Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2021

Supporting Information

for

Two Reaction Modes of 1-Sulfonyl-1,2,3-triazoles and Pyridinium 1,4-Zwitterionic Thiolates: Catalyst-Free Synthesis of Pyrido[1,2-*a*]pyrazine Derivatives and 1,4-Thiazine Derivatives

Shengguo Duan, ^a Cong Chen ^a, Yidian Chen ^a, Yuchen Jie ^a, Huan Luo ^a, Ze-Feng Xu ^a, Bin Cheng^b and Chuan-Ying Li^{*a} ^a Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, China E-mail: <u>licy@zstu.edu.cn</u>

^b Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China.

Table of Contents

1 General information	S1
2 Preparation of pyridinium 1,4-zwitterionic thiolates	S2
3 Preparation of triazoles	S5
4 General procedure for synthesis of pyrido[1,2- <i>a</i>]pyrazine	S7
5 The judging procedure of the major product for 3kf and the explanation	S15
6 General procedure for synthesis of 1,4-thiazine	S16
7 Large scale reaction and further transformation of 3aa and 5aa	S19
8 References	S21
9 Copies of NMR spectra	S22
10 X-ray data for compound 3hf and 5ha	S71

1 General information

All reactions were conducted in oven-dried glassware under an inert atmosphere of dry nitrogen unless otherwise noted. All solvents were freshly distilled prior to use in synthesis unless otherwise noted. Analytical thin layer chromatography (TLC) was performed using silica gel HSGF254 pre-coated plates. Flash column chromatography was performed using silica gel (200-300 mesh). ¹H, ¹³C NMR spectra were measured on Brucker Avance IIDMX 400MHz spectrometers (400 MHz for ¹H NMR, 101 MHz for ¹³C NMR). Chemical shifts are reported as δ values relative to internal tetramethylsilane (TMS: 0.00 ppm) or deuterated solvent (chloroform-d: 7.26 ppm, 77.16 ppm; DMSO-d₆:2.50 ppm, 39.52 ppm; Acetone-d₆: 2.05 ppm, 206.26 ppm; Methanol-d₄: 3.31 ppm, 49.00 ppm). Abbreviations for signal couplings are as follows: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet and br, broad. Coupling constants (*J*) were taken from the spectra directly and are uncorrected. Melting points are uncorrected. High resolution mass spectra (HRMS) were recorded on a Waters TOFMS GCT Premier using ESI ionization.

2 Preparation of pyridinium 1,4-zwitterionic thiolates

All pyridinium 1,4-zwitterionic thiolates were synthesized according to known procedure.^{1,2}

Typical procedure (1a):^{1,2}

To a solution of pyridine (0.83 mL, 10.0 mmol) and S_8 (321 mg, 1.25 mmol) in DCM (50 mL) was added dimethyl acetylenedicarboxylate (1.2 mL, 10.0 mmol) dropwise at 0 °C. The mixture was stirred for 24 h at room temperature. Then, the mixture was filtered and the precipitate was washed with Et₂O (2 × 30 mL) to afford pure product **1a** as a yellow powder.

The ¹H NMR spectra of **1a**, ¹**1b**, ¹**1c**, ³**1e**, ¹**1g**, ⁴**1h**, ⁵**1i**, ⁵**1j**, ¹**1m**³ and **1n**³ were consistent with references.

The spectral data of compounds 1d, 1f, 1k, 1l, 1o and 1p were shown below.

(*Z*)-1,4-Dibutoxy-1,4-dioxo-3-(pyridin-1-ium-1-yl)but-2-ene-2-thiolate (**1d**): yellow solid, m.p. 109 – 110 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.56 (d, *J* = 6.1 Hz, 2H), 8.50 – 8.42 (m, 1H), 8.08 – 7.99 (m, 2H), 4.35 – 4.26 (m, 2H), 4.16 – 4.07 (m, 2H), 1.83 – 1.72 (m, 2H), 1.62 – 1.52 (m, 2H), 1.52 – 1.42 (m, 2H), 1.37 – 1.24 (m, 2H), 1.01 – 0.93 (m, 3H), 0.92 – 0.84

(m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 178.78, 169.29, 160.06, 148.08, 144.92, 127.29, 125.33, 65.64, 64.82, 30.54, 30.37, 19.02, 18.90, 13.68, 13.55; ESI-HRMS *m/z* calcd for C₁₇H₂₄NO₄S⁺ [M + H]⁺ 338.1421, found 338.1429.

(Z)-1,4-Bis(benzyloxy)-1,4-dioxo-3-(pyridin-1-ium-1-yl)but-2-ene-2-thiolate (**1f**): yellow solid, m.p. 147 – 148 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.54 – 8.44 (m, 2H), 8.28 – 8.18 (m, 1H), 7.91 – 7.81 (m, 2H), 7.38 – 7.23 (m, 10H), 5.07 (s, 2H), 5.03 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 179.53, 168.89, 160.13, 148.31, 144.79, 135.72, 135.69, 128.65, 128.58, 128.48, 128.45, 128.19, 127.27, 125.38, 67.46, 67.09 (one carbon missed); ESI-HRMS *m/z* calcd for C₂₃H₂₀NO₄S⁺ [M + H]⁺ 406.1108, found 406.1115.

(*Z*)-1,4-Dimethoxy-3-(3-methylpyridin-1-ium-1-yl)-1,4-dioxobut-2-ene-2-thiolate (**1k**): yellow solid, m.p. 153 – 154 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.38 – 8.29 (m, 2H), 7.87 (d, *J* = 8.0 Hz, 1H), 7.85 – 7.78 (m, 1H), 3.92 (s, 3H), 3.71 (s, 3H), 2.72 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 179.76, 169.71, 160.59, 158.69, 148.78, 144.99, 129.20, 125.51, 123.33, 52.91, 52.13, 20.02; ESI-HRMS *m/z* calcd for C₁₂H₁₄NO₄S⁺ [M + H]⁺ 268.0638, found 268.0645.

(*Z*)-1,4-Dimethoxy-3-(2-methylpyridin-1-ium-1-yl)-1,4-dioxobut-2-ene-2-thiolate (**11**): yellow solid, m.p. 184 – 185 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.44 – 8.38 (m, 2H), 8.20 (d, *J* = 8.0 Hz, 1H), 7.90 – 7.84 (m, 1H), 3.93 (s, 3H), 3.73 (s, 3H), 2.59 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 179.91, 169.71, 160.76, 148.11, 145.66, 145.33, 138.59, 126.76, 125.30, 53.02, 52.26, 18.78; ESI-HRMS *m/z* calcd for C₁₂H₁₄NO₄S⁺ [M + H]⁺ 268.0638, found 268.0647.

(Z)-1-(4-bromophenyl)-4-methoxy-3-(4-(2-methyl-1,3-dioxolan-2-yl)pyridin-1-ium-1-yl)-1,4-dioxobut-2-ene-2-thiolate (11): yellow solid, m.p. 119 – 120 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.73 – 8.67 (m, 2H), 8.07 – 8.01 (m, 2H), 7.96 – 7.90 (m, 2H), 7.61 – 7.54 (m, 2H), 4.22 – 4.11 (m, 2H), 3.93 – 3.82 (m, 2H), 3.52 (s, 3H), 1.72 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 190.75, 187.13, 162.24, 161.07, 148.22, 134.44, 131.70, 131.15, 127.53, 125.44, 123.88, 107.21, 65.60, 51.93, 26.94 (one carbon missed); ESI-HRMS *m/z* calcd for C₂₀H₁₉BrNO₅S⁺ [M + H]⁺ 464.0162, found 464.0168.

(Z)-4-methoxy-1-(naphthalen-2-yl)-1,4-dioxo-3-(pyridin-1-ium-1-yl)but-2-ene-2-thiolate (11): yellow solid, m.p. 179 – 180 °C; ¹H NMR (400 MHz, DMSO-d6) δ 18.98 (d, J = 5.9 Hz, 2H), 18.53 – 18.46 (m, 1H), 18.38 (s, 1H), 18.09 – 18.02 (m, 2H), 17.98 – 17.93 (m, 1H), 17.89 – 17.84 (m, 1H), 17.83 – 17.77 (m, 2H), 17.49 – 17.38 (m, 2H), 13.20 (s, 3H); ¹³C NMR (101 MHz, DMSO-d6) δ 190.80, 186.00, 160.30, 148.84, 145.97, 134.78, 132.97, 132.23, 130.41, 129.46, 128.09, 127.82, 127.69, 127.62, 126.53, 125.33, 125.01, 51.16; ESI-HRMS *m/z* calcd for C₂₀H₁₆NO₃S⁺ [M + H]⁺ 350.0845, found 350.0845.

3 Preparation of triazoles

All triazoles were synthesized according to known procedure.⁶⁻¹⁰

Typical procedure (2a):⁶⁻¹⁰

To a stirring solution of ethyl ethynyl ether (2.0 mmol) in toluene (10 mL), copper(I) thiophene-2-carboxylate (19 mg, 0.10 mmol) was added at room temperature. After stirring for 2-4 minutes, a solution of tosyl azide (1.2 equiv) in ethyl acetate was added dropwise to the resulting mixture. The reaction media was then stirred at room temperature for 12 hrs. Once the starting alkyne had been completely consumed as judged by TLC analysis, the mixture was concentrated under reduced pressure, and filtered through a short plug of silica to remove copper catalyst (ethyl acetate as eluent). After removal of solvent under reduced pressure, an off-white solid was triturated with ether (x3) to afford the desired triazole.

The ¹H NMR spectra of **2a**, ⁶ **2b**, ⁶ **2h**, ⁷ **4a**, ⁸ **4b**⁹ and **4c**¹⁰ were consistent with references.

The spectral data of compounds 2c, 2d, 2e, 2f, 2g and 2i were shown below.

4-Ethoxy-1-(phenylsulfonyl)-1*H*-1,2,3-triazole (**2c**): white solid, m.p. 69 – 70 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.11 – 8.03 (m, 2H), 7.70 (t, *J* = 7.6 Hz, 1H), 7.57 (t, *J* = 7.8 Hz, 2H), 7.52 (s, 1H), 4.23 (q, *J* = 7.0 Hz, 2H), 1.38 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 160.30, 136.19, 135.68, 129.88, 128.59, 105.04, 67.21, 14.71; ESI-HRMS *m/z* calcd for C₁₀H₁₂N₃O₃S⁺ [M + H]⁺ 254.0594, found 254.0598.

4-Ethoxy-1-((4-fluorophenyl)sulfonyl)-1*H*-1,2,3-triazole (**2d**): white solid, m.p. 86 – 87 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.18 – 8.10 (m, 2H), 7.55 (s, 1H), 7.33 – 7.24 (m, 2H), 4.26 (q, *J* = 7.0 Hz, 2H), 1.40 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 166.91 (d, *J* = 261.2 Hz), 160.31, 132.04 (d, *J* = 3.1 Hz), 131.80 (d, *J* = 10.2 Hz), 117.42 (d, *J* = 23.2 Hz),

104.95, 67.23, 14.69; ESI-HRMS m/z calcd for $C_{10}H_{11}FN_3O_3S^+$ [M + H]⁺ 272.0500, found 272.0502.

1-((4-Chlorophenyl)sulfonyl)-4-ethoxy-1*H*-1,2,3-triazole (**2e**): white solid, m.p. 92 – 93 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.06 – 8.01 (m, 2H), 7.58 – 7.55 (m, 2H), 7.53 (s, 1H), 4.26 (q, J = 7.1 Hz, 2H), 1.40 (t, J = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 160.32, 142.75, 134.50, 130.27, 130.04, 104.97, 67.24, 14.72; ESI-HRMS *m/z* calcd for C₁₀H₁₁ClN₃O₃S⁺ [M + H]⁺ 288.0204, found 288.0207.

1-((4-Bromophenyl)sulfonyl)-4-ethoxy-1*H*-1,2,3-triazole (**2f**): white solid, m.p. 93 – 94 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.99 – 7.92 (m, 2H), 7.78 – 7.70 (m, 2H), 7.54 (s, 1H), 4.34 – 4.18 (m, 2H), 1.47 – 1.34 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 160.35, 135.05, 133.29, 131.49, 130.00, 104.99, 67.27, 14.76; ESI-HRMS *m*/*z* calcd for C₁₀H₁₁BrN₃O₃S⁺ [M + H]⁺ 331.9699, found 331.9706.

4-Ethoxy-1-(naphthalen-2-ylsulfonyl)-1*H*-1,2,3-triazole (**2g**): white solid, m.p. 70 – 71 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.70 (s, 1H), 8.04 – 7.94 (m, 3H), 7.94 – 7.88 (m, 1H), 7.75 – 7.62 (m, 2H), 7.62 – 7.56 (m, 1H), 4.29 – 4.19 (m, 2H), 1.43 – 1.33 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 160.29, 136.06, 132.81, 131.96, 131.20, 130.58, 130.36, 129.87, 128.40, 128.20, 122.26, 105.09, 67.18, 14.74; ESI-HRMS *m/z* calcd for C₁₄H₁₄N₃O₃S⁺ [M + H]⁺ 304.0750, found 304.0752.

4-(Mesityloxy)-1-tosyl-1*H*-1,2,3-triazole (**2i**): white solid, m.p. 130 – 131 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.96 – 7.90 (m, 2H), 7.37 (d, J = 8.2 Hz, 2H), 7.25 (s, 1H), 6.88 (s, 2H), 2.45 (s, 3H), 2.27 (s, 3H), 2.09 (s, 6H); ¹³C NMR (101 MHz, Acetone-d6) δ 160.70, 150.72, 148.75, 136.32, 134.03, 131.62, 130.71, 129.39, 107.44, 21.79, 20.85, 16.19 (one carbon missed); ESI-HRMS *m/z* calcd for C₁₈H₂₀N₃O₃S⁺ [M + H]⁺ 358.1220, found 358.1220.

4 General procedure for synthesis of pyrido[1,2-*a*]pyrazine

Typical procedure (3aa):

The mixture of **1a** (50.7 mg, 0.20 mmol) and **2a** (106.9 mg, 0.40 mmol) in anhydrous DME (4 mL) was stirred at 80 °C under N₂ for 2 hrs. After completed, the solvent was evaporated in vacuo and the residual was purified by silica gel column chromatography (PE : EA = 6 : 1 to 4 : 1) to give the desired product **3aa** (68.9 mg, 70% yield) as yellow thick oil.

Dimethyl *cis*-1-(ethoxycarbonothioyl)-2-tosyl-1,9a-dihydro-2*H*-pyrido[1,2-*a*]pyrazine-3,4-dicarboxylate (**3aa**): The reaction time was 2 hrs. Yellow thick oil; 68.9 mg, 70% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.84 – 7.79 (m, 2H), 7.34 (d, *J* = 8.1 Hz, 2H), 6.02 (d, *J* = 7.7 Hz, 1H), 5.91 – 5.84 (m, 1H), 5.41 – 5.35 (m, 1H), 4.91 – 4.82 (m, 2H), 4.40 – 4.28 (m, 2H), 4.08 – 4.03 (m, 1H), 3.88 (s, 3H), 3.81 (s, 3H), 2.44 (s, 3H), 1.26 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 209.32, 165.25, 163.59, 145.00, 134.05, 130.13, 130.01, 128.34, 127.38, 122.30, 116.78, 107.97, 100.46, 69.11, 61.87, 57.42, 53.34, 52.55, 21.85, 13.34; ESI-HRMS *m/z* calcd for C₂₂H₂₅N₂O₇S₂⁺ [M + H]⁺ 493.1098, found 493.1104.

Dimethyl *cis*-1-(ethoxycarbonothioyl)-2-((4-methoxyphenyl)sulfonyl)-1,9a-dihydro-2*H*-pyrido[1,2-*a*]pyrazine-3,4dicarboxylate (**3ab**): The reaction time was 4 hrs. Yellow thick oil; 64.1 mg, 63% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.92 – 7.84 (m, 2H), 7.03 – 6.96 (m, 2H), 6.03 (d, *J* = 7.7 Hz, 1H), 5.92 – 5.85 (m, 1H), 5.42 – 5.36 (m, 1H), 4.90 – 4.84 (m, 1H), 4.82 (d, *J* = 3.8 Hz, 1H), 4.41 – 4.28 (m, 2H), 4.11 – 4.05 (m, 1H), 3.89 – 3.87 (m, 6H), 3.82 (s, 3H), 1.26 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 209.44, 165.32, 163.90, 163.62, 130.67, 130.01, 128.36, 127.44, 122.33, 116.80, 114.56, 108.11, 100.42, 69.09, 61.91, 57.41, 55.81, 53.30, 52.55, 13.33; ESI-HRMS *m/z* calcd for C₂₂H₂₅N₂O₈S₂⁺ [M + H]⁺ 509.1047, found 509.1057.

Dimethyl *cis*-1-(ethoxycarbonothioyl)-2-(phenylsulfonyl)-1,9a-dihydro-2*H*-pyrido[1,2-*a*]pyrazine-3,4-dicarboxylate (**3ac**): The reaction time was 1.5 hrs. Yellow thick oil; 65.1 mg, 68% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.00 – 7.94 (m, 2H), 7.67 – 7.60 (m, 1H), 7.59 – 7.52 (m, 2H), 6.03 (d, *J* = 7.7 Hz, 1H), 5.92 – 5.84 (m, 1H), 5.43 – 5.36 (m, 1H), 4.92 – 4.85 (m, 2H), 4.39 – 4.29 (m, 2H), 4.18 – 4.11 (m, 1H), 3.89 (s, 3H), 3.80 (s, 3H), 1.26 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101

MHz, CDCl₃) δ 209.26, 165.14, 163.57, 137.31, 133.90, 130.53, 129.34, 128.31, 127.30, 122.34, 116.78, 107.42, 100.70, 69.14, 61.76, 57.63, 53.35, 52.52, 13.34; ESI-HRMS *m/z* calcd for C₂₁H₂₃N₂O₇S₂⁺ [M + H]⁺ 479.0941, found 479.0944.

Dimethyl *cis*-1-(ethoxycarbonothioyl)-2-((4-fluorophenyl)sulfonyl)-1,9a-dihydro-2*H*-pyrido[1,2-*a*]pyrazine-3,4-dicarboxylate (**3ad**): The reaction time was 1 h. Yellow thick oil; 65.5 mg, 66% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.08 – 8.00 (m, 2H), 7.26 – 7.17 (m, 2H), 6.05 (d, *J* = 7.7 Hz, 1H), 5.94 – 5.87 (m, 1H), 5.47 – 5.41 (m, 1H), 4.95 – 4.90 (m, 1H), 4.86 (d, *J* = 3.8 Hz, 1H), 4.39 – 4.30 (m, 3H), 3.89 (s, 3H), 3.79 (s, 3H), 1.26 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 209.28, 165.81 (d, *J* = 257.7 Hz), 165.01, 163.54, 133.78 (d, *J* = 3.0 Hz), 131.29 (d, *J* = 9.6 Hz), 131.00, 127.23, 122.42, 116.85, 116.60 (d, *J* = 22.8 Hz), 106.70, 101.00, 69.24, 61.64, 57.97, 53.36, 52.52, 13.35; ESI-HRMS *m/z* calcd for C₂₁H₂₂FN₂O₇S₂⁺ [M + H]⁺ 497.0847, found 497.0854.

Dimethyl *cis*-2-((4-chlorophenyl)sulfonyl)-1-(ethoxycarbonothioyl)-1,9a-dihydro-2*H*-pyrido[1,2-*a*]pyrazine-3,4-dicarboxylate (**3ae**): The reaction time was 30 min. Yellow thick oil; 69.8 mg, 68% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.98 – 7.92 (m, 2H), 7.55 – 7.48 (m, 2H), 6.05 (d, *J* = 7.7 Hz, 1H), 5.95 – 5.88 (m, 1H), 5.48 – 5.42 (m, 1H), 4.96 – 4.90 (m, 1H), 4.89 (d, *J* = 3.9 Hz, 1H), 4.41 – 4.31 (m, 3H), 3.89 (s, 3H), 3.78 (s, 3H), 1.26 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 209.19, 164.95, 163.52, 140.49, 136.42, 131.12, 129.78, 129.58, 127.20, 122.42, 116.88, 106.59, 101.07, 69.28, 61.63, 58.11, 53.39, 52.52, 13.35; ESI-HRMS *m/z* calcd for C₂₁H₂₂ClN₂O₇S₂⁺ [M + H]⁺ 513.0551, found 513.0559.

Dimethyl *cis*-2-((4-bromophenyl)sulfonyl)-1-(ethoxycarbonothioyl)-1,9a-dihydro-2*H*-pyrido[1,2-*a*]pyrazine-3,4dicarboxylate (**3af**): The reaction time was 30 min. Yellow thick oil; 74.7 mg, 67% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.92 – 7.84 (m, 2H), 7.71 – 7.65 (m, 2H), 6.05 (d, *J* = 7.7 Hz, 1H), 5.95 – 5.86 (m, 1H), 5.49 – 5.41 (m, 1H), 4.97 – 4.91 (m, 1H), 4.89 (d, *J* = 3.8 Hz, 1H), 4.41 – 4.31 (m, 3H), 3.89 (s, 3H), 3.78 (s, 3H), 1.26 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 209.09, 164.87, 163.44, 136.88, 132.51, 131.11, 129.74, 129.03, 127.10, 122.35, 116.82, 106.44, 101.04, 69.23, 61.52, 58.05, 53.35, 52.46, 13.31; ESI-HRMS *m/z* calcd for C₂₁H₂₂BrN₂O₇S₂⁺ [M + H]⁺ 557.0046, found 557.0045.

Dimethyl

cis-1-(ethoxycarbonothioyl)-2-(naphthalen-2-ylsulfonyl)-1,9a-dihydro-2H-pyrido[1,2-a]pyrazine-3,4-

dicarboxylate (**3ag**): The reaction time was 2 hrs. Yellow thick oil; 72.9 mg, 69% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.52 (s, 1H), 8.03 – 7.95 (m, 3H), 7.92 (d, *J* = 8.0 Hz, 1H), 7.72 – 7.59 (m, 2H), 6.03 (d, *J* = 7.8 Hz, 1H), 5.90 – 5.81 (m, 1H), 5.43 – 5.35 (m, 1H), 5.01 – 4.94 (m, 1H), 4.87 (t, *J* = 6.6 Hz, 1H), 4.37 – 4.26 (m, 2H), 4.26 – 4.19 (m, 1H), 3.90 (s, 3H), 3.81 (s, 3H), 1.22 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 209.27, 165.21, 163.60, 135.32, 134.27, 132.02, 130.54, 130.11, 129.71, 129.57, 129.52, 128.12, 127.87, 127.30, 122.99, 122.30, 116.83, 107.46, 100.68, 69.13, 61.79, 57.80, 53.37, 52.53, 13.30; ESI-HRMS *m/z* calcd for C₂₅H₂₅N₂O₇S₂⁺ [M + H]⁺ 529.1098, found 529.1107.

3ah

Dimethyl *cis*-1-(ethoxycarbonothioyl)-2-(methylsulfonyl)-1,9a-dihydro-2*H*-pyrido[1,2-*a*]pyrazine-3,4-dicarboxylate (**3ah**): The reaction time was 1.5 hrs. Yellow thick oil; 53.3 mg, 64% yield; ¹H NMR (400 MHz, CDCl₃) δ 6.04 (d, *J* = 7.7 Hz, 1H), 5.96 – 5.89 (m, 1H), 5.57 – 5.50 (m, 1H), 5.23 – 5.18 (m, 1H), 4.98 – 4.92 (m, 1H), 4.63 – 4.58 (m, 1H), 4.46 (q, *J* = 7.1 Hz, 2H), 3.88 (s, 3H), 3.78 (s, 3H), 3.27 (s, 3H), 1.33 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 210.68, 164.58, 163.60, 130.48, 127.25, 122.29, 117.10, 107.01, 101.08, 69.45, 61.47, 59.43, 53.29, 52.46, 42.66, 13.43; ESI-HRMS *m/z* calcd for C₁₆H₂₁N₂O₇S₂⁺ [M + H]⁺ 417.0785, found 417.0799.

3ai

Dimethyl *cis*-1-((mesityloxy)carbonothioyl)-2-tosyl-1,9a-dihydro-2*H*-pyrido[1,2-*a*]pyrazine-3,4-dicarboxylate (**3ai**): The reaction time was 4.5 hrs. Yellow thick oil; 42.0 mg, 36% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.95 – 7.88 (m, 2H), 7.34 (d, J = 8.1 Hz, 2H), 6.84 – 6.76 (m, 2H), 6.16 (d, J = 7.7 Hz, 1H), 6.00 – 5.91 (m, 1H), 5.62 – 5.54 (m, 1H), 5.17 (d, J = 4.3 Hz, 1H), 5.06 – 4.99 (m, 1H), 4.55 – 4.47 (m, 1H), 3.84 (s, 3H), 3.78 (s, 3H), 2.44 (s, 3H), 2.23 (s, 3H), 1.84 (s, 3H), 1.79 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 208.32, 165.10, 163.58, 149.29, 145.08, 136.02, 134.32, 131.53, 129.91, 129.84, 129.45, 129.32, 129.21, 128.54, 126.63, 122.49, 116.88, 105.31, 101.28, 61.34, 57.67, 53.39, 52.30, 21.82, 20.90, 16.25, 15.86; ESI-HRMS *m/z* calcd for C₂₉H₃₁N₂O₇S₂⁺ [M + H]⁺ 583.1567, found 583.1578.

Diethyl *cis*-2-((4-bromophenyl)sulfonyl)-1-(ethoxycarbonothioyl)-1,9a-dihydro-2*H*-pyrido[1,2-*a*]pyrazine-3,4-dicarboxylate (**3bf**): The reaction time was 30 min. Yellow thick oil; 79.6 mg, 68% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.94 – 7.87 (m, 2H), 7.70 – 7.64 (m, 2H), 6.07 (d, *J* = 7.7 Hz, 1H), 5.95 – 5.87 (m, 1H), 5.49 – 5.41 (m, 1H), 4.96 – 4.88 (m, 1H), 4.87 (d, *J* = 3.8 Hz, 1H), 4.43 – 4.26 (m, 6H), 4.22 – 4.12 (m, 1H), 1.36 (t, *J* = 7.2 Hz, 3H), 1.32 – 1.24 (m, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 209.10, 164.37, 162.95, 136.84, 132.45, 131.00, 129.80, 128.97, 127.03, 122.32, 116.76, 106.61, 100.73, 69.21, 62.58, 61.64, 61.53, 57.96, 14.09, 13.88, 13.29; ESI-HRMS *m*/*z* calcd for C₂₃H₂₆BrN₂O₇S₂⁺ [M + H]⁺ 585.0359, found 585.0365.

Diisopropyl *cis*-2-((4-bromophenyl)sulfonyl)-1-(ethoxycarbonothioyl)-1,9a-dihydro-2*H*-pyrido[1,2-*a*]pyrazine-3,4dicarboxylate (**3cf**): The reaction time was 10 min. Yellow thick oil; 85.9 mg, 70% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.94 – 7.89 (m, 2H), 7.67 (d, *J* = 9.3 Hz, 2H), 6.06 (d, *J* = 7.8 Hz, 1H), 5.95 – 5.86 (m, 1H), 5.46 – 5.40 (m, 1H), 5.27 – 5.09 (m, 2H), 4.93 – 4.87 (m, 1H), 4.81 (d, *J* = 3.8 Hz, 1H), 4.42 – 4.26 (m, 3H), 1.39 – 1.25 (m, 15H); ¹³C NMR (101 MHz, CDCl₃) δ 209.22, 163.92, 162.46, 136.89, 132.47, 131.26, 129.90, 128.97, 126.91, 122.35, 116.81, 106.55, 100.57, 70.60, 69.32, 69.25, 61.79, 57.82, 22.11, 21.84, 21.42, 21.35, 13.39; ESI-HRMS *m/z* calcd for C₂₅H₃₀BrN₂O₇S₂⁺ [M + H]⁺ 613.0672, found 613.0683.

Dibutyl *cis*-2-((4-bromophenyl)sulfonyl)-1-(ethoxycarbonothioyl)-1,9a-dihydro-2*H*-pyrido[1,2-*a*]pyrazine-3,4dicarboxylate (**3df**): The reaction time was 10 min. Yellow thick oil; 70.6 mg, 55% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.92 – 7.86 (m, 2H), 7.70 – 7.64 (m, 2H), 6.06 (d, *J* = 7.7 Hz, 1H), 5.94 – 5.87 (m, 1H), 5.48 – 5.40 (m, 1H), 4.94 – 4.88 (m, 1H), 4.86 (d, *J* = 3.8 Hz, 1H), 4.42 – 4.27 (m, 5H), 4.26 – 4.17 (m, 1H), 4.08 – 3.99 (m, 1H), 1.76 – 1.58 (m, 4H), 1.48 – 1.34 (m, 4H), 1.27 (t, *J* = 7.1 Hz, 3H), 1.00 – 0.90 (m, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 209.16, 164.50, 163.10, 136.89, 132.46, 131.02, 129.81, 128.98, 127.11, 122.36, 116.78, 106.72, 100.70, 69.19, 66.54, 65.50, 61.68, 57.96, 30.54, 30.27, 19.19, 19.16, 13.78, 13.31 (one carbon missed); ESI-HRMS *m/z* calcd for C₂₇H₃₄BrN₂O₇S₂⁺ [M + H]⁺ 641.0985, found 641.0981.

Di-tert-butyl *cis*-2-((4-bromophenyl)sulfonyl)-1-(ethoxycarbonothioyl)-1,9a-dihydro-2*H*-pyrido[1,2-*a*]pyrazine-3,4-dicarboxylate (**3ef**): The reaction time was 20 min. Yellow thick oil; 82.1 mg, 64% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.86 – 7.81 (m, 2H), 7.69 – 7.63 (m, 2H), 6.10 (d, *J* = 7.7 Hz, 1H), 5.92 – 5.84 (m, 1H), 5.40 – 5.32 (m, 1H), 4.89 – 4.82 (m, 1H), 4.73 (d, *J* = 3.8 Hz, 1H), 4.51 – 4.38 (m, 1H), 4.38 – 4.26 (m, 1H), 4.19 – 4.13 (m, 1H), 1.57 (s, 9H), 1.52 (s, 9H), 1.33 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 209.31, 163.79, 162.04, 136.47, 132.55, 131.63, 129.85, 128.97, 126.96, 122.39, 116.54, 107.13, 99.97, 83.97, 82.07, 69.05, 61.76, 57.12, 28.17, 27.88, 13.55; ESI-HRMS *m/z* calcd for C₂₇H₃₄BrN₂O₇S₂⁺ [M + H]⁺ 641.0985, found 641.0977.

Dibenzyl *cis*-2-((4-bromophenyl)sulfonyl)-1-(ethoxycarbonothioyl)-1,9a-dihydro-2*H*-pyrido[1,2-*a*]pyrazine-3,4dicarboxylate (**3ff**): The reaction time was 30 min. Yellow thick oil; 76.6 mg, 54% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.81 – 7.75 (m, 2H), 7.52 – 7.46 (m, 2H), 7.40 – 7.28 (m, 10H), 5.95 (d, J = 7.7 Hz, 1H), 5.91 – 5.84 (m, 1H), 5.48 – 5.42 (m, 1H), 5.25 (d, J = 12.2 Hz, 1H), 5.08 (s, 2H), 5.03 (d, J = 12.2 Hz, 1H), 4.88 – 4.82 (m, 1H), 4.81 (d, J = 3.9 Hz, 1H), 4.53 – 4.45 (m, 1H), 4.32 – 4.20 (m, 2H), 1.11 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 209.09, 164.36, 162.78, 136.81, 135.40, 134.53, 132.35, 131.72, 129.84, 128.93, 128.87, 128.80, 128.71, 128.61, 128.47, 126.82, 122.24, 117.05, 105.62, 101.20, 69.27, 68.39, 67.58, 61.51, 58.19, 13.25 (one carbon missed); ESI-HRMS *m/z* calcd for C₃₃H₃₀BrN₂O₇S₂⁺ [M + H]⁺ 709.0672, found 709.0670.

Methyl *cis*-3-benzoyl-2-((4-bromophenyl)sulfonyl)-1-(ethoxycarbonothioyl)-1,9a-dihydro-2*H*-pyrido[1,2-*a*]pyrazine-4carboxylate (**3gf**): The reaction time was 30 min. Yellow thick oil; 51.9 mg, 43% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.01 – 7.94 (m, 2H), 7.66 – 7.59 (m, 2H), 7.57 – 7.48 (m, 3H), 7.47 – 7.38 (m, 2H), 6.09 (d, *J* = 7.7 Hz, 1H), 6.00 – 5.91 (m, 1H), 5.43 – 5.35 (m, 1H), 4.95 (d, *J* = 3.4 Hz, 1H), 4.90 – 4.82 (m, 1H), 4.51 – 4.38 (m, 2H), 3.96 (s, 1H), 3.54 (s, 3H), 1.31 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 209.10, 190.08, 163.41, 138.39, 135.20, 132.73, 132.41, 129.77, 129.48, 129.35, 128.41, 128.30, 123.09, 118.37, 116.06, 99.70, 69.36, 63.69, 57.32, 53.13, 13.50 (one carbon missed); ESI-HRMS *m/z* calcd for C₂₆H₂₄BrN₂O₆S₂⁺ [M + H]⁺ 603.0254, found 603.0250.

Methyl *cis*-3-(4-bromobenzoyl)-2-((4-bromophenyl)sulfonyl)-1-(ethoxycarbonothioyl)-1,9a-dihydro-2*H*-pyrido[1,2*a*]pyrazine-4-carboxylate (**3hf**): The reaction time was 25 min. Orange red solid, m.p. 70 – 71 °C; 73.7 mg, 54% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, *J* = 8.5 Hz, 2H), 7.66 (d, *J* = 8.6 Hz, 2H), 7.60 – 7.48 (m, 4H), 6.08 (d, *J* = 7.7 Hz, 1H), 6.00 – 5.91 (m, 1H), 5.40 – 5.30 (m, 1H), 4.98 – 4.91 (m, 1H), 4.91 – 4.82 (m, 1H), 4.53 – 4.39 (m, 2H), 3.76 (s, 1H), 3.60 (s, 3H), 1.32 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 208.91, 188.97, 163.27, 137.23, 134.74, 132.90, 131.58, 130.84, 129.69, 129.64, 128.61, 128.30, 127.42, 123.10, 118.25, 116.02, 99.91, 69.37, 63.73, 57.06, 53.25, 13.55; ESI-HRMS *m/z* calcd for C₂₆H₂₃Br₂N₂O₆S₂⁺ [M + H]⁺ 680.9359, found 680.9343.

Methyl *cis*-2-((4-bromophenyl)sulfonyl)-1-(ethoxycarbonothioyl)-3-(4-methoxybenzoyl)-1,9a-dihydro-2*H*-pyrido[1,2*a*]pyrazine-4-carboxylate (**3if**): The reaction time was 2 hrs. Yellow thick oil; 71.0 mg, 56% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.03 – 7.96 (m, 2H), 7.67 – 7.58 (m, 4H), 6.93 – 6.87 (m, 2H), 6.10 – 6.03 (m, 1H), 5.99 – 5.91 (m, 1H), 5.40 – 5.33 (m, 1H), 5.00 (d, *J* = 3.4 Hz, 1H), 4.85 – 4.78 (m, 1H), 4.51 – 4.37 (m, 2H), 3.90 – 3.83 (m, 4H), 3.54 (s, 3H), 1.30 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 209.26, 188.75, 163.50, 163.17, 135.46, 132.73, 131.59, 131.33, 129.75, 129.38, 128.74, 127.33, 123.19, 119.51, 115.86, 113.60, 99.24, 69.33, 64.14, 57.44, 55.59, 53.07, 13.53; ESI-HRMS *m/z* calcd for C₂₇H₂₆BrN₂O₇S₂⁺ [M + H]⁺ 633.0359, found 633.0336.

Dimethyl *cis*-2-((4-bromophenyl)sulfonyl)-1-(ethoxycarbonothioyl)-8-methyl-1,9a-dihydro-2*H*-pyrido[1,2-*a*]pyrazine-3,4-dicarboxylate (**3jf**): The reaction time was 30 min. Yellow thick oil; 40.0 mg, 35% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.90 – 7.82 (m, 2H), 7.70 – 7.63 (m, 2H), 6.01 (d, *J* = 7.8 Hz, 1H), 5.18 – 5.11 (m, 1H), 4.85 (d, *J* = 3.8 Hz, 1H), 4.79 (dd, *J* = 7.8, 1.7 Hz, 1H), 4.40 – 4.27 (m, 2H), 4.27 – 4.22 (m, 1H), 3.89 (s, 3H), 3.77 (s, 3H), 1.71 (s, 3H), 1.25 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 209.47, 165.01, 163.58, 137.05, 132.56, 130.85, 130.73, 129.79, 129.03, 126.87, 111.95, 107.07, 104.69, 69.07, 61.96, 58.22, 53.35, 52.51, 20.88, 13.34; ESI-HRMS *m*/*z* calcd for C₂₂H₂₄BrN₂O₇S₂⁺ [M + H]⁺ 571.0203, found 571.0200.

Dimethyl *cis*-2-((4-bromophenyl)sulfonyl)-1-(ethoxycarbonothioyl)-7-methyl-1,9a-dihydro-2*H*-pyrido[1,2-*a*]pyrazine-3,4-dicarboxylate(**3kf1**), and Dimethyl *cis*-2-((4-bromophenyl)sulfonyl)-1-(ethoxycarbonothioyl)-9-methyl-1,9a-dihydro-2*H*-pyrido[1,2-*a*]pyrazine-3,4-dicarboxylate (**3kf2**): The reaction time was 30 min. Yellow thick oil; 42.3 mg, 37% yield; ¹H NMR (400 MHz, CDCl₃; major product) δ 7.88 – 7.83 (m, 2H), 7.72 – 7.67 (m, 2H), 5.89 (d, *J* = 7.7 Hz, 1H), 5.76 – 5.70 (d, *J* = 5.8 Hz, 1H), 5.18 (d, *J* = 2.9 Hz, 1H), 4.84 (dd, *J* = 7.4, 6.3 Hz, 1H), 4.35 – 4.29 (m, 2H), 3.87 (s, 3H), 3.81 (s, 3H), 3.80 – 3.76 (m, 1H), 1.80 (s, 3H), 1.30 – 1.24 (m, 3H); ESI-HRMS *m/z* calcd for C₂₂H₂₄BrN₂O₇S₂⁺ [M + H]⁺ 571.0203, found 571.0204. The major product was **3kf2**. For the judging procedure and the explanation, see Page S15.

Dimethyl *cis*-2-((4-bromophenyl)sulfonyl)-8-(1,3-dioxolan-2-yl)-1-(ethoxycarbonothioyl)-1,9a-dihydro-2*H*-pyrido[1,2*a*]pyrazine-3,4-dicarboxylate (**3mf**): The reaction time was 30 min. Yellow thick oil; 78.1 mg, 62% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.88 – 7.76 (m, 2H), 7.69 – 7.54 (m, 2H), 6.09 – 5.98 (m, 1H), 5.60 – 5.50 (m, 1H), 5.21 – 5.13 (m, 1H), 5.01 – 4.90 (m, 1H), 4.89 – 4.79 (m, 1H), 4.34 – 4.21 (m, 3H), 3.98 – 3.78 (m, 7H), 3.78 – 3.68 (m, 3H), 1.27 – 1.12 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 208.76, 164.83, 163.33, 136.69, 132.59, 132.25, 130.63, 129.75, 129.16, 128.01, 114.97, 107.25, 102.26, 98.83, 69.33, 65.33, 65.09, 61.68, 57.85, 53.40, 52.56, 13.26; ESI-HRMS *m*/*z* calcd for C₂₄H₂₆BrN₂O₉S₂⁺ [M + H]⁺ 629.0258, found 629.0269.

Dimethyl *cis*-2-((4-bromophenyl)sulfonyl)-1-(ethoxycarbonothioyl)-8-(2-methyl-1,3-dioxolan-2-yl)-1,9a-dihydro-2*H*-pyrido[1,2-*a*]pyrazine-3,4-dicarboxylate (**3nf**): The reaction time was 30 min. Yellow thick oil; 104.3 mg, 81% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, *J* = 8.4 Hz, 2H), 7.69 (d, *J* = 8.4 Hz, 2H), 6.08 (d, *J* = 7.9 Hz, 1H), 5.61 – 5.55 (m, 1H), 4.98 (dd, *J* = 7.9, 1.7 Hz, 1H), 4.94 (d, *J* = 3.7 Hz, 1H), 4.35 – 4.25 (m, 3H), 3.97 – 3.91 (m, 2H), 3.89 (s, 3H), 3.87 – 3.82 (m, 1H), 3.79 (s, 3H), 3.73 – 3.66 (m, 1H), 1.42 (s, 3H), 1.25 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 209.40, 164.89, 163.45, 136.66, 135.93, 132.64, 130.38, 129.79, 129.19, 127.80, 111.73, 107.39, 107.29, 99.70, 69.37, 64.79, 64.45, 61.96, 57.99, 53.42, 52.59, 24.50, 13.29; ESI-HRMS *m/z* calcd for C₂₅H₂₈BrN₂O₉S₂⁺ [M + H]⁺ 643.0414, found 643.0413.

Methyl *cis*-3-(4-bromobenzoyl)-2-((4-bromophenyl)sulfonyl)-1-(ethoxycarbonothioyl)-8-(2-methyl-1,3-dioxolan-2-yl)-1,9a-dihydro-2*H*-pyrido[1,2-*a*]pyrazine-4-carboxylate (**3of**): The reaction time was 2 hrs. Red solid, m.p. 63 – 64 °C; 83.0 mg, 54% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.90 – 7.83 (m, 2H), 7.70 – 7.64 (m, 2H), 7.60 – 7.49 (m, 4H), 6.15 – 6.08 (m, 1H), 5.52 – 5.45 (m, 1H), 5.01 (d, *J* = 3.4 Hz, 1H), 4.93 (dd, *J* = 7.8, 1.7 Hz, 1H), 4.50 – 4.35 (m, 2H), 3.98 – 3.83 (m, 3H), 3.75 – 3.66 (m, 2H), 3.60 (s, 3H), 1.42 (s, 3H), 1.31 (t, *J* = 7.1 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 209.36, 188.90, 163.26, 137.21, 136.86, 134.70, 133.00, 131.64, 130.78, 129.78, 129.67, 128.84, 128.10, 127.50, 118.89, 110.85, 107.36, 98.85, 69.61, 64.88, 64.48, 64.17, 56.94, 53.25, 24.66, 13.54; ESI-HRMS *m/z* calcd for C₃₀H₂₉Br₂N₂O₈S₂⁺ [M + H]⁺ 766.9727, found 766.9724.

5 The judging procedure of the major product for 3kf and the explanation

As shown in the local enlarged ¹H NMR spectrum of the mixture **3kf**, the major isomer H_A (d, J = 7.6 Hz, 1H)), H_B (d, J = 6.0 Hz, 1H), and H_C (dd, J = 7.2, 6.4 Hz, 1H) belong to the same spin-coupling system. It's obvious that this spin-coupling system was corresponding to the sp2(C-H) of **3kf2**. On the other hand, the H₁ of **3kf1** should be a single peak and this peak pattern was corresponding to the minor isomer.

As shown in the proposed mechanism in main text, the intermediate F1 determined the structures of the final products. For product 3kf, it is obvious from the Newman projection that the steric hindrance of intermediate F1' was less than F1'', which led to the formation of 3kf2 as the major product.

6 General procedure for synthesis of 1,4-thiazine

General procedure:

A 15-mL Schlenk-tube was charged with 1 (0.20 mmol), 4 (0.40 mmol) and chloroform (4 mL) under nitrogen, and then the mixture was stirred and heated to reflux for 2 hrs. After completed, the solvent was removed in vacuo, and the residual was purified by silica gel column chromatography with PE/EtOAc as eluent to give compound **5**.

Dimethyl 6-(1,3-dioxoisoindolin-2-yl)-4-tosyl-4*H*-1,4-thiazine-2,3-dicarboxylate (**5aa**): Yellow solid, m.p. 131 – 132 °C; 83.4 mg, 81% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.94 – 7.87 (m, 4H), 7.83 – 7.78 (m, 2H), 7.41 – 7.35 (m, 2H), 6.79 (s, 1H), 3.93 (s, 3H), 3.77 (s, 3H), 2.49 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 165.29, 162.55, 161.81, 145.72, 135.19, 134.65, 131.28, 130.23, 128.02, 127.47, 125.78, 124.41, 122.55, 53.57, 53.45, 21.95 (one carbon missed); ESI-HRMS *m/z* calcd for C₂₃H₁₉N₂O₈S₂⁺ [M + H]⁺ 515.0577, found 515.0577.

Dimethyl 6-(1,3-dioxoisoindolin-2-yl)-4-(methylsulfonyl)-4*H*-1,4-thiazine-2,3-dicarboxylate (**5ab**): Yellow solid, m.p. 154 – 155 °C; 61.4 mg, 70% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.97 – 7.91 (m, 2H), 7.86 – 7.80 (m, 2H), 6.85 (s, 1H), 3.87 (s, 3H), 3.81 (s, 3H), 3.30 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 165.42, 161.86, 161.78, 135.64, 135.31, 131.16, 125.24, 125.06, 124.52, 120.27, 53.63, 53.51, 40.80; ESI-HRMS *m*/*z* calcd for C₁₇H₁₅N₂O₈S₂⁺ [M + H]⁺ 439.0264, found 439.0262.

Dimethyl 6-(1,3-dioxoisoindolin-2-yl)-4-((4-methoxyphenyl)sulfonyl)-4*H*-1,4-thiazine-2,3-dicarboxylate (**5ac**): Yellow solid, m.p. 139 – 140 °C; 76.4 mg, 72% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.97 – 7.88 (m, 4H), 7.84 – 7.78 (m, 2H), 7.08 – 7.02 (m, 2H), 6.77 (s, 1H), 3.93 (s, 3H), 3.92 (s, 3H), 3.77 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 165.29, 164.67, 162.61, 161.81, 135.19, 134.57, 131.26, 130.30, 128.82, 127.46, 125.89, 124.39, 122.52, 114.82, 55.88, 53.55, 53.43; ESI-HRMS *m/z* calcd for C₂₃H₁₉N₂O₉S₂⁺ [M + H]⁺ 531.0526, found 531.0533.

S15

Diethyl 6-(1,3-dioxoisoindolin-2-yl)-4-tosyl-4*H*-1,4-thiazine-2,3-dicarboxylate (**5ba**): Yellow solid, m.p. 111 – 112 °C; 78.1 mg, 72% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.94 – 7.87 (m, 4H), 7.84 – 7.77 (m, 2H), 7.41 – 7.35 (m, 2H), 6.79 (s, 1H), 4.38 (q, *J* = 7.2 Hz, 2H), 4.21 (q, *J* = 7.1 Hz, 2H), 2.49 (s, 3H), 1.41 (t, *J* = 7.1 Hz, 3H), 1.28 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 165.33, 162.04, 161.49, 145.62, 135.16, 134.74, 134.56, 131.30, 130.18, 128.04, 127.64, 125.81, 124.39, 122.63, 62.88, 62.85, 22.00, 14.02, 13.89; ESI-HRMS *m*/*z* calcd for C₂₅H₂₃N₂O₈S₂⁺ [M + H]⁺ 543.0890, found 543.0894.

Diisopropyl 6-(1,3-dioxoisoindolin-2-yl)-4-tosyl-4*H*-1,4-thiazine-2,3-dicarboxylate (**5ca**): Yellow oil; 70.8 mg, 62% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.95 – 7.87 (m, 4H), 7.84 – 7.77 (m, 2H), 7.41 – 7.34 (m, 2H), 6.78 (s, 1H), 5.21 (hept, J = 6.3 Hz, 1H), 5.03 (hept, J = 6.3 Hz, 1H), 2.49 (s, 3H), 1.40 (d, J = 6.3 Hz, 6H), 1.26 (d, J = 6.3 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 165.35, 161.46, 161.02, 145.51, 135.14, 134.79, 134.44, 131.31, 130.13, 128.06, 125.77, 124.37, 122.76, 71.01, 70.94, 22.01, 21.63, 21.53 (one carbon missed); ESI-HRMS *m*/*z* calcd for C₂₇H₂₇N₂O₈S₂⁺ [M + H]⁺ 571.1203, found 571.1202.

Di-*tert*-butyl 6-(1,3-dioxoisoindolin-2-yl)-4-tosyl-4*H*-1,4-thiazine-2,3-dicarboxylate (**5ea**): Yellow solid, m.p. 122 – 123 °C; 77.8 mg, 65% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.94 – 7.85 (m, 4H), 7.83 – 7.76 (m, 2H), 7.39 – 7.33 (m, 2H), 6.73 (s, 1H), 2.48 (s, 3H), 1.61 (s, 9H), 1.47 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 165.36, 160.67, 160.60, 145.32, 135.10, 134.70, 133.45, 131.32, 130.26, 130.00, 128.14, 125.88, 124.33, 123.61, 84.21, 83.77, 27.90, 21.93 (one carbon missed); ESI-HRMS *m/z* calcd for C₂₉H₃₁N₂O₈S₂⁺ [M + H]⁺ 599.1516, found 599.1516.

Dibenzyl 6-(1,3-dioxoisoindolin-2-yl)-4-tosyl-4*H*-1,4-thiazine-2,3-dicarboxylate (**5fa**): Yellow oil; 82.7 mg, 62% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.92 – 7.84 (m, 4H), 7.81 – 7.75 (m, 2H), 7.41 – 7.26 (m, 12H), 6.77 (s, 1H), 5.15 (s, 2H), 5.07 (s, 2H), 2.46 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 165.27, 161.90, 161.22, 145.67, 135.15, 134.90, 134.83, 134.61, 134.43, 131.25, 130.20, 128.90, 128.77, 128.73, 128.66, 128.61, 128.03, 127.11, 125.71, 124.37, 122.30, 68.67, 68.43, 21.93 (one carbon missed); ESI-HRMS *m/z* calcd for C₃₅H₂₇N₂O₈S₂⁺ [M + H]⁺ 667.1203, found 667.1194.

Methyl 3-benzoyl-6-(1,3-dioxoisoindolin-2-yl)-4-tosyl-4*H*-1,4-thiazine-2-carboxylate (**5ga**): Yellow solid, m.p. 84 – 85 °C; 53.8 mg, 48% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.03 – 7.97 (m, 2H), 7.97 – 7.88 (m, 4H), 7.86 – 7.79 (m, 2H), 7.66

-7.59 (m, 1H), 7.58 - 7.50 (m, 2H), 7.40 (d, J = 8.1 Hz, 2H), 6.89 (s, 1H), 3.53 (s, 3H), 2.50 (s, 3H); 13 C NMR (101 MHz, CDCl₃) δ 188.10, 165.47, 162.07, 145.77, 142.28, 135.59, 135.23, 135.01, 133.71, 131.33, 130.27, 129.30, 128.92, 127.95, 126.09, 125.53, 124.43, 121.90, 53.20, 21.98; ESI-HRMS *m/z* calcd for C₂₈H₂₁N₂O₇S₂⁺ [M + H]⁺ 561.0785, found 561.0787.

Methyl 3-(4-bromobenzoyl)-6-(1,3-dioxoisoindolin-2-yl)-4-tosyl-4*H*-1,4-thiazine-2-carboxylate (**5ha**): Yellow solid, m.p. 136 – 137 °C; 49.9 mg, 39% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.97 – 7.91 (m, 2H), 7.91 – 7.80 (m, 6H), 7.71 – 7.65 (m, 2H), 7.43 – 7.38 (m, 2H), 6.88 (s, 1H), 3.57 (s, 3H), 2.50 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 187.14, 165.44, 161.92, 145.90, 141.76, 135.27, 134.86, 134.44, 132.29, 131.32, 130.72, 130.32, 128.92, 127.93, 125.97, 125.84, 124.46, 121.74, 53.32, 21.98; ESI-HRMS *m/z* calcd for C₂₈H₁₉BrN₂NaO₇S₂⁺ [M + Na]⁺ 660.9709, found 660.9712.

Methyl 6-(1,3-dioxoisoindolin-2-yl)-3-(4-methoxybenzoyl)-4-tosyl-4*H*-1,4-thiazine-2-carboxylate (**5ia**): Yellow solid, m.p. 73 – 74 °C; 81.5 mg, 69% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.01 – 7.88 (m, 6H), 7.85 – 7.79 (m, 2H), 7.39 (d, *J* = 8.1 Hz, 2H), 7.04 – 6.99 (m, 2H), 6.90 (s, 1H), 3.90 (s, 3H), 3.54 (s, 3H), 2.49 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 186.66, 165.50, 164.08, 162.12, 145.68, 142.88, 135.21, 135.15, 131.64, 131.36, 130.23, 128.66, 127.95, 126.19, 124.69, 124.40, 121.73, 114.27, 55.69, 53.17, 22.02; ESI-HRMS *m/z* calcd for C₂₉H₂₃N₂O₈S₂⁺ [M + H]⁺ 591.0890, found 591.0897.

Methyl 3-(2-naphthoyl)-6-(1,3-dioxoisoindolin-2-yl)-4-tosyl-4*H*-1,4-thiazine-2-carboxylate (**5pa**): Yellow solid, m.p. 136 – 137 °C; 78.2 mg, 64% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.50 – 8.46 (m, 1H), 8.11 – 8.05 (m, 2H), 8.00 – 7.89 (m, 6H), 7.87 – 7.80 (m, 2H), 7.67 – 7.56 (m, 2H), 7.40 (d, *J* = 8.1 Hz, 2H), 6.98 (s, 1H), 3.52 (s, 3H), 2.50 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 187.90, 165.54, 162.05, 145.76, 142.66, 136.09, 135.26, 135.22, 132.98, 132.70, 131.52, 131.39, 130.28, 130.11, 128.91, 127.98, 127.90, 126.98, 126.52, 125.25, 124.51, 124.45, 121.29, 53.23, 29.83, 21.98 (one carbon missed); ESI-HRMS *m/z* calcd for C₃₂H₂₃N₂O₇S₂⁺ [M + H]⁺ 611.0941, found 611.0945.

7 Large scale reaction and further transformation of 3aa and 5aa

The mixture of **1a** (253 mg, 1.00 mmol) and **2a** (535 mg, 2.00 mmol) in anhydrous DME (20 mL) was stirred at 80 °C under N₂ for 2 hrs. After completed, the solvent was evaporated in vacuo and the residual was purified by silica gel column chromatography (PE : EtOAc = 6 : 1 to 4 : 1) to give the desired product **3aa** in 69% yield (339 mg).

A 100-mL Schlenk-flask was charged with **1a** (253 mg, 1.00 mmol), **4a** (737 mg, 2.00 mmol) and chloroform (20 mL) under nitrogen, and then the mixture was stirred and heated to reflux for 2 hrs. After completed, the solvent was removed in vacuo, and the residual was purified by silica gel column chromatography with PE/EtOAc (4 : 1) as eluent to give compound **5aa** in 83% yield (427 mg).

To a solution of **3aa** (99 mg, 0.20 mmol) in CCl₄ (4 mL) was added *tert*-butyl hypochlorite (23 μ L, 0.20 mmol) dropwise. The solvent was evaporated in vacuo after stirred at room temperature for 10 min. Then the residual was purified by silica gel column chromatography with PE/EtOAc (5 : 1 to 4 : 1) as eluent to give compound **6** (63 mg, 60% yield) as colorless oil.

Dimethyl *cis*-7-chloro-1-(ethoxycarbonothioyl)-2-tosyl-1,9a-dihydro-2*H*-pyrido[1,2-*a*]pyrazine-3,4-dicarboxylate (6): Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.86 – 7.79 (m, 2H), 7.33 (d, *J* = 8.1 Hz, 2H), 6.19 – 6.15 (m, 1H), 5.91 – 5.84 (m, 1H), 5.47 (ddd, *J* = 10.4, 3.4, 0.9 Hz, 1H), 4.86 (d, *J* = 3.7 Hz, 1H), 4.36 (q, *J* = 7.1 Hz, 2H), 4.03 – 3.98 (m, 1H), 3.89 (s, 3H), 3.81 (s, 3H), 2.44 (s, 3H), 1.28 – 1.23 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 208.63, 164.97, 163.23, 145.22, 134.05, 130.08, 128.93, 128.39, 125.10, 124.58, 118.35, 109.24, 108.12, 69.30, 61.98, 56.78, 53.55, 52.70, 21.84, 13.36; ESI-HRMS m/z calcd for C₂₂H₂₄ClN₂O₇S₂⁺ [M + H]⁺ 527.0708, found 527.0711.

The mixture of **3aa** (99 mg, 0.20 mmol), hydroxylamine hydrochloride (42 mg, 0.60 mmol), and sodium acetate (49 mg, 0.60 mmol) in MeOH (4 mL) was stirred at room temperature for 8 hours. Water was added to the mixture and the mixture was extracted with ethyl acetate twice. The organic layers were combined, washed with brine, dried with anhydrous Na_2SO_4 , filtered, and concentrated. The residual was purified by silica gel column chromatography with PE/EtOAc (4:1 to 3:1) as eluent to give compound **7** (68 mg, 69% yield) as yellow solid.

Dimethyl *cis*-1-((Z)-ethoxy(hydroxyimino)methyl)-2-tosyl-1,9a-dihydro-2*H*-pyrido[1,2-*a*]pyrazine-3,4-dicarboxylate (7): Yellow solid, m.p. 144 – 145 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.86 – 7.79 (m, 2H), 7.36 – 7.30 (m, 2H), 6.69 (s, 1H), 6.04 (d, *J* = 7.7 Hz, 1H), 5.91 – 5.83 (m, 1H), 5.52 (d, *J* = 4.3 Hz, 1H), 5.29 – 5.22 (m, 1H), 4.95 – 4.88 (m, 1H), 4.26 – 4.20 (m, 1H), 3.89 – 3.79 (m, 5H), 3.77 (s, 3H), 2.43 (s, 3H), 1.15 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 165.34, 163.84, 159.48, 144.74, 134.58, 132.23, 129.87, 128.36, 127.06, 123.33, 116.35, 106.74, 101.20, 63.24, 56.26, 53.25, 52.33, 43.49, 21.79, 14.02; ESI-HRMS m/z calcd for C₂₂H₂₆N₃O₈S⁺ [M + H]⁺ 492.1435, found 492.1440.

To a solution of **5aa** (103 mg, 0.20 mmol) in anhydrous dichloromethane (2 mL) was added *m*-CPBA (70%, 49 mg, 0.20 mmol) at room temperature. The reaction was completed within 10 min. The mixture was purified by silica gel column chromatography with PE/EtOAc (2:1 to 1:1) as eluent to give compound **8** (75 mg, 71% yield) as white solid.

Dimethyl 6-(1,3-dioxoisoindolin-2-yl)-4-tosyl-4H-1,4-thiazine-2,3-dicarboxylate 1-oxide (**8**): White solid, m.p. 87 – 88 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.04 (s, 1H), 7.99 – 7.93 (m, 2H), 7.89 (d, J = 8.2 Hz, 2H), 7.87 – 7.80 (m, 2H), 7.41 (d, J = 8.1 Hz, 2H), 4.06 (s, 3H), 3.87 (s, 3H), 2.43 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 165.88, 162.74, 161.76, 147.57, 139.39, 135.26, 132.97, 131.36, 130.63, 128.41, 127.89, 124.44, 122.29, 117.93, 54.28, 53.55, 22.01; ESI-HRMS m/z calcd for C₂₃H₁₉N₂O₉S₂⁺ [M + H]⁺ 531.0526, found 531.0530.

The solution of **5aa** (103 mg, 0.20 mmol) in anhydrous DMSO (2 mL) was stirred at 80 °C for 24 hours. After completed, the reaction was diluted with ethyl acetate (100 mL) and washed with water (30 mL \times 2) and brine (30 mL \times 3). The organic layer was dried with anhydrous Na₂SO₄, filtered, and concentrated. The residual was purified by silica gel column chromatography with PE/EtOAc (2.5:1 to 2:1) as eluent to give compound **9** (43 mg, 42% yield) as light yellow oil.

Dimethyl 5-(1,3-dioxoisoindolin-2-yl)-4-((4-methylphenyl)sulfonamido)thiophene-2,3-dicarboxylate (**9**): Light yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 10.32 (s, 1H), 7.86 – 7.81 (m, 2H), 7.80 – 7.74 (m, 2H), 7.49 – 7.44 (m, 2H), 7.11 – 7.05 (m, 2H), 3.96 (s, 3H), 3.71 (s, 3H), 2.32 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 165.55, 162.22, 159.13, 145.64, 140.61, 134.52, 131.71, 130.03, 127.30, 126.68, 123.85, 117.88, 116.12, 53.00, 52.39, 21.81 (one carbon missed); ESI-HRMS m/z calcd for C₂₃H₁₉N₂O₂S₂⁺ [M + H]⁺ 515.0577, found 515.0582.

8 References

- 1. Bazgir, A.; Moafi, L.; Ahadi, S.; Khavasi, H. Synthesis, 2011, 1399–1402.
- 2. Cheng, B.; Li, Y.; Wang, T.; Zhang, X.; Li, H.; Li, Y.; Zhai, H. Chem. Commun., 2019, 55, 14606--14608.
- Cheng, B.; Li, H.; Duan, S.; Zhang, X.; He, Y.; Li, Y.; Li, Y.; Wang, T.; Zhai, H. Org. Biomol. Chem., 2020, 18, 6253–6257.
- Cheng, B.; Bao, B.; Xu, W.; Li, Y.; Li, H.; Zhang, X.; Li, Y.; Wang, T.; Zhai, H. Org. Biomol. Chem., 2020, 18, 2949-2955.
- 5. Cheng, B.; Li, Y.; Wang, T.; Zhang, X.; Li, H.; He, Y.; Li, Y.; Zhai, H. J. Org. Chem. 2020, 85, 6794–6802.
- 6. Raushel, J.; Fokin, V. V. Org. Lett., 2010, 12, 4952-4955.
- 7. Alford, J. S.; Davies, H. M. J. Am. Chem. Soc. 2014, 136, 10266-10269.
- 8. Wilkerson-Hill, S. M.; Haines, B. E.; Musaev, D. G.; Davies, H. M. L. J. Org. Chem., 2018, 83, 7939–7949.
- 9. Alford, J. S.; Davies, H. M. Org. Lett., 2012, 14, 6020-6023.
- 10. Guarnieri-Ibanez, A.; Medina, F.; Besnard, C.; Kidd, S. L.; Spring, D. R.; Lacour, J. Chem. Sci., 2017, 8, 5713-5720.

Figure S8-2. ¹³C NMR of 1d (CDCl₃, 101 MHz)

Figure S8-3. ¹H NMR of 1f (CDCl₃, 400 MHz)

Figure S8-4. ¹³C NMR of 1f (CDCl₃, 101 MHz)

Figure S8-5. ¹H NMR of 1k (CDCl₃, 400 MHz)

Figure S8-6. ¹³C NMR of 1k (CDCl₃, 101 MHz)

Figure S8-7. ¹H NMR of 11 (CDCl₃, 400 MHz)

Figure S8-8. ¹³C NMR of 11 (CDCl₃, 101 MHz)

Figure S8-9. ¹H NMR of 10 (CDCl₃, 400 MHz)

Figure S8-10. ¹³C NMR of 10 (CDCl₃, 101 MHz)

Figure S8-11. ¹H NMR of 1p (DMSO-d6, 400 MHz)

Figure S8-12. ¹³C NMR of 1p (DMSO-d6, 101 MHz)

Figure S8-13. ¹H NMR of 2c (CDCl₃, 400 MHz)

Figure S8-14. ¹³C NMR of 2c (CDCl₃, 101 MHz)

Figure S8-15. ¹H NMR of 2d (CDCl₃, 400 MHz)

Figure S8-17. ¹H NMR of 2e (CDCl₃, 400 MHz)

Figure S8-18. ¹³C NMR of 2e (CDCl₃, 101 MHz)

Figure S8-19. ¹H NMR of 2f (CDCl₃, 400 MHz)

Figure S8-20. ¹³C NMR of 2f (CDCl₃, 101 MHz)

Figure S8-21. ¹H NMR of 2g (CDCl₃, 400 MHz)

Figure S8-22. ¹³C NMR of 2g (CDCl₃, 101 MHz)

Figure S8-23. ¹H NMR of 2i (CDCl₃, 400 MHz)

Figure S8-24. ¹³C NMR of 2i (acetone-d6, 101 MHz)

Figure S8-25. ¹H NMR of 3aa (CDCl₃, 400 MHz)

Figure S8-26. ¹³C NMR of 3aa (CDCl₃, 101 MHz)

Figure S8-27. ¹H NMR of 3ab (CDCl₃, 400 MHz)

Figure S8-29. ¹H NMR of 3ac (CDCl₃, 400 MHz)

Figure S8-30. ¹³C NMR of 3ac (CDCl₃, 101 MHz)

Figure S8-31. ¹H NMR of 3ad (CDCl₃, 400 MHz)

Figure S8-32. ¹³C NMR of 3ad (CDCl₃, 101 MHz)

Figure S8-33. ¹H NMR of 3ae (CDCl₃, 400 MHz)

Figure S8-34. ¹³C NMR of 3ae (CDCl₃, 101 MHz)

Figure S8-35. ¹H NMR of 3af (CDCl₃, 400 MHz)

Figure S8-37. ¹H NMR of 3ag (CDCl₃, 400 MHz)

Figure S8-38. ¹³C NMR of 3ag (CDCl₃, 101 MHz)

Figure S8-39. ¹H NMR of 3ah (CDCl₃, 400 MHz)

Figure S8-41. ¹H NMR of 3ai (CDCl₃, 400 MHz)

Figure S8-42. ¹³C NMR of 3ai (CDCl₃, 101 MHz)

Figure S8-43. ¹H NMR of 3bf (CDCl₃, 400 MHz)

Figure S8-44. ¹³C NMR of 3bf (CDCl₃, 101 MHz)

Figure S8-45. ¹H NMR of 3cf (CDCl₃, 400 MHz)

Figure S8-46. ¹³C NMR of 3cf (CDCl₃, 101 MHz)

Figure S8-47. ¹H NMR of 3df (CDCl₃, 400 MHz)

Figure S8-49. ¹H NMR of 3ef (CDCl₃, 400 MHz)

Figure S8-50. ¹³C NMR of 3ef (CDCl₃, 101 MHz)

Figure S8-51. ¹H NMR of 3ff (CDCl₃, 400 MHz)

Figure S8-52. ¹³C NMR of 3ff (CDCl₃, 101 MHz)

Figure S8-53. ¹H NMR of 3gf (CDCl₃, 400 MHz)

Figure S8-54. ¹³C NMR of 3gf (CDCl₃, 101 MHz)

Figure S8-55. ¹H NMR of 3hf (CDCl₃, 400 MHz)

Figure S8-56. ¹³C NMR of 3hf (CDCl₃, 101 MHz)

Figure S8-57. ¹H NMR of 3if (CDCl₃, 400 MHz)

Figure S8-58. ¹³C NMR of 3if (CDCl₃, 101 MHz)

Figure S8-59. ¹H NMR of 3jf (CDCl₃, 400 MHz)

Figure S8-61. ¹H NMR of 3kf (CDCl₃, 400 MHz)

Figure S8-62. ¹³C NMR of 3kf (CDCl₃, 101 MHz)

Figure S8-63. ¹H NMR of 3mf (CDCl₃, 400 MHz)

Figure S8-64. ¹³C NMR of 3mf (CDCl₃, 101 MHz)

Figure S8-65. ¹H NMR of 3nf (CDCl₃, 400 MHz)

Figure S8-67. ¹H NMR of 3of (CDCl₃, 400 MHz)

Figure S8-68. ¹³C NMR of 3of (CDCl₃, 101 MHz)

Figure S8-69. ¹H NMR of 5aa (CDCl₃, 400 MHz)

Figure S8-70. ¹³C NMR of 5aa (CDCl₃, 101 MHz)

Figure S8-71. ¹H NMR of 5ab (CDCl₃, 400 MHz)

Figure S8-72. ¹³C NMR of 5ab (CDCl₃, 101 MHz)

Figure S8-73. ¹H NMR of 5ac (CDCl₃, 400 MHz)

Figure S8-74. ¹³C NMR of 5ac (CDCl₃, 101 MHz)

Figure S8-75. ¹H NMR of 5ba (CDCl₃, 400 MHz)

Figure S8-76. ¹³C NMR of 5ba (CDCl₃, 101 MHz)

Figure S8-77. ¹H NMR of 5ca (CDCl₃, 400 MHz)

Figure S8-78. ¹³C NMR of 5ca (CDCl₃, 101 MHz)

Figure S8-79. ¹H NMR of 5ea (CDCl₃, 400 MHz)

Figure S8-80. ¹³C NMR of 5ea (CDCl₃, 101 MHz)

Figure S8-81. ¹H NMR of 5fa (CDCl₃, 400 MHz)

Figure S8-82. ¹³C NMR of 5fa (CDCl₃, 101 MHz)

Figure S8-83. ¹H NMR of 5ga (CDCl₃, 400 MHz)

Figure S8-84. ¹³C NMR of 5ga (CDCl₃, 101 MHz)

Figure S8-85. ¹H NMR of 5ha (CDCl₃, 400 MHz)

Figure S8-86. ¹³C NMR of 5ha (CDCl₃, 101 MHz)

Figure S8-87. ¹H NMR of 5ia (CDCl₃, 400 MHz)

Figure S8-88. ¹³C NMR of 5ia (CDCl₃, 101 MHz)

Figure S8-89. ¹H NMR of 5pa (CDCl₃, 400 MHz)

Figure S8-90. ¹³C NMR of 5pa (CDCl₃, 101 MHz)

Figure S8-91. ¹H NMR of 6 (CDCl₃, 400 MHz)

Figure S8-92. ¹³C NMR of 6 (CDCl₃, 101 MHz)

Figure S8-93. ¹H NMR of 7 (CDCl₃, 400 MHz)

Figure S8-94. ¹³C NMR of 7 (CDCl₃, 101 MHz)

Figure S8-95. ¹H NMR of 8 (CDCl₃, 400 MHz)

Figure S8-96. ¹³C NMR of 8 (CDCl₃, 101 MHz)

Figure S8-97. ¹H NMR of 9 (CDCl₃, 400 MHz)

Figure S8-98. ¹³C NMR of 9 (CDCl₃, 101 MHz)

CCDC 2102821

Table 1 Crystal data and structure refinement for 0409d_1_0m.	
Identification code	0409d_1_0m
Empirical formula	$C_{26}H_{22}Br_2N_2O_6S_2$
Formula weight	682.38
Temperature/K	296(2)
Crystal system	monoclinic
Space group	P-1
a/Å	9.708(3)
b/Å	10.645(3)
c/Å	14.207(4)
α/°	86.104(4)
β/°	71.609(3)
γ/°	84.982(4)
Volume/Å ³	1386.6(7)
Ζ	2
$\rho_{calc}g/cm^3$	1.634
µ/mm ⁻¹	3.117
F(000)	684.0
Crystal size/mm ³	$0.180 \times 0.160 \times 0.150$
Radiation	MoKa ($\lambda = 0.71073$)
20 range for data collection/°	3.466 to 55.306
Index ranges	$-12 \le h \le 12, -13 \le k \le 13, -18 \le l \le 18$
Reflections collected	15621
Independent reflections	$6221 [R_{int} = 0.0269, R_{sigma} = 0.0347]$
Data/restraints/parameters	6221/0/345
Goodness-of-fit on F ²	1.054
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0607, wR_2 = 0.1960$
Final R indexes [all data]	$\underline{\mathbf{R}_1 = 0.0837, \mathbf{w}\mathbf{R}_2 = 0.1927}$
Largest diff. peak/hole / e Å-3	0.72/-0.52

CCDC 2102822

Table 1 Crystal data and structure refinement for 0714_0m.	
Identification code	0714_0m
Empirical formula	$C_{28}H_{19}BrN_2O_7S_2$
Formula weight	639.48
Temperature/K	296(2)
Crystal system	monoclinic
Space group	P2 ₁ /c
a/Å	7.860(6)
b/Å	36.16(3)
c/Å	9.697(8)
α/°	90
β/°	92.082(12)
γ/°	90
Volume/Å ³	2754(4)
Ζ	4
$\rho_{calc}g/cm^3$	1.542
µ/mm ⁻¹	1.694
F(000)	1296.0
Crystal size/mm ³	0.18 imes 0.17 imes 0.16
Radiation	$MoK\alpha (\lambda = 0.71073)$
20 range for data collection/°	4.506 to 57.056
Index ranges	$-10 \le h \le 10, -46 \le k \le 46, -12 \le l \le 13$
Reflections collected	23225
Independent reflections	$6388 [R_{int} = 0.1136, R_{sigma} = 0.1297]$
Data/restraints/parameters	6388/0/363
Goodness-of-fit on F ²	0.988
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0679, wR_2 = 0.1675$
Final R indexes [all data]	$R_1 = 0.1583, wR_2 = 0.2111$
Largest diff. peak/hole / e Å ⁻³	0.72/-0.67