Electronic Supplementary Information

for

Synthesis of δ -phosphorothiolated alcohols by photoredox/copper catalyzed remote $C(sp^3)$ -H phosphorothiolation of N-alkoxypyridinium salts

Zhipeng Zheng, ^{a†} Shanshan Shi, ^{a†} Qianru Ma,^b Yufei Yang,^a Yan Liu,^b Guo Tang,^a, * and Yufen Zhao^{a,b}

[†] Z. Zheng and S. Shi contributed equally to this work.

Compound list	S2-S6
General information	S7
Synthesis of substrates	S7-S9
Effects of pyridinium structures on the reaction efficiency(Table 1)	S10
Luminescence quenching experiments (Fig 1-4)	S11-S12
Cyclic Voltammetry Studies (Fig 5)	S12
Spectral data	S13-S21
³¹ P NMR, ¹ H NMR and ¹³ C NMR spectra for all compounds	S22-S91

^a Department of Chemistry, College of Chemistry and Chemical Engineering, and the Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, China. E-mail: <u>t12g21@xmu.edu.cn</u>

^b Department of Chemical Biology, College of Chemistry and Chemical Engineering, and the Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, China.

Compound list

No.	Compound	Page	No.	Compound	Page
3a	O _{、OEt}	23	3h	O _{ND} OEt	33
	S ^{-R} OFt			S ^{-T} OEt	
	OH			ОН	
3b	O _N OFt	24	3i	O _{N OFt}	35
	S ^P OFt			SPOE	
3c		26	3ј		36
3d		27	3k		38
3e		29	31		39
	Br				
3f		30	3m		41
				S P	
	∥ ∬				
	S)) Он	
3g		32	3n		42
				OEt	
				Г Г Сн	
	ОН				

S3

3ae	S OEt OH	64	3ag	S, OMe OH O ^F OMe	67
3af	S DEt OH	65	3ah		68

No.	Compound	page	No.	Compound	page
5a		70	5f	OFF-OEt	77
5b		71	5g	O S-P-OEt OEt	79
5c	O, OEt S'OEt	73	5h	S-P-OEt OEt F	81
5d	O, OEt SOEt	74	5i	O S-P-OEt OEt CI	82
5e	O, OEt	76	5j	O S-P-OEt OEt Br	84
			5k	OEt O=P-OEt S OH	85

S5

No.	Compound	page	No.	Compound	page
6a	S S	86	6d	- <s< th=""><th>89</th></s<>	89
6b	-<->S	87	7a	Ph S S Ph OH	90
6с	H ₃ CO-	88			

General Information:

¹H, ¹³C and ³¹P NMR spectra were recorded on a Bruker Av600 spectrometer using tetramethylsilane (TMS) in CDCl₃ as the internal standard for ¹H, and ¹³C NMR (¹H NMR: TMS at 0.00 ppm, CHCl₃ at 7.26 ppm; ¹³C NMR: CDCl₃ at 77.16 ppm) and 85% H₃PO₄ as external standard for ³¹P NMR. Data are represented as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants in Hertz (Hz), integration. The products were purified by Column chromatography on silica gel 300 – 400 mesh. All products were firstly examined by Bruker AmaZon SL ESI-IT-MS (Bruker Daltonics Inc., Germany) in positive ion mode, then further characterized by HRMS (ESI-qTOF MS, Bruker micrOTOF-Q II) in positive ion mode too.

1. Synthesis of substrates.

Experimental procedure for synthesis of alkyl tosylate.

To a solution of TsCl (18.0 mmol) in CH_2Cl_2 was added appropriate 4-phenylbutan-1-ol (16.6 mmol). After added DMAP (101.0 mg) and Et_3N (6.9 mL), the reaction mixture was stirred at room temperature for 12 h. The reaction mixture was monitored by TLC and 1 N HCl were added at the end of the reaction. The aqueous layer was then extracted with CH_2Cl_2 three times. The combined organic layer was dried over MgSO₄, filtered, and concentrated in vacuo. The residue was purified by silica gel column chromatography using a petroleum ether/AcOEt mixture [5:1 (v/v)] as the eluent to give alkyl tosylate.

Experimental procedure for synthesis of nalkenyloxypyridinium salt (2a).

To a solution of 4-methylpyridine 1-oxide (2.0 mmol) in MeCN (1.0 mL) was added appropriate alkyl tosylate (2.2 mmol) in MeCN (1.0 mL). The reaction mixture was stirred at 80 °C for 24 h. The reaction mixture was monitored by TLC and evaporated under reduced pressure. The residue was recrystallized twice from DCM (2 mL) and Et_2O (60 mL) solution at -20 °C to give a corresponding nalkenyloxypyridinium salt.

Experimental procedure for the synthesis of terminal γ - or δ -hydroxyalkenes (4a).

To a suspension of methyltriphenylphosphonium bromide (26.0 mmol) in dry THF (50 mL) was added potassium *tert*-butoxide (52.0 mmol) at 0 °C. The mixture was then stirred for 60 min. 4-Oxo-4-phenylbutanoic acid (20.0 mmol) was then added to the reaction mixture at 0 °C. The mixture was allowed to warm to room temperature, and then stirred for 16 h. After evaporation of THF, CH₂Cl₂ and 1 N NaOH were added. The aqueous layer was washed with CH₂Cl₂. 12 N HCl was then added until

the pH of the aqueous layer was 2.0. The aqueous layer was then extracted with CH_2Cl_2 twice. The combined organic layer was dried over MgSO₄, filtered, and concentrated in vacuo. The residue was purified by silica gel column chromatography using a petroleum ether/AcOEt mixture [from 10:1 to 5:1 (v/v)] as the eluent to give 4-phenylpent-4-enoic acid. 4-Phenylpent-4-enoic acid (10 mmol) was dissolved in dry THF (20 mL). Lithium aluminum hydride (20.0 mmol) was added portionwise at 0 °C. The reaction mixture was stirred for 30 min. The reaction was then quenched with 2 N NaOH and filtered through a pad of Celite. The organic layer was extracted with diethyl ether, dried over magnesium sulfate, and concentrated in vacuo. The residue was purified by silica gel column chromatography using a petroleum ether/AcOEt mixture [5:1 (v/v)] as the eluent to give 4-phenylpent-4-en-1-ol as a clear oil.

Experimental procedure for synthesis of nalkenyloxypyridinium salt (4a).

To a solution of TsCl (18.0 mmol) in CH_2Cl_2 was added appropriate 4- phenylpent-4-en-1-ol (16.6 mmol). After added DMAP (101.0 mg) and Et_3N (6.9 mL), the reaction mixture was stirred at room temperature for 12 h. The reaction mixture was monitored by TLC and 1 N HCl were added at the end of the reaction. The aqueous layer was then extracted with CH_2Cl_2 third. The combined organic layer was dried over MgSO₄, filtered, and concentrated in vacuo. The residue was purified by silica gel column chromatography using a petroleum ether/AcOEt mixture [5:1 (v/v)] as the eluent to give alkyl tosylate. To a solution of 4-methylpyridine 1-oxide (2.0 mmol) in MeCN (1.0 mL) was added appropriate alkyl tosylate (2.2 mmol) in MeCN (1.0 mL). The reaction mixture was stirred at 80 °C for 24 h. The reaction mixture was monitored by TLC and evaporated under reduced pressure. The residue was recrystallized twice from DCM (2 mL) and Et₂O (60 mL) solution at -20 °C to give a corresponding nalkenyloxypyridinium salt.

2. Synthesis and characterization of products.

Experimental procedure for synthesis of *O,O*-diethyl *S*-(4-hydroxy-1-phenylbutyl) phosphorothioate (3a).

An oven-dried Schlenk tube containing bathophenanthroline (6.6 mg, 0.02 mmol, 0.2 equiv), $Cu(OAc)_2$ (3.9 mg, 0.02 mmol, 0.2 equiv), fac-Ir(ppy)₃ (1.3 mg, 0.002 mmol, 0.02 equiv), **1a** (0.1 mmol, 1.0 equiv) was evacuated and purged with argon three times. Freshly distilled CH₃CN (2.0 mL) and **2a** (1.0 mmol) were sequentially added to the system at room temperature. The resulting mixture was irradiated with 30 W blue LEDs strip for 48 h. After the removal of solvents under reduced pressure, the crude product was purified by column chromatography on silica gel with ethyl acetate/petroleum ether [1:1 (v/v)] as the eluent to give the pure product *O*,*O*-diethyl *S*-(4-hydroxy-1-phenylbutyl) phosphorothioate **3a**.

Experimental procedure for synthesis of *O*,*O*-diethyl *S*-((tetrahydrofuran-2-yl)methyl) phosphorothioate (5a).

An oven-dried Schlenk tube containing bathophenanthroline (6.6 mg, 0.02 mmol, 0.2 equiv), $Cu(OAc)_2$ (3.9 mg, 0.02 mmol, 0.2 equiv), fac-Ir(ppy)₃ (1.3 mg, 0.002 mmol, 0.02 equiv), **4a** (0.1 mmol, 1.0 equiv) was evacuated and purged with argon three times. Freshly distilled CH₃CN (2.0 mL) and **2a** (1.0 mmol) were sequentially added to the system at room temperature. The resulting mixture was irradiated with 30W blue LEDs strip for 48 h. After the removal of solvents under reduced pressure, the crude product was purified by column chromatography on silica gel with ethyl acetate/petroleum ether [1:1 (v/v)] as the eluent to give the pure product *O*,*O*-diethyl *S*-((tetrahydrofuran-2-yl)methyl) phosphorothioate **5a**.

Experimental procedure for synthesis of 2-phenyltetrahydrothiophene (6a).

To a solution of 3a (0.30 mmol, 95.4 mg) in DMF (6.0 mL) was added NaH (0.60 mmol, 24 mg). This solution was placed in a pre-heated oil bath that was set to 55 °C, and the reaction was stirred overnight. The reaction was diluted with Et2O (50mL), washed with a 1:1 H2O:brine solution (2 × 50mL), dried with MgSO4, concentrated in vacuo, and the residue was purified by silica gel chromatography (petroleum ether/AcOEt mixture [30:1 (v/v)]) to afford **6a** as a clear and colorless oil.

Experimental procedure for synthesis of 4,4'-disulfanediylbis(4-phenylbutan-1-ol) (7a).

To a solution of **3ac** (0.30 mmol, 103.8 mg) in 2:1 THF:H₂O solution (6.0 mL) was added KOH (0.60 mmol, 33.7 mg) and CH₃COONa (0.60 mmol, 49.2mg). This solution was placed in a pre-heated oil bath that was set to 50 °C, and the reaction was stirred overnight. The reaction mixture was monitored by TLC and 1 N HCl were added at the end of the reaction. The aqueous layer was then extracted with CH₂Cl₂ three times. The combined organic layer was dried over MgSO₄, filtered, and concentrated in vacuo. The residue was purified by silica gel column chromatography using a petroleum ether/AcOEt mixture [1:1 (v/v)] as the eluent to give **7a** as a clear and colorless oil.

Table S1 Effects of pyridinium structures on the reaction efficiency

Luminescence quenching experiments

Fig. S1 the emission spectra of a 5.0×10^{-3} M solution of *fac*-[*Ir(ppy)*₃] in degassed CH₃CN excited at 516 nm;

Fig. S2 the emission spectra of a 5.0×10^{-3} M solution of *fac-*[*Ir(ppy)*₃] with various concentraions of **1a** in degassed CH₃CN excited at 516 nm;

Fig. S3 the Stern-Volmer plot of a 5.0×10^{-3} M solution of fac-[$Ir(ppy)_3$] with various concentraions of 1a in degassed CH₃CN excited at 516 nm;

Fig. S4 the emission spectra of a 5.0×10^{-3} M solution of *fac-*[*Ir(ppy)*₃] with various concentraions of **2** in degassed CH₃CN excited at 516 nm;

4. Cyclic Voltammetry Studies

The cyclic voltammograms were recorded in an electrolyte of Et_4NPF_6 (0.1 M) in the indicated solvent (6 mL) using a glassy carbon disk working electrode (diameter, 1 mm), a Pt wire auxiliary electrode a nd a SCE reference electrode. The scan rate was 100 mV/s.

Fig. S5 Cyclic voltammogram of 1a (10 mM) in MeCN, $E_{p/2} = -0.88$ V.

Spectral data

ÓН

0,0-diethyl *S*-(4-hydroxy-1-phenylbutyl) phosphorothioate (3a)

,OEt ÒEt

Yield: 23.3 mg, 73%. Brown oil. ¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.34-7.30 (m, 4H), 7.26-7.23 (m, 1H), 4.34-4.30 (m, 1H), 4.11-4.05 (m, 1H), 3.97-3.85 (m, 3H), 3.66-3.60 (m, 2H), 2.22-2.16 (m, 1H), 2.11-2.05(m, 1H), 1.62-1.49 (m, 2H), 1.23-1.19 (m, 6H). ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 142.3 (d, *J* = 4.3 Hz), (128.9 (s), 127.9 (s), 127.8 (s), 63.8 (d, *J* = 5.9 Hz), 63.7 (d, *J* = 5.9 Hz), 62.0 (s), 50.7 (d, *J* = 3.2 Hz), 35.0 (d, *J* = 7.5 Hz), 30.6 (s), 16.1 (dd, *J*₁= 7.6 Hz, *J*₂= 2.1 Hz). ³¹P NMR

(242 MHz, CDCl₃) δ (ppm) 26.3. HRMS calcd for C₁₄H₂₃NaO₄PS⁺ [M+Na]⁺, 341.0947; found, 341.0945.

O,*O*-diethyl *S*-(4-hydroxy-1-(*p*-tolyl)butyl) phosphorothioate (3b)

Yield: 23.2 mg, 70%. Brown oil. ¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.22 (d, J = 8.04 Hz, 2H), 7.12 (d, J = 7.92 Hz, 2H), 4.32-4.28 (m, 1H), 4.11-4.07 (m, 1H), 4.00-3.88 (m, 3H), 3.66-3.61 (m, 2H), 2.32 (s, 3H), 2.22-2.16 (m, 1H), 2.11-2.05 (m, 1H), 1.58-1.51 (m, 2H), 1.23 (q, J = 7.34 Hz, 6H). ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 139.1 (d, J = 5.1 Hz) 137.6 (s), 129.5 (s), 127.6 (s), 63.7 (dd, $J_1 = 2.5$ Hz, $J_2 = 5.7$ Hz), 62.0 (s), 50.5 (d, J = 3.2 Hz), 35.0 (d, J = 6.8 Hz) 30.6 (s), 21.3 (s), 16.1 (d, J = 7.5 Hz).³¹P NMR (242 MHz, CDCl₃) δ

(ppm) 26.4. HRMS calcd for $C_{15}H_{25}NaO_4PS^+$ [M+Na]⁺, 355.1103; found, 355.1097.

O,*O*-diethyl *S*-(4-hydroxy-1-(4-methoxyphenyl)butyl) phosphorothioate (3c)

Yield: 21.6 mg, 62%. Brown oil. ¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.25 (d, J = 8.10 Hz, 2H), 6.84 (d, J = 8.70 Hz, 2H), 4.33-4.29 (m, 1H), 4.11-4.07 (m, 1H), 3.99-3.90 (m, 1H), 3.79 (s, 3H), 3.66-3.61 (m, 2H), 2.21-2.16 (m, 1H), 2.09-2.04 (m, 1H), 1.56-1.51 (m, 2H), 1.26-1.21 (m, 6H). ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 159.2 (s), 133.9 (s), 128.9 (s), 114.2 (s), 63.7 (t, J = 5.6 Hz), 62.0 (s), 55.5 (s), 50.3 (d, J = 3.2 Hz), 35.1 (d, J = 7.2 Hz), 30.6 (s), 16.1 (dd, $J_1 = 4.2$ Hz, $J_2 = 7.5$ Hz). ³¹P NMR (242 MHz, CDCl₃) δ (ppm) 26.5. HRMS calcd for C₁₅H₂₅NaO₅PS⁺[M+Na]⁺, 371.1053; found, 371.1049.

S-(1-(4-chlorophenyl)-4-hydroxybutyl) O,O-diethyl phosphorothioate (3d)

Yield: 26.4 mg, 75%. Brown oil. ¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.30-7.27 (m, 4H), 4.33-4.29 (m, 1H), 4.11-4.06 (m, 1H), 3.97-3.89 (m, 3H), 3.64 (t, J = 5.64 Hz, 2H), 2.20-2.14 (m, 1H), 2.08-2.01 (m, 1H), 1.60-1.49 (m, 2H), 1.24 (t, J = 7.62 Hz, 3H), 1.20 (t, J = 7.08 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 141 (d, J = 4.3 Hz), 133.6 (s), 129.2 (s) 129.0 (s), 63.9 (dd, J = 11.4 Hz, J = 6.1 Hz), 63.8 (d, J = 6.1 Hz), 62.0 (s), 50.0 (d, J = 3.3 Hz), 34.8 (d, J = 7.7 Hz), 30.5 (s), 16.1 (d, J = 7.7 Hz) ³¹P NMR (242 MHz, CDCl₃) δ (ppm) 24.4. HRMS calcd for C₁₄H₂₂ClNaO₄PS⁺[M+Na]⁺, 375.0557; found, 375.0567.

S-(1-(4-bromophenyl)-4-hydroxybutyl) O,O-diethyl phosphorothioate (3e)

Yield: 28.6 mg, 72%. Brown oil. ¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.43 (d, J = 8.30 Hz, 1H), 7.33-7.29 (m, 2H), 7.24-7.20 (m, 1H), 4.32-4.25 (m, 1H), 4.09-4.06 (m, 1H), 3.95-3.84 (m, 3H), 3.62-3.59 (m, 2H), 2.19-2.12 (m, 1H), 2.09-2.01 (m, 1H), 1.59-1.54 (m, 1H), 1.51-1.48 (m, 1H), 1.23-1.17 (m, 6H). ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 142.3 (d, J = 4.3 Hz), 132.0 (s), 128.9 (s), 127.8 (s), 127.8 (s), 63.7 (d, J = 5.5 Hz), 62.1 (s), 50.7 (d, J = 3.3 Hz), 35.0 (d, J = 7.6 Hz), 30.6 (s), 16.1 (d, J = 2.2 Hz). ³¹P NMR (242 MHz, CDCl₃)

 δ (ppm) 26.3. HRMS calcd for C₁₄H₂₂BrNaO₄PS⁺[M+Na]⁺, 419.0052; found, 419.0050.

O,O-diethyl S-(4-hydroxy-1-(thiophen-2-yl)butyl) phosphorothioate (3f)

Yield: 16.2 mg, 50%. Brown oil. ¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.23 (d, *J* = 5.04 Hz, 1H), 7.03 (d, *J* = 3.30 Hz, 1H), 6.91 (dd, *J* ₁= 3.57 Hz, *J* ₂= 6.01 Hz, 1H), 4.73-4.60 (m, 1H), 4.16-4.12 (m, 1H), 4.06-3.97 (m, 3H), 3.68-3.65 (m, 2H), 2.27-2.23 (m, 1H), 2.19-2.13 (m, 1H), 1.67-1.62 (m, 2H), 1.30-1.25 (m, 6H).¹³C NMR (150 MHz, CDCl₃) δ (ppm) 146.0 (d, *J* = 5.6 Hz), 126.8 (s), 126.0 (s), 125.3 (s), 64.0 (t, *J* = 6.7 Hz), 61.9 (s), 46.0 (d, *J* = 3.1 Hz), 36.2 (d, *J* = 6.30 Hz), 30.4 (s), 16.2 (t, *J* = 7.3 Hz). ³¹P NMR (242 MHz, CDCl₃) δ (ppm) 25.6. HRMS calcd for C₁₂H₂₁ClNaO₄PS₂⁺ [M+Na]⁺, 347.0511; found, 347.0501.

O,O-diethyl S-(5-hydroxypentan-2-yl) phosphorothioate (3g)

Q, OEt S OEt

Yield: 16.6 mg, 65%. Brown oil. ¹H NMR (600 MHz, CDCl₃) δ (ppm) 4.20-4.11 (m, 4H), 3.68 (t, *J* = 6.06 Hz, 2H), 3.44-3.38 (m, 1H), 1.83-1.79 (m, 1H), 1.77-1.67 (m, 3H), 1.43 (d, *J* = 6.84 Hz, 3H), 1.36 (t, *J* = 7.08 Hz, 6H). ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 63.8 (d, *J* = 6.4 Hz), 62.4 (s), 42.8 (d, *J* = 3.5 Hz), 35.3 (d, *J* = 6.4 Hz), 30.0 (s), 23.5 (d, *J* = 5.7 Hz), 16.3 (d, *J* = 7.5 Hz). ³¹P NMR (242 MHz, CDCl₃) δ (ppm) 28.1. HRMS calcd for C₉H₂₁NaO₄PS⁺[M+Na]⁺, 279.0790; found, 279.0794.

ÓН

O,O-diethyl S-(6-hydroxyhexan-3-yl) phosphorothioate (3h)

Yield: 18.4 mg, 68%. Brown oil. ¹H NMR (600 MHz, CDCl₃) δ (ppm) 4.20-4.11 (m, 4H), 3.71 (t, *J* = 6.12 Hz, 2H), 3.33-3.29 (m, 1H), 1.83-1.76 (m, 2H), 1.74-1.65 (m, 4H), 1.35 (t, *J* = 7.05 Hz, 6H), 1.02 (t, *J* = 7.32 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 63.8 (d, *J* = 6.3 Hz), 62.4 (s), 49.8 (d, *J* = 3.5 Hz), 32.8 (d, *J* = 4.5 Hz), 29.7 (s), 29.3 (d, *J* = 6.5 Hz), 16.3 (dd, *J* ₁= 2.0 Hz, *J* ₂= 7.6 Hz). 11.3 (s). ³¹P NMR (242 MHz, CDCl₃) δ (ppm) 27.4. HRMS calcd for C₁₀H₂₃NaO₄PS⁺ [M+Na]⁺, 293.0947; found, 293.0956.

O,O-diethyl S-(1-hydroxyheptan-4-yl) phosphorothioate (3i)

Yield: 19.3 mg, 68%. Brown oil. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 4.21-4.10 (m, 4H), 3.67 (t, J = 6.18 Hz, 2H), 3.37-3.33 (m, 1H), 1.83-1.80 (m, 2H), 1.74-1.59 (m, 2H), 1.54-1.48 (m, 1H), 1.46-1.40 (m, 1H), 1.35 (t, J = 7.05 Hz, 6H), 1.31-1.25 (m, 2H), 0.93 (t, J = 7.32 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 63.8 (d, J = 6.5 Hz), 62.4 (s), 48.0 (s), 38.4 (d, J = 6.6 Hz), 33.3 (d, J = 4.2 Hz) 29.6 (s), 20.2 (s), 16.3 (d, J = 7.7 Hz). 14.0 (s). ³¹P NMR (162 MHz, CDCl₃) δ (ppm) 28.2. HRMS calcd for C₁₁H₂₅NaO₄PS⁺ [M+Na]⁺, 307.1103; found, 307.1104.

O,O-diethyl S-(1-hydroxyoctan-4-yl) phosphorothioate (3j)

Yield: 20.5 mg, 69 %. Brown oil. ¹H NMR (600 MHz, CDCl₃) δ (ppm) 4.19-4.10 (m, 4H), 3.67 (t, J = 6.15 Hz, 2H), 3.36-3.31 (m, 1H), 1.82-1.79 (m, 2H), 1.75-1.60 (m, 4H), 1.47-1.40 (m, 2H), 1.35 (t, J = 6.15 Hz, 6H), 1.32-1.28 (m, 2H), 0.90 (t, J = 7.26 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 63.8 (d, J = 6.4Hz), 62.4 (s), 48.3 (d, J = 3.4Hz), 36.0 (d, J = 6.5 Hz), 33.3 (d, J = 4.4 Hz), 29.6 (s), 29.0 (s), 22.7 (s), 16.3 (d, J = 7.7 Hz). 14.2 (s). ³¹P NMR (242 MHz, CDCl₃) δ (ppm) 27.8. HRMS calcd for C₁₂H₂₇NaO₄PS⁺ [M+Na]⁺, 321.1260; found, 321.1265.

O,O-diethyl *S*-(1-hydroxynonan-4-yl) phosphorothioate (3k)

ÓН

t Yield: 20.9 mg, 67%. Brown oil. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 4.23-4.10 (m, 4H), 3.67 (t, J = 6.03 Hz, 2H), 3.37-3.32 (m, 1H), 1.83-1.79 (m, 2H), 1.76-1.59 (m, 6H), 1.49-1.41 (m, 2H), 1.35 (t, J = 7.09 Hz, 6H), 1.31-1.25 (m, 2H), 0.89 (t, J = 6.84 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 63.8 (d, J = 6.4Hz), 62.4 (s), 48.3 (s), 36.0 (d, J = 6.7 Hz), 33.3 (d, J = 4.3 Hz), 31.8 (s), 29.6 (s), 26.6 (s), 22.8 (s), 16.3 (d, J = 8.1 Hz). 14.2 (s). ³¹P NMR (162 MHz, CDCl₃) δ (ppm) 28.4. HRMS calcd for

C₁₃H₂₉NaO₄PS⁺[M+Na]⁺, 335.1416; found, 335.1419. *O,O*-diethyl *S*-(1-hydroxydodecan-4-yl) phosphorothioate (31)

. Yield: 22.7 mg, 64%. Brown oil. ¹H NMR (600 MHz, CDCl₃) δ (ppm) 4.20-4.10 (m, 4H), 3.67 (t, J = 6.15 Hz, 2H), 3.36-3.32 (m, 1H), 1.83-1.79 (m, 2H), 1.75-1.66 (m, 2H), 1.48-1.45 (m, 1H), 1.41-1.39 (m, 1H), 1.35 (t, J = 7.08 Hz, 6H), 1.30-1.24 (m, 10H), 0.88 (t, J = 7.00 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 63.8 (d, J = 6.5Hz), 62.4 (s), 48.3 (d, J = 3.9Hz), 36.3 (d, J = 6.6 Hz), 33.3 (d, J = 4.3 Hz), 32.1 (s), 29.7(s), 29.6 (s), 29.5(s), 29.4(s), 27.0 (s), 22.9 (s), 16.3 (dd, J = 7.7 Hz, J = 2.1Hz). 14.3 (s). ³¹P NMR (242 MHz, CDCl₃) δ (ppm) 28.4. HRMS calcd

for $C_{16}H_{36}O_4PS^+$ [M+H]⁺, 355.2066; found, 355.2056.

O,O-diethyl S-(5-hydroxy-1-phenylpentan-2-yl) phosphorothioate (3m)

Yield: 22.6 mg, 68%. Brown oil. ¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.32-7.28 (m, 2H), 7.23-7.21 (m, 3H), 4.15-4.11 (m, 1H), 4.05-4.00 (m, 1H), 3.94-3.87 (m, 2H), 3.65 (t, *J* = 5.85 Hz, 2H), 3.59-3.53 (m, 1H), 2.98 (d, *J* = 7.32 Hz, 2H), 1.85-1.83 (m, 1H), 1.79-1.74 (m, 3H), 1.31 (t, *J* = 7.05 Hz, 3H), 1.23 (t, *J* = 7.08 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 138.9 (s), 129.7 (s), 128.6 (s) 126.9 (s), 63.8 (dd, *J* ₁ = 6.2 Hz, *J* ₂ = 15.0 Hz), 62.3 (s), 49.5 (d, *J* = 3.3 Hz), 43.0 (d, *J* = 5.9 Hz), 32.7 (d, *J* = 5.0 Hz), 29.7 (s), 16.2 (dd, *J* ₁ = 7.4

Hz, $J_2 = 14.8$ Hz) ³¹P NMR (242 MHz, CDCl₃) δ (ppm) 26.8. HRMS calcd for C₁₅H₂₅NaO₄PS⁺ [M+Na]⁺, 355.1103; found, 355.1095.

O,O-diethyl S-(2-(2-hydroxyethyl)cyclohexyl) phosphorothioate (3n)

Yield: 18.4 mg, 62%. Brown oil. ¹H NMR (600 MHz, CDCl₃) δ (ppm) 4.18-4.10 (m, 4H), 3.77-3.73 (m, 1H), 3.69-3.65 (m, 1H), 3.20-3.17 (m, 1H), 2.22-2.18 (m, 1H), 2.10-2.05 (m, 1H), 1.97-1.94 (m, 1H), 1.68-1.64 (m, 4H), 1.58-1.53 (m, 1H), 1.41-1.38 (m, 1H), 1.36-1.34 (m, 6H), 1.32-1.29 (m, 1H), 1.20-1.14 (m, 1H). ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 63.9 (t, J = 6.3 Hz), 60.5 (s), 51.1 (s), 39.7 (s), 36.6 (s), 31.3 (s), 29.9 (s), 26.0 (s), 24.7 (s), 16.3 (dd, J = 6.6 Hz, J = 6.6 Hz).

 ^{31}P NMR (242 MHz, CDCl₃) δ (ppm) 28.6. HRMS calcd for $C_{12}H_{25}NaO_4PS^+$ [M+Na]+, 319.1103; found, 319.1109.

O,*O*-diethyl *S*-(5-hydroxyhexan-2-yl) phosphorothioate (30)

ÓН

Yield: 18.1 mg, 67%. Brown oil. ¹H NMR (600 MHz, CDCl₃) δ (ppm) 4.19-4.09 (m, 4H), 3.83-3.79 (m, 1H), 3.41-3.35 (m, 1H), 1.83-1.66 (m, 2H), 1.59-1.53 (m, 2H), 1.43-1.40 (m, 3H), 1.34 (t, J = 7.05 Hz, 6H). 1.19 (dd, $J_1 = 2.04$, $J_2 = 6.18$ Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 67.6 (s), 63.8 (d, J = 6.9 Hz), 43.1 (d, J = 3.5 Hz), 36.2 (s), 35.0 (d, J = 6.4 Hz), 23.6 (s), 23.5 (d, J = 5.3 Hz), 16.3 (s). ³¹P NMR (242 MHz, CDCl₃) δ (ppm) 27.7 (s), 27.8 (s). HRMS calcd for C₁₀H₂₃NaO₄PS⁺ [M+Na]⁺, 293.0947; found, 293.0947.

O,O-diethyl S-(6-hydroxyheptan-3-yl) phosphorothioate (3p)

ÓН

Yield: 18.2 mg, 64%. Brown oil. ¹H NMR (600 MHz, CDCl₃) δ (ppm) 4.18-4.06 (m, 4H), 3.80-3.76 (m, 1H), 3.27-3.22 (m, 1H), 1.82-1.70 (m, 3H), 1.68-1.60 (m, 1H), 1.57-1.51 (m, 2H), 1.32 (t, *J* = 7.08 Hz, 6H). 1.16 (dd, *J*₁= 2.49, *J*₂= 6.15 Hz, 3H). 1.00-0.97 (m, 3H). ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 67.9 (s), 63.7 (d, *J* = 5.3 Hz), 42.9 (d, *J* = 3.6 Hz), 36.3 (s), 35.3 (d, *J* = 6.4 Hz), 23.8 (s), 23.4(S), 16.3 (s). ³¹P NMR (242 MHz, CDCl₃) δ (ppm) 27.8 (s), 27.7 (s). HRMS calcd for C_{11H25}NaO₄PS⁺[M+Na]⁺, 307.1103; found, 307.1106.

O,O-diethyl S-(6-hydroxyoctan-3-yl) phosphorothioate (3q)

Yield: 19.6 mg, 66%. Brown oil. ¹H NMR (600 MHz, CDCl₃) δ (ppm) 4.17-4.08 (m, 4H), 3.54-3.49 (m, 1H), 3.30-3.24 (m, 1H), 1.86-1.83 (m, 1H), 1.77-1.72 (m, 2H), 1.70-1.58 (m, 2H), 1.53-1.41 (m, 3H), 1.33 (t, J = 7.05 Hz, 6H). 1.01-0.98 (m, 3H), 0.92 (t, J = 7.41 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 73.1 (s),

63.8 (d, J = 8.1 Hz), 50.3 (d, J = 3.4 Hz), 33.8 (S), 32.8 (d, J = 4.5 Hz), 30.6 (S), 29.4 (d, J = 6.6 Hz), 16.3 (s). 11.2 (S). 10.2 (S). ³¹P NMR (242 MHz, CDCl₃) δ (ppm) 28.4 (s), 28.3 (s). HRMS calcd for C₁₂H₂₇NaO₄PS⁺[M+Na]⁺, 321.1260; found, 321.1256.

O,O-diethyl *S*-(5-hydroxynonan-2-yl) phosphorothioate (3r)

Yield: 19.0 mg, 61%. Brown oil. ¹H NMR (600 MHz, CDCl₃) δ (ppm) 4.17-4.07 (m, 4H), 3.58-3.54 (m, 1H), 3.38-3.33 (m, 1H), 1.85-1.65 (m, 2H), 1.61-1.56 (m, 1H), 1.53-1.45 (m, 1H), 1.41-1.38 (m, 6H), 1.32 (t, *J* = 7.05 Hz, 6H). 1.29-0.22 (m, 3H), 0.87 (t, *J* = 7.08 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 71.6 (s), 63.6 (d, *J* = 4.5 Hz), 43.3 (d, *J* = 3.9 Hz), 37.5 (S), 35.2 (d, *J* = 6.4 Hz), 34.6 (S), 28.1 (S), 27.3 (d, *J* = 5.0 Hz), 22.9(S), 16.3 (s), 14.2 (S). ³¹P NMR (242 MHz, CDCl₃) δ (ppm) 26.9 (s), 26.3 (s). HRMS calcd for C₁₃H₂₉NaO₄PS⁺[M+Na]⁺, 335.1416; found, 335.1411.

O,O-diethyl S-(5-hydroxy-4-methylpentan-2-yl) phosphorothioate (3s)

Yield: 15.9 mg, 59%. Brown oil. ¹H NMR (600 MHz, CDCl₃) δ (ppm) 4.20-4.10 (m, 4H), 3.60-3.43 (m, 3H), 1.94-1.89 (m, 1H), 1.83-1.69 (m, 1H), 1.57-1.52 (m, 1H), 1.43 (t, *J* = 6.11 Hz, 3H), 1.35 (t, *J* = 7.08 Hz, 6H), 0.94 (dd, *J* ₁= 6.78 Hz, *J* ₂= 14.4 Hz). ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 68.3 (s), 63.9 (d, *J* = 6.7 Hz), 43.3 (d, *J* = 5.6 Hz), 41.3 (d, *J* = 3.8 Hz), 33.8 (s), 24.1 (d, *J* = 5.1 Hz), 22.5 (s), 17.4 (s). 16.3 (d, *J* = 6.7 Hz). ³¹P NMR (242 MHz, CDCl₃) δ (ppm) 27.9 (s), 27.8 (s). HRMS calcd for C₁₀H₂₃NaO₄PS⁺[M+Na]⁺, 293.0947; found, 293.0948.

O,O-diethyl S-(6-hydroxy-2,2,4-trimethylhexan-3-yl) phosphorothioate (3t)

Yield: 15.3 mg, 49%. Brown oil. ¹H NMR (600 MHz, CDCl₃) δ (ppm) 4.16-4.08 (m, 4H), 3.74-3.70 (m, 1H), 3.62-3.58 (m, 1H), 3.62-3.23 (m, 1H), 2.30-2.27 (m, 1H), 1.83-1.78 (m, 1H), 1.46-1.41 (m, 1H), 1.34-1.31 (m, 6H). 1.11-1.07 (m, 3H). 1.06 (s, 9H). ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 66.5 (s), 63.8 (d, J = 2.6 Hz), 61.2 (s), 37.3 (s), 31.9 (s), 29.9 (s), 29.1 (s), 20.4 (s), 16.3 (s). ³¹P NMR (242 MHz, CDCl₃) δ (ppm) 28.1 (s), 28.0 (s). HRMS calcd for C₁₃H₂₉NaO₄PS⁺[M+Na]⁺, 335.1416; found, 335.1408.

O,O-diethyl S-((1r,3s,5R,7S)-1-(2-hydroxyethyl)adamantan-2-yl) phosphorothioate (3u)

Yield: 23.7 mg, 68%. Brown oil. ¹H NMR (600 MHz, CDCl₃) δ (ppm) 4.18-4.08 (m, 3H), 3.77-3.72 (m, 1H), 3.69-3.66 (m, 2H), 2.15-2.12 (m, 2H), 2.08-2.06 (m, 1H), 1.93-1.92 (m, 1H), 1.89-1.88 (m, 1H), 1.84-1.76 (m, 4H), 1.71t 1.69 (m, 1H), 1.65-1.60 (m, 3H), 1.57-1.55 (m, 1H), 1.42-1.38 (m, 2H), 1.35-1.31 (m, 6H). ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 64.0 (d, J = 6.2 Hz), 6.39 (d, J = 6.9 Hz), 58.9 (d, J = 3.0 Hz), 58.2 (s), 43.6 (s) 42.3 (S), 39.2 (s), 38.3

(s), 37.1 (s), 36.7 (s), 36.2 (d, J = 5.3 Hz), 31.8 (S), 28.1 (d, J = 7.9 Hz), 16.3 (t, J = 8.0 Hz). ³¹P NMR (242 MHz, CDCl₃) δ (ppm) 29.1 (s). HRMS calcd for C₁₆H₂₉NaO₄PS⁺ [M+Na]⁺, 371.1416; found, 371.1415.

O,O-diethyl *S*-(1-(3-hydroxypropyl)cyclopentyl) phosphorothioate (3v)

4H), 1.72-1.69 (m, 4H), 1.33 (t, J = 7.05 Hz, 6H). ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 64.8 (d, J = 4.1 Hz), 63.8 (d, J = 7.2 Hz), 62.9 (s), 40.9 (d, J = 8.0 Hz), 37.4 (s), 29.4 (s), 23.6 (s), 16.3 (d, J = 6.8 Hz). ³¹P NMR (242 MHz, CDCl₃) δ (ppm) 25.3. HRMS calcd for C₁₂H₂₅NaO₄PS⁺[M+Na]⁺, 319.1103; found, 319.1097. *O,O*-diethyl *S*-(1-(3-hydroxypropyl)cyclohexyl) phosphorothioate (3w) Yield: 23.3 mg, 75%. Brown oil. ¹H NMR (600 MHz, CDCl₃) δ (ppm) 4.18-4.10 (m, 41).

Yield: 21.3 mg, 72%. Brown oil. ¹H NMR (600 MHz, CDCl₃) δ (ppm) 4.17-4.09 (m,

4H), 3.67 (t, J = 6.15 Hz, 2H), 2.09-2.06 (m, 2H), 1.98-1.95 (m, 2H), 1.85-1.80 (m,

CDCl₃) δ (ppm) 25.3. HRMS calcd for C₁₂H₂₅NaO₄PS⁺[M+Na]⁺, 333.1260; found, 333.1256. *O,O*-diethyl *S*-(6-hydroxy-3-methylheptan-3-yl) phosphorothioate (3x)

Yield: 22.1 mg, 74%. Brown oil. ¹H NMR (600 MHz, CDCl₃) δ (ppm) 4.18-4.08 (m, 4H), 3.79-3.76 (m, 1H), 1.98-1.92 (m, 1H), 1.82-1.71 (m, 3H), 1.61-1.55 (m, 2H), 1.44 (d, *J* = 15.94 Hz, 3H), 1.32 (t, *J* = 7.09 Hz, 6H), 1.18 (d, *J* = 6.23 Hz, 3H). 0.97-0.94 (m, 3H). ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 67.9 (s), 63.8 (d, *J* = 1.8 Hz), 58.6 (d, *J* = 3.6 Hz), 37.0 (d, *J* = 5.4 Hz), 34.8 (d, *J* = 6.4 Hz), 34.2 (s), 27.5 (d, *J* = 5.6 Hz), 23.8 (s), 16.3 (s), 9.1 (s). ³¹P NMR (242 MHz, CDCl₃) δ (ppm) 25.1. HRMS calcd for C₁₂H₂₇NaO₄PS⁺ [M+Na]⁺, 321.1260; found, 321.1253.

O,O-diethyl S-(5-hydroxy-2-methylpentan-2-yl) phosphorothioate (3y)

Yield: 20.5 mg, 76%. Brown oil. ¹H NMR (600 MHz, CDCl₃) δ (ppm) 4.20-4.01 (m, 4H), 3.67 (t, J = 6.12 Hz, 2H), 1.87-1.84 (m, 2H), 1.77-1.72 (m, 2H), 1.51 (s, 6H), 1.34 (t, J = 7.08 Hz, 6H). ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 63.9 (d, J = 6.8 Hz), 62.9 (s), 53.9 (d, J = 4.2 Hz), 40.1 (d, J = 5.1 Hz), 30.8 (d, J = 6.6 Hz), 28.5 (s), 16.3 (d, J = 7.5 Hz). ³¹P NMR (242 MHz, CDCl₃) δ (ppm) 28.2. HRMS calcd for C₁₀H₂₃NaO₄PS⁺ [M+Na]⁺, 293.0947; found, 293.0942.

O,O-diethyl S-(5-hydroxy-2-methylhexan-2-yl) phosphorothioate (3z)

Yield: 20.7 mg, 73%. Brown oil. ¹H NMR (600 MHz, CDCl₃) δ (ppm) 4.16-4.07 (m, 4H), 3.78-3.75 (m, 1H), 1.96-1.91 (m, 1H), 1.76-1.71 (m, 1H), 1.61-1.57 (m, 2H), 1.47 (d, J = 9.90 Hz, 6H), 1.31 (t, J = 7.05 Hz, 6H). 1.18 (d, J = 6.24 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 67.9 (s), 63.8 (t, J = 6.5 Hz), 53.9 (d, J = 4.3 Hz), 40.0 (d, J = 5.5 Hz), 34.7 (s), 30.8 (s), 23.8(s), 16.3 (d, J = 1.8 Hz). ³¹P NMR (242 MHz, CDCl₃) δ (ppm) 25.1. HRMS calcd for C₁₁H₂₅NaO₄PS⁺[M+Na]⁺, 307.1103; found, 307.1099.

O,O-diethyl S-(6-hydroxy-1-((4-methylphenyl) sulfonamido) hexan-3-yl) phosphorothioate (3ac)

Yield: 20.2 mg, 46%. Brown oil. ¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.75 (d, *J* = 8.28 Hz, 2H), 7.27 (d, *J* = 7.98 Hz 2H), 6.32 (dd, *J*₁= 5.10 Hz, *J*₂= 8.04 Hz, 1H) 4.16-3.98 (m, 4H), 3.62 (t, *J* = 5.76 Hz, 2H), 3.35-3.29 (m, 1H), 3.21-3.16 (m, 1H), 3.11-3.05 (m, 1H), 2.39 (S, 3H), 1.97-1.93 (m, 1H), 1.73-1.59 (m, 5H). 1.34 (t, *J* = 6.93 Hz, 3H), 1.27 (t, *J* = 6.96 Hz, 3H), ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 143.1 (s), 137.8 (s), 129.7 (s), 127.4 (S), 64.3 (t, *J* = 7.1 Hz), 62.0 (S), 45.3 (d, *J* = 3.3 Hz), 40.3 (s), 37.3 (d, *J* = 3.7 Hz), 33.7 (d, *J* = 5.9 Hz), 29.7 (s), 21.6 (s), 16.1 (dd, *J*₁= 7.4 Hz, *J*₂= 3.4 Hz). ³¹P NMR (242 MHz, CDCl₃) δ (ppm) 28.59 (s). HRMS calcd for C₁₇H₃₁NO₆PS₂⁺ [M+H]⁺, 440.1325; found, 440.1324.

tert-butyl (3-((diethoxyphosphoryl)thio)-6-hydroxyhexyl) (tosyl) carbamate

Yield: 32.9 mg, 61%. Brown oil. ¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.76 (d, J = 7.76 Hz, 2H), 7.30 (d, J = 8.10 Hz 2H), 4.23-4.13 (m, 4H), 4.05-4.00 (m, 1H), 3.93-3.88 (m, 1H), 3.64 (t, J = 6.24 Hz, 2H), 3.42-3.35 (m, 1H), 2.43 (s, 3H), 2.20-2.16 (m, 1H), 2.14-2.08 (m, 1H). 1.90-1.83 (m, 2H), 1.78-1.73 (m, 2H), 1.35 (t, J = 7.08 Hz, 6H), 1.32 (s, 9H),¹³C NMR (150 MHz, CDCl₃) δ (ppm) 150.9 (s), 144.4 (s), 137.4 (s), 129.4 (s), 127.9 (S), 84.6 (s), 63.9 (t, J = 6.9 Hz), 62.0 (S), 45.3 (d, J = 3.3 Hz), 45.0 (s), 36.4 (d, J = 5.7 Hz), 33.0 (d, J = 4.8 Hz), 29.5 (s), 28.0 (s), 21.7 (s), 16.2 (d, J = 7.0 Hz). ³¹P NMR (242 MHz, CDCl₃) δ (ppm) 26.62 (s). HRMS calcd for C₂₂H₃₉NO₈PS₂⁺ [M+H]⁺, 540.1849; found, 540.1854.

O,O-diethyl S-(1-hydroxydec-9-en-4-yl) phosphorothioate (3ae)

Yield: 21.1 mg, 65%. Brown oil.¹H NMR (600 MHz, CDCl₃) δ (ppm) 5.80-5.73 (m, 1H), 4.98-4.90 (m, 2H), 4.16-4.06 (m, 4H), 3.62 (t, J = 6.20 Hz, 2H), 3.32-3.28 (m, 1H), 2.03 (t, J = 6.96 Hz, 2H), 1.79-1.75 (m, 2H), 1.71-1.60 (m, 4H), 1.49-1.35 (m, 4H), 1.32 (t, J = 7.08 Hz, 6H). ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 138.7 (s), 114.6 (s), 63.6 (d, J = 6.1 Hz), 62.1 (s), 48.2 (s), 36.0 (d, J = 6.1 Hz), 33.7 (s), 33.0 (d, J = 4.3 Hz), 29.5 (s), 28.7 (s), 26.2 (s), 16.1 (d, J = 7.3 Hz). ³¹P NMR (242 MHz, CDCl₃) δ (ppm) 28.21 (s). HRMS calcd for C₁₄H₂₉NaO₄PS⁺

[M+Na]⁺, 347.1416; found, 347.1406. *O,O*-diethyl *S*-(1-hydroxydodec-11-yn-4-yl) phosphorothioate (3af)

S, OEt OH O^{r P}OEt

Yield: 21.0 mg, 60%. Brown oil. ¹H NMR (600 MHz, CDCl₃) δ (ppm) 4.20-4.08 (m, 4H), 3.65 (t, J = 6.10 Hz, 2H), 3.36-3.29 (m, 1H), 2.19-2.15 (m, 2H), 1.92 (t, J = 2.58 Hz, 1H), 1.82-1.77 (m, 2H), 1.73-1.59 (m, 2H), 1.55-1.41 (m, 6H), 1.38-1.24 (m, 10H). ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 84.7 (s), 68.3 (s), 63.7 (d, J = 6.5 Hz), 62.2 (s), 48.2 (d, J = 3.5 Hz), 36.1 (d, J = 6.5 Hz), 33.1 (d, J = 4.4 Hz), 29.5 (s), 29.0 (s), 28.7 (s), 28.5 (s), 26.6 (s), 18.5 (s), 16.2 (d, J = 7.3 Hz). ³¹P NMR (242 MHz, CDCl₃) δ (ppm) 28.77 (s). HRMS calcd for C₁₆H₃₁NaO₄PS⁺

[M+Na]⁺, 373.1573; found, 373.1573.

S-(4-hydroxy-1-phenylbutyl) O,O-dimethyl phosphorothioate (3ag)

Yield: 18.6 mg, 64%. Brown oil. ¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.34-7.29 (m, 4H), 7.26-7.23 (m, 1H), 4.30-4.26 (m, 1H), 3.62-3.60 (m, 2H), 3.56 (dd, J_1 = 2.76 Hz, J_2 = 12.78 Hz, 6H), 2.19-2.14 (m, 1H), 2.10-2.03 (m, 1H), 1.61-1.56 (m, 1H), 1.53-1.49 (m, 1H). ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 142.0 (d, J = 3.7 Hz), 128.7 (s), 127.8 (s), 127.6 (s), 61.8 (s), 53.8 (dd, J_1 = 5.7 Hz, J_2 = 9.0 Hz), 50.7 (d, J = 3.3 Hz), 34.7 (d, J = 7.8 Hz), 30.5 (s). ³¹P NMR (242 MHz, CDCl₃) δ (ppm) 29.87 (s). HRMS calcd for C₁₂H₁₉O₄PS⁺

[M+H]⁺, 291.0814; found, 291.0813..

S-(4-hydroxy-1-phenylbutyl) O,O-diisopropyl phosphorothioate (3ah)

Yield: 26.6 mg, 77 %. Yellow oil. ¹H NMR (600 MHz, CDCl3) δ (ppm) 7.34-7.29 (m, 4H), 7.25-7.22 (m, 1H), 4.70-4.64 (m, 1H), 4.49-4.43 (m, 1H), 4.39-4.35 (m, 1H), 3.66-3.59 (m, 2H), 2.27-2.21 (m, 1H), 2.12-2.07 (m, 1H), 1.55-1.50 (m, 2H), 1.33 ((d, J = 6.18 Hz, 3H), 1.22 (d, J = 6.21 Hz, 3H), 1.18 (t, J = 6.91 Hz, 6H). 3C NMR (150 MHz, CDCl3) δ (ppm) 142.2 ((d, J = 5.4 Hz), 128.8 (s), 127.8 (s), 127.7 (s), 73.0 ((d, J = 6.5 Hz), 72.8 ((d, J = 6.6 Hz), 61.8 (s), 50.5 ((d, J = 3.2 Hz), 35.0 ((d, J = 6.7 Hz), 30.4 (s), 24.0 ((d, J = 4.2 Hz), 23.7 ((d, J = 4.3 Hz), 23.6 ((d, J = 5.5 Hz), 23.5 ((d, J = 5.5 Hz). 31P NMR

(242 MHz, CDCl3) δ (ppm) 23.96. HRMS Calcd for C16H28O4PS+ [M+H]+ 347.1440, found 347.1436

O,O-diethyl S-((tetrahydrofuran-2-yl)methyl) phosphorothioate (5a)

Yield: 20.0 mg, 79%. Yellow oil. ¹H NMR (600 MHz, CDCl₃) δ (ppm) 4.20-4.11 (m, 4H), 4.10-4.05 (m, 1H), 3.89-3.86 (m, 1H), 3.77-3.74 (m, 1H), 3.01-2.90 (m, 2H), 2.08-2.02 (m, 1H), 1.95-1.85 (m, 2H), 1.67-1.61 (m, 1H). 1.34 (t, *J* = 7.08 Hz, 6H). ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 78.2 (d, *J* = 5.6 Hz), 68.6 (s), 63.8 (d, *J* = 5.7 Hz), 35.7 (d, *J* = 3.4 Hz), 30.9 (s), 28.1 (s), 16.3 (d, *J* = 7.3 Hz). ³¹P NMR (242 MHz, CDCl₃) δ (ppm) 27.8. HRMS calcd for C₉H₂₀O₄PS++

[M+H]⁺, 255.0814; found, 255.0824.

0,0-diethyl S-(1-(tetrahydrofuran-2-yl)ethyl) phosphorothioate (5b)

Yield: 21.9 mg, 82%. Yellow oil. ¹H NMR (600 MHz, CDCl₃) δ (ppm) 4.18-4.09 (m, 4H), 3.94-3.91 (m, 1H), 3.87-3.83 (m, 1H), 3.78-3.73 (m, 1H), 3.62-3.56 (m, 1H), 2.02-1.94 (m, 1H), 1.93-1.83 (m, 2H). 1.76-1.68 (m, 1H), 1.44-1.40 (m, 3H), 1.32 (t, J = 7.08 Hz, 6H). ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 82.4 (d, J = 7.4Hz), 69.0 (s), 63.8 (d, J = 6.3 Hz), 46.6 (d, J = 3.4 Hz), 29.3 (s), 26.4 (s), 20.8 (d, J = 3.3 Hz), 16.2 (d, J = 3.6 Hz). ³¹P NMR (242 MHz, CDCl₃) δ (ppm) 28.1 (s), 27.5 (s). HRMS calcd for $C_{10}H_{22}O_4PS^+[M+H]^+$, 269.0971; found, 269.0981.

O,O-diethyl S-(1-(tetrahydrofuran-2-yl)propyl) phosphorothioate (5c)

Yield: 22.5 mg, 80%. Yellow oil. ¹H NMR (600 MHz, CDCl₃) δ (ppm) 4.14-4.05 (m, 4H), 4.03-3.91 (m, 1H), 3.84-3.79 (m, 1H), 3.73-3.67 (m, 1H), 3.27-3.20 (m, 1H), 1.99-1.91 (m, 1H), 1.89-1.86 (m, 1H), 1.84-1.78 (m, 2H), 1.77-1.71(m, 1H), 1.68-1.59 (m, 1H), 1.28 (t, J = 7.05 Hz, 6H). 1.02-0.99 (m, 3H). ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 81.0 (d, J = 5.5 Hz), 68.9 (s), 63.6 (d, J = 6.7 Hz), 54.2 (d, J = 3.3 Hz), 29.5 (s), 27.4 (s), 26.3 (s), 16.1 (d, J = 3.3 Hz), 11.8 (s). ³¹P NMR

 $(242 \text{ MHz, CDCl}_3) \delta$ (ppm) 28.7 (s), 28.0 (s). HRMS calcd for C₁₁H₂₃NaO₄PS⁺ [M+Na]⁺, 305.0947; found, 305.0949.

0,0-diethyl S-(2-(5-methyltetrahydrofuran-2-yl)propan-2-yl) phosphorothioate (5d)

Yield: 25.1 mg, 85%. Yellow oil. ¹H NMR (600 MHz, CDCl₃) δ (ppm) 4.25-4.06 (m, 6H), 2.04-1.86 (m, 4H), 1.51-1.50 (m, 6H). 1.28 (td, J = 8.02 Hz, J = 1.87 Hz, 6H). 1.21-1.19 (m, 3H). ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 85.9 (d, J = 7.8 Hz), 76.2 (s), 63.7 (d, J = 6.6 Hz), 56.8 (d, J = 4.3 Hz), 34.6 (s), 28.7 (s), 26.9 (d, J = 4.4 Hz), 21.4 (s), 16.2 (d, J = 4.0 Hz). ³¹P NMR (242 MHz, CDCl₃) δ (ppm) 24.6 (s), 24.5 (s). HRMS calcd for C₁₂H₂₅NaO₄PS⁺ [M+Na]⁺, 319.1103;

found, 319.1102.

O,O-diethyl S-((4-methyltetrahydrofuran-2-yl)methyl) phosphorothioate (5e)

291.0791.

Yield: 20.6 mg, 77%. Yellow oil. ¹H NMR (600 MHz, CDCl₃) δ (ppm) 4.21-4.08 (m, 5H), 4.01-3.89 (m, 1H), 3.39-3.28 (m, 1H), 3.06-2.90 (m, 2H). 2.37-2.19 (m, 1H). 1.89-1.63 (m, 1H). 1.34 (t, J = 7.06 Hz, 6H), 1.25-1.20 (m, 1H), 1.03 (t, J = 6.89 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 78.9 (s), 75.5 (s), 63.8 (s), 40.1 (s), 35.0 (s), 34.8 (s), 17.8 (s), 16.2 (s). ³¹P NMR (242 MHz, CDCl₃) δ (ppm) 28.2 (s), 27.7 (s). HRMS calcd for C₁₀H₂₁NaO₄PS⁺ [M+Na]⁺, 219.0790; found,

O,O-diethyl S-((2-phenyltetrahydrofuran-2-yl)methyl) phosphorothioate (5f)

Yield: 26.7 mg, 81%. Yellow oil. ¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.58 (d, OEt J = 7.32 Hz, 2H), 7.35 (t, J = 7.20 Hz, 2H), 7.27-7.24 (m, 1H), 4.37-4.34 (m, 1H), 4.15 (d, J = 11.99 Hz, 1H), 3.93-3.87 (m, 2H), 3.82-3.76 (m, 2H), 3.69-3.67 (m, 2H), 2.62-2.58 (m, 1H), 2.43-2.38 (m, 1H), 1.87-1.84 (m, 1H). 1.58-1.55 (m, 1H), 1.18 (t, J = 6.72 Hz, 3H), 1.12 (t, J = 6.72 Hz, 3H). ¹³C NMR $(150 \text{ MHz}, \text{CDCl}_3) \delta$ (ppm) 141.7 (s), 128.5 (s), 127.8 (s), 127.6 (s), 75.1 (d, J = 5.3 Hz), 68.5 (s), 63.6 (t, J = 6.5 Hz), 55.0 (d, J = 3.9 Hz), 36.1 (s), 23.4 (s),

16.1 (dd, J 1= 7.7 Hz, J 2= 10.0 Hz). ³¹P NMR (242 MHz, CDCl₃) δ (ppm) 24.4. HRMS calcd for C₁₅H₂₃NaO₄PS⁺ [M+Na]⁺, 353.0947; found, 353.0940.

O,O-diethyl S-((2-(p-tolyl)tetrahydrofuran-2-yl)methyl) phosphorothioate (5g)

Yield: 28.2 mg, 82%. Yellow oil. ¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.45 (d, -OEt J = 8.16 Hz, 2H), 7.16 (d, J = 8.04 Hz, 2H), 4.32-4.30 (m, 1H), 4.14 (d, J =12.00 Hz, 1H), 3.96-3.87 (m, 2H), 3.86-3.70 (m, 1H), 3.76-3.65 (m, 3H), 2.61-2.58 (m, 1H), 2.38-2.36 (m, 1H), 2.33 (s, 3H), 1.87-1.84 (m, 1H). 1.60-1.55 (m, 1H), 1.17 (t, J = 7.05 Hz, 3H), 1.13 (t, J = 7.05 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 138.6 (d, J = 3.7 Hz), 137.3 (s), 129.1 (s), 127.6 (s), 75.1 (d, J = 6.1 Hz), 68.5 (s), 63.6 (t, J = 6.5 Hz), 55.1 (d, J = 3.9 Hz), 36.0 (d, J = 6.3

Hz), 23.5 (s), 21.2 (s), 16.1 (dd, J_1 = 3.2 Hz, J_2 = 7.4 Hz). ³¹P NMR (242 MHz, CDCl₃) δ (ppm) 23.0. HRMS calcd for C₁₆H₂₅NaO₄PS⁺ [M+Na]⁺, 367.1103; found, 367.1100.

O,O-diethyl S-((2-(4-fluorophenyl)tetrahydrofuran-2-yl)methyl) phosphorothioate (5h)

Yield: 20.8 mg, 60%. Yellow oil. ¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.55 (dd, *J* ₁= 8.64 Hz, *J* ₂= 5.28 Hz, 2H), 7.03 (t, *J* = 8.64 Hz, 2H), 4.37-4.35 (m, 1H), 4.09 (d, *J* = 12.12 Hz, 1H), 3.93-3.88 (m, 2H), 3.85-3.73 (m, 2H), 3.71-3.66 (m, 2H), 2.55-2.51 (m, 1H), 2.36-2.33 (m, 1H), 1.55-1.51 (m, 1H). 1.37-1.34 (m, 1H), 1.16 (dt, *J* ₁= 7.08 Hz, *J* ₂= 18.66 Hz, 6H). ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 162.0 (d, *J* = 247.4 Hz), 137.5 (s), 129.7 (t, *J* = 8.2 Hz), 115.1 (t, *J* = 21.2 Hz), 75.1 (d, *J* = 4.7 Hz), 68.4 (s), 63.7 (dd, *J* ₁= 2.2 Hz, *J* ₂= 6.5 Hz), 54.4 (d, *J* = 3.9 Hz), 36.5 (s), 23.3 (s), 16.1 (t, *J* = 6.0 Hz). ³¹P NMR (242 MHz, CDCl₃) δ

(ppm) 22.7. HRMS calcd for C₁₅H₂₂FNaO₄PS⁺[M+Na]⁺, 371.0853; found, 371.0841. *S*-((2-(4-chlorophenyl)tetrahydrofuran-2-yl)methyl) *O*,*O*-diethyl phosphorothioate (5i)

Yield: 27.3 mg, 75%. Yellow oil. ¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.52 (d, J = 8.64 Hz, 2H), 7.32 (d, J = 8.58 Hz, 2H), 4.39 (d, J = 10.50 Hz, 1H), 4.08 (d, J = 12.12 Hz, 1H), 3.95-3.89 (m, 2H), 3.85-3.80 (m, 1H), 3.79-3.74 (m, 1H), 3.72-3.68 (m, 2H), 2.52 (t, J = 19.38 Hz, 1H), 2.37-2.34 (m, 1H). 1.82-1.78 (m, 1H), 1.57-1.52 (m, 1H), 1.20-1.15 (m, 6H). ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 140.3 (s), 133.4 (s), 129.4 (s), 128.5 (s), 74.9 (d, J = 4.6 Hz), 68.5 (s), 63.8 (dd, J = 1.6 Hz, J = 6.6 Hz), 54.4 (d, J = 3.9 Hz), 36.4 (s), 23.4 (s), 16.1 (t, J = 6.9 Hz). ³¹P NMR (242 MHz, CDCl₃) δ (ppm) 22.0. HRMS calcd for

 $C_{15}H_{22}ClNaO_4PS^+[M+Na]^+$, 387.0557; found, 387.0562.

S-((2-(4-bromophenyl)tetrahydrofuran-2-yl)methyl) O,O-diethyl phosphorothioate (5j)

Yield: 32.6 mg, 80%. Yellow oil. ¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.57 (d, J = 7.62 Hz, 1H), 7.46 (d, J = 3.4 Hz, 1H), 7.34 (t, J = 7.77 Hz, 1H), 7.26-7.24 (m, 1H), 4.35-4.34 (m, 1H), 4.14 (d, J = 12.12 Hz, 1H), 3.95-3.85 (m, 2H), 3.83-3.73 (m, 2H), 3.71-3.65 (m, 2H), 2.60-2.48 (m, 1H), 2.39-2.32 (m, 1H), 1.88-1.82 (m, 1H). 1.59-1.53 (m, 1H), 1.12-1.10 (m, 6H). ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 131.5 (s), 129.8 (s), 128.4 (s), 127.7 (s), 75.0 (d, J = 5.1 Hz), 68.5 (s), 63.8 (d, J = 6.6 Hz), 55.0 (d, J = 4.0 Hz), 36.1 (s), 23.4 (s), 16.1 (d, J = 7.6 Hz). ³¹P NMR (242 MHz, CDCl₃) δ (ppm) 22.9. HRMS calcd for C₁₅H₂₂BrNaO₄PS⁺ [M+Na]⁺, 431.0052; found, 431.0055.

O,O-diethyl S-(2-(2-hydroxyethyl)cyclohex-2-en-1-yl) phosphorothioate (5k)

Yield: 20.6 mg, 70%. Brown oil. ¹H NMR (600 MHz, CDCl₃) δ (ppm) 5.73 (s, 1H), 4.20-4.10 (m, 5H), 3.42-3.39 (d, J = 13.08 Hz, 2H), 2.05-2.01 (m, 4H), 1.65-1.62 (m, 2H), 1.57-1.54 (m, 2H), 1.35 (t, J = 7.11 Hz, 6H). ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 133.4 (d, J = 6.6 Hz) 126.6 (s), 63.6 (d, J = 5.6 Hz), 38.7 (s), 38.6 (s), 27.2 (s), 25.5 (s), 22.8 (s), 22.2 (s), 16.3 (d, J = 7.6 Hz). ³¹P NMR (242 MHz, CDCl₃) δ (ppm) 27.9. HRMS calcd for C₁₂H₂₃NaO₄PS⁺[M+Na]⁺, 317.0947; found, 317.0941. **2-phenyltetrahydrothiophene (6a)**

CDCl3) δ (ppm = 7.38 Hz, 1H), 2.42-2.36 (m,

OH

Yield: 13.1 mg, 80 %. Colorless oil. 1H NMR (600 MHz, 7.42 (d, J = 7.20 Hz, 2H), 7.30 (t, J = 7.45 Hz, 2H), 7.22 (t, J 4.54-4.50 (m, 1H), 3.16-3.13 (m, 1H), 3.04-2.99 (m, 1H), 1H), 2.31-2.25(m, 1H), 2.04-1.90 (m, 2H). 13C NMR (150

MHz, CDCl3) δ (ppm) 143.1 (s), 128.5 (s), 127.7 (s), 127.1 (s), 52.9 (s), 40.6 (s), 33.6 (s), 31.2 (s). HRMS Calcd for C10H13S+ [M+H]+ 165.0732, found 165.0739.

2-(p-tolyl)tetrahydrothiophene (6b)

```
Yield: 15.0 mg, 84 %. Colorless oil. 1H NMR (600 MHz, CDCl3) δ (ppm) 7.31 (d, J = 7.98 Hz, 2H),

7.12 (d, J = 7.92 Hz, 2H), 4.51-4.49 (m, 1H), 3.18-3.14 (m, 1H), 3.03-

3.00 (m, 1H), 2.39-2.35 (m, 1H), 2.33 (s, 3H), 2.29-2.26(m, 1H), 2.03-

1.91 (m, 2H). 13C NMR (150 MHz, CDCl3) δ (ppm) 140.0 (s), 136.7 (s),

129.2 (s), 127.6 (s), 52.6 (s), 40.6 (s), 33.6 (s), 31.2 (s), 21.1 (s). HRMS

Calcd for C11H15S+ [M+H]+ 179.0889, found 179.0887.
```

2-(4-methoxyphenyl)tetrahydrothiophene (6c)

Yield: 15.1 mg, 78 %. Colorless oil. 1H NMR (600 MHz, CDCl3) δ (ppm) 7.33 (d, J = 8.72 Hz, 2H), 6.84 (d, J = 8.67 Hz, 2H), 4.48 (dd, J1 = 6.09 Hz, J2 = 8.73 Hz, 1H), 3.79 (s, 3H), 3.17-3.12 (m, 1H), 3.02-2.98 (m, 1H), 2.38-2.33 (m, 1H), 2.28-2.24(m, 1H), 2.01-1.95 (m, 1H),

1.94-1.88 (m, 1H). 13C NMR (150 MHz, CDCl3) δ (ppm) 158.7 (s), 135.0 (s), 128.7 (s), 113.9 (s), 55.4 (s), 52.4 (s), 40.7 (s), 33.5 (s), 31.1 (s). HRMS Calcd for C11H14NaOS+ [M+Na]+ 217.0658, found 217.0652.

2-methyltetrahydrothiophene (6d)

Yield: 7.1 mg, 70 %. Colorless oil. 1H NMR (600 MHz, CDCl3) δ (ppm) 3.33-3.30 (m, 1H), 2.83-2.78 (m, 1H), 2.72-2.68 (m, 1H), 1.97-1.92 (m, 2H), 1.80-1.73 (m, 1H), 1.42-1.37 (m, 1H), 1.17 (d, J = 6.66 Hz, 3H).13C NMR (150 MHz, CDCl3) δ (ppm) 43.1 (s), 40.6 (s), 32.6 (s), 30.1 (s), 22.6 (s).

T-(4-hydroxy-1-phenylbutyl) O,O-diisopropyl phosphorothioate (3ac)

Yield: 26.6 mg, 77 %. Yellow oil. 1H NMR (600 MHz, CDCl3) δ (ppm) 7.34-7.29 (m, 4H), 7.25-7.22 (m, 1H), 4.70-4.64 (m, 1H), 4.49-4.43 (m, 1H), 4.39-4.35 (m, 1H), 3.66-3.59 (m, 2H), 2.27-2.21 (m, 1H), 2.12-2.07 (m, 1H), 1.55-1.50 (m, 2H), 1.33 ((d, J = 6.18 Hz, 3H), 1.22 (d, J = 6.21 Hz, 3H), 1.18 (t, J = 6.91 Hz, 6H). 3C NMR (150 MHz, CDCl3) δ (ppm) 142.2 ((d, J = 5.4 Hz), 128.8 (s), 127.8 (s), 127.7 (s), 73.0 ((d, J = 6.5 Hz), 72.8 ((d, J = 6.6 Hz), 61.8 (s), 50.5 ((d, J = 3.2 Hz), 35.0 ((d, J = 6.7 Hz), 128.8 (s), 127.8 (s), 128.8 (s), 12

30.4 (s), 24.0 ((d, J = 4.2 Hz), 23.7 ((d, J = 4.3 Hz), 23.6 ((d, J = 5.5 Hz), 23.5 ((d, J = 5.5 Hz). 31P NMR (242 MHz, CDCl3) δ (ppm) 23.96. HRMS Calcd for C16H28O4PS+ [M+H]+ 347.1440, found 347.1436.

4,4'-disulfanediylbis(4-phenylbutan-1-ol) (7a)

Yield: 29.0 mg, 80 %. Yellow oil.1H NMR (600 MHz, CDCl3) δ (ppm) 7.34-7.27 (m, 6H), 7.20-7.15 (m, 4H), 3.56-3.53 (m,4H) 3.53 (dd, J1 = 6.15 Hz, J2 = 9.21 Hz, 1H), 3.29 (dd, J1 = 6.64 Hz, J2 = 9.72 Hz, 1H), 2.12-2.06 (m, 1H), 2.02-1.97 (m, 1H), 1.89-1.80 (m, 2H), 1.45-1.38 (m, 4H). 13C NMR (150 MHz, CDCl3) δ (ppm) 141.4 (s), 141.2(s), 128.6 (s), 128.5 (s), 128.4 (s), 127.7 (s), 127.6

(s), 62.5 (s), 62.4 (s), 55.1 (s), 54.9 (s), 31.0 (s), 30.9 (s), 30.8 (s), 30.7 (s). HRMS Calcd for C20H27O2S2+ [M+H]+ 363.1447, found 363.1442.

³¹P NMR, ¹H NMR and ¹³C NMR Spectra for All Compounds _{3a}

3a

3b

3c

3d

3e

3f

3g

3h

3i

3i

3i

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

S36

3k

3m

3n

3n

3q

3r

3q

3r

3s

3s

3r

3t

3t

3u

3u

3v

3w

3w

3w

3x

3y

3y

3z

Ó

ррт

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10

3ac

3ad

3ae

S65

3af

3ag

3ah

5a

5a

5a

5b

S73

5d

9 8 7 6 5 4 3 2 1 0 8 8 9 8 7 6 5 4 3 2 1 0

_1 ppm

------10

5e

5f

5f

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

5g

5g

5h

5i

S82

5j

S86

6b

6d

7a