Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2021

Supporting Information for

Strain-release enabled [3+2] annulation of 3-aminooxetanes with simple C=N bonds: facile synthesis of imidazolidines

Jing Zhang,^a Yi-Fei Li,^a Feng-Cheng Jia,^{*b} Yang Gao^c and Xiao-Qiang Hu^{*a}

^aKey Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China.
E-mail: huxiaoqiang@mail.scuec.edu.cn
^bSchool of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China.
E-mail: fengcheng-jia@wit.edu.cn
^cSchool of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China.
E-mail: gaoyang@gdut.edu.cn

huxiaoqiang@mail.scuec.edu.cn

Table of Contents

1. General Information	3
2. Preparation of 3-aminooxetanes and 1,3,5-triazinanes	3
3. General Procedure and Spectral Data of the Products	4
3.1 General procedure for the synthesis of 3aa-3ai, 3ba-3wa, 5aa-5ae, 7, 9 and gram scale reaction	4
3.2 Unsuccessful substrates	6
3.3 Spectral data of the products 2a-2f, 3aa-3ai, 3ba-3wa, 5aa-5ae, 7 and 9	7
4. X-Ray structure of 9	22
5. Recycling the solvent of a gram-scale reaction	22
6. Calculation of the atom economy and E-factor for this reaction.	23
7. NMR Spectra of products 2a-2f, 3aa–3ai, 3ba–3wa, 5aa-5ae, 7 and 9	24

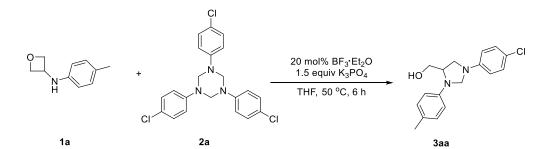
1. General Information

Unless otherwise noted, materials were purchased from commercial suppliers (Alfa, TCI and Sigma-Aldrich etc.), and used without further purification. All the solvents were treated according to general methods. All reactions were monitored by thin-layer chromatography (TLC) on silica gel plates using UV light as visualizing agent (if applicable). Flash column chromatography was performed using 200-300 mesh silica gel. ¹H NMR spectra were recorded on 400/600 MHz spectrophotometers. Chemical shifts are reported in delta (δ (ppm)) units in parts per million (ppm) relative to the singlet (0 ppm) for tetramethylsilane (TMS). Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, m = multiplet), coupling constants (Hz) and integration. ¹³C NMR spectra were recorded on Varian Mercury 400 (100 MHz) with complete proton decoupling spectrophotometers (CDCl₃: 77.0 ppm). The high resolution mass spectra (HRMS) were measured on a Shimadzu LCMS-IT-TOF mass spectrometer or DIONEX UltiMate 3000 & Bruker Compact TOF mass spectrometer by ESI. Measured values are reported to 4 decimal places of the calculated value. The calculated values are based on the most abundant isotope. An oil bath was used for the synthesis of 1,3,5-triazinanes, and a heating module was used for preparation of compounds **3aa-3af**, **3ba-3va**, **5aa-5ae** and **7**.

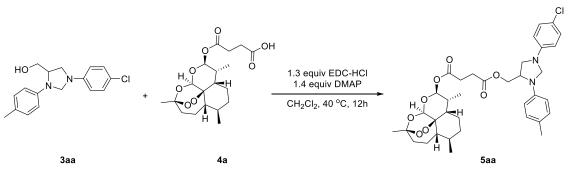
2. Preparation of 3-aminooxetanes and 1,3,5-triazinanes

To an around-bottom flask was added iodobenzene (5 mmol), 3-aminooxetane (7.5 mmol), KOH (10 mmol), Cu(acac)₂ (0.1 mmol) and glycerol (25 mL), stirred at 100 °C for 15 h. Then, the reaction mixture was extracted with EtOAc (3 x 10 mL). The combined organic layers dried over Na₂SO₄, and the drying material was removed via gravity filtration and the ethyl acetate filtrate evaporated to dryness under reduced pressure. The crude product was purified by column chromatography (SiO₂, petroleum ether/ethyl acetate = 20:1 to 5:1).

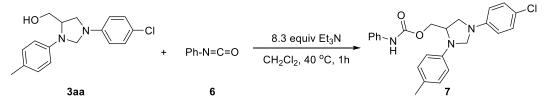
$$\begin{array}{c} O \\ H_2 \end{array} + \begin{array}{c} O \\ H_2 \end{array} + \begin{array}{c} O \\ H_1 \end{array} + \begin{array}{c} O \\ H_2 \end{array} + \begin{array}{c} O \\ H_1 \end{array} + \begin{array}{c} O \\ H_2 \end{array} + \begin{array}{c} O \\ H_1 \end{array} + \begin{array}{c} O \\ H_2 \end{array} + \begin{array}{c} O \\ H_1 \end{array} + O \\ + O \\ H_1 \end{array} + O \\ H_1 \\ + O \\ H_1 \end{array} + O \\ H_1 \end{array} + O \\ H_1 \\ + O \\ H_1 \end{array} + O \\ H_1 \end{array} + O \\ H_1 \\ + O \\ H_1 \end{array} + O \\ H_1 \\ + O \\ H_1 \end{array} + O \\ H_1 \\ + O \\ + O \\ H_1 \\ + O \\ + O \\ H_1 \\ + O \\ + O \\ + O \\ H_1 \\ + O \\$$

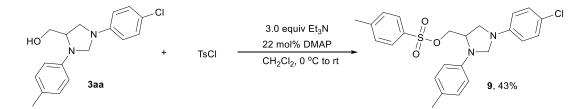

To an around-bottom flask was added the 3-aminooxetane (5 mmol) and aldehyde (6 mmol) in MeOH (20 mL). The reaction mixture was stirred at 60 °C overnight. The mixture was then cooled to 0 °C and NaBH₄ was added slowly. The reaction mixture was allowed to warm to room temperature, and stirred for 1h before it was quenched with NH₄Cl (20 mL), extracted with EtOAc (3×20 mL). The combined organic layers dried over Na₂SO₄, and the drying material was removed via gravity filtration and the ethyl acetate filtrate evaporated to dryness under reduced pressure. The crude product was purified by column chromatography (SiO₂, petroleum ether/ethyl acetate = 20:1 to 5:1).

$$R \xrightarrow{[1]}{\downarrow} + (CH_{2}O)_{n} \xrightarrow{\text{toluene}} 120 \,^{\circ}\text{C, reflux, 2 h} \xrightarrow{Ar_{N} Ar_{N}}_{Ar}$$


To an around-bottom flask was added the anilines (20 mmol) and paraformaldehyde (20 mmol) in toluene (24 mL), stirred at 120 °C for 2 h. Remove the solvent under reduced pressure, the solid was directly washed by cooled petroleum ether to give the pure product as white solids. All of 1,3,5-triazinanes 2 are known compounds.

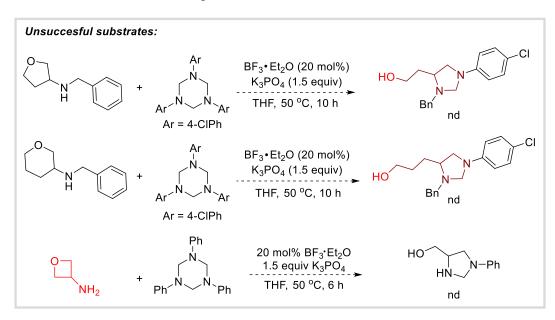
3. General Procedure and Spectral Data of the Products

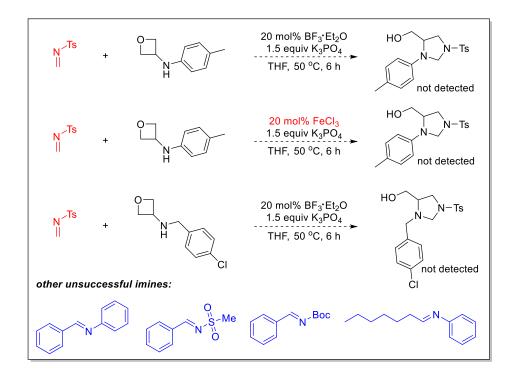

3.1 General procedure for the synthesis of 3aa-3ai, 3ba-3wa, 5aa-5ae, 7, 9 and gram scale reaction


To a dried flask was added **1a** (48.9 mg, 0.3 mmol), **2a** (100.4 mg, 0.24 mmol), and K_3PO_4 (92.5 mg, 0.45 mmol) in THF (3 mL). Then, BF₃·Et₂O (20 mol%) was added to the mixture. The reaction mixture was stirred at 50 °C for 6 h. The crude product was purified by chromatography on silica gel directly to give the desired product **3aa** in 88% isolated yield as a white solid. Other products **3ab-3ai** and **3ba-3wa** were prepared according to this procedure.


To a dried flask was added **3aa** (60.6 mg, 0.2 mmol), **4a** (64.3 mg, 0.17 mmol), EDC-HCl (41.4 mg, 0.22 mmol), DMAP (28.6 mg, 0.23 mmol), and CH₂Cl₂ (2 mL). The reaction mixture was stirred at 40 °C for 12 h. The crude product was purified by chromatography on silica gel directly to give the desired product **5aa** in 92% isolated yield as a white solid. Other products **5ba-5ae** were prepared according to this procedure.

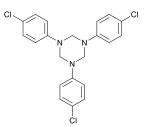
To a dried flask was added **3aa** (60.6 mg, 0.2 mmol), isocyanate (16.7 mg, 0.14 mmol), Et_3N (168 mg, 1.66 mmol) in CH_2Cl_2 (1 mL). The reaction mixture was stirred at 40 °C for 1 h. The crude product was purified by chromatography on silica gel directly to give the desired product **7** in 57% isolated yield as a white solid.


To a dried flask was added **3aa** (151.4 mg, 0.5 mmol) and anhydrous dichloromethane (5 mL) at 0 °C, 4-methylbenzenesulfonyl chloride **8** (142.9 mg, 0.75 mmol) was added followed by the addition of Et₃N (151.8 mg, 1.5 mmol) and DMAP (13.4 mg, 0.11 mmol). The reaction mixture was stirred at 0 °C for 15 minutes and then warmed to room temperature until TLC indicated the completion of the reaction. The crude product was purified by chromatography on silica gel directly to give the desired product **9** in 43% isolated yield as a yellow solid.

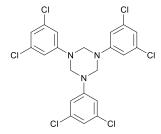

To a dried flask was added **1a** (1.0 g, 6.13 mmol), **2a** (2.05 g, 4.9 mmol), and K_3PO_4 (1.89 g, 9.2 mmol), THF (61 mL). Then, BF₃·Et₂O (20 mol%) was added to the mixture. The reaction mixture was stirred at 50 °C for 6 h. The crude product was purified by chromatography on silica gel (petroleum ether/ethyl acetate = 50:1 to 10:1) directly to give the desired product **3aa** (0.99 g) in 53% isolated yield as a white solid.

3.2 Unsuccessful substrates

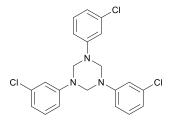
Unfortunately, at current stage, five and six-membered oxygen-containing substrates such as 3-aminotetrahydrofuran and 3-aminotetrahydro-2H-pyran were found to be ineffective for this transformation due to the low strain energies.



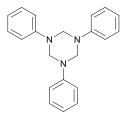
In addition, we further tested this [3+2] annulation reaction with other substituted imines. Firstly, the [3+2] reaction of N-sulfonylformaldimine with 3-aminooxetanes have been conducted under standard conditions. Other substituted imines such as N-phenyl, N-Ms and N-Boc imines have been investigated, which failed to provide the desired products.


3.3 Spectral data of the products 2a-2f, 3aa-3ai, 3ba-3wa, 5aa-5ae, 7 and 9

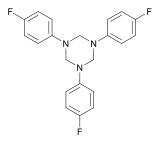
Product 2a (known compound, CAS: 30805-14-2)


The crude product was directly washed by cooled petroleum ether, yielding **2a** in 62% yield as a white solid. ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 7.16 (d, *J* = 8.7 Hz, 6H), 6.89 (d, *J* = 8.7 Hz, 6H), 4.81 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 147.0, 129.2, 126.3, 119.0, 68.8.

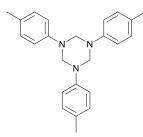
Product 2b (known compound, CAS: 85680-40-6)


The crude product was directly washed by cooled petroleum ether, yielding **2b** in 70% yield as a white solid. ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 6.91 (s, 3H), 6.79 (s, 6H), 4.81 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 149.6, 135.7, 121.5, 115.9, 67.3.

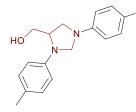
Product 2c (known compound, CAS: 109423-10-1)


The crude product was directly washed by cooled petroleum ether, yielding **2c** in 68% yield as a white solid. ¹H NMR (400 MHz, d⁶-DMSO+CD₃COOD) δ (ppm) = 6.33 (t, *J* = 8.1 Hz, 3H), 6.27 (s, 3H), 6.19 (d, *J* = 8.2 Hz, 3H), 5.96 (d, *J* = 7.7 Hz, 3H), 4.13 (s, 6H). ¹³C NMR (100 MHz, d⁶-DMSO+CD₃COOD) δ

Product 2d (known compound, CAS: 91-78-1)

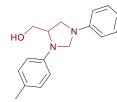

The crude product was directly washed by cooled petroleum ether, yielding **2d** in 50% yield as a white solid. ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 7.21 (t, *J* = 7.8 Hz, 6H), 7.01 (d, *J* = 8.1 Hz, 6H), 6.87 (t, *J* = 7.3 Hz, 3H), 4.89 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 148.6, 129.1, 120.9, 117.7, 68.6.

Product 2e (known compound, CAS: 109423-09-8)


The crude product was directly washed by cooled petroleum ether, yielding **2e** in 40% yield as a white solid. ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 7.00 – 6.96 (m, 6H), 6.89 (t, *J* = 8.6 Hz, 6H), 4.76 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 157.8 (d, *J* = 239.1 Hz), 144.9 (d, *J* = 2.4 Hz), 119.9 (d, *J* = 7.7 Hz), 115.7 (d, *J* = 22.1 Hz), 70.4.

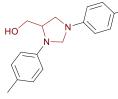
Product 2f (known compound, CAS: 6639-47-0)

The crude product was directly washed by cooled petroleum ether, yielding **2b** in 75% yield as a white solid. ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 7.03 (d, *J* = 8.2 Hz, 6H), 6.93 (d, *J* = 8.3 Hz, 6H), 4.75 (s, 6H), 2.25 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 146.3, 130.4, 129.7, 118.0, 69.5, 20.5.


Product 3aa

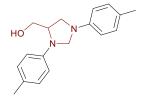
The crude product was purified by column chromatography (SiO₂, petroleum ether/ethyl acetate = 50:1 to 10:1), yielding **3aa** as a white solid (79.8 mg, 88% yield). ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 7.24 (d, *J* = 8.7 Hz, 2H), 7.11 (d, *J* = 8.2 Hz, 2H), 6.64 (dd, *J* = 16.1, 8.6 Hz, 4H), 4.90 (d, *J* = 3.4 Hz, 1H), 4.41 (d, *J*

= 3.4 Hz, 1H), 4.21 (d, J = 6.2 Hz, 1H), 3.78 (d, J = 5.6 Hz, 2H), 3.71 (dd, J = 8.9, 2.4 Hz, 1H), 3.49 (dd, J = 8.8, 7.2 Hz, 1H), 2.28 (s, 3H), 1.76 (t, J = 5.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 145.0, 143.2, 130.0, 129.1, 127.5, 123.1, 114.1, 112.8, 67.1, 62.3, 58.9, 49.7, 20.3. HRMS (ESI): m/z [M + H]⁺ calcd for C₁₇H₁₉ClN₂O: 303.1259; found: 303.1244.


Product 3ab

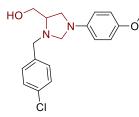
The crude product was purified by column chromatography (SiO₂, petroleum ether/ethyl acetate = 50:1 to 10:1), yielding **3ab** as a white solid (48.3 mg, 60% yield). ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 7.09 (d, J = 8.2 Hz, 2H), 6.83 (t, J = 7.3 Hz, 1H), 6.68 (dd, J = 21.4, 8.1 Hz, 4H), 4.92 (d, J = 3.4 Hz, 1H), 4.41 (d, J = 3.4 Hz, 1H),

4.16 (d, J = 6.0 Hz, 1H), 3.82 - 3.69 (m, 3H), 3.46 (t, J = 8.0 Hz, 1H), 2.27 (s, 3H), 1.96 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 146.5, 143.3, 130.0, 129.3, 127.1, 118.2, 113.1, 112.6, 67.0, 62.4, 58.8, 49.5, 20.3. HRMS (ESI): $m/z [M + H]^+$ calcd for $C_{17}H_{20}N_2O$: 269.1648; found: 269.1644.


Product 3ac

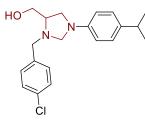
The crude product was purified by column chromatography (SiO₂, petroleum ether/ethyl acetate = 50:1 to 10:1), yielding **3ac** as a yellow solid (44.6 mg, 52%) yield). ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 7.10 (d, J = 8.2 Hz, 2H), 7.00 (t, J = 8.7 Hz, 2H), 6.64 (dd, J = 8.8, 4.2 Hz, 4H), 4.90 (d, J = 3.3 Hz, 1H), 4.35 (d, J =3.3 Hz, 1H), 4.16 (d, J = 5.8 Hz, 1H), 3.79 (s, 2H), 3.69 (dd, J = 8.8, 2.2 Hz, 1H), 3.46 – 3.39 (m, 1H), 2.28 (s, 3H), 1.91 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 156.3 (d, J = 235.2 Hz), 143.3, 144.2 (d,

J = 1.89 Hz), 130.0, 127.2, 115.9 (d, J = 22.0 Hz), 114.1 (d, J = 7.4 Hz), 112.6, 67.7, 62.5, 58.9, 50.2, 20.3. HRMS (ESI): $m/z [M + H]^+$ calcd for $C_{17}H_{19}FN_2O$: 287.1554; found: 287.1548.


Product 3ad

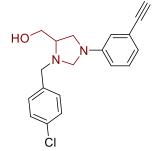
The crude product was purified by column chromatography (SiO₂, petroleum ether/ethyl acetate = 50:1 to 10:1), yielding **3ad** as a white solid (56.7 mg, 67%vield). ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 7.10 (dd, J = 8.2, 2.9 Hz, 4H), 6.65 (d, J = 7.1 Hz, 4H), 4.93 (d, J = 3.4 Hz, 1H), 4.35 (d, J = 3.4 Hz, 1H), 4.16 (d, J = 3.4 Hz, 1Hz), 4.16 (d, J = 3.4 Hz), 4.16 (d,

5.2 Hz, 1H), 3.80 (d, J = 5.0 Hz, 2H), 3.72 (d, J = 8.8 Hz, 1H), 3.42 (t, J = 8.0 Hz, 1H), 2.29 (s, 3H), 2.28 (s, 3H), 1.89 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 144.5, 143.5, 129.9, 129.8, 127.7, 127.0, 113.4, 112.5, 67.4, 62.7, 58.9, 50.0, 20.4, 20.3. HRMS (ESI): $m/z [M + H]^+$ calcd for $C_{18}H_{22}N_2O$: 283.1805; found: 283.1797.


Product 3ae

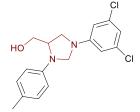
The crude product was purified by column chromatography (SiO₂, petroleum ether/ethyl acetate = 20:1 to 3:1), yielding **3ae** as a yellow solid (42.6 mg, 43%yield). ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 7.35 - 7.27 (m, 4H), 6.81 (d, J = 9.0 Hz, 2H), 6.44 (d, J = 9.0 Hz, 2H), 4.17 (d, J = 5.4 Hz, 1H), 3.98 (d, J = 13.3

Hz, 1H), 3.81 (d, J = 5.4 Hz, 1H), 3.73 (s, 3H), 3.67 (m, 1H), 3.61 (d, J = 13.3 Hz, 1H), 3.53 (m, 2H), 3.32 - 3.22 (m, 2H), 2.57 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 151.8, 141.1, 136.9, 133.2, 129.8, 128.7, 114.9, 113.2, 70.7, 64.1, 60.7, 57.4, 55.8, 49.2. HRMS (ESI): m/z [M + H]⁺ calcd for C₁₈H₂₁ClN₂O₂: 333.1364; found: 333.1357.


Product 3af

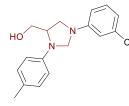
The crude product was purified by column chromatography (SiO₂, petroleum ether/ethyl acetate = 20:1 to 3:1), yielding **3af** as a yellow solid (21.8 mg, 63%yield). ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 7.34 – 7.26 (m, 4H), 7.08 (d, J = 8.5 Hz, 2H), 6.43 (d, J = 8.6 Hz, 2H), 4.21 (d, J = 5.6 Hz, 1H), 3.97 (d, J = 13.3Hz, 1H), 3.85 (d, J = 5.6 Hz, 1H), 3.67 (m, 1H), 3.61 (d, J = 13.3 Hz, 1H), 3.57 - 3.51 (m, 2H), 3.33 - 3.51

3.24 (m, 2H), 2.82 (m, 1H), 2.74 (s, 1H), 1.21 (s, 3H), 1.19 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 144.4, 137.50, 136.8, 133.2, 129.8, 128.7, 127.1, 112.1, 70.0, 64.1, 60.6, 57.4, 48.4, 33.1, 24.2. HRMS (ESI): $m/z [M + H]^+$ calcd for C₂₀H₂₅ClN₂O: 345.1728; found: 345.1726.


Product 3ag

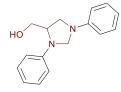
The crude product was purified by column chromatography (SiO₂, petroleum ether/ethyl acetate = 20:1 to 3:1), yielding **3ag** as a brown solid (16.2 mg, 57%) yield). ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 7.31 (q, J = 8.6 Hz, 4H), 7.14 (t, J = 7.9 Hz, 1H), 6.85 (d, J = 7.6 Hz, 1H), 6.56 (s, 1H), 6.44 (dd, J = 8.2, 2.1 Hz, 1H), 4.22 (d, *J* = 5.6 Hz, 1H), 3.99 (d, *J* = 13.2 Hz, 1H), 3.83 (d, *J* = 5.6 Hz, 1H),

3.71 (dd, J = 11.4, 3.8 Hz, 1H), 3.58 (d, J = 2.3 Hz, 1H), 3.54 (t, J = 5.5 Hz, 2H), 3.33 - 3.27 (m, 2H),3.01 (s, 1H), 2.52 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 145.8, 136.5, 133.3, 129.8, 129.2, 128.8, 122.6, 120.8, 115.2, 112.7, 84.2, 76.4, 69.7, 63.9, 60.3, 57.1, 48.1. HRMS (ESI): m/z [M + H]⁺ calcd for C₁₉H₁₉ClN₂O: 327.1259; found: 327.1257.


Product 3ah

The crude product was purified by column chromatography (SiO₂, petroleum ether/ethyl acetate = 50:1 to 10:1), yielding **3ah** as a white solid (93.8 mg, 93% yield). ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 7.11 (d, *J* = 8.0 Hz, 2H), 6.77 (s, 1H), 6.65 (d, *J* = 8.0 Hz, 2H), 6.51 (s, 2H), 4.81 (d, *J* = 3.6 Hz, 1H), 4.45 (d, *J* = 3.6 Hz, 1H),

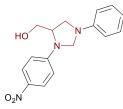
1H), 4.21 (s, 1H), 3.75 (s, 2H), 3.67 (d, J = 8.5 Hz, 1H), 3.53 (t, J = 8.0 Hz, 1H), 2.28 (s, 3H), 1.83 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 147.5, 142.8, 135.6, 130.1, 127.8, 117.5, 113.1, 110.9, 66.4, 61.8, 58.5, 58.5, 49.1, 20.3. HRMS (ESI): m/z [M + H]⁺ calcd for C₁₇H₁₈Cl₂N₂O: 337.0869; found: 337.0862.


Product 3ai

The crude product was purified by column chromatography (SiO₂, petroleum ether/ethyl acetate = 50:1 to 10:1), yielding **3ai** as a white solid (76.1 mg, 84% yield). ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 7.18 (t, *J* = 8.1 Hz, 1H), 7.10 (d, *J* = 8.2 Hz, 2H), 6.78 (d, *J* = 8.9 Hz, 1H), 6.66 (dd, *J* = 5.4, 2.9 Hz, 3H), 6.55 (dd, *J* =

8.3, 2.2 Hz, 1H), 4.87 (d, J = 3.5 Hz, 1H), 4.44 (d, J = 3.5 Hz, 1H), 4.22-4.18 (m, 1H), 3.77 (h, J = 5.8 Hz, 2H), 3.70 (dd, J = 8.9, 2.4 Hz, 1H), 3.53 – 3.48 (m, 1H), 2.28 (s, 3H), 1.81 (t, J = 5.5 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 147.3, 143.1, 135.1, 130.2, 130.0, 127.5, 117.8, 112.8, 111.0, 77.0, 66.7, 62.1, 58.6, 49.3, 20.3. HRMS (ESI): m/z [M + H]⁺ calcd for C₁₇H₁₉ClN₂O: 303.1259; found: 303.1252.

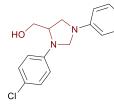
Product 3ba



The crude product was purified by column chromatography (SiO₂, petroleum ether/ethyl acetate = 50:1 to 10:1), yielding **3ba** as a white solid (48.8 mg, 64% yield). ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 7.30 (td, *J* = 7.6, 4.6 Hz, 4H), 6.83 (dt, *J* =

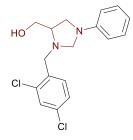
14.9, 7.3 Hz, 2H), 6.73 (d, J = 8.1 Hz, 4H), 4.97 (d, J = 3.5 Hz, 1H), 4.45 (d, J = 3.4

Hz, 1H), 4.24 (q, J = 4.7 Hz, 1H), 3.87 – 3.76 (m, 3H), 3.53 – 3.45 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 146.4, 145.3, 129.5, 129.3, 118.3, 117.7, 113.2, 112.2, 66.6, 62.4, 58.5, 49.6. HRMS (ESI): m/z [M + H]⁺ calcd for C₁₆H₁₈N₂O: 255.1492; found: 255.1493.


Product 3ca

The crude product was purified by column chromatography (SiO₂, petroleum ether/ethyl acetate = 50:1 to 10:1), yielding **3ca** as a yellow solid (66.4 mg, 74% yield). ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 8.19 (d, *J* = 9.2 Hz, 2H), 7.34 (t, *J* = 7.9 Hz, 2H), 6.90 (t, *J* = 7.3 Hz, 1H), 6.75 (d, *J* = 8.0 Hz, 2H), 6.68 (d, *J* = 9.3 Hz, 1H), 6.75 (d, *J* = 8.0 Hz, 1H), 6.75 (d, *J* = 8.0 Hz, 2H), 6.68 (d, J = 9.3 Hz, 1H), 6.75 (d, J = 8.0 Hz, 1H), 6.

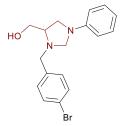
2H), 5.03 (d, J = 4.1 Hz, 1H), 4.52 (d, J = 4.1 Hz, 1H), 4.38 – 4.33 (m, 1H), 3.90 (dd, J = 9.9, 5.0 Hz, 2H), 3.80 (dd, J = 10.7, 7.3 Hz, 1H), 3.51 (dd, J = 9.0, 6.8 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 149.4, 145.9, 138.2, 129.5, 126.4, 119.1, 113.4, 110.8, 65.8, 62.1, 58.5, 49.5. HRMS (ESI): m/z [M + H]⁺ calcd for C₁₆H₁₇N₃O₃: 300.1343; found: 300.1350.


Product 3da

The crude product was purified by column chromatography (SiO₂, petroleum ether/ethyl acetate = 50:1 to 10:1), yielding **3da** as a white solid (54.5 mg, 63% yield). ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 7.31 (t, *J* = 7.9 Hz, 2H), 7.23 (d, *J* = 8.9 Hz, 2H), 6.86 (t, *J* = 7.3 Hz, 1H), 6.72 (d, *J* = 8.1 Hz, 2H), 6.64 (d, *J* = 8.9 Hz), 6.84 (d, *J* = 8.9 Hz), 8.94 (d, J = 8.94 (d

2H), 4.92 (d, J = 3.4 Hz, 1H), 4.40 (d, J = 3.4 Hz, 1H), 4.18 (q, J = 4.9 Hz, 1H), 3.79 (dd, J = 12.0, 6.1 Hz, 3H), 3.48 (dd, J = 8.7, 7.2 Hz, 1H), 1.85 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 146.3, 143.8, 129.4, 129.3, 122.5, 118.5, 113.3, 113.2, 66.6, 62.4, 58.6, 49.6. HRMS (ESI): m/z [M + H]⁺ calcd for C₁₆H₁₇ClN₂O: 289.1102; found: 289.1081.

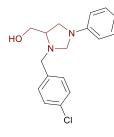
Product 3ea


The crude product was purified by column chromatography (SiO₂, petroleum ether/ethyl acetate = 50:1 to 10:1), yielding **3ea** as a yellow solid (64.5 mg, 64% yield). ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 7.47 – 7.37 (m, 2H), 7.28 – 7.20 (m, 3H), 6.73 (t, *J* = 7.3 Hz, 1H), 6.49 (d, *J* = 8.1 Hz, 2H), 4.24 (d, *J* = 5.5 Hz, 1H), 4.07 (d, *J* = 13.6 Hz, 1H), 3.92 (d, *J* = 5.5 Hz, 1H), 3.78 – 3.70 (m, 2H), 3.57 (q, *J* = 9.7,

8.0 Hz, 2H), 3.39 - 3.30 (m, 2H), 2.61 (s, 1H).¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 146.1, 134.8, 134.3, 134.0, 131.3, 129.7, 129.2, 127.3, 117.0, 112.1, 69.8, 64.3, 60.4, 54.8, 48.1. HRMS (ESI): m/z [M + H]⁺ calcd for C₁₇H₁₈Cl₂N₂O: 337.0869; found: 337.0875.

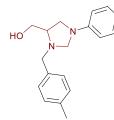
Product 3fa

The crude product was purified by column chromatography (SiO₂, petroleum ether/ethyl acetate = 50:1 to 10:1), yielding **3fa** as a yellow oil (53.2 mg, 62% yield). ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 7.32 (dd, *J* = 8.3, 5.6 Hz, 2H), 7.20 (t, *J* = 7.9 Hz, 2H), 7.03 (t, *J* = 8.6 Hz, 2H), 6.72 (t, *J* = 7.3 Hz, 1H), 6.46 (d, *J* = 8.1 Hz, 2H), 4.22 (d, *J* = 5.6 Hz, 1H), 3.97 (d, *J* = 13.1 Hz, 1H), 3.86 (d, *J* = 5.6 Hz, 1H), 3.68 (dd, *J* = 11.3, 3.7 Hz, 1H), 3.57 (dd, *J* = 12.6, 8.2 Hz, 3H), 3.30 (d, *J* = 4.9 Hz, 2H), 2.53 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 162.1 (d, *J* = 246.6 Hz), 146.1, 133.9 (d, *J* = 3.2 Hz), 130.0 (d, *J* = 8.0 Hz), 129.2, 116.9, 115.4 (d, *J* = 21.4 Hz), 111.9, 69.7, 63.9, 60.4, 57.1, 48.2. HRMS (ESI): m/z [M + H]⁺ calcd for C₁₇H₁₉FN₂O: 287.1554; found: 287.1548.


Product 3ga

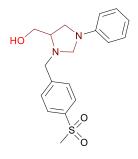
The crude product was purified by column chromatography (SiO₂, petroleum ether/ethyl acetate = 50:1 to 10:1), yielding **3ga** as a yellow solid (78.9 mg, 76% yield). ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 7.49 – 7.44 (m, 2H), 7.21 (dd, *J* = 15.5, 8.1 Hz, 4H), 6.72 (t, *J* = 7.3 Hz, 1H), 6.45 (d, *J* = 8.0 Hz, 2H), 4.22 (d, *J* = 5.5 Hz, 1H), 3.96 (d, *J* = 13.3 Hz, 1H), 3.84 (d, *J* = 5.6 Hz, 1H), 3.68 (dd, *J* = 11.4, 3.7 Hz, 1H), 3.96 (dd, *J* = 13.4 Hz, 1H), 3.84 (dd, *J* = 5.6 Hz, 1H), 3.68 (dd, *J* = 11.4, 3.7 Hz, 1H), 3.84 (dd, *J* = 5.6 Hz, 1H), 3.68 (dd, *J* = 11.4, 3.7 Hz, 1H), 3.84 (dd, *J* = 5.6 Hz, 1H), 3.68 (dd, *J* = 11.4, 3.7 Hz, 1H), 3.84 (dd, *J* = 5.6 Hz, 1H), 3.68 (dd, *J* = 11.4, 3.7 Hz, 1H), 3.84 (dd, *J* = 5.6 Hz, 1H), 3.68 (dd, *J* = 11.4, 3.7 Hz, 1H), 3.84 (dd, *J* = 5.6 Hz, 1H), 3.68 (dd, *J* = 11.4, 3.7 Hz, 1H), 3.84 (dd, *J* = 5.6 Hz, 1H), 3.68 (dd, *J* = 11.4, 3.7 Hz, 1H), 3.84 (dd, *J* = 5.6 Hz, 1H), 3.68 (dd, *J* = 11.4, 3.7 Hz, 1H), 3.84 (dd, *J* = 5.6 Hz, 1H), 3.68 (dd, *J* = 11.4, 3.7 Hz, 1H), 3.84 (dd, *J* = 5.6 Hz, 1H), 3.68 (dd, *J* = 11.4, 3.7 Hz, 1H), 3.84 (dd, *J* = 5.6 Hz, 1H), 3.68 (dd, *J* = 11.4, 3.7 Hz, 1H), 3.84 (dd, *J* = 5.6 Hz, 1H), 3.84 (dd, *J* = 5.6 Hz, 1H), 3.68 (dd, *J* = 11.4, 3.7 Hz, 1H), 3.84 (dd, *J* = 5.6 Hz, 1H), 3.68 (dd, *J* = 11.4, 3.7 Hz, 1H), 3.84 (dd, *J* = 5.6 Hz, 1H), 3.84 (dd, J = 5.6 H

1H), 3.59 - 3.50 (m, 3H), 3.33 - 3.25 (m, 2H), 2.50 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 146.1, 137.3, 131.7, 130.1, 129.2, 121.3, 117.0, 112.0, 69.9, 64.0, 60.6, 57.3, 48.2. HRMS (ESI): m/z [M + H]⁺ calcd for C₁₇H₁₉BrN₂O: 347.0754; found: 347.0760.


Product 3ha

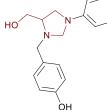
The crude product was purified by column chromatography (SiO₂, petroleum ether/ethyl acetate = 50:1 to 10:1), yielding **3ha** as a yellow solid (45.3 mg, 50% yield). ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 7.32 (d, *J* = 2.8 Hz, 4H), 7.24 – 7.19 (m, 2H), 6.73 (t, *J* = 7.3 Hz, 1H), 6.47 (d, *J* = 8.0 Hz, 2H), 4.24 (d, *J* = 5.6 Hz, 1H), 3.99 (d, *J* = 13.3 Hz, 1H), 3.87 (d, *J* = 5.6 Hz, 1H), 3.72 (d, *J* = 3.7 Hz, 1H), 3.62 –

3.53 (m, 3H), 3.33 (t, J = 5.2 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 146.1, 136.7, 133.3, 129.8, 129.2, 128.8, 117.0, 112.0, 69.8, 64.0, 60.4, 57.3, 48.2. HRMS (ESI): m/z [M + H]⁺ calcd for C₁₇H₁₉ClN₂O: 303.1259; found: 303.1256.


Product 3ia

The crude product was purified by column chromatography (SiO₂, petroleum ether/ethyl acetate = 50:1 to 10:1), yielding **3ia** as a yellow oil (49.9 mg, 59% yield). ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 7.27 – 7.12 (m, 6H), 6.70 (t, *J* = 7.3 Hz, 1H), 6.45 (d, *J* = 8.0 Hz, 2H), 4.24 (d, *J* = 5.5 Hz, 1H), 3.96 (d, *J* = 13.0 Hz, 1H), 3.88 (d, *J*

= 5.5 Hz, 1H), 3.69 (dd, J = 11.3, 2.9 Hz, 1H), 3.61 – 3.49 (m, 3H), 3.30 (q, J = 8.8, 7.5 Hz, 2H), 2.35 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 146.2, 137.2, 135.0, 129.2, 129.1, 128.5, 116.7, 111.9, 69.8, 63.8, 60.2, 57.5, 48.2, 21.1. HRMS (ESI): m/z [M + H]⁺ calcd for C₁₈H₂₂N₂O: 283.1805; found: 283.1804.


Product 3ja

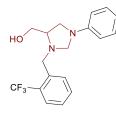
The crude product was purified by column chromatography (SiO₂, petroleum ether/ethyl acetate = 20:1 to 5:1), yielding **3ja** as a yellow solid (59.2 mg, 57% yield). ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 7.91 (d, *J* = 8.1 Hz, 2H), 7.59 (d, *J* = 8.1 Hz, 2H), 7.21 (t, *J* = 7.8 Hz, 2H), 6.72 (t, *J* = 7.3 Hz, 1H), 6.47 (d, *J* = 8.2 Hz, 2H), 4.26 (d, *J* = 5.5 Hz, 1H), 4.12 (d, *J* = 14.0 Hz, 1H), 3.85 (d, *J* = 5.5 Hz, 1H), 3.76 - 3.68 (m, 2H), 3.63 - 3.56 (m, 2H), 3.37 - 3.29 (m, 2H), 3.06 (s, 3H). ¹³C

NMR (100 MHz, CDCl₃) δ (ppm) =146.0, 144.9, 139.5, 129.2 (overlap), 127.6, 117.0, 112.0, 70.0, 64.2, 60.9, 57.5, 48.2, 44.4. HRMS (ESI): m/z [M + H]⁺ calcd for C₁₈H₂₃N₂O₃S: 347.1424; found: 347.1418.

Product 3ka

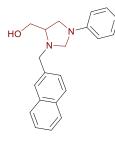
The crude product was purified by column chromatography (SiO₂, petroleum ether/ethyl acetate = 20:1 to 5:1), yielding **3ka** as a white solid (44.3 mg, 52% yield). ¹H NMR (400 MHz, DMSO) δ (ppm) = 8.16 (s, 1H), 5.99 (dd, *J* = 18.1, 8.1 Hz, 4H),

 S_{OH} 5.56 (d, J = 8.4 Hz, 2H), 5.45 (t, J = 7.3 Hz, 1H), 5.26 (d, J = 8.0 Hz, 2H), 3.56 (t, J = 5.3 Hz, 1H), 2.90 (d, J = 5.3 Hz, 1H), 2.77 (d, J = 13.0 Hz, 1H), 2.58 (d, J = 5.3 Hz, 1H), 2.43 (dd, J = 10.5, 5.2 Hz, 1H), 2.33 – 2.27 (m, 2H), 2.02 – 1.89 (m, 2H), 1.35 (s, 1H). ¹³C NMR (100 MHz, DMSO) δ (ppm) = 156.4, 146.4, 129.7, 129.0, 129.0, 115.9, 115.0, 111.6, 70.2, 63.7, 62.3, 56.8, 49.5. HRMS (ESI): m/z [M + H]⁺ calcd for C₁₇H₂₀N₂O₂: 285.1598; found: 285.1593.


Product 3la

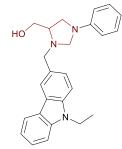
The crude product was purified by column chromatography (SiO₂, petroleum ether/ethyl acetate = 50:1 to 10:1), yielding **3la** as a yellow oil (92.4 mg, 89% yield). ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 7.57 (d, *J* = 7.9 Hz, 1H), 7.42 (d, *J* = 7.3 Hz, 1H), 7.30 (t, *J* = 7.4 Hz, 1H), 7.18 (dt, *J* = 17.1, 7.6 Hz, 3H), 6.71 (t, *J* = 7.3 Hz, 1H),

6.47 (d, J = 8.2 Hz, 2H), 4.22 (d, J = 5.6 Hz, 1H), 4.08 (d, J = 13.4 Hz, 1H), 3.92 (d, J = 5.6 Hz, 1H), 3.76 – 3.70 (m, 2H), 3.59 – 3.50 (m, 2H), 3.33 (t, J = 5.1 Hz, 2H), 2.74 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 146.1, 137.2, 133.1, 130.7, 129.1, 127.5, 124.5, 116.8, 112.0, 69.7, 64.2, 60.3, 57.7, 48.1. HRMS (ESI): m/z [M + H]⁺ calcd for C₁₇H₁₉BrN₂O: 347.0754; found: 347.0750.


Product 3ma

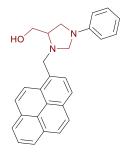
The crude product was purified by column chromatography (SiO₂, petroleum ether/ethyl acetate = 50:1 to 10:1), yielding **3ma** as a yellow oil (62.5 mg, 62% yield). ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 7.76 (d, *J* = 7.7 Hz, 1H), 7.67 (d, *J* = 7.8 Hz, 1H), 7.55 (t, *J* = 7.6 Hz, 1H), 7.39 (t, *J* = 7.6 Hz, 1H), 7.21 (t, *J* = 7.8 Hz, 2H), 6.72 (t,

J = 7.3 Hz, 1H), 6.48 (d, J = 8.1 Hz, 2H), 4.31 (d, J = 5.5 Hz, 1H), 4.18 (d, J = 14.5 Hz, 1H), 3.93 – 3.84 (m, 2H), 3.69 (dd, J = 11.5, 3.6 Hz, 1H), 3.57 (dd, J = 11.0, 4.7 Hz, 2H), 3.35 (q, J = 5.5, 4.7 Hz, 2H), 2.46 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 146.2, 137.1, 132.1, 130.2, 129.2, 128.3 (d, J = 30.0 Hz), 127.4, 126.1 (d, J = 5.8 Hz), 124.4 (d, J = 275.0 Hz), 117.0, 112.1, 70.1, 64.4, 60.6, 54.1, 48.1. HRMS (ESI): m/z [M + H]⁺ calcd for C₁₈H₁₉F₃N₂O: 337.1522; found: 337.1519.


Product 3na

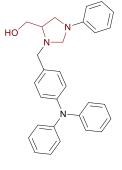
The crude product was purified by column chromatography (SiO₂, petroleum ether/ethyl acetate = 50:1 to 10:1), yielding **3na** as a yellow solid (62.0 mg, 65% yield). ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 8.23 (d, *J* = 8.3 Hz, 1H), 7.88 (d, *J* = 7.9 Hz, 1H), 7.83 (d, *J* = 7.9 Hz, 1H), 7.58-7.42 (m, 4H), 7.26 – 7.18 (m, 2H), 6.72 (t, *J* = 7.3 Hz, 1H), 6.47 (d, *J* = 8.1 Hz, 2H), 4.44 (d, *J* = 12.9 Hz, 1H), 4.20 (d, *J* = 6.0

Hz, 1H), 4.14 - 4.02 (m, 2H), 3.72 - 3.60 (m, 2H), 3.53 (dd, J = 11.1, 5.3 Hz, 1H), 3.45 (dt, J = 12.1, 5.3 Hz, 1H), 3.28 (dd, J = 8.7, 5.6 Hz, 1H), 2.51 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 146.3, 133.9, 133.8, 131.9, 129.2, 128.8, 128.6, 127.1, 126.4, 125.9, 125.2, 123.7, 116.9, 112.1, 69.7, 64.5, 60.8, 56.6, 48.1. HRMS (ESI): m/z [M + H]⁺ calcd for C₂₁H₂₂N₂O: 319.1805; found: 319.1800.


Product 3oa

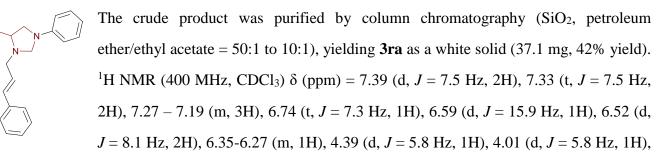
The crude product was purified by column chromatography (SiO₂, petroleum ether/ethyl acetate = 20:1 to 5:1), yielding **30a** as a yellow oil (53.2 mg, 46% yield). ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 8.17 – 8.00 (m, 2H), 7.47 (t, *J* = 6.9 Hz, 2H), 7.44 – 7.36 (m, 2H), 7.24 (t, *J* = 3.6 Hz, 1H), 7.22 – 7.16 (m, 2H), 6.70 (t, *J* = 7.3 Hz, 1H), 6.46 (d, *J* = 8.3 Hz, 2H), 4.37 (q, *J* = 7.2 Hz, 2H), 4.28 (d, *J* = 5.7 Hz, 1H), 4.21

(d, J = 12.7 Hz, 1H), 3.99 (d, J = 5.7 Hz, 1H), 3.83 – 3.72 (m, 2H), 3.58 (q, J = 5.7, 4.4 Hz, 2H), 3.43 – 3.28 (m, 2H), 1.44 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 146.3, 140.2, 139.4, 129.2, 128.3, 126.4, 125.8, 122.9, 122.6, 120.5, 120.4, 118.8, 116.7, 112.0, 108.6, 108.5, 69.7, 63.9, 60.2, 58.3, 48.3, 37.6, 13.8. HRMS (ESI): m/z [M + H]⁺ calcd for C₂₅H₂₇N₃O: 386.2227; found: 386.2221.

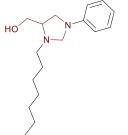

Product 3pa

The crude product was purified by column chromatography (SiO₂, petroleum ether/ethyl acetate = 30:1 to 10:1), yielding **3pa** as a yellow solid (67.1 mg, 57% yield). ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 8.44 (d, *J* = 9.2 Hz, 1H), 8.21 – 8.10 (m, 4H), 8.08 – 7.93 (m, 4H), 7.18 (t, *J* = 7.8 Hz, 2H), 6.70 (t, *J* = 7.3 Hz, 1H), 6.44 (d, *J* = 8.0 Hz, 2H), 4.63 (d, *J* = 12.8 Hz, 1H), 4.33 (d, *J* = 12.9 Hz, 1H), 4.17 (d, *J* =

5.9 Hz, 1H), 4.08 (d, J = 6.0 Hz, 1H), 3.63 (t, J = 7.9 Hz, 2H), 3.57 – 3.42 (m, 2H), 3.28 (dd, J = 8.7, 5.5 Hz, 1H) , 2.58 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 146.2, 131.3, 131.2, 131.2, 130.7, 129.5, 129.2, 128.0, 127.7, 127.5, 127.3, 126.0, 125.3, 125.3, 125.1, 124.7, 124.6, 123.0, 116.9, 112.1, 69.6, 64.5, 60.9, 56.5, 48.2. HRMS (ESI): m/z [M + H]⁺ calcd for C₂₇H₂₄N₂O: 393.1961; found: 393.1955.

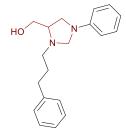

Product 3qa

The crude product was purified by column chromatography (SiO₂, petroleum ether/ethyl acetate = 20:1 to 5:1), yielding **3qa** as a yellow solid (79.6 mg, 61% yield). ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 7.26 – 7.19 (m, 8H), 7.11 – 6.99 (m, 9H), 6.73 (t, *J* = 7.3 Hz, 1H), 6.50 (d, *J* = 7.9 Hz, 2H), 4.31 (d, *J* = 5.6 Hz, 1H), 3.99 – 3.91 (m, 2H), 3.72 (dd, *J* = 11.3, 3.5 Hz, 1H), 3.61 – 3.53 (m, 3H), 3.32 (q, *J* = 6.3 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm) = 147.7, 147.2, 146.2, 132.0, 129.4, 129.2, 129.2,


124.3, 123.7, 122.8, 116.8, 112.0, 69.8, 63.8, 60.2, 57.4, 48.2. HRMS (ESI): $m/z [M + H]^+$ calcd for $C_{29}H_{29}N_3O$: 436.2383; found: 436.2578.

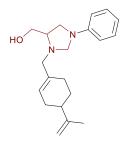
Product 3ra

3.72 (dd, J = 11.3, 4.1 Hz, 1H), 3.64 (dd, J = 13.6, 5.4 Hz, 1H), 3.55 (dd, J = 9.8, 6.1 Hz, 2H), 3.37 – 3.23 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 146.2, 136.5, 133.0, 129.2, 128.6, 127.8, 126.4, 126.1, 116.9, 112.1, 69.5, 63.8, 60.4, 56.3, 48.1. HRMS (ESI): m/z [M + H]⁺ calcd for C₁₉H₂₂N₂O: 295.1805; found: 295.1803.


Product 3sa

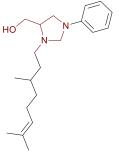
The crude product was purified by column chromatography (SiO₂, petroleum ether/ethyl acetate = 50:1 to 10:1), yielding **3sa** as a yellow oil (43.9 mg, 53% yield). ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 7.27 – 7.21 (m, 2H), 6.73 (t, *J* = 7.3 Hz, 1H), 6.52 (d, *J* = 7.9 Hz, 2H), 4.45 (d, *J* = 5.0 Hz, 1H), 3.85 (d, *J* = 5.0 Hz, 1H), 3.70 (dd, *J* = 11.2, 3.9 Hz, 1H), 3.53 – 3.44 (m, 2H), 3.35 – 3.29 (m, 1H), 3.14 (tt, *J* = 7.4, 3.9 Hz,

1H), 2.77 (dt, J = 11.9, 8.0 Hz, 1H), 2.50 – 2.43 (m, 1H), 1.56 – 1.51 (m, 2H), 1.35 – 1,29 (m, 8H), 0.89 (t, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 146.2, 129.2, 116.7, 111.9, 70.2, 64.1, 59.7, 53.6, 48.1, 31.8, 29.1, 29.0, 27.2, 22.6, 14.1. HRMS (ESI): m/z [M + H]⁺ calcd for C₁₇H₂₈N₂O: 277.2274; found: 277.2271.


Product 3ta

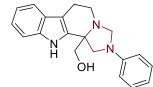
The crude product was purified by column chromatography (SiO₂, petroleum ether/ethyl acetate = 50:1 to 10:1), yielding **3ta** as a yellow solid (48.9 mg, 55% yield). ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 7.32 – 7.27 (m, 2H), 7.25 – 7.17 (m, 5H), 6.73 (t, *J* = 7.3 Hz, 1H), 6.51 (d, *J* = 8.1 Hz, 2H), 4.45 (d, *J* = 5.1 Hz, 1H), 3.85 (d, *J* = 5.0 Hz, 1H), 3.66 (dd, *J* = 11.2, 4.0 Hz, 1H), 3.52 – 3.43 (m, 2H), 3.34 – 3.27

(m, 1H), 3.14 (tt, J = 7.4, 4.0 Hz, 1H), 2.85 – 2.59 (m, 4H), 2.54 – 2.48 (m, 1H), 1.92 – 1.84 (m, J = 2H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) =146.1, 141.5, 129.2, 128.4, 128.3, 125.9, 116.8, 111.9, 70.2, 64.2, 59.9, 53.1, 48.1, 33.3, 30.5. HRMS (EI): m/z [M + H]⁺ calcd for C₁₉H₂₄N₂O: 297.1961; found: 297.1958.


Product 3ua

The crude product was purified by column chromatography (SiO₂, petroleum ether/ethyl acetate = 50:1 to 10:1), yielding **3ua** as a colorless oil (63.7 mg, dr = 1:1, 68% yield). ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 7.23 (t, *J* = 7.9 Hz, 2H), 6.72 (t, *J* = 7.3 Hz, 1H), 6.51 (dd, *J* = 8.1, 3.7 Hz, 2H), 5.68 (s, 1H), 4.73 (s, 2H), 4.28 (dd, *J* = 15.6, 5.6 Hz, 1H), 3.83 (dd, *J* = 13.8, 5.6 Hz, 1H), 3.68 (ddd, *J* = 11.0, 6.8, 4.1 Hz,

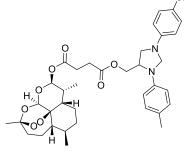
1H), 3.53 - 3.46 (m, 2H), 3.28 (t, J = 10.5 Hz, 2H), 3.22 - 3.16 (m, 1H), 2.97 (t, J = 12.0 Hz, 1H), 2.65 (s, 1H), 2.23 - 2.15 (m, 3H), 2.03 - 2.01 (m, 2H), 1.85 (d, J = 12.2 Hz, 1H), 1.75 (s, 3H), 1.55 - 1.45 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 149.6, 149.5, 146.2, 146.2, 134.8 (overlap), 129.1 (overlap), 124.6, 124.5, 116.7, 116.7, 111.9, 111.9, 108.7 (overlap), 69.6 (overlap), 63.7, 63.6, 60.7, 60.2, 60.0, 60.0, 48.1, 48.0, 41.0, 40.9, 30.5, 30.5, 27.5, 27.4 (overlap), 27.0, 20.8, 20.7. HRMS (ESI): m/z [M + H]⁺ calcd for C₂₀H₂₈N₂O: 313.2274; found: 313.2269.


Product 3va

The crude product was purified by column chromatography (SiO₂, petroleum ether/ethyl acetate = 50:1 to 10:1), yielding **3va** as a yellow solid (47.4 mg, dr = 1:1, 50% yield). 1H NMR (400 MHz, CDCl₃) δ (ppm) = 7.24 (t, *J* = 7.8 Hz, 2H), 6.73 (t, *J* = 7.3 Hz, 1H), 6.52 (d, *J* = 8.0 Hz, 2H), 5.10 (t, *J* = 7.3 Hz, 1H), 4.44 (d, *J* = 5.1 Hz, 1H), 3.85 (dd, *J* = 7.3, 5.1 Hz, 1H), 3.70 (dt, *J* = 11.0, 4.5 Hz, 1H), 3.54 – 3.43 (m, 2H), 3.34 – 3.27 (m, 1H), 3.18 – 3.14 (m, 1H), 2.87 – 2.78 (m, 1H), 2.51 – 2.41 (m, 1H),

2.06 - 1.92 (m, 2H), 1.69 (s, 3H), 1.61 (s, 3H), 1.42 - 1.14 (m, 5H), 0.93 - 0.91 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 146.2 (overlap), 131.3, 131.3, 129.2 (overlap), 124.6, 124.6, 116.7 (overlap), 111.9, 111.8, 70.3, 70.2, 64.1 (overlap), 59.9, 59.7, 51.8, 51.5, 48.2, 48.1, 37.4, 36.7, 36.1, 35.9, 30.6, 30.4, 25.7 (overlap), 25.5, 25.3, 19.8, 19.4, 17.6 (overlap). HRMS (ESI): m/z [M + H]⁺ calcd for C₂₀H₃₂N₂O: 317.2587; found: 317.2583.

Product 3wa

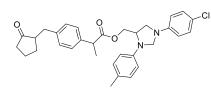


The crude product was purified by column chromatography (SiO₂, petroleum ether/ethyl acetate = 50:1 to 10:1), yielding **3wa** as a yellow solid (51.8 mg, 20% yield). ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 8.13 (s, 1H), 7.49 (d, *J* = 7.7 Hz,

1H), 7.30 (d, J = 8.0 Hz, 1H), 7.24 – 7.08 (m, 4H), 6.72 (t, J = 7.3 Hz, 1H), 6.48 (d, J = 7.9 Hz, 2H), 4.47

(d, J = 5.0 Hz, 1H), 4.28 (d, J = 5.0 Hz, 1H), 3.84 – 3.66 (m, 3H), 3.55 (d, J = 8.8 Hz, 1H), 3.30 – 3.16 (m, 3H), 3.03-2.95 (m, 1H), 2.73 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 146.1, 136.1, 133.5, 129.2, 126.6, 122.2, 119.6, 118.4, 116.9, 111.9, 111.0, 108.9, 67.8, 64.5, 64.2, 52.7, 43.5, 17.8. HRMS (ESI): m/z [M + H]⁺ calcd for C₂₀H₂₁N₃O: 320.1757; found: 320.1759.

Product 5aa

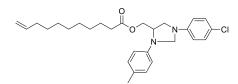


The crude product was purified by column chromatography (SiO₂, petroleum ether/ethyl acetate = 20:1 to 5:1), yielding **5aa** as a white solid (104.5 mg, dr = 1:1, 92% yield). solid. ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 7.30 - 7.19 (m, 2H), 7.10 (d, *J* = 8.3 Hz, 2H), 6.72 - 6.54 (m, 4H), 5.78 (dd, *J* = 9.9, 1.8 Hz, 1H), 5.40 (d, *J* = 16.4 Hz, 1H), 4.84 (t, *J* = 3.0 Hz, 1H),

4.53 - 4.45 (m, 1H), 4.37 (t, J = 2.6 Hz, 1H), 4.30 (s, 1H), 4.04 - 3.83 (m,

1H), 3.67 (dd, J = 9.0, 3.5 Hz, 1H), 3.45 – 3.40 (m, 1H), 2.72 (s, 2H), 2.70 – 2.51 (m, 3H), 2.40 – 2.33 (m, 1H), 2.27 (s, 3H), 2.02 (d, J = 14.7 Hz, 1H), 1.94 – 1.83 (m, 1H), 1.79 – 1.68 (m, 2H), 1.61 (d, J = 13.7 Hz, 1H), 1.39 – 1.19 (m, 4H), 0.98 – 0.92 (m, 3H), 0.87 – 0.83 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 171.9, 171.9, 171.0, 171.0, 145.0, 145.0, 142.2, 142.2, 130.0 (overlap), 129.1, 129.0, 126.9 (overlap), 122.9 (overlap), 114.1, 114.0, 112.1 (overlap), 104.4, 104.4, 92.2, 91.4, 91.4, 80.0, 80.0, 65.8, 65.8, 63.1 (overlap), 55.4, 55.4, 51.4, 49.8, 49.7, 45.1 (overlap), 41.3, 37.2, 37.1, 36.1, 36.0, 34.0, 31.7, 29.1, 29.0, 28.8, 28.8, 28.8, 27.6, 25.9, 24.5, 22.6, 21.9, 20.4, 20.3, 20.1, 19.4, 18.7, 14.3, 12.0, 11.4. HRMS (ESI): m/z [M + Na]⁺ calcd for C₃₇H₄₇ClN₂O₈: 691.2754; found: 691.2742.

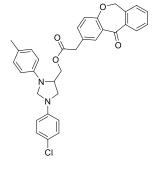
Product 5ab



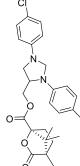
The crude product was purified by column chromatography (SiO₂, petroleum ether/ethyl acetate = 20:1 to 5:1), yielding **5ab** as a white solid (88.3 mg, dr = 2:1, 98% yield). ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 7.26 - 7.14 (m, 4H), 7.14 - 7.01 (m, 4H), 6.61 (t, *J* = 7.5 Hz,

2H), 6.55 - 6.45 (m, 2H), 4.74 (dd, J = 13.2, 2.9 Hz, 1H), 4.54 - 4.39 (m, 1H), 4.33 (d, J = 2.8 Hz, 1H), 4.29 - 4.15 (m, 1H), 3.97 - 3.80 (m, 1H), 3.68 - 3.66 (m, 1H), 3.50 - 3.34 (m, 1H), 3.34 - 3.16 (m, 1H), 3.14 - 3.10 (m, 1H), 2.51 - 2.48 (m, 1H), 2.36 - 2.30 (m, 2H), 2.26 (s, 3H), 2.14 - 2.03 (m, 2H), 1.97 - 1.93 (m, 1H), 1.77 - 1.68 (m, 1H), 1.58 - 1.44 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 220.0, 220.0, 174.5, 174.4, 144.8 (overlap), 142.2, 142.2, 139.0, 139.0, 138.0, 138.0, 130.0, 129.1, 12

129.0 (overlap), 127.5, 127.4, 127.0, 126.9, 122.9 (overlap), 113.8 (overlap), 112.1, 112.1, 77.3, 76.7, 65.9, 65.8, 63.3, 63.1, 55.5, 55.2, 50.9, 50.8, 49.5, 49.4, 45.0, 44.9, 38.1 (overlap), 35.1 (overlap), 29.2 (overlap), 20.5, 20.3, 18.2, 18.2, 18.0. HRMS (ESI): $m/z [M + Na]^+$ calcd for $C_{32}H_{35}ClN_2O_3$: 553.2228; found: 533.2215.

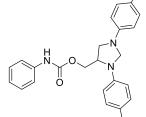

Product 5ac

The crude product was purified by column chromatography (SiO₂, petroleum ether/ethyl acetate = 20:1 to 5:1), yielding **5ac** as a white solid (70.8 mg, 89% yield). ¹H NMR (400 MHz, CDCl₃) δ (ppm) =


7.27 – 7.20 (m, 2H), 7.11 (d, J = 8.2 Hz, 2H), 6.63 (dd, J = 22.9, 8.7 Hz, 4H), 5.86 – 5.76 (mf, 1H), 5.04 – 4.89 (m, 2H), 4.84 (d, J = 3.1 Hz, 1H), 4.50 (dd, J = 11.0, 3.6 Hz, 1H), 4.40 (d, J = 3.1 Hz, 1H), 4.32 – 4.27 (m, 1H), 3.90 (dd, J = 11.0, 8.6 Hz, 1H), 3.64 (d, J = 8.2 Hz, 1H), 3.43 (dd, J = 8.7, 6.9 Hz, 1H), 2.29 (d, J = 9.4 Hz, 5H), 2.04 (q, J = 6.9 Hz, 2H), 1.67 – 1.58 (m, 3H), 1.28 – 1.25 (m, 9H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 173.7, 145.0, 142.3, 139.1, 130.1, 129.1, 127.0, 123.0, 114.2, 113.9, 112.2, 65.9, 62.9, 55.6, 49.9, 34.2, 33.8, 29.3, 29.2, 29.1, 29.0, 28.9, 24.8, 20.3. HRMS (ESI): m/z [M + H]⁺ calcd for C₂₈H₃₇ClN₂O₂: 469.2616; found: 469.2604.

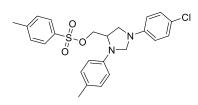
Product 5ad

1H), 4.53 (dd, J = 11.0, 3.8 Hz, 1H), 4.35 (d, J = 3.2 Hz, 1H), 4.31 – 4.27 (m, 1H), 3.93 (dd, J = 11.0, 8.5 Hz, 1H), 3.61 (d, J = 15.8 Hz, 3H), 3.42 – 3.34 (m, 1H), 2.26 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 190.7, 171.3, 160.5, 144.9, 142.2, 140.2, 136.3, 135.5, 132.8, 132.4, 130.0, 129.4, 129.2, 129.1, 127.8, 127.3, 127.0, 125.0, 122.9, 121.1, 114.0, 112.1, 73.5, 65.9, 63.4, 55.4, 49.7, 40.0, 20.3. HRMS (ESI): m/z [M + Na]⁺ calcd for C₃₃H₂₉ClN₂O₄: 575.1708; found: 575.1702.


Product 5ae

The crude product was purified by column chromatography (SiO₂, petroleum ether/ethyl acetate = 20:1 to 5:1), yielding **5ae** as a white solid (78.7 mg, 96% yield). ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 7.28 – 7.21 (m, 3H), 7.12 (d, *J* = 8.0 Hz, 2H), 6.66 (dd, *J* = 8.4, 3.9 Hz, 2H), 6.61 (dd, *J* = 8.8, 2.0 Hz, 2H), 4.89 (d, *J* = 3.0 Hz, 1H), 4.63 (dd, *J* = 10.9, 2.9 Hz, 1H), 4.41 – 4.31 (m, 2H), 4.11 – 4.05 (m, 1H), 3.67 (d, *J* = 9.0 Hz, 1H), 3.49 – 3.42 (m, 1H), 2.44 – 2.35 (m, 1H), 2.28 (s, 3H), 2.05 – 1.88 (m, 2H), 1.73 – 1.61 (m, 1H), 1.12 (s, 1H), 1.12 (s,

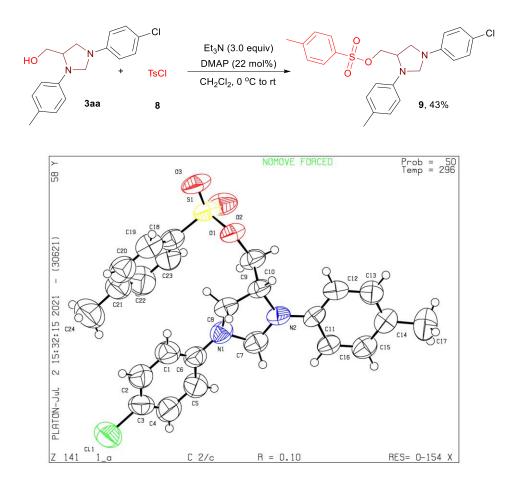
3H), 1.04 (d, J = 14.5 Hz, 3H), 0.94 (d, J = 10.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 178.0, 167.6, 144.9, 142.1, 130.2, 129.2, 127.3, 123.3, 114.1, 112.2, 90.9, 66.0, 64.1, 55.5, 54.8, 54.3, 49.9, 30.7, 28.9, 20.3, 16.7, 16.7, 9.7. HRMS (ESI): m/z [M + H]⁺ calcd for C₂₇H₃₁ClN₂O₄: 483.2045; found: 483.2027.


Product 7

The crude product was purified by column chromatography (SiO₂, petroleum ether/ethyl acetate = 20:1 to 3:1), yielding **7** as a white solid (33.6 mg, 57% yield). ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 7.32 (q, *J* = 8.5, 8.1 Hz, 4H), 7.23 (d, *J* = 8.8 Hz, 2H), 7.10 (t, *J* = 8.1 Hz, 3H), 6.70 (d, *J* = 8.4 Hz, 2H), 6.66 – 6.58 (m, 3H), 4.87 (d, *J* = 3.0 Hz, 1H), 4.55 (dd, *J* = 11.0, 3.7 Hz, 1H), 4.39 (d, *J* = 3.1 Hz, 2H),

3.99 (t, J = 9.7 Hz, 1H), 3.72 (d, J = 9.0 Hz, 1H), 3.47 – 3.40 (m, 1H), 2.27 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 145.0, 142.4, 137.4, 130.1, 129.1, 129.1, 127.1, 123.7, 123.1, 118.8, 114.1, 112.2, 66.0, 63.8, 55.9, 49.8, 20.3. HRMS (ESI): m/z [M + Na]⁺ calcd for C₂₄H₂₄ClN₃O₂: 444.1449; found: 444.1446.

Product 9

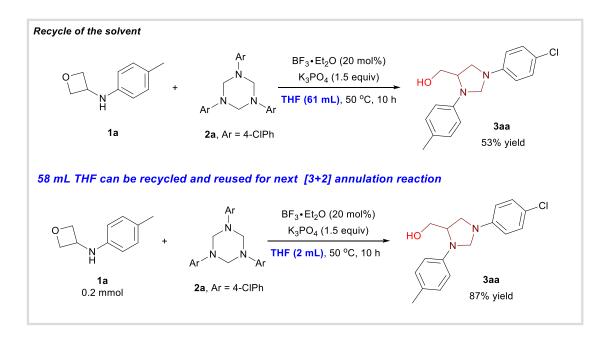


The crude product was purified by column chromatography (SiO₂, petroleum ether/ethyl acetate = 30:1 to 15:1), yielding **9** as a yellow solid (98.1 mg, 43% yield). ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 7.77 (d, *J* = 8.2 Hz, 2H), 7.31 (d, *J* = 8.1 Hz, 2H), 7.22 (d, *J* = 8.8 Hz, 2H), 7.07 (d, *J* =

8.3 Hz, 2H), 6.55 (d, J = 8.8 Hz, 2H), 6.48 (d, J = 8.4 Hz, 2H), 4.76 (d, J = 3.0 Hz, 1H), 4.29 (d, J = 3.1 Hz, 2H), 4.21 (dd, J = 10.1, 3.1 Hz, 1H), 3.88 (t, J = 9.8 Hz, 1H), 3.66 (d, J = 9.3 Hz, 1H), 3.42 – 3.34 (m, 1H), 2.43 (s, 3H), 2.27 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 145.1, 144.8, 141.8, 132.7, 130.2,

130.0, 129.1, 127.9, 127.4, 123.5, 114.3, 111.9, 67.6, 65.9, 55.9, 49.7, 21.6, 20.3. HRMS (ESI): m/z [M + Na]⁺ calcd for C₂₄H₂₅ClN₂O₃S: 479.1167; found: 479.1151.

4. X-Ray structure of 9


CCDC number: 2096196

5. Recycling the solvent of a gram-scale reaction

To a dried flask was added **1a** (1.0 g, 6.13 mmol), **2a** (2.05 g, 4.9 mmol), and K₃PO₄ (1.89 g, 9.2 mmol), THF (61 mL). Then, BF₃·Et₂O (20 mol%) was added to the mixture. The reaction mixture was stirred at 50 °C for 6 h. Then, the solvent THF was recycled through vacuum distillation and the crude product was purified by chromatography on silica gel directly to give the desired product **3aa** in 53% isolated yield as a white solid.

As a result, 95% of THF (58 mL) can be recycled. The resulting THF can be reused for the next [3+2] annulation reaction to give the expected product without the loss of reaction efficiency. These results

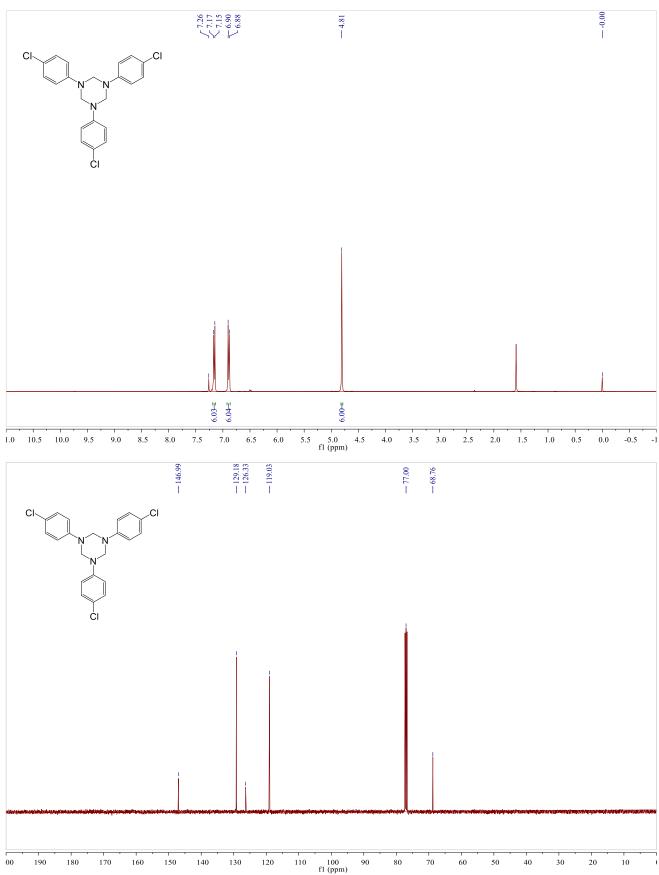
strongly show that this transformation is a sustainable method for the synthesis of imidazolidines.

6. Calculation of the atom economy and E-factor for this reaction.

Steps	Reagent 1	Reagent 2	Solvent	Product
	3-aminooxetane	1,3,5-triazinane (2a),	THF, 61 mL,	3aa , 3.3 mmol,
1	(1a), 6.13 mmol,	4.9 mmol,	MW: 72.1,	MW: 302.8,
	MW:163.10,	MW: 418.75,	54523.2 mg	987.9 mg
	1000 mg	2051.6 mg		

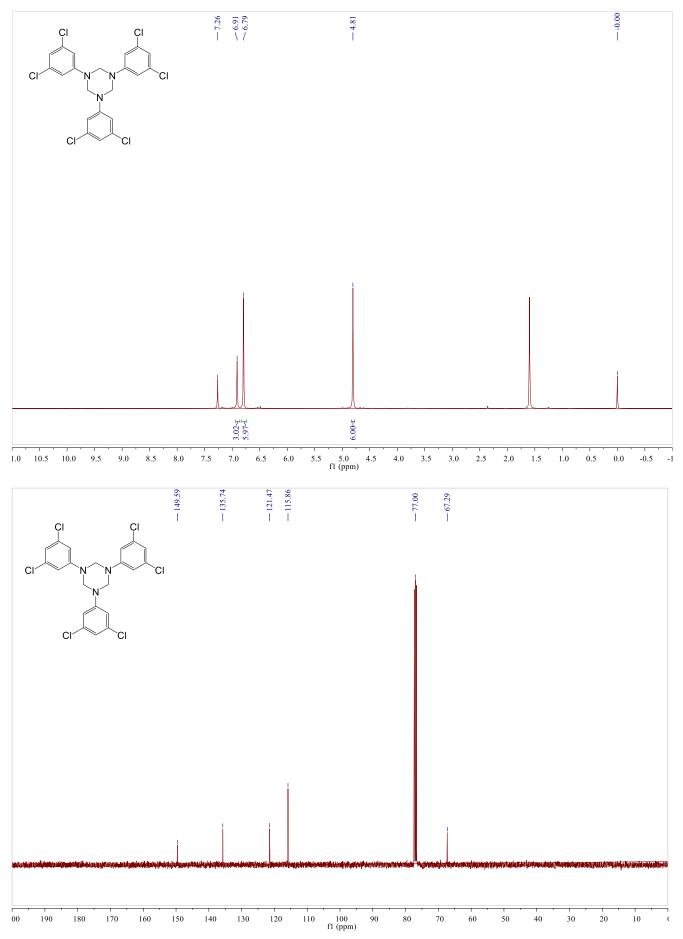
 $Atom \cdot Economy = \frac{302.8}{163.1+418.8} \times 100\% = 52.0\%$

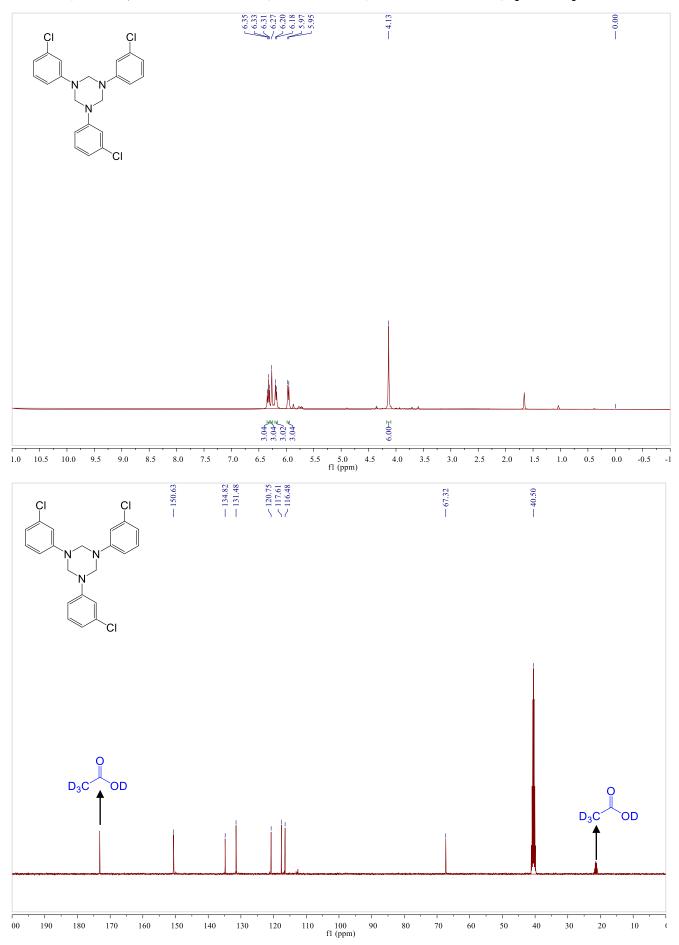
With-solvent-recycling.


$$E - factor = \frac{\sum 1000 + 2051.6 - 987.9}{987.9} = 2.1$$

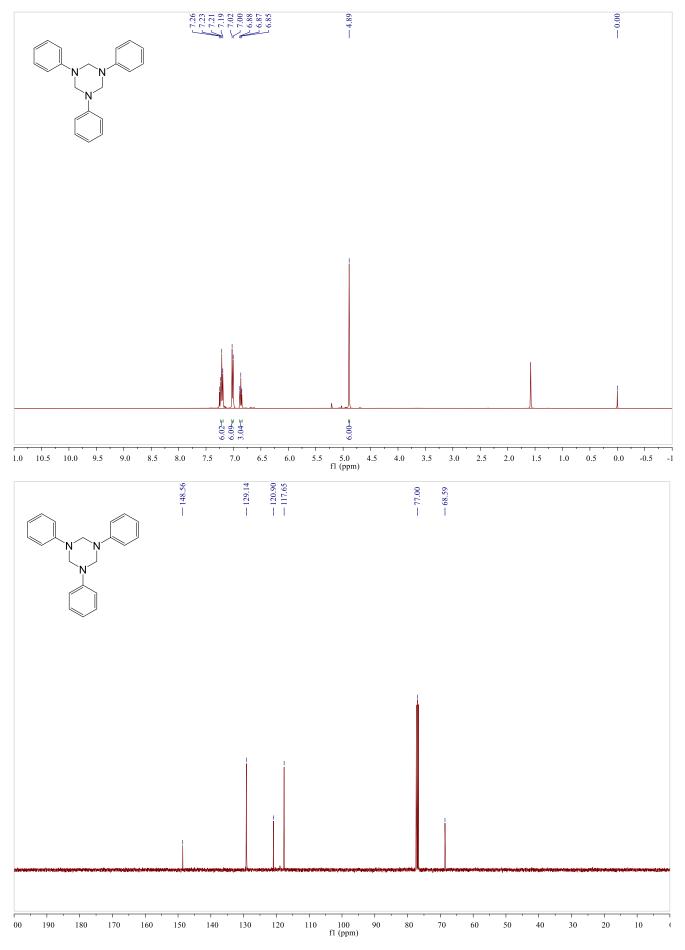
Without-solvent-recycling.

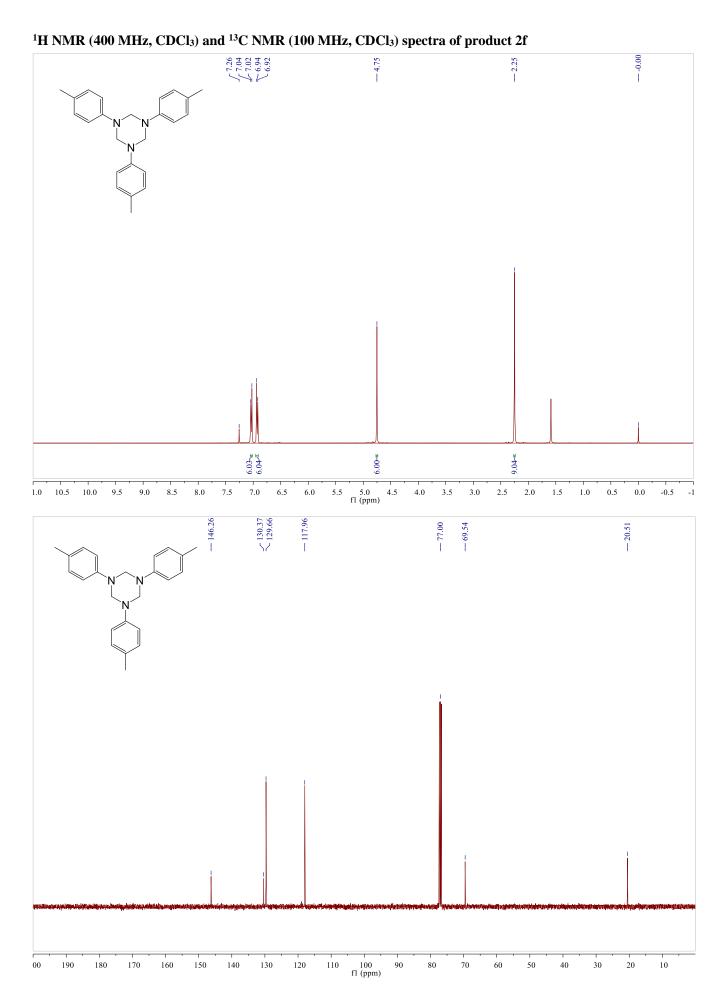
$$E - factor = \frac{\sum 1000 + 2051.6 + 54523.2 - 987.9}{987.9} = 57.3$$

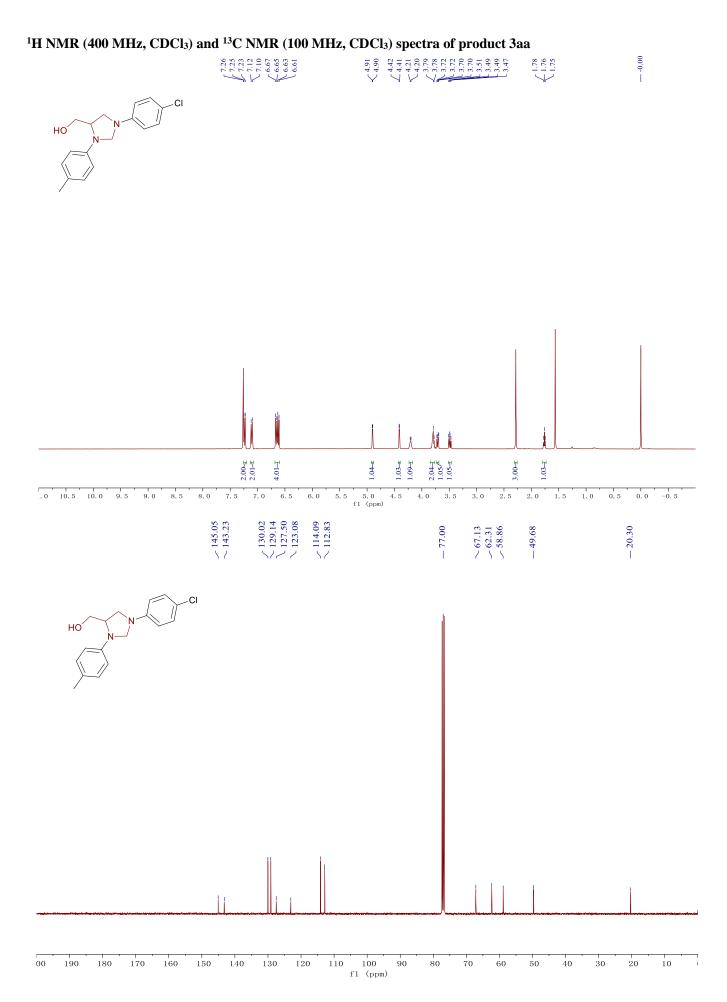

The green chemistry metrics of this reaction such as atom economy and E-factor were calculated. The present reaction scored moderate atom economy (52%) and E-factor (2.1).

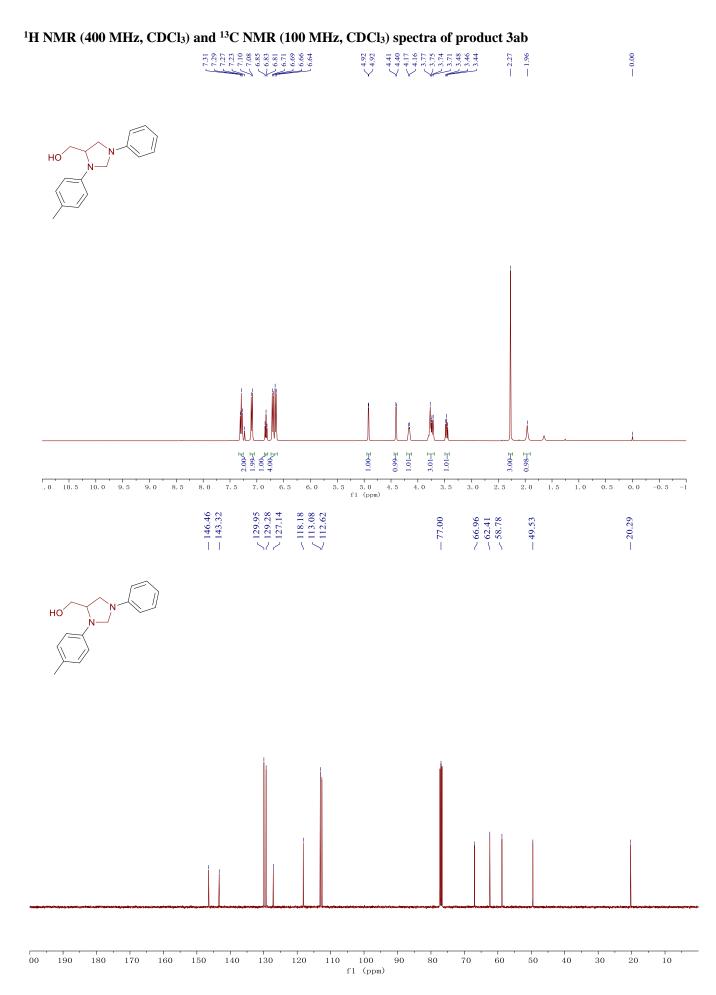

7. NMR Spectra of products 2a-2f, 3aa-3ai, 3ba-3wa, 5aa-5ae, 7 and 9

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 2a

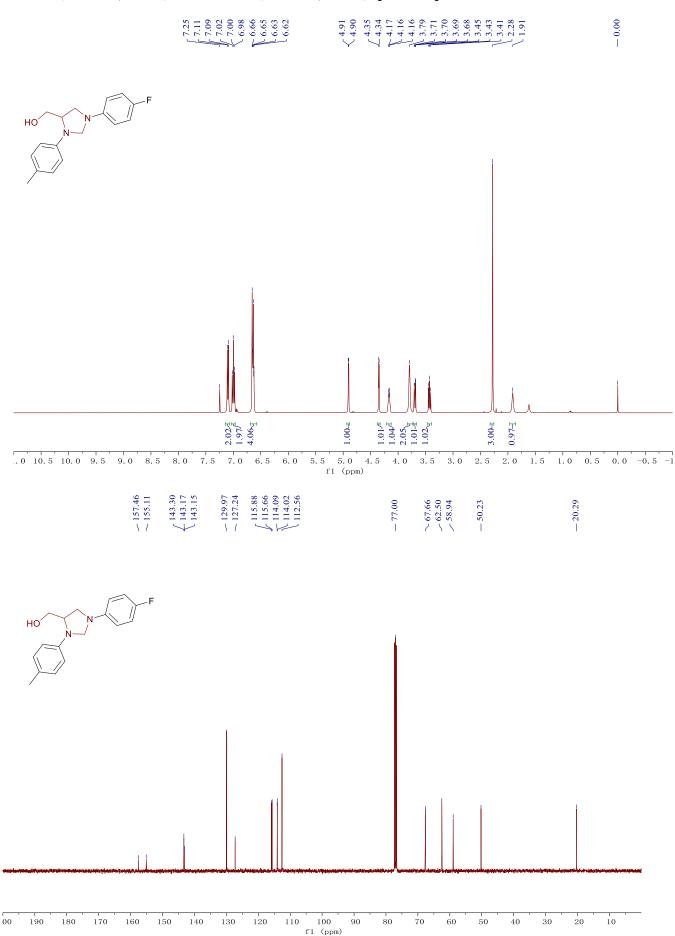

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 2b

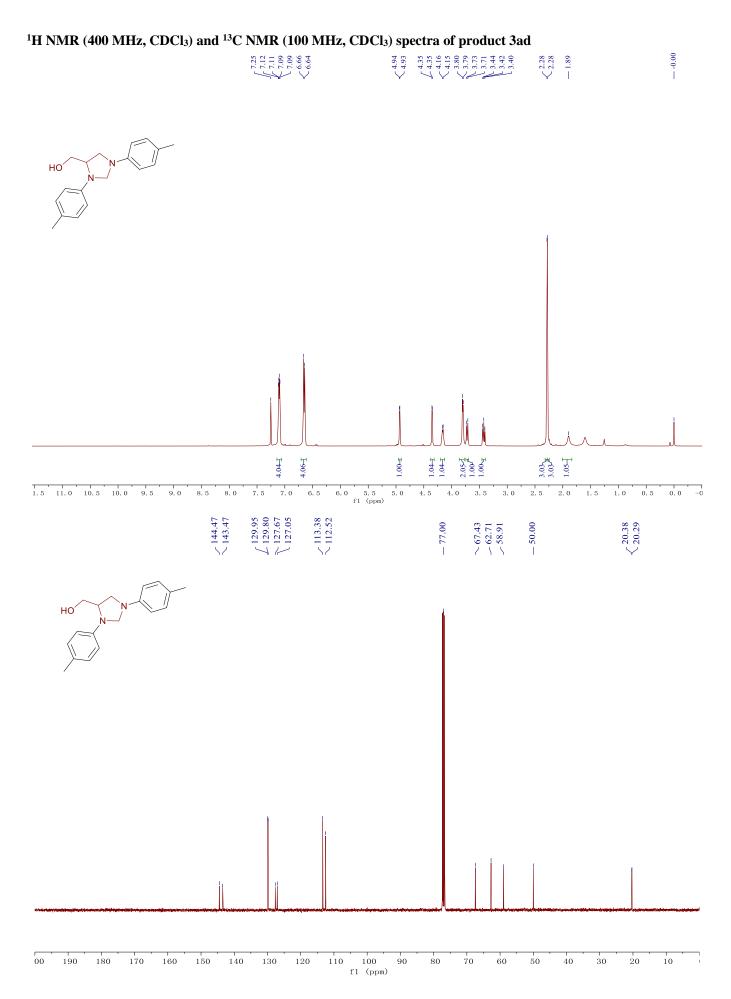

¹H NMR (400 MHz, d⁶-DMSO+CD₃COOD) and ¹³C NMR (d⁶-DMSO+CD₃COOD) spectra of product 2c

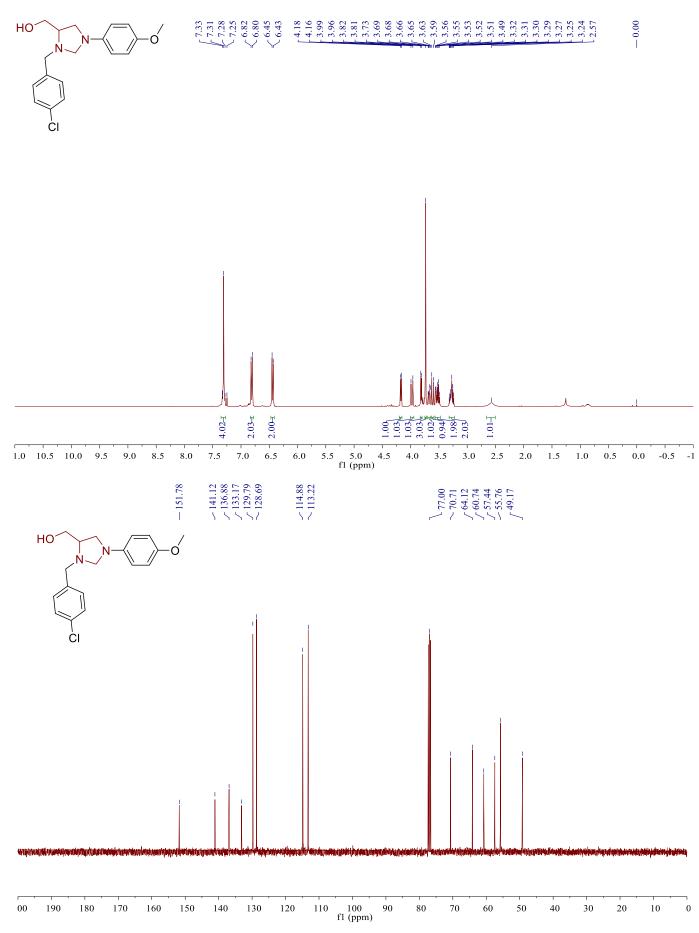

^1H NMR (400 MHz, CDCl_3) and ^{13}C NMR (100 MHz, CDCl_3) spectra of product 2d

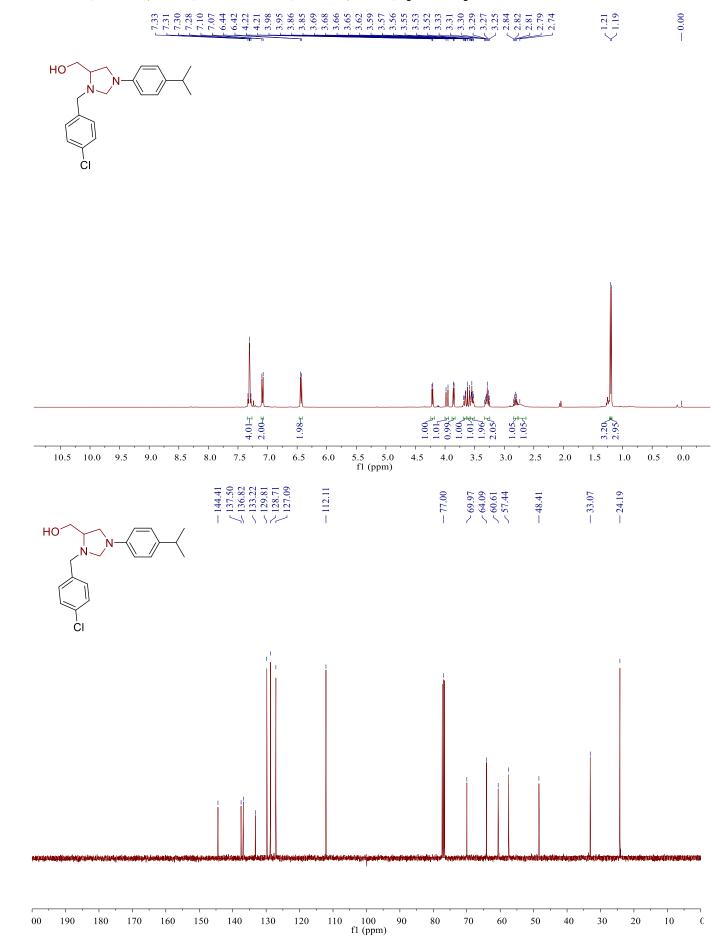


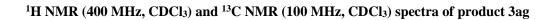
^1H NMR (400 MHz, CDCl_3) and ^{13}C NMR (100 MHz, CDCl_3) spectra of product 2e

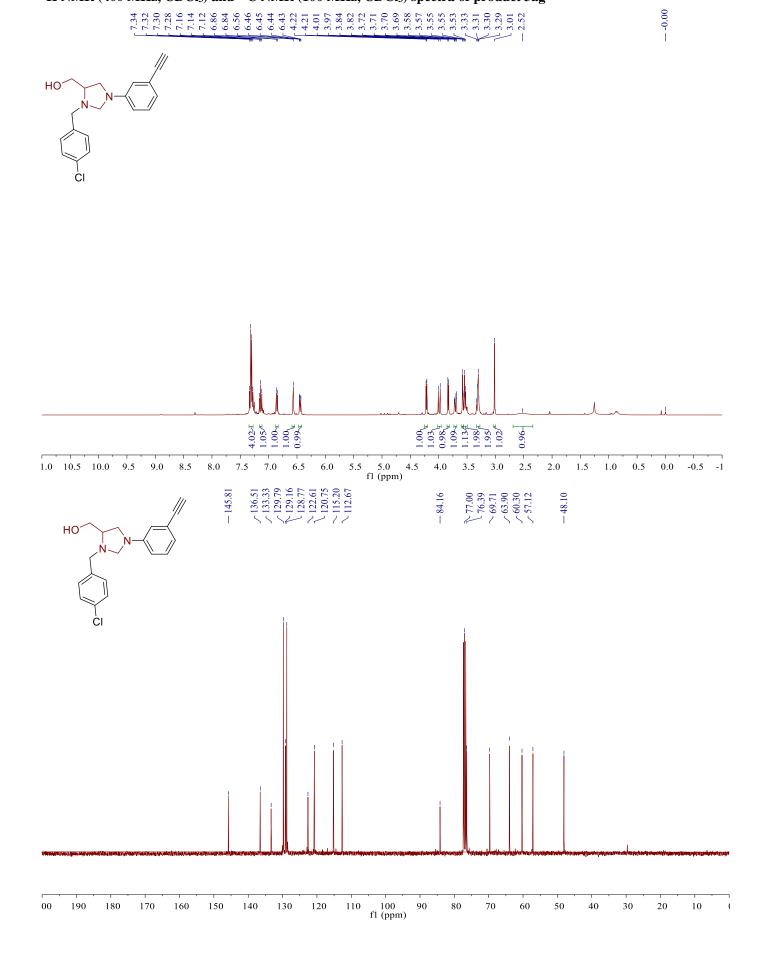


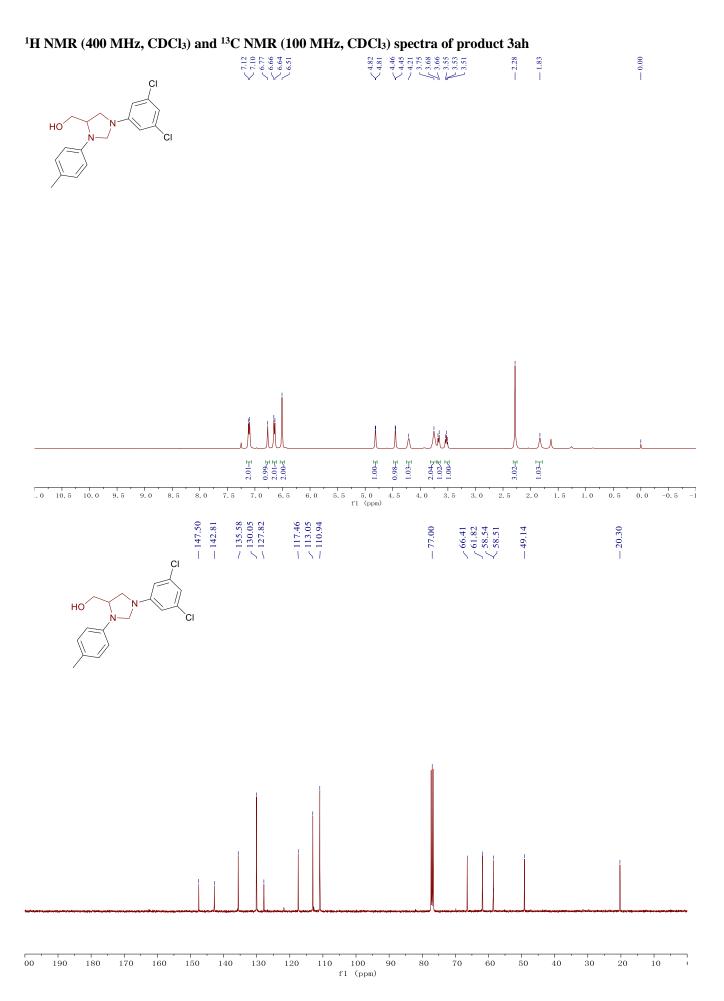


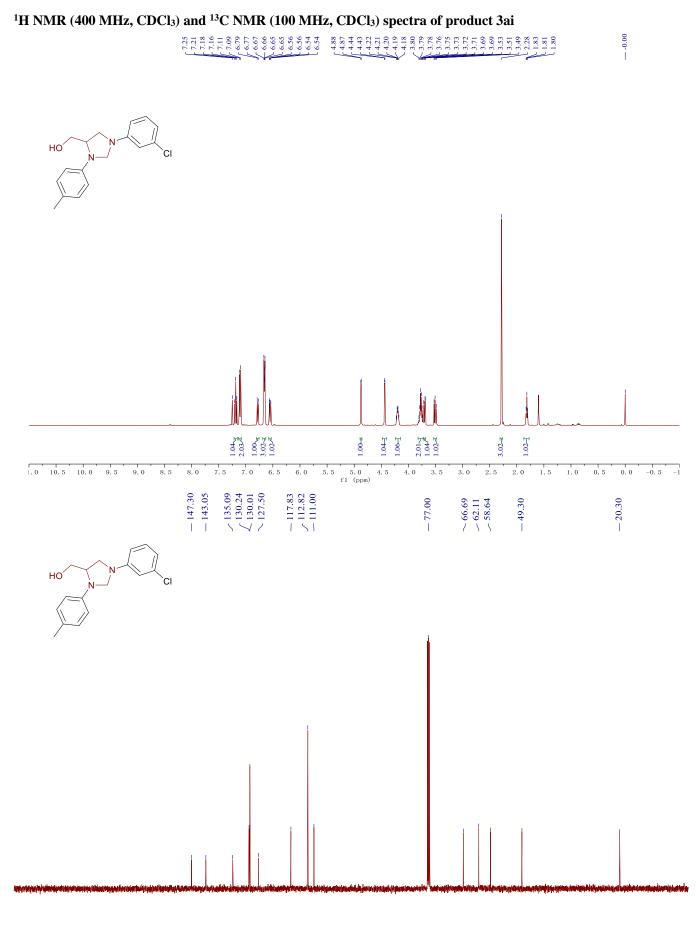



¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 3ac

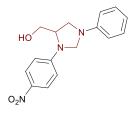


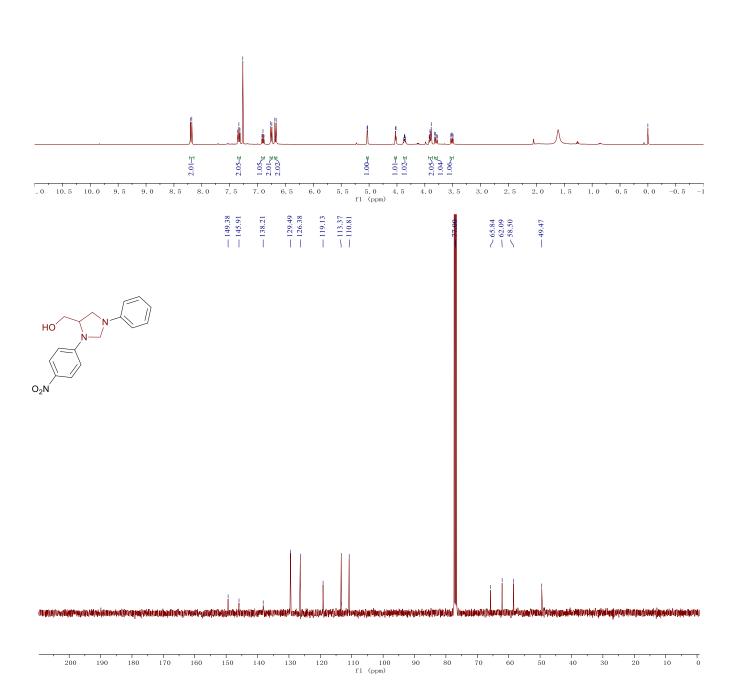



¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 3ae



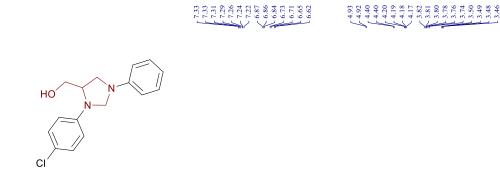
 $\frac{1}{70}$ $\frac{1}{40}$ fl (ppm)

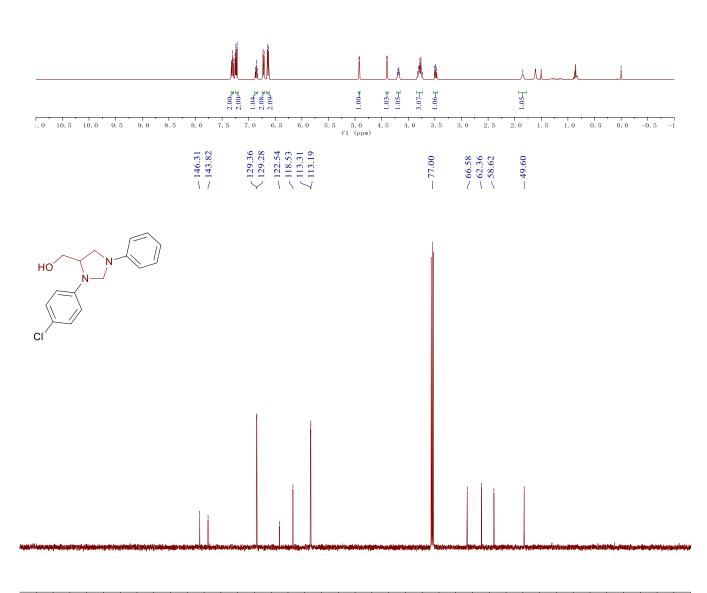

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 3ba


7.33 7.32 7.31 7.30 7.29 7.28 7.28 7.28 7.28 6.87 6.83 6.72 6.72 6.72 ΗO 4.02. 2.03 4.02 4 1.00-≖ 1.00H 1.03H 3.03H 1.03⊣ 3. 5 5.5 5.0 f1 (ppm) 4.5 7.0 4.0 1.0 10.5 10.0 8.0 7.5 6.5 6.0 3.0 2.5 0.0 -0.5 -1 9.5 9.0 8.5 2.0 1.5 1.0 0.5 \sim 146.45 \sim 145.27 129.49
129.33 < 118.35
< 117.70
< 113.16
< 112.25</pre> 77.00 ~ 66.60 - 62.45 ~ 58.47 - 49.58 HO

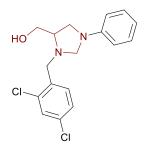
 00 $\frac{1}{70}$ 50 30 20 190 180 170 160 150140 130 120 110 100 90 80 60 40 10 f1 (ppm)

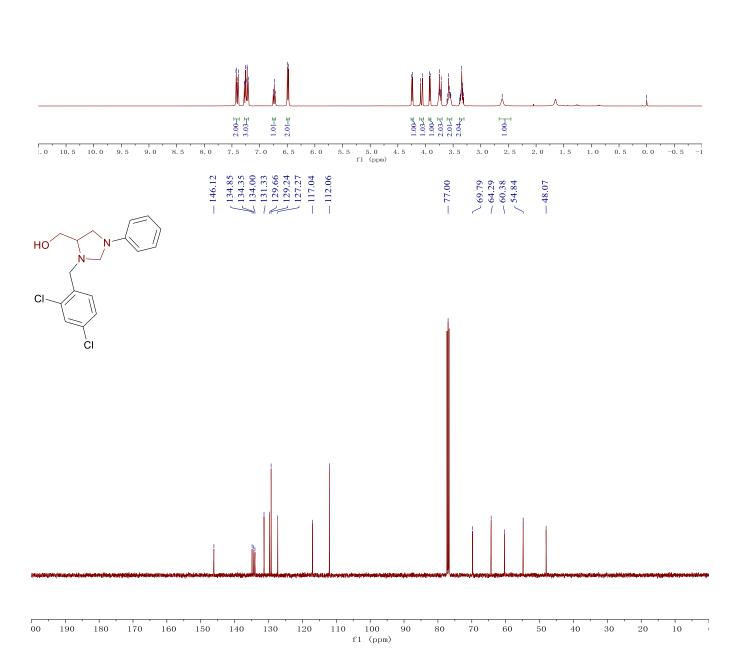
¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 3ca

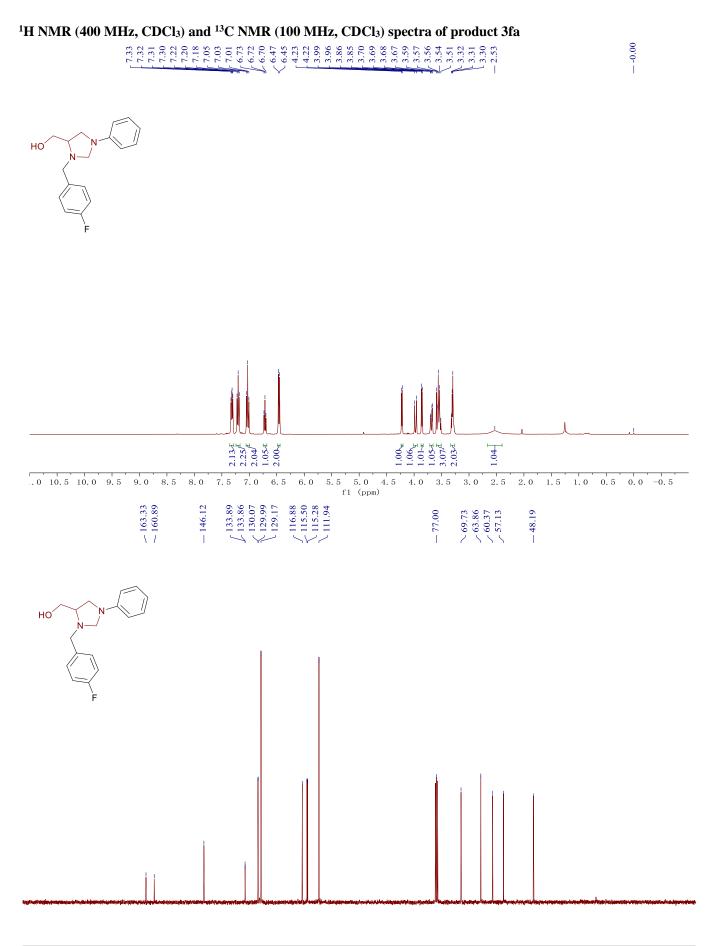

00.0 —



^1H NMR (400 MHz, CDCl₃) and ^{13}C NMR (100 MHz, CDCl₃) spectra of product 3da

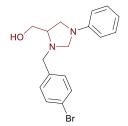

- 1.85

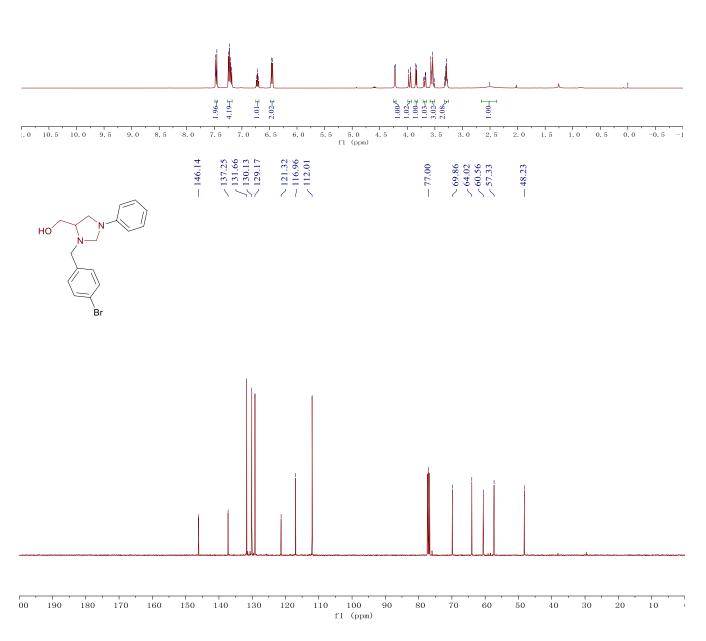




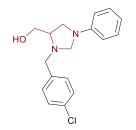
 $\frac{1}{70}$ $\frac{1}{40}$ $\frac{1}{20}$ i fl (ppm)

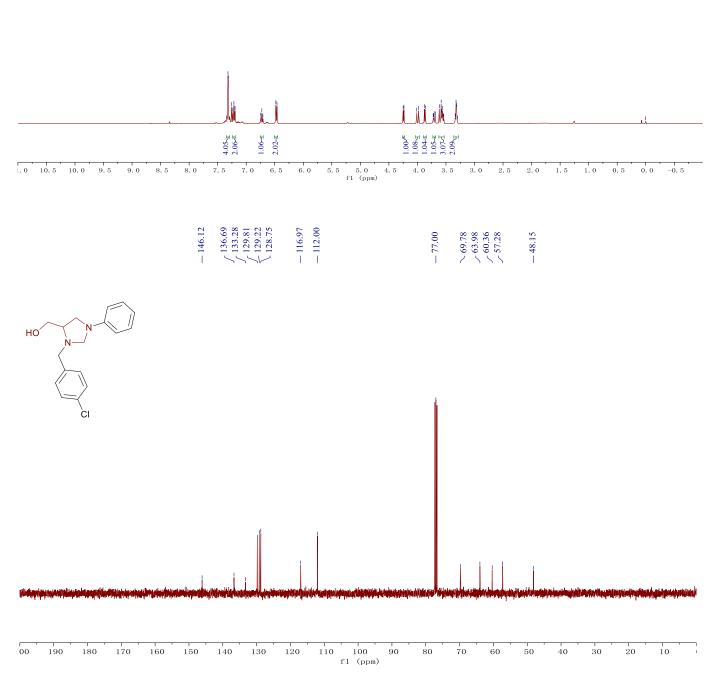
¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 3ea

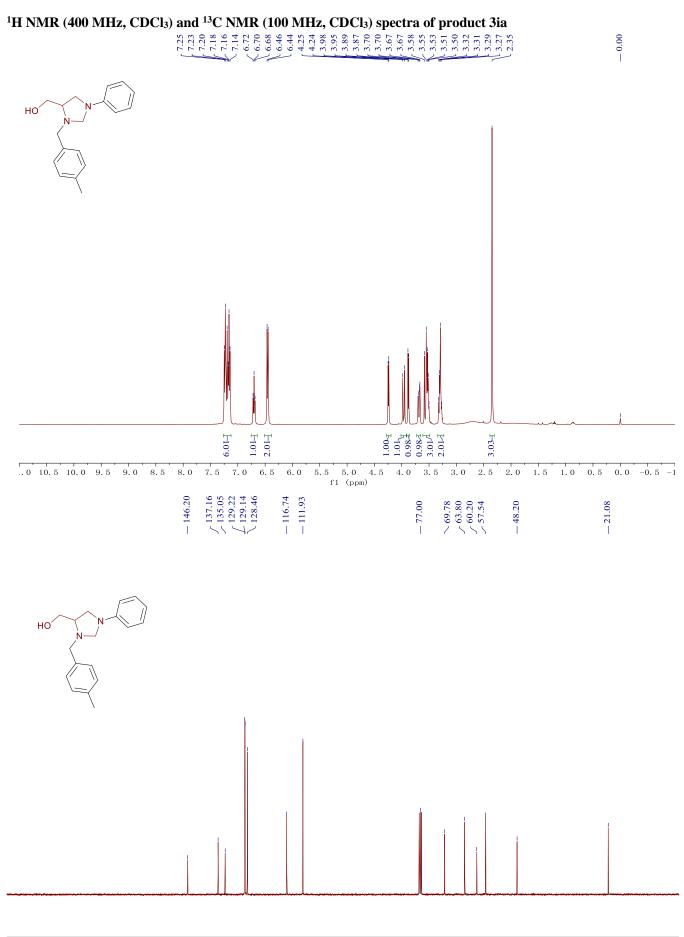




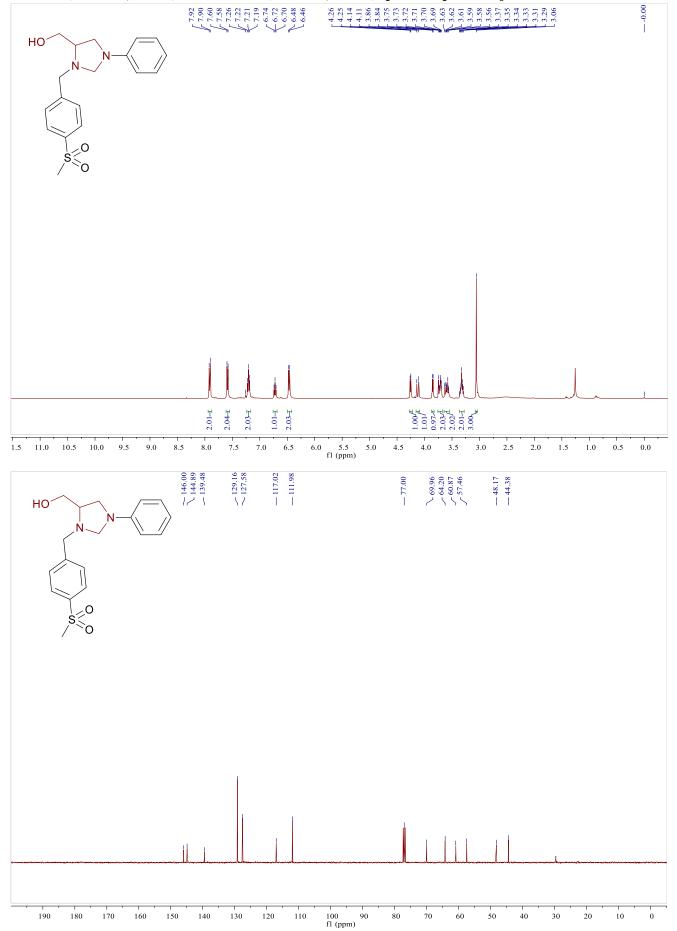
 $\dot{70}$ $\frac{1}{40}$ i fl (ppm)

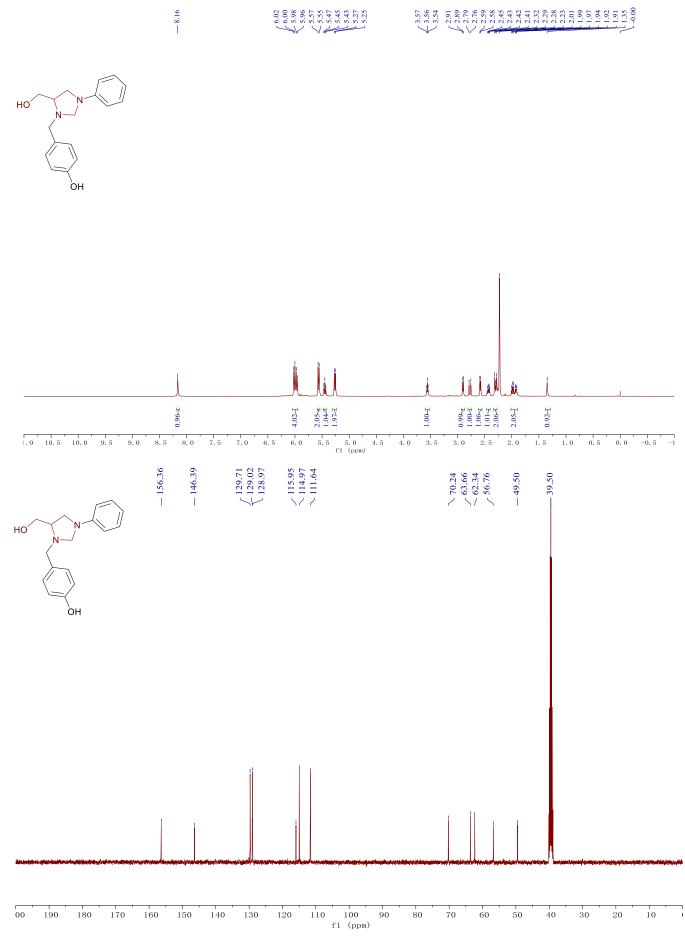

 1H NMR (400 MHz, CDCl_3) and ^{13}C NMR (100 MHz, CDCl_3) spectra of product 3ga

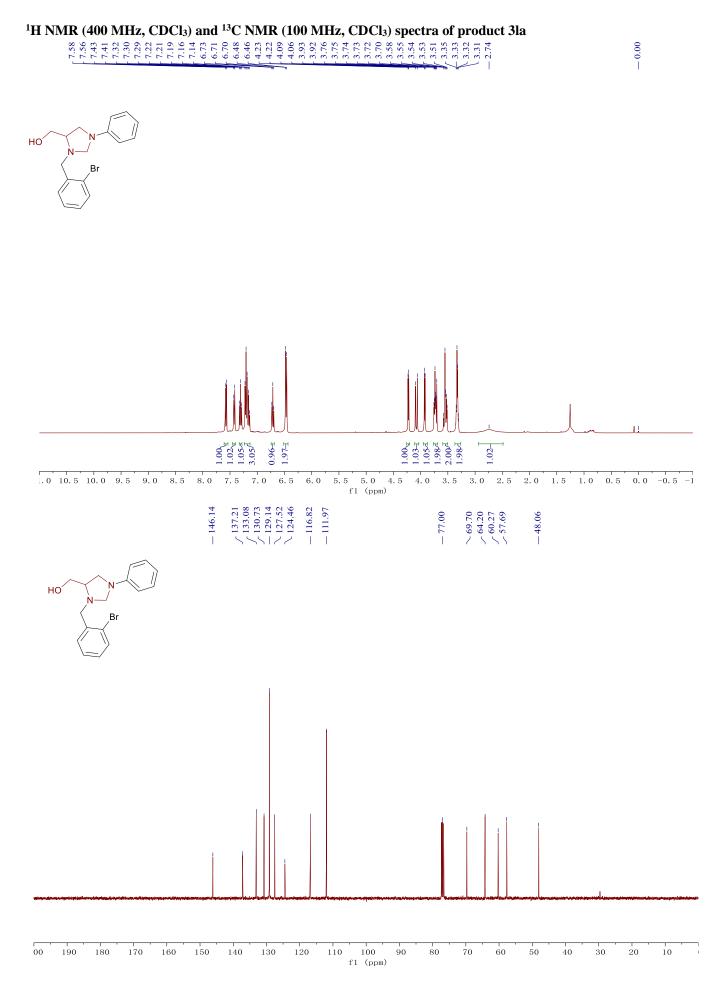

7.45 7.46 7.46 7.46 7.24 7.24 7.24 7.22 6.72 6.72 6.72 6.74 6.72 - 0.00

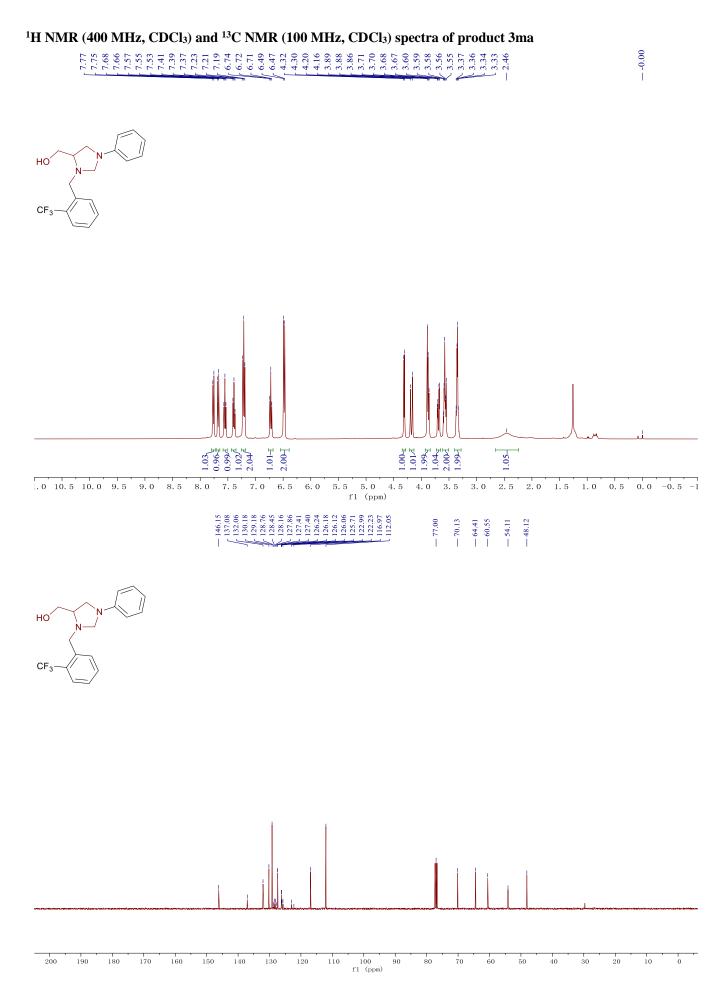


¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 3ha

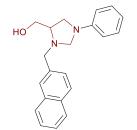


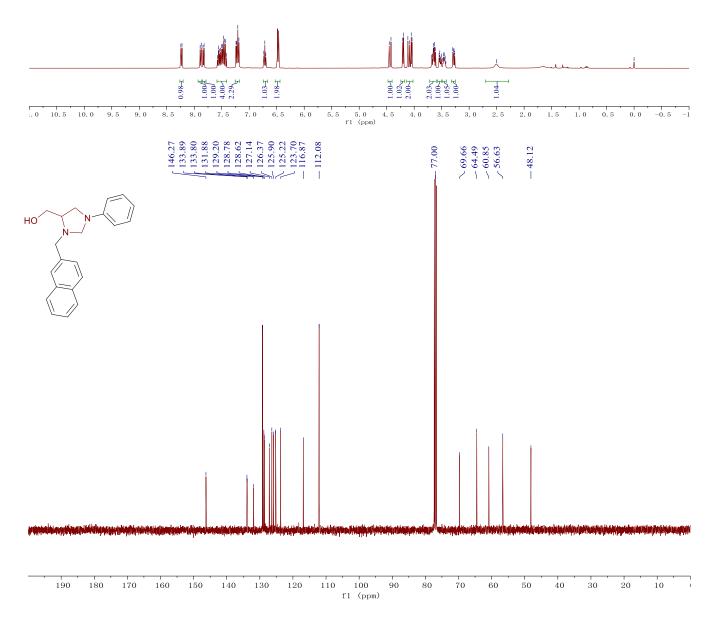



 $\dot{70}$ $\frac{1}{20}$ i f1 (ppm)

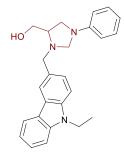

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 3ja

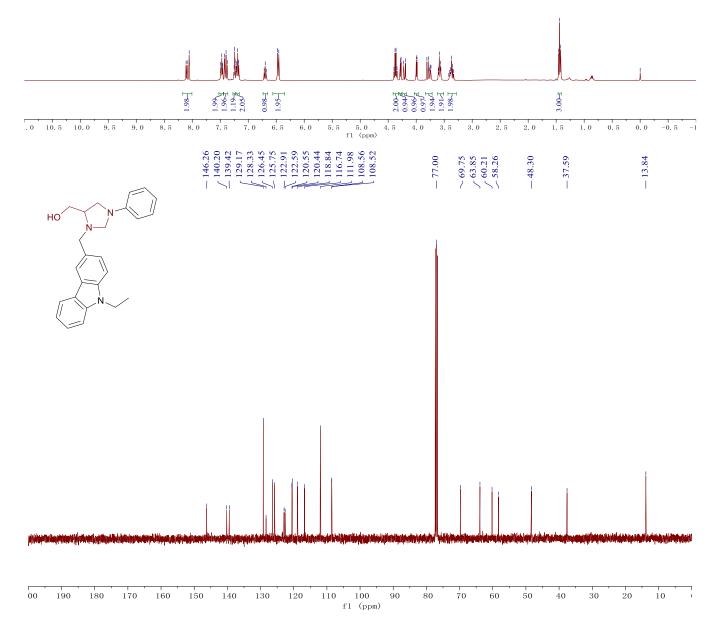
^1H NMR (400 MHz, CDCl₃) and ^{13}C NMR (100 MHz, CDCl₃) spectra of product 3ka

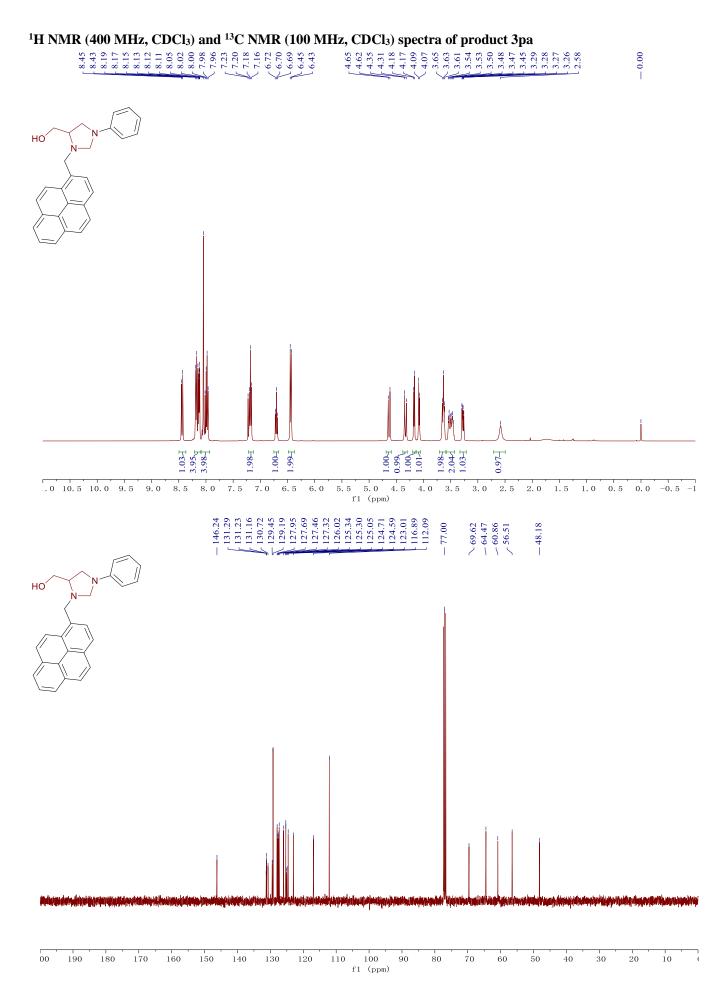




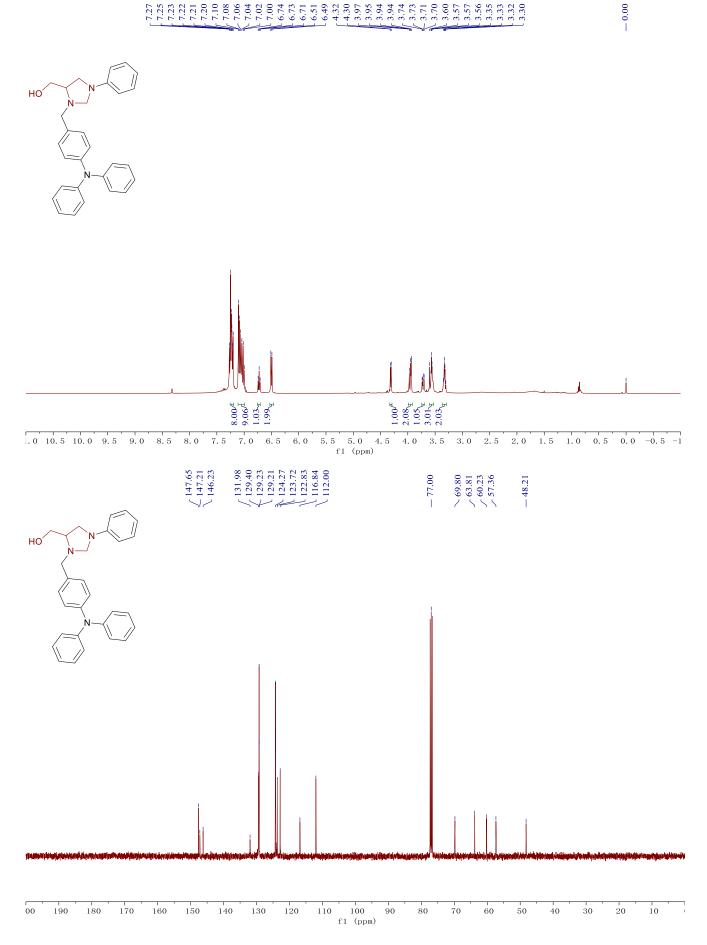
¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 3na

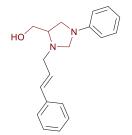

0.00

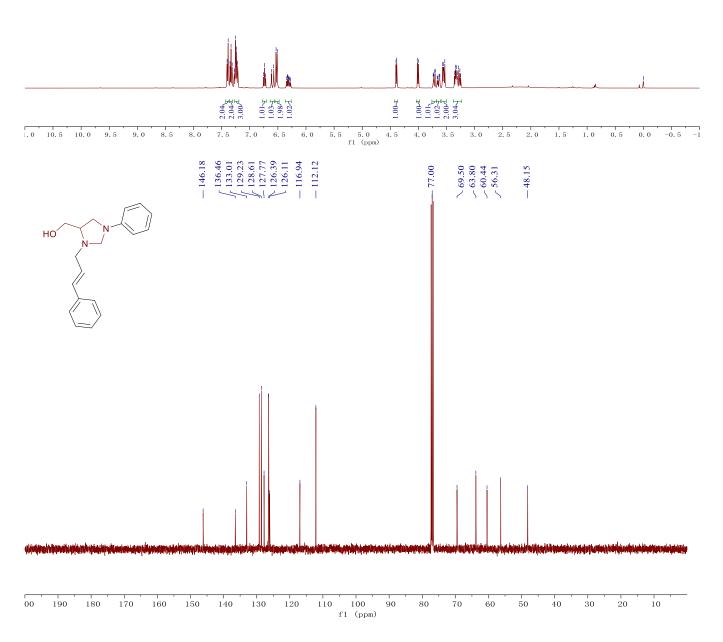


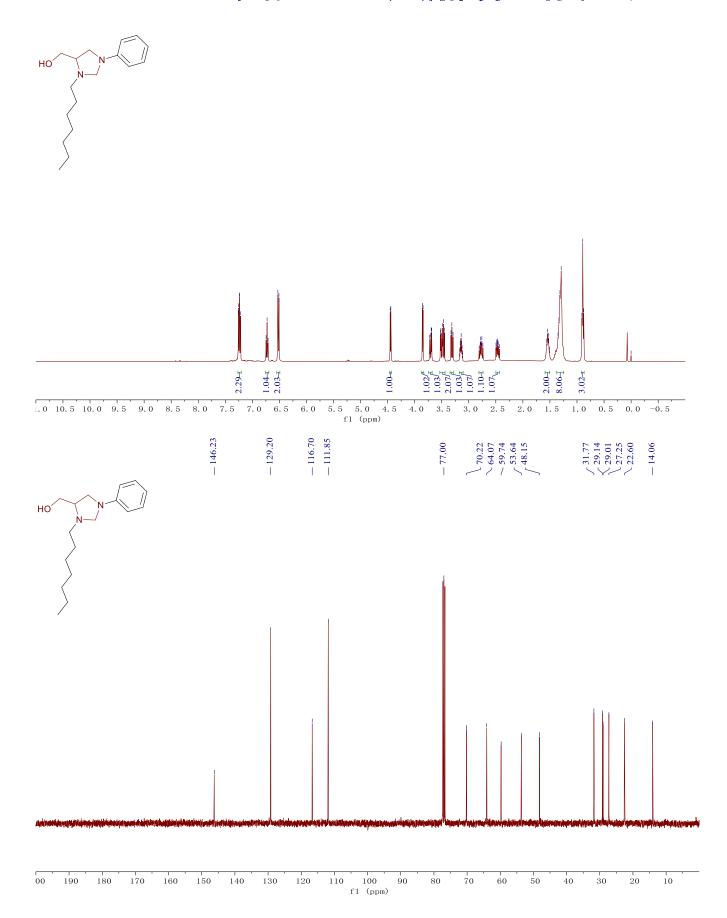


¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 30a

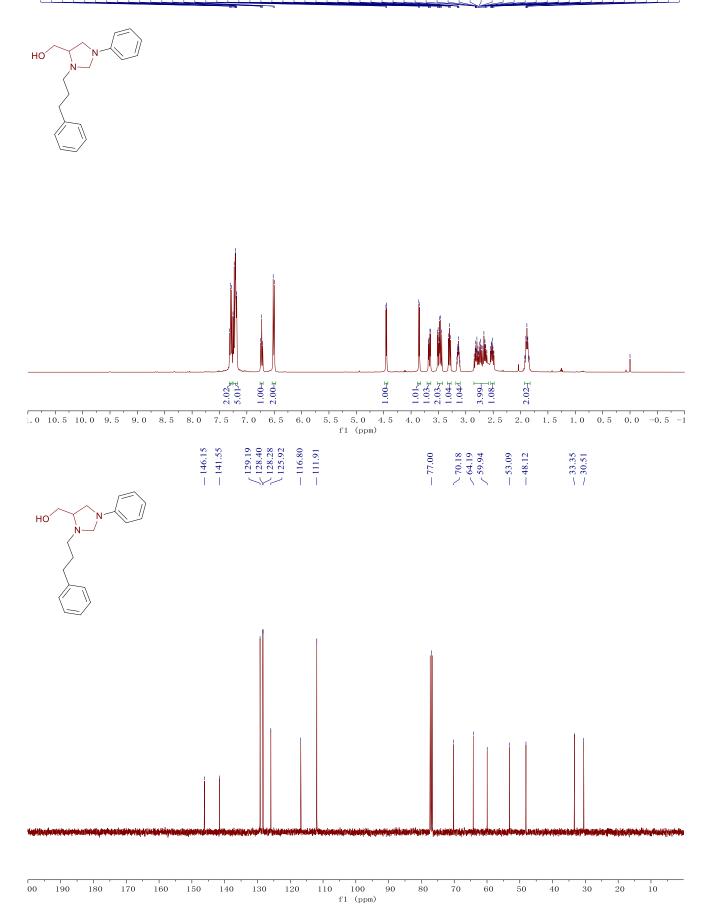

Constraints
 Constrain

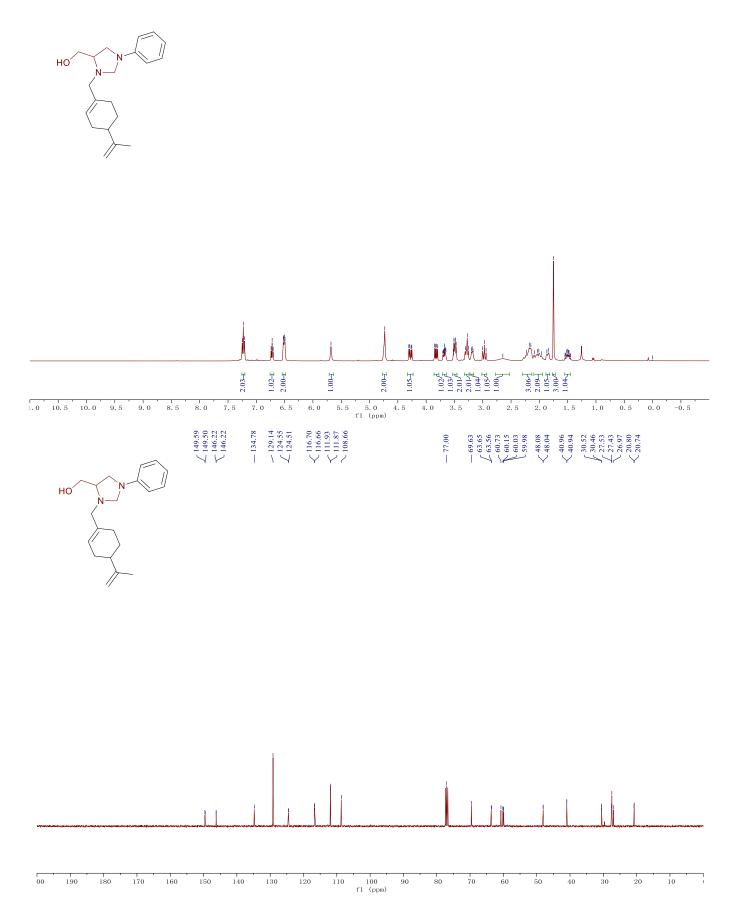


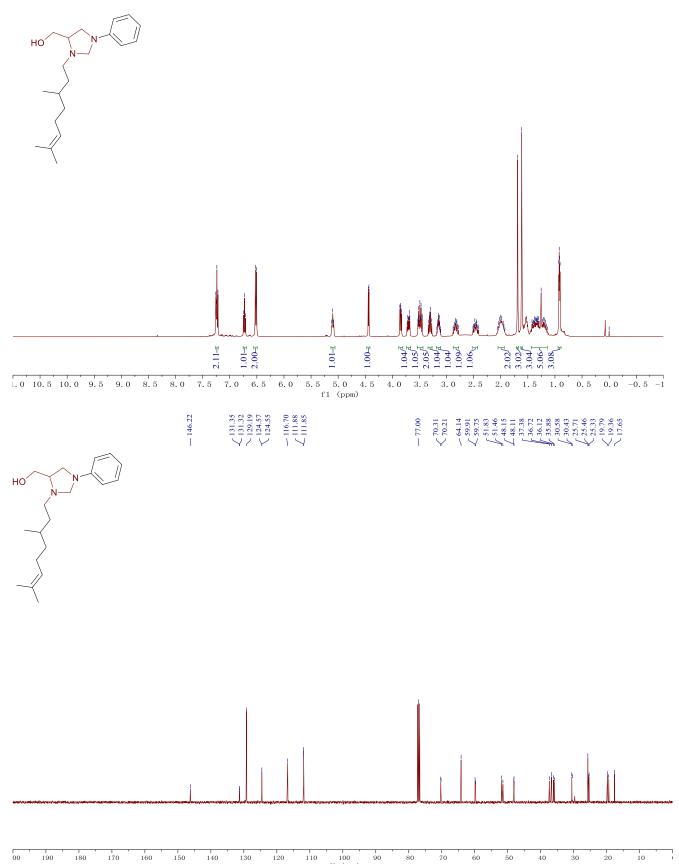

1H NMR (400 MHz, CDCl_3) and ^{13}C NMR (100 MHz, CDCl_3) spectra of product 3qa



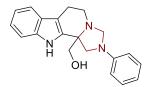
^1H NMR (400 MHz, CDCl₃) and ^{13}C NMR (100 MHz, CDCl₃) spectra of product 3ra

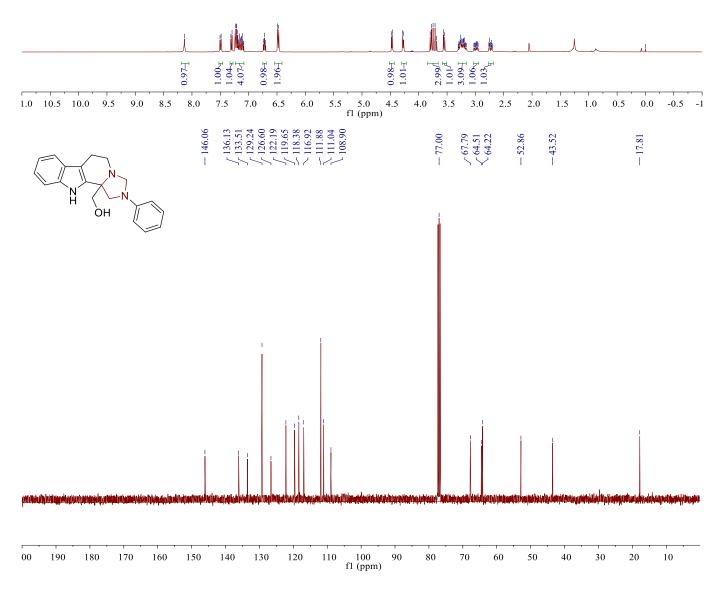

----0.00

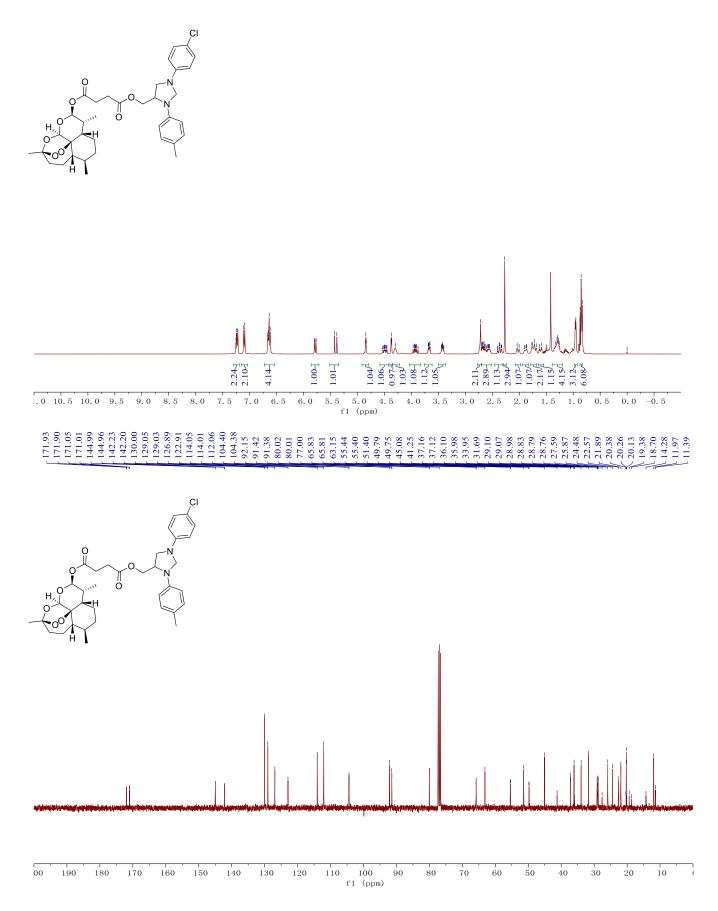



¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 3ta

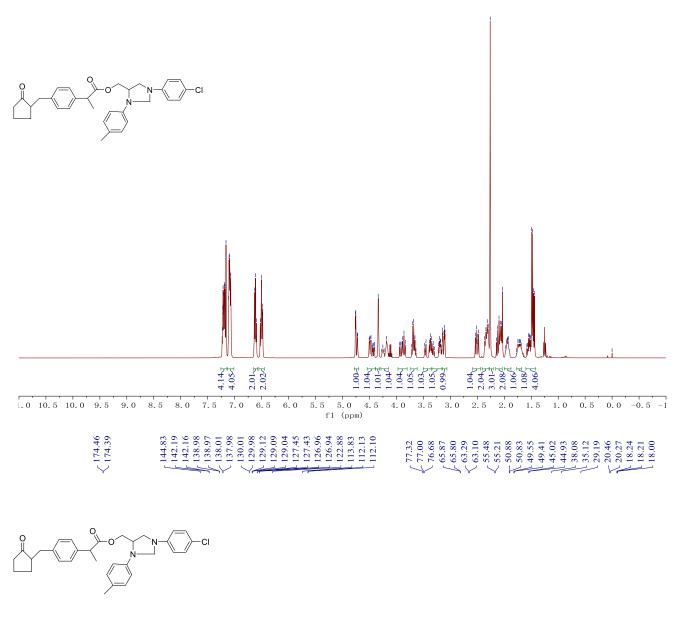
¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 3ua

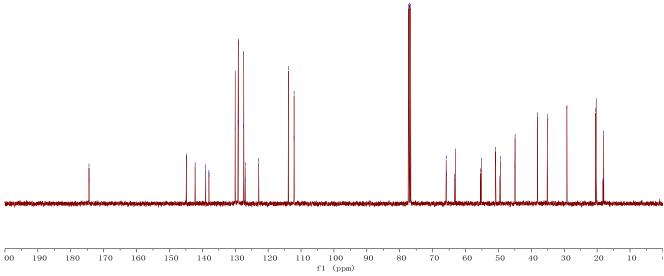



¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 3va

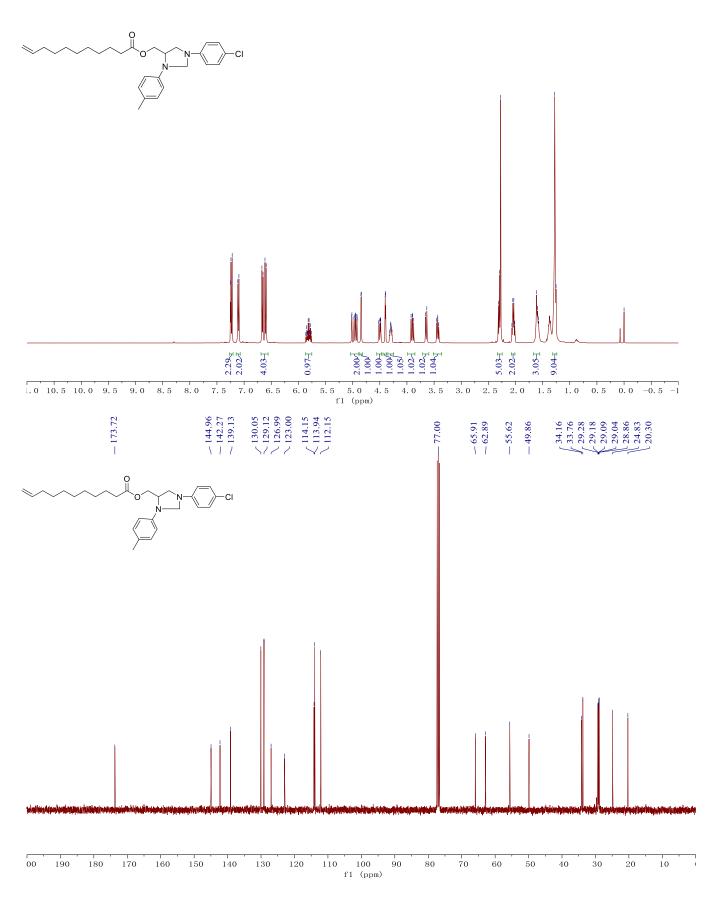

f1 (ppm)

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 3wa ¹S NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 3wa ¹S NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 3wa ¹S NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 3wa ¹S NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 3wa ¹S NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 3wa ¹S NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 3wa ¹S NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 3wa ¹S NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 3wa ¹S NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 3wa ¹S NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 3wa ¹S NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 3wa ¹S NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 3wa ¹S NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 3wa ¹S NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 3wa ¹S NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 3wa ¹S NMR (400 Mz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 3wa ¹S NMR (400 Mz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 3wa ¹S NMR (400 Mz, CDCl₃) and ¹³C NMR (400 Mz, CDCl₃) spectra of product 3wa ¹S NMR (400 Mz, CDCl₃) and ¹³C NMR (400 Mz, CDCl₃) spectra of product 3wa ¹S NMR (400 Mz, CDCl₃) and ¹³C NMR (400 Mz, CDCl₃) spectra of product 3wa ¹S NMR (400 Mz, CDCl₃) and ¹³C NMR (400 Mz, CDCl₃) spectra of product 3wa ¹S NMR (400 Mz, CDCl₃) and ¹³C NMR (400 Mz, CDCl₃) spectra of product 3wa ¹S NMR (400 Mz, CDCl₃) and ¹³C NMR (400 Mz, CDCl₃) and ¹³C NMR (400 Mz, CDCl₃) and ¹³C NM

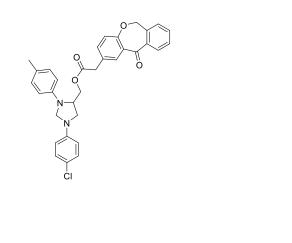


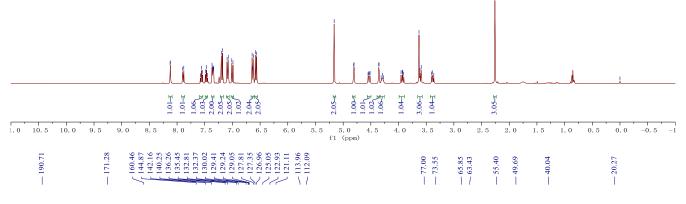


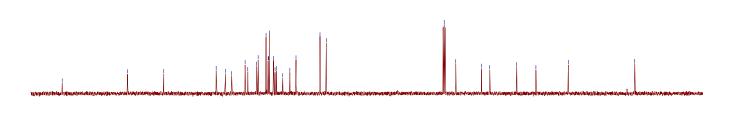
¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 5aa

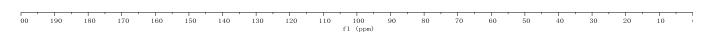


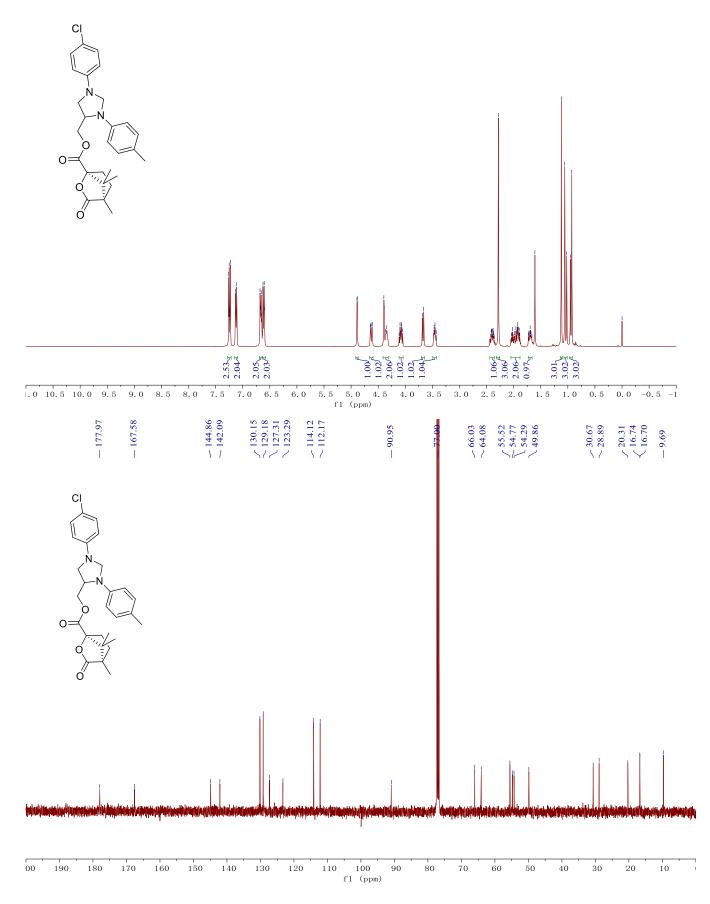
¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 5ab

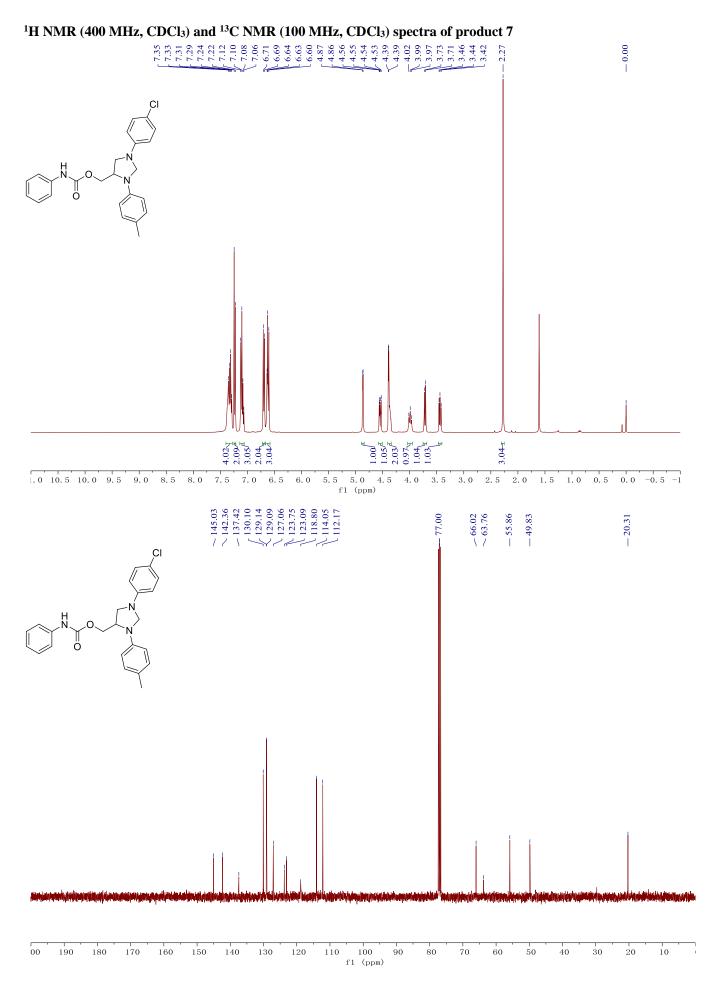


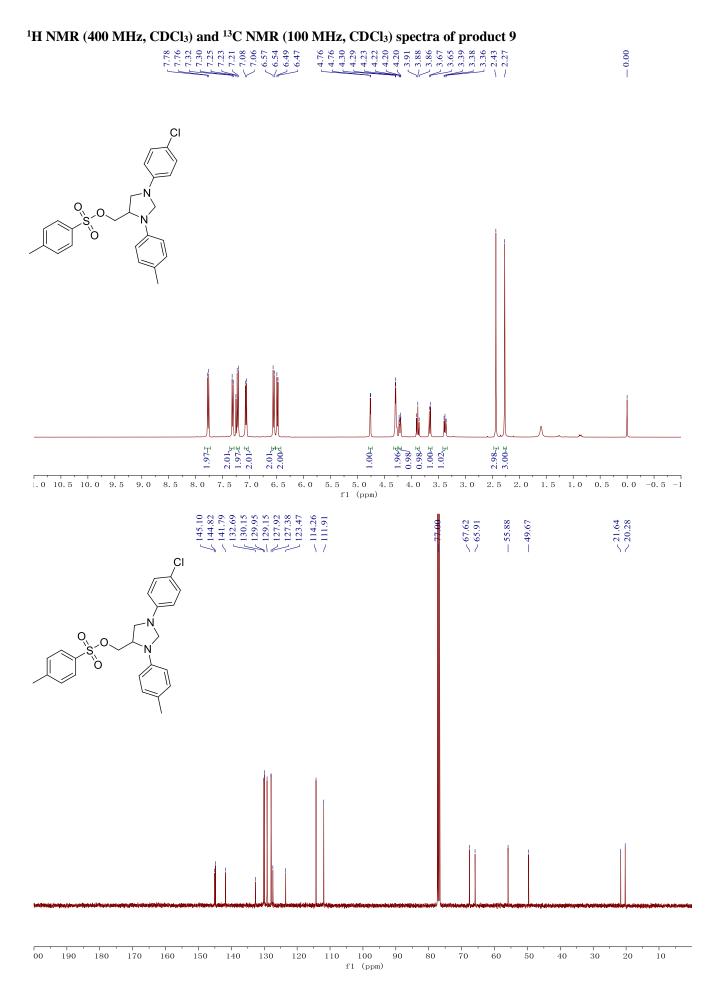

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 5ac


¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 5ad


- 0.00







¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 5ae

