Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2021

Supporting Information for

Electrochemical Oxidative Cyclization of Alkenes, Boronic Acids, and Dichalcogenides to Access Chalcogenated Boronic Esters and 1,3-Diols

Changfeng Huang, Jijing Hu, Guangxian Chen, Minjian Wu, Hua Cao,* and Xiang Liu*

School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, P. R. of China

E-mail: caohua@gdpu.edu.cn; liux96@gdpu.edu.cn

Table of Contents:

1. General considerationsS2
2. Experimental procedures and characterization data S3
2.1 <i>Experimental procedures</i> S3
2.2 Characterization dataS4
3. NMR spectra for new compounds S26
4. References S91

1. General considerations

Unless otherwise noted, commercial reagents were purchased from Alfa Aesar, TCI, *J&K* or Adamas and used without further purification. All reactions were carried out using oven-dried glassware and all catalytic reactions proceeded without special care. Column chromatography was performed on 200-300 mesh silica gel (Huanghai, China).

¹H, ¹⁹F and ¹³C{¹H} NMR spectra were recorded on an Bruker Ascend 400MHz spectrometer and Bruker Ultrashield 300MHz at ambient temperature. ¹H NMR spectra are referred to the TMS signal ($\delta = 0$ ppm) and ¹³C NMR spectra are referred to the residual solvent signal ($\delta = 77.16$ ppm). Data for ¹H NMR are reported as follows: chemical shifts (δ ppm), multiplicities (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad), coupling constants (Hz), integration.

The instrument for electrolysis is ElectraSyn 2.0 Package (IKA). The anode electrode is vitreous carbon plate (52 mm×8 mm×2 mm) and cathodic electrode was platinum plate (52 mm×8 mm×2 mm). The data of HRMS was carried out on a waters G2-XS high-resolution mass spectrometer (HR-ESI-MS) or Agilent 7250 GC/QTOF. Melting point were recorded using a SGW X-4 Melting Point Apparatus.

Note: In the ¹³C NMR spectral data, the carbons connected to boron are not listed due to quadrupole broadening and spin–spin coupling with boron.

2. Experimental procedures and characterization data

2.1 Experimental procedures

Synthesis of compounds 3 according to the following procedure¹:

To a stirred solution of Se⁰ metal (156 mg, 2.0 mmol) and iodobenzene (204 mg, 1.0 mmol) in dry DMSO (2.0 mL) was added CuO (10.0 mol%) followed by KOH (112 mg, 2.0 mmol) under nitrogen atmosphere at 90 °C for 2h. The progress of thereaction was monitored by TLC. After the reaction was complete, the reaction mixture was allowed to cool, which was subjected to column chromatographic (eluted with petroleum ether : ethyl acetate = 10:1) separation to give pure diselenide (yellow solid) in 96% yield.

All the selenide substrates were known or commercially available.

Synthesis of product 4 according to the following procedure:

As exemplified for **4a**:

(*E*)-3-phenylprop-2-en-1-ol (0.3 mmol, 1.0 equiv), phenylboronic acid (0.3 mmol, 1.0 equiv), 1,2diphenyldiselane (0.3 mmol, 1.0 equiv), KBr (1.2 mmol), TFA (0.6 mmol), CH₃CN (4 mL) and H₂O (1 mL) were placed in a 10 mL undivided electrolytic cell with a vitreous carbon plate anode (52 mm×8 mm×2 mm) and a platinum plate cathode (52 mm×8 mm×2 mm). The electrolysis was carried out at room temperature under a constant current of 5 mA for 12 hours. When the reaction was finished, the resulting solution was quenched with 10 mL brine and extracted with 3×10 mL ethyl acetate. The extract was dried with Na₂SO₄. The solvent was removed with a rotary evaporator. The pure product was obtained by flash column chromatography on silica gel (petroleum ether: ethyl acetate = 10: 1).

Gram-scale experiment for 4a:

(*E*)-3-phenylprop-2-en-1-ol (4.0 mmol, 1.0 equiv), phenylboronic acid (4.0 mmol, 1.0 equiv), 1,2diphenyldiselane (4.0 mmol, 1.0 equiv), KBr (16 mmol), TFA (8 mmol), CH₃CN (5 mL) and H₂O (2 mL) were placed in a 10 mL undivided electrolytic cell. The electrolysis was carried out at room temperature under a constant current of 5 mA for 24 hours. The resulting solution was quenched with 10 mL brine and extracted with 3×10 mL ethyl acetate. The extract was dried with Na₂SO₄. The solvent was removed with a rotary evaporator. The pure product was obtained by flash column chromatography on silica gel (petroleum ether: ethyl acetate = 10: 1). **4a**, 1.1 g, 71% yield.

Synthesis of product 6 according to the following procedure:

As exemplified for **6a**:

(*E*)-3-phenylprop-2-en-1-ol (0.3 mmol, 1.0 equiv), phenylboronic acid (0.3 mmol, 1.0 equiv), 1,2-di-*p*-tolyldisulfane (0.3 mmol, 1.0 equiv), KBr (1.2 mmol), AcOH (0.6 mmol), CH₃CN (4 mL) and H₂O (1 mL) were placed in a 10 mL undivided electrolytic cell with a vitreous carbon plate anode (52 mm×8 mm×2 mm) and a platinum plate cathode (52 mm×8 mm×2 mm). The electrolysis was carried out at room temperature under a constant current of 10 mA for 12 hours. When the reaction was finished, the resulting solution was quenched with 10 mL brine and extracted with 3×10 mL ethyl acetate. The extract was dried with Na₂SO₄. The solvent was removed with a rotary evaporator. The pure product was obtained by flash column chromatography on silica gel (petroleum ether: ethyl acetate = 10: 1).

2.2 Characterization data

2,4-Diphenyl-5-(phenylselanyl)-1,3,2-dioxaborinane (4a)

Flash column chromatography on silica gel (eluent: PE/EtOAc = 10/1, v/v) to afford **4a**. Brown oil (96.9 mg, 82%). ¹H NMR (400 MHz, CDCl₃) δ ppm 7.83 (d, J = 6.4 Hz, 2H), 7.46 – 7.36 (m, 3H), 7.39 – 7.27 (m, 7H), 7.27 (d, J = 7.4 Hz, 1H), 7.22 (d, J = 7.3 Hz, 2H), 5.15 (d, J = 7.8 Hz, 1H), 4.29 (dd, J = 11.8, 4.1 Hz, 1H), 4.10 (dd, J = 11.8, 8.6 Hz, 1H), 3.53 (td, J = 8.2, 4.1 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 140.6, 135.6, 134.1, 131.1, 129.3, 128.6, 128.5, 128.4, 127.8, 127.0, 126.7, 77.4, 64.6, 46.2. HR- QTOFMS (m/z): calcd for C₂₁H₁₉BO₂Se [M]: 394.0643, found: 394.0647.

4-Phenyl-5-(phenylselanyl)-2-(o-tolyl)-1,3,2-dioxaborinane (4b)

Flash column chromatography on silica gel (eluent: PE/EtOAc = 12/1, v/v) to afford **4b**. Yellow oil (91.8 mg, 75%). ¹H NMR (400 MHz, CDCl₃) δ ppm 7.81 (d, *J* = 6.6 Hz, 1H), 7.41 (d, *J* = 7.3 Hz, 2H), 7.38 – 7.24 (m, 7H), 7.26 – 7.18 (m, 1H), 7.18 – 7.12 (m, 2H), 5.16 (d, *J* = 7.4 Hz, 1H), 4.28 (dd, *J* = 11.9, 3.9 Hz, 1H), 4.09 (dd, *J* = 11.8, 8.2 Hz, 1H), 3.55 (td, *J* = 7.8, 4.0 Hz, 1H), 2.52 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 144.6, 140.7, 135.7, 135.4, 130.5, 130.2, 129.3, 128.5, 128.5, 128.3, 127.0, 126.6, 124.8, 77.3, 64.2, 46.1, 22.8. HRMS GC/QTOF (m/z): calcd for C₂₂H₂₁BO₂Se [M]: 408.0800, found: 408.0809.

2-(4-Bromophenyl)-4-phenyl-5-(phenylselanyl)-1,3,2-dioxaborinane (4c)

Flash column chromatography on silica gel (eluent: PE/EtOAc = 8/1, v/v) to afford 4c. Brown solid (96.3 mg, 68%), mp 55.7-58.5 °C. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.67 (d, *J* = 8.2 Hz, 1H), 7.47 (d, *J* = 8.2 Hz, 2H), 7.42 – 7.28 (m, 7H), 7.26 (d, *J* = 7.3 Hz, 1H), 7.24 – 7.15 (m, 2H), 5.11 (d, *J* = 7.8 Hz, 1H), 4.27 (dd, *J* = 11.8, 4.2 Hz, 1H), 4.08 (dd, *J* = 11.8, 8.6 Hz, 1H), 3.51 (td, *J* = 8.3, 4.1 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 140.3, 135.8, 135.7, 130.9, 129.3, 128.6, 128.6, 128.5, 126.8, 126.7, 126.0, 77.4, 64.6, 45.9. HRMS GC/QTOF (m/z): calcd for C₂₁H₁₈BBrO₂Se [M]: 471.9748, found: 471.9756.

2-(4-Methoxyphenyl)-4-phenyl-5-(phenylselanyl)-1,3,2-dioxaborinane (4d)

Flash column chromatography on silica gel (eluent: PE/EtOAc = 12/1, v/v) to afford **4d**. Brown solid (96.7 mg, 76%), mp 84.2-85.0 °C. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.78 (d, J = 6.7 Hz, 2H), 7.41 – 7.31 (m, 7H), 7.25 (d, J = 7.5 Hz, 1H), 7.19 (t, J = 7.5 Hz, 2H), 6.87 (d, J = 7.8 Hz, 2H), 5.11 (d, J = 7.8 Hz, 1H), 4.26 (dd, J = 11.8, 4.0 Hz, 1H), 4.07 (dd, J = 11.8, 8.5 Hz, 1H), 3.78 (s, 3H), 3.50 (td, J = 8.1, 4.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 162.1, 140.7,

135.9, 135.6, 129.2, 128.5, 128.4, 128.3, 127.0, 126.7, 113.3, 77.3, 64.5, 55.1, 46.3. HRMS GC/QTOF (m/z): calcd for C₂₂H₂₁BO₃Se [M]: 424.0749, found: 424.0750.

2-(3,5-Difluorophenyl)-4-phenyl-5-(phenylselanyl)-1,3,2-dioxaborinane (4e)

First column chromatography on silica gel (eluent: PE/EtOAc = 8/1, v/v) to afford 4e. Yellow solid (67.1 mg, 52%), mp 55.1-55.9 °C. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.39 – 7.27 (m, 9H), 7.27 – 7.14 (m, 3H), 6.83 (t, *J* = 9.0 Hz, 1H), 5.11 (d, *J* = 7.7 Hz, 1H), 4.27 (dd, *J* = 11.9, 4.1 Hz, 1H), 4.06 (dd, *J* = 11.9, 8.5 Hz, 1H), 3.50 (td, *J* = 8.1, 4.1 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 164.1 (d, *J* = 11.0 Hz), 161.6 (d, *J* = 11.0 Hz), 140.1, 135.7, 129.3, 128.6, 128.6, 128.5, 126.7, 126.6, 116.4 – 116.0 (m), 106.3 (t, *J* = 25.2 Hz), 77.5, 64.6, 45.7. HRMS GC/QTOF (m/z): calcd for C₂₁H₁₇BF₂O₂Se [M]: 430.0455, found: 430.0453.

2-(4-Chloro-3-methylphenyl)-4-phenyl-5-(phenylselanyl)-1,3,2-dioxaborinane (4f)

SePh

Flash column chromatography on silica gel (eluent: PE/EtOAc = 10/1, v/v) to afford **4f**. Yellow oil (103.4 mg, 78%). ¹H NMR (400 MHz, CDCl₃) δ ppm 7.72 (d, J = 7.8 Hz, 1H), 7.44 – 7.30 (m, 7H), 7.27 (d, *J* = 7.2 Hz, 1H), 7.22 (d, *J* = 7.7 Hz, 2H), 7.12 (d, *J* = 8.3 Hz, 2H), 5.14 (d, *J* = 7.5 Hz, 1H), 4.27 (dd, J = 11.9, 4.0 Hz, 1H), 4.08 (dd, J = 11.9, 8.3 Hz, 1H), 3.54 (td, J = 7.9, 4.0 Hz, 1H), 2.48 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 146.7, 140.5, 136.8, 136.4,

135.7, 131.6, 130.1, 129.3, 128.6, 128.4, 126.9, 126.6, 125.0, 77.4, 64.3, 45.9, 22.6. HRMS GC/QTOF (m/z): calcd for C₂₂H₂₀BClO₂Se [M]: 442.0410, found: 442.0410.

2-(3-Chloro-4-methylphenyl)-4-phenyl-5-(phenylselanyl)-1,3,2-dioxaborinane (4g)

Flash column chromatography on silica gel (eluent: PE/EtOAc = 10/1, v/v) to afford 4g. Yellow solid (92.8 mg, 70%), mp 88.7-89.5 °C. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.78 (s, 1H), 7.59 (d, J = 7.5 Hz, 1H), 7.42 – 7.30 (m, 7H), 7.27 (d, J = 6.2 Hz, 1H), 7.20 (t, J = 7.3 Hz, 3H), 5.12 (d, *J* = 7.7 Hz, 1H), 4.27 (dd, *J* = 11.9, 4.0 Hz, 1H), 4.07 (dd, *J* = 11.8, 8.5 Hz, 1H), 3.52 (td, J = 8.1, 4.1 Hz, 1H), 2.37 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 140.4, 139.0, 135.7, 134.6, 134.3, 132.3, 130.6, 129.3, 128.6, 128.6, 128.4, 126.9, 126.7, 77.4, 64.5, 46.0, 20.4. HRMS GC/QTOF (m/z): calcd for C₂₂H₂₀BClO₂Se [M]: 442.0410, found: 442.0422.

2-(Naphthalen-2-yl)-4-phenyl-5-(phenylselanyl)-1,3,2-dioxaborinane (4h)

Flash column chromatography on silica gel (eluent: PE/EtOAc = 10/1, v/v) to afford **4h**. Yellow solid (86.2 mg, 65%), mp 79.3-80.2 °C. ¹H NMR (400 MHz, CDCl₃) δ ppm 8.80 (d, J = 7.8Hz, 1H), 8.11 (d, J = 7.0 Hz, 1H), 7.88 (d, J = 8.2 Hz, 1H), 7.80 (d, J = 9.6 Hz, 1H), 7.49 – 7.29 (m, 10H), 7.25 (t, J = 7.3 Hz, 1H), 7.18 (t, J = 7.3 Hz, 2H), 5.21 (d, J = 7.5 Hz, 1H), 4.36 (dd, J = 11.9, 4.0 Hz, 1H), 4.16 (dd, J = 11.8, 8.3 Hz, 1H), 3.60 (td, J = 8.0, 4.1 Hz, 1H).¹³C

NMR (100 MHz, CDCl₃) δ ppm 140.6, 136.9, 135.7, 135.1, 133.5, 131.4, 129.3, 128.6, 128.6, 128.5, 128.4, 128.4, 127.0, 126.7, 126.2, 125.4, 125.1, 77.5, 64.4, 46.0. HRMS GC/QTOF (m/z): calcd for C₂₅H₂₁BO₂Se [M]: 444.0800, found: 444.0813.

2-(Phenanthren-9-yl)-4-phenyl-5-(phenylselanyl)-1,3,2-dioxaborinane (4i)

Flash column chromatography on silica gel (eluent: PE/EtOAc = 12/1, v/v) to afford **4i**. Brown solid (108.2 mg, 73%), mp 76.5-77.2 °C. ¹H NMR (400 MHz, CDCl₃) δ ppm 8.86 (d, *J* = 8.0 Hz, 1H), 8.66 (dd, *J* = 14.4, 8.2 Hz, 2H), 8.40 (s, 1H), 7.89 (d, *J* = 7.9 Hz, 1H), 7.68 – 7.51 (m, 4H), 7.47 – 7.31 (m, 7H), 7.27 (d, *J* = 7.1 Hz, 1H), 7.21 (d, *J* = 7.8 Hz, 2H), 5.27 (d, *J* = 7.4 Hz, 1H), 4.41 (dd, *J* = 11.8, 4.0 Hz, 1H), 4.21 (dd, *J* = 11.9, 8.2 Hz, 1H), 3.65 (td, *J* = 7.8, 4.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 140.6, 137.4, 135.7, 134.6, 131.9, 131.2, 130.2, 129.4, 129.3, 129.2, 128.7, 128.6, 128.4, 127.7, 127.0, 126.7, 126.6, 126.5, 126.1, 122.8, 122.5, 77.6, 64.5, 46.0. HRMS GC/QTOF (m/z): calcd for C₂₉H₂₃BO₂Se [M]: 494.0956, found: 494.0955.

9-Phenyl-3-(4-phenyl-5-(phenylselanyl)-1,3,2-dioxaborinan-2-yl)-9H-carbazole (4j)

2-Isopropyl-4-phenyl-5-(phenylselanyl)-1,3,2-dioxaborinane (4k)

Flash column chromatography on silica gel (eluent: PE/EtOAc = 10/1, v/v) to afford **4k**. Brown oil (73.7 mg, 65%). ¹H NMR (400 MHz, CDCl₃) δ ppm 7.36 (dt, *J* = 13.0, 6.5 Hz, 5H), 7.29 – 7.26 (m, 3H), 7.24 – 7.16 (m, 2H), 4.97 (d, *J* = 7.6 Hz, 1H), 4.11 (dd, *J* = 11.8, 4.1 Hz, 1H), 3.92 (dd, *J* = 11.8, 8.3 Hz, 1H), 3.43 (td, *J* = 8.0, 4.0 Hz, 1H), 1.52 – 1.38 (m, 2H), 0.95 (t, *J* = 7.3 Hz, 3H), 0.80 (t, *J* = 7.7 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 140.6, 135.7, 129.3, 128.5, 128.5, 128.3, 127.0, 126.6, 77.0, 64.0, 46.2, 17.6, 17.2. HR-ESI-MS (m/z): calcd for C₁₈H₂₂BO₂Se [M+H]⁺: 361.0878, found: 361.0875.

2-Cyclopropyl-4-phenyl-5-(phenylselanyl)-1,3,2-dioxaborinane (41)

Flash column chromatography on silica gel (eluent: PE/EtOAc = 10/1, v/v) to afford **41**. Brown oil (77.3 mg, 72%). ¹H NMR (400 MHz, CDCl₃) δ ppm 7.38 – 7.30 (m, 5H), 7.30 – 7.25 (m,

3H), 7.20 (dd, J = 8.3, 6.8 Hz, 2H), 4.92 (d, J = 7.8 Hz, 1H), 4.07 (dd, J = 11.7, 4.1 Hz, 1H), 3.89 (dd, J = 11.7, 8.5 Hz, 1H), 3.40 (td, J = 8.1, 4.0 Hz, 1H), 0.57 (dd, J = 6.3, 2.9 Hz, 2H), 0.50 (d, J = 6.1 Hz, 2H), -0.14 – -0.32 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 140.7, 135.6, 129.2, 128.5, 128.4, 128.3, 127.0, 126.6, 76.9, 64.2, 46.2, 3.9, 3.9. HR-ESI-MS (m/z): calcd for C₁₈H₁₉BO₂NaSe [M+Na]⁺: 381.0541, found: 381.0543.

2,4-Diphenyl-5-(*p*-tolylselanyl)-1,3,2-dioxaborinane (5a)

Flash column chromatography on silica gel (eluent: PE/EtOAc = 12/1, v/v) to afford **5a**. Brown solid (99.9 mg, 80%), mp 80.1-80.7 °C. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.82 (d, J = 6.9 Hz, 2H), 7.43 (d, J = 7.5 Hz, 1H), 7.42 – 7.30 (m, 7H), 7.30 (d, J = 7.9 Hz, 2H), 7.03 (d, J = 7.9 Hz, 2H), 5.13 (d, J = 7.8 Hz, 1H), 4.27 (dd, J = 11.8, 4.1 Hz, 1H), 4.08 (dd, J = 11.8, 8.5 Hz, 1H), 3.48 (td, J = 8.2, 4.1 Hz, 1H), 2.31 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 140.7, 138.8, 136.0, 134.1, 131.1, 130.1, 128.5, 128.3, 127.7, 126.8, 123.1, 77.3, 64.6, 46.0, 21.3. HRMS GC/QTOF

(m/z): calcd for $C_{22}H_{21}BO_2Se$ [M]: 408.0800, found: 408.0804.

5-((4-Fluorophenyl)selanyl)-2,4-diphenyl-1,3,2-dioxaborinane (5b)

5-((4-Chlorophenyl)selanyl)-2,4-diphenyl-1,3,2-dioxaborinane (5c)

Flash column chromatography on silica gel (eluent: PE/EtOAc = 10/1, v/v) to afford **5c**. Yellow solid (83.5mg, 65%), mp 90.5-91.2 °C. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.83 (d, *J* = 7.4 Hz, 2H), 7.44 (d, *J* = 7.5 Hz, 1H), 7.40 – 7.31 (m, 7H), 7.27 (d, *J* = 8.0 Hz, 2H), 7.17 (d, *J* = 8.0 Hz, 2H), 5.14 (d, *J* = 7.7 Hz, 1H), 4.29 (dd, *J* = 11.9, 4.1 Hz, 1H), 4.08 (dd, *J* = 11.9, 8.6 Hz, 1H), 3.50 (td, *J* = 8.2, 4.1 Hz, 1H). ¹³C NMR (100 MHz, 2H), 5.14 (d, *J* = 8.2, 4.1 Hz, 1H). CDCl₃) δ ppm 140.4, 137.0, 135.0, 134.1, 131.2, 129.5, 128.6, 128.5, 127.8, 126.7, 125.2, 77.4, 64.4, 46.7. HRMS GC/QTOF (m/z): calcd for C₂₁H₁₈BClO₂Se [M]: 428.0254, found: 428.0251.

5-((4-Bromophenyl)selanyl)-2,4-diphenyl-1,3,2-dioxaborinane (5d)

Flash column chromatography on silica gel (eluent: PE/EtOAc = 10/1, v/v) to afford **5d**. Yellow solid (96.3 mg, 68%), mp 88.3-89.1 °C. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.82 (d, J = 7.5 Hz, 2H), 7.44 (d, J = 6.9 Hz, 1H), 7.36 (t, J = 7.4 Hz, 9H), 7.32 (d, J = 1.9 Hz, 1H), 7.21 (d, J = 7.2 Hz, 1H), 5.15 (d, J = 7.7 Hz, 1H), 4.30 (dd, J = 12.0, 3.7 Hz, 1H), 4.10 (dd, J = 11.5, 9.1 Hz, 1H), 3.52 (td, J = 8.3, 4.2 Hz, 1H). ¹³C NMR (100 MHz,

CDCl₃) δ ppm 140.4, 137.1, 134.1, 132.4, 131.2, 128.6, 128.5, 127.8, 126.7, 125.9, 123.2, 77.4, 64.4, 46.7. HRMS GC/QTOF (m/z): calcd for C₂₁H₁₈BBrO₂Se [M]: 471.9748, found: 471.9750.

2,4-Diphenyl-5-(*o*-tolylselanyl)-1,3,2-dioxaborinane (5e)

5-((2-Methoxyphenyl)selanyl)-2,4-diphenyl-1,3,2-dioxaborinane (5f)

Flash column chromatography on silica gel (eluent: PE/EtOAc = 12/1, v/v) to afford 5f.
Yellow solid (105.6mg, 83%), mp 48.1-48.9 °C. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.85
(d, J = 7.1 Hz, 2H), 7.42 (d, J = 7.4 Hz, 1H), 7.40 – 7.28 (m, 8H), 7.26 – 7.14 (m, 1H), 6.89
– 6.74 (m, 2H), 5.18 (d, J = 7.5 Hz, 1H), 4.25 (dd, J = 11.9, 4.0 Hz, 1H), 4.08 (dd, J = 11.8, 8.2 Hz, 1H), 3.80 (s, 3H), 3.74 (dt, J = 7.7, 4.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ ppm

159.1, 140.8, 135.9, 134.1, 131.0, 130.0, 128.4, 128.2, 127.7, 126.5, 121.3, 110.8, 77.3, 64.5, 55.9, 43.6. HRMS GC/QTOF (m/z): calcd for C₂₂H₂₁BO₃Se [M]: 424.0749, found: 424.0745.

5-((2-Chlorophenyl)selanyl)-2,4-diphenyl-1,3,2-dioxaborinane (5g)

Flash column chromatography on silica gel (eluent: PE/EtOAc = 10/1, v/v) to afford **5g**. Yellow solid (100.2 mg, 78%), mp 96.7-97.3 °C. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.85 (d, *J* = 6.5 Hz, 2H), 7.49 – 7.40 (m, 1H), 7.40 – 7.26 (m, 9H), 7.22 – 7.13 (m, 1H), 7.09 – 6.99 (m, 1H), 5.21 (d, *J* = 7.2 Hz, 1H), 4.30 (dd, *J* = 11.9, 3.9 Hz, 1H), 4.11 (dd, *J* = 11.9, 8.0 Hz, 1H), 3.79 (td, *J* = 7.6, 4.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 140.4, 138.2, 135.9,

134.2, 131.2, 129.9, 129.6, 128.6, 128.4, 127.9, 127.8, 127.3, 126.5, 77.2, 64.0, 45.4. HRMS GC/QTOF (m/z): calcd for C₂₁H₁₈BClO₂Se [M]: 428.0254, found: 428.0263.

5-((3-Chlorophenyl)selanyl)-2,4-diphenyl-1,3,2-dioxaborinane (5h)

Flash column chromatography on silica gel (eluent: PE/EtOAc = 10/1, v/v) to afford **5h**. Yellow solid (88.6 mg, 69%), mp 75.6-76.4 °C. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.83 (d, J = 6.6 Hz, 2H), 7.44 (d, J = 7.5 Hz, 1H), 7.40 – 7.31 (m, 7H), 7.29 – 7.26 (m, 1H), 7.27 – 7.19 (m, 3H), 7.15 – 7.09 (m, 1H), 5.16 (d, J = 7.9 Hz, 1H), 4.33 (dd, J = 11.9, 4.2 Hz, 1H), 4.11 (dd, J = 11.8, 8.8 Hz, 1H), 3.55 (td, J = 4.6, 3.6 Hz,

1H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 140.3, 134.9, 134.7, 134.2, 133.3, 131.2, 130.2, 128.7, 128.7, 128.6, 128.6, 127.8, 126.8, 77.5, 64.5, 46.8. HRMS GC/QTOF (m/z): calcd for C₂₁H₁₈BClO₂Se [M]: 428.0254, found: 428.0247.

5-((3,4-Dimethylphenyl)selanyl)-2,4-diphenyl-1,3,2-dioxaborinane (5i)

140.8, 137.8, 137.4, 137.0, 134.1, 133.4, 131.0, 130.5, 128.5, 128.3, 127.7, 126.9, 77.4, 64.7, 46.0, 19.7, 19.6. HRMS GC/QTOF (m/z): calcd for C₂₃H₂₃BO₂Se [M]: 422.0956, found: 422.0956.

2,4-Diphenyl-5-(thiophen-2-ylselanyl)-1,3,2-dioxaborinane (5j)

Flash column chromatography on silica gel (eluent: PE/EtOAc = 4/1, v/v) to afford **5**j. Brown oil (72.0 mg, 60%). ¹H NMR (400 MHz, CDCl₃) δ ppm 7.83 (d, *J* = 6.8 Hz, 2H), 7.50 - 7.27 (m, 9H), 7.16 - 6.83 (m, 2H), 5.15 (d, *J* = 7.6 Hz, 1H), 4.29 (dd, *J* = 11.9, 4.1 Hz, 1H), 4.14 - 4.01 (m, 1H), 3.41 (tt, *J* = 7.9, 3.9 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 138.2, 134.1, 132.5, 131.1, 128.7, 128.6, 128.4, 128.4, 127.8, 127.7, 126.7, 126.6, 76.7, 64.0, 46.8. HRMS GC/QTOF (m/z): calcd for C₁₉H₁₇BO₂SSe [M]: 400.0208, found: 400.0211.

5-(Methylselanyl)-2,4-diphenyl-1,3,2-dioxaborinane (5k)

 $\begin{array}{l} \mbox{Ph} \\ \mbox{Ph} \\ \mbox{O} \\ \mbox{Ph} \\ \mbox{O} \\ \mbox{Ph} \\ \mbox{O} \\ \mbox{O} \\ \mbox{Ph} \\ \mbox{O} \\$

δ ppm 140.7, 134.1, 131.1, 128.5, 128.4, 127.7, 126.9, 78.4, 65.0, 42.9, 4.1. HRMS GC/QTOF (m/z): calcd for C₁₆H₁₇BO₂Se [M]: 332.0487, found: 332.0485.

5-(Benzylselanyl)-2,4-diphenyl-1,3,2-dioxaborinane (51)

 $\begin{array}{l} \begin{array}{l} \mbox{Ph} \\ \mbox{$

78.7, 65.2, 41.9, 27.8. HRMS GC/QTOF (m/z): calcd for C23H25BO2Se [M]: 408.0800, found: 408.0796.

4,4-Dimethyl-2-phenyl-5-(phenylselanyl)-1,3,2-dioxaborinane (5m)

Flash column chromatography on silica gel (eluent: PE/EtOAc = 12/1, v/v) to afford **5m**. Brown oil (73.7 mg, 71%). ¹H NMR (400 MHz, CDCl₃) *δ* ppm 7.75 (d, *J* = 6.5 Hz, 2H), 7.64 – 7.54 (m, 2H), 7.44 – 7.35 (m, 1H), 7.36 – 7.24 (m, 5H), 4.23 (d, *J* = 8.4 Hz, 2H), 3.37 (t, *J* = 8.4 Hz, 1H), 1.64 (s, 3H), 1.41 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) *δ* ppm 134.7, 133.9, 130.8, 129.5, 128.7,

128.3, 127.6, 74.3, 63.9, 51.0, 29.9, 25.3. HRMS GC/QTOF (m/z): calcd for C₁₇H₁₉BO₂Se [M]: 346.0643, found: 346.0645.

4-Methyl-2-phenyl-5-(phenylselanyl)-1,3,2-dioxaborinane (5n)

Flash column chromatography on silica gel (eluent: PE/EtOAc =10/1, v/v) to afford **5n**. Brown oil (59.8 mg, 60%). ¹H NMR (400 MHz, CDCl₃) δ ppm 7.80 (d, J = 6.5 Hz, 2H), 7.65 – 7.57 (m, 2H), 7.47 – 7.38 (m, 1H), 7.39 – 7.26 (m, 5H), 4.27 (dd, J = 6.1, 3.7 Hz, 1H), 4.17 (dd, J = 11.8, 6.5 Hz, 1H), 3.70 (dt, J = 7.0, 3.7 Hz, 1H), 1.81 – 1.74 (m, 1H), 1.12 (t, J = 7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 135.3, 134.0, 130.9, 129.4, 128.3, 127.7, 75.3, 64.8, 45.7, 27.7, 10.3. HRMS GC/QTOF (m/z): calcd for C₁₆H₁₇BO₂Se [M]: 332.0487, found: 332.0487.

4-Ethyl-2-phenyl-5-(phenylselanyl)-1,3,2-dioxaborinane (50)

Flash column chromatography on silica gel (eluent: PE/EtOAc = 12/1, v/v) to afford **50**. Brown oil (77.9 mg, 75%). ¹H NMR (400 MHz, CDCl₃) δ ppm 7.80 (d, J = 6.5 Hz, 2H), 7.60 (d, J = 7.7 Hz, 2H), 7.47 – 7.38 (m, 1H), 7.39 – 7.31 (m, 2H), 7.34 – 7.24 (m, 3H), 4.35 – 4.19 (m, 2H), 4.17 (dd, J = 11.8, 6.5 Hz, 1H), 3.74 – 3.66 (m, 1H), 1.85 – 1.68 (m, 2H), 1.12 (t, J = 7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 135.3, 134.0, 130.9, 129.4, 128.3, 128.0, 127.7, 75.3, 64.8, 45.7, 27.7, 10.3. HRMS GC/QTOF (m/z): calcd for C₁₇H₁₉BO₂Se [M]: 346.0643, found: 346.0642.

2-Phenyl-5-(phenylselanyl)-4-propyl-1,3,2-dioxaborinane (5p)

1.60 (m, 2H), 1.59 – 1.45 (m, 1H), 0.99 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 135.9, 133.9, 130.9, 129.4, 128.7, 127.7, 126.3, 74.6, 65.5, 43.4, 37.5, 18.3, 14.1. HRMS GC/QTOF (m/z): calcd for C₁₈H₂₁BO₂Se [M]: 360.0800, found: 360.0801.

4-(4-Chlorophenyl)-2-phenyl-5-(phenylselanyl)-1,3,2-dioxaborinane (5q)

Flash column chromatography on silica gel (eluent: PE/EtOAc = 10/1, v/v) to afford **5q.** Brown oil (97.6 mg, 76%). ¹H NMR (400 MHz, CDCl₃) δ ppm 7.80 (d, *J* = 7.6 Hz, 2H), 7.42 (d, *J* = 7.4 Hz, 1H), 7.38 – 7.31 (m, 5H), 7.28 (d, *J* = 8.1 Hz, 4H), 7.24 – 7.15 (m, 2H), 5.07 (d, *J* = 8.5 Hz, 1H), 4.30 (dd, *J* = 11.8, 4.3 Hz, 1H), 4.09 (dd, *J* = 11.8, 9.4 Hz, 1H), 3.43 (td, *J* = 9.0, 4.3 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 139.0, 135.6, 134.1, 134.1, 131.2, 129.3, 128.6, 128.6, 128.3, 127.8, 126.7, 77.0, 64.8, 46.0. HRMS GC/QTOF (m/z): calcd for C₂₁H₁₈BClO₂Se [M]: 428.0254, found: 428.0247.

4-(4-Methoxyphenyl)-2-phenyl-5-(phenylselanyl)-1,3,2-dioxaborinane (5r)

Flash column chromatography on silica gel (eluent: PE/EtOAc = 10/1, v/v) to afford **5r**. Brown oil (81.4 mg, 64%). ¹H NMR (400 MHz, CDCl₃) δ ppm 7.73 (d, *J* = 6.5 Hz, 2H), 7.33 (d, *J* = 6.9 Hz, 2H), 7.27 (d, *J* = 7.3 Hz, 2H), 7.22 – 7.18 (m, 3H), 7.18 – 7.09 (m, 3H), 6.81 (d, *J* = 8.6 Hz, 2H), 5.01 (d, *J* = 8.2 Hz, 1H), 4.22 (dd, *J* = 11.7, 4.2 Hz, 1H), 4.03 (dd, *J* = 11.7, 9.1 Hz, 1H), 3.73 (s, 3H), 3.44 (td, *J* = 8.7, 4.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 159.6, 135.7, 134.1, 132.8, 131.1, 129.3, 128.5, 128.0, 127.7, 126.9, 113.9, 77.1, 64.9, 55.4, 46.2. HRMS GC/QTOF (m/z): calcd for C₂₂H₂₁BO₃Se [M]: 424.0749, found: 424.0750.

2,4-Diphenyl-5-(*p*-tolylthio)-1,3,2-dioxaborinane (6a)

Flash column chromatography on silica gel (eluent: PE/EtOAc = 10/1, v/v) to afford **6a**. Yellow solid (89.7 mg, 83%), mp 66.3-66.9 °C. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.86 (d, J = 7.8 Hz, 2H), 7.43 (d, J = 7.9 Hz, 1H), 7.40 – 7.26 (m, 7H), 7.18 (d, J = 7.8 Hz, 2H), 7.05 (d, J = 7.8 Hz, 2H), 5.08 (d, J = 6.8 Hz, 1H), 4.22 (dd, J = 11.8, 3.9 Hz, 1H), 4.03 (dd, J = 11.8, 7.5 Hz, 1H), 3.40 (td, J = 7.2, 3.9 Hz, 1H), 2.30 (s, 3H). ¹³C NMR

(100 MHz, CDCl₃) δ ppm 140.5, 138.5, 134.2, 133.9, 131.1, 130.0, 128.9, 128.6, 128.3, 127.8, 126.6, 76.6,
63.5, 51.5, 21.3. HRMS GC/QTOF (m/z): calcd for C₂₂H₂₁BO₂S [M]: 360.1355, found: 360.1351.

4-Phenyl-2-(p-tolyl)-5-(p-tolylthio)-1,3,2-dioxaborinane (6b)

Flash column chromatography on silica gel (eluent: PE/EtOAc = 12/1, v/v) to afford **6b**. Yellow solid (88.7 mg, 79%), mp 70.1-70.8 °C. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.75 (d, *J* = 7.9 Hz, 2H), 7.40 – 7.28 (m, 5H), 7.18 (d, *J* = 7.9 Hz, 4H), 7.05 (d, *J* = 7.8 Hz, 2H), 5.08 (d, J = 6.9 Hz, 1H), 4.22 (dd, J = 11.7, 3.9 Hz, 1H), 4.02 (dd, J = 11.8, 7.5 Hz, 1H), 3.39 (td, J = 7.3, 4.0 Hz, 1H), 2.37 (s, 3H), 2.30 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 141.2, 140.6, 138.5, 134.3, 133.9, 130.0, 129.0, 128.6, 128.6, 128.3, 126.6, 76.6, 63.5, 51.6, 21.9, 21.3. HRMS GC/QTOF (m/z): calcd for C₂₃H₂₃BO₂S [M]: 374.1512, found: 374.1511.

2-(4-Methoxyphenyl)-4-phenyl-5-(*p*-tolylthio)-1,3,2-dioxaborinane (6c)

Flash column chromatography on silica gel (eluent: PE/EtOAc = 12/1, v/v) to afford **6c**. Yellow solid (89.0 mg, 76%), mp 69.6-70.4 °C. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.80 (d, J = 8.5 Hz, 2H), 7.39 – 7.30 (m, 5H), 7.18 (d, J = 8.2 Hz, 2H), 7.05 (d, J = 8.2 Hz, 2H), 6.89 (d, J = 8.5 Hz, 2H), 5.06 (d, J = 6.9 Hz, 1H), 4.21 (dd, J = 11.7, 3.9 Hz, 1H), 4.01 (dd, J = 11.7, 7.5 Hz, 1H), 3.81 (s, 3H), 3.39 (td, J = 7.3, 4.0 Hz, 1H), 2.30 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 162.1, 140.7, 138.4, 135.9, 133.8, 129.9, 128.9, 128.5,

128.3, 126.6, 113.3, 76.5, 63.51, 55.2, 51.6, 21.2. HRMS GC/QTOF (m/z): calcd for $C_{23}H_{23}BO_3S$ [M]: 390.1461, found: 390.1458.

2-(4-Fluorophenyl)-4-phenyl-5-(p-tolylthio)-1,3,2-dioxaborinane (6d)

Flash column chromatography on silica gel (eluent: PE/EtOAc = 10/1, v/v) to afford **6d**. Brown oil (74.9 mg, 66%). ¹H NMR (400 MHz, CDCl₃) δ ppm 7.91 – 7.77 (m, 2H), 7.40 – 7.32 (m, 5H), 7.19 (d, *J* = 7.8 Hz, 2H), 7.10 – 6.99 (m, 4H), 5.08 (d, *J* = 6.8 Hz, 1H), 4.22 (dd, *J* = 11.8, 4.0 Hz, 1H), 4.02 (dd, *J* = 11.8, 7.5 Hz, 1H), 3.40 (td, *J* = 7.2, 3.9 Hz, 1H), 2.31 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 140.4, 138.6, 136.4 (d, *J* = 8.1 Hz), 133.9, 130.0, 128.71 (d, *J* = 20.9 Hz), 128.4, 126.6, 114.8 (d, *J* = 20.1 Hz), 76.6, 63.5, 51.5, 21.3.

HRMS GC/QTOF (m/z): calcd for C₂₂H₂₀BFO₂S [M]: 378.1261, found: 378.1258.

2-(4-Chlorophenyl)-4-phenyl-5-(p-tolylthio)-1,3,2-dioxaborinane (6e)

Flash column chromatography on silica gel (eluent: PE/EtOAc = 10/1, v/v) to afford **6e**. Brown oil (73.3 mg, 62%). ¹H NMR (400 MHz, CDCl₃) δ ppm 7.76 (d, J = 8.2 Hz, 2H), 7.40 – 7.29 (m, 7H), 7.18 (d, J = 8.0 Hz, 2H), 7.05 (d, J = 7.9 Hz, 2H), 5.07 (d, J = 6.9 Hz, 1H), 4.22 (dd, J = 11.8, 4.0 Hz, 1H), 4.02 (dd, J = 11.8, 7.5 Hz, 1H), 3.40 (dt, J = 7.3, 3.7 Hz, 1H), 2.30 (s, 3H). ¹³C NMR (100 MHz, CDCl3) δ ppm 140.3, 138.6, 137.3, 135.6, 133.9, 130.0, 128.7, 128.6, 128.4, 128.0, 126.6, 76.6, 63.5, 51.4, 21.3. HRMS GC/QTOF (m/z): calcd for C₂₂H₂₀BClO₂S [M]: 394.0966, found: 394.0965.

2-(4-Bromophenyl)-4-phenyl-5-(p-tolylthio)-1,3,2-dioxaborinane (6f)

Flash column chromatography on silica gel (eluent: PE/EtOAc = 10/1, v/v) to afford 6f.
Brown oil (98.6mg, 75%). ¹H NMR (400 MHz, CDCl₃) δ ppm 7.70 (d, J = 8.3 Hz, 2H),
7.49 (d, J = 8.3 Hz, 2H), 7.40 – 7.29 (m, 5H), 7.18 (d, J = 8.1 Hz, 2H), 7.06 (d, J = 7.8 Hz, 2H), 5.07 (d, J = 6.9 Hz, 1H), 4.22 (dd, J = 11.8, 4.0 Hz, 1H), 4.02 (dd, J = 11.8, 7.5 Hz, 1H), 3.40 (td, J = 7.2, 4.0 Hz, 1H), 2.30 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 140.3, 138.6, 135.8, 133.9, 131.0, 130.0, 128.7, 128.6 128.4, 126.6, 126.1, 76.7, 63.6, 51.4, 21.3.

HRMS GC/QTOF (m/z): calcd for C₂₂H₂₀BBrO₂S [M]: 438.0460, found: 438.0466.

4-Phenyl-2-(*m*-tolyl)-5-(*p*-tolylthio)-1,3,2-dioxaborinane (6g)

Flash column chromatography on silica gel (eluent: PE/EtOAc = 12/1, v/v) to afford **6g**. Yellow solid (77.4 mg, 69%), mp 78.2-78.7 °C. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.73 – 7.61 (m, 2H), 7.40 – 7.30 (m, 5H), 7.27 (d, *J* = 4.8 Hz, 2H), 7.20 (d, *J* = 7.9 Hz, 2H), 7.06 (d, *J* = 7.8 Hz, 2H), 5.09 (d, *J* = 6.7 Hz, 1H), 4.22 (dd, *J* = 11.8, 3.9 Hz, 1H), 4.03 (dd, *J* = 11.8, 7.3 Hz, 1H), 3.41 (td, *J* = 7.1, 3.9 Hz, 1H), 2.35 (s, 3H), 2.31 (s, 3H). ¹³C NMR (100

MHz, CDCl₃) δ ppm 140.6, 138.5, 137.1, 134.8, 133.9, 131.9, 131.2, 130.0, 128.9, 128.6, 128.3, 127.7, 126.6, 76.5, 63.4, 51.6, 21.5, 21.3. HRMS GC/QTOF (m/z): calcd for C₂₃H₂₃BO₂S [M]: 374.1512, found: 374.1510.

2-(3-Methoxyphenyl)-4-phenyl-5-(p-tolylthio)-1,3,2-dioxaborinane (6h)

Flash column chromatography on silica gel (eluent: PE/EtOAc = 12/1, v/v) to afford 6h.
Yellow solid (72.6 mg, 62%), mp 83.2-83.9 °C. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.45
(d, J = 7.3 Hz, 1H), 7.41 - 7.31 (m, 6H), 7.30 (d, J = 7.8 Hz, 1H), 7.20 (d, J = 8.1 Hz, 2H),
7.06 (d, J = 7.9 Hz, 2H), 7.04 - 6.96 (m, 1H), 5.09 (d, J = 6.8 Hz, 1H), 4.22 (dd, J = 11.8,
3.9 Hz, 1H), 4.03 (dd, J = 11.8, 7.4 Hz, 1H), 3.82 (s, 3H), 3.41 (td, J = 7.1, 4.0 Hz, 1H),

2.31 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 159.2, 140.5, 138.5, 133.9, 130.0, 129.0, 128.6, 128.3, 126.6, 126.6, 118.4, 117.5, 76.6, 63.5, 55.3, 51.5, 21.3. HRMS GC/QTOF (m/z): calcd for C₂₃H₂₃BO₃S [M]: 390.1461, found: 390.1459.

4-Phenyl-2-(o-tolyl)-5-(p-tolylthio)-1,3,2-dioxaborinane (6i)

Flash column chromatography on silica gel (eluent: PE/EtOAc = 12/1, v/v) to afford 6i. Brown oil (87.6 mg, 78%). ¹H NMR (400 MHz, CDCl₃) δ ppm (d, J = 6.7 Hz, 1H), 7.41 – 7.26 (m, 6H), 7.22 (d, *J* = 7.9 Hz, 2H), 7.16 (d, *J* = 7.4 Hz, 2H), 7.07 (d, *J* = 7.8 Hz, 2H), 5.11 (d, *J* = 6.5 Hz, 1H), 4.22 (dd, *J* = 11.8, 3.9 Hz, 1H), 4.02 (dd, *J* = 11.8, 7.1 Hz, 1H), 3.43 (td, J = 6.8, 3.9 Hz, 1H), 2.54 (s, 3H), 2.31 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 144.6, 140.7, 138.5, 135.4, 134.0, 130.6, 130.2, 130.0, 129.0, 128.6, 128.2, 126.5, 124.9, 76.5, 63.2, 51.4,

22.8, 21.3. HRMS GC/QTOF (m/z): calcd for C₂₃H₂₃BO₂S [M]: 374.1512, found: 374.1520.

2-(2-Chlorophenyl)-4-phenyl-5-(p-tolylthio)-1,3,2-dioxaborinane (6j)

Flash column chromatography on silica gel (eluent: PE/EtOAc = 10/1, v/v) to afford **6**j. Brown solid (70.9 mg, 60%), mp 72.3-72.8 °C. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.73 (d, J = 7.4 Hz, 1H), 7.42 - 7.28 (m, 7H), 7.26 - 7.18 (m, 3H), 7.06 (d, J = 7.9 Hz, 2H),5.11 (d, *J* = 6.7 Hz, 1H), 4.25 (dd, *J* = 11.8, 3.9 Hz, 1H), 4.04 (dd, *J* = 11.8, 7.3 Hz, 1H), 3.44 (td, J = 7.0, 3.9 Hz, 1H), 2.31 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 140.1, 139.0, 138.7, 136.0, 134.1, 131.5, 130.0, 129.7, 128.7, 128.6, 128.4, 126.6, 126.0, 76.9, 63.5, 51.3, 21.3. HRMS

GC/QTOF (m/z): calcd for C₂₂H₂₀BClO₂S [M]: 394.0966, found: 394.0966.

2-(4-Chloro-2-methylphenyl)-4-phenyl-5-(p-tolylthio)-1,3,2-dioxaborinane (6k)

Flash column chromatography on silica gel (eluent: PE/EtOAc = 10/1, v/v) to afford **6k**. Brown oil (80.8 mg, 66%). ¹H NMR (400 MHz, CDCl₃) δ ppm 7.74 (d, J = 7.8 Hz, 1H), 7.40 - 7.30 (m, 5H), 7.20 (d, J = 7.9 Hz, 2H), 7.13 (d, J = 8.3 Hz, 2H), 7.06 (d, J = 7.9 Hz, 2H), 5.09 (d, J = 6.5 Hz, 1H), 4.21 (dd, J = 11.8, 3.9 Hz, 1H), 4.01 (dd, J = 11.8, 7.2 Hz, 1H), 3.41 (td, J = 7.0, 3.9 Hz, 1H), 2.50 (s, 3H), 2.31 (s, 3H). ¹³C NMR (100 MHz, CDCl₃)

δ ppm 146.7, 140.4, 138.6, 136.9, 136.5, 134.0, 130.1, 130.0, 128.8, 128.6, 128.3, 126.5, 125.0, 76.6, 63.3, 51.3, 22.6, 21.3. HRMS GC/QTOF (m/z): calcd for C₂₃H₂₂BClO₂S [M]: 408.1122, found: 408.1123.

2-(3-Chloro-4-methylphenyl)-4-phenyl-5-(p-tolylthio)-1,3,2-dioxaborinane (6l)

Flash column chromatography on silica gel (eluent: PE/EtOAc = 10/1, v/v) to afford **61**. Yellow solid (101.6 mg, 83%), mp 63.5-64.3 °C. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.80 (s, 1H), 7.61 (d, *J* = 7.5 Hz, 1H), 7.41 – 7.30 (m, 5H), 7.25 – 7.16 (m, 3H), 7.06 (d, *J* = 7.8 Hz, 2H), 5.08 (d, *J* = 6.7 Hz, 1H), 4.21 (dd, *J* = 11.8, 3.9 Hz, 1H), 4.01 (dd, *J* = 11.8, 7.3 Hz, 1H), 3.40 (td, *J* = 7.1, 4.0 Hz, 1H), 2.39 (s, 3H), 2.31 (s, 3H). ¹³C NMR (100 MHz, CDCl₃)

δ ppm 140.3, 139.0, 138.6, 134.7, 134.3, 134.0, 132.3, 130.6, 130.0, 128.8, 128.6, 128.4, 126.5, 76.6, 63.5, 51.4, 21.3, 20.5. HRMS GC/QTOF (m/z): calcd for C₂₃H₂₂BClO₂S [M]: 408.1122, found: 408.1117.

2-(3,4-Difluorophenyl)-4-phenyl-5-(p-tolylthio)-1,3,2-dioxaborinane (6m)

Fiash column chromatography on silica gel (eluent: PE/EtOAc = 10/1, v/v) to afford **6m**. Green solid (91.5 mg, 77%), mp 63.6-64.1 °C. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.66 – 7.52 (m, 2H), 7.43 – 7.26 (m, 6H), 7.19 (d, *J* = 8.0 Hz, 2H), 7.07 (d, *J* = 7.9 Hz, 2H), 5.08 (d, *J* = 6.7 Hz, 1H), 4.22 (dd, *J* = 11.8, 4.0 Hz, 1H), 4.02 (dd, *J* = 11.8, 7.4 Hz, 1H), 3.40 (dt, *J* = 7.0, 3.5 Hz, 1H), 2.31 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 140.2, 138.7, 134.0, 133.2, 130.8 – 130.7 (m), 130.1, 128.7, 128.7 (d, *J* = 2.1 Hz), 128.5, 126.5, 126.3, 122.7 (d, *J* = 15.1 Hz), 116.9 (d, *J* = 16.3 Hz), 76.7, 63.5, 51.4, 21.3. HRMS GC/QTOF (m/z): calcd for C₂₂H₁₉BF₂O₂S [M]: 396.1167, found: 396.1178.

2-(3-Chloro-4-fluorophenyl)-4-phenyl-5-(*p*-tolylthio)-1,3,2-dioxaborinane (6n)

Flash column chromatography on silica gel (eluent: PE/EtOAc = 10/1, v/v) to afford **6n**. Yellow solid (74.2 mg, 60%), mp 62.0-62.5 °C. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.86 (d, *J* = 6.4 Hz, 1H), 7.74 - 7.66 (m, 1H), 7.43 - 7.31 (m, 5H), 7.20 (d, *J* = 8.1 Hz, 1H), 7.13 - 7.04 (m, 3H), 5.08 (d, *J* = 6.7 Hz, 1H), 4.22 (dd, *J* = 11.8, 4.0 Hz, 1H), 4.02 (dd, *J* = 11.8, 7.3 Hz, 1H), 3.41

(td, J = 7.0, 4.0 Hz, 1H), 2.31 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 160.2 (d, J = 252.1 Hz), 158.9, 140.2, 138.7, 136.6, 134.3 (d, J = 7.5 Hz), 134.0, 130.1, 129.5, 128.7, 128.7, 128.5, 127.7, 126.5, 116.2 (d, J = 19.9 Hz), 76.7, 63.5, 51.4, 21.3. HRMS GC/QTOF (m/z): calcd for C₂₂H₁₉BClFO₂S [M]: 412.0871, found: 412.0873.

2-(Naphthalen-2-yl)-4-phenyl-5-(p-tolylthio)-1,3,2-dioxaborinane (60)

Flash column chromatography on silica gel (eluent: PE/EtOAc = 12/1, v/v) to afford **60**. Brown oil (83.7 mg, 68%). ¹H NMR (400 MHz, CDCl₃) δ ppm 8.81 (d, J = 7.4 Hz, 1H), 8.13 (d, J = 6.9 Hz, 1H), 7.91 (d, J = 8.1 Hz, 1H), 7.83 (d, J = 7.0 Hz, 1H), 7.49 – 7.43 (m, 3H), 7.39 (d, J = 6.1 Hz, 3H), 7.37 – 7.31 (m, 2H), 7.24 (d, J = 8.1 Hz, 2H), 7.07 (d, J = 7.8 Hz, 2H), 5.21 (d, J = 6.5 Hz, 1H), 4.32 (dd, J = 11.8, 3.9 Hz, 1H), 4.13 (dd, J = 11.8, 7.1 Hz, 1H),

3.50 (td, J = 6.8, 3.8 Hz, 1H), 2.30 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 140.5, 138.6, 136.9, 135.1, 134.0, 133.5, 131.4, 130.1, 128.9, 128.6, 128.6, 128.5, 128.3, 126.5, 126.2, 125.4, 125.1, 76.7, 63.4, 51.4, 21.3. HRMS GC/QTOF (m/z): calcd for C₂₆H₂₃BO₂S [M]: 410.1512, found: 410.1514.

2-(Phenanthren-9-yl)-4-phenyl-5-(phenylthio)-1,3,2-dioxaborinane (6p)

Flash column chromatography on silica gel (eluent: PE/EtOAc = 12/1, v/v) to afford **6p**. Brown solid (100.4 mg, 75%), mp 70.1-71.5 °C. ¹H NMR (400 MHz, CDCl₃) δ ppm 8.88 (d, J = 8.0 Hz, 1H), 8.69 (dd, J = 13.5, 8.2 Hz, 2H), 8.43 (s, 1H), 7.91 (d, J = 7.8 Hz, 1H), 7.67 (t, J = 7.5 Hz, 1H), 7.65 – 7.53 (m, 3H), 7.45 – 7.38 (m, 4H), 7.38 – 7.31 (m, 3H), 7.30 – 7.22 (m, 3H), 5.27 (d, J = 6.5 Hz, 1H), 4.39 (dd, J = 11.8, 3.9 Hz, 1H), 4.19 (dd, J = 11.8, 7.1 Hz, 1H), 3.62 (td, J = 6.8, 3.9 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 140.4, 137.4, 134.6, 133.4, 132.7, 131.9, 131.2, 130.2, 129.5, 129.3, 129.2, 128.7, 128.4, 128.2, 127.7, 126.7, 126.6, 126.5, 126.1, 122.8, 122.6, 76.9, 63.5, 51.2. HRMS GC/QTOF (m/z): calcd for C₂₉H₂₃BO₂S [M]: 446.1512, found: 446.1512.

9-Phenyl-3-(4-phenyl-5-(phenylthio)-1,3,2-dioxaborinan-2-yl)-9H-carbazole (6q)

Flash column chromatography on silica gel (eluent: PE/EtOAc = 12/1, v/v) to afford **6q**. Brown solid (101.2 mg, 66%), mp 76.2-76.9 °C. ¹H NMR (400 MHz, CDCl₃) δ ppm 8.69 (s, 1H), 8.16 (d, *J* = 7.7 Hz, 1H), 7.92 (d, *J* = 8.3 Hz, 1H), 7.63 – 7.51 (m, 4H), 7.47 – 7.31 (m, 9H), 7.28 (td, *J* = 6.8, 5.9, 3.7 Hz, 3H), 7.28 – 7.20 (m, 3H), 5.17 (d, *J* = 6.9 Hz, 1H), 4.32 (dd, *J* = 11.7, 4.0 Hz, 1H), 4.11 (dd, *J* = 11.7, 7.6 Hz, 1H), 3.53 (td, *J* = 7.4, 3.9 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 143.1, 141.2, 140.7, 137.7, 133.2, 132.9, 132.0, 130.0, 129.2, 128.6, 128.3, 128.0, 127.6, 127.2, 127.1, 126.7, 126.0, 123.7, 123.2, 120.6, 120.3, 109.9, 109.2, 76.8, 63.7, 51.5. HRMS GC/QTOF (m/z): calcd for C₃₃H₂₆BNO₂S [M]: 511.1777, found: 511.1771.

2-Cyclopropyl-4-phenyl-5-(p-tolylthio)-1,3,2-dioxaborinane (6r)

Flash column chromatography on silica gel (eluent: PE/EtOAc = 12/1, v/v) to afford **6r**. Brown oil (70.2 mg, 72%). ¹H NMR (400 MHz, CDCl₃) δ ppm 7.38 – 7.24 (m, 5H), 7.19 – 7.11 (m, 2H), 7.04 (d, *J* = 7.8 Hz, 2H), 4.85 (d, *J* = 6.9 Hz, 1H), 4.01 (dd, *J* = 11.7, 3.9 Hz, 1H), 3.81 (dd, *J* = 11.7, 7.6 Hz, 1H), 3.26 (td, *J* = 7.2, 3.9 Hz, 1H), 2.30 (s, 3H), 0.58 (d, *J* = 9.2 Hz, 2H), 0.52 (d, *J* = 6.1 Hz, 2H), -0.13 – -0.26 (m, 1H). ¹³C NMR (100 MHz, 100 MHz, 100 MHz), 100 MHz, 100

CDCl₃) δ ppm 140.6, 138.4, 133.8, 129.9, 128.9, 128.5, 128.2, 126.5, 76.2, 63.2, 51.5, 21.2, 4.0, 3.9. HR-ESI-MS (m/z): calcd for C₁₉H₂₂BO₂S [M+H]⁺: 325.1434, found: 325.1433.

2,4-Diphenyl-5-(phenylthio)-1,3,2-dioxaborinane (6s)

Flash column chromatography on silica gel (eluent: PE/EtOAc = 12/1, v/v) to afford **6s**. Yellow solid (83.1 mg, 80%), mp 70.4-71.3 °C. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.86 (d, *J* = 7.8 Hz, 2H), 7.44 (d, *J* = 7.8 Hz, 1H), 7.41 – 7.30 (m, 7H), 7.29 – 7.26 (m, 2H), 7.25 – 7.21 (m, 3H), 5.11 (d, *J* = 6.9 Hz, 1H), 4.25 (dd, *J* = 11.8, 4.0 Hz, 1H), 4.05 (dd, *J* = 11.8, 7.6 Hz, 1H), 3.48 (td, *J* = 7.4, 4.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 140.4, 134.2, 133.2, 132.8, 131.1, 129.2, 128.6, 128.4, 128.1, 127.8, 126.6, 76.7, 63.5, 51.3. HRMS GC/QTOF (m/z): calcd for C₂₁H₁₉BO₂S [M]: 346.1199, found: 346.1189.

5-((4-Methoxyphenyl)thio)-2,4-diphenyl-1,3,2-dioxaborinane (6t)

Flash column chromatography on silica gel (eluent: PE/EtOAc = 12/1, v/v) to afford **6t**. Yellow solid (81.2 mg, 72%), mp 75.1-76.0 °C. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.85 (d, J = 6.5 Hz, 2H), 7.43 (d, J = 7.3 Hz, 1H), 7.40 – 7.30 (m, 7H), 7.24 (d, J = 8.7 Hz, 2H), 6.82 – 6.75 (m, 2H), 5.07 (d, J = 6.8 Hz, 1H), 4.21 (dd, J = 11.8, 4.0 Hz, 1H), 4.00

(dd, J = 11.8, 7.5 Hz, 1H), 3.76 (s, 3H), 3.32 (td, J = 7.2, 4.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 160.1, 140.6, 136.3, 134.2, 131.1, 128.6, 128.3, 127.7, 126.6, 122.7, 114.8, 76.5, 63.4, 55.4, 52.0. HRMS GC/QTOF (m/z): calcd for C₂₂H₂₁BO₃S [M]: 376.1304, found: 376.1302.

5-((4-Chlorophenyl)thio)-2,4-diphenyl-1,3,2-dioxaborinane (6u)

Flash column chromatography on silica gel (eluent: PE/EtOAc = 10/1, v/v) to afford **6u**. Yellow solid (69.6 mg, 61%), mp 74.3-75.1 °C. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.87 - 7.83 (m, 2H), 7.49 - 7.43 (m, 1H), 7.36 (q, J = 6.5, 5.9 Hz, 7H), 7.24 - 7.13 (m, 4H), 5.10 (d, *J* = 6.9 Hz, 1H), 4.26 (dd, *J* = 11.8, 4.0 Hz, 1H), 4.04 (dd, *J* = 11.8, 7.7 Hz, 1H), 3.44 (td, *J* = 7.3, 4.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 140.2, 134.6, 134.4, 134.2, 131.3, 131.2, 129.4, 128.7, 128.5, 127.8, 126.6, 76.7, 63.4, 51.7. HRMS GC/QTOF (m/z): calcd for C₂₁H₁₈BClO₂S [M]: 380.0809, found: 380.0813.

5-((4-Bromophenyl)thio)-2,4-diphenyl-1,3,2-dioxaborinane (6v)

Flash column chromatography on silica gel (eluent: PE/EtOAc = 10/1, v/v) to afford **6v**. White solid (91.6mg, 72%), mp 71.4-72.2 °C. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.85 (d, *J* = 7.3 Hz, 2H), 7.45 (d, *J* = 6.0 Hz, 1H), 7.40 – 7.33 (m, 9H), 7.13 – 7.06 (m, 1H), 5.09 (d, *J* = 6.8 Hz, 1H), 4.25 (dd, *J* = 11.9, 4.0 Hz, 1H), 4.03 (dd, *J* = 11.9, 7.6 Hz, 1H),

3.44 (td, J = 7.3, 4.1 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 140.2, 134.7, 134.2, 132.3, 132.0, 131.2, 128.7, 128.5, 127.8, 126.6, 122.5, 76.7, 63.4, 51.6. HRMS GC/QTOF (m/z): calcd for C₂₁H₁₈BBrO₂S [M]: 424.0304, found: 424.0291.

2,4-Diphenyl-5-(*m*-tolylthio)-1,3,2-dioxaborinane (6w)

Flash column chromatography on silica gel (eluent: PE/EtOAc = 12/1, v/v) to afford **6w**. Green solid (85.4 mg, 79%), mp 75.5-76.5 °C. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.86 (d, J = 6.5 Hz, 2H), 7.48 – 7.42 (m, 1H), 7.39 – 7.32 (m, 7H), 7.15 – 7.00 (m, 4H), 5.10 (d, J = 7.1 Hz, 1H), 4.26 (dd, J = 11.8, 4.1 Hz, 1H), 4.05 (dd, J = 11.8, 7.9 Hz, 1H), 3.45 (td, J = 7.6, 4.1 Hz, 1H), 2.25 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 140.5, 139.0,

134.2, 133.8, 132.5, 131.1, 130.1, 129.0, 128.9, 128.5, 128.3, 127.8, 126.7, 76.8, 63.7, 51.3, 21.3. HRMS GC/QTOF (m/z): calcd for C₂₂H₂₁BO₂S [M]: 360.1355, found: 360.1360.

5-((3-Methoxyphenyl)thio)-2,4-diphenyl-1,3,2-dioxaborinane (6x)

Flash column chromatography on silica gel (eluent: PE/EtOAc = 12/1, v/v) to afford **6x**. Brown oil (80.1 mg, 71%). ¹H NMR (400 MHz, CDCl₃) δ ppm 7.86 (d, J = 6.6 Hz, 2H), 7.50 – 7.41 (m, 1H), 7.41 – 7.31 (m, 7H), 7.21 – 7.11 (m, 1H), 6.88 (d, J = 7.7 Hz, 1H), 6.81 – 6.74 (m, 2H), 5.12 (d, J = 6.9 Hz, 1H), 4.27 (dd, J = 11.7, 4.1 Hz, 1H), 4.07 (dd, J = 11.8, 7.7 Hz, 1H), 3.74 (s, 3H), 3.50 (td, J = 7.3, 4.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 159.9, 140.4, 134.2, 131.2, 130.0, 128.6, 128.4, 127.8, 126.6, 125.1, 118.1, 114.0, 76.7, 63.6, 55.5, 51.2. HRMS GC/QTOF (m/z): calcd for C₂₂H₂₁BO₃S [M]: 376.1304, found: 376.1302.

5-((3-Chlorophenyl)thio)-2,4-diphenyl-1,3,2-dioxaborinane (6y)

Flash column chromatography on silica gel (eluent: PE/EtOAc = 10/1, v/v) to afford **6y**. Yellow solid (68.4 mg, 60%), mp 62.5-63.2 °C. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.86 (d, J = 7.7 Hz, 2H), 7.45 (d, J = 6.7 Hz, 1H), 7.41 – 7.34 (m, 7H), 7.21 – 7.08 (m, 4H), 5.11 (d, J = 7.1 Hz, 1H), 4.29 (dd, J = 11.8, 4.0 Hz, 1H), 4.06 (dd, J = 11.8, 7.9 Hz, 1H), 3.49 (td, J = 7.5, 3.9 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ ppm

140.1, 135.0, 134.8, 134.2, 132.3, 131.2, 130.7, 130.2, 128.7, 128.6, 128.1, 127.8, 126.6, 76.9, 63.5, 51.4. HRMS GC/QTOF (m/z): calcd for C₂₁H₁₈BClO₂S [M]: 380.0809, found: 380.0807.

5-((3-Bromophenyl)thio)-2,4-diphenyl-1,3,2-dioxaborinane (6z)

2,4-Diphenyl-5-(*o*-tolylthio)-1,3,2-dioxaborinane (6aa)

Ph Flash column chromatography on silica gel (eluent: PE/EtOAc = 12/1, v/v) to afford **6aa**. Yellow solid (69.1mg, 64%), mp 81.1-82.0 °C. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.87 (d, J = 6.5 Hz, 2H), 7.50 – 7.41 (m, 1H), 7.41 – 7.29 (m, 8H), 7.28 (d, J = 7.7 Hz, 1H), 7.20 – 7.13 (m, 2H), 5.11 (d, J = 6.4 Hz, 1H), 4.20 (dd, J = 11.8, 3.8 Hz, 1H), 4.04 (dd, J = 11.8, 7.0 Hz, 1H), 3.45 (td, J = 6.8, 3.9 Hz, 1H), 2.31 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 141.2, 140.5, 134.2, 133.9, 132.1, 131.1, 130.7, 128.6, 128.3, 128.3, 127.8, 126.7, 126.4, 76.5, 63.2, 50.9, 20.9. HRMS GC/QTOF (m/z): calcd for C₂₂H₂₁BO₂S [M]: 360.1355, found: 360.1346.

5-((2-Methoxyphenyl)thio)-2,4-diphenyl-1,3,2-dioxaborinane (6ab)

134.2, 131.1, 130.1, 128.5, 128.2, 127.7, 126.4, 121.1, 120.1, 111.1, 76.6, 63.3, 55.9, 48.7. HRMS GC/QTOF (m/z): calcd for C₂₂H₂₁BO₃S [M]: 376.1304, found: 376.1297.

5-((2-Chlorophenyl)thio)-2,4-diphenyl-1,3,2-dioxaborinane (6ac)

Flash column chromatography on silica gel (eluent: PE/EtOAc = 10/1, v/v) to afford 6ac.
Yellow solid (71.8 mg, 63%), mp 55.5-55.8 °C. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.87
(d, J = 6.5 Hz, 2H), 7.46 (d, J = 7.3 Hz, 1H), 7.43 – 7.32 (m, 7H), 7.35 – 7.25 (m, 2H),
7.23 – 7.15 (m, 1H), 7.14 – 7.06 (m, 1H), 5.14 (d, J = 6.3 Hz, 1H), 4.26 (dd, J = 11.9, 3.9 Hz, 1H), 4.04 (dd, J = 11.9, 7.0 Hz, 1H), 3.69 (td, J = 6.7, 3.9 Hz, 1H). ¹³C NMR (100

MHz, CDCl₃) δ ppm 140.2, 137.8, 135.0, 134.2, 131.7, 131.2, 130.3, 129.5, 128.6, 128.4, 127.8, 127.3, 126.4, 76.6, 63.0, 49.8. HRMS GC/QTOF (m/z): calcd for C₂₁H₁₈BClO₂S [M]: 380.0809, found: 380.0817.

5-(Methylthio)-2,4-diphenyl-1,3,2-dioxaborinane (6ad)

3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 140.7, 134.1, 131.1, 128.4, 128.4, 127.7, 126.9, 78.4, 65.0, 42.9, 4.1.
HRMS GC/QTOF (m/z): calcd for C₁₆H₁₈BO₂S [M + H]⁺: 285.1121, found: 285.1121.

4,4-Dimethyl-2-phenyl-5-(*p*-tolylthio)-1,3,2-dioxaborinane (6ae)

Flash column chromatography on silica gel (eluent: PE/EtOAc = 12/1, v/v) to afford **6ae**. Brown oil (66.5 mg, 71%). ¹H NMR (400 MHz, CDCl₃) δ ppm (d, J = 6.5 Hz, 2H), 7.43 – 7.28 (m, 5H), 7.13 (d, J = 7.9 Hz, 2H), 4.18 (dd, J = 11.8, 5.3 Hz, 1H), 4.10 (t, J = 11.4 Hz, 1H), 3.24 (dd, J = 11.1, 5.3 Hz, 1H), 2.34 (s, 3H), 1.61 (s, 3H), 1.39 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 138.1, 133.9, 132.8, 130.8, 130.7, 130.1, 127.7, 74.3, 63.3, 55.2, 29.5, 24.5, 21.2. HRMS GC/QTOF (m/z): calcd for C₁₈H₂₁BO₂S [M]: 312.1355, found: 312.1364.

2-Phenyl-5-(phenylthio)-4-(p-tolyl)-1,3,2-dioxaborinane (6af)

Flash column chromatography on silica gel (eluent: PE/EtOAc = 12/1, v/v) to afford 6af.
Brown oil (84.3 mg, 78%). ¹H NMR (400 MHz, CDCl₃) δ ppm 7.77 (d, J = 6.5 Hz, 2H),
7.42 - 7.33 (m, 1H), 7.29 (d, J = 7.3 Hz, 2H), 7.22 (d, J = 2.8 Hz, 1H), 7.17 (d, J = 4.3 Hz,
6H), 7.10 (d, J = 7.8 Hz, 2H), 5.00 (d, J = 7.0 Hz, 1H), 4.17 (dd, J = 11.8, 4.0 Hz, 1H),

3.97 (dd, J = 11.8, 7.6 Hz, 1H), 3.41 (td, J = 7.2, 3.9 Hz, 1H), 2.28 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 138.1, 137.5, 134.2, 133.2, 132.7, 131.1, 129.3, 129.2, 128.1, 127.8, 126.5, 76.5, 63.6, 51.2, 21.3. HRMS GC/QTOF (m/z): calcd for C₂₂H₂₁BO₂S [M]: 360.1355, found: 360.1346.

4-(4-Chlorophenyl)-2-phenyl-5-(phenylthio)-1,3,2-dioxaborinane (6ag)

Flash column chromatography on silica gel (eluent: PE/EtOAc = 9/1, v/v) to afford **6ag.** Brown oil (77.5 mg, 68%). ¹H NMR (400 MHz, CDCl₃) δ ppm 7.75 (d, *J* = 6.5 Hz, 2H), 7.38 (d, *J* = 7.4 Hz, 1H), 7.33 – 7.25 (m, 3H), 7.25 (d, *J* = 3.6 Hz, 3H), 7.18 (d, *J* = 2.5 Hz, 5H), 4.98 (d, *J* = 7.7 Hz, 1H), 4.20 (dd, *J* = 11.8, 4.2 Hz, 1H), 4.00 (dd, *J* = 11.8, 8.5 Hz, 1H), 3.34 (td, *J* = 8.1, 4.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 138.9, 134.2, 134.2, 133.2, 132.4, 131.3, 129.3, 128.7, 128.2, 128.2, 127.8, 76.4, 64.0, 51.3. HRMS GC/QTOF (m/z): calcd for C₂₁H₁₈BClO₂S [M]: 380.0809, found: 380.0807.

1-Phenyl-2-(p-tolylthio)propane-1,3-diol (7)

Flash column chromatography on silica gel (eluent: PE/EtOAc = 3/1, v/v) to afford 7.
Brown oil (72.4 mg, 88%). ¹H NMR (400 MHz, CDCl₃) δ ppm 7.33 (d, J = 4.3 Hz, 4H),
7.31 – 7.21 (m, 3H), 7.07 (d, J = 7.9 Hz, 2H), 4.89 (d, J = 5.8 Hz, 1H), 3.82 (dd, J = 11.8,
4.5 Hz, 1H), 3.73 (dd, J = 11.8, 5.2 Hz, 1H), 3.36 (q, J = 5.2 Hz, 1H), 2.31 (s, 3H). ¹³C

NMR (100 MHz, CDCl₃) δ ppm 141.5, 138.0, 133.1, 130.0, 129.9, 128.5, 128.0, 126.4, 75.7, 62.4, 58.4, 21.2. HR-ESI-MS (m/z): calcd for C₁₆H₁₈O₂S [M + H]⁺: 274.1028, found: 274.1016.

1-Phenyl-2-tosylpropane-1,3-diol (8)

1H), 2.49 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 145.8, 139.5, 134.7, 130.3, 128.8, 128.1, 125.5, 71.7, 70.5,
57.0, 21.9. HR-ESI-MS (m/z): calcd for C₁₆H₁₈O₄SNa [M + Na]⁺: 329.0823, found: 329.0826.

3. NMR spectra for new compounds

¹H NMR (400 MHz, CDCl₃) spectrum of compound 4a

¹³C NMR (100 MHz, CDCl₃) spectrum of compound 4a

 $^{13}\mathrm{C}$ NMR (100 MHz, CDCl₃) spectrum of compound 4b

¹³C NMR (100 MHz, CDCl₃) spectrum of compound 4c

¹³C NMR (100 MHz, CDCl₃) spectrum of compound 4d

¹³C NMR (100 MHz, CDCl₃) spectrum of compound 4e

¹H NMR (400 MHz, CDCl₃) spectrum of compound 4f

¹³C NMR (100 MHz, CDCl₃) spectrum of compound **4f**

 ^1H NMR (400 MHz, CDCl₃) spectrum of compound 4g

^{13}C NMR (100 MHz, CDCl₃) spectrum of compound 4g

 ^1H NMR (400 MHz, CDCl₃) spectrum of compound 4h

¹³C NMR (100 MHz, CDCl₃) spectrum of compound **4h**

¹H NMR (400 MHz, CDCl₃) spectrum of compound 4i

¹³C NMR (100 MHz, CDCl₃) spectrum of compound 4i

¹H NMR (400 MHz, CDCl₃) spectrum of compound 4j

¹H NMR (400 MHz, CDCl₃) spectrum of compound 4k

¹³C NMR (100 MHz, CDCl₃) spectrum of compound 4k

¹H NMR (400 MHz, CDCl₃) spectrum of compound 4I

¹³C NMR (100 MHz, CDCl₃) spectrum of compound **4**I

^{13}C NMR (100 MHz, CDCl₃) spectrum of compound 5a

¹³C NMR (100 MHz, CDCl₃) spectrum of compound **5b**

¹H NMR (400 MHz, CDCl₃) spectrum of compound **5**c

^{13}C NMR (100 MHz, CDCl₃) spectrum of compound 5c

¹H NMR (400 MHz, CDCl₃) spectrum of compound **5d**

¹³C NMR (100 MHz, CDCl₃) spectrum of compound **5d**

¹H NMR (400 MHz, CDCl₃) spectrum of compound **5**e

¹³C NMR (100 MHz, CDCl₃) spectrum of compound 5e

¹H NMR (400 MHz, CDCl₃) spectrum of compound **5f**

¹³C NMR (100 MHz, CDCl₃) spectrum of compound **5f**

¹H NMR (400 MHz, CDCl₃) spectrum of compound **5g**

¹³C NMR (100 MHz, CDCl₃) spectrum of compound 5g

¹H NMR (400 MHz, CDCl₃) spectrum of compound **5h**

¹³C NMR (100 MHz, CDCl₃) spectrum of compound **5h**

¹³C NMR (100 MHz, CDCl₃) spectrum of compound **5**i

¹H NMR (400 MHz, CDCl₃) spectrum of compound 5j

¹³C NMR (100 MHz, CDCl₃) spectrum of compound 5j

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

1 H NMR (400 MHz, CDCl₃) spectrum of compound **5**k

¹³C NMR (100 MHz, CDCl₃) spectrum of compound **5**k

¹H NMR (400 MHz, CDCl₃) spectrum of compound **5**l

¹³C NMR (100 MHz, CDCl₃) spectrum of compound **5**I

¹H NMR (400 MHz, CDCl₃) spectrum of compound **5m**

^{13}C NMR (100 MHz, CDCl₃) spectrum of compound 5m

¹³C NMR (100 MHz, CDCl₃) spectrum of compound **5n**

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹H NMR (400 MHz, CDCl₃) spectrum of compound **50**

¹³C NMR (100 MHz, CDCl₃) spectrum of compound **50**

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹³C NMR (100 MHz, CDCl₃) spectrum of compound **5p**

^1H NMR (400 MHz, CDCl_3) spectrum of compound 5q

¹³C NMR (100 MHz, CDCl₃) spectrum of compound **5q**

¹H NMR (400 MHz, CDCl₃) spectrum of compound **5r**

¹³C NMR (100 MHz, CDCl₃) spectrum of compound **5r**

¹H NMR (400 MHz, CDCl₃) spectrum of compound 6a

¹³C NMR (100 MHz, CDCl₃) spectrum of compound 6a

¹H NMR (400 MHz, CDCl₃) spectrum of compound **6b**

^{13}C NMR (100 MHz, CDCl₃) spectrum of compound **6b**

¹H NMR (400 MHz, CDCl₃) spectrum of compound 6c

¹³C NMR (100 MHz, CDCl₃) spectrum of compound 6c

¹H NMR (400 MHz, CDCl₃) spectrum of compound **6d**

¹³C NMR (100 MHz, CDCl₃) spectrum of compound 6d

¹H NMR (400 MHz, CDCl₃) spectrum of compound 6e

¹³C NMR (100 MHz, CDCl₃) spectrum of compound 6e

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹H NMR (400 MHz, CDCl₃) spectrum of compound 6f

¹³C NMR (100 MHz, CDCl₃) spectrum of compound 6f

¹H NMR (400 MHz, CDCl₃) spectrum of compound **6g**

¹³C NMR (100 MHz, CDCl₃) spectrum of compound 6g

¹H NMR (400 MHz, CDCl₃) spectrum of compound **6h**

¹³C NMR (100 MHz, CDCl₃) spectrum of compound **6h**

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹H NMR (400 MHz, CDCl₃) spectrum of compound 6i

¹³C NMR (100 MHz, CDCl₃) spectrum of compound **6i**

¹H NMR (400 MHz, CDCl₃) spectrum of compound 6j

¹³C NMR (100 MHz, CDCl₃) spectrum of compound **6**j

¹H NMR (400 MHz, CDCl₃) spectrum of compound **6k**

¹³C NMR (100 MHz, CDCl₃) spectrum of compound **6k**

¹H NMR (400 MHz, CDCl₃) spectrum of compound **6**l

¹³C NMR (100 MHz, CDCl₃) spectrum of compound **6**l

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹H NMR (400 MHz, CDCl₃) spectrum of compound 6m

¹³C NMR (100 MHz, CDCl₃) spectrum of compound **6m**

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹H NMR (400 MHz, CDCl₃) spectrum of compound **6n**

¹³C NMR (100 MHz, CDCl₃) spectrum of compound **6n**

¹H NMR (400 MHz, CDCl₃) spectrum of compound **60**

¹³C NMR (100 MHz, CDCl₃) spectrum of compound **60**

¹³C NMR (100 MHz, CDCl₃) spectrum of compound 6p

¹³C NMR (100 MHz, CDCl₃) spectrum of compound 6q

¹H NMR (400 MHz, CDCl₃) spectrum of compound 6r

¹³C NMR (100 MHz, CDCl₃) spectrum of compound **6r**

¹H NMR (400 MHz, CDCl₃) spectrum of compound 6s

¹³C NMR (100 MHz, CDCl₃) spectrum of compound 6s

¹H NMR (400 MHz, CDCl₃) spectrum of compound 6t

¹³C NMR (100 MHz, CDCl₃) spectrum of compound 6t

^{13}C NMR (100 MHz, CDCl_3) spectrum of compound 6u

¹H NMR (400 MHz, CDCl₃) spectrum of compound 6v

¹³C NMR (100 MHz, CDCl₃) spectrum of compound 6v

¹H NMR (400 MHz, CDCl₃) spectrum of compound **6w**

¹³C NMR (100 MHz, CDCl₃) spectrum of compound **6w**

¹H NMR (400 MHz, CDCl₃) spectrum of compound **6x**

¹³C NMR (100 MHz, CDCl₃) spectrum of compound **6x**

¹H NMR (400 MHz, CDCl₃) spectrum of compound **6**y

¹³C NMR (100 MHz, CDCl₃) spectrum of compound **6y**

¹H NMR (400 MHz, CDCl₃) spectrum of compound 6z

¹³C NMR (100 MHz, CDCl₃) spectrum of compound 6z

¹H NMR (400 MHz, CDCl₃) spectrum of compound 6aa

¹³C NMR (100 MHz, CDCl₃) spectrum of compound 6aa

¹H NMR (400 MHz, CDCl₃) spectrum of compound **6ab**

¹³C NMR (100 MHz, CDCl₃) spectrum of compound **6ab**

¹H NMR (400 MHz, CDCl₃) spectrum of compound **6ac**

¹³C NMR (100 MHz, CDCl₃) spectrum of compound 6ac

¹H NMR (400 MHz, CDCl₃) spectrum of compound 6ad

¹³C NMR (100 MHz, CDCl₃) spectrum of compound 6ad

¹H NMR (400 MHz, CDCl₃) spectrum of compound 6ae

¹³C NMR (100 MHz, CDCl₃) spectrum of compound 6ae

¹H NMR (400 MHz, CDCl₃) spectrum of compound 6af

¹³C NMR (100 MHz, CDCl₃) spectrum of compound 6af

¹H NMR (400 MHz, CDCl₃) spectrum of compound 6ag

¹³C NMR (100 MHz, CDCl₃) spectrum of compound 6ag

¹H NMR (400 MHz, CDCl₃) spectrum of compound 7

¹³C NMR (100 MHz, CDCl₃) spectrum of compound 7

¹³C NMR (100 MHz, CDCl₃) spectrum of compound 8

4. References

1. (a) J. Li, X. Liu, J. Deng and Y. Huang, *Chem. Commun.*, 2020, **56**, 735-738; (*b*) D. Singh, Anna M. Deobald and Leandro R. S. Camargo, *Org. Lett.*, 2010, **12**, 3288-3291.