Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2021

Gold-Catalysed Synthesis of Phosphonate-Substituted Oxetan-3-ones – An easy Access to Highly Strained HWE Reagents

Table of Contents		pg no.
1.	General Information	3
2.	General Procedures	4-25
2.1 Synt	thesis of Secondary Propargyl Alcohols (GP-A)	4
2.2 Synt	thesis of Tertiary Propargyl Alcohols (GP-B)	4
2.3 Synt	thesis of Alkynyl Phosphonates (GP-C)	4-5
2.4 Au c	catalysed Reactions (GP-D)	5
2.5 Proc	edure for application as HWE reagents (GP-E)	5
3. Qua	ntum chemical Calculations	26-30
4. ¹ H, ¹	³ C, ³¹ P, ¹ H{ ³¹ P} and ¹³ C{ ³¹ P} NMR Spectra	31-106
5. Refe	rences	107

1. General Information:

All commercially available chemicals and deuterated solvents were purchased and used without further purifications. Solvent purification system MB SPS-800-Benchtop was used for dry solvents. The NMR spectra, were recorded at room temperature on Bruker Avance III 300 (300 MHz), Bruker Avance DRX 300 (300 MHz), Bruker Avance III 400 (400 MHz), Bruker Avance III 500 (500 MHz), Bruker Avance III 600 (600 MHz) or Fourier 300 (300 MHz) spectrometeres. Chemical shifts δ are quoted in parts per million (ppm) and coupling constants J in hertz (Hz) and the spectra are calibrated relative to the deuterated solvents, namely CDCl₃ (7.26 ppm; 77.16 ppm). The signal multiplicity is abbreviates as : s (singlet), d (doublet), t (triplet), q (quartet), quint (quintet), sext (sextet), sept (septet), m (multiplet), as well as their combinations; for the All the ¹³C NMR spectra are ¹H-decoupled and in some cases also ³¹P-decoupled. All spectra were integrated and processed using TopSpin 3.5 software. were determined in the chemistry department of the University Heidelberg under the direction of Dr. J. Gross. EI+ -mass spectra (MS and HRMS) were measured on a JOEL JMS-700 spectrometer. Silica gel 60 (0.04 - 0.063 mm / 230 - 400 mesh ASTM) purchased from Macherey-Nagel was used as stationary phase for flash column chromatography. As eluents the respectively mentioned proportions of petroleum ether (PE) and ethyl acetate (EA) were used. Analytical Thin Layer Chromatography (TLC) was carried out on precoated Macherey-Nagel POLYGRAM® SIL G/UV254 or Merck TLC Silical Gel 60 F254 aluminium sheets and detection was accomplished using UV-light.

2. General Procedures:

2.1 Synthesis of Secondary Propargyl Alcohols (GP-A)

$$\bigcup_{R}^{O} + = MgBr \xrightarrow{THF, N_2} MgBr \xrightarrow{HF, N_2} R$$

A solution of the corresponding aldehyde in THF (15 mmol, 0.5 M) was added to the solution of ethynylmagnesium bromide in THF (18 mmol, 0.5 M) at 0 °C under N₂, the reaction mixture was stirred for another 2-3 hours at room temperature and upon completion quenched with addition of aqueous saturated solution of NH₄Cl. The mixture was extracted using Et₂O, the combined organic layers were dried using sodium sulphate and the solvent was removed under reduced pressure. The residue was further purified by silica gel column chromatography using a mixture of hexane/ethyl acetate = 4/1 as eluent to get the desired propargylic alcohols as oils.¹

2.2 Synthesis of Tertiary Propargyl Alcohols (GP-B)

To a solution of ethynylmagnesium bromide in THF (36 mmol, 0.5 M) at -10 °C, a solution of the respective ketone in THF (30.5 mmol, 0.5 M) was added, the reaction was stirred at this temperature for another 10-20 minutes after which it was let warm to room temperature and stirred for another 2 hours. On completion the reaction was quenched using saturated aqueous NH₄Cl solution, extracted using ether, the combined organic layers dried over Na₂SO₄ and the solvent was removed under reduced pressure. The residue was further purified by silica gel column chromatography using a mixture of hexane/ethyl acetate = 4/1 as eluent to get the desired propargylic alcohols as oils.²

2.3 Synthesis of Alkynyl Phosphonates (GP-C)

$$HO \xrightarrow{7} HO \xrightarrow{P} O$$

All the above synthesised alkynols (0.5 mmol), were coupled with diethylphosphite (0.7 mmol) at 70 °C in acetonitrile (2 mL) using Cu₂O (14 mol%) as a catalyst, the completion of reaction was monitored by a change in the reaction mixture colour from red to pale green/ yellow and when not obvious using TLC. The solvent was removed under reduced pressure followed by purification by flash silica gel chromatography using hexane/ethyl acetate mixture as eluent to obtain the desired alkynyl phosphonates.³

2.4 Au catalysed Reactions (GP-D)

For the Au catalysed reaction, under N_2 and using 4 Å molecular sieves, to a solution of 1 equivalent of the substrate (30 mg, 0.3 mmol), 2 equivalents of 2-trifluoromethylpyridine *N*-oxide (0.6 mmol) in DCE (2.81 mL) and CyJohnPhosAuNTf₂ (5 mol%) was added as catalyst. The reaction was stirred for 24 hours at 60 °C, the completion of reaction was monitored by TLC. The solvent was removed under reduced pressure and the resulting residue purified by silica gel column chromatography using hexane/ethyl acetate to get the products.

2.5 Procedure for application as HWE reagents (GP-E)

Synthesised according to the reported procedure,⁴ using 0.2 mmol (55.8 mg) of dimethyl(3-oxo-4-phenethyloxetan-2-yl)phosphonate **4e**, 0.3 mmol (0.2 mL) of LDA and 0.3 mmol (30 μ L) of benzaldehyde. The configuration is determined based on ppm shift values of the olefinic proton, higher ppm values indicate *E*-isomer while lower ppm value is observed for the *Z*-isomer, also reported for similar compounds.⁵

4,4-Dimethylpent-1-yn-3-ol:

Synthesised according to GP-A, using 11.6 mmol (1.3 mL) of pivalaldehyde and 13.9 mmol (27.9 mL) of ethynylmagnesium bromide as a colorless liquid (845 mg, 65 %).

¹H NMR (300 MHz, CDCl₃): δ = 4.01 (bs, 1H), 3.76-3.72 (m, 1H), 2.45-2.44 (d, *J* = 3.0 Hz, 1H), 1.00 (s, 9H).

Consistent with reported data.⁶

5-Phenylpent-1-yn-3-ol:

Synthesised according to GP-A, using 11.2 mmol (1.47 mL) of 3-phenylpropanal and 13.4 mmol (26.8 mL) of ethynylmagnesium bromide as a pale-yellow liquid (1.78 g, 99 %).

¹H NMR (300 MHz, CDCl₃): δ = 7.35-7.20 (m, 5H), 4.40-4.39 (d, *J* = 3.0 Hz, 1H), 2.86-2.81 (t, *J* = 6.0 Hz, 2H), 2.54-2.53 (d, *J* = 3.0 Hz, 1H), 2.11-2.02 (m, 2H).

Consistent with reported data.7

1-Ethynylcyclobutan-1-ol:

Synthesised according to GP-**B**, using 14.3 mmol (1.0 mL) of cyclobutanone and 17.1 mmol (34.2 mL) of ethynylmagnesium bromide as a colorless liquid (955 mg, 70 %).

¹H NMR (300 MHz, CDCl₃): δ = 3.76-3.72 (d, *J* = 6.0 Hz, 1H), 2.48-2.39 (m, 2H), 2.31-2.20 (m, 2H), 1.87-1.84 (m, 2H).

Consistent with reported data.8

1-Ethynylcyclopentan-1-ol:

Synthesised according to GP-**B**, using 11.9 mmol (1.0 mL) of cyclopentanone and 14.3 mmol (28.5 mL) of ethynylmagnesium bromide as a dark orange liquid (688 mg, 52 %).

¹H NMR (300 MHz, CDCl₃): δ = 3.77-3.17 (d, *J* = 9.0 Hz, 1H), 2.48 (s, 1H), 2.00-1.89 (m, 4H), 1.87-1.69 (m, 4H).

Consistent with reported data.8

1-Ethynylcyclooctan-1-ol:

Synthesised according to GP-**B**, using 7.9 mmol (1.0 mL) of cyclooctanone and 9.5 mmol (19.0 mL) of ethynylmagnesium bromide as a pale-yellow liquid (893 mg, 74 %).

¹H NMR (300 MHz, CDCl₃): δ = 2.41-2.37 (d, *J* = 3.0 Hz, 1H), 2.01-1.78 (m, 4H), 1.63-1.24 (m, 10H).

Consistent with reported data.9

1-(4-fluorophenyl)prop-2-yn-1-ol:

Synthesised according to GP-A, using 7.5 mmol of 4-fluorobenzaldehyde (0.8 mL) and 9.0 mmol (18.0 mL) of ethynylmagnesium bromide as an orange liquid (923 mg, 82 %).

¹H NMR (300 MHz, CDCl₃): δ = 7.53 (dddd, *J* = 8.5, 5.5, 2.7, 1.6 Hz, 2H), 7.12 - 7.03 (m, 2H), 5.44 (d, *J* = 3.9 Hz, 1H), 2.68 (d, *J* = 2.2 Hz, 1H).

Consistent with reported data.¹⁰

1-(2-Bromo-5-chlorophenyl)prop-2-yn-1-ol:

Synthesised according to GP-A, using 7.5 mmol (1.6 g) of 2-bromo-5-chlorobenzaldehyde and 9.00 mmol (18.0 mL) of ethynylmagnesium bromide as a beige solid (1.46 g, 79 %).

¹H NMR (300 MHz, CDCl₃): δ = 7.77 (d, *J* = 2.6 Hz, 1H), 7.49 (d, *J* = 8.5 Hz, 1H), 7.19 (dd, *J* = 8.5, 2.6 Hz, 1H), 5.73 (d, *J* = 2.2 Hz, 1H), 2.68 (d, *J* = 2.2 Hz, 1H).

Consistent with reported data.11

1-(2,6-Difluorophenyl)prop-2-yn-1-ol:

Synthesised according to GP-A, using 7.5 mmol (0.9 mL) of 2,6-difluorobenzaldehyde and 9.0 mmol (18.0 mL) of ethynylmagnesium bromide as a beige solid (723 mg, 57 %).

¹H NMR (300 MHz, CDCl₃): δ = 7.77 (d, *J* = 2.6 Hz, 1H), 7.49 (d, *J* = 8.5 Hz, 1H), 7.19 (dd, *J* = 8.5, 2.6 Hz, 1H), 5.73 (d, *J* = 2.2 Hz, 1H), 2.68 (d, *J* = 2.2 Hz, 1H).

Consistent with reported data.¹²

1-(2,6-Dibromophenyl)prop-2-yn-1-ol:

Synthesised according to GP-A, using 7.5 mmol (1.65 g) of 2,6-dibromobenzaldehyde and 9.0 mmol (18.0 mL) of ethynylmagnesium bromide as a beige solid (1.35 g, 82 %).

¹H NMR (300 MHz, CDCl₃): δ = 7.57 (d, *J* = 8.1 Hz, 2H), 7.04 (t, *J* = 8.0 Hz, 1H), 2.64 (d, *J* = 2.5 Hz, 1H).

Consistent with reported data.¹³

Diethyl (3-hydroxyprop-1-yn-1-yl)phosphonate (1a):

Synthesised according to GP-C, using 28.5 mmol (2.1 mL) of prop-2-yn-1-ol 40.0 mmol (6.5 mL) of diethylphosphite and 4.0 mmol (572 mg) of Cu₂O as an orange oil (1.40 g, 30 %).

¹H NMR (300 MHz, CDCl₃): δ = 4.36 (d, *J* = 3.9 Hz, 2H), 4.17 (dq, *J* = 8.6, 7.1 Hz, 4H), 3.39 (s, 1H), 1.37 (td, *J* = 7.1, 0.8 Hz, 6H).

Consistent with reported data.³

Diethyl (3-hydroxybut-1-yn-1-yl)phosphonate (1b):

Synthesised according to GP-C, using 44.6 mmol (2.8 mL) of but-3-yn-2-ol, 62.4 mmol (8.1 mL) of diethylphosphite and 6.2 mmol (893 mg) of Cu_2O as a pale-yellow oil (4.3 g, 50 %).

R_f= 0.18 (PE:EA-1:1); ¹H NMR (300 MHz, CDCl₃): δ = 4.88 (d, *J* = 6.3 Hz, 1H), 4.58 (qd, *J* = 6.8, 3.3 Hz, 1H), 4.14 (p, *J* = 7.2 Hz, 4H), 1.48 (d, *J* = 6.7 Hz, 3H), 1.35 (t, *J* = 7.1 Hz, 6H); ¹³C NMR (151 MHz, CDCl₃): δ = 103.55 (d, *J* = 49.5 Hz), 73.61, 71.64, 63.57 (dd, *J* = 5.6, 2.6 Hz), 57.83 (d, *J* = 4.1 Hz), 23.22, 16.12 (d, *J* = 7.0 Hz); ¹³C{³¹P} NMR (151 MHz, CDCl₃): δ = 103.55, 72.63, 63.57, 57.83, 23.23, 16.13; ³¹P NMR (122 MHz, CDCl₃): δ = -6.56; IR (film): n = 3359, 2987, 2936, 2909, 2204, 1478, 1245, 1165, 1123, 964, 799 cm ⁻¹; HR-MS (EI): m/z = 207.07721, calcd. for C₈H₁₅O₄P [M⁺+H]: 207.07807.s

Diethyl (3-hydroxy-3-methylbut-1-yn-1-yl)phosphonate (1c):

Synthesised according to GP-C, using 53.1 mmol (3.5 mL) of 2-methylbut-3-yn-2-ol, 75.0 mmol (9.7 mL) of diethylphosphite and 7.5 mmol (1.1 g) of Cu_2O as a yellow oil (3.1 g, 30%).

¹H NMR (300 MHz, CDCl₃): δ = 5.40 (s, 1H), 4.06 (dd, *J* = 8.3, 6.8 Hz, 4H), 1.39 (d, *J* = 6.6 Hz, 6H), 1.27 (t, *J* = 7.1 Hz, 6H).

Consistent with reported data.³

Diethyl ((1-hydroxycyclooctyl)ethynyl)phosphonate (1d):

Synthesised according to GP-C, using 1.3 mmol (200 mg) of 1-ethynylcyclooctan-1-ol, 1.8 mmol (0.2 mL) of diethylphosphite and 1.8 mmol (26 mg) of Cu_2O as a yellow oil (246 mg, 65%).

 $R_{f} = 0.28 \text{ (PE:EA-1:1); }^{1}\text{H NMR} (300 \text{ MHz, CDCl}_{3}): \delta = 4.15 \text{ (dq}, J = 8.8, 7.0 \text{ Hz}, 4\text{H}), 3.03 \text{ (s, 1H)}, 2.09-1.86 \text{ (m, 4H)}, 1.73-1.43 \text{ (m, 10H)}, 1.36 \text{ (td}, J = 7.1, 0.7 \text{ Hz}, 6\text{H}); }^{1}\text{H}\{^{31}\text{P}\} \text{ NMR} (300 \text{ MHz}, \text{CDCl}_{3}): \delta = 4.19-4.11 \text{ (m, 4H)}, 3.02 \text{ (s, 1H)}, 2.09-1.86 \text{ (m, 4H)}, 1.70-1.43 \text{ (m, 12H)},$

1.36 (t, J = 7.1 Hz, 6H); ¹³C NMR (151 MHz, CDCl₃): $\delta = 105.62$ (d, J = 48.8 Hz), 73.42, 71.32 (d, J = 3.8 Hz), 63.39 (d, J = 5.3 Hz), 37.31, 27.85, 24.43, 21.82, 16.20 (d, J = 6.9 Hz); ¹³C {³¹P} NMR (151 MHz, CDCl₃): $\delta = 105.65$, 72.43, 71.31, 63.39, 37.31, 27.85, 24.44, 21.83, 16.20; ³¹P NMR (122 MHz, CDCl₃): $\delta = -6.42$; HR-MS (EI): m/z = 288.14776, calcd. for C₁₄H₂₅O₄P: 288.14850.

Dimethyl (3-hydroxybut-1-yn-1-yl)phosphonate (3a):

Synthesised according to GP-C, using 7.1 mmol (0.6 mL) of but-3-yn-2-ol, 10.0 mmol (0.9 mL) of dimethylphosphite and 1.0 mmol (142 mg) of Cu₂O as an orange oil (466 mg, 37%).

R_f= 0.12 (PE:EA-1:1); ¹H NMR (300 MHz, CDCl₃): δ = 4.77 (s, 1H), 4.60-4.52 (qd, *J* = 6.8, 3.3 Hz, 1H), 3.74 (d, *J* = 12.4 Hz, 6H), 1.46-1.44 (d, *J* = 6.6 Hz, 3H); ¹H{³¹P} NMR (300 MHz, CDCl₃): δ = 4.76 (s, 1H), 4.59-4.52 (q, *J* = 6.8 Hz, 1H), 3.77 (s, 6H), 1.46-1.44 (d, *J* = 6.7 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃): δ = 104.44 (d, *J* = 49.8 Hz), 71.19 (d, *J* = 300.7 Hz), 57.79 (d, *J* = 4.2 Hz), 53.68 (d, *J* = 3.4 Hz), 23.22 (d, *J* = 1.4 Hz); ¹³C{³¹P} NMR (151 MHz, CDCl₃): δ = 104.44, 71.19, 57.79, 53.68 (d, *J* = 2.7 Hz), 23.22; ³¹P NMR (121 MHz, CDCl₃): δ = -3.32; IR (film): n = 3369, 2987, 2203, 1451, 1240, 1184, 1118, 951, 780 cm ⁻¹; HR-MS (EI): m/z = 179.04677, calcd. for C₆H₁₁O₄P [M⁺+H]: 179.04703.

Dimethyl (3-hydroxyoct-1-yn-1-yl)phosphonate (3b):

Synthesised according to GP-*C*, using 4.0 mmol (500 mg) of 1-octyne-3-ol, 5.5 mmol (0.5 mL) of dimethylphosphite and 0.6 mmol (79 mg) of Cu₂O, as pale-yellow liquid (678 mg, 73%).

R_f= 0.32 (PE:EA-1:1); ¹H NMR (300 MHz, CDCl₃): δ = 4.45 (td, *J* = 6.7, 3.4 Hz, 1H), 3.88 - 3.75 (d, 6H), 3.49 (s, 1H), 1.82-1.70 (m, 2H), 1.51-1.41 (m, 2H), 1.31 (m, *J* = 7.1, 4.9, 2.6 Hz, 4H), 0.93 - 0.85 (m, 3H); ¹H{³¹P} NMR (500 MHz, CDCl₃): δ = 4.45 (t, *J* = 6.7 Hz, 1H), 3.79 (s, *J* = 0.6 Hz, 6H), 3.49 (s, 1H), 1.83 - 1.69 (m, 2H), 1.53-1.40 (m, 2H), 1.39-1.27 (m, 4H), 0.96-0.83 (m, 3H); ¹³C NMR (151 MHz, CDCl₃): δ = 104.26 (dd, *J* = 49.9, 3.4 Hz), 71.38 (dt, *J* = 301.0, 5.7 Hz), 61.63, 53.51, 36.56, 31.25, 24.66, 22.40, 13.86; ¹³C{³¹P} NMR (151 MHz, CDCl₃): δ = 104.26 (dt, *J* = 49.9, 3.4 Hz), 71.38 (dt, *J* = 301.0, 5.7 Hz), 61.63, 53.51, 36.56, 31.25, 24.66, 22.40, 13.86; ¹³C{³¹P} NMR (151 MHz, CDCl₃): δ = 104.26 (dt, *J* = 49.9, 3.4 Hz), 71.38 (dt, *J* = 301.0, 5.7 Hz), 61.63, 53.51, 36.56, 31.25, 24.66, 22.40, 13.86; ¹³C{³¹P} NMR (151 MHz, CDCl₃): δ = 104.26 (dt, *J* = 49.9, 3.4 Hz), 71.38 (dt, *J* = 301.0, 5.7 Hz), 61.63, 53.51, 36.56, 31.25, 24.66, 22.40, 13.86; ¹³C{³¹P} NMR (151 MHz, CDCl₃): δ = 104.26 (dt, *J* = 49.9, 3.4 Hz), 71.38 (dt, *J* = 301.0, 5.7 Hz), 61.63, 53.51, 36.56, 31.25, 24.66, 22.40, 13.86; ¹³C{³¹P} NMR (151 MHz, CDCl₃): δ = 104.26 (dt, *J* = 49.9, 3.4 Hz), 71.38 (dt, *J* = 301.0, 5.7 Hz), 61.63, 53.51, 36.56, 31.25, 24.66, 22.40, 13.86; ¹³C{³¹P} NMR (151 MHz, CDCl₃): δ = 104.26 (dt, *J* = 49.9, 3.4 Hz), 71.38 (dt, *J* = 301.0, 5.7 Hz), 61.63, 53.51, 36.56, 31.25, 24.66, 22.40, 13.86; ¹³C{³¹P} NMR (151 MHz, CDCl₃): δ = 104.26 (dt, *J* = 49.9, 3.4 Hz), 71.38 (dt, *J* = 301.0, 5.7 Hz), 61.63, 53.51, 36.56, 31.25, 24.66, 22.40, 13.86; ¹³C{³¹P} NMR (151 MHz, CDCl₃): δ = 104.26 (dt, *J* = 49.9, 3.4 Hz), 71.38 (dt, *J* = 301.0, 5.7 Hz), 61.63, 53.51, 36.56, 31.25, 24.66, 22.40, 13.86; ¹³C{³¹P} NMR (151 MHz), 71.80 (dt, *J* = 301.0, 5.7 Hz), 61.63, 53.51, 36.56, 31.25, 24.66, 22.40, 13.86; ¹³C{³¹P} NMR (151 MHz), 71.80 (dt, *J* = 301.0, 5.7 Hz), 71.30 (dt, *J* = 301.0, 5.7 Hz), 71.30 (dt,

CDCl₃): $\delta = 104.27$ (d, J = 3.6 Hz), 71.40 (d, J = 4.7 Hz), 61.63 (d, J = 2.8 Hz), 36.57, 31.25, 24.67, 22.41, 13.87; ³¹P NMR (121 MHz, CDCl₃): $\delta = -3.58$; IR (film): n = 3364, 2956, 2932, 2859, 2201, 1460, 1257, 1127, 1032, 924, 798 cm ⁻¹; HR-MS (EI): m/z = 235.10888, calcd. for C₁₀H₁₉O₄P [M⁺+H]: 235.10937.

Dimethyl (3-hydroxydec-1-yn-1-yl)phosphonate (3c):

Synthesised according to GP-C, using 3.2 mmol (500 mg) of dec-1-yn-3-ol, 4.5 mmol (0.4 mL) of dimethylphosphite and 0.5 mmol (65 mg) of Cu₂O, as pale-yellow oil (561 mg, 66 %).

R_f= 0.32 (PE:EA-1:1); ¹H NMR (300 MHz, CDCl₃): δ = 4.45-4.45 (td, *J* = 6.7, 3.3 Hz, 1H), 3.79 (d, *J* = 12.3 Hz, 6H), 3.16 (s, 1H), 1.84-1.68 (m, 2H), 1.53-1.19 (m, 10H), 0.96-0.76 (m, 3H); ¹H{³¹P} NMR (300 MHz, CDCl₃): δ = 4.45 (t, *J* = 6.7 Hz, 1H), 3.79 (s, 6H), 3.15 (s, 1H), 1.84-1.64 (m, 2H), 1.52-1.20 (m, 10H), 0.93-0.74 (m, 3H); ¹³C NMR (151 MHz, CDCl₃): δ = 104.23 (d, *J* = 49.8 Hz), 71.61 (d, *J* = 301.0 Hz), 61.78 (d, *J* = 4.0 Hz), 53.58 (dd, *J* = 5.6, 3.5 Hz), 36.69 (d, *J* = 1.5 Hz), 31.75, 29.14, 25.08, 22.61, 14.06; ¹³C{³¹P} NMR (151 MHz, CDCl₃): δ = 104.22, 71.60, 61.78, 53.59, 36.69, 31.75, 29.14, 25.08, 22.61, 14.07; ³¹P NMR (121 MHz, CDCl₃): δ = -3.58; IR (film): n = 3361, 2954, 2927, 2856, 2201, 1460, 1260, 1128, 1034, 943, 792 cm ⁻¹; HR-MS (EI): m/z = 263.14157, calcd. for C₁₂H₂₃O₄P [M⁺+H]: 263.14304.

Dimethyl (3-hydroxy-4,4-dimethylpent-1-yn-1-yl)phosphonate (3d):

Synthesised according to GP-C, using 4.5 mmol (500 mg) of 4,4-dimethylpent-1-yn-3-ol, 6.2 mmol (0.6 mL) of dimethylphosphite and 0.6 mmol (89 mg) of Cu₂O, as pale-yellow oil (552 mg, 56%).

R_f= 0.37 (PE:EA-1:1); ¹H NMR (300 MHz, CDCl₃): δ = 4.12 (d, *J* = 3.5 Hz, 1H), 3.85 (d, *J* = 12.3 Hz, 1H), 3.79 (dd, *J* = 12.3, 1.0 Hz, 6H), 2.81 (s, 1H), 1.23 (s, 1H), 1.02 (s, 8H); ¹H{³¹P} NMR (300 MHz, CDCl₃): δ = 4.12 (s, 1H), 3.79 (d, *J* = 1.0 Hz, 6H), 2.81 (s, 1H), 1.23 (s, 1H), 1.23 (s, 1H), 1.02 (s, 8H); ¹³C NMR (151 MHz, CDCl₃): δ = 103.18 (dd, *J* = 50.2, 3.9 Hz), 72.70

(d, J = 301.8 Hz), 70.63 (d, J = 3.9 Hz), 53.53, 35.81, 25.31; ${}^{13}C{}^{31}P$ NMR (151 MHz, CDCl₃): $\delta = 103.17$ (d, J = 3.9 Hz), 72.70, 70.64 (d, J = 3.1 Hz), 53.54 (d, J = 4.9 Hz), 35.82, 25.32; ${}^{31}P$ NMR (121 MHz, CDCl₃): $\delta = -3.70$; IR (film): n = 3366, 2959, 2909, 2871, 2200, 1479, 1463, 1268, 1186, 1070, 936, 795 cm ${}^{-1}$; HR-MS (EI): m/z = 221.09409, calcd. for C₉H₁₇O₄P [M⁺+H]: 221.09372.

Dimethyl (3-hydroxy-5-phenylpent-1-yn-1-yl)phosphonate (3e):

Synthesised according to GP-C, using 3.1 mmol (500 mg) of 5-phenylpent-1-yn-3-ol, 4.4 mmol (0.4 mL) of dimethylphosphite and 0.4 mmol (62 mg) of Cu₂O, as pale-yellow oil (686 mg, 82%).

R_f= 0.19 (PE:EA-1:1); ¹H NMR (300 MHz, CDCl₃): δ = 7.38-7.28 (m, 2H), 7.26-7.18 (m, 3H), 4.48 (ddd, J = 7.3, 6.1, 3.4 Hz, 1H), 3.92 (s, 1H), 3.82 (dd, J = 12.3, 0.9 Hz, 6H), 2.84 (t, J = 7.8 Hz, 2H), 2.2-1.94 (m, 2H); ¹H{³¹P} (300 MHz, CDCl₃): δ = 7.38-7.27 (m, 2H), 7.27-7.18 (m, 3H), 4.48 (dd, J = 7.4, 6.1 Hz, 1H), 3.92 (s, 1H), 3.82 (d, J = 1.0 Hz, 6H), 2.84 (t, J = 7.8 Hz, 2H), 2.38 - 2.00 (m, 2H); ¹³C NMR (151 MHz, CDCl₃): δ = 140.84 (d, J = 2.6 Hz), 128.57, 126.23, 103.74 (d, J = 51.2 Hz), 72.14 (dd, J = 300.2, 8.8 Hz), 61.03, 53.69 (dd, J = 5.8, 3.1 Hz), 38.28 (d, J = 1.4 Hz), 31.29 ; ¹³C{³¹P} NMR (151 MHz, CDCl₃): δ = 140.83 (d, J = 2.3 Hz), 128.57 (d, J = 2.3 Hz), 126.22, 103.70 (d, J = 10.7 Hz), 72.17 (d, J = 8.9 Hz), 61.03 (d, J= 3.8 Hz), 53.70 (d, J = 3.3 Hz), 38.29, 31.29; ³¹P NMR (121 MHz, CDCl₃): δ = - 3.15; IR (film): n = 3353, 3027, 2954, 2854, 2201, 1495, 1455, 1254, 1028, 1183, 928, 789 cm ⁻¹; HR-MS (EI): m/z = 269.09356, calcd. for C₁₃H₁₈O₄P [M⁺⁺H]: 269.09372.

Dimethyl (3-hydroxy-3-methylbut-1-yn-1-yl)phosphonate (3f):

$$HO \xrightarrow{} = - \overset{O}{\underset{0}{\overset{}}} - \overset{O}{\underset{0}{\overset{}}} - \overset{O}{\underset{0}{\overset{}}}$$

Synthesised according to GP-C, using 5.9 mmol (0.6 mL) of 2-methylbut-3-yn-2-ol, 8.3 mmol (0.8 mL) of dimethylphosphite and 0.8 mmol (119 mg) of Cu_2O , as yellow oil (593 mg, 52%).

R_f= 0.24 (PE:EA-1:1); ¹H NMR (300 MHz, CDCl₃): δ = 4.45 (s, 1H), 3.71 (dd, J = 12.2, 1.6 Hz, 6H), 1.48 (d, J = 4.5 Hz, 6H); ¹H{³¹P} NMR (300 MHz, CDCl₃): δ = 4.45 (s, 1H), 3.71 (d, J = 1.7 Hz, 6H), 1.48 (d, J = 1.8 Hz, 6H); ¹³C NMR (151 MHz, CDCl₃): δ = 107.15 (d, J = 48.6 Hz), 69.23 (d, J = 301.2 Hz), 64.57, 53.54 (d, J = 5.6 Hz), 30.41; ¹³C{³¹P} NMR (151 MHz, CDCl₃): δ = 107.18 (d, J = 3.2 Hz), 69.17 (d, J = 2.8 Hz), 64.55 (d, J = 3.7 Hz), 53.53, 30.40; ³¹P NMR (121 MHz, CDCl₃): δ = -2.85; IR (film): n = 3363, 2985, 2956, 2854, 2202, 1457, 1404, 1377, 1247, 1172, 1019, 819, 765 cm ⁻¹; HR-MS (EI): m/z = 193.06144, calcd. for C₇H₁₃O₄P [M⁺+H]: 193.06242.

Dimethyl ((1-hydroxycyclobutyl)ethynyl)phosphonate (3g):

Synthesised according to GP-C, using 5.2 mmol (500 mg) of 1-ethynylcyclobutan-1-ol, 7.3 mmol (0.7 mL) of dimethylphosphite and 0.7 mmol (104 mg) of Cu₂O, as pale-yellow oil (425 mg, 40%).

R_f = 0.24 (PE:EA-1:1); ¹H NMR (300 MHz, CDCl₃): δ = 3.81 (d, *J* = 12.3 Hz, 6H), 2.77 (s, 1H), 2.58-2.44 (m, 2H), 2.40-2.24 (m, 2H), 2.01-1.77 (m, 2H); ¹H{³¹P} NMR (300 MHz, CDCl₃): δ = 3.81 (s, 1H), 2.77 (s, 1H), 2.58-2.43 (m, 2H), 2.40-2.23 (m, 2H), 2.01-1.75 (m, 2H); ¹³C NMR (151 MHz, CDCl₃): δ = 105.35 (d, *J* = 49.4 Hz), 71.27 (d, *J* = 300.7 Hz), 67.49 (d, *J* = 4.1 Hz), 53.66 (d, *J* = 5.6 Hz), 37.80, 13.14; ¹³C{³¹P} NMR (151 MHz, CDCl₃): δ = -2.95; IR (film): n = 3334, 2994, 2954, 2854, 2198, 1450, 1423, 1254, 1167, 1021, 970, 796 cm ⁻¹; HR-MS (EI): m/z = 205.06182, calcd. for C₈H₁₃O₄P [M⁺+H]: 205.06242.

Dimethyl ((1-hydroxycyclopentyl)ethynyl)phosphonate (3h):

Synthesised according to GP-C, using 4.5 mmol (500 mg) of 1-ethynylcyclopentan-1-ol, 6.4 mmol (0.6 mL) of dimethylphosphite and 0.6 mmol (91 mg) of Cu₂O, as pale-yellow oil (495 mg, 50%).

 $R_f = 0.27$ (PE:EA-1:1); ¹H NMR (300 MHz, CDCl₃): $\delta = 3.78$ (d, J = 12.3 Hz, 6H), 2.08-1.91 (m, 4H), 1.91-1.66 (m, 4H); ¹H{³¹P} NMR (500 MHz, CDCl₃): $\delta = 3.78$ (s, 6H), 2.06-1.93 (m,

4H), 1.93-1.63 (m, 4H); ¹³C NMR (151 MHz, CDCl₃): $\delta = 106.23$ (d, J = 49.8 Hz), 73.88 (d, J = 4.1 Hz), 70.59 (d, J = 301.7 Hz), 53.59 (d, J = 5.7 Hz), 42.15, 23.65; ¹³C{³¹P} NMR (151 MHz, CDCl₃): $\delta = 106.23$, 73.88, 70.58, 53.59, 42.16, 23.66; ³¹P NMR (121 MHz, CDCl₃): $\delta = -2.72$; IR (film): n = 3358, 2955, 2874, 2854, 2189, 1449, 1410, 1248, 1184, 1024, 918, 822 cm ⁻¹; HR-MS (EI): m/z = 219.07530, calcd. for C₉H₁₅O₄P [M⁺+H]: 219.07807.

Dimethyl ((1-hydroxycyclohexyl)ethynyl)phosphonate (3i):

Synthesised according to GP-C, using 4.0 mmol (500 mg) of 1-ethynylcyclohexan-1-ol, 5.6 mmol (0.5 mL) of dimethylphosphite and 0.6 mmol (81 mg) of Cu₂O as pale-yellow oil (449 mg, 48%).

R_f = 0.29 (PE:EA-1:1); ¹H (600 MHz, CDCl₃): δ = 3.79 (d, *J* = 12.4 Hz, 6H), 2.00-1.47 (m, 10H); ¹H{³¹P} NMR (300 MHz, CDCl₃): δ = 3.79 (s, 6H), 2.07-1.20 (m, 10H); ¹³C NMR (151 MHz, CDCl₃): δ = 105.91 (d, *J* = 48.7 Hz), 71.93 (d, *J* = 299.2 Hz), 68.58 (d, *J* = 3.9 Hz), 53.59 (d, *J* = 5.5 Hz), 39.04, 24.99, 22.99; ¹³C{³¹P} NMR (151 MHz, CDCl₃): δ = 105.91, 71.93, 68.58, 53.59, 39.05, 24.99, 23.00; ³¹P NMR (121 MHz, CDCl₃): δ = -2.83; IR (film): n = 3361, 2935, 2857, 2190, 2190, 1448, 1254, 1184, 1033, 974, 802 cm ⁻¹; HR-MS (EI): m/z = 232.08502, calcd. for C₁₀H₁₇O₄P: 232.08502.

Dimethyl ((1-hydroxycyclooctyl)ethynyl)phosphonate (3j):

Synthesised according to GP-C, using 3.3 mmol (500 mg) of 1-ethynylcyclooctan-1-ol and 4.6 mmol (0.4 mL) of dimethylphosphite and 0.5 mmol (66 mg) of Cu₂O, as pale-yellow oil (444 mg, 52%).

R_f= 0.3 (PE:EA-1:1); ¹H NMR (300 MHz, CDCl₃): δ = 3.81 (d, *J* = 12.3 Hz, 6H), 3.05 (s, 1H), 2.01 (dddd, *J* = 17.1, 10.0, 7.9, 2.7 Hz, 4H), 1.77-1.46 (m, 10H); ¹H{³¹P} NMR (300 MHz, CDCl₃): δ 3.78 (s, 6H), 3.02 (s, 1H), 2.08-1.90 (m, 4H), 1.71-1.43 (m, 10H); ¹³C NMR (151 MHz, CDCl₃): δ = 106.65 (d, *J* = 48.6 Hz), 71.97(d, *J* = 48.6 Hz), 71.37 (d, *J* = 299.0 Hz), 53.59 (d, *J* = 5.5 Hz), 37.30, 27.83, 24.42, 21.82; ¹³C{³¹P} NMR (151 MHz, CDCl₃): δ =

106.67 (d, J = 2.8 Hz), 71.36, 70.96, 53.59, 37.29, 27.84, 24.42, 21.82; ³¹P NMR (121 MHz, CDCl₃): $\delta = -2.75$; IR (film): n = 3353, 2926, 2854, 2193, 1446, 1440, 1240, 1184, 1026, 919, 806 cm ⁻¹; HR-MS (EI): m/z = 261.12576, calcd. for C₁₂H₂₁O₄P [M⁺+H]: 261.12502.

Dimethyl (3-(4-fluorophenyl)-3-hydroxyprop-1-yn-1-yl)phosphonate (3k):

Synthesised according to GP-C, using 3.3 mmol (500 mg) of 1-(4-fluorophenyl)prop-2-yn-1-ol, 4.7 mmol (0.4 mL) of dimethylphosphite and 0.5 mmol (67 mg) of Cu₂O, as orange oil (542 mg, 63%).

R_f= 0.2 (PE:EA-1:1); ¹H NMR (300 MHz, CDCl₃): δ = 8.29-8.04 (m, 1H), 7.51-7.44 (m, 1H), 7.23-7.15 (m, 1H), 7.08-7.00 (m, 1H), 5.52 (d, J = 3.6 Hz, 1H), 3.89 (d, J = 12.3 Hz, 2H), 3.76 (dd, J = 12.3, 1.3 Hz, 4H); ¹H{³¹P} NMR (300 MHz, CDCl₃): δ = 8.21-8.09 (m, 1H), 7.53-7.42 (m, 1H), 7.19 (t, J = 8.5 Hz, 1H), 7.08-6.99 (m, 1H), 3.93-3.85 (m, 2H), 3.76 (d, J = 1.4 Hz, 4H); ¹³C NMR (151 MHz, CDCl₃): δ = 174.28 (d, J = 4.7 Hz), 167.26 (d, J = 259.4 Hz), 162.89 (d, J = 247.6 Hz), 134.81, 132.82, 132.05 (d, J = 2.7 Hz), 128.59 (d, J = 8.7 Hz), 116.62, 115.66, 101.95 (d, J = 49.5 Hz), 92.07 (d, J = 44.2 Hz), 80.00, 73.71 (d, J = 299.8 Hz), 63.42 (d, J = 4.2 Hz), 54.28 (d, J = 5.6 Hz), 53.79 (d, J = 5.6 Hz); ¹³C{³¹P} NMR (151 MHz, CDCl₃): δ = 174.27, 167.25 (d, J = 259.4 Hz), 162.88 (d, J = 247.4 Hz), 134.72 (d, J = 3.4 Hz), 132.78 (d, J = 9.8 Hz), 128.58 (d, J = 8.4 Hz), 116.54 (d, J = 22.3 Hz), 115.73 (d, J = 21.9 Hz), 101.96, 92.07, 79.06, 73.70, 63.42, 54.28, 53.80; ³¹P NMR (121 MHz, CDCl₃): δ = -3.97; IR (film): n = 3316, 3075, 3006, 2957, 2203, 1507, 1458, 1224, 1186, 1028, 840, 793 cm⁻¹; HR-MS (EI): m/z = 258.04339, calcd. for C₁₁H₁₂O₄FP: 258.04518.

Dimethyl (3-(2-bromo-5-chlorophenyl)-3-hydroxyprop-1-yn-1-yl)phosphonate (3l):

Synthesised according to GP-C, using 2.0 mmol (500 mg) of 1-(2-bromo-5-chlorophenyl)prop-2-yn-1-ol, 2.4 mmol (0.2 mL) of dimethylphosphite and 0.3 mmol (41 mg) of Cu₂O, as beige solid (547 mg, 76%).

R_f= 0.27 (PE:EA-1:1); ¹H NMR (300 MHz, CDCl₃): δ = 7.74 (d, *J* = 2.6 Hz, 1H), 7.48 (d, *J* = 8.5 Hz, 1H), 7.19 (dd, *J* = 8.5, 2.6 Hz, 1H), 5.78 (d, *J* = 3.5 Hz, 1H), 3.80 (dd, *J* = 12.4, 5.9 Hz, 6H); ¹H{³¹P} NMR (300 MHz, CDCl₃): δ = 7.74 (d, *J* = 2.6 Hz, 1H), 7.48 (d, *J* = 8.5 Hz, 1H), 7.19 (dd, *J* = 8.5, 2.6 Hz, 1H), 5.78 (s, 1H), 3.80 (d, *J* = 5.9 Hz, 6H); ¹³C NMR (151 MHz, CDCl₃): δ = 139.67, 134.12, 130.27, 128.49, 119.90, 100.15 (d, *J* = 49.8 Hz), 73.59 (d, *J* = 298.3 Hz), 63.27, 53.93 (d, *J* = 5.4 Hz); ¹³C{³¹P} NMR (300 MHz, CDCl₃): δ = 139.66, 134.12, 130.26, 128.49, 119.89, 100.15, 73.59, 63.29, 53.93; ³¹P NMR (121 MHz, CDCl₃): δ = -4.21; IR (film): n = 3313, 3097, 2956, 2853, 2197, 1456, 1430, 1254, 1184, 1063, 902, 847, 742, 671 cm⁻¹; HR-MS (EI): m/z = 351.92513, calcd. for C₁₁H₁₁O₄PClBr: 351.92614.

Dimethyl (3-(2,6-difluorophenyl)-3-hydroxyprop-1-yn-1-yl)phosphonate (3m):

Synthesised according to GP-C, using 3.0 mmol (500 mg) of 1-(2,6-difluorophenyl) prop-2-yn-1-ol, 4.2 mmol (0.4 mL) of dimethylphosphite and 0.4 mmol (60 mg) of Cu₂O, as orange oil (476 mg, 58%).

R_f= 0.21 (PE:EA-1:1); ¹H NMR (300 MHz, CDCl₃): δ = 7.38-7.28 (m, 1H), 6.97-6.88 (m, 2H), 5.87 (dt, J = 3.9, 1.6 Hz, 1H), 3.78 (dd, J = 12.4, 6.1 Hz, 6H); ¹H{³¹P} NMR (300 MHz, CDCl₃): δ = 7.37-7.28 (m, 1H), 6.92 (t, J = 8.2 Hz, 2H), 5.87 (t, J = 1.6 Hz, 1H), 3.86 (s, 1H), 3.78 (d, J = 6.1 Hz, 6H); ¹³C NMR (151 MHz, CDCl₃): δ = 160.76 (dd, J = 251.7, 7.1 Hz), 131.10, 115.41, 112.07 (d, J = 25.5 Hz), 99.71 (d, J = 49.8 Hz), 72.88 (d, J = 297.6 Hz), 54.49 (q, J = 4.9 Hz), 53.77 (t, J = 6.3 Hz); ¹³C {³¹P} NMR (151 MHz, CDCl₃): δ = 160.75 (dd, J = 251.8, 7.0 Hz), 131.09, 115.40, 112.07 (d, J = 25.6 Hz), 99.70, 72.88, 54.49 (t, J = 5.2 Hz), 53.78 (d, J = 7.0 Hz); ³¹P NMR (121 MHz, CDCl₃): δ = -4.09; IR (film): n = 3312, 2958, 2855, 2209, 1474, 1261, 1192, 1066, 999, 847, 791 cm ⁻¹; HR-MS (EI): m/z = 276.03494, calcd. for C₁₁H₁₁O₄F₂P: 276.03575.

Dimethyl (3-(2,6-dibromophenyl)-3-hydroxyprop-1-yn-1-yl)phosphonate (3n):

Synthesised according to GP-C, using 1.7 mmol (500 mg) of 1-(2,6-dibromophenyl)prop-2-yn-1-ol, 2.4 mmol (0.2 mL) of dimethylphosphite and 0.2 mmol (35 mg) of Cu_2O , as yellow solid (446 mg, 65%).

R_f= 0.36 (PE:EA-1:1); ¹H NMR (300 MHz, CDCl₃): δ = 7.57 (d, *J* = 8.0 Hz, 2H), 7.06 (t, *J* = 8.0 Hz, 1H), 6.36 (d, *J* = 4.0 Hz, 1H), 3.79 (dd, *J* = 12.3, 2.9 Hz, 6H), 3.60 (s, 1H); ¹H {³¹P} NMR (300 MHz, CDCl₃): δ = 7.57 (d, J = 8.0 Hz, 2H), 7.07 (t, J = 8.0 Hz, 1H), 6.36 (s, 1H), 3.79 (d, J = 2.5 Hz, 6H), 3.74 - 3.64 (m, 1H); ¹³C NMR (151 MHz, CDCl₃): δ = 135.92, 133.60, 131.43, 124.21, 98.00 (d, *J* = 48.8 Hz), 75.18 (d, *J* = 296.0 Hz), 65.29 (d, *J* = 4.2 Hz), 53.76 (d, *J* = 5.6 Hz); ¹³C {³¹P} (151 MHz, CDCl₃): δ = 135.90, 133.59, 131.42, 124.21, 98.01, 75.16, 65.29, 53.76); ³¹P NMR (121 MHz, CDCl₃): δ = -3.94; IR (film): n = 3289, 3069, 2954, 2852, 2200, 1433, 1258, 1182, 1034, 842, 796, 697, 639 cm ⁻¹; HR-MS (EI): m/z = 395.87604, calcd. for C₁₁H₁₁O₄PBr₂: 395.87562.

Diethyl (3-hydroxy-2-oxopropyl)phosphonate (hydration product 2aa):

¹H NMR (301 MHz, Chloroform-*d*) δ 4.32 (s, 2H), 4.14 (dd, *J* = 8.0, 6.7 Hz, 4H), 3.84 (d, *J* = 1.2 Hz, 1H), 3.18 (d, *J* = 22.9 Hz, 2H), 1.33 (t, *J* = 7.1 Hz, 6H).

Diethyl (3-oxooxetan-2-yl)phosphonate (2a):

Synthesised according to the GP-**D**, using 0.3 mmol (60 mg) of **1a**, 0.6 mmol (102 mg) of the *N*-oxide **6** and 5 mol% of CyJohnPhosAuNtF₂, *as* a colorless oil. (35 mg, 54%).

R_f= 0.44 (PE:EA-1:1); ¹H NMR (300 MHz, CDCl₃): δ = 5.78 (ddd, *J* = 7.3, 4.3, 1.0 Hz, 1H), 5.64-5.39 (m, 2H), 4.33-4.13 (m, 4H), 1.36 (td, *J* = 7.1, 2.8 Hz, 6H). ¹H{³¹P} (300 MHz, CDCl₃): δ = 5.72 (dd, *J* = 4.3, 1.0 Hz, 1H), 5.58-5.36 (m, 2H), 4.24-4.11 (m, 4H), 1.31 (td, *J*

= 7.1, 2.8 Hz, 7H); ¹³C NMR (75 MHz, CDCl₃): δ = 193.31 (d, *J* = 5.8 Hz), 100.07, 98.03, 93.88 (d, *J* = 7.4 Hz), 66.15-62.54 (m), 16.53 (d, *J* = 5.6 Hz); ³¹P NMR (122 MHz, CDCl₃): δ = 10.62; IR (film): n = 2988, 2934, 2916, 1829, 1395, 1197, 1166, 1021, 951, 793 cm ⁻¹; HR-MS (EI): m/z = 209.05854, calcd. for C₇H₁₃O₅P [M⁺+H]: 209.05971.

Diethyl (4-methyl-3-oxooxetan-2-yl)phosphonate (2b):

Synthesised according to the GP-**D**, using 0.3 mmol (60 mg) of **1b**, 0.6 mmol (95 mg) of the *N*-oxide **6** and 5 mol% of CyJohnPhosAuNtF₂, mixture obtained. See NMR below.

Diethyl (4,4-dimethyl-3-oxooxetan-2-yl)phosphonate (2c):

Synthesised according to the GP-**D**, using 0.3 mmol (60 mg) of 1c, 0.6 mmol (89 mg) of the *N*-oxide **6** and 5 mol% of CyJohnPhosAuNtF₂, mixture obtained. See NMR below.

Diethyl (3-oxo-1-oxaspiro[3.7]undecan-2-yl)phosphonate (2d):

Synthesised according to the GP-**D**, using 0.3 mmol (60 mg) of **1d**, 0.6 mmol (68 mg) of the *N*-oxide **6** and 5 mol% of CyJohnPhosAuNtF₂, mixture obtained. See NMR below.

Dimethyl (4-methyl-3-oxooxetan-2-yl)phosphonate (4a):

Synthesised according to the GP-**D**, using 0.3 mmol (60 mg) of 3a, 0.6 mmol (110 mg) of the *N*-oxide **6** and 5 mol% of CyJohnPhosAuNtF₂, as a colorless oil. (44 mg, 67%).

R_f = 0.52 (PE:EA-1:1); ¹H NMR (300 MHz, CDCl₃): δ = 5.87-5.64 (m, 2H), 3.87 (dd, *J* = 10.9, 2.6 Hz, 6H), 1.67-1.50 (m, 3H); ¹H{³¹P} NMR (300 MHz, CDCl₃): δ = 5.87-5.64 (m, 2H), 3.93-3.85 (m, 6H), 1.65-1.53 (m, 2H); ¹³C NMR (151 MHz, CDCl₃): δ = 196.48 (dd, J = 36.4, 5.8 Hz), 102.87 - 101.54 (m), 94.82 (d, J = 155.0 Hz), 55.77 - 51.25 (m), 16.46 (d, J = 10.6 Hz); ¹³C{³¹P} NMR (151 MHz, CDCl₃): δ = 196.46 (d, J = 36.7 Hz), 102.37 (d, J = 53.6 Hz), 94.82, 57.01-50.90 (m), 16.47 (d, J = 11.0 Hz); ³¹P NMR (121 MHz, CDCl₃): (dr = 1.09:1) δ = 13.96, 13.08; IR (film): n = 2964, 2935, 2859, 1824, 1451, 1221, 1026, 975, 828, 782 cm ⁻¹; HR-MS (EI): m/z = 195.04268, calcd. for C₆H₁₂O₅P [M⁺+H]: 195.04169.

Dimethyl (3-oxo-4-pentyloxetan-2-yl)phosphonate (4b):

Synthesised according to the GP-**D**, using 0.2 mmol (60 mg) of **3a**, 0.5 mmol (84 mg) of the *N*-oxide **6** and 5 mol% of CyJohnPhosAuNtF₂ as a pale-yellow oil. (34 mg, 53%)

R_f= 0.51 (PE:EA-1:1); ¹H NMR (300 MHz, CDCl₃): δ = 5.73-5.47 (m, 2H), 3.84 (ddd, *J* = 11.0, 2.8, 1.7 Hz, 6H), 2.12 - 1.76 (m, 2H), 1.53 - 1.22 (m, 6H), 0.87 (m, 3H); ¹H{³¹P} (300 MHz, CDCl₃): δ = 5.73 - 5.51 (m, 2H), 3.88 - 3.82 (m, 6H), 2.10 - 1.78 (m, 2H), 1.57 - 1.24 (m, 6H), 0.89 - 0.85 (m, 3H); ¹³C NMR (75 MHz, CDCl₃): δ = 196.43, 106.07, 95.72, 93.68, 53.98, 31.45, 23.78, 22.44, 13.97; ³¹P NMR (121 MHz, CDCl₃): δ = 14.01, 13.08; IR (film): n = 3427, 2959, 2855, 2192, 1819, 1453, 1353, 1228, 1189, 1033, 845, 617 cm ⁻¹; HR-MS (EI): m/z = 250.09732, calcd. for C₁₀H₁₉O₅P: 250.09646.

Dimethyl (4-heptyl-3-oxooxetan-2-yl)phosphonate (4c):

Synthesised according to the GP-**D**, using 0.2 mmol (60 mg) of 3a, 0.5 mmol (75 mg) of the *N*-oxide **6** and 5 mol% of CyJohnPhosAuNtF₂ as a pale-yellow oil. (29 mg, 46%)

R_f= 0.51 (PE:EA-1:1); ¹H NMR (600 MHz, CDCl₃): δ = 5.79-5.43 (m, 2H), 3.96-3.80 (m, 6H), 2.09-1.76 (m, 2H), 1.51-1.27 (m, 8H), 0.87 (t, *J* = 7.0 Hz, 5H); ¹³C NMR (76 MHz, CDCl₃): δ = 196.46, 106.05 (d, *J* = 6.3 Hz), 94.72 (d, *J* = 154.8 Hz), 53.96 (d, *J* = 4.1 Hz), 31.75, 29.07, 24.46, 22.69, 14.15; ¹³C{³¹P} NMR (151 MHz, CDCl₃): $\delta = 196.56$ (d, J = 2.5 Hz), 106.08, 94.70, 54.04 (d, J = 6.9 Hz), 31.78, 31.05 (d, J = 12.8 Hz), 29.83, 29.10, 22.72, 14.19; ³¹P NMR (243 MHz, CDCl₃): $\delta = 14.62$, 14.31, 13.38; IR (film): n = 2958, 2930, 2858, 1799, 1462, 1250, 1046, 847, 791 cm⁻¹; HR-MS (EI): m/z = 277.11837 (100 %), calcd. for C₁₂H₂₃O₅P [M⁺-H]: 277.11994.

Dimethyl (4-(tert-butyl)-3-oxooxetan-2-yl)phosphonate (4d):

Synthesised according to the GP-**D**, using 0.2 mmol (60 mg) of **3a**, 0.5 mmol (89 mg) of the *N*-oxide **6** and 5 mol% of CyJohnPhosAuNtF₂ as a pale-yellow oil. (25 mg, 39%)

R_f= 0.59 (PE:EA-1:1); ¹H NMR (300 MHz, CDCl₃): δ = 5.66 (dd, J = 9.1, 2.1 Hz, 0.4H), 5.50 (dd, J = 7.3, 4.4 Hz, 1H), 5.31 (dd, J = 4.5, 3.0 Hz, 1H), 5.27 (dd, J = 7.5, 2.0 Hz, 0.4H), 3.87 (dd, J = 11.0, 2.4 Hz, 6H), 1.02 (s, 9H); ¹H{³¹P} NMR (300 MHz, CDCl₃): δ = 5.66 (d, J = 2.0 Hz, 0.4H), 5.50 (d, J = 4.4 Hz, 1H), 5.31 (d, J = 4.4 Hz, 1H), 5.27 (d, J = 2.0 Hz, 0.4H), 3.87 (d, J = 2.4 Hz, 6H), 1.02 (s, 9H); ¹³C NMR (151 MHz, CDCl₃): δ = 196.16 (d, J = 4.9 Hz), 113.18 (d, J = 6.9 Hz), 94.53 (d, J = 154.7 Hz), 54.12 - 54.01 (m), 34.95 (d, J = 3.4 Hz), 24.66; ¹³C{³¹P} NMR (151 MHz, CDCl₃): δ = 196.15, 113.17, 94.53, 54.10 (d, J = 2.7 Hz), 34.96, 24.67; ³¹P NMR (121 MHz, CDCl₃): (dr = 1.09:1) δ = 13.96, 13.08; IR (film): n = 2964, 2935, 2859, 1824, 1451, 1221, 1026, 975, 828, 782 cm ⁻¹; HR-MS (EI): m/z = 236.07915, calcd. for C₉H₁₇O₅P: 236.08081.

Dimethyl (3-oxo-4-phenethyloxetan-2-yl)phosphonate (4e):

Synthesised according to the GP-**D**, using 0.2 mmol (60 mg) of **3a**, 0.5 mmol (73 mg) of the *N*-oxide **6** and 5 mol% of CyJohnPhosAuNtF₂ as a pale-yellow oil (56 mg, 88%).

 $R_f = 0.6$ (PE:EA-1:1); ¹H NMR (300 MHz, CDCl₃): $\delta = 7.30$ (ddt, J = 7.2, 6.1, 1.2 Hz, 2H), 7.24-7.18 (m, 3H), 5.78-5.65 (m, 1H), 5.54 (dddd, J = 8.9, 7.2, 5.8, 1.2 Hz, 1H), 3.88 (dd, J =11.0, 1.6 Hz, 6H), 2.81 (td, J = 8.0, 7.0, 5.1 Hz, 2H), 2.46-2.10 (m, 2H); ¹H{³¹P} (300 MHz, CDCl₃): $\delta = 7.30$ (ddt, J = 7.1, 6.0, 1.2 Hz, 2H), 7.20 (ddd, J = 7.9, 2.5, 1.4 Hz, 3H), 5.75-5.66 (d, 1.6H), 5.54 (ddd, J = 9.1, 5.8, 1.2 Hz, 0.4H), 3.89 - 3.87 (m, 6H), 2.81 (td, J = 8.0, 7.0, 5.1 Hz, 2H), 2.48-2.09 (m, 2H); ¹³C NMR (75 MHz, CDCl₃): $\delta = 196.15$ (d, J = 15.5 Hz), 140.08, 128.70, 126.51, 104.79, 94.83 (dd, J = 154.6, 17.2 Hz), 56.47-51.83 (m), 32.62 (d, J = 1.7 Hz), 32.32, 30.23 (d, J = 13.9 Hz); ¹³C {³¹P} NMR (151 MHz, CDCl₃): $\delta = 196.25$ (d, J = 33.2 Hz), 140.08, 128.67 (d, J = 13.8 Hz), 126.50 (d, J = 11.0 Hz), 104.86, 94.94, 54.07, 32.50 (d, J = 45.0 Hz), 30.25 (d, J = 27.3 Hz), 22.80, 14.24; ³¹P NMR (121 MHz, CDCl₃): $\delta = 13.81$, 13.02; dr = 1.1:1 IR (film): n = 3062, 3028, 2931, 2858, 11823, 1731, 1354, 1255, 1199, 1059, 843, 753, 702 cm⁻¹; HR-MS (EI): m/z = 284.08004, calcd. for C₁₃H₁₇O₅P: 284.08081.

Dimethyl (4,4-dimethyl-3-oxooxetan-2-yl)phosphonate (4f):

Synthesised according to the GP-**D**, using 0.3 mmol (60 mg) of **3a**, 0.6 mmol (102 mg) of the *N*-oxide **6** and 5 mol% of CyJohnPhosAuNtF₂ as a colorless oil (53 mg, 82%).

R_f= 0.53 (PE:EA-1:1); ¹H NMR (300 MHz, CDCl₃): δ = 5.66 (d, *J* = 8.4 Hz, 1H), 3.84 (dd, *J* = 11.0, 0.6 Hz, 6H), 1.60 (s, 3H), 1.52 (s, 3H); ¹H{³¹P} NMR (300 MHz, CDCl₃): δ = 5.66 (s, 1H), 3.84 (s, 4H), 1.60 (s, 3H), 1.52 (s, 3H); ¹³C NMR (151 MHz, CDCl₃): δ = 199.30 (d, *J* = 5.7 Hz), 109.73 (d, *J* = 8.1 Hz), 91.56 (d, *J* = 156.0 Hz), 53.93 (dd, *J* = 21.5, 6.4 Hz), 29.83, 22.94 (d, *J* = 35.2 Hz); ¹³C{³¹P} NMR (151 MHz, CDCl₃): δ = 199.28, 109.73, 91.55, 53.93 (d, *J* = 21.4 Hz), 29.84, 22.72; ³¹P NMR (121 MHz, CDCl₃): (dr = 1.09:1) δ = 13.96, 13.08; IR (film): n = 2964, 2935, 2859, 1824, 1451, 1221, 1026, 975, 828, 782 cm ⁻¹; HR-MS (EI): m/z = 195.04268 calcd. for C₆H₁₂O₅P [M⁺+H]: 195.04169.

Dimethyl (3-oxo-1-oxaspiro[3.3]heptan-2-yl)phosphonate (4g):

Ŭ P-O

Synthesised according to the GP-**D**, using 0.3 mmol (60 mg) of 3a, 0.6 mmol (96 mg) of the *N*-oxide **6** and 5 mol% of CyJohnPhosAuNtF₂ as a colorless oil. (27 mg, 42%)

R_f= 0.59 (PE:EA-1:1); ¹H NMR (600 MHz, CDCl₃): δ = 5.58 (d, *J* = 6.1 Hz, 1H), 3.85 (dd, *J* = 11.0, 9.9 Hz, 6H), 2.70-2.57 (m, 2H), 2.57-2.42 (m, 2H), 1.82-1.65 (m, 2H); ¹H{³¹P} (300 MHz, CDCl₃): δ = 5.58 (s, 1H), 3.85 (d, *J* = 4.8 Hz, 6H), 2.73 - 2.38 (m, 4H), 1.86 - 1.68 (m, 2H); ¹³C NMR (151 MHz, CDCl₃): δ = 198.15 (d, *J* = 5.5 Hz), 108.60 (d, *J* = 6.9 Hz), 92.65 (d, *J* = 154.9 Hz), 54.03 (dd, *J* = 27.2, 6.7 Hz), 34.14, 33.44, 11.87; ¹³C{³¹P} NMR (151 MHz, CDCl₃): δ = 198.14, 108.59, 92.65, 54.03 (d, *J* = 27.4 Hz), 34.14, 33.45, 11.88; ³¹P NMR (151 MHz, CDCl₃): δ = 14.05; IR (film): n = 3461, 2959, 2933, 2861, 1798, 1731, 1460, 1355, 1191, 1041, 848, 788 cm⁻¹; HR-MS (EI): m/z = 221.05648, calcd. for C₈H₁₄O₅P [M⁺+H]: 221.05734.

Dimethyl (3-oxo-1-oxaspiro[3.4]octan-2-yl)phosphonate (4h):

Synthesised according to the GP-**D**, using 0.2 mmol (60 mg) of 3a, 0.5 mmol (90 mg) of the *N*-oxide **6** and 5 mol% of CyJohnPhosAuNtF₂ as a colorless oil. (36 mg, 56%).

 R_f = 0.58 (PE:EA-1:1); ¹H NMR (300 MHz, CDCl₃): δ = 5.58 (d, J = 7.2 Hz, 1H), 3.85 (dd, J = 10.9, 3.1 Hz, 6H), 2.35-2.08 (m, 4H), 1.84-1.48 (m, 4H); ¹H{³¹P} NMR (300 MHz, CDCl₃): δ = 5.58 (s, 1H), 3.85 (d, J = 3.1 Hz, 6H), 2.33-2.07 (m, 4H), 1.88 - 1.56 (m, 4H); ¹³C NMR (151MHz, CDCl₃): δ = 200.66 (d, J = 5.7 Hz), 118.54 (d, J = 7.5 Hz), 91.82 (d, J = 155.5 Hz), 54.34 - 53.51 (m), 36.73, 36.41, 24.92 (d, J = 2.9 Hz); ¹³C{³¹P} NMR (151 MHz, CDCl₃): δ = 200.63, 118.53, 91.81, 53.97 (d, J = 3.8 Hz), 36.73, 36.41, 24.92 (d, J = 3.3 Hz); ³¹P NMR (121 MHz, CDCl₃): δ = 14.12; IR (film): n = 2961, 2902, 2856, 2206, 1829, 1744, 1455, 1353, 1136, 1036, 827, 759 cm ⁻¹; HR-MS (EI): m/z = 235.09822, calcd. for C₉H₁₅O₅P [M⁺+H]: 235.09649.

Dimethyl (3-oxo-1-oxaspiro[3.5]nonan-2-yl)phosphonate (4i):

Synthesised according to the GP-**D**, using 0.2 mmol (60 mg) of **3a**, 0.5 mmol (84 mg) of the *N*-oxide **6** and 5 mol% of CyJohnPhosAuNtF₂ as a pale-yellow oil. (33 mg, 52%)

R_f= 0.56 (PE:EA-1:1); ¹H NMR (300 MHz, CDCl₃): δ = 5.61 (d, J = 8.3 Hz, 1H), 3.87 (d, J = 10.9 Hz, 6H), 2.48-1.32 (m, 10H); ¹H{³¹P} NMR (300 MHz, CDCl₃): δ = 5.61 (s, 1H), 3.86 (s, 6H), 2.40-1.43 (m, 10H); ¹³C NMR (MHz, CDCl₃): δ = 199.40, 111.80 (d, J = 7.8 Hz), 90.53 (d, J = 155.8 Hz), 56.28 - 52.13 (m), 32.63 (d, J = 2.4 Hz), 31.89, 24.72, 22.12 (d, J = 4.6 Hz); ¹³C{³¹P} NMR (151 MHz, CDCl₃): δ = 199.49, 111.80, 90.64, 53.88, 32.08, 29.85, 29.52, 22.85, 14.28; ³¹P NMR (121 MHz, CDCl₃): δ = 14.16; IR (film): n = 2928, 2851, 1738, 1463, 1371, 1240, 1154, 1038, 991, 719 cm ⁻¹; HR-MS (EI): m/z = 249.08874, calcd. for $C_{10}H_{17}O_5P$ [M⁺+H]: 249.08864.

Dimethyl (4-(4-fluorophenyl)-3-oxooxetan-2-yl)phosphonate (4k):

Synthesised according to the GP-**D**, using 0.2 mmol (60 mg) of 3a, 0.5 mmol (76 mg) of the *N*-oxide **6** and 5 mol% of CyJohnPhosAuNtF₂ as a yellow oil. (45 mg, 70%)

R_f= 0.48 (PE:EA-1:1); ¹H NMR (300 MHz, CDCl₃): δ = 7.52 (ddd, J = 9.0, 5.3, 0.6 Hz, 1H), 7.34 (ddd, J = 8.9, 5.2, 0.7 Hz, 2H), 7.10 (t, J = 8.7 Hz, 3H), 6.57 (t, J = 4.0 Hz, 1H), 6.49 (dd, J = 7.7, 1.5 Hz, 1H), 5.93 (dd, J = 8.3, 1.7 Hz, 1H), 5.84 (dd, J = 7.4, 4.4 Hz, 1H), 3.92 (dd, J= 11.0, 1.1 Hz, 6H), 3.81 (dd, J = 11.1, 0.8 Hz, 4H); ¹H{³¹P} NMR (300 MHz, CDCl₃): δ = 7.56 - 7.49 (m, 2H), 7.34 (dddd, J = 8.2, 5.3, 2.6, 1.5 Hz, 2H), 7.10 (t, J = 8.7 Hz, 3H), 6.57 (dd, J = 4.5, 0.8 Hz, 1H), 6.48 (dd, J = 1.7, 0.8 Hz, 1H), 5.93 (d, J = 1.7 Hz, 1H), 5.84 (d, J = 4.4 Hz, 1H), 3.92 (d, J = 1.1 Hz, 6H), 3.81 (d, J = 0.8 Hz, 5H); ³¹P NMR (121 MHz, CDCl₃): (dr = 1.3:1) δ = 13.62, 12.25.; IR (film): n = 2960, 2923, 2855, 1823, 1604, 1509, 1451, 1185, 1026, 959, 822, 776 cm ⁻¹; HR-MS (EI): m/z = 275.04784, calcd. for C₁₁H₁₂O₅FP [M⁺+H]: 275.04791.

Dimethyl (4-(2-bromo-5-chlorophenyl)-3-oxooxetan-2-yl)phosphonate (4l):

Synthesised according to the GP-**D**, using 0.2 mmol (60 mg) of **3a**, 0.3 mmol (55 mg) of the *N*-oxide **6** and 5 mol% of CyJohnPhosAuNtF₂ as a yellow oil. (40 mg, 63%)

R_f= 0.47 (PE:EA-1:1); ¹H NMR (300 MHz, CDCl₃): δ = 7.87 (d, J = 2.6 Hz, 1H), 7.58-7.48 (m, 2H), 7.22 (dd, J = 8.5, 2.6 Hz, 2H), 6.91-6.86 (m, 1H), 5.98 (dd, J = 7.9, 1.6 Hz, 1H), 5.88 (dd, J = 7.5, 4.3 Hz, 1H), 3.95 (d, J = 10.9 Hz, 6H), 3.86 (dd, J = 11.1, 8.0 Hz, 5H); ¹H{³¹P} NMR (300 MHz, CDCl₃): δ = 7.87 (d, J = 2.7 Hz, 1H), 7.60-7.46 (m, 2H), 7.22 (dd, J = 8.5, 2.6 Hz, 2H), 6.92 - 6.84 (m, 1H), 5.98 (d, J = 1.6 Hz, 1H), 5.88 (d, J = 4.4 Hz, 1H), 3.95 (s, 6H), 3.86 (d, J = 7.9 Hz, 5H); ¹³C NMR (151 MHz, CDCl₃): δ = 190.39 (d, J = 7.7 Hz), 190.11 (d, J = 4.2 Hz), 134.51, 134.33, 134.09, 134.03, 130.72 (d, J = 16.7 Hz), 128.80, 127.62, 118.70, 104.48 (d, J = 6.3 Hz), 104.22 (d, J = 10.4 Hz), 96.60 (d, J = 155.4 Hz), 96.29, 95.26, 54.36 (dd, J = 13.1, 6.4 Hz), 53.98 (dd, J = 13.5, 6.6 Hz); ¹³C{³¹P} NMR (151 MHz, CDCl₃): δ = 190.38, 190.10, 134.51, 134.28, 134.10, 134.03, 130.77, 130.66, 128.79, 127.62, 118.69, 104.48, 104.22, 96.60, 95.78, 54.37 (d, J = 12.8 Hz), 53.99 (d, J = 13.2 Hz); ³¹P NMR (121 MHz, CDCl₃): (dr = 1.2:1) δ = 13.22, 11.92; IR (film): n = 2961, 2902,2856, 1829, 1744, 1455, 1353, 1136, 1036, 827, 759 cm ⁻¹; HR-MS (EI): m/z = 368.92961, calcd. for C₁₁H₁₁BrClO₅P [M⁺+H]: 368.92888.

Dimethyl (4-(2,6-difluorophenyl)-3-oxooxetan-2-yl)phosphonate (4m):

Synthesised according to the GP-**D**, using 0.2 mmol (60 mg) of **3a**, 0.4 mmol (71 mg) of the *N*-oxide **6** and 5 mol% of CyJohnPhosAuNtF₂ as a yellow oil. (42 mg, 66%)

 R_f = 0.47 (PE:EA-1:1); ¹H NMR (600 MHz, CDCl₃): δ = 7.41 (m, J = 8.4, 6.5 Hz, 1H), 6.95 (dd, J = 9.8, 6.6 Hz, 2H), 6.82 (t, J = 4.1 Hz, 1H), 5.98 (dd, J = 6.6, 4.3 Hz, 1H), 3.92 (dd, J = 11.0, 1.2 Hz, 6H); ¹H{³¹P} NMR (300 MHz, CDCl₃): δ = δ 7.41 (m, J = 8.5, 6.5 Hz, 1H), 7.10 - 6.88 (m, 2H), 6.82 (d, J = 4.3 Hz, 1H), 6.01 - 5.88 (m, 1H), 3.92 (d, J = 0.5 Hz, 6H); ¹³C NMR (151 MHz, CDCl₃): δ = 192.74 (d, J = 3.8 Hz), 162.44 (d, J = 6.8 Hz), 160.77 (d, J = 6.9 Hz), 133.14, 111.99 (dd, J = 21.4, 4.0 Hz), 110.60 (t, J = 17.7 Hz), 96.11 (d, J = 154.9 Hz), 94.96 (d, J = 6.2 Hz), 54.25 (dd, J = 21.2, 6.6 Hz); ¹³C{³¹P} NMR (151 MHz, CDCl₃): δ = 192.72, 162.43 (d, J = 6.9 Hz), 160.75 (d, J = 6.9 Hz), 133.13, 111.98 (dd, J = 21.4, 4.1 Hz), 110.59 (t, J = 17.7 Hz), 96.10, 94.96, 54.25 (d, J = 21.3 Hz); ³¹P NMR (121 MHz, CDCl₃): (dr = 10:1) δ = 13.83, 11.10; IR (film): n = 3070, 2962, 2858, 1832, 1628, 1592, 1474, 1267, 1191, 1056, 940, 830 cm ⁻¹; HR-MS (EI): m/z = 293.03750 (11.9 %), calcd. for C₁₁H₁₁O₅F₂P [M⁺+H]: 293.03849.

Dimethyl (4-(2,6-dibromophenyl)-3-oxooxetan-2-yl)phosphonate (4n):

Synthesised according to the GP-**D**, using 0.15 mmol (60 mg) of **3a**, 0.3 mmol (49 mg) of the *N*-oxide **6** and 5 mol% of CyJohnPhosAuNtF₂ as a yellow oil. (36 mg, 58%)

R_f= 0.49 (PE:EA-1:1); ¹H NMR (600 MHz, CDCl₃): δ = 7.58 (d, J = 8.1 Hz, 2H), 7.29 (t, J = 4.7 Hz, 1H), 7.12 (t, J = 8.0 Hz, 1H), 6.06 (dd, J = 6.5, 4.5 Hz, 1H), 3.94 (dd, J = 10.9, 6.8 Hz, 6H); ¹H{³¹P} NMR (300 MHz, CDCl₃): δ = 7.58 (d, J = 8.0 Hz, 2H), 7.30 (d, J = 4.5 Hz, 1H), 7.12 (t, J = 8.0 Hz, 1H), 6.06 (d, J = 4.4 Hz, 1H), 3.94 (d, J = 3.4 Hz, 6H); ¹³C NMR (151 MHz, CDCl₃): δ = 192.10, 133.29, 132.96, 126.75, 104.92 (d, *J* = 4.2 Hz), 96.41 (d, *J* = 154.5 Hz), 54.30; ¹³C{³¹P} NMR (151 MHz, CDCl₃): δ = 192.08, 133.29, 132.96, 131.65, 126.75, 104.92, 96.41, 54.30 (d, *J* = 6.4 Hz); ³¹P NMR (121 MHz, CDCl₃): δ = 14.60; IR (film): n = 3079, 2959, 2923, 2855, 1825, 1571, 1522, 1433, 1261, 1031, 940, 829, 780, 717 cm ⁻¹; HR-MS (EI): m/z = 412.87723, calcd. for C₁₁H₁₁O₅PBr₂ [M⁺+H]: 412.87836.

2-Benzylidene-4-phenethyloxetan-3-one (5a)

Synthesised according to the GP-E, as a colorless oil. (26 mg, 95%)

R_f= 0.62 (PE:EA-10:1); ¹H NMR (300 MHz, CDCl₃): δ = 7.70 - 7.64 (m, 2H), 7.51 - 7.42 (m, 7H), 6.03 (s, 0.2H), 5.99 (s, 0.8), 5.67 - 5.49 (m, 0.4H), 5.32 (dd, *J* = 7.4, 6.0 Hz, 1H), 2.85 (t, *J* = 7.8 Hz, 2H), 2.32 - 2.14 (m, 2H), E/Z = 1:5;¹³C NMR (101 MHz, CDCl₃): δ = 189.48, 161.85, 140.27, 133.06, 130.06, 128.90, 128.77, 128.67, 128.62, 128.41, 126.55, 110.53, 97.32, 32.18, 30.41; IR (film): n = 3064, 3029, 2929, 2872, 1687, 1454, 1290, 1177, 1071, 933, 748, 704 cm ⁻¹; HR-MS (EI): m/z = 264.11173, calcd. for C₁₈H₁₆O₂: 264.11448.

3. Quantum chemical Calculations

We used the orca 4.2.1 program package¹⁴ to calculate the relative energy and geometry of the intermediate betaines Bet1 and Bet2 and their reaction products Z-5a and E-5a. We employed the wB97X-D3¹⁵ functional in combination with the RIJCOSX Approximation and the def2-TZVP¹⁶ basis set to optimize the geometries and calculate relative energies.

Geometrys:

Bet1: -1568.38338629384 E_h

С	5.215498	-1.970143	-3.125996
С	4.164459	-1.442615	-4.085379
0	4.509980	-0.101633	-3.664102
С	5.358316	-0.563404	-2.580290
H	3.164364	-1.701824	-3.717024
С	4.245698	-1.712041	-5.570176
H	3.499286	-1.082943	-6.064425
H	3.929303	-2.748154	-5.725269
С	5.618187	-1.484572	-6.202320
H	5.941003	-0.460939	-6.008579
H	6.349200	-2.143768	-5.727837
С	5.597507	-1.747162	-7.684527
С	5.287881	-0.730337	-8.584828
С	5.853184	-3.021233	-8.186325
С	5.233584	-0.978471	-9.949479
С	5.800777	-3.274940	- 9 .550037
С	5.489873	-2.253076	-10.437231
H	5.091080	0.269169	-8.210534

H	6.100547	-3.823575	-7.498410
H	4.994269	-0.172782	-10.634144
H	6.006780	-4.272582	-9.920762
H	5.451455	-2.447794	-11.502642
0	5.714965	-3.036288	-2.905663
С	4.755163	-0.302034	-1.143349
H	5.426181	-0.913483	-0.495716
С	3.375421	-0.962364	-1.055815
С	2.240599	-0.228262	-1.383689
С	3.220808	-2.287456	-0.660442
С	0.981891	-0.810309	-1.343239
С	1.962652	-2.875729	-0.612808
С	0.838349	-2.139494	-0.960662
H	2.372147	0.809044	-1.666136
H	4.096633	-2.866914	-0.384533
H	0.107004	-0.226450	-1.608070
H	1.860204	-3.908432	-0.298251
H	-0.144995	-2.594503	-0.924271
0	4.758020	1.007875	-0.877350
Р	7.028742	0.190414	-2.656753
0	7.666953	-0.379746	-3.999129
С	8.598268	-1.465920	-3.972702
H	9.441405	-1.228879	-3.324950
H	8.117875	-2.382212	-3.627276
H	8.943806	-1.598059	-4.995743
0	6.855396	1.684353	-3.117779
С	6.816828	2.776834	-2.180696
H	6.099845	2.541411	-1.394879
H	7.815178	2.938842	-1.773650
H	6.504449	3.649064	-2.750667
0	7.842723	-0.064616	-1.457822

Bet2: -1568.38462376265 Eh

5.222677	-1.977310	-3.264196
4.118116	-1.304662	-4.061806
4.518783	-0.039411	-3.480087
5.437370	-0.664574	-2.540787
3.137642	-1.600553	-3.670051
4.108033	-1.381606	-5.570793
3.321536	-0.719027	-5.944026
3.801995	-2.400758	-5.827826
5.434141	-1.049162	-6.253682
5.713639	-0.024555	-6.011988
6.224841	-1.693613	-5.861097
5.343892	-1.211505	-7.747738
4.928602	-0.154512	-8.554386
5.636394	-2.431457	-8.352860
4.806965	-0.310563	-9.928299
5.517635	-2.592891	-9.726401
5.101003	-1.532029	-10.519560
4.700962	0.804330	-8.099369
	5.222677 4.118116 4.518783 5.437370 3.137642 4.108033 3.321536 3.801995 5.434141 5.713639 6.224841 5.343892 4.928602 5.636394 4.806965 5.517635 5.101003 4.700962	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

H	5.965344	-3.263953	-7.739099
H	4.485138	0.525232	-10.539078
H	5.754106	-3.549283	-10.178615
H	5.010050	-1.655177	-11.592429
0	5.697083	-3.074194	-3.245603
С	4.977503	-0.703521	-1.035044
H	4.868551	0.376679	-0.784786
С	3.568658	-1.290124	-0.926917
С	2.436492	-0.510915	-1.148574
С	3.402394	-2.632237	-0.605696
С	1.165586	-1.065051	-1.073074
С	2.134479	-3.192695	-0.527571
С	1.010645	-2.411182	-0.765302
H	2.555063	0.541168	-1.386659
H	4.292411	-3.220662	-0.415755
H	0.293581	-0.444665	-1.248760
H	2.021084	-4.242022	-0.277899
H	0.019458	-2.845761	-0.702164
0	5.927341	-1.349261	-0.349186
P	7.117756	0.083873	-2.566312
0	8.177843	-1.079902	-2.569519
С	8.731358	-1.641850	-1.368893
H	9.286837	-0.875207	-0.827555
H	7.922539	-2.027204	-0.751420
H	9.408451	-2.429146	-1.692577
0	7.322358	0.535942	-4.079392
С	6.914290	1.839421	-4.502975
H	5.826758	1.920861	-4.490725
H	7.349676	2.602495	-3.858141
H	7.282477	1.964967	-5.519362
0	7.312043	1.180679	-1.603660

Z-5a: -846.036828268486 E_h

С	-1.428545	-1.766590	-1.516474
С	-0.688475	-2.720392	-0.584792
0	-1.543476	-2.232205	0.495806
С	-2.257593	-1.384503	-0.336569
H	0.348607	-2.426687	-0.409932
С	-0.819098	-4.203558	-0.844624
H	-0.362873	-4.740433	-0.008498
H	-0.217924	-4.431016	-1.730056
С	-2.260893	-4.679520	-1.045659
H	-2.853187	-4.414837	-0.167161
H	-2.706300	-4.164691	-1.901943
С	-2.323460	-6.167536	-1.269724
С	-2.412490	-7.044270	-0.191517
С	-2.251399	-6.699010	-2.554531
С	-2.426400	-8.417754	-0.390021
С	-2.265821	-8.072063	-2.758380
С	-2.352470	-8.936532	-1.675548
H	-2.475571	-6.645213	0.815784
H	-2.186402	-6.029057	-3.405922
H	-2.499247	-9.084479	0.461454
H	-2.211554	-8.467323	-3.766198
H	-2.366334	-10.008637	-1.832491
0	-1.353218	-1.487516	-2.677354

С	-3.317541	-0.657616	0.012008
H	-3.636259	-0.755850	1.046281
С	-4.116404	0.230723	-0.831750
С	-3.729052	0.626320	-2.115608
С	-5.327494	0.708458	-0.322973
С	-4.537078	1.463928	-2.865722
С	-6.135739	1.543968	-1.077193
С	-5.742888	1.926029	-2.352373
H	-2.793036	0.276360	-2.531141
H	-5.638099	0.414447	0.673673
H	-4.220342	1.761043	-3.858481
H	-7.072993	1.899159	-0.665567
H	-6.370600	2.582628	-2.942904

E-5a -846.033395849972 E_h

С	-1.658459	-1.780271	-1.428416
С	-0.844706	-2.728115	-0.544773
0	-1.694646	-2.300050	0.574923
С	-2.430338	-1.436697	-0.210918
H	0.178878	-2.383828	-0.384289
С	-0.902483	-4.209530	-0.828764
H	-0.431017	-4.737474	0.004850
H	-0.277355	-4.391753	-1.708046
С	-2.314501	-4.754660	-1.061955
H	-2.935466	-4.535845	-0.190416
H	-2.769653	-4.249593	-1.918870
С	-2.292004	-6.240476	-1.309703
С	-2.414325	-7.139625	-0.253738
С	-2.100834	-6.744173	-2.593314
С	-2.339240	-8.508383	-0.472058
С	-2.025577	-8.111926	-2.816956
С	-2.142289	-8.999249	-1.755319
H	-2.570976	-6.762414	0.751724
H	-2.009719	-6.056364	-3.428021
H	-2.438102	-9.193133	0.362340
H	-1.877870	-8.486049	-3.823540
H	-2.084223	-10.067500	-1.927921
0	-1.661428	-1.473761	-2.584314
С	-3.442464	-0.621708	0.075373
H	-3.814460	-0.059685	-0.775146
С	-4.090874	-0.388373	1.362804
С	-3.734013	-1.072989	2.530278
С	-5.109655	0.566981	1.431284
С	-4.377912	-0.797882	3.726289
С	-5.750295	0.839513	2.628243
С	-5.384288	0.158003	3.781663
H	-2.952727	-1.821251	2.502103
H	-5.396583	1.099977	0.531416
H	-4.091534	-1.334614	4.622956
H	-6.536043	1.584916	2.661410
H	-5.883099	0.369233	4.720031

50 130 110 90 70 50 30 10 -10 -50 f1 (ppm) -70 -90 -110 -130 -150 -170 -190 -210 -230 -30
¹H NMR (300 MHz, CDCl₃)-2aa:

¹H {³¹P} NMR (300 MHz, CDCl₃)-2a:

¹H NMR (300 MHz, CDCl₃)-**2b** mixture:

¹H NMR (300 MHz, CDCl₃)-**3b**:

³¹P NMR (121 MHz, CDCl₃)-**3b**:

¹H{³¹P} NMR (300 MHz, CDCl₃)-**3c**:

³¹P NMR (121 MHz, CDCl₃)-**3c**:

¹H NMR (300 MHz, CDCl₃)-3d:

¹³C NMR (151 MHz, CDCl₃)-**3d**:

¹³C{³¹P} NMR (151 MHz, CDCl₃)-**3e**:

¹H{³¹P} ¹H NMR (300 MHz, CDCl₃)-**3g**:

¹³C NMR (151 MHz, CDCl₃)-**3g**:

io 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 fl (ppm)

¹H NMR (300 MHz, CDCl₃)-**3h**:

¹H{³¹P} NMR (300 MHz, CDCl₃)-**3i**:

¹H NMR (300 MHz, CDCl₃)-**3**j:

¹H{³¹P} NMR (300 MHz, CDCl₃)-**3**I:

50 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -25 fl (ppm)

¹H{³¹P} NMR (300 MHz, CDCl₃)-**3n**:

¹H NMR (300 MHz, CDCl₃)-4a:

¹H{³¹P} NMR (300 MHz, CDCl₃)-4a:

¹³C{³¹P} NMR (151 MHz, CDCl₃)-4a:

50 -50 f1 (ppm) 130 110 90 70 50 30 10 -10 -30 -70 -90 -110 -130 -150 -170 -190 -210 -230 -25

¹H NMR (300 MHz, CDCl₃)-4b:

50 -30 -50 f1 (ppm) -25 130 110 90 70 50 30 10 -10 -70 -90 -110 -130 -150 -170 -190 -210 -230

¹H NMR (300 MHz, CDCl₃)-4c:

¹H{³¹P} NMR (300 MHz, CDCl₃)-4d:

-30 -50 f1 (ppm) 50 130 110 90 70 50 30 10 -10 -70 -90 -110 -130 -150 -170 -190 -210 -25 -230

¹H NMR (300 MHz, CDCl₃)-4e:

¹H{³¹P} (300 MHz, CDCl₃)-4e:

¹H NMR (300 MHz, CDCl₃)-4f:

22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 -1 -2 -3 -4 -5 f1(ppm)

¹H NMR (600 MHz, CDCl₃)-4g:

 $^1H\{^{31}P\}$ NMR (300 MHz, CDCl₃)-4h:

-30 -50 f1 (ppm) 50 130 110 90 70 50 30 10 -10 -70 -90 -110 -130 -150 -170 -190 -210 -230 -25

¹H{³¹P} NMR (300 MHz, CDCl₃)-4i:

¹³C NMR (MHz, CDCl₃)-4i:

60 40 f1 (ppm) 240 220 200 180 160 120 100 80 20 Ó -20 -40 -60 -80 -100 -120 -140 140

³¹P NMR (121 MHz, CDCl₃)-4m:

50 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -25 f1(ppm)

¹H NMR (600 MHz, CDCl₃)-4n:

-30 -50 f1 (ppm) 50 10 130 110 90 70 50 30 -10 -70 -90 -110 -130 -150 -170 -190 -210 -230 -25

5. References

- 1. L. J. Cheng and C. J. Cordier, Catalytic Nucleophilic Fluorination of Secondary and Tertiary Propargylic Electrophiles with a Copper–N-Heterocyclic Carbene Complex, *Angew. Chem.*, 2015, **127**, 13938-13942.
- 2. A. M. Jadhav, S. A. Gawade, D. Vasu, R. B. Dateer and R. S. Liu, ZnII-and Aul-Catalyzed Regioselective Hydrative Oxidations of 3-En-1-ynes with Selectfluor: Realization of 1, 4-Dioxo and 1, 4-Oxohydroxy Functionalizations, *Chem. Eur. J.*, 2014, **20**, 1813-1817.
- 3. Y. Moglie, E. Mascaró, V. Gutierrez, F. Alonso and G. Radivoy, Base-free direct synthesis of alkynylphosphonates from alkynes and h-phosphonates catalyzed by Cu2O, *J. Org. Chem.*, 2016, **81**, 1813-1818.
- 4. T. Maegawa, K. Otake, K. Hirosawa, A. Goto and H. Fujioka, Method for the Efficient Synthesis of Highly-Substituted Oxetan-and Azetidin-, Dihydrofuran-and Pyrrolidin-3-Ones and Its Application to the Synthesis of (±)-Pseudodeflectusin, *Org. Lett.*, 2012, **14**, 4798-4801.
- 5. N. D'Imperio, A. I. Arkhypchuk and S. Ott, E, Z-Selectivity in the reductive cross-coupling of two benzaldehydes to stilbenes under substrate control, *Org. Biomol. Chem.*, 2020, **18**, 6171-6179.
- 6. S. Braverman, T. Pechenick-Azizi, H. E. Gottlieb and M. Sprecher, Reactivity Pattern of Bis (propargyloxy) Disulfides: Tandem Rearrangements and Cyclizations, *Synthesis*, 2011, **2011**, 1741-1750.
- 7. L. J. Hilpert and B. Breit, Rhodium-Catalyzed Parallel Kinetic Resolution of Racemic Internal Allenes Towards Enantiopure Allylic 1, 3-Diketones, *Angew. Chem.*, 2019, **131**, 10044-10048.
- 8. Y. Qiu, B. Yang, C. Zhu and J.-E. Bäckvall, Highly selective olefin-assisted palladium-catalyzed oxidative carbocyclization via remote olefin insertion, *Chem. Sci.*, 2017, **8**, 616-620.
- 9. Z. Kuang, H. Chen, J. Yan, K. Yang, Y. Lan and Q. Song, Base-Catalyzed Borylation/B–O Elimination of Propynols and B2pin2 Delivering Tetrasubstituted Alkenylboronates, *Org. Lett.*, 2018, **20**, 5153-5157.
- 10. B. S. Chinta and B. Baire, Stereoselective, cascade synthesis of trans-enynones through coupling-isomerization reaction, *J. Org. Chem.*, 2015, **80**, 10208-10217.
- 11. M. Wang, Y. Yang, B. Song, L. Yin, S. Yan and Y. Li, Selective Insertion of Alkynes into C–C σ Bonds of Indolin-2-ones: Transition-Metal-Free Ring Expansion Reactions to Seven-Membered-Ring Benzolactams or Chromone Derivatives, *Org. Lett.*, 2019, **22**, 155-159.
- 12. V. K. Vyas, R. C. Knighton, B. M. Bhanage and M. Wills, Combining Electronic and Steric Effects To Generate Hindered Propargylic Alcohols in High Enantiomeric Excess, *Org. Lett.*, 2018, **20**, 975-978.
- 13. S. Singh, S. Nerella, S. Pabbaraja and G. Mehta, Access to 2-Alkyl/Aryl-4-(1 H)-Quinolones via Orthogonal "NH3" Insertion into o-Haloaryl Ynones: Total Synthesis of Bioactive Pseudanes, Graveoline, Graveolinine, and Waltherione F, *Org. Lett.*, 2020, **22**, 1575-1579.
- 14. F. Neese, Software update: the ORCA program system, version 4.0, *Wiley Interdisciplinary Reviews: Computational Molecular Science*, 2018, **8**, e1327.
- 15. Y.-S. Lin, G.-D. Li, S.-P. Mao and J.-D. Chai, Long-range corrected hybrid density functionals with improved dispersion corrections, *Journal of Chemical Theory and Computation*, 2013, **9**, 263-272.
- 16. F. Weigend and R. Ahlrichs, Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy, *Physical Chemistry Chemical Physics*, 2005, **7**, 3297-3305.