Supporting Information

for

Two Reaction Modes of 1-Sulfonyl-1,2,3-triazoles and Pyridinium 1,4Zwitterionic Thiolates: Catalyst-Free Synthesis of Pyrido[1,2-a]pyrazine
\section*{Derivatives and 1,4-Thiazine Derivatives}
Shengguo Duan, ${ }^{\text {a Cong Chen }}{ }^{a}$, Yidian Chen ${ }^{a}$, Yuchen Jie ${ }^{\text {a }}$, Huan Luo ${ }^{\text {a }}$, Ze-Feng Xu ${ }^{\text {a }}$, Bin Cheng ${ }^{\text {b }}$ and Chuan-Ying Li*a
${ }^{\text {a }}$ Department of Chemistry, Key Laboratory of Surface \& Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, China
E-mail: licy@zstu.edu.cn
${ }^{\mathrm{b}}$ Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China.

Table of Contents

1 General information S1
2 Preparation of pyridinium 1,4-zwitterionic thiolates S2
3 Preparation of triazoles 55
4 General procedure for synthesis of pyrido[1,2-a]pyrazine S7
5 The judging procedure of the major product for $\mathbf{3 k f}$ and the explanation S15
6 General procedure for synthesis of 1,4-thiazine S16
7 Large scale reaction and further transformation of 3aa and 5aa S19
8 References S21
9 Copies of NMR spectra S22
10 X-ray data for compound $\mathbf{3 h f}$ and $\mathbf{5 h a}$ S71

1 General information

All reactions were conducted in oven-dried glassware under an inert atmosphere of dry nitrogen unless otherwise noted. All commercial reagents were used without further purification unless otherwise noted. All solvents were freshly distilled prior to use in synthesis unless otherwise noted. Analytical thin layer chromatography (TLC) was performed using silica gel HSGF254 pre-coated plates. Flash column chromatography was performed using silica gel (200-300 mesh). ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra were measured on Brucker Avance IIDMX 400MHz spectrometers (400 MHz for ${ }^{1} \mathrm{H}$ NMR, 101 MHz for ${ }^{13} \mathrm{C}$ NMR). Chemical shifts are reported as δ values relative to internal tetramethylsilane (TMS: 0.00 ppm) or deuterated solvent (chloroform-d: $7.26 \mathrm{ppm}, 77.16 \mathrm{ppm}$; DMSO- $\mathrm{d}_{6}: 2.50 \mathrm{ppm}, 39.52 \mathrm{ppm}$; Acetone- $\mathrm{d}_{6}: 2.05 \mathrm{ppm}, 206.26 \mathrm{ppm}$; Methanol- d_{4} : $3.31 \mathrm{ppm}, 49.00 \mathrm{ppm})$. Abbreviations for signal couplings are as follows: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet and br, broad. Coupling constants (J) were taken from the spectra directly and are uncorrected. Melting points are uncorrected. High resolution mass spectra (HRMS) were recorded on a Waters TOFMS GCT Premier using ESI ionization.

2 Preparation of pyridinium 1,4-zwitterionic thiolates

All pyridinium 1,4-zwitterionic thiolates were synthesized according to known procedure. 1,2

Typical procedure (1a): ${ }^{1,2}$

To a solution of pyridine $(0.83 \mathrm{~mL}, 10.0 \mathrm{mmol})$ and $\mathrm{S}_{8}(321 \mathrm{mg}, 1.25 \mathrm{mmol})$ in $\mathrm{DCM}(50 \mathrm{~mL})$ was added dimethyl acetylenedicarboxylate $(1.2 \mathrm{~mL}, 10.0 \mathrm{mmol})$ dropwise at $0^{\circ} \mathrm{C}$. The mixture was stirred for 24 h at room temperature. Then, the mixture was filtered and the precipitate was washed with $\mathrm{Et}_{2} \mathrm{O}(2 \times 30 \mathrm{~mL})$ to afford pure product 1 a as a yellow powder.

The ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{1 a},{ }^{1} \mathbf{1 b},{ }^{1} \mathbf{1 c},{ }^{3} \mathbf{1 e},{ }^{1} \mathbf{1 g},{ }^{4} \mathbf{1 h},{ }^{5} \mathbf{1} \mathbf{i},{ }^{5} \mathbf{1 j},{ }^{1} \mathbf{1 m}{ }^{3}$ and $\mathbf{1 n}{ }^{3}$ were consistent with references.
The spectral data of compounds $\mathbf{1 d}, \mathbf{1 f}, \mathbf{1 k}, \mathbf{1 1}, \mathbf{1 0}$ and $\mathbf{1 p}$ were shown below.

1d
(Z)-1,4-Dibutoxy-1,4-dioxo-3-(pyridin-1-ium-1-yl)but-2-ene-2-thiolate (1d): yellow solid, m.p. $109-110{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.56(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 8.50-8.42(\mathrm{~m}, 1 \mathrm{H}), 8.08-7.99(\mathrm{~m}, 2 \mathrm{H}), 4.35-4.26(\mathrm{~m}, 2 \mathrm{H}), 4.16-4.07(\mathrm{~m}$, $2 \mathrm{H}), 1.83-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.52-1.42(\mathrm{~m}, 2 \mathrm{H}), 1.37-1.24(\mathrm{~m}, 2 \mathrm{H}), 1.01-0.93(\mathrm{~m}, 3 \mathrm{H}), 0.92-0.84$
(m, 3H) ; ${ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 178.78,169.29,160.06,148.08,144.92,127.29,125.33,65.64,64.82,30.54,30.37$, 19.02, 18.90, 13.68, 13.55 ; ESI-HRMS m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{NO}_{4} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+} 338.1421$, found 338.1429.

(Z)-1,4-Bis(benzyloxy)-1,4-dioxo-3-(pyridin-1-ium-1-yl)but-2-ene-2-thiolate (1f): yellow solid, m.p. $147-148{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.54-8.44(\mathrm{~m}, 2 \mathrm{H}), 8.28-8.18(\mathrm{~m}, 1 \mathrm{H}), 7.91-7.81(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.23(\mathrm{~m}, 10 \mathrm{H}), 5.07(\mathrm{~s}$, $2 \mathrm{H}), 5.03(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 179.53,168.89,160.13,148.31,144.79,135.72,135.69,128.65,128.58$, $128.48,128.45,128.19,127.27,125.38,67.46,67.09$ (one carbon missed); ESI-HRMS m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{NO}_{4} \mathrm{~S}^{+}[\mathrm{M}+$ $\mathrm{H}]^{+} 406.1108$, found 406.1115 .

1k
(Z)-1,4-Dimethoxy-3-(3-methylpyridin-1-ium-1-yl)-1,4-dioxobut-2-ene-2-thiolate (1k): yellow solid, m.p. $153-154{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.38-8.29(\mathrm{~m}, 2 \mathrm{H}), 7.87(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.85-7.78(\mathrm{~m}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H})$, $2.72(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 179.76,169.71,160.59,158.69,148.78,144.99,129.20,125.51,123.33,52.91$, 52.13, 20.02; ESI-HRMS m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{NO}_{4} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}$268.0638, found 268.0645.

1
(Z)-1,4-Dimethoxy-3-(2-methylpyridin-1-ium-1-yl)-1,4-dioxobut-2-ene-2-thiolate (11): yellow solid, m.p. $184-185{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.44-8.38(\mathrm{~m}, 2 \mathrm{H}), 8.20(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.90-7.84(\mathrm{~m}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H})$, $2.59(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 179.91,169.71,160.76,148.11,145.66,145.33,138.59,126.76,125.30,53.02$, 52.26, 18.78; ESI-HRMS m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{NO}_{4} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}$268.0638, found 268.0647.

(Z)-1-(4-bromophenyl)-4-methoxy-3-(4-(2-methyl-1,3-dioxolan-2-yl)pyridin-1-ium-1-yl)-1,4-dioxobut-2-ene-2-thiolate (11): yellow solid, m.p. $119-120{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.73-8.67(\mathrm{~m}, 2 \mathrm{H}), 8.07-8.01(\mathrm{~m}, 2 \mathrm{H}), 7.96-7.90$ $(\mathrm{m}, 2 \mathrm{H}), 7.61-7.54(\mathrm{~m}, 2 \mathrm{H}), 4.22-4.11(\mathrm{~m}, 2 \mathrm{H}), 3.93-3.82(\mathrm{~m}, 2 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 190.75,187.13,162.24,161.07,148.22,134.44,131.70,131.15,127.53,125.44,123.88,107.21,65.60,51.93$, 26.94 (one carbon missed); ESI-HRMS m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{BrNO}_{5} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+} 464.0162$, found 464.0168 .

1p
(Z)-4-methoxy-1-(naphthalen-2-yl)-1,4-dioxo-3-(pyridin-1-ium-1-yl)but-2-ene-2-thiolate (11): yellow solid, m.p. 179$180{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6) $\delta 18.98(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}$), 18.53 - 18.46 (m, 1H), 18.38 ($\mathrm{s}, 1 \mathrm{H}$), $18.09-18.02$ $(\mathrm{m}, 2 \mathrm{H}), 17.98-17.93(\mathrm{~m}, 1 \mathrm{H}), 17.89-17.84(\mathrm{~m}, 1 \mathrm{H}), 17.83-17.77(\mathrm{~m}, 2 \mathrm{H}), 17.49-17.38(\mathrm{~m}, 2 \mathrm{H}), 13.20(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO-d6) $\delta 190.80,186.00,160.30,148.84,145.97,134.78,132.97,132.23,130.41,129.46,128.09$, 127.82, 127.69, 127.62, 126.53, 125.33, 125.01, 51.16; ESI-HRMS m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{NO}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+} 350.0845$, found 350.0845 .

3 Preparation of triazoles

All triazoles were synthesized according to known procedure. ${ }^{6-10}$

Typical procedure (2a): ${ }^{6-10}$

To a stirring solution of ethyl ethynyl ether (2.0 mmol) in toluene (10 mL), copper(I) thiophene-2-carboxylate (19 mg , 0.10 mmol) was added at room temperature. After stirring for 2-4 minutes, a solution of tosyl azide (1.2 equiv) in ethyl acetate was added dropwise to the resulting mixture. The reaction media was then stirred at room temperature for 12 hrs . Once the starting alkyne had been completely consumed as judged by TLC analysis, the mixture was concentrated under reduced pressure, and filtered through a short plug of silica to remove copper catalyst (ethyl acetate as eluent). After removal of solvent under reduced pressure, an off-white solid was triturated with ether (x3) to afford the desired triazole.

The ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{2 a},{ }^{\mathbf{6}} \mathbf{2 b},{ }^{\mathbf{6}} \mathbf{2 h},{ }^{\mathbf{7}} \mathbf{4 a},{ }^{8} \mathbf{4} \mathbf{b}^{9}$ and $\mathbf{4} \mathbf{c}^{10}$ were consistent with references.
The spectral data of compounds $\mathbf{2 c}, \mathbf{2 d}, \mathbf{2 e}, \mathbf{2 f}, \mathbf{2 g}$ and $\mathbf{2 i}$ were shown below.

2c
4-Ethoxy-1-(phenylsulfonyl)-1 $\mathrm{H}-1,2,3$-triazole (2c): white solid, m.p. $69-70{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.11-$ $8.03(\mathrm{~m}, 2 \mathrm{H}), 7.70(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{~s}, 1 \mathrm{H}), 4.23(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.38(\mathrm{t}, J=7.1 \mathrm{~Hz}$, 3 H); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.30,136.19,135.68,129.88,128.59,105.04,67.21,14.71$; ESI-HRMS m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+} 254.0594$, found 254.0598.

4-Ethoxy-1-((4-fluorophenyl)sulfonyl)-1 $\mathrm{H}-1,2,3$-triazole (2d): white solid, m.p. $86-87^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 8.18-8.10(\mathrm{~m}, 2 \mathrm{H}), 7.55(\mathrm{~s}, 1 \mathrm{H}), 7.33-7.24(\mathrm{~m}, 2 \mathrm{H}), 4.26(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.40(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.91(\mathrm{~d}, J=261.2 \mathrm{~Hz}), 160.31,132.04(\mathrm{~d}, J=3.1 \mathrm{~Hz}), 131.80(\mathrm{~d}, J=10.2 \mathrm{~Hz}), 117.42(\mathrm{~d}, J=23.2 \mathrm{~Hz})$,
104.95, 67.23, 14.69; ESI-HRMS m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{FN}_{3} \mathrm{O}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+} 272.0500$, found 272.0502 .

2e
1-((4-Chlorophenyl)sulfonyl)-4-ethoxy-1H-1,2,3-triazole (2e): white solid, m.p. $92-93{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) $\delta 8.06-8.01(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.53(\mathrm{~s}, 1 \mathrm{H}), 4.26(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.40(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 160.32,142.75,134.50,130.27,130.04,104.97,67.24,14.72$; ESI-HRMS m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClN}_{3} \mathrm{O}_{3} \mathrm{~S}^{+}$ $[\mathrm{M}+\mathrm{H}]^{+}$288.0204, found 288.0207.

2f
1-((4-Bromophenyl)sulfonyl)-4-ethoxy-1H-1,2,3-triazole (2f): white solid, m.p. $93-94{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.99-7.92(\mathrm{~m}, 2 \mathrm{H}), 7.78-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.54(\mathrm{~s}, 1 \mathrm{H}), 4.34-4.18(\mathrm{~m}, 2 \mathrm{H}), 1.47-1.34(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 160.35,135.05,133.29,131.49,130.00,104.99,67.27,14.76$; ESI-HRMS m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrN}_{3} \mathrm{O}_{3} \mathrm{~S}^{+}[\mathrm{M}+$ $H]^{+} 331.9699$, found 331.9706 .

$2 g$

4-Ethoxy-1-(naphthalen-2-ylsulfonyl)-1 H-1,2,3-triazole (2g): white solid, m.p. $70-71{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.70(\mathrm{~s}, 1 \mathrm{H}), 8.04-7.94(\mathrm{~m}, 3 \mathrm{H}), 7.94-7.88(\mathrm{~m}, 1 \mathrm{H}), 7.75-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.62-7.56(\mathrm{~m}, 1 \mathrm{H}), 4.29-4.19(\mathrm{~m}, 2 \mathrm{H}), 1.43$ $-1.33(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 160.29,136.06,132.81,131.96,131.20,130.58,130.36,129.87,128.40$, 128.20, 122.26, 105.09, 67.18, 14.74; ESI-HRMS m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+} 304.0750$, found 304.0752.

2i
4-(Mesityloxy)-1-tosyl-1 $\mathrm{H}-1,2,3$-triazole (2i): white solid, m.p. $130-131{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.96-7.90$ $(\mathrm{m}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~s}, 1 \mathrm{H}), 6.88(\mathrm{~s}, 2 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 2.09(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , Acetone-d6) $\delta 160.70,150.72,148.75,136.32,134.03,131.62,130.71,129.39,107.44,21.79,20.85,16.19$ (one carbon missed); ESI-HRMS m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+} 358.1220$, found 358.1220.

Typical procedure (3aa):

The mixture of $\mathbf{1 a}(50.7 \mathrm{mg}, 0.20 \mathrm{mmol})$ and $\mathbf{2 a}(106.9 \mathrm{mg}, 0.40 \mathrm{mmol})$ in anhydrous DME $(4 \mathrm{~mL})$ was stirred at $80^{\circ} \mathrm{C}$ under N_{2} for 2 hrs . After completed, the solvent was evaporated in vacuo and the residual was purified by silica gel column chromatography ($\mathrm{PE}: \mathrm{EA}=6: 1$ to $4: 1$) to give the desired product $\mathbf{3 a a}(68.9 \mathrm{mg}, 70 \%$ yield) as yellow thick oil.

3aa
Dimethyl cis-1-(ethoxycarbonothioyl)-2-tosyl-1,9a-dihydro-2H-pyrido[1,2-a]pyrazine-3,4-dicarboxylate (3aa): The reaction time was 2 hrs . Yellow thick oil; $68.9 \mathrm{mg}, 70 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.84-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J$ $=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.02(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.91-5.84(\mathrm{~m}, 1 \mathrm{H}), 5.41-5.35(\mathrm{~m}, 1 \mathrm{H}), 4.91-4.82(\mathrm{~m}, 2 \mathrm{H}), 4.40-4.28(\mathrm{~m}, 2 \mathrm{H})$, $4.08-4.03(\mathrm{~m}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 209.32$, $165.25,163.59,145.00,134.05,130.13,130.01,128.34,127.38,122.30,116.78,107.97,100.46,69.11,61.87,57.42,53.34$, 52.55, 21.85, 13.34; ESI-HRMS m/z calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{~S}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 493.1098$, found 493.1104 .

3ab
Dimethyl cis-1-(ethoxycarbonothioyl)-2-((4-methoxyphenyl)sulfonyl)-1,9a-dihydro-2H-pyrido[1,2-a]pyrazine-3,4dicarboxylate (3ab): The reaction time was 4 hrs. Yellow thick oil; $64.1 \mathrm{mg}, 63 \%$ yield; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.92$ $-7.84(\mathrm{~m}, 2 \mathrm{H}), 7.03-6.96(\mathrm{~m}, 2 \mathrm{H}), 6.03(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.92-5.85(\mathrm{~m}, 1 \mathrm{H}), 5.42-5.36(\mathrm{~m}, 1 \mathrm{H}), 4.90-4.84(\mathrm{~m}, 1 \mathrm{H})$, $4.82(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.41-4.28(\mathrm{~m}, 2 \mathrm{H}), 4.11-4.05(\mathrm{~m}, 1 \mathrm{H}), 3.89-3.87(\mathrm{~m}, 6 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 209.44,165.32,163.90,163.62,130.67,130.01,128.36,127.44,122.33,116.80$, $114.56,108.11,100.42,69.09,61.91,57.41,55.81,53.30,52.55,13.33$; ESI-HRMS m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{~S}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$ 509.1047, found 509.1057.

Dimethyl cis-1-(ethoxycarbonothioyl)-2-(phenylsulfonyl)-1,9a-dihydro-2H-pyrido[1,2-a]pyrazine-3,4-dicarboxylate (3ac): The reaction time was 1.5 hrs . Yellow thick oil; $65.1 \mathrm{mg}, 68 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.00-7.94$ (m, $2 \mathrm{H}), 7.67-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.59-7.52(\mathrm{~m}, 2 \mathrm{H}), 6.03(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.92-5.84(\mathrm{~m}, 1 \mathrm{H}), 5.43-5.36(\mathrm{~m}, 1 \mathrm{H}), 4.92-$ $4.85(\mathrm{~m}, 2 \mathrm{H}), 4.39-4.29(\mathrm{~m}, 2 \mathrm{H}), 4.18-4.11(\mathrm{~m}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 209.26,165.14,163.57,137.31,133.90,130.53,129.34,128.31,127.30,122.34,116.78,107.42,100.70$, 69.14, 61.76, 57.63, 53.35, 52.52, 13.34; ESI-HRMS m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{~S}_{2}^{+}[\mathrm{M}+\mathrm{H}]^{+} 479.0941$, found 479.0944 .

3ad
Dimethyl cis-1-(ethoxycarbonothioyl)-2-((4-fluorophenyl)sulfonyl)-1,9a-dihydro-2H-pyrido[1,2-a]pyrazine-3,4dicarboxylate (3ad): The reaction time was 1 h . Yellow thick oil; $65.5 \mathrm{mg}, 66 \%$ yield; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.08-$ $8.00(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.17(\mathrm{~m}, 2 \mathrm{H}), 6.05(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.94-5.87(\mathrm{~m}, 1 \mathrm{H}), 5.47-5.41(\mathrm{~m}, 1 \mathrm{H}), 4.95-4.90(\mathrm{~m}, 1 \mathrm{H})$, $4.86(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.39-4.30(\mathrm{~m}, 3 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 209.28,165.81(\mathrm{~d}, J=257.7 \mathrm{~Hz}), 165.01,163.54,133.78(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 131.29(\mathrm{~d}, J=9.6 \mathrm{~Hz}), 131.00,127.23$, $122.42,116.85,116.60(\mathrm{~d}, J=22.8 \mathrm{~Hz}), 106.70,101.00,69.24,61.64,57.97,53.36,52.52,13.35$; ESI-HRMS m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{FN}_{2} \mathrm{O}_{7} \mathrm{~S}_{2}^{+}[\mathrm{M}+\mathrm{H}]^{+} 497.0847$, found 497.0854 .

3ae
Dimethyl cis-2-((4-chlorophenyl)sulfonyl)-1-(ethoxycarbonothioyl)-1,9a-dihydro-2H-pyrido[1,2-a]pyrazine-3,4dicarboxylate (3ae): The reaction time was 30 min . Yellow thick oil; $69.8 \mathrm{mg}, 68 \%$ yield; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.98-7.92(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.48(\mathrm{~m}, 2 \mathrm{H}), 6.05(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.95-5.88(\mathrm{~m}, 1 \mathrm{H}), 5.48-5.42(\mathrm{~m}, 1 \mathrm{H}), 4.96-4.90(\mathrm{~m}$, $1 \mathrm{H}), 4.89(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.41-4.31(\mathrm{~m}, 3 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 209.19,164.95,163.52,140.49,136.42,131.12,129.78,129.58,127.20,122.42,116.88,106.59,101.07,69.28$, $61.63,58.11,53.39,52.52,13.35$; ESI-HRMS m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{ClN}_{2} \mathrm{O}_{7} \mathrm{~S}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 513.0551$, found 513.0559.

3af
Dimethyl cis-2-((4-bromophenyl)sulfonyl)-1-(ethoxycarbonothioyl)-1,9a-dihydro-2H-pyrido[1,2-a]pyrazine-3,4dicarboxylate (3af): The reaction time was 30 min . Yellow thick oil; $74.7 \mathrm{mg}, 67 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.92-7.84(\mathrm{~m}, 2 \mathrm{H}), 7.71-7.65(\mathrm{~m}, 2 \mathrm{H}), 6.05(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.95-5.86(\mathrm{~m}, 1 \mathrm{H}), 5.49-5.41(\mathrm{~m}, 1 \mathrm{H}), 4.97-4.91(\mathrm{~m}$, $1 \mathrm{H}), 4.89(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.41-4.31(\mathrm{~m}, 3 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 209.09,164.87,163.44,136.88,132.51,131.11,129.74,129.03,127.10,122.35,116.82,106.44,101.04,69.23$, 61.52, 58.05, 53.35, 52.46, 13.31; ESI-HRMS m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{BrN}_{2} \mathrm{O}_{7} \mathrm{~S}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 557.0046$, found 557.0045.

3ag
Dimethyl cis-1-(ethoxycarbonothioyl)-2-(naphthalen-2-ylsulfonyl)-1,9a-dihydro-2H-pyrido[1,2-a]pyrazine-3,4-
dicarboxylate (3ag): The reaction time was 2 hrs . Yellow thick oil; $72.9 \mathrm{mg}, 69 \%$ yield; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.52$ (s, 1H), $8.03-7.95(\mathrm{~m}, 3 \mathrm{H}), 7.92(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.72-7.59(\mathrm{~m}, 2 \mathrm{H}), 6.03(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.90-5.81(\mathrm{~m}, 1 \mathrm{H})$, $5.43-5.35(\mathrm{~m}, 1 \mathrm{H}), 5.01-4.94(\mathrm{~m}, 1 \mathrm{H}), 4.87(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.37-4.26(\mathrm{~m}, 2 \mathrm{H}), 4.26-4.19(\mathrm{~m}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H})$, $3.81(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 209.27,165.21,163.60,135.32$, 134.27, 132.02, $130.54,130.11,129.71,129.57,129.52,128.12,127.87,127.30,122.99,122.30,116.83,107.46,100.68,69.13,61.79$, 57.80, 53.37, 52.53, 13.30; ESI-HRMS m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{~S}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 529.1098$, found 529.1107.

3ah
Dimethyl cis-1-(ethoxycarbonothioyl)-2-(methylsulfonyl)-1,9a-dihydro-2H-pyrido[1,2-a]pyrazine-3,4-dicarboxylate (3ah): The reaction time was 1.5 hrs . Yellow thick oil; $53.3 \mathrm{mg}, 64 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.04$ (d, $J=7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 5.96-5.89(\mathrm{~m}, 1 \mathrm{H}), 5.57-5.50(\mathrm{~m}, 1 \mathrm{H}), 5.23-5.18(\mathrm{~m}, 1 \mathrm{H}), 4.98-4.92(\mathrm{~m}, 1 \mathrm{H}), 4.63-4.58(\mathrm{~m}, 1 \mathrm{H}), 4.46(\mathrm{q}, J$ $=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.27(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 210.68$, $164.58,163.60,130.48,127.25,122.29,117.10,107.01,101.08,69.45,61.47,59.43,53.29,52.46,42.66,13.43$; ESIHRMS m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{~S}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$417.0785, found 417.0799.

3ai
Dimethyl cis-1-((mesityloxy)carbonothioyl)-2-tosyl-1,9a-dihydro-2H-pyrido[1,2-a]pyrazine-3,4-dicarboxylate (3ai): The reaction time was 4.5 hrs . Yellow thick oil; $42.0 \mathrm{mg}, 36 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.95-7.88(\mathrm{~m}, 2 \mathrm{H}), 7.34(\mathrm{~d}$, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.84-6.76(\mathrm{~m}, 2 \mathrm{H}), 6.16(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.00-5.91(\mathrm{~m}, 1 \mathrm{H}), 5.62-5.54(\mathrm{~m}, 1 \mathrm{H}), 5.17(\mathrm{~d}, J=4.3 \mathrm{~Hz}$, $1 \mathrm{H}), 5.06-4.99(\mathrm{~m}, 1 \mathrm{H}), 4.55-4.47(\mathrm{~m}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 1.84(\mathrm{~s}, 3 \mathrm{H}), 1.79(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 208.32,165.10,163.58,149.29,145.08,136.02,134.32,131.53,129.91,129.84$, $129.45,129.32,129.21,128.54,126.63,122.49,116.88,105.31,101.28,61.34,57.67,53.39,52.30,21.82,20.90,16.25$, 15.86; ESI-HRMS m / z calcd for $\mathrm{C}_{29} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{~S}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$583.1567, found 583.1578.

Diethyl
cis-2-((4-bromophenyl)sulfonyl)-1-(ethoxycarbonothioyl)-1,9a-dihydro-2H-pyrido[1,2-a]pyrazine-3,4dicarboxylate (3bf): The reaction time was 30 min . Yellow thick oil; $79.6 \mathrm{mg}, 68 \%$ yield; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.94-7.87(\mathrm{~m}, 2 \mathrm{H}), 7.70-7.64(\mathrm{~m}, 2 \mathrm{H}), 6.07(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.95-5.87(\mathrm{~m}, 1 \mathrm{H}), 5.49-5.41(\mathrm{~m}, 1 \mathrm{H}), 4.96-4.88(\mathrm{~m}$, $1 \mathrm{H}), 4.87(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.43-4.26(\mathrm{~m}, 6 \mathrm{H}), 4.22-4.12(\mathrm{~m}, 1 \mathrm{H}), 1.36(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.32-1.24(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 209.10,164.37,162.95,136.84,132.45,131.00,129.80,128.97,127.03,122.32,116.76,106.61$, $100.73,69.21,62.58,61.64,61.53,57.96,14.09,13.88,13.29$; ESI-HRMS m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{BrN}_{2} \mathrm{O}_{7} \mathrm{~S}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$ 585.0359, found 585.0365.

Diisopropyl cis-2-((4-bromophenyl)sulfonyl)-1-(ethoxycarbonothioyl)-1,9a-dihydro-2H-pyrido[1,2-a]pyrazine-3,4dicarboxylate (3cf): The reaction time was 10 min . Yellow thick oil; $85.9 \mathrm{mg}, 70 \%$ yield; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.94-7.89(\mathrm{~m}, 2 \mathrm{H}), 7.67(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.06(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.95-5.86(\mathrm{~m}, 1 \mathrm{H}), 5.46-5.40(\mathrm{~m}, 1 \mathrm{H}), 5.27-$ $5.09(\mathrm{~m}, 2 \mathrm{H}), 4.93-4.87(\mathrm{~m}, 1 \mathrm{H}), 4.81(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.42-4.26(\mathrm{~m}, 3 \mathrm{H}), 1.39-1.25(\mathrm{~m}, 15 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 209.22,163.92,162.46,136.89,132.47,131.26,129.90,128.97,126.91,122.35,116.81,106.55,100.57,70.60$, 69.32 , $69.25,61.79,57.82,22.11,21.84,21.42,21.35,13.39$; ESI-HRMS m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{BrN}_{2} \mathrm{O}_{7} \mathrm{~S}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$ 613.0672, found 613.0683.

Dibutyl cis-2-((4-bromophenyl)sulfonyl)-1-(ethoxycarbonothioyl)-1,9a-dihydro-2H-pyrido[1,2-a]pyrazine-3,4dicarboxylate (3df): The reaction time was 10 min . Yellow thick oil; $70.6 \mathrm{mg}, 55 \%$ yield; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.92-7.86(\mathrm{~m}, 2 \mathrm{H}), 7.70-7.64(\mathrm{~m}, 2 \mathrm{H}), 6.06(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.94-5.87(\mathrm{~m}, 1 \mathrm{H}), 5.48-5.40(\mathrm{~m}, 1 \mathrm{H}), 4.94-4.88(\mathrm{~m}$, $1 \mathrm{H}), 4.86(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.42-4.27(\mathrm{~m}, 5 \mathrm{H}), 4.26-4.17(\mathrm{~m}, 1 \mathrm{H}), 4.08-3.99(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.58(\mathrm{~m}, 4 \mathrm{H}), 1.48-$ $1.34(\mathrm{~m}, 4 \mathrm{H}), 1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.00-0.90(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 209.16,164.50,163.10,136.89$, $132.46,131.02,129.81,128.98,127.11,122.36,116.78,106.72,100.70,69.19,66.54,65.50,61.68,57.96,30.54,30.27$, 19.19, 19.16, 13.78, 13.31 (one carbon missed); ESI-HRMS m/z calcd for $\mathrm{C}_{27} \mathrm{H}_{34} \mathrm{BrN}_{2} \mathrm{O}_{7} \mathrm{~S}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 641.0985$, found 641.0981.

3ef
Di-tert-butyl cis-2-((4-bromophenyl)sulfonyl)-1-(ethoxycarbonothioyl)-1,9a-dihydro-2H-pyrido[1,2-a]pyrazine-3,4dicarboxylate (3ef): The reaction time was 20 min . Yellow thick oil; $82.1 \mathrm{mg}, 64 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.86-7.81(\mathrm{~m}, 2 \mathrm{H}), 7.69-7.63(\mathrm{~m}, 2 \mathrm{H}), 6.10(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.92-5.84(\mathrm{~m}, 1 \mathrm{H}), 5.40-5.32(\mathrm{~m}, 1 \mathrm{H}), 4.89-4.82(\mathrm{~m}$, $1 \mathrm{H}), 4.73(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.51-4.38(\mathrm{~m}, 1 \mathrm{H}), 4.38-4.26(\mathrm{~m}, 1 \mathrm{H}), 4.19-4.13(\mathrm{~m}, 1 \mathrm{H}), 1.57(\mathrm{~s}, 9 \mathrm{H}), 1.52(\mathrm{~s}, 9 \mathrm{H}), 1.33$ ($\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 209.31,163.79,162.04,136.47,132.55,131.63,129.85,128.97$, 126.96, $122.39,116.54,107.13,99.97,83.97,82.07,69.05,61.76,57.12,28.17,27.88,13.55$; ESI-HRMS m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{34} \mathrm{BrN}_{2} \mathrm{O}_{7} \mathrm{~S}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 641.0985$, found 641.0977 .

3ff
Dibenzyl
cis-2-((4-bromophenyl)sulfonyl)-1-(ethoxycarbonothioyl)-1,9a-dihydro-2H-pyrido[1,2-a]pyrazine-3,4dicarboxylate (3ff): The reaction time was 30 min . Yellow thick oil; $76.6 \mathrm{mg}, 54 \%$ yield; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$
$7.81-7.75(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.28(\mathrm{~m}, 10 \mathrm{H}), 5.95(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.91-5.84(\mathrm{~m}, 1 \mathrm{H}), 5.48-5.42$ $(\mathrm{m}, 1 \mathrm{H}), 5.25(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~s}, 2 \mathrm{H}), 5.03(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.88-4.82(\mathrm{~m}, 1 \mathrm{H}), 4.81(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H})$, $4.53-4.45(\mathrm{~m}, 1 \mathrm{H}), 4.32-4.20(\mathrm{~m}, 2 \mathrm{H}), 1.11(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 209.09,164.36,162.78$, $136.81,135.40,134.53,132.35,131.72,129.84,128.93,128.87,128.80,128.71,128.61,128.47,126.82,122.24,117.05$, $105.62,101.20,69.27,68.39,67.58,61.51,58.19,13.25$ (one carbon missed); ESI-HRMS m / z calcd for $\mathrm{C}_{33} \mathrm{H}_{30} \mathrm{BrN}_{2} \mathrm{O}_{7} \mathrm{~S}_{2}{ }^{+}$ $[\mathrm{M}+\mathrm{H}]^{+} 709.0672$, found 709.0670

Methyl cis-3-benzoyl-2-((4-bromophenyl)sulfonyl)-1-(ethoxycarbonothioyl)-1,9a-dihydro-2H-pyrido[1,2-a]pyrazine-4carboxylate ($\mathbf{3 g f}$): The reaction time was 30 min . Yellow thick oil; $51.9 \mathrm{mg}, 43 \%$ yield; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.01$ $-7.94(\mathrm{~m}, 2 \mathrm{H}), 7.66-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.47-7.38(\mathrm{~m}, 2 \mathrm{H}), 6.09(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.00-5.91(\mathrm{~m}, 1 \mathrm{H})$, $5.43-5.35(\mathrm{~m}, 1 \mathrm{H}), 4.95(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.90-4.82(\mathrm{~m}, 1 \mathrm{H}), 4.51-4.38(\mathrm{~m}, 2 \mathrm{H}), 3.96(\mathrm{~s}, 1 \mathrm{H}), 3.54(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{t}, J$ $=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 209.10,190.08,163.41,138.39,135.20,132.73,132.41,129.77,129.48$, $129.35,128.41,128.30,123.09,118.37,116.06,99.70,69.36,63.69,57.32,53.13,13.50$ (one carbon missed); ESI-HRMS m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{BrN}_{2} \mathrm{O}_{6} \mathrm{~S}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$603.0254, found 603.0250.

Methyl cis-3-(4-bromobenzoyl)-2-((4-bromophenyl)sulfonyl)-1-(ethoxycarbonothioyl)-1,9a-dihydro-2H-pyrido[1,2-a]pyrazine-4-carboxylate (3hf): The reaction time was 25 min . Orange red solid, m.p. $70-71{ }^{\circ} \mathrm{C} ; 73.7 \mathrm{mg}, 54 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.89(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.60-7.48(\mathrm{~m}, 4 \mathrm{H}), 6.08(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $6.00-5.91(\mathrm{~m}, 1 \mathrm{H}), 5.40-5.30(\mathrm{~m}, 1 \mathrm{H}), 4.98-4.91(\mathrm{~m}, 1 \mathrm{H}), 4.91-4.82(\mathrm{~m}, 1 \mathrm{H}), 4.53-4.39(\mathrm{~m}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 1 \mathrm{H}), 3.60$ ($\mathrm{s}, 3 \mathrm{H}$), $1.32(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 208.91,188.97,163.27,137.23,134.74,132.90,131.58$, $130.84,129.69,129.64,128.61,128.30,127.42,123.10,118.25,116.02,99.91,69.37,63.73,57.06,53.25,13.55$; ESIHRMS m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 680.9359$, found 680.9343 .

Methyl cis-2-((4-bromophenyl)sulfonyl)-1-(ethoxycarbonothioyl)-3-(4-methoxybenzoyl)-1,9a-dihydro-2H-pyrido[1,2-a]pyrazine-4-carboxylate (3if): The reaction time was 2 hrs . Yellow thick oil; $71.0 \mathrm{mg}, 56 \%$ yield; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.03-7.96(\mathrm{~m}, 2 \mathrm{H}), 7.67-7.58(\mathrm{~m}, 4 \mathrm{H}), 6.93-6.87(\mathrm{~m}, 2 \mathrm{H}), 6.10-6.03(\mathrm{~m}, 1 \mathrm{H}), 5.99-5.91(\mathrm{~m}, 1 \mathrm{H}), 5.40-$ $5.33(\mathrm{~m}, 1 \mathrm{H}), 5.00(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.85-4.78(\mathrm{~m}, 1 \mathrm{H}), 4.51-4.37(\mathrm{~m}, 2 \mathrm{H}), 3.90-3.83(\mathrm{~m}, 4 \mathrm{H}), 3.54(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{t}, J$ $=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 209.26,188.75,163.50,163.17,135.46,132.73,131.59,131.33,129.75$, $129.38,128.74,127.33,123.19,119.51,115.86,113.60,99.24,69.33,64.14,57.44,55.59,53.07,13.53 ;$ ESI-HRMS m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{BrN}_{2} \mathrm{O}_{7} \mathrm{~S}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 633.0359$, found 633.0336 .

Dimethyl cis-2-((4-bromophenyl)sulfonyl)-1-(ethoxycarbonothioyl)-8-methyl-1,9a-dihydro-2H-pyrido[1,2-a]pyrazine-3,4-dicarboxylate ($\mathbf{3 j f}$): The reaction time was 30 min . Yellow thick oil; $40.0 \mathrm{mg}, 35 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.90-7.82(\mathrm{~m}, 2 \mathrm{H}), 7.70-7.63(\mathrm{~m}, 2 \mathrm{H}), 6.01(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.18-5.11(\mathrm{~m}, 1 \mathrm{H}), 4.85(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{dd}, J$ $=7.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.40-4.27(\mathrm{~m}, 2 \mathrm{H}), 4.27-4.22(\mathrm{~m}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 209.47,165.01,163.58,137.05,132.56,130.85,130.73,129.79,129.03,126.87,111.95$, 107.07, 104.69, 69.07, 61.96, 58.22, 53.35, 52.51, 20.88, 13.34; ESI-HRMS m/z calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{BrN}_{2} \mathrm{O}_{7} \mathrm{~S}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$ 571.0203 , found 571.0200 .

3kf1

3kf2

Dimethyl cis-2-((4-bromophenyl)sulfonyl)-1-(ethoxycarbonothioyl)-7-methyl-1,9a-dihydro-2H-pyrido[1,2-a]pyrazine-3,4-dicarboxylate($\mathbf{3 k f 1}$), and Dimethyl cis-2-((4-bromophenyl)sulfonyl)-1-(ethoxycarbonothioyl)-9-methyl-1,9a-dihydro-2H-pyrido[1,2-a]pyrazine-3,4-dicarboxylate (3kf2): The reaction time was 30 min . Yellow thick oil; 42.3 mg , 37% yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$; major product) $\delta 7.88-7.83(\mathrm{~m}, 2 \mathrm{H}), 7.72-7.67(\mathrm{~m}, 2 \mathrm{H}), 5.89(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.76-$ $5.70(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{dd}, J=7.4,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.35-4.29(\mathrm{~m}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}$, $3 \mathrm{H}), 3.80-3.76(\mathrm{~m}, 1 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H}), 1.30-1.24(\mathrm{~m}, 3 \mathrm{H})$; ESI-HRMS m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{BrN}_{2} \mathrm{O}_{7} \mathrm{~S}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 571.0203$, found 571.0204. The major product was $\mathbf{3 k f} \mathbf{2}$. For the judging procedure and the explanation, see Page S15.

3mf
Dimethyl cis-2-((4-bromophenyl)sulfonyl)-8-(1,3-dioxolan-2-yl)-1-(ethoxycarbonothioyl)-1,9a-dihydro-2H-pyrido[1,2-a]pyrazine-3,4-dicarboxylate ($\mathbf{3 m f}$): The reaction time was 30 min . Yellow thick oil; $78.1 \mathrm{mg}, 62 \%$ yield; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.88-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.69-7.54(\mathrm{~m}, 2 \mathrm{H}), 6.09-5.98(\mathrm{~m}, 1 \mathrm{H}), 5.60-5.50(\mathrm{~m}, 1 \mathrm{H}), 5.21-5.13(\mathrm{~m}, 1 \mathrm{H})$, $5.01-4.90(\mathrm{~m}, 1 \mathrm{H}), 4.89-4.79(\mathrm{~m}, 1 \mathrm{H}), 4.34-4.21(\mathrm{~m}, 3 \mathrm{H}), 3.98-3.78(\mathrm{~m}, 7 \mathrm{H}), 3.78-3.68(\mathrm{~m}, 3 \mathrm{H}), 1.27-1.12(\mathrm{~m}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 208.76,164.83,163.33,136.69,132.59,132.25,130.63,129.75,129.16,128.01$, 114.97, 107.25, 102.26, 98.83, 69.33, 65.33, 65.09, 61.68, 57.85, 53.40, 52.56, 13.26; ESI-HRMS m/z calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{BrN}_{2} \mathrm{O}_{9} \mathrm{~S}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 629.0258$, found 629.0269.

Dimethyl cis-2-((4-bromophenyl)sulfonyl)-1-(ethoxycarbonothioyl)-8-(2-methyl-1,3-dioxolan-2-yl)-1,9a-dihydro-2H-pyrido[1,2-a]pyrazine-3,4-dicarboxylate (3nf): The reaction time was 30 min . Yellow thick oil; $104.3 \mathrm{mg}, 81 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.85(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.08(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.61-5.55(\mathrm{~m}, 1 \mathrm{H})$, $4.98(\mathrm{dd}, J=7.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.35-4.25(\mathrm{~m}, 3 \mathrm{H}), 3.97-3.91(\mathrm{~m}, 2 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.87-3.82$ $(\mathrm{m}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.73-3.66(\mathrm{~m}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 209.40$, $164.89,163.45,136.66,135.93,132.64,130.38,129.79,129.19,127.80,111.73,107.39,107.29,99.70,69.37,64.79,64.45$, 61.96, 57.99, 53.42, 52.59, 24.50, 13.29; ESI-HRMS m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{BrN}_{2} \mathrm{O}_{9} \mathrm{~S}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 643.0414$, found 643.0413 .

Methyl cis-3-(4-bromobenzoyl)-2-((4-bromophenyl)sulfonyl)-1-(ethoxycarbonothioyl)-8-(2-methyl-1,3-dioxolan-2-yl)-1,9a-dihydro-2H-pyrido[1,2-a]pyrazine-4-carboxylate (3of): The reaction time was 2 hrs. Red solid, m.p. $63-64{ }^{\circ} \mathrm{C} ; 83.0$ $\mathrm{mg}, 54 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.90-7.83(\mathrm{~m}, 2 \mathrm{H}), 7.70-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.60-7.49(\mathrm{~m}, 4 \mathrm{H}), 6.15-6.08$ $(\mathrm{m}, 1 \mathrm{H}), 5.52-5.45(\mathrm{~m}, 1 \mathrm{H}), 5.01(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{dd}, J=7.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.50-4.35(\mathrm{~m}, 2 \mathrm{H}), 3.98-3.83(\mathrm{~m}$, $3 \mathrm{H}), 3.75-3.66(\mathrm{~m}, 2 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ; 13 \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 209.36$, $188.90,163.26,137.21,136.86,134.70,133.00,131.64,130.78,129.78,129.67,128.84,128.10,127.50,118.89,110.85$, $107.36,98.85,69.61,64.88,64.48,64.17,56.94,53.25,24.66,13.54$; ESI-HRMS m / z calcd for $\mathrm{C}_{30} \mathrm{H}_{29} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{~S}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$ 766.9727 , found 766.9724 .

5 The judging procedure of the major product for 3 kf and the explanation
As shown in the local enlarged ${ }^{1} \mathrm{H}$ NMR spectrum of the mixture $\mathbf{3 k f}$, the major isomer $\mathrm{H}_{\mathrm{A}}(\mathrm{d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$), $\mathrm{H}_{\mathrm{B}}(\mathrm{d}, J$ $=6.0 \mathrm{~Hz}, 1 \mathrm{H})$, and $\mathrm{H}_{\mathrm{C}}(\mathrm{dd}, J=7.2,6.4 \mathrm{~Hz}, 1 \mathrm{H})$ belong to the same spin-coupling system. It's obvious that this spincoupling system was corresponding to the $\operatorname{sp} 2(\mathrm{C}-\mathrm{H})$ of $\mathbf{3 k f} \mathbf{2}$. On the other hand, the H_{1} of $\mathbf{3 k f} \mathbf{1}$ should be a single peak and this peak pattern was corresponding to the minor isomer.

As shown in the proposed mechanism in main text, the intermediate $\mathbf{F} 1$ determined the structures of the final products. For product 3kf, it is obvious from the Newman projection that the steric hindrance of intermediate F1' was less than F1'', which led to the formation of $\mathbf{3 k f} \mathbf{2}$ as the major product.

6 General procedure for synthesis of 1,4-thiazine

General procedure:

A 15-mL Schlenk-tube was charged with $1(0.20 \mathrm{mmol}), 4(0.40 \mathrm{mmol})$ and chloroform $(4 \mathrm{~mL})$ under nitrogen, and then the mixture was stirred and heated to reflux for 2 hrs . After completed, the solvent was removed in vacuo, and the residual was purified by silica gel column chromatography with $\mathrm{PE} / \mathrm{EtOAc}$ as eluent to give compound 5 .

5aa
Dimethyl 6-(1,3-dioxoisoindolin-2-yl)-4-tosyl-4H-1,4-thiazine-2,3-dicarboxylate (5aa): Yellow solid, m.p. $131-132{ }^{\circ} \mathrm{C}$; $83.4 \mathrm{mg}, 81 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.94-7.87(\mathrm{~m}, 4 \mathrm{H}), 7.83-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.35(\mathrm{~m}, 2 \mathrm{H}), 6.79(\mathrm{~s}$, $1 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.29,162.55,161.81,145.72,135.19,134.65$, $131.28,130.23,128.02,127.47,125.78,124.41,122.55,53.57,53.45,21.95$ (one carbon missed); ESI-HRMS m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{~S}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$515.0577, found 515.0577

5ab
Dimethyl 6-(1,3-dioxoisoindolin-2-yl)-4-(methylsulfonyl)-4H-1,4-thiazine-2,3-dicarboxylate (5ab): Yellow solid, m.p. $154-155{ }^{\circ} \mathrm{C}$; $61.4 \mathrm{mg}, 70 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.97-7.91(\mathrm{~m}, 2 \mathrm{H}), 7.86-7.80(\mathrm{~m}, 2 \mathrm{H}), 6.85(\mathrm{~s}, 1 \mathrm{H})$, $3.87(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.42,161.86,161.78,135.64,135.31,131.16$, $125.24,125.06,124.52,120.27,53.63,53.51,40.80$; ESI-HRMS m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{~S}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 439.0264$, found 439.0262 .

Dimethyl 6-(1,3-dioxoisoindolin-2-yl)-4-((4-methoxyphenyl)sulfonyl)-4H-1,4-thiazine-2,3-dicarboxylate (5ac): Yellow solid, m.p. $139-140{ }^{\circ} \mathrm{C} ; 76.4 \mathrm{mg}, 72 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.97-7.88(\mathrm{~m}, 4 \mathrm{H}), 7.84-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.08$ $-7.02(\mathrm{~m}, 2 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.29,164.67,162.61$, $161.81,135.19,134.57,131.26,130.30,128.82,127.46,125.89,124.39,122.52,114.82,55.88,53.55,53.43$; ESI-HRMS m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{~S}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 531.0526$, found 531.0533 .

5ba

Diethyl 6-(1,3-dioxoisoindolin-2-yl)-4-tosyl-4H-1,4-thiazine-2,3-dicarboxylate (5ba): Yellow solid, m.p. $111-112{ }^{\circ} \mathrm{C}$; $78.1 \mathrm{mg}, 72 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.94-7.87(\mathrm{~m}, 4 \mathrm{H}), 7.84-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.35(\mathrm{~m}, 2 \mathrm{H}), 6.79(\mathrm{~s}$, $1 \mathrm{H}), 4.38(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.21(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.28(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 165.33,162.04,161.49,145.62,135.16,134.74,134.56,131.30,130.18,128.04,127.64,125.81$, $124.39,122.63,62.88,62.85,22.00,14.02,13.89$; ESI-HRMS m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{~S}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 543.0890$, found 543.0894 .

5ca
Diisopropyl 6-(1,3-dioxoisoindolin-2-yl)-4-tosyl-4H-1,4-thiazine-2,3-dicarboxylate (5ca): Yellow oil; $70.8 \mathrm{mg}, 62 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.95-7.87(\mathrm{~m}, 4 \mathrm{H}), 7.84-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.34(\mathrm{~m}, 2 \mathrm{H}), 6.78(\mathrm{~s}, 1 \mathrm{H}), 5.21$ (hept, $J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.03($ hept, $J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 6 \mathrm{H}), 1.26(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.35,161.46,161.02,145.51,135.14,134.79,134.44,131.31,130.13,128.06,125.77,124.37,122.76$, 71.01, $70.94,22.01,21.63,21.53$ (one carbon missed); ESI-HRMS m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{~S}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 571.1203$, found 571.1202.

5ea
Di-tert-butyl 6-(1,3-dioxoisoindolin-2-yl)-4-tosyl-4H-1,4-thiazine-2,3-dicarboxylate (5ea): Yellow solid, m.p. 122 - 123 ${ }^{\circ} \mathrm{C} ; 77.8 \mathrm{mg}, 65 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.94-7.85(\mathrm{~m}, 4 \mathrm{H}), 7.83-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.33(\mathrm{~m}, 2 \mathrm{H}), 6.73$ ($\mathrm{s}, 1 \mathrm{H}$), $2.48(\mathrm{~s}, 3 \mathrm{H}), 1.61(\mathrm{~s}, 9 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.36,160.67,160.60,145.32,135.10$, $134.70,133.45,131.32,130.26,130.00,128.14,125.88,124.33,123.61,84.21,83.77,27.90,21.93$ (one carbon missed); ESI-HRMS m / z calcd for $\mathrm{C}_{29} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{~S}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 599.1516$, found 599.1516.

5fa
Dibenzyl 6-(1,3-dioxoisoindolin-2-yl)-4-tosyl-4H-1,4-thiazine-2,3-dicarboxylate (5fa): Yellow oil; $82.7 \mathrm{mg}, 62 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.92-7.84(\mathrm{~m}, 4 \mathrm{H}), 7.81-7.75(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.26(\mathrm{~m}, 12 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H}), 5.15(\mathrm{~s}, 2 \mathrm{H})$, $5.07(\mathrm{~s}, 2 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.27,161.90,161.22,145.67,135.15,134.90,134.83,134.61$, $134.43,131.25,130.20,128.90,128.77,128.73,128.66,128.61,128.03,127.11,125.71,124.37,122.30,68.67,68.43$, 21.93 (one carbon missed); ESI-HRMS m / z calcd for $\mathrm{C}_{35} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{~S}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 667.1203$, found 667.1194 .

Methyl 3-benzoyl-6-(1,3-dioxoisoindolin-2-yl)-4-tosyl-4H-1,4-thiazine-2-carboxylate (5ga): Yellow solid, m.p. $84-85$ ${ }^{\circ} \mathrm{C} ; 53.8 \mathrm{mg}, 48 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.03-7.97(\mathrm{~m}, 2 \mathrm{H}), 7.97-7.88(\mathrm{~m}, 4 \mathrm{H}), 7.86-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.66$
$-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.58-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{~s}, 1 \mathrm{H}), 3.53(\mathrm{~s}, 3 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 188.10,165.47,162.07,145.77,142.28,135.59,135.23,135.01,133.71,131.33,130.27,129.30,128.92,127.95$, $126.09,125.53,124.43,121.90,53.20,21.98$; ESI-HRMS m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{~S}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 561.0785$, found 561.0787.

5ha
Methyl 3-(4-bromobenzoyl)-6-(1,3-dioxoisoindolin-2-yl)-4-tosyl-4H-1,4-thiazine-2-carboxylate (5ha): Yellow solid, m.p. $136-137{ }^{\circ} \mathrm{C} ; 49.9 \mathrm{mg}, 39 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.97-7.91(\mathrm{~m}, 2 \mathrm{H}), 7.91-7.80(\mathrm{~m}, 6 \mathrm{H}), 7.71-7.65(\mathrm{~m}$, $2 \mathrm{H}), 7.43-7.38(\mathrm{~m}, 2 \mathrm{H}), 6.88(\mathrm{~s}, 1 \mathrm{H}), 3.57(\mathrm{~s}, 3 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 187.14,165.44,161.92$, $145.90,141.76,135.27,134.86,134.44,132.29,131.32,130.72,130.32,128.92,127.93,125.97,125.84,124.46,121.74$, 53.32, 21.98; ESI-HRMS m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{19} \mathrm{BrN}_{2} \mathrm{NaO}_{7} \mathrm{~S}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+} 660.9709$, found 660.9712 .

5ia
Methyl 6-(1,3-dioxoisoindolin-2-yl)-3-(4-methoxybenzoyl)-4-tosyl-4H-1,4-thiazine-2-carboxylate (5ia): Yellow solid, m.p. $73-74{ }^{\circ} \mathrm{C} ; 81.5 \mathrm{mg}, 69 \%$ yield; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.01-7.88(\mathrm{~m}, 6 \mathrm{H}), 7.85-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.39(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.04-6.99(\mathrm{~m}, 2 \mathrm{H}), 6.90(\mathrm{~s}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.54(\mathrm{~s}, 3 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $186.66,165.50,164.08,162.12,145.68,142.88,135.21,135.15,131.64,131.36,130.23,128.66,127.95,126.19,124.69$, 124.40, 121.73, 114.27, 55.69, 53.17, 22.02; ESI-HRMS m / z calcd for $\mathrm{C}_{29} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{~S}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 591.0890$, found 591.0897.

Methyl 3-(2-naphthoyl)-6-(1,3-dioxoisoindolin-2-yl)-4-tosyl-4H-1,4-thiazine-2-carboxylate (5pa): Yellow solid, m.p. $136-137^{\circ} \mathrm{C} ; 78.2 \mathrm{mg}, 64 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.50-8.46(\mathrm{~m}, 1 \mathrm{H}), 8.11-8.05(\mathrm{~m}, 2 \mathrm{H}), 8.00-7.89(\mathrm{~m}$, $6 \mathrm{H}), 7.87-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.67-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 187.90,165.54,162.05,145.76,142.66,136.09,135.26,135.22,132.98,132.70,131.52,131.39$, $130.28,130.11,128.91,127.98,127.90,126.98,126.52,125.25,124.51,124.45,121.29,53.23,29.83,21.98$ (one carbon missed); ESI-HRMS m / z calcd for $\mathrm{C}_{32} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{~S}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$611.0941, found 611.0945.

7 Large scale reaction and further transformation of 3aa and 5aa

The mixture of 1a ($253 \mathrm{mg}, 1.00 \mathrm{mmol}$) and 2a $(535 \mathrm{mg}, 2.00 \mathrm{mmol})$ in anhydrous DME $(20 \mathrm{~mL})$ was stirred at $80^{\circ} \mathrm{C}$ under N_{2} for 2 hrs . After completed, the solvent was evaporated in vacuo and the residual was purified by silica gel column chromatography ($\mathrm{PE}: \mathrm{EtOAc}=6: 1$ to $4: 1$) to give the desired product 3aa in 69% yield $(339 \mathrm{mg})$.

A 100-mL Schlenk-flask was charged with $\mathbf{1 a}(253 \mathrm{mg}, 1.00 \mathrm{mmol}), \mathbf{4 a}(737 \mathrm{mg}, 2.00 \mathrm{mmol})$ and chloroform (20 mL) under nitrogen, and then the mixture was stirred and heated to reflux for 2 hrs . After completed, the solvent was removed in vacuo, and the residual was purified by silica gel column chromatography with $\mathrm{PE} / \mathrm{EtOAc}(4: 1)$ as eluent to give compound 5aa in 83% yield (427 mg).

To a solution of $\mathbf{3 a a}(99 \mathrm{mg}, 0.20 \mathrm{mmol})$ in $\mathrm{CCl}_{4}(4 \mathrm{~mL})$ was added tert-butyl hypochlorite ($23 \mu \mathrm{~L}, 0.20 \mathrm{mmol}$) dropwise The solvent was evaporated in vacuo after stirred at room temperature for 10 min . Then the residual was purified by silica gel column chromatography with $\mathrm{PE} / \operatorname{EtOAc}(5: 1$ to $4: 1$) as eluent to give compound $\mathbf{6}(63 \mathrm{mg}, 60 \%$ yield) as colorless oil

Dimethyl cis-7-chloro-1-(ethoxycarbonothioyl)-2-tosyl-1,9a-dihydro-2H-pyrido[1,2-a]pyrazine-3,4-dicarboxylate (6): Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.86-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.19-6.15(\mathrm{~m}, 1 \mathrm{H}), 5.91-5.84$ (m, 1H), 5.47 (ddd, $J=10.4,3.4,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.03-3.98(\mathrm{~m}, 1 \mathrm{H}), 3.89$ ($\mathrm{s}, 3 \mathrm{H}$), $3.81(\mathrm{~s}, 3 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 1.28-1.23(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 208.63,164.97,163.23,145.22$, $134.05,130.08,128.93,128.39,125.10,124.58,118.35,109.24,108.12,69.30,61.98,56.78,53.55,52.70,21.84,13.36$; ESI-HRMS m/z calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{ClN}_{2} \mathrm{O}_{7} \mathrm{~S}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 527.0708$, found 527.0711.

The mixture of 3aa ($99 \mathrm{mg}, 0.20 \mathrm{mmol}$), hydroxylamine hydrochloride ($42 \mathrm{mg}, 0.60 \mathrm{mmol}$), and sodium acetate (49 mg , $0.60 \mathrm{mmol})$ in $\mathrm{MeOH}(4 \mathrm{~mL})$ was stirred at room temperature for 8 hours. Water was added to the mixture and the mixture was extracted with ethyl acetate twice. The organic layers were combined, washed with brine, dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The residual was purified by silica gel column chromatography with PE/EtOAc (4:1 to $3: 1$) as eluent to give compound 7 ($68 \mathrm{mg}, 69 \%$ yield) as yellow solid.

Dimethyl cis-1-((Z)-ethoxy(hydroxyimino)methyl)-2-tosyl-1,9a-dihydro-2H-pyrido[1,2-a]pyrazine-3,4-dicarboxylate (7): Yellow solid, m.p. $144-145^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.86-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.30(\mathrm{~m}, 2 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 6.04$ $(\mathrm{d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.91-5.83(\mathrm{~m}, 1 \mathrm{H}), 5.52(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.29-5.22(\mathrm{~m}, 1 \mathrm{H}), 4.95-4.88(\mathrm{~m}, 1 \mathrm{H}), 4.26-4.20(\mathrm{~m}$, $1 \mathrm{H}), 3.89-3.79(\mathrm{~m}, 5 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.34,163.84$, $159.48,144.74,134.58,132.23,129.87,128.36,127.06,123.33,116.35,106.74,101.20,63.24,56.26,53.25,52.33,43.49$, 21.79, 14.02; ESI-HRMS m/z calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{8} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+} 492.1435$, found 492.1440 .

To a solution of $\mathbf{5 a \mathbf { a }}(103 \mathrm{mg}, 0.20 \mathrm{mmol})$ in anhydrous dichloromethane $(2 \mathrm{~mL})$ was added m-CPBA $(70 \%, 49 \mathrm{mg}, 0.20$ mmol) at room temperature. The reaction was completed within 10 min . The mixture was purified by silica gel column chromatography with PE/EtOAc (2:1 to 1:1) as eluent to give compound $\mathbf{8}(75 \mathrm{mg}, 71 \%$ yield) as white solid.

Dimethyl 6-(1,3-dioxoisoindolin-2-yl)-4-tosyl-4H-1,4-thiazine-2,3-dicarboxylate 1-oxide (8): White solid, m.p. $87-88$ ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.04(\mathrm{~s}, 1 \mathrm{H}), 7.99-7.93(\mathrm{~m}, 2 \mathrm{H}), 7.89(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.87-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.41(\mathrm{~d}$, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.06(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.88,162.74,161.76,147.57$, $139.39,135.26,132.97,131.36,130.63,128.41,127.89,124.44,122.29,117.93,54.28,53.55,22.01 ;$ ESI-HRMS m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{~S}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 531.0526$, found 531.0530.

The solution of $\mathbf{5 a a}(103 \mathrm{mg}, 0.20 \mathrm{mmol})$ in anhydrous DMSO $(2 \mathrm{~mL})$ was stirred at $80^{\circ} \mathrm{C}$ for 24 hours. After completed, the reaction was diluted with ethyl acetate $(100 \mathrm{~mL})$ and washed with water $(30 \mathrm{~mL} \times 2)$ and brine $(30 \mathrm{~mL} \times 3)$. The organic layer was dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The residual was purified by silica gel column chromatography with $\mathrm{PE} / \mathrm{EtOAc}(2.5: 1$ to $2: 1)$ as eluent to give compound 9 ($43 \mathrm{mg}, 42 \%$ yield) as light yellow oil.

Dimethyl 5-(1,3-dioxoisoindolin-2-yl)-4-((4-methylphenyl)sulfonamido)thiophene-2,3-dicarboxylate (9): Light yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.32(\mathrm{~s}, 1 \mathrm{H}), 7.86-7.81(\mathrm{~m}, 2 \mathrm{H}), 7.80-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.11-7.05$ $(\mathrm{m}, 2 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 165.55,162.22,159.13,145.64,140.61$, $134.52,131.71,130.03,127.30,126.68,123.85,117.88,116.12,53.00,52.39,21.81$ (one carbon missed); ESI-HRMS m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$515.0577, found 515.0582.

8 References

1. Bazgir, A.; Moafi, L.; Ahadi, S.; Khavasi, H. Synthesis, 2011, 1399-1402.
2. Cheng, B.; Li, Y.; Wang, T.; Zhang, X.; Li, H.; Li, Y.; Zhai, H. Chem. Commun., 2019, 55, 14606--14608.
3. Cheng, B.; Li, H.; Duan, S.; Zhang, X.; He, Y.; Li, Y.; Li, Y.; Wang, T.; Zhai, H. Org. Biomol. Chem., 2020, 18, 6253-6257.
4. Cheng, B.; Bao, B.; Xu, W.; Li, Y.; Li, H.; Zhang, X.; Li, Y.; Wang, T.; Zhai, H. Org. Biomol. Chem., 2020, 18, 2949-2955.
5. Cheng, B.; Li, Y.; Wang, T.; Zhang, X.; Li, H.; He, Y.; Li, Y.; Zhai, H. J. Org. Chem. 2020, 85, 6794-6802.
6. Raushel, J.; Fokin, V. V. Org. Lett., 2010, 12, 4952-4955.
7. Alford, J. S.; Davies, H. M. J. Am. Chem. Soc. 2014, 136, 10266-10269.
8. Wilkerson-Hill, S. M.; Haines, B. E.; Musaev, D. G.; Davies, H. M. L. J. Org. Chem., 2018, 83, 7939-7949.
9. Alford, J. S.; Davies, H. M. Org. Lett., 2012, 14, 6020-6023.
10. Guarnieri-Ibanez, A.; Medina, F.; Besnard, C.; Kidd, S. L.; Spring, D. R.; Lacour, J. Chem. Sci., 2017, 8, 5713-5720.

Figure S8-1. ${ }^{\mathbf{1}} \mathrm{H}$ NMR of $\mathbf{1 d}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

$\begin{array}{lllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10\end{array}$

Figure S8-2. ${ }^{13} \mathrm{C} \mathrm{NMR}$ of $1 \mathrm{~d}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

Figure S8-3. ${ }^{1} \mathrm{H}$ NMR of $1 \mathrm{f}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

Figure S8-4. ${ }^{13} \mathrm{C}$ NMR of $1 \mathrm{f}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

Figure S8-5. ${ }^{1} \mathrm{H}$ NMR of $1 \mathrm{k}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

Figure S8-6. ${ }^{13} \mathrm{C}$ NMR of $1 \mathrm{k}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

Figure S8-7. ${ }^{1} \mathrm{H}$ NMR of $11\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

Figure S8-8. ${ }^{13} \mathrm{C}$ NMR of $11\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

Figure S8-9. ${ }^{1} \mathrm{H}$ NMR of $1 \mathrm{o}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

Figure S8-10. ${ }^{13} \mathrm{C}$ NMR of $10\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

Figure S8-11. ${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 p}$ (DMSO-d6, 400 MHz)

Figure S8-12. ${ }^{13}$ C NMR of 1p (DMSO-d6, 101 MHz)

Figure S8-13. ${ }^{1} \mathrm{H}$ NMR of $\mathbf{2 c}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

Figure S8-14. ${ }^{13} \mathrm{C}$ NMR of $2 \mathrm{c}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

Figure S8-15. ${ }^{\mathbf{1}} \mathbf{H}$ NMR of $\mathbf{2 d}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

Figure S8-16. ${ }^{13} \mathbf{C}$ NMR of 2d $\left(\mathrm{CDCl}_{3}, 101 \mathbf{M H z}\right)$

Figure S8-17. ${ }^{\mathbf{1}} \mathbf{H}$ NMR of $\mathbf{2 e}\left(\mathbf{C D C l}_{3}, 400 \mathrm{MHz}\right)$

Figure S8-18. ${ }^{13} \mathrm{C}$ NMR of $2 \mathrm{e}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

Figure S8-19. ${ }^{1} \mathrm{H}$ NMR of $2 \mathrm{f}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

2f

Figure S8-20. ${ }^{13} \mathrm{C}$ NMR of $2 \mathrm{f}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

Figure S8-21. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ of $\mathbf{2 g}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

Figure S8-22. ${ }^{13} \mathrm{C}$ NMR of $\mathbf{2 g}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

Figure S8-23. ${ }^{1} \mathbf{H}$ NMR of $\mathbf{2 i}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$
-206.26

\circ 0 8	$\begin{aligned} & \text { NJ } \\ & \text { on } \\ & \text { No } \end{aligned}$	
	11	$11 /$

~~

Figure S8-24. ${ }^{13} \mathrm{C}$ NMR of 2 i (acetone-d6, 101 MHz)

Figure S8-25. ${ }^{1} \mathrm{H}$ NMR of 3aa $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

Figure S8-26. ${ }^{13} \mathrm{C}$ NMR of 3aa $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

Figure S8-27. ${ }^{1} \mathrm{H}$ NMR of $3 \mathrm{ab}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

Figure S8-28. ${ }^{13} \mathrm{C}$ NMR of $3 \mathrm{ab}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

Figure S8-29. ${ }^{\mathbf{1}} \mathbf{H}$ NMR of 3ac ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

Figure S8-30. ${ }^{13} \mathrm{C}$ NMR of $3 \mathrm{ac}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

Figure S8-31. ${ }^{1} \mathrm{H}$ NMR of $3 \mathrm{ad}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

Figure S8-32. ${ }^{13} \mathrm{C}$ NMR of $3 \mathrm{ad}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

Figure S8-33. ${ }^{1} \mathrm{H}$ NMR of 3ae $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

Figure S8-34. ${ }^{13} \mathrm{C}$ NMR of 3ae (CDCl_{3}, 101 MHz)

Figure S8-35. ${ }^{\mathbf{1}} \mathbf{H}$ NMR of 3af $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

Figure S8-36. ${ }^{13} \mathrm{C}$ NMR of 3af $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

Figure S8-37. ${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 a g}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

Figure S8-38. ${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 a g}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

Figure S8-39. ${ }^{1} \mathrm{H}$ NMR of $3 \mathrm{ah}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

Figure S8-40. ${ }^{13} \mathrm{C}$ NMR of $3 \mathrm{ah}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

Figure S8-41. ${ }^{1} \mathrm{H}$ NMR of 3ai $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

Figure S8-42. ${ }^{13} \mathrm{C}$ NMR of 3ai $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

Figure S8-43. ${ }^{1} \mathbf{H}$ NMR of $3 \mathrm{bf}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

Figure S8-44. ${ }^{13} \mathrm{C}$ NMR of $3 \mathrm{bf}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

Figure S8-45. ${ }^{1} \mathbf{H}$ NMR of $\mathbf{3 c f}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

Figure S8-46. ${ }^{13} \mathrm{C}$ NMR of $3 \mathrm{cf}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

Figure S8-47. ${ }^{1} \mathrm{H}$ NMR of $3 \mathrm{df}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

Figure S8-48. ${ }^{13} \mathrm{C}$ NMR of $3 \mathrm{df}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

Figure S8-49. ${ }^{1} \mathrm{H}$ NMR of $3 \mathrm{ef}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

Figure S8-50. ${ }^{13} \mathrm{C}$ NMR of $3 \mathrm{ef}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

Figure S8-51. ${ }^{\mathbf{1}} \mathrm{H}$ NMR of $\mathbf{3 f f}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

Figure S8-52. ${ }^{13} \mathrm{C}$ NMR of $3 \mathrm{ff}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

Figure S8-53. ${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 g f}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

Figure S8-54. ${ }^{13} \mathrm{C}$ NMR of $3 \mathrm{gf}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

Figure S8-55. ${ }^{1} \mathrm{H}$ NMR of $3 \mathrm{hf}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

Figure S8-56. ${ }^{13} \mathrm{C}$ NMR of $3 \mathrm{hf}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

Figure S8-57. ${ }^{1} \mathrm{H}$ NMR of $3 \mathrm{if}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

Figure S8-58. ${ }^{13} \mathrm{C}$ NMR of 3if $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

Figure S8-59. ${ }^{\mathbf{1}} \mathrm{H}$ NMR of $\mathbf{3 j f}\left(\mathrm{CDCl}_{3}, \mathbf{4 0 0} \mathbf{M H z}\right)$

Figure S8-60. ${ }^{13} \mathrm{C}$ NMR of $3 \mathrm{jf}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

Figure S8-61. ${ }^{\mathbf{1}} \mathrm{H}$ NMR of $\mathbf{3 k f}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

Figure S8-62. ${ }^{13} \mathrm{C}$ NMR of $3 \mathrm{kf}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

Figure S8-63. ${ }^{1} \mathrm{H}$ NMR of $3 \mathrm{mf}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

Figure S8-64. ${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 m f}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

Figure S8-65. ${ }^{1} \mathbf{H}$ NMR of $3 n f\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

Figure S8-66. ${ }^{13} \mathrm{C}$ NMR of $3 \mathrm{nf}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

Figure S8-67. ${ }^{1} \mathrm{H}$ NMR of $3 \mathrm{of}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

Figure S8-68. ${ }^{13} \mathrm{C}$ NMR of $3 \mathrm{of}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

Figure S8-69. ${ }^{1} \mathrm{H}$ NMR of $5 \mathrm{aa}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

Figure S8-70. ${ }^{13} \mathrm{C}$ NMR of $5 \mathrm{aa}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

Figure S8-71. ${ }^{1} \mathrm{H}$ NMR of $5 \mathrm{ab}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

Figure S8-72. ${ }^{13} \mathrm{C}$ NMR of $5 \mathrm{ab}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

Figure S8-73. ${ }^{\mathbf{1}} \mathbf{H}$ NMR of 5ac $\left(\mathbf{C D C l}_{3}, 400 \mathbf{M H z}\right)$

Figure S8-74. ${ }^{13} \mathrm{C}$ NMR of $5 \mathrm{ac}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

Figure S8-75. ${ }^{1} \mathbf{H}$ NMR of $5 \mathrm{ba}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

Figure S8-76. ${ }^{13} \mathrm{C}$ NMR of 5ba $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

Figure S8-77. ${ }^{1} \mathrm{H}$ NMR of $5 \mathrm{ca}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

cc1106-14
2
1
20210610
0.50
WNMR-I-400MHz
s1pul
43478
CDC13
512
0
27175.988 Hz
0.7999841 sec
76.3
18.399 usec
30.00 usec
291.0 K
13 C
120.00 dB
100.6333528 MHz
131072
100.6215434 MHz
EM
0
2.00 Hz
0.1

5ca

品
던

Figure S8-78. ${ }^{13} \mathrm{C}$ NMR of $5 \mathrm{ca}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

Figure S8-79. ${ }^{1} \mathrm{H}$ NMR of $5 \mathrm{ea}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

Figure S8-80. ${ }^{13} \mathrm{C}$ NMR of $5 \mathrm{ea}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

Figure S8-81. ${ }^{1} \mathrm{H}$ NMR of $5 \mathrm{fa}\left(\mathrm{CDCl}_{3}, 400 \mathbf{M H z}\right)$

Figure S8-82. ${ }^{13} \mathrm{C}$ NMR of 5fa $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

Figure S8-83. ${ }^{1} \mathrm{H}$ NMR of $5 \mathrm{ga}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

Figure S8-84. ${ }^{13} \mathrm{C}$ NMR of $5 \mathrm{ga}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

Figure S8-85. ${ }^{1} \mathbf{H}$ NMR of $5 \mathrm{ha}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

Figure S8-86. ${ }^{13} \mathrm{C}$ NMR of $5 \mathrm{ha}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

Figure S8-87. ${ }^{1} \mathrm{H}$ NMR of $5 \mathrm{ia}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

Figure S8-88. ${ }^{13} \mathrm{C}$ NMR of $5 \mathrm{ia}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

Figure S8-89. ${ }^{1} \mathrm{H}$ NMR of 5pa $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

Figure S8-90. ${ }^{13} \mathrm{C}$ NMR of 5pa $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

Figure S8-91. ${ }^{1} \mathrm{H}$ NMR of $6\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

Figure S8-92. ${ }^{13} \mathrm{C}$ NMR of $6\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

Figure S8-93. ${ }^{\mathbf{1}} \mathbf{H}$ NMR of $7\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

Figure S8-94. ${ }^{13} \mathrm{C}$ NMR of $7\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

Figure S8-95. ${ }^{1} \mathbf{H}$ NMR of $8\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

Figure S8-96. ${ }^{13} \mathrm{C}$ NMR of $8\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

Figure S8-97. ${ }^{1} \mathrm{H}$ NMR of $9\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

Figure S8-98. ${ }^{13} \mathrm{C}$ NMR of $9\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

CCDC 2102821
Table 1 Crystal data and structure refinement for 0409d_1_0m.

Identification code	0409d_1_0m
Empirical formula	$\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}_{2}$
Formula weight	682.38
Temperature/K	296(2)
Crystal system	monoclinic
Space group	P-1
a/Å	$9.708(3)$
b/Å	10.645(3)
c / \AA	14.207(4)
$\alpha /{ }^{\circ}$	86.104(4)
$\beta /{ }^{\circ}$	71.609(3)
$\gamma /{ }^{\circ}$	84.982(4)
Volume/ ${ }^{\text {® }}$	1386.6(7)
Z	2
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.634
μ / mm^{-1}	3.117
F(000)	684.0
Crystal size/mm ${ }^{3}$	$0.180 \times 0.160 \times 0.150$
Radiation	MoK $\alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ}$	3.466 to 55.306
Index ranges	$-12 \leq \mathrm{h} \leq 12,-13 \leq \mathrm{k} \leq 13,-18 \leq 1 \leq 18$
Reflections collected	$\underline{15621}$
Independent reflections	$6221\left[\mathrm{R}_{\text {int }}=0.0269, \mathrm{R}_{\text {sigma }}=0.0347\right]$
Data/restraints/parameters	6221/0/345
Goodness-of-fit on F^{2}	1.054
Final R indexes [$\mathrm{I}>=2 \sigma$ (I$)$]	$\mathrm{R}_{1}=0.0607, \mathrm{wR}_{2}=0.1960$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0837, \mathrm{wR}_{2}=0.1927$
Largest diff. peak/hole / e \AA^{-3}	$\underline{\text { 0.72/-0.52 }}$

にO 2000
CCDC 2102822
Table 1 Crystal data and structure refinement for $0714 _0 \mathrm{~m}$.

Identification code	0714_0m
Empirical formula	$\mathrm{C}_{28} \mathrm{H}_{19} \mathrm{BrN}_{2} \mathrm{O}_{7} \mathrm{~S}_{2}$
Formula weight	639.48
Temperature/K	296(2)
Crystal system	monoclinic
Space group	$\mathrm{P} 21 / \mathrm{c}$
a/Å	7.860(6)
b/Å	36.16(3)
c/Å	9.697(8)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	92.082(12)
$\gamma /{ }^{\circ}$	90
Volume/ \AA^{3}	2754(4)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.542
μ / mm^{-1}	1.694
$F(000)$	1296.0
Crystal size/mm ${ }^{3}$	$0.18 \times 0.17 \times 0.16$
Radiation	$\operatorname{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ}$	4.506 to 57.056
Index ranges	$-10 \leq h \leq 10,-46 \leq \mathrm{k} \leq 46,-12 \leq 1 \leq 13$
Reflections collected	23225
Independent reflections	$6388\left[\mathrm{R}_{\text {int }}=0.1136, \mathrm{R}_{\text {sigma }}=0.1297\right]$
Data/restraints/parameters	6388/0/363
Goodness-of-fit on F^{2}	0.988
Final R indexes [$\mathrm{I}>=2 \sigma$ (I)]	$\mathrm{R}_{1}=0.0679, \mathrm{wR}_{2}=0.1675$
Final R indexes [all data]	$\mathrm{R}_{1}=0.1583, \mathrm{wR}_{2}=0.2111$
Largest diff. peak/hole / e \AA^{-3}	0.72/-0.67

