,128.3,128.0,127.2,126.8,21.5,21.4$. HRMS Calcu- lated for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$277.1335, found 277.1332.

General procedure: Under nitrogen atmosphere, aryl boronic acid (22.0 mmol) was added to a mixture of 2,3-dichloropyrazine ($1.490 \mathrm{~g}, 10.0 \mathrm{mmol}$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(116 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0 \%)$, toluene $(20 \mathrm{~mL})$ and water $(20 \mathrm{~mL})$. The resulting solution was heated at $95^{\circ} \mathrm{C}$ for 10 min . Then, the mixture was cooled down to room temperature. Next, potassium fluoride dihydrate (2.071 g , 22.0 mmol) was added in one portion. The mixture was stirred and heated at $95{ }^{\circ} \mathrm{C}$ until the starting material was consumed. After cooling to room temperature, organic phase was separated. The aqueous phase was extracted with ethyl acetate. The combined organic layer was washed with brine, dried over anhydrous sodium sulfate, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel using hexanes/ethyl acetate as eluent to give the $\mathbf{S 1}$.

Subsequently, m-CPBA ($1.908 \mathrm{~g}, 9.4 \mathrm{mmol}, 85 \% \mathrm{wt})$ was added to a solution of $\mathbf{S 1}(7.2 \mathrm{mmol})$ in chloroform (15 mL) at $0{ }^{\circ} \mathrm{C}$. After stirring for $1 \mathrm{~h}, \mathrm{TLC}$ indicated that the reaction finished. Sodium thiosulfate solution (8.0 mL) was added to the reaction mixture. The organic phases were separated. The aqueous phase was extracted with dichloromethane. The combined organic layer was washed with brine, dried over anhydrous sodium sulfate, filtered and concentrated. This crude product was immediately used for the next step without further purification.

Next, trifluoroacetic anhydride ($6.049 \mathrm{~g}, 28.8 \mathrm{mmol}$) was added to the solution of the above crude product in anhydrous DMF (3.0 mL) at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 12 h . Then the mixture pH adjusted to 7 with saturated sodium bicarbonate solution and stirred for 2 h . Filtration was performed to give a solid. The solid was dissolved in dichloromethane and the solution was dried over anhydrous sodium sulfate, filtered and concentrated under the reduced pressure. The residue was purified by flash column chromatography using hexanes/ethyl acetate as eluent to give the desired products 1.

5,6-Bis(3-methoxyphenyl)pyrazin-2-ol (1d):

$0.978 \mathrm{~g}, 32 \%$ yield (three steps), pale yellow solid, new compound, $\mathrm{mp}: 197-198{ }^{\circ} \mathrm{C}, \mathrm{R}_{f}=0.72$
 (ethyl acetate). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 12.20(\mathrm{~s}, 1 \mathrm{H}), 8.10(\mathrm{~s}$, $1 \mathrm{H}), 7.22(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.92-6.91(\mathrm{~m}, 2 \mathrm{H})$, $6.84(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.57(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 158.9,158.7,156.8,142.4,139.2$, 136.4, 129.3, 128.8, 121.8, 121.5, 114.9, 114.8, 114.5, 113.1, 55.0, 54.8. HRMS Calculated for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$309.1234, found 309.1231.

5,6-Bis(4-ethylphenyl)pyrazin-2-ol (1f):

$1.055 \mathrm{~g}, 44 \%$ yield (three steps), pale yellow solid, new compound, mp : $185-186{ }^{\circ} \mathrm{C}, \mathrm{R}_{f}=0.62$ (ethyl acetate). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d ${ }_{6}$) δ $12.09(\mathrm{~s}, 1 \mathrm{H}), 8.07(\mathrm{~s}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.15-7.11(\mathrm{~m}, 4 \mathrm{H})$, $7.03(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.61-2.55(\mathrm{~m}, 2 \mathrm{H}), 2.54-2.50(\mathrm{~m}, 2 \mathrm{H}), 1.15(\mathrm{~d}, J$

$=7.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.11(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}$) δ 156.7, 144.6, 142.6, $141.8,139.2,136.6,135.5,132.7,129.5,129.1,127.5,127.2,27.8,27.7,15.1,15.0$. HRMS Calculated for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 305.1648$, found 305.1649.

5,6-Bis(4-propylphenyl)pyrazin-2-ol (1g):

$0.983 \mathrm{~g}, 30 \%$ yield (three steps), pale yellow solid, new compound, mp: $178-179{ }^{\circ} \mathrm{C}, \mathrm{R}_{f}=0.65$
 (ethyl acetate). ${ }^{1}$ H NMR (400 MHz, DMSO- d_{6}) $\delta 8.05(\mathrm{~s}, 1 \mathrm{H}), 7.20$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.12-7.09(\mathrm{~m}, 4 \mathrm{H}), 6.99(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.52(\mathrm{t}, J$ $=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.47(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.60-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.48$ $(\mathrm{m}, 2 \mathrm{H}), 0.86-0.84(\mathrm{~m}, 3 \mathrm{H}), 0.83-0.80(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}) $\delta 156.9,142.9,142.1,141.0,138.9,136.8,135.6,132.9$, 129.4, 129.0, 128.0, 127.7, 36.9, 36.8, 23.7, 23.6, 13.4, 13.3. HRMS Calculated for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}$ $[\mathrm{M}+\mathrm{H}]^{+} 333.1961$, found 333.1966.

5,6-Bis(4-(trifluoromethyl)phenyl)pyrazin-2-ol (1h):

$1.441 \mathrm{~g}, 37 \%$ yield (three steps), pale yellow solid, new compound, mp : $219-220^{\circ} \mathrm{C}, \mathrm{R}_{f}=0.60$
 (ethyl acetate). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $_{6}$) $\delta 12.38(\mathrm{~s}, 1 \mathrm{H}), 8.21(\mathrm{~s}$, 1 H), 7.70 (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.58 (dd, $J=12.6,8.4 \mathrm{~Hz}, 4 \mathrm{H}$), 7.44 (d, $J=$ $7.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d $_{6}$) $8157.5,143.2,142.1,141.8$, $139.6,130.6,130.4,129.3(\mathrm{q}, J=31.5 \mathrm{~Hz}), 127.9(\mathrm{q}, J=31.5 \mathrm{~Hz}), 125.2$, 124.9, 124.1 (q, $J=271.8 \mathrm{~Hz}$), $123.9(\mathrm{q}, J=271.8 \mathrm{~Hz}), 123.0 .{ }^{19} \mathrm{~F}$ NMR (376 MHz , DMSO- d_{6}) $\delta-60.99$, -61.15. HRMS Calculated for $\mathrm{C}_{18} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{1} \mathrm{~F}_{6}[\mathrm{M}+\mathrm{H}]^{+}$385.0770, found 385.0771 .

5,6-Bis(4-fluorophenyl)pyrazin-2-ol (1i):

$1.216 \mathrm{~g}, 43 \%$ yield (three steps), pale yellow solid, new compound, mp : 207-208 ${ }^{\circ} \mathrm{C}, \mathrm{R}_{f}=0.68$
 (ethyl acetate). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, DMSO- $\left._{6}\right) \delta 12.22(\mathrm{~s}, 1 \mathrm{H}), 8.10(\mathrm{~s}, 1 \mathrm{H})$, $7.35(\mathrm{dd}, J=8.4,5.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{dd}, J=8.2,5.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{t}, J=8.8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.05(\mathrm{t}, \mathrm{J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}) $\delta 163.1$ (d, $J=245 \mathrm{~Hz}$), $160.6(\mathrm{~d}, J=243 \mathrm{~Hz}), 157.0,141.8,138.8,136.5,134.3$, $131.9(\mathrm{~d}, J=8.5 \mathrm{~Hz}), 131.2(\mathrm{~d}, J=8.0 \mathrm{~Hz}), 115.3(\mathrm{~d}, J=21.8 \mathrm{~Hz}), 114.8(\mathrm{~d}$, $J=21.5 \mathrm{~Hz}$). ${ }^{19} \mathrm{~F}$ NMR (376 MHz , DMSO-d d_{6}) $\delta-112.16,-114.69$. HRMS Calculated for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{OF}_{2}[\mathrm{M}+\mathrm{H}]^{+}$285.0834, found 285.0832.

5,6-Bis(4-bromophenyl)pyrazin-2-ol (1k):

$0.567 \mathrm{~g}, 28 \%$ yield (three steps), pale yellow solid, new compound, mp : $245-246{ }^{\circ} \mathrm{C}, \mathrm{R}_{f}=0.50$
 (ethyl acetate). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 12.27$ ($\mathrm{s}, 1 \mathrm{H}$), 8.14 (s , $1 \mathrm{H}), 7.55$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.45$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.17(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- $_{6}$) $\delta 157.2$, 137.1, 134.6, 132.1, 131.7, 131.4, 131.4, 131.3, 131.1, 131.0, 122.6, 120.9. HRMS Calculated for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{OBr}_{2}[\mathrm{M}+\mathrm{H}]^{+} 404.9233$ (${ }^{79} \mathrm{Br}$ and ${ }^{79} \mathrm{Br}$), found $404.9230\left({ }^{79} \mathrm{Br}\right.$ and $\left.{ }^{79} \mathrm{Br}\right), 406.9211\left({ }^{79} \mathrm{Br}\right.$ and $\left.{ }^{81} \mathrm{Br}\right), 408.9202\left({ }^{81} \mathrm{Br}\right.$ and $\left.{ }^{81} \mathrm{Br}\right)$

5,6-Di(naphthalen-2-yl)pyrazin-2-ol (11):

$1.117 \mathrm{~g}, 32 \%$, yield (three steps), pale yellow solid, new compound, mp: 224-225 ${ }^{\circ} \mathrm{C}, \mathrm{R}_{f}=0.59$ (ethyl acetate). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 12.21(\mathrm{~s}, 1 \mathrm{H}), 8.23$ (s, $1 \mathrm{H}), 8.05(\mathrm{~s}, 1 \mathrm{H}), 7.91(\mathrm{~s}, 1 \mathrm{H}), 7.84-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.77-7.72(\mathrm{~m}, 2 \mathrm{H})$, 7.69-7.62 (m, 2H), 7.51-7.46 (m, 2H), 7.44-7.37 (m, 2H), 7.35-7.28 (m, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d d_{6}) $\delta 157.0,142.5,139.6,139.3,137.3$, $135.5,132.9,132.7,132.7,132.6,132.5,132.0,129.4,128.3,128.2,127.9$, 127.5, 127.4, 127.2, 127.1, 127.0, 126.9, 126.5, 126.2. HRMS Calculated for $\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$ 349.1335 , found 349.1338 .

5-(4-Methoxyphenyl)-6-phenylpyrazin-2-ol (1m):

$0.545 \mathrm{~g}, 14 \%$ yield (four steps), yellow solid, new compound, mp: 255-256 ${ }^{\circ} \mathrm{C}, \mathrm{R}_{f}=0.20$
 (hexanes/ethyl acetate). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.99(\mathrm{~s}, 1 \mathrm{H}), 8.21$ $(\mathrm{s}, 1 \mathrm{H}), 7.47-7.30(\mathrm{~m}, 5 \mathrm{H}), 7.19(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.76(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.1,157.0,146.2$, 135.4, 133.7, 132.7, 130.6, 130.0, 129.3, 129.2, 129.0, 113.7, 55.2. HRMS Calculated for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$279.1128, found 279.1124.

3. Palladium-Catalyzed Asymmetric Hydrogenation of Pyrazin-2-ols 1

General procedure: Palladium trifluoroacetate $(3.0 \mathrm{mg}, 0.009 \mathrm{mmol}, 3.0 \mathrm{~mol} \%)$ and ligand (R)-Tol-BINAP ($6.6 \mathrm{mg}, 0.0099 \mathrm{mmol}, 3.3 \mathrm{~mol} \%$) were placed in a dried Schlenk tube under nitrogen atmosphere. Then degassed anhydrous acetone (1.0 mL) was added to the mixture. The mixture was stirred at room temperature for 30 min , then the solvent was removed under vacuum to give the catalyst. In a glovebox, pyrazin-2-ol $\mathbf{1}(0.2 \mathrm{mmol}$ or 0.3 mmol$)$ and $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(1$ equiv.) were stirred in benzene (1.5 mL) at room temperature for 5 min . Subsequently, a solution of the above palladium catalyst in dichloromethane $(1.5 \mathrm{~mL})$ was added to the reaction mixture. The hydrogenation was performed at $80^{\circ} \mathrm{C}$ under hydrogen gas (1000 psi) in a stainless steel autoclave for $24-48 \mathrm{~h}$. The mixture was cooled to room temperature. After carefully releasing the hydrogen gas, saturated aqueous sodium bicarbonate $(3.0 \mathrm{~mL})$ was added into the mixture and stirred for $10-15 \mathrm{~min}$. The mixture was extracted with dichloromethane three times and the combined organic extract was dried over anhydrous sodium sulfate. After filtration, the filtrate was concentrated under the reduced pressure, and further purification was performed by a silica gel column eluted with ethyl acetate/methanol to give the desired hydrogenation products 2 . The enantiomeric excesses were determined by chiral HPLC for the corresponding protected products with p-toluenesulfonyl chloride.

(5S,6R)-5,6-Diphenylpiperazin-2-one (2a):

$46 \mathrm{mg}, 92 \%$ yield, yellow oil, the known compound, ${ }^{4} 90 \%$ ee, $>20: 1$ d.r., $[\alpha]^{20}{ }_{\mathrm{D}}=+283.20(c 0.90$, CHCl_{3}), $\mathrm{R}_{f}=0.40$ (ethyl acetate/methanol $=80 / 1$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.18(\mathrm{t}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.09(\mathrm{~m}, 5 \mathrm{H}), 6.90-6.78(\mathrm{~m}, 5 \mathrm{H}), 4.64(\mathrm{~s}, 1 \mathrm{H})$, $4.51(\mathrm{~s}, 1 \mathrm{H}), 3.90-3.78(\mathrm{~m}, 2 \mathrm{H}), 2.00(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $170.0,138.5,137.0,128.3,128.1,127.8,127.7,127.5,127.0,61.4,61.1,50.4$. Enantiomeric excess was determined by HPLC analysis for the corresponding 4-tosyl piperazin-2-one (Chiralcel AD-H column, Hexanes $/ i-\mathrm{PrOH}=80 / 20$, detector: 230 nm , flow rate: $0.80 \mathrm{~mL} / \mathrm{min}, 30^{\circ} \mathrm{C}$), $\mathrm{t}_{1}=14.6 \mathrm{~min}, \mathrm{t}_{2}=22.0 \mathrm{~min}$ (major).
(5S,6R)-5,6-Di-m-tolylpiperazin-2-one (2b):
$80 \mathrm{mg}, 95 \%$ yield, yellow oil, new compound, 84% ee, $>20: 1$ d.r., $[\alpha]^{20}{ }_{\mathrm{D}}=+251.20$ (c 0.90,
 CHCl_{3}), $\mathrm{R}_{f}=0.30$ (ethyl acetate/methanol $=80 / 1$). ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.05-6.97(\mathrm{~m}, 4 \mathrm{H}), 6.87(\mathrm{~s}, 1 \mathrm{H}), 6.63(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, 6.58-6.55 (m, 3H), $4.58(\mathrm{t}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{q}$, $J=17.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 1.95(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.1,138.4,137.6,137.1,136.9,129.0,128.5,128.3$, $127.8,127.3,125.4,124.1,61.3,61.1,50.4,21.3,21.2$. Enantiomeric excess was determined by HPLC analysis for the corresponding 4-tosyl piperazin-2-one (Chiralcel AD-H column, Hexanes/i-
$\operatorname{PrOH}=80 / 20$, detector: 254 nm , flow rate: $0.80 \mathrm{~mL} / \mathrm{min}, 30^{\circ} \mathrm{C}$), $\mathrm{t}_{1}=11.0 \mathrm{~min}, \mathrm{t}_{2}=13.5 \mathrm{~min}$ (major). HRMS Calculated for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$281.1648, found 281.1646.
(5S,6R)-5,6-Di-p-tolylpiperazin-2-one (2c):
$79 \mathrm{mg}, 94 \%$ yield, pale oil, new compound, $90 \% \mathrm{ee},>20: 1$ d.r., $[\alpha]^{20}{ }_{\mathrm{D}}=+313.88\left(c 1.0, \mathrm{CHCl}_{3}\right)$,
 $\mathrm{R}_{f}=0.29$ (ethyl acetate/methanol $=80 / 1$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.07(\mathrm{~s}, 1 \mathrm{H}), 6.93(\mathrm{dd}, J=11.4,8.0 \mathrm{~Hz}, 4 \mathrm{H}), 6.68(\mathrm{dd}, J=15.0,7.8 \mathrm{~Hz}, 4 \mathrm{H})$, $4.56(\mathrm{t}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{q}, ~ J=17.8 \mathrm{~Hz}, 2 \mathrm{H})$, $2.26(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 1.95(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $170.2,137.3,137.1,135.6,134.1,128.7,128.2,128.2,126.9,61.0,60.8$, 50.4, 21.1, 21.1. Enantiomeric excess was determined by HPLC analysis for the corresponding 4-tosyl piperazin-2-one (Chiralcel AD-H column, Hexanes $/ \mathrm{i}-\mathrm{PrOH}=80 / 20$, detector: 254 nm , flow rate: $0.80 \mathrm{~mL} / \mathrm{min}, 30{ }^{\circ} \mathrm{C}$), $\mathrm{t}_{1}=15.8 \mathrm{~min}, \mathrm{t}_{2}=22.6 \mathrm{~min}$ (major). HRMS Calculated for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{1}[\mathrm{M}+\mathrm{H}]^{+}$281.1648, found 281.1649.
(5S,6R)-5,6-Bis(3-methoxyphenyl)piperazin-2-one (2d):
$90 \mathrm{mg}, 96 \%$ yield, yellow oil, new compound, 85% ee, $>20: 1$ d.r., $[\alpha]^{20}{ }_{\mathrm{D}}=+250.40$ (c 0.24 , CHCl_{3}), $\mathrm{R}_{f}=0.62$ (ethyl acetate/methanol $=80 / 1$). ${ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$,
 $\left.\mathrm{CDCl}_{3}\right) \delta 7.12-7.05(\mathrm{~m}, 2 \mathrm{H}), 6.88-6.84(\mathrm{~m}, 1 \mathrm{H}), 6.74-6.71(\mathrm{~m}, 2 \mathrm{H}), 6.55(\mathrm{~d}$, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.31-$ $6.26(\mathrm{~m}, 1 \mathrm{H}), 4.61(\mathrm{t}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{t}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.89-3.76$ $(\mathrm{m}, 2 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}), 3.57(\mathrm{~s}, 3 \mathrm{H}), 1.94(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 169.9,159.4,158.9,140.1,138.7,129.1,128.6,120.6,119.5,113.8,113.7,112.2,61.3$, $61.0,55.1,55.1,50.4$. Enantiomeric excess was determined by chiral HPLC analysis for the corresponding 4-tosyl piperazin-2-one (Chiralcel AD-H column, Hexanes $/ i-\mathrm{PrOH}=70 / 30$, detector: 230 nm , flow rate: $0.70 \mathrm{~mL} / \mathrm{min}, 30^{\circ} \mathrm{C}$), $\mathrm{t}_{1}=14.8 \mathrm{~min}, \mathrm{t}_{2}=18.3 \mathrm{~min}$ (major). HRMS Calculated for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 313.1547$, found 313.1555.
(5S,6R)-5,6-Bis(4-methoxyphenyl)piperazin-2-one (2e) :
$89 \mathrm{mg}, 95 \%$ yield, yellow oil, new compound, 90% ee, $>20: 1$ d.r., $[\alpha]^{20}{ }_{\mathrm{D}}=+330.24$ (c 0.76,
 CHCl_{3}), $\mathrm{R}_{f}=0.60$ (ethyl acetate/methanol $=80 / 1$). ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 6.75(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 4 \mathrm{H}), 6.71-6.67(\mathrm{~m}, 4 \mathrm{H}), 6.35(\mathrm{~d}, J=2.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.56(\mathrm{t}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{q}, J=17.6 \mathrm{~Hz}$, $2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 1.72(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.7,159.2,159.0,130.7,129.4,129.1,128.2,113.4,113.0,61.1,60.9$, 55.2, 55.2, 50.7. Enantiomeric excess was determined by HPLC analysis for the corresponding 4-tosyl piperazin-2-one (Chiralcel AD-H column, Hexanes $/ i-\mathrm{PrOH}=70 / 30$, detector: 230 nm , flow rate: $0.70 \mathrm{~mL} / \mathrm{min}, 30^{\circ} \mathrm{C}$), $\mathrm{t}_{1}=18.5 \mathrm{~min}, \mathrm{t}_{2}=35.4 \mathrm{~min}$ (major). HRMS Calculated for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$313.1547, found 313.1553.
(5S,6R)-5,6-Bis(4-ethylphenyl)piperazin-2-one (2f):
$87 \mathrm{mg}, 94 \%$ yield, pale yellow solid, $\mathrm{mp}: 167-168^{\circ} \mathrm{C}$, new compound, 84% ee, $>20: 1$ d.r., $[\alpha]^{20}{ }_{\mathrm{D}}=$ $+292.89\left(c 0.86, \mathrm{CHCl}_{3}\right), \mathrm{R}_{f}=0.60$ (ethyl acetate/methanol $\left.=80 / 1\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$
$6.96(\mathrm{t}, J=8.6 \mathrm{~Hz}, 4 \mathrm{H}), 6.86(\mathrm{~s}, 1 \mathrm{H}), 6.73-6.68(\mathrm{~m}, 4 \mathrm{H}), 4.60(\mathrm{t}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=3.8$
 $\mathrm{Hz}, 1 \mathrm{H}), 3.81(\mathrm{q}, J=17.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.59-2.57(\mathrm{~m}, 2 \mathrm{H}), 2.54-2.53(\mathrm{~m}, 2 \mathrm{H})$, $1.91(\mathrm{~s}, 1 \mathrm{H}), 1.19-1.17(\mathrm{~m}, 3 \mathrm{H}), 1.16-1.14(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 170.1,143.8,143.7,135.8,134.3,128.2,127.5,127.1,127.0,61.2$, $61.0,50.5,28.5,28.4,15.6,15.6$. Enantiomeric excess was determined by HPLC analysis for the corresponding 4-tosyl piperazin-2-one (Chiralcel AD-H column, Hexanes $/ i-\mathrm{PrOH}=70 / 30$, detector: 230 nm , flow rate: $0.70 \mathrm{~mL} / \mathrm{min}, 30{ }^{\circ} \mathrm{C}$), $\mathrm{t}_{1}=$ 10.0 min (minor), $\mathrm{t}_{2}=14.2 \mathrm{~min}$ (major). HRMS Calculated for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{1}[\mathrm{M}+\mathrm{H}]^{+} 309.1961$, found 309.1960.
(5S,6R)-5,6-Bis(4-propylphenyl)piperazin-2-one (2g):
$90 \mathrm{mg}, 89 \%$ yield, pale yellow solid, mp : $115-116^{\circ} \mathrm{C}$, new compound, 87% ee, $>20: 1$ d.r., $[\alpha]^{20}{ }_{\mathrm{D}}=$
 $+299.18\left(c \quad 1.12, \mathrm{CHCl}_{3}\right), \mathrm{R}_{f}=0.50$ (ethyl acetate/methanol $=80 / 1$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.08-7.02(\mathrm{~m}, 1 \mathrm{H}), ~ 6.93-6.89(\mathrm{~m}, 4 \mathrm{H})$, 6.71-6.65 (m, 4H), 4.57 (t, $J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~d}, J=38 \mathrm{~Hz}, 1 \mathrm{H}), 3.78$ $(\mathrm{q}, J=17.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.51-2.47(\mathrm{~m}, 4 \mathrm{H}), 2.12(\mathrm{~s}, 1 \mathrm{H}), 1.61-1.50(\mathrm{~m}, 4 \mathrm{H})$, $0.86(\mathrm{t}, J=7.4 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.2,142.1$, $141.9,135.8,134.3,128.1,127.6,126.8,61.1,60.8,50.4,37.5,37.5,24.4,13.6,13.5$. Enantiomeric excess was determined by HPLC analysis for the corresponding 4-tosyl piperazin-2-one (AD-H column, Hexanes $/ i-\mathrm{PrOH}=70 / 30$, detector: 230 nm , flow rate: $0.70 \mathrm{~mL} / \mathrm{min}, 30^{\circ} \mathrm{C}$), $\mathrm{t}_{1}=8.0 \mathrm{~min}$, $\mathrm{t}_{2}=10.5 \mathrm{~min}$ (major). HRMS Calculated for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{1}[\mathrm{M}+\mathrm{H}]^{+} 337.2274$, found 337.2271.
(5S,6R)-5,6-Bis(4-(trifluoromethyl)phenyl)piperazin-2-one (2h):
$105 \mathrm{mg}, 91 \%$ yield, yellowi oil, new compound, 85% ee, $>20: 1$ d.r., $[\alpha]^{20}{ }_{\mathrm{D}}=+210.34$ (c 0.56,
 CHCl_{3}), $\mathrm{R}_{f}=0.55$ (ethyl acetate/methanol $=80 / 1$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.41(\mathrm{dd}, J=12.4,8.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.07(\mathrm{~s}, 1 \mathrm{H}), 6.98(\mathrm{dd}, J=16.0$, $8.2 \mathrm{~Hz}, 4 \mathrm{H}), 4.70(\mathrm{t}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.96-3.83(\mathrm{~m}$, 2H), $1.76(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.5,142.1,140.8$, $130.4(\mathrm{q}, J=32.0 \mathrm{~Hz}), 130.3(\mathrm{q}, J=32.0 \mathrm{~Hz}), 128.8,127.4,126.48(\mathrm{q}, J=$ $270.0 \mathrm{~Hz}), 126.59(\mathrm{q}, J=270.0 \mathrm{~Hz}), 125.25(\mathrm{q}, J=3.8 \mathrm{~Hz}), 124.52(\mathrm{q}, ~ J=3.8 \mathrm{~Hz}), 61.0,60.9$, 50.4. ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.6$, -62.7. Enantiomeric excess was determined by HPLC analysis for the corresponding 4-tosyl piperazin-2-one (Chiralcel AD-H column, Hexanes/i-PrOH $=70 / 30$, detector: 230 nm , flow rate: $0.70 \mathrm{~mL} / \mathrm{min}, 30^{\circ} \mathrm{C}$), $\mathrm{t}_{1}=7.9 \mathrm{~min}, \mathrm{t}_{2}=11.6 \mathrm{~min}$ (major). HRMS Calculated for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{1}[\mathrm{M}+\mathrm{H}]^{+} 389.1083$, found 389.1084.
(5S,6R)-5,6-Bis(4-fluorophenyl)piperazin-2-one (2i):
$78 \mathrm{mg}, 91 \%$ yield, yellow oil, new compound, 89% ee, $>20: 1$ d.r., $[\alpha]^{20}{ }_{\mathrm{D}}=+223.27$ (c 0.64,
 CHCl_{3}), $\mathrm{R}_{f}=0.65$ (ethyl acetate/methanol $=80 / 1$). ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 6.91(\mathrm{~s}, 1 \mathrm{H}), 6.88-6.78(\mathrm{~m}, 8 \mathrm{H}), 4.56(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J$ $=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{q}, J=17.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.83(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 169.1,162.0(\mathrm{~d}, J=247.0 \mathrm{~Hz}), 161.7(\mathrm{~d}, J=247.0 \mathrm{~Hz}), 133.8$, $132.3,129.5(\mathrm{~d}, J=8.0 \mathrm{~Hz}), 128.1(\mathrm{~d}, J=8.0 \mathrm{~Hz}), 114.6(\mathrm{~d}, J=21.6 \mathrm{~Hz})$, $114.0(\mathrm{~d}, J=21.6 \mathrm{~Hz}), 60.3,60.2,50.1 .{ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-113.9,-114.2$. Enantiomeric excess was determined by HPLC for the corresponding 4-tosyl piperazin-2-one (Chiralcel

AD-H column, Hexanes $/ \mathrm{i}-\mathrm{PrOH}=70 / 30$, detector: 230 nm , flow rate: $0.70 \mathrm{~mL} / \mathrm{min}, 30{ }^{\circ} \mathrm{C}$), $\mathrm{t}_{1}=$ 11.4 min (minor), $\mathrm{t}_{2}=15.1 \mathrm{~min}$ (major). HRMS Calculated for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{O}_{1}[\mathrm{M}+\mathrm{H}]{ }^{+}$289.1147, found 289.1152.
(5S,6R)-5,6-Bis(4-chlorophenyl)piperazin-2-one (2j):
$83 \mathrm{mg}, 86 \%$ yield, pale yellow solid, mp : $239-240{ }^{\circ} \mathrm{C}$, new compound, 88% ee, $>20: 1$ d.r., $[\alpha]^{20}{ }_{\mathrm{D}}=$

+388.81 (c 0.86, CHCl_{3}), $\mathrm{R}_{f}=0.55$ (ethyl acetate/methanol $=80 / 1$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.15-7.10(\mathrm{~m}, 4 \mathrm{H}), 7.04(\mathrm{~s}, 1 \mathrm{H}), 6.78(\mathrm{dd}, J=$ $12.2,8.4 \mathrm{~Hz}, 4 \mathrm{H}), 4.55(\mathrm{t}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{q}$, $J=17.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.81(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.6,136.8$, $135.4,133.9,133.7,129.7,128.5,128.3,127.8,60.7,60.7,50.5$. EnantiomeExact Mass: 320.0483 ric excess was determined by HPLC analysis for the corresponding 4-tosyl piperazin-2-one (Chiralcel AD-H column, Hexanes $/ i-\mathrm{PrOH}=70 / 30$, detector: 230 nm , flow rate: $0.70 \mathrm{~mL} / \mathrm{min}, 3{ }^{\circ} \mathrm{C}$), $\mathrm{t}_{1}=13.4 \mathrm{~min}$ (minor), $\mathrm{t}_{2}=17.5 \mathrm{~min}$ (major). HRMS Calculated for $\mathrm{C}_{16} \mathrm{H}_{15}$ $\mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]{ }^{+} 321.0556\left({ }^{35} \mathrm{Cl}\right.$ and $\left.{ }^{35} \mathrm{Cl}\right)$, found $321.0562\left({ }^{35} \mathrm{Cl}\right.$ and $\left.{ }^{35} \mathrm{Cl}\right)$, $323.0532\left({ }^{35} \mathrm{Cl}\right.$ and $\left.{ }^{37} \mathrm{Cl}\right), 325.0503\left({ }^{37} \mathrm{Cl}\right.$ and $\left.{ }^{37} \mathrm{Cl}\right)$.
(5S,6R)-5,6-Bis(4-bromophenyl)piperazin-2-one (2k):
$113 \mathrm{mg}, 92 \%$ yield, pale oil, new compound, 87% ee, $>20: 1$ d.r., $[\alpha]^{20}{ }_{\mathrm{D}}=+332.81\left(c 1.06, \mathrm{CHCl}_{3}\right)$,
 $\mathrm{R}_{f}=0.45$ (ethyl acetate/methanol $=80 / 1$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.31-7.27 (m, 4H), $6.90(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{dd}, J=12.6,8.4 \mathrm{~Hz}, 4 \mathrm{H})$, $4.54(\mathrm{t}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{q}, J=17.4 \mathrm{~Hz}, 2 \mathrm{H})$, $1.75(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.5,137.3,135.9,131.4$, $130.8,130.1,128.7,122.2,121.9,60.7,60.7,50.5$. Enantiomeric excess was determined by HPLC analysis for the corresponding 4-tosyl piperazin-2-one (Chiralcel AD-H, Hexanes $/ \mathrm{i}-\mathrm{PrOH}=70 / 30$, detector: 230 nm , flow rate: $0.70 \mathrm{~mL} / \mathrm{min}, 30^{\circ} \mathrm{C}$), $\mathrm{t}_{1}=15.5 \mathrm{~min}, \mathrm{t}_{2}=$ 21.1 min (major); HRMS Calculated for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 408.9546\left({ }^{79} \mathrm{Br}\right.$ and ${ }^{79} \mathrm{Br}$), found $408.9546\left({ }^{79} \mathrm{Br}\right.$ and $\left.{ }^{79} \mathrm{Br}\right), 410.9522\left({ }^{79} \mathrm{Br}\right.$ and $\left.{ }^{81} \mathrm{Br}\right), 412.9513\left({ }^{81} \mathrm{Br}\right.$ and $\left.{ }^{81} \mathrm{Br}\right)$.

(5S,6R)-5,6-Di(naphthalen-2-yl)piperazin-2-one (2l):

$101 \mathrm{mg}, 95 \%$ yield, yellow oil, new compound, 88% ee, $>20: 1$ d.r., $[\alpha]^{20}{ }_{\mathrm{D}}=+440.87$ (c 1.44,
 $\left.\mathrm{CHCl}_{3}\right), \mathrm{R}_{f}=0.56$ (ethyl acetate/methanol $=80 / 1$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.71(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.67-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.52(\mathrm{~m}, 2 \mathrm{H})$, 7.44-7.35 (m, 6H), $7.31(\mathrm{~s}, 1 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}), 6.92(\mathrm{dd}, J=8.4,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.64(\mathrm{dd}, J=8.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{t}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{~d}, J=3.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.02-3.86(\mathrm{~m}, 2 \mathrm{H}), 1.97(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.2$, $135.8,134.7,132.9,132.8,132.8,132.6,128.0,127.9,127.8,127.6,127.5,127.2,127.0,126.4$, 126.1, 126.1, $126.0,124.9,61.4,61.3$, 50.6. Enantiomeric excess was determined by HPLC analysis for the corresponding 4-tosyl piperazin-2-one (Chiralcel AD-H column, Hexanes/i-PrOH $=70 / 30$, detector: 230 nm , flow rate: $0.70 \mathrm{~mL} / \mathrm{min}, 30^{\circ} \mathrm{C}$), $\mathrm{t}_{1}=21.8 \mathrm{~min}, \mathrm{t}_{2}=23.1 \mathrm{~min}$ (major). HRMS Calculated for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 353.1648$, found 353.1648.

(5S,6R)-5-(4-Methoxyphenyl)-6-phenylpiperazin-2-one (2m):

$52 \mathrm{mg}, 92 \%$ yield, yellow solid, new compound, 85% ee, $>20: 1$ d.r., $[\alpha]^{20}{ }_{\mathrm{D}}=+259.56$ (c 0.94,
 CHCl_{3}), $\mathrm{R}_{f}=0.25$ (ethyl acetate/methanol $=50 / 1$). ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.23-7.11(\mathrm{~m}, 3 \mathrm{H}), 6.82(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.77-6.63(\mathrm{~m}, 5 \mathrm{H})$, 4.59 (t, $J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.96-3.78(\mathrm{~m}, 2 \mathrm{H}), 3.73$ (s, 3H), $1.90(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.9,159.0,137.1$, 130.6, 128.4, 128.1, 127.8, 127.6, 113.4, 61.5, 60.7, 55.2, 50.6. Enantiomeric excess was determined by HPLC analysis for the corresponding 4-tosyl piperazin-2-one (Chiralcel AD-H column, Hexanes $/ i-\mathrm{PrOH}=80 / 20$, detector: 220 nm , flow rate: 0.80 $\mathrm{mL} / \mathrm{min}, 30{ }^{\circ} \mathrm{C}$), $\mathrm{t}_{1}=21.8 \mathrm{~min}, \mathrm{t}_{2}=28.4 \mathrm{~min}$ (major). HRMS Calculated for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ 283.1441, found 283.1435 .
(5S,6R)-6-Methyl-5-phenylpiperazin-2-one (2n):
$30 \mathrm{mg}, 79 \%$ yield, yellow solid, new compound, 71% ee, $9.5: 1$ d.r., $[\alpha]^{20}{ }_{\mathrm{D}}=+155.95$ (c 0.52,
 CHCl_{3}), $\mathrm{R}_{f}=0.45$ (ethyl acetate/methanol $=20 / 1$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.38-7.28(\mathrm{~m}, 5 \mathrm{H}), 7.16(\mathrm{~s}, 1 \mathrm{H}), 4.27(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.75-3.63(\mathrm{~m}, 3 \mathrm{H})$, $2.43(\mathrm{~s}, 1 \mathrm{H}), 0.95(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.10$, $139.36,128.60,127.67,126.60,59.51,52.13,50.09,16.67$. Enantiomeric excess was determined by HPLC for the corresponding 4-tosyl piperazin-2-one (Chiralcel AD-H column, Hexanes/ $i-\mathrm{PrOH}=90 / 10$, detector: 220 nm , flow rate: $0.80 \mathrm{~mL} / \mathrm{min}, 30^{\circ} \mathrm{C}$), $\mathrm{t}_{1}=31.0 \mathrm{~min}$ (major), $\mathrm{t}_{2}=33.8 \mathrm{~min}$. HRMS Calculated for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$191.1179, found 191.1179.
(4aS, $8 a R$)-4-Tosyloctahydroquinoxalin-2(1H)-one (2o):
$44 \mathrm{mg}, 71 \%$ yield, white solid, new compound, $8 \% \mathrm{ee},>20: 1$ d.r., $[\alpha]^{20}{ }_{\mathrm{D}}=+15.50\left(c 0.20, \mathrm{CHCl}_{3}\right)$,

$\mathrm{R}_{f}=0.35$ (dichloromethane/ethyl acetate $\left.=10 / 1\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.68 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), $7.30(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H}), 4.12(\mathrm{~d}, J=17.7$ $\mathrm{Hz}, 1 \mathrm{H}), 4.05-3.97(\mathrm{~m}, 1 \mathrm{H}), 3.70-3.65(\mathrm{~m}, 1 \mathrm{H}), 3.60(\mathrm{~d}, J=17.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}$, $3 \mathrm{H}), 1.86-1.66(\mathrm{~m}, 3 \mathrm{H}), 1.64-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.49-1.41(\mathrm{~m}, 2 \mathrm{H}), 1.31-1.22(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.7,144.0,136.4,130.0,127.1,52.4,50.8,44.0,30.3,24.3,23.0$, 21.6, 18.4. Enantiomeric excess was determined by HPLC for the corresponding 4-tosyl piperazin-2-one (Chiralcel AD-H column, Hexanes $/ i-\mathrm{PrOH}=80 / 20$, detector: 220 nm , flow rate: $0.80 \mathrm{~mL} /$ $\min , 30{ }^{\circ} \mathrm{C}$), $\mathrm{t}_{1}=14.1 \mathrm{~min}, \mathrm{t}_{2}=17.5 \mathrm{~min}$ (major). HRMS Calculated for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$ 309.1267 , found 309.1268 .

4. Asymmetric Hydrogenation at Gram Scale

Palladium trifluoroacetate ($40.9 \mathrm{mg}, 0.123 \mathrm{mmol}, 3.0 \mathrm{~mol} \%$) and (R)-Tol-BINAP (90.8 mg , $0.135 \mathrm{mmol}, 3.3 \mathrm{~mol} \%$) were placed in a dried Schlenk tube under nitrogen atmosphere, and degassed anhydrous acetone was added. The mixture was stirred at room temperature for 30 min . Then, the solvent was removed under vacuum to give the catalyst. In a glovebox, the substrate 1a $(1.018 \mathrm{~g}, 4.1 \mathrm{mmol})$ and $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(780 \mathrm{mg}, 4.1 \mathrm{mmol}, 100 \mathrm{~mol} \%$) were stirred in benzene (8.0 mL) at room temperature for 5 min . Subsequently, the aboved catalyst in dichloromethane (8.0 mL) was added to the reaction mixture. The hydrogenation reaction was performed at $80{ }^{\circ} \mathrm{C}$ under hydrogen (1000 psi) in a stainless steel autoclave for 36 h . The mixture was cooled to room temperature. After carefully releasing the hydrogen gas, saturated aqueous sodium bicarbonate (10 mL) was added to the mixture and stirred for $10-15 \mathrm{~min}$. The mixture was extracted with dichloromethane three times, and the combined organic extracts dried over anhydrous sodium sulfate. After filtration, the filtrate was concentrated under the reduce pressure, and further purification was performed by flash chromatography on silica gel eluted with ethyl acetate/methanol to give the hydrogenation product $\mathbf{2 a}$ (0.962 g in 93% yield and $90 \% \mathrm{ee}$).

5. Mechanistic Investigation

Asymmetric Hydrogenation of 5,6-Diphenylpyrazin-2-ol (1a) with Deuteric L-CSA: 5,6-Diphenylpyrazin-2-ol 1a was hydrogenated with the $\operatorname{Pd}\left(\mathrm{OCOCF}_{3}\right)_{2} /(R)$-Tol-BINAP/Deuteric L-CSA/DCM:Benzene (1:1) condition.

Deuteric L-CSA was obtained in situ by stirring $\mathrm{CD}_{3} \mathrm{OD}(0.5 \mathrm{~mL})$ and L-CSA ($46 \mathrm{mg}, 0.20$ mmol) at room temperature in glove box for 0.5 h and then the solvent was removed in vacuum. Repeat this procedure twice for sufficient Hydrogen/Deuterium exchange. Subsequently, the prepared catalyst ($3.0 \mathrm{~mol} \%$) and $\mathbf{1 a}(50 \mathrm{mg}, 0.20 \mathrm{mmol})$ were transferred to the above preformed deuteric L-CSA by dichloromethane/benzene $(1.5 \mathrm{~mL} / 1.5 \mathrm{~mL})$ and the hydrogenation was carried out under the optimal conditions for $24 \mathrm{~h} .{ }^{1} \mathrm{H}$ NMR analysis of the crude hydrogenated product showed that deuterium atoms were incorporated to the 3,5,6-position (with $55 \%, 21 \%, 30 \%$ incorporation) of hydrogenation product 5,6-diphenylpiperazin-2-one [D]-2a (Figure S1).

Figure S1. ${ }^{1} \mathrm{H}$ NMR of [D]-2a

Asymmetric Hydrogenation with \mathbf{D}_{2} : 5,6-Diphenylpyrazin-2-ol 1a was hydrogenated in D_{2} (400 psi) with the $\mathrm{Pd}\left(\mathrm{OCOCF}_{3}\right)_{2} /(R)$-Tol-BINAP/L-CSA/DCM:Benzene (1:1) condition.

${ }^{1} \mathrm{H}$ NMR analysis of the crude hydrogenation product showed that deuterium atoms were incorporated to the $3,5,6$-position (with $75 \%, 51 \%, 42 \%$ incorporation) of product 5,6 -diphenyl-piperazin-2-one [D]-2a' (Figure S2).

Figure S2. ${ }^{1} \mathrm{H}$ NMR of [D]-2a'

6. The Determination of Structure of (+)-2a and 1m

6.1. The Determination of Absolute Configuration of Hydrogenation Product (+)-2a

The hydrogenation product (+)-2a was not directly suitable for X-ray diffraction experiment. In order to determine the absolute configuration, $(+)-\mathbf{2 a}$ was protected with tosyl chloride.

A solution of (+)-2a ($81 \mathrm{mg}, 0.32 \mathrm{mmol}$) and pyridine ($25 \mathrm{mg}, 0.32 \mathrm{mmol}$) in dichloromethane, tosyl chloride ($61 \mathrm{mg}, 0.32 \mathrm{mmol}$) was added. The mixture was stirred at room temperature. When TLC indicated that the reaction was finished, water (10 mL) was added. The mixture was extracted with ethyl acetate and the combined organic layer was washed with HCl and brine. After dried over anhydrous sodium sulfate, the mixture was concentrated and further purification was performed by a silica gel column to achieve the product (-)-2a' $(0.114 \mathrm{~g}, 88 \%$ yield $)$.

(5S,6R)-(-)-5,6-Diphenyl-4-tosylpiperazin-2-one (2a'):

$0.114 \mathrm{~g}, 88 \%$ yield, white solid, new compound, mp 228-229 ${ }^{\circ} \mathrm{C},>99 \%$ ee, $[\alpha]^{20}{ }_{\mathrm{D}}=-108.44$ (c $1.22, \mathrm{CHCl}_{3}$), $\mathrm{R}_{f}=0.15$ (hexanes/ethyl acetate $=4: 1$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.28(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.22-7.09(\mathrm{~m}, 4 \mathrm{H}), 7.02-6.95(\mathrm{~m}, 4 \mathrm{H}), 6.88-6.86(\mathrm{~m}, 2 \mathrm{H}), 6.65(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $6.54(\mathrm{~s}, 1 \mathrm{H}), 5.26(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~d}$, $J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.6,143.7,135.4,134.2,134.1$, $129.3,128.8,128.7,128.6,128.0,128.0,127.4,127.0,61.0,60.2,46.4,21.4$. Enantiomeric excess was deter- mined by HPLC (AD-H column, Hexanes $/ i-\mathrm{PrOH}=80 / 20$, detector: 230 nm , flow rate: $0.80 \mathrm{~mL} / \mathrm{min}, 30{ }^{\circ} \mathrm{C}$), $\mathrm{t}_{1}=14.3 \mathrm{~min}, \mathrm{t}_{2}=21.4 \mathrm{~min}$ (major). HRMS Calculated for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+}$407.1424, found 407.1424.

Figure S3. X-ray Crystallographic Analysis of Compound (-)-2a’

After recrystallizing in dichloromethane and n-hexane, optically pure product could be obtained. Then, a crystal of was grown from dichloromethane and n-hexane, which is suitable for X-ray diffraction analysis. The structure in Figure S3 shows that the absolute configuration of (-)-2a' is $(5 S, 6 R)$, CCDC number is 1846833 . Hence, the absolute configuration of hydrogenation product $(+)-2 \mathbf{a}$ could be deduced from this structure. The absolute configuration of $(+)-\mathbf{2 a}$ is $(5 S, 6 R)$. These details can be obtained free of charge via www.ccdc. com.ac.uk/data_request/cif from the Cambridge Crystallographic Data Centre.

Crystal Data and Structure Refinement for mjr18056 for (-)-(5S,6R)-2a’

Identification code	mjr18056
Empirical formula	C23H22N2O3S
Formula weight	406.48
Temperature	304.8 K
Wavelength	1.34139 A
Crystal system	Tetragonal
Space group	P 43
Unit cell dimensions	$\mathrm{a}=14.1925(3) \AA \quad \alpha=90^{\circ}$
	$\mathrm{b}=14.1925(3) \AA \quad \beta=90^{\circ}$
	$\mathrm{c}=10.5312(2) \AA \quad \gamma=90^{\circ}$
Volume	2121.27(10) \AA^{3}
Z	4
Density (calculated)	$1.273 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$1.016 \mathrm{~mm}^{-1}$
F(000)	856
Crystal size	$0.15 \times 0.03 \times 0.01 \mathrm{~mm}^{3}$
Theta range for data collection	3.832 to 54.904°.
Index ranges	$-17<=\mathrm{h}<=17,-17<=\mathrm{k}<=17,-9<=1<=12$
Reflections collected	23362
Independent reflections	$3691[\mathrm{R}(\mathrm{int})=0.0693]$
Completeness to theta $=53.594^{\circ}$	99.9 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7508 and 0.6158
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	3691 / 1 / 264
Goodness-of-fit on F^{2}	1.044
Final R indices [$1>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0372, \mathrm{wR} 2=0.0739$
R indices (all data)	$\mathrm{R} 1=0.0605, \mathrm{wR} 2=0.0842$
Absolute structure parameter	0.014(12)
Extinction coefficient	0.0027(4)
Largest diff. peak and hole	0.145 and $-0.151 \mathrm{e} . \AA^{-3}$

6.2. The Determination of Structure of Substrate 1 m

The substrstate $\mathbf{1 m}$ was recrystallized twice in dichloromethane and n-hexane. Then, a crystal of was grown from dichloromethane, methanol and n-hexane, which is suitable for X-ray diffraction analysis. The chemical structure was showed in Figure S4, CCDC number is 2023354. These aboved data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc. com.ac.uk/data_request/cif.

Figure S4. X-ray Crystallographic Analysis of Substrate 1m

Crystal Data and Structure Refinement for mo_d8v20299_0m for 1m

Identification code	mo_d8v20299_0m
Empirical formula	C17H14N2O2
Formula weight	278.30
Temperature	293(2) K
Wavelength	0.71073 £
Crystal system	Triclinic
Space group	P-1
Unit cell dimensions	$\mathrm{a}=6.1923(2) \AA \quad \alpha=106.2360(10)^{\circ}$
	$b=9.0465(3) \AA \quad \beta=98.2550(10)^{\circ}$
	$\mathrm{c}=13.1134(4) \AA \quad \gamma=94.1460(10)^{\circ}$
Volume	693.09(4) \AA^{3}
Z	2
Density (calculated)	$1.334 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.089 \mathrm{~mm}^{-1}$
F(000)	292
Crystal size	$0.200 \times 0.120 \times 0.060 \mathrm{~mm}^{3}$
Theta range for data collection	2.361 to 25.994°.
Index ranges	$-7<=\mathrm{h}<=7,-11<=\mathrm{k}<=11,-16<=\mathrm{l}<=16$
Reflections collected	17265
Independent reflections	$2704[\mathrm{R}(\mathrm{int})=0.0518]$
Completeness to theta $=25.242^{\circ}$	99.5 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7456 and 0.6086
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	2704 / 0 / 196
Goodness-of-fit on F^{2}	1.073
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0444, \mathrm{wR} 2=0.1191$
R indices (all data)	$\mathrm{R} 1=0.0556, \mathrm{wR} 2=0.1310$
Extinction coefficient	0.088(17)
Largest diff. peak and hole	0.187 and -0.158 e. \AA^{-3}

7. Product Elaboration

The product $(5 S, 6 R)$-2a could be conveniently converted into piperazine derivative according to the known literature procedure. ${ }^{5}$

A mixture of $(5 S, 6 R)-2 \mathbf{a}(101 \mathrm{mg}, 0.40 \mathrm{mmol}, 90 \%$ ee $)$, acetic acid $(0.1 \mathrm{~mL})$, formaldehyde ($\mathrm{HCHO}, 37-40 \%$ in water) $(486 \mathrm{mg}, 11.2 \mathrm{mmol}), \mathrm{NaBH}_{3} \mathrm{CN}(113 \mathrm{mg}, 1.80 \mathrm{mmol})$ and acetonitrile $(4.0 \mathrm{~mL})$ in a 25 mL round-bottomed flask was stirred at room temperature overnight. The mixture was diluted with 15 mL of ethyl acetate and washed with 10 mL of saturated aqueous solution of sodium chloride. The organic layer was dried over anhydrous sodium sulfate and filtered. The solvent was evaporated under reduced pressure to give the crude product. This crude product was used for the next step without further purification.

The aboved crude product was dissolved in tetrahydrofuran $(5.0 \mathrm{~mL})$. The lithium aluminum hydride ($91 \mathrm{mg}, 2.4 \mathrm{mmol}$) was added to the mixture at $0^{\circ} \mathrm{C}$. The reaction mixture was reflux for 12 h , and then cooled to room temperature. The reaction was quenched with water, and 20% aqueous sodium hydroxide (5 mL) was added. After being stirred for 15 minutes, the mixture was diluted with ethyl acetate, filtered through Celite, and concentrated under the reduced presssure to give the crude product. The residue was purified by silica gel chromatography using dichloromethane/methanol (20:1) as eluent to give the desirable product $(2 S, 3 R)-3$ as pale oil.

(2S,3R)-1-Methyl-2,3-diphenylpiperazine (3):

$61 \mathrm{mg}, 60 \%$ yield (two steps), 90% ee, pale oil, known compound, $[\alpha]^{20}{ }_{\mathrm{D}}=-99.99\left(c 0.12, \mathrm{CHCl}_{3}\right)$, $\left[\right.$ Lit: ${ }^{\text {la }}[\alpha]^{20}{ }_{\mathrm{D}}=+92.4\left(c 1.0, \mathrm{CHCl}_{3}\right)$ for 94% ee], $\mathrm{R}_{f}=0.15($ dichloromethane $/$ methanol $=20 / 1)$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.48-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.04(\mathrm{~m}, 6 \mathrm{H}), 4.44(\mathrm{~d}, J$ $=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.43-3.38(\mathrm{~m}, 1 \mathrm{H}), 3.27-3.21(\mathrm{~m}, 1 \mathrm{H}), 3.10-3.04(\mathrm{~m}, 1 \mathrm{H})$, 2.64-2.60 (m, 2H), $2.17(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.0,136.0,131.2,127.8127 .3$, 127.1, 126.8, 70.2, 64.2, 49.7, 45.3, 43.5. Enantiomeric excess was determined by HPLC for the corresponding benzamide (IA, elute: Hexanes $/ i-\mathrm{PrOH}=70 / 30$, detector: 220 nm , flow rate: 0.8 $\mathrm{mL} / \mathrm{min}, 30^{\circ} \mathrm{C}$), $\mathrm{t}_{1}=7.0 \mathrm{~min}, \mathrm{t}_{2}=10.6 \mathrm{~min}$ (major).

8. References

1. (a) Huang, W.-X.; Liu, L.-J.; Wu, B.; Feng, G.-S.; Wang, B.; Zhou, Y.-G. Synthesis of Chiral Piperazines via Hydrogenation of Pyrazines Activated by Alkyl Halides. Org. Lett. 2016, 18, 3082-3085; (b) Ghosh, P.; Mandal, A.; Subba, R. γ-Maghemite-silica Nano-composite: A Green Catalyst for Diverse Aromatic N-Heterocycles. Catal. Commun. 2013, 41, 146-152.
2. (a) Ohta, A.; Masano, S.; Iwakura, S.; Tamura, A.; Watahiki, H.; Tsutsui, M.; Akita, Y.; Watanabe, T. Syntheses and Reaction of Some 2,3-Disubstitued Pyrazine Monoxides. J. Heterocyclic Chem. 1982, 19, 465-473; (b) Mandal, D.; Yamaguchi, A. D.; Yamaguchi, J.; Itami, K. Synthesis of Dragmacidin D via Direct C-H Couplings. J. Am. Chem. Soc. 2011, 133, 19660-19663.
3. (a) Kaftory, M.; Shteiman, V.; Lavy, T.; Scheffer, J. R.; Yang, J.; Enkelmann, V. Discrimination in the Solid-State Photodimerization of 1-Methyl-5,6-diphenylpyrazin-2-one. Eur. J. Org. Chem. 2005, 847-853; (b) Inoue, H.; Kubota, T.; Kanamoto, M. Synthesis Method of Organometallic Complex, Synthesis Method of Pyrazine Derivative, 5,6-Diaryl-2-Pyrazyl Triflate, Light-Emitting Element, Light-Emitting Device, Electronic Device, and Lighting Device. US2015147840, 2015 A1. (c) Matsuda, T.; Aoki, T.; Ohgiya, T.; Koshi, T.; Ohkuchi, M.; Shigyo, H. Synthesis and Bioactivities of Novel Pyridazine Derivatives: Inhibitors of Interleukin-1 Beta (IL-1 β) production. Bioorg. Med. Chem. Lett. 2001, 11, 2369-2372. (d) Yuan, J.; Guo, Q.; Zhao, H.; Hu, S.; Whitehouse, D. L.; Pringle, W.C.; Mao, J.; Maynard, G. D.; Hammer, J. D.; Wustrow, D. J.; Li, H. Substituted heteroaryl CB1 antagonists. US2007078135,2007 A1. (e) Alvernhe, G.; Laurent, A.; Masroue, A. Addition of α-Aminoesters or α-Hydroxy-esters to Azirines. Tetrahedron Lett. 1983, 24, 1153-1156; (f) Shibayama, K.; Kuwahara, R.; Sato, M.; Nishimura, S.; Shiinoki, Y.; Yokoyama, M.; Kitamura, J. Nitrogenated Heterocyclic Compound and Agricultural or Horticultural Fungicide. US2014073792, 2014 A1.
4. Darko, L.; Karliner, J. Lactam Formation from the Condensation of Stilbenediamine with Glyoxal. J. Org. Chem. 1971, 36, 3810-3812.
5. (a) Chen, M.-W.; Yang, Q.; Deng, Z.; Zhou, Y.; Ding, Q.; Peng, Y. Organocatalytic Asymmetric Reduction of Fluorinated Alkynyl Ketimines. J. Org. Chem. 2018, 83, 8688-8694; (b) Chardon, A.; Morisset, E.; Rouden, J.; Blanchet, J. Recent Advances in Amide Reductions. Synthesis 2018, 50, 984-997.

9. Copy of NMR and HPLC

13C NMR GF-9-69B in DMSO-d6

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}\right.$, DMSO-d $\left.\mathrm{d}_{6}\right)$

Sorted Bv
Mutitiplier:
Dilupien
siomal

Si gall 1: wiv 1 A , Wavelength 230 nm

Tatals : 1.02910e4 398.91554
$\pi *$ End of Report $\pi \approx$

Instrument 1 8/3/2018 8:18:35 PM
Page 1 of 1

sarted iv
Multipivier:
sicmal

Si gasil 1: YTD 1 A , Wavelength-230 nim

Tatals: $\quad 7511.73676 \quad$ 232.68429
\qquad

Instrument 1 8/1/2018 12:12:54 Pn
Page 1 of 1

Si gaal 1: yw 1 A , Wavelength-254 me

$2107.29541 \quad 110.50870$

$\pi *$ End of Report $\pi \approx$

Instrument 1 8/1/2018 12:15:50 pu
Page 1 of 1

Sarted by
Maltiplier:
Sicmal

Si gasi 1: YTD 1 A , Wavelength=254 nim

Tatals: $\quad 3132.63292 \quad 143.87300$

Instrument 1 8/1/2018 12:17:20 pin
Page 1 of 1

Instrument 1 8/1/2018 12:21:56 ph
Page 1 of

	Instrument 1	Location : Yial 1
Iniection pate	6/21/2018 12:22:55 .4.	
${ }_{\text {Laser }}$ Last methanded		
	(modified atter 10	
Analvsis Method		
Sample info		un/min, 30 oc ,

\qquad
Simal
$=====$
$=================$

$$
\begin{gathered}
\text { Sorted By } \\
\text { Maltiplier: } \\
\text { Milurime }
\end{gathered}
$$

Tse Multiplier \& Dilution Factor with isTTs
Si gasil 1: YTD 1 A , Wavelength=254 nim

Tatals : 2239.26618 66.65975

*** End of Report ***

Instrument 1 8/1/2018 12:20:42 pu
Page 1 of 1

\qquad
Area Percent Repart
$=================$

Si gall 1: wiv 1 A , Wavelength 230 nm

Totals :
2.97687e4 1092.40802

\qquad
$\pi *$ End of Report $\pi \approx$

Instrument 1 8/1/2018 12:25:20 pu
Page 1 of 1

\qquad

$$
==============-====
$$

Sarted bv : simal

Si gasl 1: YTD 1 A, Wavelength- 230 nm

Tatals : $\quad 1.92940 \mathrm{e} 4 \quad 486.21563$
$=====$

$\pi *$ End of Report $\pi *$

Instrument 1 8/1/2018 12:23:54 pm

	Instrument 1	Location : ${ }_{\text {Fial }} 1$
Intection date	7/2/2019 11:45:50 PH	
	C:	
Last chanced	(ludit ied after loading)	
alvsis Method		
thent		
Samale Info	AD-H, Hexane/i-Proil $=70 / 30,0$	n, 30 oc,

siomal

Si gmal 1: prod 1 , Wavelength 230 nm

Tatals : $\quad 2.02003 \mathrm{e} 4 \quad 383.50136$
*** End of Report π *

Instrument 18/1/2018 12:27:49 pin

$$
\begin{aligned}
& \text { siomal }
\end{aligned}
$$

Si ganl 1: YWD 1 A , Wavelength=230 nm

 Totals :
$8733.43066 \quad 499.48755$

*** End of Report ***

Instrument 1 8/1/2018 12:32:08 ph
Page 1 of 1

\qquad
Sarted BV
Multiplier:
Simal

Si gasil 1: YTD 1 A , Wavelength-230 nim

Tatals :
$5341.23965 \quad 253.36396$
*** End of Report ***

nstrument 1 8/1//2018 12:36:45 pu
Page 1 of 1

	Instrument 1	Location :
Iniection pate		
${ }_{\text {Last }}^{\text {Ract. }}$ Lhanged		
Analvsis Method Last changed	 8/1/2018 12:33:52 PH	
	(modified after	
e		

$\begin{aligned} & \text { Sarted } \mathrm{Ev} \\ & \text { Multiplier: }\end{aligned} \quad: \quad$ Sicmal $_{1.000}$

Si gasil 1: YTD 1 A , Wavelength-230 min

Tatals: 6558.59451 $\quad 417.97620$
(+)-2g'
$\pi *$ End of Report $\pi *$

Tnstrument 1 8/1/2018 12:34:00 RII

Sarted BV
Multiplier:
sicmal

Si gall 1: prod 14 , Wavelength=230 num

Tatals : 7065.58539 $\quad 359.10368$

*** End of Report ***

$\underset{\substack{\text { Dilution: } \\ \text { Use Multiplier }}}{\text { Dilution Factor with }} \stackrel{1.0000}{1}$
Si gasi 1: ywd 1 A , Wavelength-230 min

Tatals : $1.18593 \mathrm{e} 4 \quad 602.61282$
$\pi * *$ End of Report $\pi *$

Instrument 1 8/1/2018 12:44:52 pu

Sorted Ev
Hultiplier:
sicmal

Si ganal 1: wiv 1 A , Wavelength 230 nm

 Totals: 1.27023e4 $\quad 556.25741$ =-=

Instrument 18/1/2018 12:43:31 ph
Page 1 of 1

Sorted BV
Multiplier
Ditutiot
dition
siomal

Si gall 1: YWD 1 A, Wavelength=230 nim

$$
\begin{array}{lll}
\text { Tatals : } & 4154.50317 & 174.88048
\end{array}
$$

siomal

Si gasil 1: YTD 1 A , Wavelength-230 nim

$\begin{array}{llll}\text { Tatals }: & 7591.51004 & 278.18589\end{array}$

Instrument 1 8/1/2018 12:46:39 ph
Page 1 of 1

siomal

Sigmal 1: पTWD 14 , Wavelength=230 nil

Tatals :
$8822.68115 \quad 301.25240$

$\pi *$ End of Report $\pi \approx$

Instrument 1 8/1/2018 12:51:30 ph
Page 1 of

siomal

Si gasil 1: YTD 1 A , Wavelength-230 min

Tatals : $3887.66147 \quad 95.69185$

$\pi *=$ End of Report π **

Sarted by
Maltiplier:
simal

Si gasil 1: YTD 1 A , Wavelength=230 nm

 Tatals : $\quad 1.18960 \mathrm{e} 4 \mathrm{318.87776}$

$==========$
sicmal
\vdots

Si gall 1: YWP 1 A , Wavelength=220 min

 Tatals : 2367.69397 64.44169
MeO

$(+1-)-2 m^{\prime}$

sarted iv
Multipivier:

Sutiphe
Dilution:
Use Multip
sicmal
Use Multiplier \& Dilution Factor with isTTa

Si gasl 1: YTD 1 A , Wavelength= 220 nm

$(+)-2 \mathrm{~m}^{\prime}$

Tatals :
$6452.07343 \quad 155.9988$
$\pi *$ End of Report $\pi \approx$

$\stackrel{\text { Simal }}{\vdots}$

Si gasl 1: YTD 1 A , Wavelength= 220 nm

$1.38691 \mathrm{e} 4 \quad 307.59423$
$\pi \pi$ End of Report $\pi=\pi$

Instrument 19/19/2020 9:14:57 Al|
Page 1 of 1

siomal

Si gmal 1: wid 1 A , Wavelength-220 mm

(+/-)-20
$2479.18298 \quad 108.21965$

Instrument 1 9/19/2020 9:09:00 m
Page 1 of 1

Si gasi 1: yTD 1 A, Wavelength- 220 nm

Totals :
${ }^{6096.36084} \quad 266.49789$

Instrument 1 9/19/2020 9:10:29 AM
Page 1 of 1

$$
\begin{gathered}
\text { Sorted Bv } \\
\text { Maltiplier: } \\
\text { Natimiti }
\end{gathered} \quad: \quad: \quad \text { siomal }
$$

Si gnal 1: YTVD 1 A, Wavelength $=220 \mathrm{~mm}$

Totals
$\begin{array}{lll}8446.96582 & 706.97897\end{array}$

Instruwent 1 7/31/2018 12:41:24 a4

[^0]
Dilution:
Use Multiplier $\&$ Dilution Factor with $\frac{1}{1.00000}$
\vdots

Tatals: $\quad 2688.04705 \quad 172.03151$

(-)-3

Tnstrument 1 7/31/2018 12:42:37
Page 1 of 1

[^0]:

