Asymmetric cycloisomerization/[3+2] cycloaddition for synthesis of

chiral spiroisobenzofuran-1,3'-pyrrolidine derivatives

Pei Dong,^a Long Chen,^a Zhendong Yang,^a Shunxi Dong,^{*a} and Xiaoming Feng^{*a}

Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China E-mail: dongs@scu.edu.cn; xmfeng@scu.edu.cn

Content

(A)	General information
(B)	General procedures for the preparation of Au(I) catalyst and chiral <i>N</i> , <i>N</i> -dioxide
(C)	General procedures for the preparation of substrates
(D)	Experimental procedures
(E)	Optimization of the reaction conditions
(F)	Control experiments
(G)	Unsuccessful substrates 10
(H)	Experimental procedure for the scale-up reaction
(I)	X-ray crystal structure of product
(J)	Spectral characterization data for the products
(K)	Copies of NMR spectra for the products
(L)	Copies of CD spectra
(M)	Supplementary reference

(A) General information

¹H NMR spectra were recorded on a Bruker ASCENDTM 400M (400MHz) in CDCl₃. Chemical shifts were reported in ppm from tetramethylsilane with the solvent resonance as the internal standard (CDCl₃, δ = 7.26). Spectra were reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants (Hz), integration and assignment. ¹³C{¹H} NMR spectra were collected were collected on a Bruker ASCENDTM 400M (100MHz) with complete proton decoupling. Chemical shifts are reported in ppm from the tetramethylsilane with the solvent resonance as internal standard (CDCl₃, $\delta = 77.0$). High-resolution mass spectra (HRMS) were performed on Thermo Q-Exactive Focus (FTMS+c ESI) and data were reported as (m/z). Enantiomeric excess (ee) was determined by HPLC analysis using the corresponding commercially chiral column as stated in the experimental procedures at 23 °C with UV detector. Infrared spectra (IR) were recorded on Bruker Tensor || spectrometer with Plantium ATR accessory and the peaks are reported as absorption maxima (v, cm⁻¹). Optical rotations were measured with a Perkin-Elmer model 241 polarimeter and reported as follows: $[\alpha] \lambda^{T}$ (c: g/100 mL, in DCM, λ). Commercially available reagents were used without further purification. Molecular sieves were activated at 500 °C for 5 h, then cooled and stored under N₂ atmosphere. All the imines were prepared according to literature.¹ 1,2-dichlorobenzene was dried with CaCl₂, and distilled according to Purification of Laboratory Chemicals (Fifth Edition). CH₃CCl₃, CH₂ClCH₂Cl, CHCl₃, CHCl₂CHCl₂, Et₂O, PhCH₃ and PhCl were directly distilled before use. Chromatography: Silica gel (HG/T2354-2010) made in Qingdao Haiyang Chemical Co., Ltd.

(B) General procedures for the preparation of Au(I) catalyst and chiral N,N'-dioxide

1. Preparation of PPh₃AuNTf₂

An oven-dried test tube was charged with PPh₃AuCl (355 mg, 0.5 mmol) and AgNTf₂ (1.05 equiv) under N₂ atmosphere, then CH₂Cl₂ (0.25 mL) was added and it was stirred for 5 h at 35 °C. After filtration over celite to remove the silver chloride salt, the PPh₃AuNTf₂ was obtained quantitatively by evaporation of and stored under N₂ atmosphere.

2. Preparation of chiral N,N'-dioxide

The N,N-dioxide ligands were prepared by the similar procedure in the literatures.²

(C) General procedures for the preparation of substrates

1. Preparation of aziridines

All the aziridines were prepared according to the literature.³

2. Preparation of alkynyl alcohols and amides

All the alkynyl alcohols and amides were prepared according to the literature.⁴

(D) Experimental procedures

1. Preparation of the racemates

Preparation of the racemates of **3e**, **3l**, **3p**: Yb(OTf)₃ (10 mol%, 6.1 mg), PPh₃AuNTf₂ (5 mol%, 3.6 mg) and 4 Å MS (80 mg) were flushed with argon and dissolved in DCM (1.0 mL) at 35 °C, then aziridine **1** (0.1 mmol) and alkynyl alcohol **2** (0.1 mmol) were slowly added and stirred for 2–16 h. The reaction mixture was subjected to flash column chromatography on silica gel and eluted with petroleum ether/ethyl acetate (5:1, v/v) to afford the desired product **3**.

Preparation of other racemates: $Yb(OTf)_3$ (10 mol%, 6.1 mg), (±)-L₃-PiMe₂ (10% mol), PPh₃AuNTf₂ (5 mol%, 3.6 mg) and 4 Å MS (80 mg) were flushed with argon and dissolved in DCM (1.0 mL) at 35 °C for 0.5 h, then aziridine 1 (0.1 mmol) and alkynyl alcohol 2 (0.1 mmol) were slowly added and stirred for 2–16 h. The residue was subjected to flash column chromatography on silica gel and eluted with petroleum ether/ethyl acetate (8:1–4:1, v/v) to afford the desired product.

2. General procedures for the catalytic asymmetric reaction

PPh₃AuNTf₂ (5 mol%), Dy(OTf)₃/L₃-RaEt₂ (5 or 10 mol%), NaBAr₄^F (2% mol) and 4 Å MS (100 mg) were stirred in 1,2-dichlorobenzene (3.0 mL) at 35 °C for 0.5 h under nitrogen atmosphere. Subsequently, aziridine 1 (0.1 mmol) and alkynyl alcohol **2** were added. The reaction was stirred at 35 °C and monitored by TLC. The reaction mixture was directly purified by flash chromatography on silica gel (eluent: petroleum ether/diethyl ether = 4:1–8:1) to afford the desired product **3**. The ee values were determined by high-performance liquid chromatography (HPLC) with Chiralcel AD-H, ASH, IF. The dr values were determined by ¹H NMR spectroscopy.

(E) Optimization of the reaction conditions

SO ₂ Pr N Ph C 1a	D ₂ Et + OH D ₂ Et + 2a	PPh ₃ AuNTf ₂ (5 md Yb(OTf) ₃ /L ₃-PiEt₂ (1:1.1 4 Å MS, T 14 h, DCM	ol%) , 5 mol%)	O CO ₂ Et CO ₂ Et SO ₂ Ph 3a
Entry ^a	t (°C)	Yield (%) ^b	d.r. ^{<i>c</i>}	ee (%) ^c
1	0	21	60:40	27/31
2	10	30	64:36	31/37
3	20	42	67:34	47/41
4	35	57	75:25	51/47

Table S1. Screening of temperature

^{*a*} Unless otherwise noted, all reactions were performed with **1a** (0.1 mmol), **2a** (0.1 mmol), Ph₃PAuNTf₂ (2.5 mol %), Dy(OTf)₃/L₃-RaEt₂ (1:1, 5 mol %), 4 Å MS (80 mg) in solvent (3.0 mL) at 35 °C under N₂ for 14 h. ^{*b*} Isolated yield. ^{*c*} Determined by HPLC analysis using a chiral stationary phase.

Table S2. Screening of solvents

	Ph CO_2Et + OH OH Ia $2a$	PPh ₃ AuNTf ₂ (5 mol%) Yb(OTf) ₃ /L ₃ -PiEt ₂ (1:1.1, 5 mol%) 4 Å MS, 35 °C, 14 h	Ph	CO_2Et CO_2Et N SO_2Ph 3a
Entry ^a	Solvent	Yield (%) ^b	d.r. ^c	ee (%) ^c
1	Et ₂ O	53	82:16	34/57
2	EtOAc	77	45:55	23/31
3	THF	28	47:53	52/34
4	toluene	96	71:29	53/32
5	DCM	57	75:25	51/47
6	DCE	67	80:20	47/57
7	1,1,1-trichloroethane	64	78:22-	64/49
8	1,1,2-trichloroethane	68	51:49	58/56
9	1,1,2,2-tetrachloroethane	78	63:37	57/49
10	chlorobenzene	58	75:25	69/69
11	1,2-dichlorobenzene	31	71:29	77/62
12	1,3-dichlorobenzene	41	67:23	71/55
13	1,2,4-trichlorobenzene	43	72:28	77/74

^{*a*} Unless otherwise noted, all reactions were performed with **1a** (0.1 mmol), **2a** (0.10 mmol), Ph₃PAuNTf₂ (2.5 mol %), Dy(OTf)₃/**L**₃-**RaEt**₂ (1:1, 5 mol %), 4 Å MS (80 mg) in solvent (3.0 mL) at 35 °C under N₂ for 14 h. ^{*b*} Isolated yield. ^{*c*}

	SO ₂ Ph N CO ₂ Et Ph CO ₂ Et 1a	- ОН 2а	PPh ₃ AuNTf ₂ (2.5 mol%) M (5 mol%) L* (5 mol%) 4 Å MS 1,2-dichlorobenzene 35 °C, 14 h	Ph 3a	Et ₂ Et "Ph
	N-H R) FO R	
	L ₃ -PrMe ₂ : R L ₃ -PrEt ₂ : R = L ₃ -PrEt ₂ Me:	= 2,6-Me ₂ C ₆ H ₃ = 2,6-Et ₂ C ₆ H ₃ R = 2,6-Et ₂ -4-MeC ₆ H ₂	L ₃ -PiMe ₂ : R = 2,6-Me ₂ C ₆ H L ₃ -PiEt ₂ : R = 2,6-Et ₂ C ₆ H ₃ L ₃ -PiEt ₂ Me: R = 2,6-Et ₂ -4	H₃ MeC ₆ H₃	
	0 N H N H	N N H H N R	$\label{eq:L3-RaMe_2: R = 2,6-Me_2C_6} L_3-RaEt_2: R = 2,6-Et_2C_6H_2 L_3-RaEt_2Me: R = 2,6-Et_2-4 L_3-RaEt_2Bu: R = 2,6-iPrC_9-1 L_3-RaPr_2: R = 2,6-iPrC_6H_3 L3-RaEt_2Ad: R = 2,6-Et_2-4 L3-RaEt_2-Ad: R = 2,6-Et_2-4 R3-RaEt_2-Ad: R = 2,6-Et_2-Ad: R = 2,6-Et_2-4 R3-RaEt_2-Ad: R = 2,6-Et_2-Ad: R $	H ₃ 3 4-MeC ₆ H ₂ 4-{BuC ₆ H ₂ 3 4-(1-adamantyl)C ₆ H ₂	
Entry ^a	Metal salt	L*	Yield (%) ^b	d.r. (%) ^c	ee (%) ^c
1	Sc(OTf) ₃	L ₃ -RaEt ₂	42	57:43	0/34
2	Y(OTf) ₃	L3-RaEt2	41	60:40	58/57
3	La(OTf) ₃	L ₃ -RaEt ₂	24	51:49	31/-21
4	Ce(OTf) ₃	L3-RaEt2	23	55:45	30/-10
5	Pr(OTf) ₃	L3-RaEt2	26	55:45	33/-13
6	Nd(OTf)3	L3-RaEt2	27	68:32	36/26
7	Sm(OTf) ₃	L3-RaEt2	31	71:29	71/34
8	Eu(OTf) ₃	L ₃ -RaEt ₂	33	73:27	71/41
9	Gd(OTf)3	L3-RaEt2	37	75:25	75/47
10	Tb(OTf)3	L3-RaEt2	40	74:26	77/51
11	Dy(OTf) ₃	L3-RaEt2	47	77:23	81/61
12	Ho(OTf) ₃	L3-RaEt2	51	75:25	77/62
13	Er(OTf) ₃	L3-RaEt2	47	74:26	77/60
14	Tm(OTf) ₃	L3-RaEt2	40	75:25	77/61
15	Yb(OTf) ₃	L3-RaEt2	31	71:29	77/62
16	Lu(OTf) ₃	L ₃ -RaEt ₂	28	67:23	65/49
17	Dy(OT) ₃	L3-RaMe2	47	65:35	61/42
18	Dy(OT) ₃	L3-RaEt2Me	51	69:31	67/47
19	Dy(OT) ₃	L3-RaEt2Bu	28	72:28	51/51
20	Dy(OT) ₃	L3-RaPr2	52	68:22	70/62
21	Dy(OT) ₃	L ₃ -RaEt ₂ Ad	51	71:29	57/39
22	Mg(OTf) ₂	L3-RaEt2	NR	-	-

Table S3. Screening of metal salts and chiral N,N'-dioxide ligands

23	Ni(OTf) ₃	L ₃ -RaEt ₂	NR	-	-
24	Cu(OT) ₂	L ₃ -RaEt ₂	NR	-	-
25	Zn(OTf) ₂	L ₃ -RaEt ₂	NR	-	-
26	Dy(OT) ₃	L ₃ -PrEt ₂	41	57:43	54/31
27	Dy(OT) ₃	L ₃ -PiEt ₂	45	61:39	59/47

^{*a*} The reactions were performed with **1a** (0.1 mmol), **2a** (0.1 mmol), Ph₃PAuNTf₂ (2.5 mol %), M/L (1:1, 5 mol %), 4Å MS (80 mg) in 1,2-dichlorobenzene (3.0 mL) at 35 °C for 14 h. ^{*b*} Isolated yield. ^{*c*} Determined by HPLC analysis using a chiral stationary phase.

Table S4. Screening of transition-metal salts

	SO ₂ Ph	[Au] (2.5 mol%) Dy(OTf) ₃ /L ₃ -RaEt ₂ (1:1, 5 m	iol%)	CO ₂ Et
Pł	CO ₂ Et +	4 Å MS 35 °C, 14 h 1,2-dichlorobenzene		Ph
	1a 2a			3a
Entry ^a	[Au]	Yield (%) ^b	d.r. ^{<i>c</i>}	ee (%) ^c
1	PPh ₃ AuCl/AgOAc	13	-	-
2	PPh ₃ AuCl/AgNO ₃	mixture	-	-
3	PPh3AuCl/AgBF4	mixture	-	-
4	PPh ₃ AuCl/AgSbF ₆	31	68:32	65/59
5	PPh ₃ AuCl/AgOTf	49	70:30	71/65
6	PPh ₃ AuCl/AgNTf ₂	57	72:28	78/57
7	PPh ₃ AuNTf ₂	47	75:25	81/55
8^d	PPh ₃ AuNTf ₂	59	74:26	81/55
9	IPrAuNTf ₂	37	64:36	64/57
10	PPh ₃ AuCl	31	55:45	57/57
11	AuCl ₃	15	61:39	47/61
12	AuCl(CH ₃ SCH ₃)	17	54:46	31/51
13	CuI	NR	-	

^{*a*} Unless otherwise noted, all reactions were performed with **1a** (0.1 mmol), **2a** (0.1 mmol), PPh₃AuCl/AgX (1:1, 2.5 mol %), Dy(OTf)₃/L₃-RaEt₂ (1:1, 5 mol %), 4 Å MS (80 mg) in 1,2-dichlorobenzene (3.0 mL) at 35 °C under N₂ for 14 h. ^{*b*} Isolated yield. ^{*c*} Determined by HPLC analysis using a chiral stationary phase. ^{*d*} 5% mol PPh₃AuNTf₂ was used.

Table S5. Screening of molecular sieves

Ph	O_2Ph O_2Et + OH O_2Et +	PPh ₃ AuNTf ₂ (5 mol%) Dy(OT) ₃ /L ₃ -RaEt ₂ (1:1, 5 mo Molecular sieves 1,2-dichlorobenzene 35 °C, 14 h		O CO_2Et CO_2Et N SO_2Ph
1	a 2a			3a
Entry ^a	Molecular sieves	Yield (%) ^b	d.r. ^{<i>c</i>}	ee (%) ^c
1	3Å MS, 80 mg	37	49:51	71/71
2	4Å MS, 80 mg	59	75:25	87/61
3	5Å MS, 80 mg	17	60:40	47/37
4	4Å MS, 40 mg	41	68:32	77/51
5	4Å MS,100 mg	67	72:28	87/55
6	4Å MS, 120 mg	71	67:33	88/61
7	4Å MS,160 mg	44	61:39	77/61
8	4Å MS, 200 mg	31	57:33	71/57

^{*a*} The reactions were performed with **1a** (0.1 mmol), **2a** (0.1 mmol), PPh₃AuNTf₂ (5 mol %), Dy(OTf)₃/L₃-RaEt₂ (1:1, 5 mol %), molecular sieves in 1,2-dichlorobenzene (3.0 mL) at 35 °C under N₂ for 14 h. ^{*b*} Isolated yield. ^{*c*} Determined by HPLC analysis using a chiral stationary phase.

Table S6. Screening of additives

PI	$1a$ $SO_{2}Ph$ OH OH OH $SO_{2}Et$ OH OH	PPh ₃ AuNTf ₂ (5 mol%) Dy(OTf) ₃ /L ₃ -RaEt ₂ (1:1, 5 mol%) 4 Å MS, 35 °C, 14 h 1,2-dichlorobenzene additive	Ph	$O CO_2Et$ CO_2Et $N SO_2Ph$ 3a
Entry ^a	Additives	Yield (%) ^{<i>b</i>}	d.r. ^c	ee (%) ^c
1	H ₂ O (10 µL)	36	55:45	67/59
2	EtOAc (10 μL)	77	44:56	61/43
3	1,4-dioxane (10 μL)	41	87:13	67/70
4	Toluene (10 µL)	82	73:27	51/32
5	Et ₂ O (10 μL)	53	84:16	66/67
6	THF (10 μL)	48	70:30	45/64
7	PhCOOH (10 mol%)	44	40:60	71/59
8	LiNTf ₂ (10 mol%)	47	81:19	45/38
9	NaBAr4 ^F (10 mol%)	31	73:27	87/47
10	NaBAr ₄ ^F (2 mol%)	67	75:25	90/51
a The		(MNITE (5	10/) D(OTA /I

^{*a*} The reactions were performed with **1a** (0.1 mmol), **2a** (0.10 mmol), Ph₃PAuNTf₂ (5 mol %), Dy(OTf)₃/L₃-**RaEt**₂ (1:1, 5 mol %), 4 Å MS (100 mg) and additive in 1,2-dichlorobenzene (3.0 mL) at 35 °C under N₂ for 14 h. ^{*b*} Isolated yield. ^{*c*} Determined by HPLC analysis using a chiral stationary phase.

Table S7. Screening of the ratio of Dy(OTf)₃ and chiral N, N'-dioxide ligand

	SO ₂ Ph	PPh ₃ AuNTf ₂ (5 mol%) Dy(OTf) _{3/} L-RaEt ₂ (x:y, 5 mol%)		CO₂Et -CO₂Et
	Ph CO ₂ Et	4 Å MS, 35 °C, 14 h 1,2-dichlorobenzene	∑-N.	SO ₂ Ph
	1a 2a	NaBAr ₄ ^F	Ph 3a	-
Entry ^a	x: y	Yield (%) ^b	d.r. ^{<i>c</i>}	ee (%) ^d
1	1:1	67	75:25	90/61
2	1:1.1	67	74:26	92/61
3	1:1.2	68	74:26	89/60
4	1:1.5	67	60:40	84/52
5	1:2	trace	-	-
6	1.1:1	68	72:28	87/60
7	1.2:1	77	70:30	79/61
8	1.5:1	71	55:45	77/57
9	2:1	61	53:27	67/61

^{*a*} The reactions were performed with **1a** (0.1 mmol), **2a** (0.1 mmol), AuPPh₃NTf₂ (5 mol %), Dy(OTf)₃/**L-RaEt**₂ (x:y, 5 mol %), 4 Å MS (100 mg) and NaBAr₄^F (2 mol %) in 1,2-dichlorobenzene (3.0 mL) at 35 °C under N₂ for 14 h. ^{*b*} Isolated yield by silica gel chromatography. ^{*c*} Determined by ¹H NMR spectroscopy. ^{*d*} Determined by HPLC analysis using a chiral stationary phase.

	$Ph \xrightarrow{\text{N}}_{\text{CO}_2\text{Et}}^{\text{CO}_2\text{Ph}} + \underbrace{\text{Ph}}_{\text{CO}_2\text{Et}}^{\text{N}} + \underbrace{\text{CO}_2\text{Et}}^{\text{N}} + \underbrace{\text{CO}_2\text{Et}}^{\text$	PPh ₃ AuNTf ₂ (5 mol%) OH Dy(OTf) _{3/} L-RaEt ₂ (1:1.1, 5 mol%) ↓ Å Å MS, 35 °C, 14 h ↓ 1,2-dichlorobenzene NaBAr ₄ ^F	Ph 3a	CO_2Et $-CO_2Et$ N_SO_2Ph
Entry ^a	1a:2a	Yield (%) ^b	d.r. ^{<i>c</i>}	ee (%) ^d
1	1:1	67	75:25	90/56
3	1:1.2	71	74:26	92/55
4	1:1.5	77	60:40	87/52
5	1:2	trace	-	-
7	1.2:1	77	70:30	88/61
8	1.5:1	85	55:45	71/57
9	2:1	61	53:27	67/61

Table S8. Screening of the ratio of the substrates

^{*a*} The reactions were performed with **1a**, **2a** at 0.1 mmol scale AuPPh₃NTf₂ (5 mol %), Dy(OTf)₃/**L-RaEt**₂ (1:1.1, 5 mol %), 4 Å MS (100 mg) and NaBAr₄^F (2 mol %) in 1,2-dichlorobenzene (3.0 mL) at 35 °C under N₂ for 14 h. ^{*b*} Isolated yield by silica gel chromatography. ^{*c*} Determined by ¹H NMR spectroscopy. ^{*d*} Determined by HPLC analysis using a chiral stationary phase.

Table S9. Rescreening of the chiral N,N'-dioxide ligands and other ligands

L2: BINAP

L3: CPA-1

		N O C C C C C C C C C C C C C C C C C C
`	/	

L1: salen

L4: 'Pr-P	yBox L5: 'Bu	-Box L6: F	-п-Рувох	L1: Pr-Box
Entry ^a	L*	Yield (%) ^b	d.r. (%) ^c	ee (%) ^c
1	L2-RaMe2	42	70:30	47/21
2	L2-RaEt2	55	71:29	62/33
3	L3-RaMe2	57	67:33	77/42
4	L ₃ -RaEt ₂	71	74:26	92/55
5	L ₃ -RaEt ₂ Me	68	71:29	77/48
6	L ₃ -RaEt ₂ Br	43	75:25	91/58
7	L4-RaMe2	49	61:29	66/37
8	L4-RaEt2Me	47	66:33	69/44
9	L1	trace		
10	L2	trace		
11	L3	12	57:43	5/3
12	L4	37	67:33	31/24
13	L5	21	73:27	15/7
14	L6	40	63:37	21/10
15	L7	37	40:60	0/3

mol %), 4Å MS (100 mg) and NaBAr4^F (2 mol %) in 1,2-dichlorobenzene (3.0 mL) at 35 °C for 14 h. ^{*b*} Isolated yield. ^{*c*} Determined by HPLC analysis using a chiral stationary phase.

(F) Control experiments

$ \begin{array}{c} SO_2Ph \\ N \\ CO_2Et \\ CO_2Et \\ \end{array} + \begin{array}{c} OH \\ OH \\$			PPh ₃ AuNTf ₂ (Dy(OTf) ₃ / L₃-RaEt₂ (NaBAr ₄ ^F (2 r 4 Å MS, 35 °C 1,2-dichlorobe	5 mol%) 1:1.1, 5 mol%) mol%) C,14 h enzene		O₂Et CO₂Et SO₂Ph	
		1a	2a			Pn 3a	
	Entey ^a	Dy(OTf) ₃	L-RaEt ₂	Au (III)	Yield (%) ^b	dr^c	$ee^d(\%)$
	1	+	+	+	71	74:26	92/55
	2	_	_	+	n.r.		
	3	_	+	+	n.r.		
	4	+	_	+	57	70:30	
	5	+	+	PPh ₃ AuCl	31	55:45	57/57
	6	+	+	AgNTf ₂	17	75:25	77/42

(G) Unsuccessful substrates

(H) Experimental procedure for the scale-up reaction

An over dried test tube was charged with $Dy(OTf)_3$ (5 mol%, 0.15 mmol, 182.9 mg), L_3 -RaEt₂ (5.5 mol%, 0.165 mmol, 106.3 mg), AuPPh₃NTf₂ (5% mol, 212.5 mg), NaBAr4^F (2 mol%, 0.06 mmol, 53.2 mg), 4 Å MS (2.5 g) and 1,2-dichlorobenzene (45 mL) under N₂ atmosphere and the resulting solution was stirred at 35 °C for 2 h. Then, the solution of **1d** (3.0 mmol, 1.58 g) and **2a** (4.5 mmol, 0.59 g) in 45 mL 1,2-dichlorobenzene were slowly added into the tube. Then, the reaction mixture was stirred at 35 °C and detected by TLC. After the reaction was completed, the residue was subjected to column chromatography (SiO₂, eluent: petroleum ether/ethyl acetate = 8:1 to 4:1) to afford the enantioenriched product **3d** (73% yield, 1.25 g, 85:15 dr., 95% ee).

(I) X-ray crystal structure of product

The following single crystal **3d** was recrystallized from DCM/*n*-hexane. The absolute configuration of **3d** was determined as (1S,5'R) by X-ray diffraction. CCDC 2041898 contains the supplementary crystallographic data which can be obtained free of charge from The Cambridge Crystallographic Data Centere via <u>https://www.ccdc.cam.ac.uk/structures/</u>

Figure 1. the thermal ellipsoid figure of 3d with 50% probabilities

α , 1	11	1 ' 1		C	A 1
(rvstal	llooran	hic I)ata	tor	-sd
Crysta	nogrup	inc i	Juiu	101	ou.

Formula	C29H28CINO7S (3d)
Formula mass (amu)	570.0530
Space group	P 21 21 21
<i>a</i> (Å)	13.2473(6)
c (Å)	12.8427(6)

<i>c</i> (Å)	c=16.3970(8)
α (deg)	90
β (deg)	90
γ(deg)	90
$V(\text{\AA}^3)$	2787.0(2)
Ζ	4
λ (Å)	0.71073
<i>T</i> (K)	147
$ ho_{ m calcd}$ (g cm ⁻³)	1.359
μ (mm ⁻¹)	0.26
Transmission factors	0.916, 0.972
$2\theta_{\max}(\deg)$	27.519
No. of unique data, including $F_0^2 < 0$	12801
No. of unique data, with $F_0^2 > 2\sigma(F_0^2)$	12414
No. of variables	707
$R(F)$ for $F_0^2 > 2\sigma(F_0^2)^a$	0.0254
$R_{\rm w}(F_{\rm o}{}^2)$ ^b	0.0660
Goodness of fit	1.039

^{*a*} $R(F) = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|.$

 ${}^{b} R_{w}(F_{o}{}^{2}) = \left[\sum \left[w(F_{o}{}^{2} - F_{c}{}^{2})^{2}\right] / \sum wF_{o}{}^{4}\right]^{1/2}; w^{-1} = \left[\sigma^{2}(F_{o}{}^{2}) + (Ap)^{2} + Bp\right], \text{ where } p = \left[\max(F_{o}{}^{2}, 0) + 2F_{c}{}^{2}\right] / 3.$

(J) Spectral characterization data for the products

Diethyl (1*S*,5'*R*)-5'-phenyl-1'-(phenylsulfonyl)-*3H*-spiro[isobenzofuran-1,3'-pyrrolidine]-2',2'dicarboxylate (3a)

0.1 mmol scale reaction, 14 h, 38.1 mg, 71% yield; white foam. Melting point: 122 - 123 °C. 74:26 dr., 92% ee for the major isomer and 55% ee for the minor isomer. $[\alpha]_D^{17} = +37.4$ (c = 1.26 in CH₂Cl₂).

HPLC (Daicel chiralcel ADH, hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm) t_r (major-major) = 16.70 min, t_r (major-minor) = 26.72 min, t_r (minor-major) = 14.64 min, t_r (minor-minor) = 15.26 min.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.59 (dd, J = 8.4, 1.2 Hz, 2H), 7.50 – 7.36 (m, 5H), 7.35 – 7.27 (m, 2H), 7.25 – 7.19 (m, 3H), 7.16 – 7.06 (m, 2H), 5.82 (d, J = 10.4 Hz, 1H), 4.96 (s, 2H), 4.54 – 4.35 (m, 3H), 4.23 – 4.04 (m, 1H), 3.53 (dd, J = 13.6, 10.8 Hz, 1H), 2.31 (dd, J = 13.6, 1.6 Hz, 1H), 1.42 (t, J = 7.2 Hz, 3H), 1.12 (t, J = 7.2 Hz, 3H).

¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 167.73, 165.85, 141.29, 140.73, 136.78, 131.96, 128.95, 128.62, 128.56, 128.21, 127.95, 127.81, 127.74, 127.54, 127.46, 126.8, 122.26, 120.54, 99.78, 73.12, 64.45, 62.52, 61.59, 47.85, 13.89, 13.70.

HR-MS (ESI) calcd for $C_{29}H_{29}NNaO_7S^+$ ([M]+Na⁺) = 558.1557, found 558.1558.

IR (neat) *v* (cm⁻¹): 2983, 1753, 1724, 1447, 1365, 1339, 1264, 1227, 1021, 897, 755, 728, 689, 605, 571, 545, 471.

Diethyl (1*S*,5'*R*)-1'-(phenylsulfonyl)-5'-(p-tolyl)-*3H*-spiro[isobenzofuran-1,3'-pyrrolidine]-2',2'dicarboxylate (3b)

0.1 mmol scale reaction, 14 h, 30.1 mg, 55% yield; white foam. Melting point: 108 – 111 °C. 80:20 dr., 90% ee for the major isomer and 78% ee for the minor isomer. $[\alpha]_{\lambda}^{17} = +5.6$ (c = 0.37 in CH₂Cl₂, $\lambda = 405$ nm). **HPLC** (Daicel chiralcel ADH, hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm) t_r (major-major) = 15.66 min, t_r (major-minor) = 27.68 min, t_r (minor-major) = 25.31min, t_r (minor-minor) = 33.29 min. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.50 (d, J = 8.2 Hz, 2H), 7.43 – 7.28 (m, 4H), 7.22 (s, 1H), 7.18 – 7.09 (m, 4H), 6.84 (d, J = 7.6 Hz, 2H), 5.71 (d, J = 10.8 Hz, 1H), 4.91 (s, 2H), 4.46 – 4.26 (m, 3H), 4.13 – 3.98 (m, 1H), 3.43 (dd, J = 13.2, 10.8 Hz, 1H), 2.26 (s, 3H), 2.21 (s, 1H), 1.35 (t, J = 7.2 Hz, 3H), 1.05 (t, J = 7.2 Hz, 3H).

¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 167.76, 165.84, 140.68, 138.38, 136.52, 131.83, 129.01, 128.63, 128.49, 128.22, 127.54, 127.39, 122.28, 120.54, 99.76, 73.13, 64.32, 62.49, 61.57, 47.91, 21.05, 13.90, 13.71. HR-MS (ESI) calcd for C₃₀H₃₁NNaO₇S⁺ ([M]+Na⁺) = 572.1713, found 572.1714.

IR (neat) *v* (cm⁻¹): 2926, 1756, 1726, 1514, 1447, 1340, 1293, 1231, 1158, 1063, 1025, 899, 815, 760, 727, 689, 604, 576, 547, 466.

Diethyl (1*S*,5'*R*)-5'-(4-fluorophenyl)-1'-(phenylsulfonyl)-*3H*-spiro[isobenzofuran-1,3'-pyrrolidine]-2',2'-dicarboxylate (3c)

0.1 mmol scale reaction, 28 h, 22.7 mg, 41% yield; white foam. Melting point: 128 - 131 °C. 80:20 dr., 94% ee for the major isomer and 68% ee for the minor isomer. [α]_D¹⁷ = +25.7 (c = 0.30 in CH₂Cl₂).

HPLC (Daicel chiralcel ADH, hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm) t_r (major-major) = 25.87 min, t_r (major-minor) = 31.88 min, t_r (minor-major) = 35.43, t_r (minor-minor) = 44.69.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.67 – 7.43 (m, 2H), 7.41 – 7.25 (m, 5H), 7.19 (q, J = 7.6 Hz, 4H), 6.81 – 6.63 (m, 2H), 5.72 (d, J = 9.6Hz, 1H), 4.89 (s, 2H), 4.46 – 4.25 (m, 3H), 4.18 – 4.01 (m, 1H), 3.45 (dd, J = 13.2, 10.4 Hz, 1H), 2.20 – 2.16 (m, 1H), 1.34 (t, J = 7.2 Hz, 3H), 1.05 (t, J = 7.2 Hz, 3H).

¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 167.63, 165.86, 163.07, 160.63 (d, J = 246.0 Hz), 140.64 (d, J = 4.8 Hz), 137.15, 136.61, 132.18, 129.86, 129.78(d, J = 8.0 Hz), 129.11, 127.84, 127.57, 122.24, 120.57, 114.62, 114.41(d, J = 21.4 Hz), 99.74, 85.32, 73.15, 63.70, 62.58, 61.67, 13.88, 13.69.

HRMS (ESI) calcd for $C_{29}H_{28}FNNaO_7S^+$ ([M]+Na⁺) = 567.1463, found 567.1465.

¹⁹**F**{¹**H**} **NMR** (376 MHz, Chloroform-*d*) $\delta = -116.11$.

IR (neat) *v* (cm⁻¹): 2984, 1754, 1725, 1604, 1510, 1447, 1341, 1295, 1226, 1156, 1063, 1043, 1022, 899, 839, 760, 728, 689, 602, 576, 547, 466.

19.12

44.687

Diethyl (1*S*,5'*R*)-5'-(4-chlorophenyl)-1'-(phenylsulfonyl)-*3H*-spiro[isobenzofuran-1,3'-pyrrolidine]-2',2'-dicarboxylate (3d)

0.1 mmol scale reaction, 36 h, 44.5 mg, 78% yield; white foam. Melting point: $153 - 155 \,^{\circ}$ C, 85:15 dr., 93% ee for the major isomer and 84% ee for the minor isomer. [α] $_{\lambda}^{17}$ = +14.8 (c = 1.15 in CH₂Cl₂, λ = 405 nm). **HPLC** (Daicel chiralcel ADH, hexane/*i*-PrOH = 85/15, flow rate 1.0 mL/min, λ = 254 nm) t_r (major-major) = 16.22 min, t_r (major-minor) = 32.82 min, t_r (minor-major) = 26.49 min, t_r (minor-minor) = 38.06 min. **¹H NMR** (400 MHz, Chloroform-*d*) δ 7.55 (d, *J* = 7.2 Hz, 2H), 7.44 – 7.28 (m, 2H), 7.24 – 7.09 (m, 7H), 6.94 (d, *J* = 8.4 Hz, 2H), 5.65 (d, *J* = 10.0 Hz, 1H), 4.83 (s, 2H), 4.41 – 4.23 (m, 3H), 4.12 – 3.94 (m, 1H), 3.40 (dd, *J* = 13.6, 10.8 Hz, 1H), 2.13 (d, *J* = 13.6 Hz, 1H), 1.29 (t, *J* = 7.2 Hz, 3H), 1.01 (t, *J* = 7.2 Hz, 3H). **¹³C**{¹H} **NMR** (101 MHz, Chloroform-*d*) δ 167.58, 165.84, 140.59, 140.47, 139.96, 136.50, 132.58, 132.27, 130.34, 129.50, 129.14, 128.69, 127.83, 127.63, 122.22, 120.60, 99.76, 85.31, 73.15, 63.69, 62.60, 61.69, 47.76, 13.87, 13.70.

HRMS (ESI) calcd for $C_{29}H_{28}^{35}$ ClNNaO₇S⁺ ([M]+Na⁺) = 592.1167, 592.1167.

HRMS (ESI) calcd for $C_{29}H_{28}^{37}$ ClNNaO₇S⁺ ([M]+Na⁺) = 594.1138, 592.1137.

IR (neat) *v* (cm⁻¹): 2928, 1754, 1725, 1488, 1447, 1414, 1341, 1294, 1230, 1158, 1091, 1063, 1020, 899, 861, 821, 758, 728, 689, 602, 575, 544, 441.

	Retention Time	% Area
1	16.208	79.65
2	26.489	16.13
3	32.816	2.94
4	38.055	1.27

Diethyl (1*S*,5'*R*)-5'-(4-bromophenyl)-1'-(phenylsulfonyl)-*3H*-spiro[isobenzofuran-1,3'-pyrrolidine]-2',2'-dicarboxylate (3e)

0.1 mmol scale reaction, 36 h, 43.6 mg, 71% yield; white foam. Melting point: 161 – 163 °C. 83:17 dr., 94% ee for the major isomer and 77% ee for the minor isomer. $[\alpha]_{\lambda}^{17} = +31.7$ (c = 0.82 in CH₂Cl₂, $\lambda = 405$ nm). **HPLC** (Daicel chiralcel ADH, hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, $\lambda = 254$ nm) t_r (major-major) = 11.17 min, t_r (major -minor) = 51.72 min, t_r (minor-major) = 12.79 min, t_r (monor-minor) = 16.51 min. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.59 (d, J = 7.6 Hz, 2H), 7.45 – 7.29 (m, 4H), 7.23 – 7.09 (m, 8H), 5.68 (d, J = 9.6 Hz, 1H), 4.87 (s, 2H), 4.37 (dtt, J = 18.0, 7.6, 3.2 Hz, 3H), 4.15 – 4.00 (m, 1H), 3.45 (dd, J = 13.6, 10.8 Hz, 1H), 2.17 (d, J = 13.2 Hz, 1H), 1.34 (t, J = 7.2 Hz, 3H), 1.05 (t, J = 7.2 Hz, 3H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 167.58, 165.84, 140.59, 140.47, 140.39, 136.47, 132.31, 130.80, 129.85, 129.16, 127.66, 122.22, 120.76, 120.61, 99.77, 73.18, 63.72, 62.63, 61.72, 47.70, 13.89, 13.72. **HRMS** (ESI) calcd for C₂₉H₂₈⁷⁹BrNNaO₇S⁺ ([M]+Na⁺) = 636.0662, found 636.0665.

HRMS (ESI) calcd for $C_{29}H_{28}^{81}BrNNaO_7S^+$ ([M]+Na⁺) = 638.0641, found 636.0642.

IR (neat): 2983, 1754, 1725, 1484, 1446, 1341, 1294, 1232, 1158, 1093, 1018, 899, 860, 818, 758, 729, 688, 602, 574, 545, 459.

	Retention Time	% Area
1	11.170	65.00
2	12.794	29.30
3	16.510	3.74
4	51.715	1.96

Diethyl (1*S*,5'*R*)-5'-(4-nitrophenyl)-1'-(phenylsulfonyl)-*3H*-spiro[isobenzofuran-1,3'-pyrrolidine]-2',2'-dicarboxylate (3f)

0.1 mmol scale reaction, 60 h, 27.3 mg, 47% yield; white foam. Melting point: 144 – 147 °C. 85:15 dr., 85% ee for the major isomer and 72% ee for the minor isomer. $[\alpha]_{\lambda}^{17} = +11.8$ (c = 1.18 in CH₂Cl₂, $\lambda = 405$ nm). **HPLC** (Daicel chiralcel ADH, hexane/*i*-PrOH = 85/15, flow rate 1.0 mL/min, $\lambda = 254$ nm) t_r (major-major) = 22.49 min, t_r (major -minor) = 39.25 min, t_r (minor-major) = 37.20 min, t_r (minor-minor) = 45.35 min. **¹H NMR** (400 MHz, Chloroform-*d*) δ 7.81 – 7.68 (m, 2H), 7.64 – 7.45 (m, 2H), 7.43 – 7.26 (m, 3H), 7.24 – 7.13 (m, 2H), 7.05 (m, 4H), 5.66 (d, *J* = 10.4 Hz, 1H), 4.79 – 4.53 (m, 2H), 4.38 – 4.09 (m, 3H), 4.01 – 3.90 (m, 1H), 3.41 (dd, *J* = 13.4, 10.6 Hz, 1H), 2.04 (d, *J* = 13.4 Hz, 1H), 1.21 (t, *J* = 7.2 Hz, 3H), 0.96 (t, *J* = 7.2 Hz, 3H).

¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 167.36, 165.88, 146.67, 140.56, 139.98, 132.78, 129.31, 128.81, 128.55, 127.89, 127.70, 122.84, 122.20, 120.67, 73.25, 63.38, 62.80, 61.91, 47.70, 13.87, 13.74.

HRMS (ESI) calcd for $C_{29}H_{28}N2NaO_9S^+$ ([M]+Na⁺) = 603.1408, Found 603.1410.

IR (neat) *v* (cm⁻¹): 2984, 1753, 1725, 1602, 1519, 1446, 1343, 1294, 1228, 1159, 1093, 1064, 1020, 901, 853, 755, 729, 689, 601, 575, 548, 440.

	Relention time	% Alea
1	22.485	72.89
2	37.197	18.50
3	39.247	5.61
4	45.349	2.99

Diethyl (1*S*,5'*R*)-1'-(phenylsulfonyl)-5'-(4-(trifluoromethyl)phenyl)-*3H*-spiro[isobenzofuran-1,3'-pyrrolidine]-2',2'-dicarboxylate (3g)

0.1 mmol scale reaction, 48 h, 36.8 mg, 61% yield; white foam. Melting point: 171 - 173 °C, 80:20 d.r., 94% ee for the major isomer and 68% ee for the minor isomer. $[\alpha]_{\lambda}^{17} = +18.7$ (c = 0.978 in CH₂Cl₂, $\lambda = 405$ nm). **HPLC** (Daicel chiralcel ADH, hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm) t_r (major-major) = 22.71 min, t_r (major -minor) = 36.31 min, t_r (minor-major) = 46.64 min, t_r (minor-minor) = 42.28 min ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.59 (d, *J* = 7.2 Hz, 2H), 7.45 – 7.31 (m, 5H), 7.29 (d, *J* = 8.0 Hz, 2H), 7.24 – 7.11 (m, 5H), 5.72 (d, *J* = 10.4 Hz, 1H), 4.87 (s, 2H), 4.38 (dtq, *J* = 14.4, 7.2, 3.2 Hz, 3H), 4.18 – 4.00 (m, 1H), 3.47 (ddd, *J* = 17.6, 13.4, 10.8 Hz, 1H), 2.20 (d, *J* = 13.6 Hz, 1H), 1.34 (t, *J* = 7.2 Hz, 3H), 1.07 (t, *J* = 7.2 Hz, 3H).

¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 167.53, 165.82, 145.36, 140.59 (d, J = 37.4 Hz), 136.34, 132.42, 129.31, 129.22, 129.155, 128.69, 128.35, 127.65, 124.66, 124.62 (d, J =3.8 Hz), 122.21, 120.63, 99.82 ((d, J =298.2 Hz), 73.22, 63.7, 62.69, 61.78, 47.60, 13.89, 13.74.

HRMS (ESI) calcd for $C_{30}H_{28}F_3NNaO_7S^+$ ([M]+Na⁺) = 626.1431, Found 626.1438.

¹⁹**F**{¹**H**} **NMR** (376 MHz, Chloroform-*d*) $\delta = -62.70$.

4

IR (neat) *v* (cm⁻¹): 2985, 1755, 1726, 1447, 1421, 1325, 1295, 1232, 1160, 1117, 1065, 1021, 899, 843, 759, 727, 688, 594, 574, 546, 462.

17.27

46.637

Diethyl (1*S*,5'*R*)-5'-([1,1'-biphenyl]-4-yl)-1'-(phenylsulfonyl)-*3H*-spiro[isobenzofuran-1,3'-pyrrolidine]-2',2'-dicarboxylate (3h)

0.1 mmol scale reaction, 18 h, 39.1 mg, 54% yield; white foam. Melting point: 137 – 141 °C. 85:15 dr., 93% ee for the major isomer and 87% ee for the minor isomer. $[\alpha]_{\lambda}^{17} = +76.8$ (c = 0.63 in CH₂Cl₂, $\lambda = 405$ nm). **HPLC** (Daicel chiralcel ADH, hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm) t_r (major-major) = 15.52 min, t_r (major-minor) = 28.01 min, t_r (minor-major) = 23.88 min, t_r (minor-minor) = 31.70 min. **¹H NMR** (400 MHz, Chloroform-*d*) δ 7.66 – 7.42 (m, 5H), 7.38 (dd, J = 14.0, 7.6 Hz, 4H), 7.33 – 7.27 (m, 3H), 7.25 – 7.18 (m, 2H), 7.14 (t, J = 7.6 Hz, 2H), 7.07 (t, J = 8.0 Hz, 2H), 5.75 (d, J = 9.6 Hz, 1H), 4.92 – 4.82 (m, 2H), 4.34 (dtq, J = 18.0, 10.8, 7.2 Hz, 3H), 4.12 – 3.95 (m, 1H), 3.44 (dd, J = 13.6, 10.8 Hz, 1H), 2.25 (dd, J = 13.6, 1.6 Hz, 1H), 1.32 (t, J = 7.2 Hz, 3H), 1.01 (t, J = 7.2 Hz, 3H).

¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 167.73, 165.85, 140.72, 140.67, 140.45, 139.82, 136.75, 131.98, 129.10, 128.76, 128.74, 128.69, 127.61, 127.49, 127.16, 127.00, 126.61, 122.27, 120.59, 99.81, 73.20, 64.21, 62.58, 61.66, 47.79, 13.93, 13.75.

HRMS (ESI) calcd for $C_{35}H_{33}NNaO_7S^+$ ([M]+Na⁺) = 634.1870, Found 634.1875.

3

4

IR (neat) *v* (cm⁻¹): 2984, 1755, 1725, 1484, 1447, 1340, 1293, 1231, 1158, 1118, 1092, 1064, 1024, 899, 843, 762, 729, 692, 608, 576, 520.

2.79

1.53

28.014

31.704

Diethyl (1*S*,5'*R*)-5'-(naphthalen-1-yl)-1'-(phenylsulfonyl)-*3H*-spiro[isobenzofuran-1,3'-pyrrolidine]-2',2'-dicarboxylate (3i)

0.1 mmol scale reaction, 18h, 38.7 mg, 51% yield, white foam. Melting point: 123 - 125 °C. 95:5 dr., 94% ee for the major isomer and 77% ee for the minor isomer. $[\alpha]_{\lambda}^{17} = +25.7$ (c = 0.66 in CH₂Cl₂, $\lambda = 405$ nm). **HPLC** (Daicel chiralcel ADH, hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm) t_r (major-major) = 11.23 min, t_r (major-minor) = 9.32 min, t_r (minor-major) = 20.63 min, t_r (minor-major) = 32.48 min. **¹H NMR** (400 MHz, Chloroform-*d*) δ 8.04 - 7.56 (m, 3H), 7.48 (t, *J* = 7.6 Hz, 3H), 7.34 (dq, *J* = 15.6, 8.0, 7.6 Hz, 2H), 7.22 - 6.95 (m, 6H), 6.94 - 6.51 (m, 2H), 6.47 - 6.30 (m, 1H), 5.26 - 4.77 (m, 1H), 4.71 - 4.53 (m, 1H), 4.48 - 4.22 (m, 3H), 4.11 - 3.72 (m, 1H), 3.62 - 3.24 (m, 1H), 2.20 (d, *J* = 13.2 Hz, 1H), 1.34 (t, *J*

= 7.2 Hz, 3H), 0.91 (t, J = 7.2 Hz, 3H).
¹³C{¹H} NMR (101 MHz, Chloroform-d) δ 167.75, 166.31, 133.40, 132.44, 129.43, 129.19, 128.25, 127.91, 127.74 127.22, 126.89, 126.36 ,126.01,125.28, 125.01, 124.37, 123.34, 122.79, 122.27, 120.54, 100.05, 85.52, 73.18, 62.68, 62.25, 61.88, 61.18, 59.71, 48.91, 47.27, 14.14, 13.87, 13.51.

HRMS (ESI) calcd for $C_{33}H_{31}NNaO_7S^+$ ([M]+Na⁺) = 608.1713, Found 608.1710.

IR (neat) *v* (cm⁻¹): 3063, 2983, 1754, 1511, 1447, 1342, 1297, 1231, 1158, 1120, 1066, 1023, 900, 857, 802, 761, 728, 689, 606, 575, 499.

	Retention Time	% Area
1	9.290	2.97
2	11.226	94.78
3	20.625	2.01
4	32.476	0.24

Diethyl (1*S*,5'*R*)-5'-(3-chlorophenyl)-1'-(phenylsulfonyl)-*3H*-spiro[isobenzofuran-1,3'-pyrrolidine]-2',2'-dicarboxylate (3j)

0.1 mmol scale reaction, 36 h, 43.9 mg, 77% yield, white foam. Melting point: 141 - 144 °C. 72:28 dr., 88% ee for the major isomer and 84% ee for the minor isomer. [α]_D¹⁷ = +14.7 (c = 1.18 in CH₂Cl₂).

HPLC (Daicel chiralcel ADH, hexane/i-PrOH = 85/15, flow rate 1.0 mL/min, λ = 254 nm) t_r (major- major) = 11.97 min, t_r (major - minor) = 14.71 min, t_r (minor-major) = 19.75 min, t_r (minor-minor) = 16.41 min.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.71 (d, J = 8.0 Hz, 1H), 7.56 (d, J = 8.0 Hz, 1H), 7.51 – 7.33 (m, 4H), 7.32 – 7.28 (m, 2H), 7.24 (s, 3H), 7.19 – 7.02 (m, 2H), 5.78 (d, J = 10.4 Hz, 1H), 4.95 (s, 2H), 4.45 (td, J = 7.2, 2.4 Hz, 3H), 4.23 – 4.07 (m, 1H), 3.54 (dd, J = 13.2, 10.4 Hz, 1H), 2.27 (d, J = 13.6 Hz, 1H), 1.42 (t, J = 7.2 Hz, 3H), 1.17 (t, J = 7.2 Hz, 3H).

¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 166.49, 164.61, 142.36, 139.66, 132.63, 131.40, 128.11, 127.97, 127.60, 127.42, 127.18, 126.84, 126.61, 125.92, 125.01, 121.18, 119.60, 98.85, 84.09, 72.19, 62.71, 61.58, 60.67, 49.18, 46.64, 12.92.

HRMS (ESI) calcd for $C_{29}H_{28}^{35}$ ClNNaO₇S⁺ ([M]+Na⁺) = 592.1167, found 592.1168.

HRMS (ESI) calcd for $C_{29}H_{28}^{37}$ ClNNaO₇S⁺ ([M]+Na⁺) = 594.1138, found 594.1138.

IR (neat) *v* (cm⁻¹): 2984, 2361, 1754, 1725, 1587, 146, 1445, 1342, 1264, 1228, 1158, 1118, 1090, 1063, 1023, 900, 790, 759, 729, 688, 612, 579, 440.

Diethyl (1*S*,5'*R*)-5'-(3-bromophenyl)-1'-(phenylsulfonyl)-*3H*-spiro[isobenzofuran-1,3'-pyrrolidine]-2',2'-dicarboxylate (3k)

0.1 mmol scale reaction, 36 h, 45.4mg, 74% yield, white foam. Melting point: 149 - 152 °C. 70:30 dr., 92% ee for the major isomer and 66% ee for the minor isomer. [α]_D¹⁷ = +19.0 (c = 1.14 in CH₂Cl₂).

HPLC (Daicel chiralcel ADH, hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm) t_r (major-major) = 18.02 min, t_r (major -minor) = 20.09 min, t_r (minor-major) = 35.01 min, t_r (minor-minor) = 40.35 min.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.59 (d, J = 7.6 Hz, 2H), 7.44 (d, J = 7.6 Hz, 1H), 7.41 – 7.31 (m, 1H), 7.29 (d, J = 7.2 Hz, 1H), 7.16 (dq, J = 15.4, 8.0, 8.0 Hz, 7H), 6.89 (q, J = 8.0 Hz, 1H), 5.65 (d, J = 10.4 Hz, 1H), 4.83 (s, 1H), 4.43 – 4.22 (m, 3H), 4.03 (tq, J = 14.4, 7.6 Hz, 1H), 3.41 (dd, J = 13.6, 10.8 Hz, 1H), 2.19 – 2.09 (m, 1H), 1.30 (t, J = 7.2 Hz, 3H), 1.06 (t, J = 7.2 Hz, 3H).

¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 166.47, 164.59, 142.62, 139.66, 139.20, 135.36, 130.73, 130.05, 128.86, 128.48, 128.28, 127.59, 127.40, 126.89, 126.65, 125.48, 121.66, 121.20, 120.89, 119.60, 98.87, 84.07, 72.19, 62.66, 62.03, 60.67, 46.65, 12.93, 12.78.

HRMS (ESI) calcd for $C_{29}H_{28}^{79}BrNNaO_7S^+$ ([M]+Na⁺) =636.0662, found 636.0660.

HRMS (ESI) calcd for $C_{29}H_{28}^{81}BrNNaO_7S^+$ ([M]+Na⁺) =638.0642, found 636.0645.

IR (neat) *v* (cm⁻¹): 2983, 1754, 1726, 1570, 1475, 1446, 1342, 1263, 1229, 1157, 1091, 1063, 1023, 898, 860, 788, 759, 730, 688, 610, 577, 437.

	Retention Time	% Area
1	18.022	77.57
2	20.090	3.23
3	35.012	15.91
4	40.349	3.29

Diethyl (1*S*,5'*R*)-5'-(2-fluorophenyl)-1'-(phenylsulfonyl)-*3H*-spiro[isobenzofuran-1,3'-pyrrolidine]-2',2'-dicarboxylate (3l)

0.1 mmol scale reaction, 40 h, 43.1 mg, 76% yield, white foam. Melting point: 125 - 127 °C. 82:18 dr., 94% ee for the major isomer and 88% ee for the minor isomer. [α]_D¹⁷ = +15.5 (c = 1.18 in CH₂Cl₂).

HPLC (Daicel chiralcel ADH, hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm) t_r (major-major) = 17.73 min, t_r (major-minor) = 8.71 min, t_r (minor-major) = 16.46 min, t_r (minor-minor) = 10.44 min.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.65 (d, *J* = 7.2 Hz, 2H), 7.51 (d, *J* = 7.6 Hz, 1H), 7.33 – 7.28 (m, 1H), 7.23 – 7.16 (m, 2H), 7.09 (s, 2H), 7.07 – 6.98 (m, 2H), 6.96 – 6.72 (m, 2H), 6.48 (t, *J* = 7.6 Hz, 1H), 5.92 (d, *J* = 10.4 Hz, 1H), 4.77 – 4.66 (m, 2H), 4.26 (dddd, *J* = 27.2, 11.2, 8.8, 5.6 Hz, 3H), 4.03 – 3.88 (m, 1H), 3.38 (dd, *J* = 13.4, 10.2 Hz, 1H), 2.08 (d, *J* = 13.2 Hz, 1H), 1.25 (t, *J* = 7.2 Hz, 3H), 0.99 (t, *J* = 7.2 Hz, 3H).

¹³C{¹H} **NMR** (101 MHz, Chloroform-*d*) δ 167.38, 166.14, 160.91, 158.47 (d, J = 244.0 Hz), 140.94, 140.67 (d, J = 15.0 Hz), 140.12, 136.45, 132.43, 130.35 (d, J = 3.6 Hz), 129.12, 128.84 (d, J = 5.6 Hz), 128.09, 128.01, 127.58, 123.07 (d, J = 3.4 Hz), 122.25, 120.56, 114.27, 114.06, 100.02, 73.21, 62.66, 61.76 (d, J = 4.6 Hz), 57.60, 46.96, 13.89, 13.76.

¹⁹**F**{¹**H**} **NMR** (376 MHz, CDCl3) $\delta = -119.26$.

HRMS (ESI) calcd for $C_{29}H_{28}FNNaO_7S^+$ ([M]+Na⁺) = 576.1463, Found 567.1467.

IR (neat) *v* (cm⁻¹): 2984, 1753, 1726, 1616, 1587, 1486, 1453, 1342, 1293, 1233, 1158, 1092, 1065, 1044, 1023, 901, 861, 815, 758, 730, 689, 608, 575, 555, 513.

	Retention Time	% Area
1	8.708	2.65
2	10.442	0.42
3	16.462	14.16
4	17.727	82.77

Diethyl (1*S*,5'*R*)-5'-(2-chlorophenyl)-1'-(phenylsulfonyl)-*3H*-spiro[isobenzofuran-1,3'-pyrrolidine]-2',2'-dicarboxylate (3m)

0.1 mmol scale reaction, 40 h, 46.2 mg, 81% yield, white foam. Melting point: 152 - 153 °C. 56:43 dr., 93% ee for the major isomer and 87% ee for the minor isomer. $[\alpha]_{\lambda}^{26} = +31.7$ (c = 1.17 in CH₂Cl₂, $\lambda = 405$ nm). **HPLC** (Daicel chiralcel ASH, hexane/*i*-PrOH = 85/15, flow rate 1.0 mL/min, $\lambda = 254$ nm) t_r (major-major) = 9.74 min, t_r (major-minor) = 8.42 min, t_r (minor-major) = 10.58 min, t_r (minor-minor) = 7.21 min.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.73 (d, J = 9.6 Hz, 2H), 7.46 – 7.27 (m, 4H), 7.25 – 7.04 (m, 5H), 6.96 (td, J = 7.6, 1.6 Hz, 1H), 6.77 – 6.65 (m, 1H), 6.02 (d, J = 10 Hz, 1H), 4.79 (q, J = 12.4 Hz, 2H), 4.49 – 4.32 (m, 3H), 4.15 – 3.93 (m, 1H), 3.60 – 3.39 (m, 1H), 2.19 (d, J = 12.4 Hz, 1H), 1.35 (t, J = 7.2 Hz, 3H), 1.10 (t, J = 7.2 Hz, 3H).

¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 167.37, 166.20, 140.68, 138.14, 132.46, 130.45, 129.10, 128.89, 128.42, 127.79, 127.72, 127.55, 125.66, 122.28, 120.54, 99.97, 85.49, 73.18, 62.65, 61.75, 61.39, 46.70, 13.88, 13.76.

HRMS (ESI) calcd for $C_{29}H_{28}{}^{35}CINNaO_7S^+$ ([M]+Na⁺) = 592.1167, found 592.1169.

HRMS (ESI) calcd for $C_{29}H_{28}^{37}$ ClNNaO₇S⁺ ([M]+Na⁺) = 594.1138, found 594.1141.

IR (neat) *v* (cm⁻¹): 2984, 1753, 1726, 1472, 1446, 1342, 1293, 1232, 1158, 1092, 1052, 1024, 957, 901, 859, 757, 730, 689, 608, 576, 549, 494, 459.

Diethyl (1*S*,5'*R*)-5'-(2-bromophenyl)-1'-(phenylsulfonyl)-*3H*-spiro[isobenzofuran-1,3'-pyrrolidine]-2',2'-dicarboxylate (3n)

0.1 mmol scale reaction, 40 h, 46.0 mg, 75% yield, white foam. Melting point: 142 - 144 °C. 53:47 dr., 95% ee for the major isomer and 67% ee for the minor isomer. $[\alpha]_{\lambda}^{26} = +42.3$ (c = 1.01 in CH₂Cl₂, $\lambda = 405$ nm). **HPLC** (Daicel chiralcel ASH, hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, $\lambda = 254$ nm) t_r (major-major) = 8.18 min, t_r (major-minor) = 7.19 min, t_r (minor-major) = 8.78 min, t_r (minor-minor) = 6.36 min.

¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.76 – 7.61 (m, 2H), 7.49 – 7.29 (m, 4H), 7.25 – 7.11 (m, 4H), 7.01 (t, *J* = 7.6 Hz, 1H), 6.89 (td, *J* = 7.6, 1.6 Hz, 1H), 6.76 (dt, *J* = 22.2, 7.2 Hz, 1H), 5.96 (d, *J* = 10.0 Hz, 1H), 4.79 (q, *J* = 12.4 Hz, 2H), 4.48 – 4.33 (m, 3H), 4.09 (dq, *J* = 10.8, 7.2 Hz, 1H), 3.56 – 3.39 (m, 1H), 2.20 (d, *J* = 14.4 Hz, 1H), 1.34 (t, *J* = 7.2 Hz, 3H), 1.10 (t, *J* = 7.2 Hz, 3H).

¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 167.38, 166.20, 136.46, 132.45, 131.72, 130.78, 129.10, 128.90, 128.05, 127.79, 127.55, 126.26, 122.29, 120.54, 99.89, 73.19, 63.67, 62.66, 61.76, 46.83, 13.88, 13.76.

HR-MS (ESI) calcd for $C_{29}H_{28}^{79}BrNNaO_7S^+$ ([M]+Na⁺) = 636.0662, found 636.0662.

HR-MS (ESI) calcd for $C_{29}H_{28}^{81}BrNNaO_7S^+$ ([M]+Na⁺) = 638.0642, found 636.0645.

IR (neat) *v* (cm⁻¹): 2983, 1753, 1726, 1466, 1444, 1342, 1293, 1231, 1158, 1021, 900, 858, 802, 730, 607, 574, 548, 489, 443.

Diethyl (1*S*,5'*R*)-1'-(phenylsulfonyl)-5'-(o-tolyl)-*3H*-spiro[isobenzofuran-1,3'-pyrrolidine]-2',2'dicarboxylate (30)

0.1 mmol scale reaction, 28 h, 36.8 mg, 67% yield, white foam. Melting point: 121 - 123 °C. 61:39 dr., 90% ee for the major isomer and 83% ee for the minor isomer. $[\alpha]_D^{17} = +14.8$ (c = 0.51 in CH₂Cl₂).

HPLC (Daicel chiralcel ASH, hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm) t_r (major-major) = 4.52 min, t_r (major-minor) = 3.29 min, t_r (minor-major) = 7.07 min, t_r (minor-minor) = 8.93 min.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.57 (d, J = 7.6 Hz, 2H), 7.42 (d, J = 7.6 Hz, 1H), 7.38 – 7.27 (m, 3H), 7.18 (dd, J = 11.6, 7.2 Hz, 5H), 7.13 – 7.07 (m, 1H), 7.06 – 6.92 (m, 2H), 6.62 (t, J = 7.6 Hz, 1H), 5.95 (d, J = 10.4 Hz, 1H), 4.84 (s, 1H), 4.40 (dtt, J = 14.4, 11.2, 7.2 Hz, 3H), 4.05 (ddd, J = 12.6, 10.8, 7.2 Hz, 1H), 3.60 – 3.42 (m, 1H), 2.42 (m, 3H), 2.13 (d, J = 13.2 Hz, 1H), 1.41 (t, J = 7.2 Hz, 3H), 1.03 (t, J = 7.2 Hz, 3H).

¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 140.75, 138.87, 134.09, 132.14, 130.21, 129.41, 129.03, 128.80, 127.50, 126.50, 125.35, 122.85, 122.28, 120.55, 100.09, 73.17, 62.56, 62.00, 60.97, 59.39, 49.72, 46.72, 13.98, 13.75.

HR-MS (ESI) calcd for $C_{29}H_{29}NNaO_7S^+$ ([M]+Na⁺) = 572.1713; found 572.1717.

IR (neat) *v* (cm⁻¹): 2982, 1753, 1725, 1446, 1365, 1339, 1263, 1228, 1156, 1092, 1064, 1023, 898, 860, 803, 757, 728, 688, 607, 574, 551, 460.

Diethyl (1*S*,5'*R*)-5'-phenyl-1'-tosyl-3*H*-spiro[isobenzofuran-1,3'-pyrrolidine]-2',2'-dicarboxylate (3p)

0.1 mmol scale reaction, 18 h, 33.5 mg, 61% yield; white foam. Melting point: 157 - 160 °C. 79:21d.r., 93% ee for the major isomer and 46% ee for the minor isomer. $[\alpha]_{\lambda}^{17} = +47.7$ (c = 0.77 in CH₂Cl₂, $\lambda = 405$ nm). **HPLC** (Daicel chiralcel ADH, hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm) t_r (major -major) = 14.94 min, t_r (major-minor) = 23.82 min, t_r (minor-major) = 17.57 min, t_r (minor-minor) = 20.94 min. **¹H NMR** (400 MHz, Chloroform-*d*) δ 7.40 – 7.33 (m, 4H), 7.32 – 7.27 (m, 2H), 7.20 – 7.15 (d, *J* = 8.0 Hz, 2H), 7.11 – 7.00 (m, 3H), 6.93 (t, *J* = 8.0 Hz, 2H), 5.72 (d, *J* = 9.2 Hz, 1H), 4.89 (s, 2H), 4.47 – 4.23 (m, 3H), 4.11 – 3.99 (m, 1H), 3.44 (dd, *J* = 13.6, 10.8 Hz, 1H), 2.32 (s, 1H), 2.30 – 2.21 (m, 3H), 1.35 (t, *J* = 7.2 Hz, 3H), 1.05 (t, *J* = 7.2 Hz, 3H).

¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 167.80, 165.91, 142.61, 141.49, 140.69, 137.91, 136.84, 129.00, 128.89, 128.64, 128.34, 128.24, 128.07, 127.89, 127.77, 127.52, 126.78, 122.27, 120.52, 99.76, 73.09, 64.40, 62.47, 61.56, 47.85, 21.40, 13.89, 13.69.

HR-MS (ESI) calcd for $C_{30}H_{31}NNaO_7S^+$ ([M]+Na⁺) = 572.1713, found 572.1715.

IR (neat) *v* (cm⁻¹): 2983, 1753, 1723, 1451, 1361, 1351, 11264 1211, 1021, 755, 728, 689, 605, 571, 545, 471.

₹ 0.10	0.00	12.00 14.00	15:520 10:00	18.03 /inutes	20.00	21.714	24.00	26.00	28.00	30.00	32.00	34.00
		Retent	ion Tim	е	%	5 Area						
	1	15	.520			2.80						
	2	18	.231			3.86						
	3	21	.714			9.69						

4	24.738	83.66

Diethyl (1*S*,5'*R*)-5'-phenyl-1'-(o-tolylsulfonyl)-3*H*-spiro[isobenzofuran-1,3'-pyrrolidine]-2',2'dicarboxylate (3q)

0.1 mmol scale reaction, 18 h, 33.5 mg, 77% yield; white foam. Melting point: 132 - 135 °C. >19:1 dr., 95% ee. $[\alpha]_{\lambda}^{17} = +41.4$ (c = 0.38 in CH₂Cl₂, $\lambda = 405$ nm).

HPLC (Daicel chiralcel ASH, hexane/*i*-PrOH = 85/15, flow rate 1.0 mL/min, λ = 254 nm) t_r (major-major) = 12.43 min, t_r (major-minor) = 14.07 min.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.77 (d, J = 8.0 Hz, 1H), 7.51 (d, J = 5.4 Hz, 2H), 7.33 (dt, J = 21.6, 7.2 Hz, 2H), 7.18 (dd, J = 15.2, 7.6 Hz, 3H), 7.11 (d, J = 5.6 Hz, 3H), 7.00 – 6.91 (m, 2H), 5.78 (d, J = 10.8 Hz, 1H), 5.00 (q, J = 12.0 Hz, 2H), 4.38 (q, J = 7.2 Hz, 2H), 4.25 – 4.14 (m, 1H), 4.04 – 3.93 (m, 1H), 3.60 – 3.46 (m, 1H), 2.43 (d, J = 13.2 Hz, 1H), 2.38 (s, 3H), 1.34 (t, J = 7.2 Hz, 3H), 0.95 (t, J = 7.2 Hz, 3H).

¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 167.77, 165.56, 141.16, 140.78, 137.06, 131.53, 131.43, 129.86, 129.06, 128.73, 127.81, 127.54, 127.12, 124.80, 122.33, 120.61, 99.55, 73.25, 64.23, 62.50, 61.55, 47.42, 20.82, 13.90, 13.56.

HR-MS (ESI) calcd for $C_{30}H_{31}NNaO_7S^+$ ([M]+Na⁺) = 572.1713, found 572.1715.

IR (neat) *v* (cm⁻¹): 2983, 1757, 1727, 1459, 1366, 1333, 1233,1159, 1063, 1025, 898, 758, 734, 704, 608.6, 585, 550, 493.

Diethyl (1*S*,5'*R*)-1'-((4-chlorophenyl)sulfonyl)-5'-phenyl-3*H*-spiro[isobenzofuran-1,3'-pyrrolidine]-2',2'-dicarboxylate (3r)

0.1 mmol scale reaction, 36 h, 38.8 mg, 68% yield; white foam. Melting point: 172 - 174 °C. 67:23 dr, 88% ee for the major isomer and 82% ee for the minor isomer. $[\alpha]_{\lambda}^{17} = +17.8$ (c = 0.67 in CH₂Cl₂, $\lambda = 405$ nm). **HPLC** (Daicel chiralcel ADH, hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm) t_r (major -major) = 11.97 min, t_r (major-minor) = 14.71 min, t_r (minor-major) = 19.75 min, t_r (minor-minor) = 16.41 min. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.70 – 7.50 (m, 2H), 7.48 – 7.38 (m, 2H), 7.37 – 7.28 (m, 2H), 7.23 (d, *J* = 10.5 Hz, 1H), 7.18 (t, *J* = 8.8 Hz, 5H), 7.10 (s, 1H), 5.68 (d, *J* = 9.6 Hz, 1H), 4.87 (s, 1H), 4.50 – 4.23 (m, 3H), 4.07 (ddt, *J* = 25.0, 10.8, 7.2 Hz, 1H), 3.45 (dd, *J* = 13.2, 10.8 Hz, 1H), 2.81 – 2.59 (m, 1H), 2.17 (d, *J* = 13.2 Hz, 1H), 1.34 (t, *J* = 7.2 Hz, 3H), 1.09 – 1.00 (t, *J* = 7.2 Hz, 3H).

¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 140.59, 140.43, 136.49, 132.27, 130.98, 130.79, 129.85, 129.13, 128.69, 128.46, 127.90, 127.64, 127.60, 99.77, 63.73, 62.61, 61.69, 47.70, 13.87, 13.71.

HR-MS (ESI) calcd for $C_{29}H_{28}^{35}CINNaO_7S^+$ ([M]+Na⁺) = 592.1167, found 592.1167.

HR-MS (ESI) calcd for $C_{29}H_{28}^{37}$ ClNNaO₇S⁺ ([M]+Na⁺) = 594.1138, found 592.1140.

IR (neat) *v* (cm⁻¹): 3273, 2984, 1735, 1583, 1474, 1494, 1370, 1225,1163, 1090, 1025, 856, 754, 620, 552, 481.

Diethyl (1*S*,5'*R*)-5-fluoro-5'-phenyl-1'-(o-tolylsulfonyl)-3*H*-spiro[isobenzofuran-1,3'-pyrrolidine]-2',2'-dicarboxylate (3s)

0.1 mmol scale reaction, 36 h, 32.3 mg, 57% yield, white foam. Melting point: 128 - 130 °C. >19:1 dr., 95% ee. $[\alpha]_{\lambda}^{26} = +27.33$ (c = 0.75 in CH₂Cl₂, $\lambda = 405$ nm).

HPLC (Daicel chiralcel IF, hexane/i-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm) t_r (major) = 3.53 min, t_r (minor) = 6.05 min.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.75 (d, J = 8.0 Hz, 1H), 7.55 – 7.42 (m, 3H), 7.21 – 7.10 (m, 4H), 7.02 – 6.88 (m, 4H), 5.78 (d, J = 9.2Hz, 1H), 4.95 (q, J = 12.8 Hz, 2H), 4.37 (q, J = 7.2 Hz, 2H), 4.26 – 4.15 (m, 1H), 4.02 (dt, J = 10.8, 7.2 Hz, 1H), 3.51 (dd, J = 13.6, 10.8 Hz, 1H), 2.48 – 2.31 (m, 4H), 1.34 (t, J = 7.2 Hz, 3H), 0.99 (t, J = 7.2 Hz, 3H).

¹³C{¹H} NMR (101 MHz, Chloroform-*d*) 167.83,165.54, 164.83 (d, *J* = 246.2 Hz), 162.37, 143.30(d, *J* = 8.8 Hz), 141.04, 139.74, 137.15, 132.44 (d, *J* = 2.4 Hz), 131.50, 129.87, 128.59, 127.84, 127.16, 123.90 (d, *J* = 9.4 Hz), 123.81, 115.06 (d, *J* = 23.2 Hz), 114.83, 108.12 (d, *J* = 23.8 Hz), 107.88, 99.22, 85.23, 72.74, 64.09, 62.64, 61.67, 47.46, 20.80, 13.91, 13.63.

¹⁹**F**{¹**H**} **NMR** (376 MHz, Chloroform-*d*) δ = -113.08.

HR-MS (ESI) calcd for $C_{30}H_{30}FNNaO_7S^+$ ([M]+Na⁺) = 590.1619; found 590.1620.

IR (neat) *v* (cm⁻¹): 3061, 2982, 2448, 1750, 1487, 1452, 1340, 1257, 1160, 1036, 941, 870, 757, 700, 608, 579, 464.

Diethyl (1*S*,5'*R*)-6-methyl-5'-phenyl-1'-(o-tolylsulfonyl)-*3H*-spiro[isobenzofuran-1,3'-pyrrolidine]-2',2'-dicarboxylate (3t)

0.1 mmol scale reaction, 36 h, 41.0 mg, 73 % yield, white foam. Melting point: 118 – 120 °C. 55:45 dr., 93% ee for the major isomer and 88% ee for the minor isomer. $[\alpha]_{\lambda}^{26} = +32.1$ (c = 1.42 in CH₂Cl₂, $\lambda = 405$ nm). **HPLC** (Daicel chiralcel ADH, hexane/*i*-PrOH = 85/15, flow rate 1.0 mL/min, $\lambda = 254$ nm) t_r (major -major) = 12.93 min, t_r (major-minor) = 19.67 min, t_r (minor-major) = 16.08 min, t_r (minor-minor) = 12.27 min. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.97 (dd, J = 8.0, 1.2 Hz, 1H), 7.72 (dd, J = 5.6, 3.2 Hz, 1H), 7.53 (dd, J = 5.6, 3.2 Hz, 1H), 7.29 (d, J = 7.0 Hz, 3H), 7.25 – 7.21 (m, 1H), 7.16 (s, 1H), 7.12 (dd, J = 7.8, 1.8 Hz, 2H), 7.06 (t, J = 7.2 Hz, 2H), 7.01 (s, 1H), 6.94 (d, J = 7.2 Hz, 2H), 5.56 (t, J = 7.6 Hz, 1H), 5.09 (d, J = 12.4 Hz, 1H), 4.39 – 4.25 (m, 3H), 4.12 (dq, J = 10.8, 7.2 Hz, 1H), 3.84 (dq, J = 10.8, 7.2 Hz, 1H), 2.99 (dd, J = 13.2, 7.6 Hz, 1H), 2.81 – 2.76 (m, 1H), 2.19 (s, 3H), 1.30 (t, J = 7.2 Hz, 4H), 1.10 (t, J = 7.2 Hz, 3H), 0.96 (t, J = 7.2 Hz, 2H).

¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 167.80, 165.84, 142.87, 140.32, 138.83, 137.00, 134.98, 132.04, 132.00, 130.94, 130.11, 128.85, 128.12, 127.95, 127.79, 127.74, 125.63, 124.21, 120.97, 97.03, 84.41, 72.52, 64.04, 62.33, 61.99, 49.63, 30.58, 20.95, 19.20, 13.88, 13.73.

HR-MS (ESI) calcd for $C_{31}H_{33}NNaO_7S^+$ ([M]+Na⁺) = 585.1870; found 585.1870.

IR (neat) v (cm⁻¹): 3267, 2982, 2932, 1753, 1597, 1454, 1338, 1292, 1159, 1036, 816, 699, 608, 556.

Diethyl (1*S*,5'*R*)-5-chloro-5'-phenyl-1'-(o-tolylsulfonyl)-3*H*-spiro[isobenzofuran-1,3'-pyrrolidine]-2',2'-dicarboxylate (3u)

0.1 mmol scale reaction, 36 h, 47.8 mg, 82% yield, white foam. Melting point: 133 – 135 °C. 56: 44 dr., 86% ee for the major isomer and 82% ee for the minor isomer. $[\alpha]_{\lambda}^{26} = +28.1.1$ (c = 0.87 in CH₂Cl₂, $\lambda = 405$ nm). **HPLC** (Daicel chiralcel ADH, hexane/*i*-PrOH = 85/15, flow rate 1.0 mL/min, $\lambda = 254$ nm) t_r (major -major) = 24.45 min, t_r (major-minor) = 15,52 min, t_r (minor-major) = 19.55 min, t_r (minor-minor) = 8.89 min. **¹H NMR** (400 MHz, Chloroform-*d*) δ 7.98 (dd, J = 8.0, 1.2 Hz, 1H), 7.34 – 7.28 (m, 3H), 7.24 – 7.15 (m, 3H), 7.14 – 7.08 (m, 3H), 7.07 – 7.01 (m, 2H), 6.95 (d, J = 7.6 Hz, 1H), 5.56 (t, J = 7.6 Hz, 1H), 5.11 (d, J = 12.4 Hz, 1H), 5.01 (d, J = 12.4 Hz, 1H), 4.45 – 4.20 (m, 3H), 4.15 – 4.06 (m, 1H), 3.83 (dt, J = 10.8, 7.2 Hz, 1H), 2.99 (dd, J = 13.2, 8.0 Hz, 1H), 2.78 (dd, J = 13.2, 8.0 Hz, 1H), 2.19 (s, 3H), 1.30 (t, J = 7.2 Hz, 3H), 1.10 (t, J = 7.2 Hz, 3H).

¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 167.80, 165.83, 142.87, 138.84, 138.24, 137.01, 134.98, 132.04, 132.00, 130.11, 128.13, 127.96, 127.79, 127.74, 125.63, 124.21, 120.97, 97.03, 84.41, 72.53, 64.04, 62.33, 61.99, 49.63, 20.94, 13.89.

HR-MS (ESI) calcd for $C_{30}H_{30}{}^{35}$ ClNNaO₇S⁺ ([M]+Na⁺) = 606.1324, found 606.1326. **HR-MS** (ESI) calcd for $C_{30}H_{30}{}^{37}$ ClNNaO₇S⁺ ([M]+Na⁺) = 608.1294, found 608.1292. **IR** (neat) ν (cm⁻¹): 2983, 2933, 1750, 1601, 1465, 1337, 1227, 1158, 1038, 906, 731, 699, 611, 585.

	Referition nine	70 Alea
1	8.889	3.09
2	15.516	1.98
3	19.551	38.49
4	24.452	56.44

(K) Copies of NMR spectra for the products

Diethyl (1*S*,5'*R*)-5'-phenyl-1'-(phenylsulfonyl)-3*H*-spiro[isobenzofuran-1,3'-pyrrolidine]-2',2'-dicarboxylate (3a) 7,500
7,500
7,500
7,500
7,500
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,700
7,

Diethyl (1*S*,5'*R*)-1'-(phenylsulfonyl)-5'-(p-tolyl)-3*H*-spiro[isobenzofuran-1,3'-pyrrolidine]-2',2'-dicarboxylate(3b)

Diethyl

Diethyl (1*S*,5'*R*)-5'-(4-bromophenyl)-1'-(phenylsulfonyl)-3*H*-spiro[isobenzofuran-1,3'-pyrrolidine]-2',2'dicarboxylate (3e)

Diethyl (1*S*,5'*R*)-5'-(4-nitrophenyl)-1'-(phenylsulfonyl)-3*H*-spiro[isobenzofuran-1,3'-pyrrolidine]-2',2'dicarboxylate (3f)

Diethyl (1*S*,5'*R*)-1'-(phenylsulfonyl)-5'-(4-(trifluoromethyl)phenyl)-3*H*-spiro[isobenzofuran-1,3'-pyrrolidine]-2',2'-dicarboxylate (3g)

41

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

Diethyl (1*S*,5'*R*)-5'-([1,1'-biphenyl]-4-yl)-1'-(phenylsulfonyl)-3*H*-spiro[isobenzofuran-1,3'-pyrrolidine]-2',2'dicarboxylate (3h)

(1S,5'R)-5'-(3-chlorophenyl)-1'-(phenylsulfonyl)-3H-spiro[isobenzofuran-1,3'-pyrrolidine]-2',2'-100-2',2'-10-2',2'-100-2',2'-100-2',2'-100-2',2'-100-2',2'-100-2',2'-100-2',2'-100-2',2'-100-2',2'-100-2',2'-100-2',2'-100-2',2'-100-2',2'-10-2',2'-10-2',2'-10-2',2'-10-2',2'-10-2',2'-10-2',2'-10-2',2'-10-2',2'-10-2',2'-10-2',2'-10-2'-2'-2'-2'-2'-2'-2'-2'-2'-2'-2'-2'-Diethyl

Diethyl (1*S*,5'*R*)-5'-(3-bromophenyl)-1'-(phenylsulfonyl)-3*H*-spiro[isobenzofuran-1,3'-pyrrolidine]-2',2'-

Diethyl (1*S*,5'*R*)-5'-(2-chlorophenyl)-1'-(phenylsulfonyl)-3*H*-spiro[isobenzofuran-1,3'-pyrrolidine]-2',2'dicarboxylate (3m)

Diethyl (1*S*,5'*R*)-5'-(2-bromophenyl)-1'-(phenylsulfonyl)-3*H*-spiro[isobenzofuran-1,3'-pyrrolidine]-2',2'dicarboxylate (3n)

49

Diethyl (1*S*,5'*R*)-5'-phenyl-1'-(o-tolylsulfonyl)-3*H*-spiro[isobenzofuran-1,3'-pyrrolidine]-2',2'-dicarboxylate (3p)

Diethyl (1*S*,5'*R*)-5-fluoro-5'-phenyl-1'-(o-tolylsulfonyl)-3*H*-spiro[isobenzofuran-1,3'-pyrrolidine]-2',2'-dicarboxylate (3s)

Diethyl (1*S*,5'*R*)-6-methyl-5'-phenyl-1'-(o-tolylsulfonyl)-3H-spiro[isobenzofuran-1,3'-pyrrolidine]-2',2'-dicarboxylate (3t)

56

(1S,5'R)-5-chloro-5'-phenyl-1'-(o-tolylsulfonyl)-3H-spiro[isobenzofuran-1,3'-pyrrolidine]-Diethyl 2',2'-dicarboxylate (3u)

77 385 77 385

(L) Copies of CD spectra

(M) Supplementary reference

- 1. (a) K. Y. Lee, C. G. Lee and J. N. Kim, *Tetrahedron Lett.* 2003, 44, 1231; (b) D. J. Dong, H. H. Li and S. K. Tian, J. Am. Chem. Soc. 2010., 132, 5018.
- For the synthesis of chiral N,N-dioxide liagnds, see: (a) X. H. Liu, L. L. Lin and Feng, X. M. Chiral N, N-dioxides: New Ligands and Organocatalysts for Catalytic Asymmetric reactions. Acc. Chem. Res., 2011, 44, 574; (b) X. H. Liu, L. L. Lin and X. M. Feng, Chiral N,N-dioxides: Synthesis, Coordination Chemistry and Asymmetric Catalysis. Org. Chem. Front., 2014, 1, 298.
- For the preparation of the aziridines: (a) X. Wu, L. Li. And J. L. Zhang, *Adv. Synth. Catal.*, **2012**, 354, 3485; (b) R. H. Fan and Y. Ye, *Adv. Synth. Catal.*, **2008**, 350, 1526; (c) Y. T. Liao, X. H. Liu, Y. Zhang, Y. L. Xu, Y. Xia, L. L. Lin and X. M. Feng, *Chem. Sci.*, **2016**, 7, 3775.
- 4. For the preparation of alkynyl alcohols and amides: (a) W, H.; H, Y. P; G, L. Z. Org. Lett., 2013, 15, 2234; (b) X. H. W, S. L. D, Z. L. Y, L. F, P. Daka, H. W, Z. H. Xu, Org. Lett., 2014, 16, 22.