Divergent synthesis of pyrrolidine and glutamic acid derivatives using macrocyclic phase-transfer catalyst under high-pressure conditions

Agata Tyszka-Gumkowska and Janusz Jurczak*

Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; e-mail: <u>jurczak_group@icho.edu.pl</u>

TABLE OF CONTENT

1.	Crystallographic data	S2
2.	Optimization of the reaction conditions	S3
3.	Synthetic procedures and structural analysis	58
3.1.	General remarks	S8
3.2.	Synthetic procedures	S8
3.3.	Substance analysis	S10
4.	Copies of ¹ H and ¹³ C NMR spectra	S29
5.	Copies of HPLC chromatograms	S73
6.	References	

1. Crystallographic data

The monocrystals were obtained by slowly evaporating a saturated solution of **4.2** in hexane. Single crystal X-ray diffraction measurements were carried out on a Agilent Supernova diffractometer, at 100K with graphite monochromated Cu K_{α} radiation (1.54184 Å). The data reduction was made by using CrysAlisPRO1 software.¹ The structures were solved by direct methods and refined on F2 by full-matrix least-squares by using SHELXS97 and SHELXL97.² All non-hydrogen atoms were refined as anisotropic while hydrogen atoms were placed in calculated positions, and refined in riding mode.

Table S1: Crystallographic data for monocrystal of compound 4.2		
compound	compound 4.2	
structure	Ph H	° `~-{- ``
Empirical formula	C34 H32 C	CIN 03
Moiety formula	C34 H32 C	CIN 03
Formula weight	538.0	9
CCDC No.	20386	51
Temperature	100	K
Wavelength	1.54184 Å	(Cu K _α)
Crystal system	triclin	ic
Space group	P-1	
	<i>a</i> =9.9043(6)	<i>α</i> =73.272(4)
Unit cell dimensions	<i>b</i> =11.6621(6)	<i>в</i> =77.100(4)
	<i>c</i> =14.0011(6)	γ=68.468(5)
Volume	1428.06(1	.4) Å ³
Ζ	2	
Density Calc.	1.390 g/	′cm ³
Absorption coefficient	1.45	7
F(000)	570.35	60
Crystal	colourless	block
angular range Θ	4.2-7	0.0
	H min, max	-11, 11
Index ranges	K min, max	-14, 13.
	L min, max	-16, 11
(all / independent)	5322/4	857
Refinement method	Full-matrix least-	squares on F ²
Absorption correction	multi-s	can
Restraints / nodes / parameters	4857 / 0	/ 359
Goodness-of-fit on F ²	1.052	8
Final R indices $[F^2 > 2\sigma(F^2)]$	R ₁ = 0.0343 wh	R ₂ = 0.0909
R indices (all data)	R ₁ = 0.0373 wR	2= 0. 09036
p _{max} i p _{min}	0.2466 and	-0.377

Table S2: Investigation of optimal reaction conditions at 10 kbar pressure and 2.5 mL of MTBE as a solvent						
		Ph Ph N H ON H Ot-Bu Ph 3.1 Michael addition product	C Ph Ph Ph 1 0.11 mm	O Ot-Bu + Ph Ph 2.1 ol 0.1 mmol	Ph H O Ph H O Ph Ph O Ph H Ph O H O H O H O H O H O H O H O H O H O H	
Base (5 equiv.)	Without catalyst	$ \begin{array}{c} $	Without catalyst 50 °C	$ \begin{array}{c} $	$ \begin{array}{c} $	$\int_{H}^{h} \int_{H}^{h} \int_{H$
	W=82%	W=96%	W=90%	W=98%	W=81%	W=88%
CsOH∙H₂O	d.r. 91:9	d.r. 96:4	d.r. 57:43	d.r. 92:8	d.r. 50:50	d.r. 87:13
КОШ	W=85 %	W=95%	W=88%	W=95%	W=80%	W=95%
KUH	d.r. 88:12	d.r. 96:4	d.r. 70:30	d.r. 80:20	d.r. 80:20	d.r. 96:4
	W=87%	W=95%	W=61 %	W=80%	W=99%	W=94%
	d.r. 80:20	d.r. 83:17	d.r. 96:4	d.r. 99:1	d.r. 65:35	d.r. 96:4
01.23	W=87%	W=91%	W=72%	W=78%	W=80 %	W=99 %
C32CO3	d.r. 86:14	d.r. 96:4	d.r. 54:46	d.r. 82:18	d.r. 85:15	d.r. 99:1
K.CO.	No reaction	No reaction	W=65%	W=54%	W=76%	W=98%
K2CO3	Noreaction	ΝΟΤΕαυιοπ	d.r. 98:2	d.r. >99:1	d.r. 97:3	d.r. 96:4
BaCO.	No reaction	No reaction	W=64%	W=66%	W=72%	W=93%
DacU3	NUTEACTION	NUTEACTION	d.r. >99:1	d.r. >99:1	d.r. >99:1	d.r. 96:4

Table S3: Effect of different bases on the reaction course at 10 kbar pressure and 2.5 mL of MTBE				
as a solvent				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Ph H O Ph N Ot-Bu O Cl		
3.2 Michael addition	product 0.112 mmol, 1.1 equiv. 0.102	2.2 4.2 mmol, 1 equiv. 1,3-dipolar cycloaddition product		
Base (5 equiv.)				
		5 mol% + 50 mol% NEt₃		
	5 moi%			
		in 50 °C		
	96%	in 50 °C 94%		
CsOH∙H₂O	96% d.r. 84:16	in 50 C 94% d.r. 96:4		
CsOH·H ₂ O	96% d.r. 84:16 96%	in 50 °C 94% d.r. 96:4 95%		
CsOH∙H₂O KOH	96% d.r. 84:16 96% d.r. >99:1	in 50 C 94% d.r. 96:4 95% d.r. 96:4		
	96% d.r. 84:16 96% d.r. >99:1 63%	in 50 °C 94% d.r. 96:4 95% d.r. 96:4 94%		
CsOH·H ₂ O KOH 50% KOH _{aq}	96% d.r. 84:16 96% d.r. >99:1 63% d.r. 80:20	in 50 C 94% d.r. 96:4 95% d.r. 96:4 94% d.r. 92:8		
CsOH·H ₂ O KOH 50% KOH _{aq}	96% d.r. 84:16 96% d.r. >99:1 63% d.r. 80:20 W=93%	in 50 C 94% d.r. 96:4 95% d.r. 96:4 94% d.r. 92:8 94 %		
CsOH·H ₂ O KOH 50% KOH _{aq} Cs ₂ CO ₃	96% d.r. 84:16 96% d.r. >99:1 63% d.r. 80:20 W=93% d.r. 66:34	in 50 C 94% d.r. 96:4 95% d.r. 96:4 94% d.r. 92:8 94 % d.r. 93:7		
CsOH·H ₂ O KOH 50% KOH _{aq} Cs ₂ CO ₃	96% d.r. 84:16 96% d.r. >99:1 63% d.r. 80:20 W=93% d.r. 66:34	in 50 C 94% d.r. 96:4 95% d.r. 96:4 94% d.r. 92:8 94 % d.r. 93:7 94%		
CsOH·H ₂ O KOH 50% KOH _{aq} Cs ₂ CO ₃ K ₂ CO ₃	96% d.r. 84:16 96% d.r. >99:1 63% d.r. 80:20 W=93% d.r. 66:34 No reaction	in 50 C 94% d.r. 96:4 95% d.r. 96:4 94% d.r. 92:8 94 % d.r. 93:7 94% d.r. 96:4		
CsOH·H ₂ O KOH 50% KOH _{aq} Cs ₂ CO ₃ K ₂ CO ₃	96% d.r. 84:16 96% d.r. >99:1 63% d.r. 80:20 W=93% d.r. 66:34 No reaction	in 50 C 94% d.r. 96:4 95% d.r. 96:4 94% d.r. 92:8 94 % d.r. 93:7 94% d.r. 96:4 99%		

Table S4: Effect of different PTC catalyst on the reaction course			
0 0	O 5 mol% cat. PTC		
Ph	Ph 5 equiv. KOH,	→ Ot-Bu	
Ph	2.5 mL MTBE rt, 10 kbar, 48 h	Ph	
1 0.112 mmol, 1.1 equiv.	2.1 0.102 mmol, 1 equiv.	3.1	
PTC catalyst	Yield	Diastereomeric ratio	
	88%	92:8	
	93%	95:5	
	92%	95:5	
	92%	95:5	
	90%	97:3	
	95%	96:4	

Table S5: Effect of different PTC catalyst formed in situ on the reaction course		
$\begin{array}{c c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\$		
Catalyst precursor 5 mol% and 50 mol% of amine	Yield	Diastereomeric ratio
$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$	95%	96:4
$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	80%	90:10
$ \begin{array}{ c c c } & & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ $	40%	95:5

Table S6: Impact of pressure on the reaction course at 10 kbar pressure and 2.5 mL of MTBE as a			
solvent			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
Conditions	Pressure	Yield and diastereomeric ratio	Main product
	10 kbar	95%, d.r. 94:6	3.1
5 mol% cat. 7 , 5 equiv. KOH. room temp., 48	8 kbar	90%, d.r. 94:6	3.1
hours	5 kbar	90%, d.r. 92:8	3.1
	atmospheric pressure	52%, d.r. 69:31	3.1
	10 kbar	95%, d.r. 94:6	4.1
5 mol% of 5 and 50 mol% of NEt ₃ , 5 equiv.	8 kbar	87%, d.r. 89:11	4.1
KOH, 50 °C, 48 hours	5 kbar	82%, d.r. 63:37	4.1
	atmospheric pressure	65%, d.r. 59:41	4.1

2. Synthetic procedures and substance analysis

2.1. General remarks

All solvents and reagents were obtained from common suppliers and used as received. Flash column chromatography was performed on silica gel (230–400 mesh), thin-layer chromatography (TLC) was carried out on aluminium sheets precoated with silica gel. ¹H NMR and ¹³C{¹H} NMR spectra were recorded on Varian 600, Varian 500 and on Bruker Mercury. Chemical shifts are reported in ppm and are set to solvent residue peak (chloroform- d_3 and acetone- d_6). The splitting pattern of multiplets is described by abbreviations (s – singlet, d – doublet, t–triplet, q – quartet, dd – doublet of doublets, m – multiplet, c – covered signal, b – broad peak). *J* coupling constants values are reported in Hz. Melting points were determined using a Boëtius M HMK hot-stage apparatus and were uncorrected. High resolution mass spectra (HRMS) performed with the ESI-TOF technique on a Mariner mass spectrometer from PerSeptive Biosystem.

2.2. Synthetic procedures

General Procedure A for obtaining α , β -unsaturated ketones

In accordance with the modified literature procedure.³ To a solution of KOH in water (8 g of KOH in 8 mL of water) the solution of appropriate methyl ketone (1.0 equiv., 5.0 mmol) and aldehyde (1.0 equiv, 5.0 mmol) in MeOH (10 mL) at 0 °C was added dropwise. Typically, the mixture started to solidified during addition of substrates. The reaction was monitored by TLC. After completion, H₂O (150 mL) was added at 0 °C and the resulting precipitate filtered. Recrystallization from EtOH afforded the pure α , β -unsaturated ketones. In the cases where precipitation did not occur, the reaction mixture was extracted with DCM (3 x 50 mL). Organic layers were combined, washed with brine, dried over Na₂SO₄, filtered and evaporated to dryness in vacuo. Subsequent purification by flash column chromatography using hexane:ethyl acetate (95:5 \rightarrow 9:1) as an eluent afforded the pure products.

General Procedure B for obtaining α , β -unsaturated ketones

In accordance with the modified literature procedure.⁴ To a solution of the appropriate methyl ketone (1.0 equiv., 5.0 mmol) and aldehyde (1.0 equiv., 5.0 mmol) in MeOH (10 mL) at 0 °C was added a 10% aqueous solution of KOH (30 mL, dropwise). Typically, the mixture started to solidified after 15 minutes. The reaction was monitored by TLC. After completion of the reaction, H_2O (150 mL) was added at 0 °C and the resulting precipitate was filtered. Recrystallization from EtOH afforded the pure α , β -unsaturated ketones. In the cases where precipitation did not occur, the reaction mixture was extracted with DCM (3 x 50 mL). Organic

layers were combined, washed with brine, dried over Na_2SO_4 , filtered and evaporated to dryness in vacuo. Subsequent purification by flash column chromatography using hexane:ethyl acetate (95:5 \rightarrow 9:1) as an eluent afforded the pure products.

General Procedure C for obtaining Michael adducts 3.2-3.23

Glycine ketamine **1** (33 mg, 0.112 mmol, 1.1 equiv.), appropriate α , β -unsaturated ketone (1 equiv., 0.102 mmol), PTC **7** catalyst (3.5 mg, 5 mol%, 0.0051 mmol) and KOH (5 equiv., 28.5 mg, 0.510 mmol) were placed into a 2.5 mL Teflon reaction vessel. Then the reaction vessel was filled with MTBE and screwed tightly to avoid any air bubbles inside. The reaction was carried out in a high-pressure apparatus for 48 hours, using a pressure of 10kbar. After complexion, the reaction mixture was filtered through a pad of silica gel and magnesium sulphate, washing the product with DCM. After concentration, the crude product was purified by preparative HPLC (loading as a solution in DCM), eluting with a solvent system of 5% AcOEt + 1% NEt₃ in hexane to separate the excess of ketamine **1**. Combined fractions were concentrated and dried to receive the final compound.

In experiments on larger scale glycine ketamine **1** (330 mg, 1.12 mmol, 1.1 equiv.), α , β unsaturated ketone **2.1** (212 mg, 1.02 mmol, 1 equiv.), PTC **7** catalyst (35 mg, 5 mol%, 0.051 mmol) and KOH (5 equiv., 285 mg, 5.10 mmol) were placed into a 25 mL Teflon reaction vessel. After purification product were obtained as a clear oil (467 mg, 91%, d.r. 90:10).

General Procedure D for obtaining 1,3-dipolar cycloaddition products **4.2-4.21**

Glycine ketamine **1** (33 mg, 0.112 mmol, 1.1 equiv.), appropriate α , β -unsaturated ketone (1 equiv., 0.102 mmol), macrocyclic precursor **5** (3 mg, 5 mol%, 0.0051 mmol), NEt₃ (50 µL, 5 ekw.) and KOH (5 equiv., 28.5 mg, 0.510 mmol) were placed into a 2.5 mL Teflon reaction vessel. Then the reaction vessel was filled with MTBE and screwed tightly to avoid any air bubbles inside. The reaction was carried out in a high-pressure apparatus for 48 hours, using a pressure of 10kbar and temperature 50 °C. After complexion, the reaction mixture was filtered through a pad of silica gel and magnesium sulphate, washing the product with DCM. After concentration, the crude product was purified by preparative HPLC (loading as a solution in DCM), eluting with a solvent system of 5% AcOEt + 1% NEt₃ in hexane to separate the excess of ketamine **1**. Combined fractions were concentrated and dried to receive the final compound.

In experiments on larger scale glycine ketamine **1** (330 mg, 1.12 mmol, 1.1 equiv.), α , β unsaturated ketone **2.1** (212 mg, 1.02 mmol, 1 equiv.), macrocyclic precursor **5** (30 mg, 5 mol%, 0.051 mmol), NEt₃ (500 μ L, 5 ekw.) and KOH (5 equiv., 285 mg, 5.10 mmol) were placed into a 25 mL Teflon reaction vessel. After purification product were obtained as a clear oil (410 mg, 80%, d.r. 92:8).

2.3. Substance analysis

CI CI	Following Procedure A and using 4-chloroacetophenone (776 mg, 5 mmoli) and benzaldehyde (530 mg, 5mmoli) as starting materials, compound 2.2 was obtained as yellowish crystals (1068 mg, 88%). ^{5,8}
	¹ H NMR (400 MHz, CDCl ₃) δ 8.00 – 7.93 (m, 2H), 7.81 (d, <i>J</i> = 15.7 Hz, 1H), 7.68 – 7.60 (m, 2H), 7.54 – 7.37 (m, 6H). ¹³ C NMR (101 MHz, CDCl ₃) δ 189.1, 145.3, 139.2, 136.5, 134.7, 130.7, 129.9, 129.0, 128.9, 128.5, 121.6.
CI	Following Procedure A and using acetophenone (601 mg, 5 mmol) and 4-chlorobenzaldehyde (703 mg, 5mmoli) as starting materials, compound 2.3 was obtained as yellowish crystals (1043 mg, 86%). ^{3,7}
	¹ H NMR (400 MHz, CDCl ₃) δ 8.04 – 7.97 (m, 1H), 7.76 (d, J = 15.7 Hz, 1H), 7.63 – 7.54 (m, 2H), 7.54 – 7.45 (m, 2H), 7.39 (d, J = 8.5 Hz, 1H). ¹³ C NMR (101 MHz, CDCl ₃) δ 190.2, 143.3, 138.1, 136.4, 133.4, 132.9, 129.6, 129.2, 128.7, 128.5, 122.5.
Br	Following Procedure A and using 4-bromoacetophenone (995 mg, 5 mmol) and benzaldehyde (530 mg, 5mmoli) as starting materials, compound 2.4 was obtained as yellowish crystals (1307 mg, 92%). ^{6,7}
	¹ H NMR (500 MHz, cdcl ₃) δ 7.83 – 7.77 (m, 2H), 7.73 (d, J = 15.7 Hz, 1H), 7.58 – 7.52 (m, 4H), 7.39 (d, J = 15.7 Hz, 1H), 7.36 – 7.31 (m, 3H). ¹³ C NMR (126 MHz, cdcl ₃) δ 189.3, 145.4, 136.9, 134.7, 131.9, 130.7, 130.0, 128.9, 128.5, 127.9, 121.5.
O Br	Following Procedure A and using acetophenone (601 mg, 5 mmol) and 4-bromobenzaldehyde (925 mg, 5mmoli) as starting materials, compound 2.5 was obtained as yellowish crystals (1278 mg, 89%). ^{3,7}
	¹ H NMR (400 MHz, CDCl ₃) δ 8.01 (d, $J = 5.3$, 3.4 Hz, 1H), 7.74 (d, $J = 15.7$ Hz, 1H), 7.63 – 7.46 (m, 4H). ¹³ C NMR (101 MHz, CDCl ₃) δ 190.2, 143.3, 138.0, 133.8, 132.9, 132.2, 129.8, 128.7, 128.5, 124.8, 122.6.
F	Following Procedure A and using 4-fluoroacetophenone (776 mg, 5 mmol) and benzaldehyde (530 mg, 5mmoli) as starting materials, compound 2.6 was obtained as yellowish crystals (1018 mg, 90%). ^{7,8}
	¹ H NMR (400 MHz, CDCl ₃) δ 8.05 (dd, J = 7.6, 5.5 Hz, 2H), 7.81 (d, J = 15.7 Hz, 1H), 7.64 (d, J = 2.9 Hz, 2H), 7.59 – 7.34 (m, 4H), 7.19 (dd, J = 24.6, 16.8 Hz, 2H). ¹³ C NMR (101 MHz, CDCl ₃) δ 188.80, 165.6 (d, J_{C-F} = 252.9 Hz),145.0, 134.8, 134.6 (d, J_{C-F} = 2.8 Hz), 131.1 (d, J_{C-F} = 9.1 Hz), 130.6, 128.9, 128.5, 121.6, 115.7 (d, J_{C-F} = 22.0 Hz).

O F	Following Procedure A and using acetophenone (601 mg, 5 mmol) and 4-fuorobenzaldehyde (620mg, 5mmoli) as starting materials, compound 2.7 was obtained as yellowish crystals (1052 mg, 93%). ⁸
	¹ H NMR (400 MHz, CDCl ₃) δ 8.01 (d, J = 7.4 Hz, 2H), 7.77 (d, J = 15.7 Hz, 1H), 7.67 – 7.54 (m, 3H), 7.54 – 7.38 (m, 3H), 7.10 (t, J = 8.5 Hz, 2H). ¹³ C NMR (101 MHz, CDCl ₃) δ 190.3, 164.1 (d, J_{C-F} = 251.9 Hz), 143.5, 138.2, 132.8, 131.2 (d, J_{C-F} = 3.3 Hz), 130.4, 130.3, 128.6, 128.5, 121.8 (d, J_{C-F} = 2.3 Hz), 116.1 (d, J_{C-F} = 21.9 Hz).
CF3	Following Procedure B and using acetophenone (601 mg, 5 mmol) and 4-(trifluoromethyl)benzaldehyde (871 mg, 5mmoli) as starting materials, compound 2.8 was obtained as yellow flakes (870 mg, 63%). ⁸
	¹ H NMR (400 MHz, CDCl ₃) δ 8.03 (d, J = 7.1 Hz, 2H), 7.90 – 7.40 (m, 9H). ¹³ C NMR (101 MHz, CDCl ₃) δ 190.0, 142.7, 138.3, 137.8, 133.1, 128.7, 128.5, 128.5, 126.4, 125.4, 125.2, 124.3.
O CN	Following Procedure B and using acetophenone (601 mg, 5 mmol) and 4-cyanobenzaldehyde (606 mg, 5mmoli) as starting materials, compound 2.9 was obtained as yellowish crystals (851 mg, 73%). ³
	¹ H NMR (400 MHz, CDCl ₃) δ 8.02 (d, <i>J</i> = 7.0 Hz, 2H), 7.65 (m, 9H). ¹³ C NMR (101 MHz, CDCl ₃) δ 189.7, 142.0, 139.2, 137.7, 133.3, 132.7, 125.1, 118.3, 113.5, 29.7.
Me	Following Procedure A and using 4-methylacetophenone (671 mg, 5 mmol) and benzaldehyde (530 mg, 5mmoli) as starting materials, compound 2. 10 was obtained as yellowish crystals (856 mg, 77%). ^{5,8}
	¹ H NMR (400 MHz, CDCl ₃) δ 7.94 (d, $J = 8.1$ Hz, 2H), 7.81 (d, $J = 15.7$ Hz, 1H), 7.63 (dd, $J = 6.4$, 2.8 Hz, 2H), 7.53 (d, $J = 15.7$ Hz, 1H), 7.41 (dd, $J = 4.9$, 1.6 Hz, 3H), 7.30 (d, $J = 8.0$ Hz, 2H), 2.43 (s, 3H). ¹³ C NMR (101 MHz, CDCl ₃) δ 189.9, 144.4, 143.6, 135.7, 135.0, 130.4, 129.3, 128.9, 128.7, 128.4, 122.2, 21.7.
Me	Following Procedure A and using acetophenone (601 mg, 5 mmol) and 4-methylbenzaldehyde (606 mg, 5mmoli as starting materials, compound 2.11 was obtained as yellowish crystals (889 mg, 80%). ⁸
	¹ H NMR (400 MHz, CDCl ₃) δ 8.05 – 7.98 (m, 2H), 7.79 (d, <i>J</i> = 15.7 Hz, 1H), 7.62 – 7.45 (m, 6H), 7.23 (d, <i>J</i> = 8.0 Hz, 2H), 2.39 (s, 3H). ¹³ C NMR (101 MHz, CDCl ₃) δ 190.6, 144.9, 141.1, 138.4, 132.6, 132.2, 129.7, 128.6, 128.5, 128.5, 121.2, 21.5.

	MHz, CDCl ₃) δ 190.5, 144.9, 143.6, 138.3, 134.4, 133.4, 132.8, 132.4, 130.6, 128.7, 128.6, 128.5, 127.8, 127.4, 126.8, 123.7, 122.3.
	Following Procedure B and using 1-cyclohexylethanone (631 mg, 5 mmol) and benzaldehyde (530 mg, 5mmoli) as starting materials, compound 2.22 was obtained as white flakes (997 mg, 93%). ⁶
	¹ H NMR (400 MHz, CDCl ₃) δ 7.63 – 7.49 (m, 3H), 7.42 – 7.30 (m, 3H), 6.81 (d, $J = 16.0$ Hz, 1H), 2.65 (tt, $J = 11.3$, 3.3 Hz, 1H), 1.95 – 1.62 (m, 5H), 1.51 – 1.16 (m, 5H). ¹³ C NMR (101 MHz, CDCl ₃) δ 203.1, 142.2, 134.8, 130.3, 128.9, 128.2, 124.7, 49.4, 28.7, 25.9, 25.8.
	Following Procedure B and using 3-methyl-2-butanone (430 mg, 5 mmol) and benzaldehyde (530 mg, 5mmoli) as starting materials, compound 2.23 was obtained as yellow oil (261mg, 30%). ¹¹
	¹ H NMR (400 MHz, CDCl ₃) δ 7.61 (d, J = 16.0 Hz, 1H), 7.58 – 7.53 (m, 1H), 7.38 (dd, J = 4.2, 2.4 Hz, 3H), 6.82 (d, J = 16.0 Hz, 1H), 2.93 (dt, J = 13.8, 6.9 Hz, 1H), 1.18 (d, J = 6.9 Hz, 7H). ¹³ C NMR (101 MHz, CDCl ₃) δ 203.8, 142.4, 134.7, 130.3, 128.9, 128.3, 124.5, 39.3, 18.5.
Ph, Pho H H O N, H O	Following Procedure C using α , β -unsaturated ketone 2.1 (21 mg, 0.102 mmol) as starting material, compound 3.1 was obtained as clear oil (49 mg, 95%). ^{12,13,14,15}
3.1 , 95%, d.r. 94:6	¹ H NMR (400 MHz, Acetone) δ 7.97 (dd, $J = 5.2$, 3.3 Hz, 2H), 7.71 – 7.65 (m, 2H), 7.61 – 7.55 (m, 1H), 7.51 – 7.35 (m, 8H), 7.23 – 7.09 (m, 5H), 6.88 (dd, $J = 7.0$, 2.3 Hz, 2H), 4.26 – 4.16 (m, 2H), 3.79 – 3.58 (m, 2H), 1.28 (s, 9H). ¹³ C NMR (101 MHz, Acetone) δ 198.9, 171.9, 170.5, 142.9, 140.6, 138.5, 137.5, 133.8, 131.5, 129.8, 129.7, 129.6, 129.6, 129.4, 129.2, 129.06, 129.05, 128.7, 127.5, 81.6, 72.2, 46.1, 41.2, 28.2. HPLC: Kromasil OD-H, Hexane:2-Propanol (98:2), 0.5 mL/min, 254 nm; retention time: 11.48 min, 15.08 min.
3.1, 95%, d.r. 94:6	¹ H NMR (400 MHz, Acetone) δ 7.97 (dd, $J = 5.2$, 3.3 Hz, 2H), 7.71 – 7.65 (m, 2H), 7.61 – 7.55 (m, 1H), 7.51 – 7.35 (m, 8H), 7.23 – 7.09 (m, 5H), 6.88 (dd, $J = 7.0$, 2.3 Hz, 2H), 4.26 – 4.16 (m, 2H), 3.79 – 3.58 (m, 2H), 1.28 (s, 9H). ¹³ C NMR (101 MHz, Acetone) δ 198.9, 171.9, 170.5, 142.9, 140.6, 138.5, 137.5, 133.8, 131.5, 129.8, 129.7, 129.6, 129.6, 129.4, 129.2, 129.06, 129.05, 128.7, 127.5, 81.6, 72.2, 46.1, 41.2, 28.2. HPLC: Kromasil OD-H, Hexane:2-Propanol (98:2), 0.5 mL/min, 254 nm; retention time: 11.48 min, 15.08 min. Following Procedure C using α,β-unsaturated ketone 2.2 (24.5 mg, 0.102 mmol) as starting material, compound 3.2 was obtained as clear foam (52 mg, 96%, mp 129.6 °C). ^{12,14,15}

Ph __ _Ph_	Following Procedure Clusing α B-unsaturated ketone 2.3 (24.5 mg, 0.102
	mmol) as starting material compound 3.3 was obtained as colorless
U ↓ ↓ H ↓ ↓	solid (49 mg 96% mn 144.2°C) 13,14,15
	5010 (+5 mg, 50%, mp 1++.2 c).
3.3 , 90%, d.r.>99:1	¹ H NMR (400 MHz, Acetone) δ 7.98 (d, <i>J</i> = 8.6 Hz, 2H), 7.73 – 7.63 (m,
	2H), 7.58 (tt, J = 7.2, 1.2 Hz, 1H), 7.51 – 7.35 (m, 8H), 7.23 (d, J = 1.2 Hz,
	4H), 6.95 (dd, J = 6.6, 2.9 Hz, 2H), 4.21 (q, J = 3.4 Hz, 2H), 3.81 – 3.58 (m,
	2H), 3.64 (dd, J = 17.1, 3.3 Hz, 1H), 1.29 (s, 9H). ¹³ C NMR (101 MHz,
	Acetone) δ 198.7, 172.1, 170.3, 141.9, 140.5, 138.4, 137.3, 133.9, 132.8,
	131.5, 131.5, 129.7, 129.7, 129.6, 129.5, 129.2, 129.02, 129.0, 128.6,
	81.8, 71.8, 45.5, 41.1, 28.2.HPLC: Kromasil OD-H, Hexane:2-Propanol
	(98:2), 0.5 mL/min, 254 nm; retention time: 10.84 min, 14.07 min.
	Following Procedure C using α , β -unsaturated ketone 2.4 (29 mg, 0.102
	mmol) as starting material, compound 3.4 was obtained as clear oil (58
	mg, 98%). ^{12,13}
Br	¹ H NMR (400 MHz Acetone) δ 8 02 – 7 94 (m. 2H) 7 71 – 7 64 (m. 2H)
3.4 , 98%, d.r. 99:1	$759 (t \ l = 7.4 \text{ Hz} \ 1\text{H}) \ 753 = 7.25 (m \ 10\text{H}) \ 7.18 (d \ l = 8.5 \text{ Hz} \ 2\text{H}) \ 6.94$
	(dd) = 65 3.0 Hz 2H 4.25 - 4.09 (m 2H) 3.81 - 3.57 (m 2H) 1.29 (s)
	(101, 9 = 0.5, 5.0, 12, 211), 4.25 + 4.05 (11, 211), 5.01 + 5.57 (11, 211), 1.25 (5, 91) + 13C NMR (101 MHz Acetone) & 171.0 + 169.2 + 141.3 + 139.4 + 137.3
	127 9 127 5 119 8 80 7 70 7 44 4 39 9 27 1 HPI (· Diacel IC (5um)
	Heyane 2-Pronanol (98.2) 0.5 ml /min 254 nm: retention time: 70.82
	min 89.60 min
Ph Ph	Following Procedure C using α , β -unsaturated ketone 2.5 (29 mg, 0.102
	mmol) as starting material, compound 3.5 was obtained as clear oil (46
	mg, 79%). ¹⁵
	$\frac{1}{10000000000000000000000000000000000$
3.5 , 79%, d.r. 98:2	H NMR (500 MHz, acetone) 67.98 (a, $J = 8.4$ Hz, 1H), 7.68 (a, $J = 8.5$ Hz, 211), 7.68 (b, $J = 8.5$ Hz, 211), 7.69 (b, $J = 7.4$ Hz, 111), 7.69 (c), 7.41, 7.24 (c), 7.41, 7.41
	$2\Pi_{1}, 7.39$ (I, $J = 7.4 \Pi_{2}, 1\Pi_{1}, 7.32 - 7.42$ (III, $6\Pi_{1}, 7.41 - 7.34$ (III, $4\Pi_{1}, 7.18$
	(a, J = 8.5 Hz, 1H), 6.94 (aa, J = 6.4, 3.0 Hz, 2H), 4.23 - 4.15 (m, 2H), 3.80
	= 3.71 (m, 1H), $3.08 = 3.59$ (m, 1H), 1.29 (S, 9H). -2 NMR (126 MHz,
	131.9, 131.5, 129.7, 129.7, 129.6, 129.5, 129.2, 129.0, 128.6, 120.9, 81.8,
	71.8, 45.5, 41.0. HPLC: Krollasli OD-H, Hexalle.2-Propanol (98.2), 0.5
	mL/min, 254 nm; retention time: 10.95 min, 14.41 min.
Ph Ph	Following Procedure C using α , β -unsaturated ketone 2.6 (22.6 mg, 0.102
	mmol) as starting material, compound 3.6 was obtained as clear oil (51
	mg, 97%).
	⁺ H NMR (500 MHz, acetone) δ 8.11 – 8.03 (m, 2H), 7.68 (d, <i>J</i> = 7.1 Hz,
J.U, 97 %, U.I. 99.1	1H), /.47 – 7.41 (m, 4H), 7.38 (t, <i>J</i> = 7.4 Hz, 2H), 7.26 – 7.11 (m, 7H), 6.88
	(dd, <i>J</i> = 5.0, 2.5 Hz, 2H), 4.27 – 4.19 (m, 1H), 3.79 – 3.69 (m, 1H), 3.68 –
	3.61 (m, 1H), 1.28 (s, 9H). ¹³ C NMR (126 MHz, acetone) δ 196.4, 170.8,

	169.4, 165.4 (d, J = 251.8 Hz), 141.8, 139.5, 136.3, 134.0 (d, J = 2.9 Hz),
	130.9 (d, J = 9.4 Hz), 130.4, 128.7, 128.61, 128.5, 128.3, 128.0, 127.97,
	127.6, 126.5, 115.4 (d, J = 22.0 Hz), 80.5, 71.0, 45.0, 40.1, 27.1. HPLC:
	Kromasil OD-H, Hexane:2-Propanol (98:2), 0.5 mL/min, 254 nm;
	retention time: 12.58 min, 14.56 min.
Ph Ph	Following Procedure C using α , β -unsaturated ketone 2.7 (22.6 mg, 0.102
	mmol) as starting material, compound 3.7 was obtained as clear oil (51
	mg, 97%). ^{13,14,15}
	$\frac{1}{10000000000000000000000000000000000$
• • • • •	H NIVIK (400 MITZ, ACELOTIE) 0 7.98 (U, $J = 8.5 \text{ Hz}, 2 \text{ H}$), 7.75 = 7.05 (III,
3.7 , 97%, d.r. 98:2	2Π , 7.58 (L, J = 7.4 Hz, 1H), 7.52 - 7.42 (III, 6H), 7.42 - 7.34 (III, 2H), 7.28
	-7.20 (m, 2H), 7.01 -6.89 (m, 4H), 4.29 -4.17 (m, 2H), 3.78 -3.58 (m, 2H), 4.20 (a, 0.1) 13C NMP (101 MUL, Acctance) § 108.0, 172.1, 170.4
	2H), 1.29 (S, 9H)C NMR (101 MHz, Acetone) o 198.9, 172.1, 170.4,
	129.6, 129.5, 129.2, 129.1, 128.7, 115.6 (d, J = 22.0 Hz), 81.7, 72.1, 45.4,
	41.4, 28.2. HPLC: Kromasil OD-H, Hexane:2-Propanol (98:2), 0.5 mL/min,
	254 nm; retention time: 11.21 min, 15.38 min.
Ph_Ph_	Following Procedure C using α , β -unsaturated ketone 2.8 (28 mg. 0.102
	mmol) as starting material, compound 3.8 was obtained as colorless
	foam (45 mg, 79%, 96.2 °C). ¹²
CF ₃	¹ H NMR (500 MHz, acetone) δ 7.86 (d, J = 7.7 Hz, 2H), 7.55 (d, J = 7.5 Hz,
	2H), 7.45 (t, <i>J</i> = 7.4 Hz, 1H), 7.41 (d, <i>J</i> = 8.2 Hz, 2H), 7.38 – 7.27 (m, 9H),
	7.25 (t, <i>J</i> = 7.6 Hz, 2H), 6.76 (d, <i>J</i> = 6.3 Hz, 2H), 4.20 – 4.13 (m, 1H), 4.11
	(d, J = 6.0 Hz, 1H), 3.73 (dd, J = 17.5, 9.9 Hz, 1H), 3.59 (dd, J = 17.5, 3.8
	Hz, 1H), 1.15 (s, 9H). ¹³ C NMR (126 MHz, acetone) δ 197.5, 171.2, 169.1,
	146.7, 139.4, 137.2, 136.1, 132.9, 130.5, 129.5, 128.7, 128.6, 128.6,
	128.4, 128.1, 127.9, 127.5, 124.8 (q, J = 3.8 Hz), 80.9, 70.6, 44.7, 39.7,
	27.1. HPLC: Kromasil OD-H, Hexane:2-Propanol (98:2), 0.5 mL/min, 254
	nm; retention time: 9.98 min, 12.51 min.
Ph. Ph	Enllowing Procedure Cusing & Buncaturated katene 2.0 /22.2 mg 0.102
	mol) as starting material compound 2.9 was obtained as colorless
	form (27 mg 70%)
	Toam (37 mg, 70%).
	¹ H NMR (400 MHz, Acetone) δ 7.98 (d, <i>J</i> = 7.4 Hz, 2H), 7.67 (d, <i>J</i> = 7.2 Hz,
3.9 , 70%, d.r. 83:17	2H), 7.59 (t, J = 8.2 Hz, 3H), 7.51 – 7.41 (m, 8H), 7.38 (t, J = 7.4 Hz, 2H),
	6.92 (d, <i>J</i> = 3.5 Hz, 2H), 4.31 – 4.20 (m, 2H), 3.86 (dd, <i>J</i> = 17.5, 9.4 Hz, 1H),
	3.70 (dd, <i>J</i> = 17.5, 3.7 Hz, 1H), 1.29 (s, 9H). ¹³ C NMR (101 MHz, Acetone)
	δ 197.5, 169.0, 147.8, 139.3, 137.2, 136.1, 132.9, 131.7, 130.5, 129.9,
	129.7, 129.3, 128.7, 128.6, 128.4, 128.1, 127.9, 127.5, 110.3, 80.9, 70.3,
	44.9, 39.7, 27.1. HPLC: Kromasil OD-H, Hexane:2-Propanol (98:2), 0.5
	mL/min, 254 nm; retention time: 22.04 min, 30.87 min. HRMS (m/z)
	calculated: C ₃₅ H ₃₃ N ₂ O ₃ [M+ H] ⁺ : 529.2491, found: 529.2492.

	Following Procedure C using α , β -unsaturated ketone 2.10 (22.3 mg, 0.102 mmol) as starting material, compound 3.10 was obtained as clear oil (37.5 mg, 71%). ¹³
3.10 , 71%, d.r. 98:2	¹ H NMR (500 MHz, acetone) δ 7.88 (d, $J = 8.2$ Hz, 2H), 7.68 (d, $J = 8.6$ Hz, 1H), 7.49 – 7.35 (m, 6H), 7.28 (d, $J = 8.0$ Hz, 2H), 7.21 – 7.09 (m, 5H), 6.92 – 6.84 (m, 2H), 4.25 – 4.17 (m, 2H), 3.75 – 3.67 (m, 1H), 3.61 – 3.53 (m, 1H), 2.37 (s, 3H), 1.28 (s, 9H). ¹³ C NMR (126 MHz, acetone) δ 198.4, 171.8, 170.5, 144.5, 142.9, 140.6, 137.4, 136.0, 131.4, 130.2, 129.8, 129.7, 129.6, 129.4, 129.2, 129.1, 128.9, 128.6, 127.5, 81.5, 72.2, 46.1, 41.0, 28.2, 21.7. HPLC: Kromasil OD-H, Hexane:2-Propanol (98:2), 0.5 mL/min, 254 nm; retention time: 12.48 min, 17.20 min.
	Following Procedure C using α , β -unsaturated ketone 2.11 (22.3 mg, 0.102 mmol) as starting material, compound 3.11 was obtained as clear oil (48 mg, 92%). ¹³
3.11 , 92%, d.r. 94:6	¹ H NMR (400 MHz, Acetone) δ 7.98 (d, $J = 7.1$ Hz, 2H), 7.68 (d, $J = 8.6$ Hz, 2H), 7.57 (t, $J = 7.4$ Hz, 1H), 7.51 – 7.35 (m, 8H), 7.06 (d, $J = 8.1$ Hz, 2H), 6.99 (d, $J = 8.0$ Hz, 2H), 6.92 – 6.84 (m, 2H), 4.26 – 4.11 (m, 2H), 3.78 – 3.65 (m, 1H), 3.60 (dd, $J = 16.4$, 3.2 Hz, 1H), 2.22 (s, 3H), 1.29 (s, 9H). ¹³ C NMR (101 MHz, Acetone) δ 198.9, 171.7, 170.5, 140.6, 139.8, 138.5, 137.4, 136.9, 133.7, 131.4, 129.63, 129.61, 129.6, 129.5, 129.5, 129.4, 129.1, 129.9, 128.6, 81.5, 72.2, 45.6, 41.2, 28.2, 21.1. HPLC: Kromasil OD-H, Hexane:2-Propanol (98:2), 0.5 mL/min, 254 nm; retention time: 10.62 min, 14.11 min.
	Following Procedure C using α , β -unsaturated ketone 2.12 (24 mg, 0.102 mmol) as starting material, compound 3.12 was obtained as clear oil (45 mg, 85%). ^{13,15}
3.12, 85%, d.r. >99:1	¹ H NMR (400 MHz, Acetone) δ 7.99 – 7.92 (m, 2H), 7.72 – 7.63 (m, 2H), 7.48 – 7.33 (m, 6H), 7.20 – 7.08 (m, 5H), 7.00 – 6.94 (m, 2H), 6.91 – 6.83 (m, 2H), 4.26 – 4.14 (m, 2H), 3.85 (s, 3H), 3.72 – 3.61 (m, 1H), 3.57 – 3.48 (m, 1H), 1.27 (s, 9H). ¹³ C NMR (101 MHz, Acetone) δ 196.2, 170.7, 169.4, 163.4, 141.9, 139.6, 136.4, 130.4, 130.3, 130.2, 128.7, 128.6, 128.5, 128.3, 128.0, 127.9, 127.6, 126.4, 113.6, 80.4, 71.1, 54.9, 45.1, 39.7, 27.1 HPLC: Kromasil OD-H, Hexane:2-Propanol (98:2), 0.5 mL/min, 254 nm; retention time: 20.67 min, 33.78 min.
Ph Ph Ph O H H O N H O 3.113, 88%, d.r. 98:2	Following Procedure C using α , β -unsaturated ketone 2.13 (24 mg, 0.102 mmol) as starting material, compound 3.12 was obtained as clear oil (47 mg, 88%). ^{13,15}

	¹ H NMR (400 MHz, Acetone) δ 7 97 (d. / = 7.4 Hz, 2H), 7.69 (d. / = 7.3 Hz,
	2H), 7.57 (d, J = 8.0 Hz, 1H), 7.51 – 7.30 (m, 8H), 7.10 (d, J = 8.0 Hz, 2H),
	6.99 – 6.86 (m, 2H), 6.74 (d, J = 7.9 Hz, 2H), 4.27 – 4.09 (m, 2H), 3.80 –
	3.48 (m, 1H, c), 3.70 (s, 3H), 1.29 (s, 9H). ¹³ C NMR (101 MHz, Acetone) δ
	199.0. 171.7. 170.6. 159.6. 140.7. 138.6. 137.5. 134.7. 133.8. 131.4.
	130.8. 130.7. 129.7. 129.6. 129.4. 129.2. 129.0. 128.71. 114.4. 81.5. 72.4.
	55.6 45.4 41.5 28.3 HPIC Kromasil OD-H Hevane 2-Propanol (98:2)
	0.5 ml /min_254 nm: retention time: 15.67 min_25.88 min
Ph Ph	Following Procedure C using α , β -unsaturated ketone 2.14 (24.5 mg,
	0.102 mmol) as starting material, compound 3.14 was obtained as clear
	oil (48 mg, 89%). ^{13,14,15}
CI	¹ H NMR (500 MHz, acetone) δ 8.04 (d, J = 8.4 Hz, 1H), 7.70 – 7.64 (m,
3.14 , 89%, d.r. >99:1	2H), 7.63 – 7.58 (m, 1H), 7.51 (dd, J = 10.5, 4.8 Hz, 2H), 7.47 – 7.29 (m,
	8H), 7.17 (td, <i>J</i> = 7.7, 1.7 Hz, 1H), 7.12 (td, <i>J</i> = 7.5, 1.2 Hz, 1H), 6.61 (d, <i>J</i> =
	6.6 Hz, 2H), 4.77 (dt, <i>J</i> = 10.0, 4.1 Hz, 1H), 4.30 (d, <i>J</i> = 4.3 Hz, 1H), 4.10 –
	4.02 (m, 1H), 3.77 (dd, J = 17.4, 4.0 Hz, 1H), 1.36 (d, J = 13.5 Hz, 9H).
	¹³ C NMR (126 MHz, acetone) δ 198.6, 172.1, 170.4, 140.4, 140.2, 138.3,
	137.3, 135.3, 133.9, 131.4, 130.6, 130.5, 129.7, 129.6, 129.5, 129.3,
	129.1, 129.0, 128.8, 128.3, 127.5, 81.9, 69.2, 41.6, 39.6, 28.3. HPLC:
	Kromasil OD-H, Hexane:2-Propanol (98:2), 0.5 mL/min, 254 nm;
	retention time: 11.95 min, 12.11 min.
	Following Procedure C using α , β -unsaturated ketone 2.15 (24.5 mg,
	0.102 mmol) as starting material, compound 3.15 was obtained as clear
CI	oli (49 mg, 91%).
	¹ H NMR (500 MHz, acetone) δ 8.00 (d, $J = 7.2$ Hz, 2H), 7.68 (d, $J = 7.1$ Hz,
3.15 , 91%, d.r. >99:1	2H), 7.59 (t, J = 7.4 Hz, 1H), 7.52 – 7.42 (m, 6H), 7.39 (t, J = 7.4 Hz, 2H),
	7.27 (s 1H) $7.24 - 7.15$ (m 3H) 6.93 (dd $I = 6.4.2.9$ Hz 2H) $4.25 - 4.17$
	(m 2H) 384 - 376 (m 1H) 371 - 362 (m 1H) 129 (s 9H) 13C NMR
	(126 MHz acetone) δ 197 6 171 1 169 2 144 4 139 4 137 2 136 2
	133.3. 132.9. 130.4. 129.6. 128.9. 128.62. 128.58. 128.5. 128.4. 128.0
	127.9. 127.5. 127.1. 126.5. 80.73. 70.6. 44.7. 39.8. 27.1. HPIC· Kromasil
	OD-H. Hexane 2-Propanol (98:2) 0.5 ml /min 254 nm: retention time:
	10.96 min. 12.71 min
	10.50 mm, 12.7 1 mm.
Ph Ph	Following Procedure C using α,β -unsaturated ketone 2.16 (23.8 mg,
	0.102 mmol) as starting material, compound 3.16 was obtained as clear
, H	oil (48 mg, 88%).
	² H NIVIK (400 IVIHZ, Acetone) 0 /.98 (d, $J = 7.3$ Hz, 2H), 7.66 (d, $J = 7.2$ Hz,
3.10 , 88%, a.r. >99:1	2H), /.58 (t, <i>J</i> = /.3 Hz, 1H), /.52 – /.34 (m, 8H), 7.16 – 7.07 (m, 2H), 6.87
	-6.76 (m, 3H), 6.73 (t, J = 7.4 Hz, 1H), 4.57 – 4.49 (m, 1H), 4.45 (d, J = 6.0
	Hz, 1H), 3.87 – 3.75 (m, 1H), 3.62 – 3.49 (m, 4H), 1.28 (s, 9H). ¹³ C NMR
	(101 MHz, Acetone) δ 198.2, 170.5, 169.9, 157.6, 139.6, 137.6, 136.6,

	132.6, 130.2, 129.5, 129.3, 128.6, 128.4, 128.3, 128.2, 128.0, 127.9,
	127.6, 127.5, 119.8, 110.9, 80.1, 68.3, 54.6, 39.7, 38.5, 27.1. HPLC:
	Kromasil OD-H, Hexane:2-Propanol (98:2), 0.5 mL/min, 254 nm;
	retention time: 17.31 min, 20.64 min. HRMS (m/z) calculated: $C_{35}H_{36}NO_4$
	[M+H]⁺: 534.2644, found: 534.2636.
Ph Ph	Following Procedure C using α , β -unsaturated ketone 2.17 (23.8 mg,
	0.102 mmol) as starting material, compound 3.17 was obtained as clear
	oil (48 mg, 90%). ¹⁴
	¹ H NMR (500 MHz, acetone) δ 8.00 (d, <i>J</i> = 7.2 Hz, 1H), 7.70 (d, <i>J</i> = 7.1 Hz,
ОМе	1H), 7.58 (t, J = 7.4 Hz, 1H), 7.52 – 7.35 (m, 4H), 7.09 (t, J = 8.1 Hz, 1H),
3.17 , 90%, d.r. 98:2	6.91 – 6.81 (m, 1H), 6.79 – 6.73 (m, 1H), 6.74 – 6.67 (m, 1H), 4.26 – 4.16
	(m, 1H), 3.84 – 3.73 (m, 1H), 3.69 – 3.64 (m, 1H), 3.65 (s, 3H), 1.31 (s, 9H).
	¹³ C NMR (126 MHz, acetone) δ 198.9, 171.7, 170.5, 160.6, 144.5, 140.6,
	138.5, 137.4, 133.8, 131.4, 129.9, 129.7, 129.6, 129.6, 129.4, 129.1,
	129.0, 128.6, 121.9, 115.5, 113.0, 81.6, 72.0, 55.5, 45.9, 40.9, 28.2. HPLC:
	Kromasil OD-H, Hexane:2-Propanol (98:2), 0.5 mL/min, 254 nm;
	retention time: 13.15 min, 16.18 min.
	Following Procedure C using α , β -unsaturated ketone 2.18 (21.4 mg,
	0.102 mmol) as starting material, compound 3.18 was obtained as clear
	oil (46 mg, 90%).
s s	¹ H NMP (400 MHz Acetone) δ 8 30 (s 1H) 8 01 – 7 96 (m 1H) 7 96 –
3.18 , 90%, d.r. 96:4	7.91 (m 1H) $7.71 - 7.66 (m 2H)$ $7.52 - 7.31 (m 8H)$ $7.25 - 7.10 (m 1H)$
	(11, 11), (11, 11), (11, 11)
	511, 0.00 (00, 7 - 7.0, 2.5112, 211), 4.51 - 4.10 (11, 211), 5.00 - 5.78 (11, 111), 2.72 - 2.62 (m. 14) - 1.20 (c. 04) 13C NMP (101 MHz Acotono) & 102 6
	5.72 - 5.05 (III, 11), 1.29 (5, 91). C NIVIR (101 MI12, Actione) 0 192.0,
	170.9, 169.3, 144.1, 142.2, 141.6, 139.5, 136.3, 130.4, 129.7, 128.7,
	128.6, 128.5, 128.4, 128.0, 127.6, 127.4, 126.6, 126.1, 124.9, 122.8, 80.6,
	70.9, 45.2, 40.6, 27.1. HPLC: Kromasil OD-H, Hexane:2-Propanol (98:2),
	0.5 mL/min, 254 nm; retention time: 18.81 min, 22.75 min. HRMS (m/z)
	calculated: C ₃₆ H ₃₄ NO ₃ S [M+H] ⁺ : 560.2259, found: 560.2275
Ph, Ph	Following Procedure C using α β -unsaturated ketone 2.19 (19.82 mg
	0.102 mmol) as starting material compound 3.19 was obtained as
	colorless solid (15 mg 91% mp 89.9°C) 12,13,14
	coloness solid (45 mg, 51%, mp 85.5 c).
	¹ H NMR (500 MHz, acetone) δ 7.77 – 7.72 (m, 1H), 7.70 – 7.64 (m, 2H),
3.19 , 91%, d.r. >99:1	
	7.48 – 7.41 (m, 4H), 7.38 (t, J = 7.4 Hz, 2H), 7.27 (d, J = 3.5 Hz, 1H), 7.22
	7.48 – 7.41 (m, 4H), 7.38 (t, <i>J</i> = 7.4 Hz, 2H), 7.27 (d, <i>J</i> = 3.5 Hz, 1H), 7.22 – 7.10 (m, 5H), 6.91 – 6.82 (m, 2H), 6.58 (dd, <i>J</i> = 3.5, 1.7 Hz, 1H), 4.25 –
	7.48 – 7.41 (m, 4H), 7.38 (t, <i>J</i> = 7.4 Hz, 2H), 7.27 (d, <i>J</i> = 3.5 Hz, 1H), 7.22 – 7.10 (m, 5H), 6.91 – 6.82 (m, 2H), 6.58 (dd, <i>J</i> = 3.5, 1.7 Hz, 1H), 4.25 – 4.16 (m, 2H), 3.64 – 3.55 (m, 1H), 3.40 (dd, <i>J</i> = 16.3, 3.7 Hz, 1H), 1.29 (s,
	7.48 – 7.41 (m, 4H), 7.38 (t, J = 7.4 Hz, 2H), 7.27 (d, J = 3.5 Hz, 1H), 7.22 – 7.10 (m, 5H), 6.91 – 6.82 (m, 2H), 6.58 (dd, J = 3.5, 1.7 Hz, 1H), 4.25 – 4.16 (m, 2H), 3.64 – 3.55 (m, 1H), 3.40 (dd, J = 16.3, 3.7 Hz, 1H), 1.29 (s, 9H). ¹³ C NMR (126 MHz, acetone) δ 186.6, 170.8, 169.3, 153.0. 146.6.
	7.48 – 7.41 (m, 4H), 7.38 (t, J = 7.4 Hz, 2H), 7.27 (d, J = 3.5 Hz, 1H), 7.22 – 7.10 (m, 5H), 6.91 – 6.82 (m, 2H), 6.58 (dd, J = 3.5, 1.7 Hz, 1H), 4.25 – 4.16 (m, 2H), 3.64 – 3.55 (m, 1H), 3.40 (dd, J = 16.3, 3.7 Hz, 1H), 1.29 (s, 9H). ¹³ C NMR (126 MHz, acetone) δ 186.6, 170.8, 169.3, 153.0, 146.6, 141.6, 139.5, 136.3, 130.4, 128.7, 128.6, 128.5, 128.34, 128.0, 127.9.

	OD-H, Hexane:2-Propanol (98:2), 0.5 mL/min, 254 nm; retention time:
	19.63 min, 26.06 min.
Ph Ph	Following Procedure C using α , β -unsaturated ketone 2.20 (23.8 mg,
	0.102 mmol) as starting material, compound 3.20 was obtained as clear
	oil (48 mg, 87%).
	¹ H NMR (400 MHz, Acetone) δ 8.66 (s, 1H), 8.09 (d, <i>J</i> = 8.0 Hz, 1H), 8.04
3.20 , 87%, d.r. >99:1	– 7.88 (m, 3H), 7.73 – 7.53 (m, 5H), 7.48 – 7.34 (m, 6H), 7.27 – 7.11 (m,
	5H), $6.97 - 6.83$ (m, 2H), $4.34 - 4.22$ (m, 2H), 3.88 (dd, $J = 16.8$, 9.0 Hz,
	1H), 3.77 (dd, $J = 16.8$, 4.1 Hz, 1H), 1.29 (s, 11H). C NMR (101 MHz, 142, 1H), 5.100 0, 471 0, 470 5, 440 7, 427 5, 426 6, 425 0, 422 0
	Acetone) o 198.9, 171.9, 170.5, 143.0, 140.7, 137.5, 136.6, 135.9, 133.8,
	131.4, 130.8, 130.8, 130.7, 129.9, 129.7, 129.0, 129.4, 129.3, 129.1,
	129.1, 128.8, 128.7, 127.8, 127.0, 124.9, 81.0, 72.2, 40.3, 41.3, 28.2.
	retention time: 16.00 min. 17.96 min.
Ph Ph	Following Procedure C using α,β -unsaturated ketone 2.21 (23.8 mg,
	0.102 mmol) as starting material, compound 3.21 was obtained as clear
	oil (46 mg, 83%).
3.21 , 83%, d.r. >99:1	¹ H NMR (400 MHz, Acetone) δ 8.17 (d, <i>J</i> = 8.1 Hz, 1H), 8.04 (dd, <i>J</i> = 8.3,
	1.3 Hz, 2H), 7.88 (d, J = 7.6 Hz, 1H), 7.74 (d, J = 8.1 Hz, 1H), 7.69 – 7.63
	(m, 2H), 7.59 (t, J = 8.0 Hz, 1H), 7.52 – 7.33 (m, 9H), 7.33 – 7.25 (m, 2H),
	7.21 (t, <i>J</i> = 7.5 Hz, 1H), 7.08 (t, <i>J</i> = 7.6 Hz, 2H), 6.41 (d, <i>J</i> = 6.3 Hz, 2H), 5.30
	-5.14 (m, 1H), 4.34 (d, $J = 4.5$ Hz, 1H), 4.14 (dd, $J = 17.4$, 9.4 Hz, 1H), 3.86
	(dd, $J = 17.4$, 4.3 Hz, 1H), 1.30 (s, 9H). ¹³ C NMR (101 MHz, Acetone) δ
	198.9, 171.8, 170.8, 140.5, 138.8, 138.5, 137.0, 135.2, 133.8, 133.0,
	131.3, 129.7, 129.6, 129.6, 129.2, 129.0, 129.0, 128.9, 128.0, 128.0,
	126.9, 126.4, 125.9, 124.2, 81.7, 70.6, 40.4, 28.2. HPLC: Kromasil OD-H,
	Hexane:2-Propanol (98:2), 0.5 mL/min, 254 nm; retention time: 13.28
	min, 14.93 min.
Ph Ph	Following Procedure C using α,β -unsaturated ketone 2.22 (21.5 mg,
	0.102 mmol) as starting material, compound 3.22 was obtained as clear
	oil (49 mg, 96%).
	14 NMP (EQ0 MHz acotono) δ 7 E2 (d. 1 - 8 6 Hz 14) 7 22 7 21 (m
3.22 , 96%, d.r. 98:2	H NIVIR (500 MHz, acetolle) $0.7.52$ (d, $J = 8.0$ Hz, 1H), $7.53 = 7.21$ (H, 1H) $7.09 = 6.97$ (m, 5H) 6.70 (d, $I = 7.5$ Hz, 1H) 3.97 (d, $I = 6.0$ Hz, 1H)
	111, 7.09 = 0.97 (11, 511), 0.70 (d, $J = 7.5$ Hz, 111), 3.97 (d, $J = 0.0$ Hz, 111), 3.90 = 3.85 (m, 1H) 3.06 (dd $J = 17.1, 10.1$ Hz, 1H) 2.91 (dd $J = 17.1, 3.9$
	H_{7} 1H) 2 21 (ddd / = 11 1 7 3 3 3 Hz 1H) 1 63 – 1 39 (m 6H) 1 15 (s
	9H). $1.12 - 1.03$ (m. 2H). $1.02 - 0.87$ (m. 2H). 13 C NMR (126 MHz, acetone)
	δ 210.5, 170.5, 169.4, 142.0, 139.5, 136.3, 130.3, 128.7, 128.5, 128.5.
	128.3, 128.1, 127.9, 127.5, 126.4, 80.4, 70.9, 50.3, 44.3, 42.1, 28.1, 28.1,
	27.2, 25.7, 25.4, 25.3. HPLC: Kromasil OD-H, Hexane:2-Propanol (98:2),
	0.5 mL/min, 254 nm; retention time: 9.26 min, 13.36 min.

	HRMS (m/z) calculated: C ₃₄ H ₄₀ NO ₃ [M+H] ⁺ : 510.3008, found: 510.3003
Ph Ph H H A A A A A A A A A A A A A	Following Procedure C using α , β -unsaturated ketone 2.23 (23.8 mg, 0.102 mmol) as starting material, compound 3.22 was obtained as clear oil (34 mg, 70%). ¹ H NMR (500 MHz, acetone) δ 7.66 (d, <i>J</i> = 7.1 Hz, 2H), 7.52 – 7.32 (m,
	6H), $7.26 - 7.08$ (m, 5H), 6.85 (d, $J = 7.4$ Hz, 2H), 4.11 (d, $J = 6.1$ Hz, 1H), 4.01 (ddd, $J = 10.1$, 6.0 , 4.0 Hz, 1H), 3.20 (dd, $J = 17.1$, 10.1 Hz, 1H), 3.06 (dd, $J = 17.1$, 3.9 Hz, 1H), 2.59 (dq, $J = 13.8$, 6.9 Hz, 1H), 1.28 (s, 9H), 0.95 (d, $J = 6.9$ Hz, 3H), 0.87 (d, $J = 7.0$ Hz, 3H). ¹³ C NMR (126 MHz, acetone) δ 211.3, 170.6, 169.3, 141.9, 139.5, 136.3, 130.4, 128.7, 128.5, 128.5, 128.3, 128.1, 127.9, 127.5, 126.4, 80.4, 70.9, 44.4, 41.9, 40.5, 27.1, 17.37, 17.35. HPLC: Kromasil OD-H, Hexane:2-Propanol (98:2), 0.5 mL/min, 254 nm; retention time: 8.99 min, 12.06 min. HRMS (m/z) calculated: $C_{31}H_{36}NO_3$ [M+H] ⁺ : 470.2695, found: 470.2699
Ph H O Ph H O 4.1, 95%, d.r. 96:4	Following Procedure D using α , β -unsaturated ketone 2.1 (21 mg, 0.102 mmol) as starting material, compound 3.22 was obtained as clear oil (49 mg, 95%).
	¹ H NMR (400 MHz, Acetone) δ 7.95 (d, $J = 7.5$ Hz, 2H), 7.73 (d, $J = 7.3$ Hz, 2H), 7.57 (d, $J = 7.5$ Hz, 1H), 7.48 – 7.31 (m, 6H), 7.27 (t, $J = 7.3$ Hz, 1H), 7.21 – 7.12 (m, 3H), 7.10 – 6.95 (m, 3H), 6.86 (dd, $J = 6.7$, 2.8 Hz, 2H), 5.42 (d, $J = 4.8$ Hz, 1H), 4.01 (d, $J = 12.4$ Hz, 1H), 3.93 – 3.82 (m, 1H), 3.71 (dd, $J = 8.8$, 4.8 Hz, 1H), 1.35 (s, 9H). ¹³ C NMR (101 MHz, Acetone) δ 203.4, 172.3, 147.6, 146.6, 142.3, 139.7, 134.0, 130.8, 129.8, 129.75, 129.5, 129.2, 129.1, 128.9, 128.0, 127.94, 127.91, 127.5, 127.2, 81.9, 78.4, 68.9, 64.5, 60.3, 28.3. HPLC: Kromasil OD-H, Hexane:2-Propanol (96:4), 0.5 mL/min, 254 nm; retention time: 10.21 min, 13.86 min. HRMS (m/z) calculated: C ₃₄ H ₃₃ NO ₃ Na [M+Na] ⁺ : 526.2358, found: 526.2339.
Ph H O Ph V O Cl 4.2, 96%, d.r. 96:4	Following Procedure D using α , β -unsaturated ketone 2.2 (24.5 mg, 0.102 mmol) as starting material, compound 4.2 was obtained as clear oil (52 mg, 96%).
	¹ H NMR (400 MHz, Acetone) δ 7.94 (d, <i>J</i> = 7.4 Hz, 2H), 7.72 (d, <i>J</i> = 8.6 Hz, 2H), 7.45 – 7.31 (m, 7H), 7.26 (t, <i>J</i> = 7.3 Hz, 1H), 7.19 – 7.13 (m, 3H), 7.10 – 6.95 (m, 3H), 6.86 (dd, <i>J</i> = 6.4, 3.1 Hz, 2H), 5.38 (d, <i>J</i> = 4.7 Hz, 1H), 4.10 – 3.94 (m, 1H), 3.86 (dd, <i>J</i> = 13.3, 6.3 Hz, 1H), 3.73 (dd, <i>J</i> = 8.7, 4.7 Hz, 1H), 1.34 (s, 9H). ¹³ C NMR (101 MHz, Acetone) δ 201.2, 171.1, 146.3, 145.2, 141.1, 138.8, 137.1, 129.8, 128.8, 128.7, 128.4, 128.1, 127.9, 127.0, 126.9, 126.9, 126.5, 126.2, 80.8, 77.3, 67.7, 63.4, 58.9, 27.2. HPLC: Diacel IC (5µm), Hexane:2-Propanol (98:2), 0.5 mL/min, 254 nm; retention time: 17.86 min, 20.46 min. HRMS (m/z) calculated: $C_{34}H_{32}CINO_3Na [M+Na]^+$: 560.1968, found: 560.1959.

Following Procedure D using α , β -unsaturated ketone **2.21** (23.8 mg, 0.102 mmol) compound **4.21** was obtained as clear oil (55 mg, 99%).

¹**H NMR** (400 MHz, Acetone) δ 7.93 (d, J = 7.3 Hz, 2H), 7.87 (d, J = 7.6 Hz, 1H), 7.81 (d, J = 8.7 Hz, 1H), 7.75 (d, J = 8.2 Hz, 1H), 7.62 (dd, J = 8.3, 1.2 Hz, 2H), 7.49 – 7.36 (m, 4H), 7.33 – 7.22 (m, 1H), 7.04 – 6.94 (m, 3H), 6.90 (d, J = 6.7 Hz, 1H), 5.46 (d, J = 4.9 Hz, 1H), 4.85 – 4.72 (m, 1H), 4.11 (d, J = 7.1 Hz, 2H), 1.13 (s, 9H). ¹³**C NMR** (101 MHz, Acetone) δ 204.0, 172.3, 147.4, 145.4, 139.9, 138.5, 134.9, 133.8, 133.2, 129.9, 129.7, 129.5, 129.0, 128.7, 128.3, 128.2, 128.1, 127.7, 127.3, 127.0, 126.5, 126.4, 125.5, 124.0, 81.7, 78.6, 68.4, 64.8, 53.2, 28.0. **HPLC:** Kromasil OD-H, Hexane:2-Propanol (98:2), 0.5 mL/min, 254 nm; retention time: 11.06 min, 11.58 min. **HRMS** (m/z) calculated: C₃₈H₃₅NO₃Na [M+ Na]⁺: 576.2515, found: 576.2494.

3. Copies of ¹H and ¹³C NMR spectra

4. Copies of HPLC chromatograms

5. References

¹ Agilent (2019). CrysAlis PRO. Agilent Technologies, Yarnton, England.

- ⁷ Wang, T.; Chen, G.; Lu, Y.-J.'Chen, Q.; Huo, Y.; Li, X. Adv. Synth. Catal. **2019**, 361, 3886 3892.
- ⁸ Jiang, Q.; Jia, J.; Xu, B.; Zhao, A.; Guo, C.-C. J. Org. Chem. **2015**, 7, 3586–3596.
- ⁹ Wu, Y.; Zhou, G.; Meng, Q.; Tang, X.; Liu, G.; Yin, H.; Zhao, J.; Yang, J.; Yang, F.; Yo, Z.; Luo, Y. *J. Org. Chem.* **2018**, *21*, 13051–13062.

- ¹¹ Liu, S.; Cui, P.; Wang, J.; Zhou, H.; Liu, Q.; Lv, J. Org. Biomol. Chem., **2019**, *17*, 264.
- ¹² Sheshenev, A. E.; Bultukhina, E. V.; White, A. J. P.; Hii, K. K. Angew. Chem. Int. Ed. **2013**, 52, 6988–6991.
- ¹³ Hua, M.- Q.; Wang, L.; Cui, H.-F.; Nie, J.; Zhan X.-L.; Ma, J.-A. *Chem. Commun.*, **2011**, *47*, 1631-1633.
- ¹⁴ Wen, S.; Li, X.; Yao, W.; Waheed, A.; Ulah, N.; Lu, Y. Eur. J. Org. Chem. **2016**, 4298–4301.
- ¹⁵ Ma, T.; Fu, X.; Wee Kee, C.; Zang, L.; Pan, Y.; Huang, K.-W.; Tan, C.-H. J. Am. Chem. Soc. **2011**, *9*, 2828–2831.

² Sheldrick, G. M. Acta Cryst., **2008**, A64, 112-122.

³ Thomson, C.J.; Barber, D.M.; Dixon, D. J. Angew. Chem. Int. Ed. **2019**, 58, 2469-2473.

⁴ Parveen, H.; Iqbar, P.F.; Azam, A. Synth. Commun. **2008**, *38*, 3973-3983.

⁵ Wang, J.; Liu, C.; Yuan, J.; Lei, A. Angew. Chem. Int. Ed. **2013**, 52, 2256 –2259.

⁶ Pierce, B. M.; Simpson, B. F.; Ferguson, K. H.; Wittaker, R. E. Org. Biomol. Chem., **2018**, *16*, 6659.

¹⁰ Chiasson, A. I.; Robichaud, S.; Ndongou Moutombi, F. J.; Hebert, M. P. A.; Mbarik, M.; Suvette, M. E.; Touaibia, M. *Molecules* **2020**, *25*, 4686.