Supporting Information

Total Syntheses of (\pm)-penicibilaenes A and B via intramolecular aldol condensation

Rintaro Matsuo, Ayumu Watanabe, Shogo Kamo, Akinobu Matsuzawa, and Kazuyuki Sugita*

Department of Synthetic Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan

Index

1. General 2
2. Experimental Procedures 2
3. Supplementary Tables and Scheme 13
4. Single-crystal X-ray analysis of 3 15
5. 1 H and 13 C NMR spectroscopic data 16
6. References 55

1. General

All reactions were carried out in a round-bottom flask or a test tube fitted with a 3-way glass stopcock under Ar atmosphere unless otherwise stated. Reagents were purchased from commercial suppliers and used as received unless otherwise noted. All work-up and purification procedures were carried out with reagent-grade solvents under ambient atmosphere. Analytical thin layer chromatography (TLC) was performed on Merck precoated TLC plates (silica gel $60 \mathrm{~F}_{254}, 0.25 \mathrm{~mm}$). Flash chromatography was performed using silica gel 60 N (neutral, 40-50 $\mu \mathrm{m}$; Kanto Chemical Co., Inc.). Melting point (Mp) data were determined using a Yanaco MP apparatus and were uncorrected. IR spectra were recorded on a JASCO FT/IR 4100 spectrometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on JEOL ECA-600 spectrometers, using CDCl_{3} or acetone- d_{6} as solvent. Chemical shift values are reported in δ (ppm) relative to residual solvent signals $\left(\mathrm{CDCl}_{3}: 7.26 \mathrm{ppm}\right.$ for ${ }^{1} \mathrm{H}$ and 77.00 ppm for ${ }^{13} \mathrm{C}$, acetone $-d_{6}: 2.04 \mathrm{ppm}$ for ${ }^{1} \mathrm{H}$ and 29.80 ppm or 206.26 ppm for ${ }^{13} \mathrm{C}$). NMR data are reported as follows: chemical shifts, multiplicity (s: singlet, d : doublet, t : triplet, $\mathrm{q}: ~ q u a r t e t, ~ q u i n: ~ q u i n t e t, ~ m: ~ m u l t i p l e t, ~ b r: ~ b r o a d ~ s i g n a l), ~ c o u p l i n g ~ c o n s t a n t, ~ a n d ~ i n t e g r a t i o n . ~$ High-resolution mass spectra (ESI-TOF or EI) were measured on JEOL JMS-T100LP or JMS-700. Single-crystal X-ray analyses were performed on Rigaku XtaLaB Synergy-DW instruments.

2. Experimental Procedures

2-(2-chloropropyl)-1,3-dioxane (9)

To a suspension of $\mathrm{NaCl}(25.01 \mathrm{~g}, 428.0 \mathrm{mmol})$, 1,3-propanediol ($12.3 \mathrm{~mL}, 171.2 \mathrm{mmol}$), and TMSCl (21.7 mL, $171.2 \mathrm{mmol})$ in $\mathrm{MeCN}(143 \mathrm{~mL})$ was added $7(11.7 \mathrm{~mL}, 142.7 \mathrm{mmol})$ dropwise via syringe at $-50{ }^{\circ} \mathrm{C}$. After complete addition, the solution was allowed to warm to $0{ }^{\circ} \mathrm{C}$ and stirred for 16 h . The reaction mixture was quenched by the addition of sat. NaHCO_{3} aq. and diluted with hexane. After the layers were separated, the aqueous layer was extracted with hexane. The combined organic solution was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to give $9(21.73 \mathrm{~g}, 132.0 \mathrm{mmol}, 93 \%)$ as a yellow oil.

IR (neat) $v_{\max }=2971,2928,2856,1380.1142,1104,1032,1000 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.74(\mathrm{dd}, J$ $=7.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.21-4.15(\mathrm{~m}, 1 \mathrm{H}), 4.12-4.07(\mathrm{~m}, 2 \mathrm{H}), 3.79(\mathrm{tdd}, J=12.0,4.2,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.11-2.03(\mathrm{~m}, 1 \mathrm{H})$, 2.01-1.92 (m, 2H), 1.52 (d, $J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.37-1.34(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz, acetone- $\left.d_{6}\right) \delta 100.3,67.3$, 67.2, 54.9, 46.3, 26.5, 25.8; HRMS (ESI) m / z calcd. for $\mathrm{C}_{7} \mathrm{H}_{13} \mathrm{ClO}_{2} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$187.0496, found 187.0499.

3-allylcyclohex-2-en-1-one (10)

To a solution of $\mathbf{8}(11.3 \mathrm{~g}, 80.6 \mathrm{mmol})$ in THF $(150 \mathrm{~mL})$ was added allyl $\mathrm{MgCl}(2.0 \mathrm{M}$ in THF, $44.0 \mathrm{~mL}, 88.7$ mmol) dropwise via syringe at $-78{ }^{\circ} \mathrm{C}$. After complete addition, the solution was allowed to warm to $0{ }^{\circ} \mathrm{C}$ and stirred for 3 h . The reaction mixture was cooled to $-60^{\circ} \mathrm{C}, 1 \mathrm{M} \mathrm{HCl}$ aq. was added, and the resulting mixture was allowed to warm to $0{ }^{\circ} \mathrm{C}$. After the mixture was diluted with EtOAc, the biphasic solution was separated and the aqueous layer was extracted with EtOAc. The combined organic solution was washed with sat. NaHCO_{3} aq. and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to give a residue. The residue was purified by distillation at $88^{\circ} \mathrm{C}(4 \mathrm{mmHg}) 10(9.82 \mathrm{~g}, 72.1 \mathrm{mmol}, 89 \%)$ as a colorless oil.

IR (neat) $v_{\max }=2940,2887,1671,1628,1427,1372,1348,1325,1251,1191,1139,997,969,921,885 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.88(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.81-5.75(\mathrm{~m}, 1 \mathrm{H}), 5.14(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{dd}, J=16.8$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.35(\mathrm{dd}, J=7.2,6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.29(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.98$ (quin, $J=6.0 \mathrm{~Hz}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.8,164.1,133.2,126.3,118.3,42.2,37.3,29.5,22.6 ;$ HRMS (ESI) m / z calcd. for $\mathrm{C}_{9} \mathrm{H}_{2} \mathrm{ONa}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 159.0780$, found 159.0782.

7a-allyl-1-methyl-1,2,5,6,7,7a-hexahydro-4H-inden-4-one (12)

To a suspension of $\mathrm{Mg}(1.3 \mathrm{~g}, 53 \mathrm{mmol})$ and $\mathrm{I}_{2}(4.5 \mathrm{mg}, 35 \mu \mathrm{~mol})$ in THF $(19 \mathrm{~mL})$ was added a solution of 9 ($5.81 \mathrm{~g}, 35.3 \mathrm{mmol}$) in THF (4 mL) at rt. The mixture was refluxed for 25 min and was then diluted with THF (21 mL). After the resulting mixture was refluxed for further 60 min ., the reaction mixture was cooled to rt to give Grignard reagent S1 (~0.8 M).

To a suspension of $\mathrm{CuBr} \cdot \mathrm{SMe}_{2}(1.37 \mathrm{~g}, 6.64 \mathrm{mmol})$ in THF $(65 \mathrm{~mL})$ was added the Grignard reagent $\mathbf{S 1}(\sim 0.8 \mathrm{M}$ in THF, $28.0 \mathrm{~mL}, 22.4 \mathrm{mmol}$) dropwise via syringe at $-78^{\circ} \mathrm{C}$. The mixture was allowed to warm to $-60{ }^{\circ} \mathrm{C}$ and stirred for 40 min . After cooling to $-78^{\circ} \mathrm{C}, \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(2.2 \mathrm{~mL}, 18 \mathrm{mmol})$ was added to the mixture and stirred for 10 min . To this mixture was added a solution of $\mathbf{1 0}(754 \mathrm{mg}, 5.54 \mathrm{mmol})$ in THF (4 mL) dropwise via syringe at $-78{ }^{\circ} \mathrm{C}$. After complete addition, the solution was allowed to warm to $-50^{\circ} \mathrm{C}$ and the additional Grignard reagent $\mathbf{S 1}\left(\sim 0.8 \mathrm{M}\right.$ in THF, $6.0 \mathrm{~mL}, 4.8 \mathrm{mmol}$) was then added. The mixture was stirred for 12.5 h at $-50^{\circ} \mathrm{C}$. The reaction mixture was quenched by addition of 1 M HCl aq. and diluted with EtOAc. After the layers were separated, the aqueous layer was extracted with EtOAc. The combined organic solution was washed with sat. NaHCO_{3} aq. and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to give a residue. The residue was purified by flash column chromatography (Hexane/EtOAc $=100 / 0$ to $1 / 3$) to give 11 ($1: 1$ diastereomer mixture) with a small amount of
inseparable byproduct. This mixture was used next reaction without further purification.
To a solution of $\mathbf{1 1}$ in THF (55 mL) was added 9 M HCl aq. $(15.3 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After being stirred for 6 h at rt , the reaction mixture was quenched by the addition of sat. NaHCO_{3} aq. and diluted with $\mathrm{Et}_{2} \mathrm{O}$. After the layers were separated, the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic solution was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to give a residue. The residue was purified by flash column chromatography (Pentane $/ \mathrm{Et}_{2} \mathrm{O}=19 / 1$ to $17 / 3$) to give $12(446.2 \mathrm{mg}, 2.34 \mathrm{mmol}, 42 \%$ over 2 steps from $\mathbf{1 0}, 1.4: 1$ diastereomer mixture) as a yellow oil.

IR (neat) $v_{\max }=3073,2931,2876,1685,1616,1442,1248,1161,916 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.56$ (dd, $J=4.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{t}, J=2.4 \mathrm{~Hz}, 0.7 \mathrm{H}), 5.78-5.67(\mathrm{~m}, 1.7 \mathrm{H}), 5.08(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{dd}, J=$ $16.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.23-5.01(\mathrm{~m}, 1.4 \mathrm{H}), 2.75(\mathrm{ddd}, J=18.6,7.2,2.4 \mathrm{~Hz}, 0.7 \mathrm{H}), 2.49-2.45(\mathrm{~m}, 0.7 \mathrm{H}), 2.43-2.34(\mathrm{~m}$, 2.7H), 2.28-2.16 (m, 3H), 2.15-2.10 (m, 3.4H), 2.04 (dd, $J=13.8,6.0 \mathrm{~Hz}, 0.7 \mathrm{H}), 1.96-1.83$ (m, 4.1H), 1.77-1.71 $(\mathrm{m}, 1.7 \mathrm{H}), 1.64(\mathrm{dt}, J=13.2,4.2 \mathrm{~Hz}, 0.7 \mathrm{H}), 1.50-1.44(\mathrm{~m}, 1 \mathrm{H}), 1.10(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2.1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (150 MHz, CDCl_{3}) $\delta 200.8$ (2C), 149.1, 146.7, 137.4, 135.1, 134.5, 117.9, 117.8, 52.5, 50.7, 48.9, 41.3, $40.2,40.0,39.8,39.3,38.2,37.9,34.2,27.4,20.4,19.9,17.5,13.2$; HRMS (ESI) m / z calcd. for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{ONa}$ $\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 213.1250$, found 213.1251 .

3a-allyl-3-methylhexahydroindeno[1,7a-b]oxiren-7(1aH)-one (13)

To a solution of $\mathbf{1 2}(318.6 \mathrm{mg}, 1.67 \mathrm{mmol}, 1: 0.7$ diastereomer mixture) in $\mathrm{MeOH}(17 \mathrm{~mL})$ was added a mixture of $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ aq. ($437 \mu \mathrm{~L}, 5.0 \mathrm{mmol}$) and 3 M NaOH aq. $(1.1 \mathrm{~mL}, 3.4 \mathrm{mmol})$ at $-10{ }^{\circ} \mathrm{C}$. The solution was stirred for 14.5 h at same temperature. The reaction mixture was quenched by the addition of sat. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ aq. and neutralized with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ aq. The volatiles were removed under reduced pressure, and the residue was dissolved with EtOAc and $\mathrm{H}_{2} \mathrm{O}$. After the layers were separated, the aqueous layer was extracted with EtOAc. The combined organic solution was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to give a residue. The residue was purified by flash column chromatography (Hexane/EtOAc $=100 / 0$ to $3 / 1$) to give $13(280.4 \mathrm{mg}, 1.36 \mathrm{mmol}$, $81 \%, 1.4: 1$ diastereomer mixture) as an orange oil.

IR (neat) $v_{\max }=3074,2939,2882,1717,1638,1446,1414,1314,1142,993,917,841 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 5.88-5.81(\mathrm{~m}, 0.7 \mathrm{H}), 5.72-5.65(\mathrm{~m}, 1 \mathrm{H}), 5.12(\mathrm{~d}, 17.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~d}, J=15.0$ $\mathrm{Hz}, 0.7 \mathrm{H}), 5.05(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 0.7 \mathrm{H}), 3.48(\mathrm{~s}, 1 \mathrm{H}), 3.41(\mathrm{~s}, 0.7 \mathrm{H}), 2.63-2.55(\mathrm{~m}, 1.7 \mathrm{H}), 2.45(\mathrm{ddd}, J=15.0,7.2$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.39-2.22(\mathrm{~m}, 6.1 \mathrm{H}), 2.12-1.88(\mathrm{~m}, 6.2 \mathrm{H}), 1.79(\mathrm{dd}, J=15.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.77-1.74(\mathrm{~m}, 0.7 \mathrm{H}), 1.63-$ $1.51(\mathrm{~m}, 2 \mathrm{H}), 1.03(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2.1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 205.3,205.1$, $134.3,134.1,118.0,117.7,74.7,72.9,65.1,63.8,50.2,49.5,41.1,40.9,39.4,37.8,36.1,35.4,35.1,33.0,32.5,27.5$, 20.4, 20.0, 19.9, 13.5 ; HRMS (ESI) m / z calcd. for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{O}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$207.1380, found 207.1376.
$\left(1 S^{*}, 3 R^{*}, 3 \mathrm{a} R^{*}, 7 \mathrm{aS} S^{*}\right)$-7a-allyl-3-hydroxy-1-methyloctahydro-4H-inden-4-one (14) and ($\left.1 R^{*}, 3 R^{*}, 3 \mathrm{a} R^{*}, 7 \mathrm{a} S^{*}\right)$ -7a-allyl-3-hydroxy-1-methyloctahydro-4H-inden-4-one (15)

To a solution of naphthalene ($392 \mathrm{mg}, 3.06 \mathrm{mmol}$) in THF (5 mL) was added $\mathrm{Li}(66.9 \mathrm{mg}, 9.70 \mathrm{mmol})$ at rt . The solution was stirred for 1 h at same temperature, and THF (12 mL) was then added. After cooling to $-78{ }^{\circ} \mathrm{C}$, a solution of $\mathbf{1 3}(211.2 \mathrm{mg}, 1.02 \mathrm{mmol}, 1: 0.7$ diastereomer mixture) in THF (4 mL) was added. After being stirred for 2 h , the reaction mixture was quenched by the addition of sat. $\mathrm{NH}_{4} \mathrm{Cl}$ aq. and diluted with EtOAc. After the layers were separated, the aqueous layer was extracted with EtOAc. The combined organic solution was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to give a residue. The residue was purified by flash column chromatography (Hexane/EtOAc $=100 / 0$ to $3 / 2$) to give $14(94.1 \mathrm{mg}, 452 \mu \mathrm{~mol}, 44 \%)$ as a white solid and $15(73.9$ $\mathrm{mg}, 355 \mu \mathrm{~mol}, 35 \%)$ as a pale yellow oil. The stereochemistry of 14 was determined by NOESY correlations.

14: $\mathrm{Mp}=35-36{ }^{\circ} \mathrm{C}$; IR (neat) $v_{\max }=3411,3074,2955,1689,1442,1092,996,922 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 5.86-5.79(\mathrm{~m}, 1 \mathrm{H}), 5.16(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{brd}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.52-4.48(\mathrm{~m}, 1 \mathrm{H}), 2.46(\mathrm{~d}, J=$ $4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{dt}, J=16.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.28-2.15(\mathrm{~m}, 3 \mathrm{H}), 2.06(\mathrm{dd}, J=13.8,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.99$ (brt, $J=4.2$ $\mathrm{Hz}, 1 \mathrm{H}), 1.86-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.40(\mathrm{~m}, 2 \mathrm{H}), 0.96(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 213.7,134.6,119.1,73.6,64.6,48.4,40.5,39.7,39.3,39.1,30.1,20.3,13.6$; HRMS (ESI) m / z calcd. for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{O}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$209.1536, found 209.1539 .

15: IR (KBr) $v_{\max }=3415,3075,2949,2876,1697,1640,1454,1345,1245,1072,1000,914 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.83-5.76(\mathrm{~m}, 1 \mathrm{H}), 5.11(\mathrm{dd}, J=10.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{brs}, 1 \mathrm{H}), 2.44-$ 2.38 (m, 2H), 2.32 (brd, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.22-2.15(\mathrm{~m}, 2 \mathrm{H}), 2.10(\mathrm{dd}, J=15.0,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.99-1.93$ (m, 2H), $1.90-1.83(\mathrm{~m}, 3 \mathrm{H}), 1.49-1.42(\mathrm{~m}, 2 \mathrm{H}), 0.90(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 213.7,133.5,118.7$, 74.8, 68.7, 51.6, 41.4, 40.0, 39.3, 38.0, 26.4, 21.6, 13.3; HRMS (ESI) m / z calcd. for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{O}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 209.1536$, found 209.1543 .

7a-allyl-3-((tert-butyldimethylsilyl)oxy)-1-methyloctahydro-4H-inden-4-one (16)

To a solution of $\mathbf{1 4}(1.77 \mathrm{~g}, 8.50 \mathrm{mmol})$ in DMF $(21 \mathrm{~mL})$ was added imidazole ($1.74 \mathrm{~g}, 25.5 \mathrm{mmol}$) and TBSCl $(1.93 \mathrm{~g}, 12.8 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The solution was stirred for 2 h at rt . The reaction mixture was quenched by the addition of $\mathrm{H}_{2} \mathrm{O}$ and diluted with a mixture of $\mathrm{EtOAc} /$ hexane $(3 / 7)$. After the layers were separated, the aqueous layer was extracted with a mixture of EtOAc/hexane (3/7). The combined organic solution was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to give a residue. The residue was purified by flash column chromatography $($ Hexane $/ \mathrm{EtOAc}=100 / 0$ to $9 / 1)$ to give $\mathbf{1 6}(2.73 \mathrm{~g}, 8.46 \mathrm{mmol}$, quant. $)$ as a colorless oil.

IR (neat) $v_{\max }=3076,2953,2884,1706,1638,1464,1383,1254,1042,915,837,777 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 5.92-5.85(\mathrm{~m}, 1 \mathrm{H}), 5.15(\mathrm{dd}, J=10.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{dd}, J=16.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.78-4.76(\mathrm{~m}, 1 \mathrm{H})$, $2.54(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{dd}, J=13.8,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.32-2.25(\mathrm{~m}, 2 \mathrm{H}), 2.21-2.16(\mathrm{~m}, 1 \mathrm{H}), 1.95(\mathrm{dd}, J=13.8$, $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.86-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.46-1.42(\mathrm{~m}, 1 \mathrm{H}), 1.39-1.34(\mathrm{~m}, 1 \mathrm{H}), 0.88(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$, $0.86(\mathrm{~s}, 9 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 212.3,135.3,118.7,71.8,64.9,50.3,42.2$, $40.4,38.6,37.4,29.0,25.8(3 \mathrm{C}), 21.5,17.9,13.5,-4.8,-4.9$; HRMS (ESI) m / z calcd. for $\mathrm{C}_{19} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{SiNa}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$ 345.2220 , found 345.2236 .

7a-allyl-3-((tert-butyldimethylsilyl)oxy)-1-methyl-1,2,3,3a,7,7a-hexahydro-4H-inden-4-one (4)

16

2) IBX, MPO DMSO/PhCI (1:1) rt, 4 h, 74\% (2 steps)

4

To a solution of $16(87.9 \mathrm{mg}, 273 \mu \mathrm{~mol})$ in THF (5.5 mL) was added LHMDS (1 M in THF, $0.8 \mathrm{~mL}, 0.8 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The solution was stirred for 40 min at same temperature. To this solution was added $\mathrm{TMSCl}(69.0 \mu \mathrm{~L}, 545$ $\mu \mathrm{mol}$) and the resulting mixture was stirred for 20 min at $0^{\circ} \mathrm{C}$. The reaction mixture was quenched by the addition of sat. NaHCO_{3} aq. and diluted with hexane. After the layers were separated, the aqueous layer was extracted with hexane. The combined organic solution was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to give crude silyl enol ether, which was used next reaction without further purification.

To a solution of crude silyl enol ether in a mixture of DMSO $(0.9 \mathrm{~mL})$ and $\mathrm{PhCl}(0.9 \mathrm{~mL})$ was added IBX (229.0 $\mathrm{mg}, 818 \mu \mathrm{~mol})$ and MPO $(102.3 \mathrm{mg}, 818 \mu \mathrm{~mol})$ at rt . The solution was stirred for 4 h at same temperature. The reaction mixture was quenched by the addition of sat. NaHCO_{3} aq. and diluted with EtOAc. After the layers were separated, the aqueous layer was extracted with EtOAc. The combined organic solution was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to give a residue. The residue was purified by flash column chromatography (Hexane/EtOAc $=100 / 0$ to $1 / 20$) to give $4(64.9 \mathrm{mg}, 202 \mu \mathrm{~mol}, 74 \%)$ as yellow oil.

IR (neat) $\nu_{\max }=3076,3034,2954,2890,2858,1669,1465,1389,1253,1072,1057,1032,928,839,778 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.75-6.72(\mathrm{~m}, 1 \mathrm{H}), 5.96-5.94(\mathrm{dt}, J=10.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.82-5.75(\mathrm{~m}, 1 \mathrm{H}), 5.12(\mathrm{dd}$, $J=10.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{dd}, J=16.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{dt}, J=8.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.49$ (dt, $J=19.8,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{dd}, J=13.8,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{dt}, J=14.4,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.11$ (ddd, $J=19.8,4.8$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.97(\mathrm{dd}, J=13.8,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.93-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.38(\mathrm{ddd}, J=14.4,9.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.96(\mathrm{~d}, J$ $=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.5,147.8,135.5,128.0$, $118.6,75.3,61.7,47.0,42.9,39.6,37.3,30.5,25.8$ (3C), 17.9, 14.7, $-4.8,-5.0$; HRMS (ESI) m / z calcd. for $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{SiNa}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 343.2064$, found 343.2054 .

Installation of the isopropenyl group.

Cu mediated 1,4 -addition reaction. ($\left.1 S^{*}, 3 R^{*}, 3 a R^{*}, 6 R^{*}, 7 \mathrm{a} R^{*}\right)$-7a-allyl-3-((tert-butyldimethylsilyl)oxy)-1-methyl-6-(prop-1-en-2-yl)octahydro-4H-inden-4-one (19)

To a suspension of magnesium powder ($20.9 \mathrm{mg}, 0.86 \mathrm{mmol}$) in THF (0.8 mL) was added 2-bromopropene (69 $\mu \mathrm{L}, 0.79 \mathrm{mmol}$) at rt . The mixture was stirred at $60^{\circ} \mathrm{C}$ until Mg disappeared and then cooled to rt to give Grignard reagent 17. The resulting Grignard reagent 17 was added to a suspension of $\mathrm{CuI}(74.7 \mathrm{mg}, 393 \mu \mathrm{~mol})$ in THF (3.9 $\mathrm{mL})$ at $-78^{\circ} \mathrm{C}$. The solution was stirred for 20 min . To this mixture was added a solution of $4(62.9 \mathrm{mg}, 196 \mu \mathrm{~mol})$ in THF (0.4 mL) dropwise via syringe at same temperature. The reaction mixture was allowed to warm to $0{ }^{\circ} \mathrm{C}$ over 20 min . The mixture was quenched by the addition of sat. NaHCO_{3} aq. and diluted with EtOAc. After the layers were separated, the aqueous layer was extracted with a mixture of EtOAc. The combined organic solution was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to give a residue. The residue was purified by flash column chromatography (Hexane/EtOAc $=100 / 0$ to $40 / 1$) to give $19(50.2 \mathrm{mg}, 138 \mu \mathrm{~mol}, 71 \%)$ as a colorless oil.

19: IR (neat) $v_{\max }=3077,2953,2934,2894,2858,1707,1643,1462,1380,1255,1051,919,838,778 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.87-5.80(\mathrm{~m}, 1 \mathrm{H}), 5.16-5.08(\mathrm{~m}, 2 \mathrm{H}), 4.75(\mathrm{~s}, 1 \mathrm{H}), 4.69(\mathrm{~s}, 1 \mathrm{H}), 4.68-4.65(\mathrm{~m}, 1 \mathrm{H})$, $2.58(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{dt}, J=13.8,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.44-2.35(\mathrm{~m}, 2 \mathrm{H}), 2.28-2.17(\mathrm{~m}, 3 \mathrm{H}), 1.85(\mathrm{dt}, J=13.8$, $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}), 1.66-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.61(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.39-1.34(\mathrm{~m}, 1 \mathrm{H}), 1.19(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $0.99(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H}), 0.00(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 212.5,147.5,134.7$, $118.2,109.5,73.4,65.7,49.3,43.4,43.0,43.1,40.1,37.9,37.8,25.8$ (3C), 20.7, 17.9, 15.7, -4.8 (2C); HRMS (ESI) m / z calcd. for $\mathrm{C}_{22} \mathrm{H}_{39} \mathrm{O}_{2} \mathrm{Si}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 363.2714$, found 363.2702.

Rh mediated 1,4-addition reaction.

$\left(1 S^{*}, 3 R^{*}, 3 \mathrm{a} R^{*}, 6 S^{*}, 7 \mathrm{a} R^{*}\right)$-7a-allyl-3-((tert-butyldimethylsilyl)oxy)-1-methyl-6-(prop-1-en-2-yl)octahydro-
$4 H$-inden-4-one (18) and $\left(1 S^{*}, 3 R^{*}, 3 \mathrm{a} R^{*}, 6 R^{*}, 7 \mathrm{a} R^{*}\right)$-7a-allyl-3-((tert-butyldimethylsilyl)oxy)-1-methyl-6-(prop-1-en-2-yl)octahydro-4H-inden-4-one (19)

To a solution of $4(497.7 \mathrm{mg}, 1.55 \mathrm{mmol})$, (\pm)-BINAP ($442.0 \mathrm{mg}, 710 \mu \mathrm{~mol})$, potassium isopropenyltrifluoroborate $(\mathbf{2 0}, 2.10 \mathrm{~g}, 14.2 \mathrm{mmol})$, and $[\mathrm{Rh}(\operatorname{cod}) \mathrm{Cl}]_{2}(353.9 \mathrm{mg}, 718 \mu \mathrm{~mol})$ in heptane $(142 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(14 \mathrm{~mL})$ was added $\mathrm{Et}_{3} \mathrm{~N}(2.0 \mathrm{~mL}, 14.3 \mathrm{mmol})$ at rt . The solution was refluxed for 2 h . The reaction mixture was cooled to rt and passed through a pad of Celite, and the filtrate was diluted with hexane and brine. After the layers were separated, the aqueous layer was extracted with hexane. The combined organic solution was washed
with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to give a residue. The residue was purified by flash column chromatography (Hexane/toluene $=100 / 0$ to $11 / 9)$ to give $18(300.5 \mathrm{mg}, 829 \mu \mathrm{~mol}, 53 \%)$ as a white solid and 19 $(171.5 \mathrm{mg}, 473 \mu \mathrm{~mol}, 30 \%)$ as a colorless oil.

18: $\mathrm{Mp}=34-35^{\circ} \mathrm{C}$; IR (KBr) $v_{\max }=3078,2955,2931,2858,1704,1642,1460,1381,1255,1084,1040,912$, $837,775 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.94(\mathrm{~m}, 1 \mathrm{H}), 5.18(\mathrm{dd}, J=10.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{dd}, J=17.4,1.8$ Hz, 1H), 4.83 (ddd, $J=7.8,4.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.76$ (d, $J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.71$ (s, 1H), 2.55 (s, 1H), 2.46 (dd, $J=13.2$, $6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.36-2.29(\mathrm{~m}, 2 \mathrm{H}), 2.24(\mathrm{td}, J=13.2,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.14(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.89(\mathrm{dd}, J=13.8,7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 1.76-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.59(\mathrm{td}, J=14.4,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.38(\mathrm{ddd}, J=13.2,12.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.88-$ 0.86 (overlap, 3 H), $0.86(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 211.5,147.6,135.2$, $119.2,109.7,71.0,63.8,49.7,46.1,41.9,39.9,38.1,37.2,33.9,38.1,37.2,33.9,25.9$ (3C), 20.6, 17.9, 12.7, -4.8, -4.9; HRMS (ESI) m / z calcd. for $\mathrm{C}_{22} \mathrm{H}_{39} \mathrm{O}_{2} \mathrm{Si}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 363.2714$, found 363.2700 .

$\left(1 S^{*}, 3 R^{*}, 3 \mathrm{a} R^{*}, 4 R^{*}, 6 S^{*}, 7 \mathrm{a} R^{*}\right)-7 \mathrm{a}-\mathrm{allyl}-3-(($ tert-butyldimethylsilyl) $) \mathrm{xy})$-1,4-dimethyl-6-(prop-1-en-2-

 yl)octahydro-1H-inden-4-ol (3)

To a solution of $\mathbf{1 8}(105.0 \mathrm{mg}, 290 \mu \mathrm{~mol})$ in THF $(2.8 \mathrm{~mL})$ was added MeLi (3.1 M in dimethoxymethane, 470 $\mu \mathrm{L}, 1.46 \mathrm{mmol}$) dropwise via syringe at $-78^{\circ} \mathrm{C}$. The solution was stirred for 3 h . The reaction mixture was quenched by the addition of sat $\mathrm{NH}_{4} \mathrm{Cl}$ aq. and diluted with EtOAc . After the layers were separated, the aqueous layer was extracted with EtOAc. The combined organic solution was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to give a residue. The residue was purified by flash column chromatography $\left(\mathrm{Hexane}^{2} / \mathrm{Et}_{2} \mathrm{O}=100 / 0\right.$ to 19/1) to give 3 ($100.6 \mathrm{mg}, 266 \mu \mathrm{~mol}, 92 \%$) as a white solid.
$\mathrm{Mp}=40-41^{\circ} \mathrm{C}$; IR (KBr) $\nu_{\max }=3519,3075,2952,2929,2856,1643,1463,1373,1254,1044,911,881,835$, $773 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.87-5.80(\mathrm{~m} 1 \mathrm{H}), 5.07(\mathrm{dd}, J=10.2,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{~d}, J=17.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.71(\mathrm{~s}, 1 \mathrm{H}), 4.69(\mathrm{~s}, 1 \mathrm{H}), 4.36(\mathrm{dd}, J=7.2,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{dd}, J=13.8,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.36-2.29(\mathrm{~m}, 3 \mathrm{H})$, $1.77(\mathrm{dd}, J=13.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{~s}, 1 \mathrm{H}), 1.55(\mathrm{td}, J=13.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.44(\mathrm{td}, J=13.8,2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 1.37-1.28(\mathrm{~m}, 2 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.84(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.78(\mathrm{~s}, 1 \mathrm{H})$, $0.061(\mathrm{~s}, 3 \mathrm{H}), 0.058(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.3,136.6,117.8,108.4,74.0,72.0,57.7,46.2,45.3$, $44.5,38.6,38.3,34.6,34.0,31.6,25.8$ (3C), 21.1, 17.8, 13.4, -4.4, -4.7; HRMS (ESI) m / z calcd. for $\mathrm{C}_{23} \mathrm{H}_{42} \mathrm{O}_{2} \mathrm{SiNa}$ $\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$401.2846, found 401.2859 .

To a solution of $\mathbf{3}(73.5 \mathrm{mg}, 194 \mu \mathrm{~mol})$ in DCE $(3.8 \mathrm{~mL})$ was degassed with sonication under an argon atmosphere. To this solution was added Hoveyda-Grubbs $2^{\text {nd }}$ catalyst ($62.5 \mathrm{mg}, 99.7 \mu \mathrm{~mol}$) at rt . The solution was stirred for 16.5 h at $70^{\circ} \mathrm{C}$. The reaction mixture was then refluxed for further 4.5 h . The reaction mixture was cooled to rt and passed through a pad of Celite, and the filtrate was concentrated to give a residue. The residue was purified by flash column chromatography (Hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}=100 / 0$ to $3 / 2$) to give $21(58.3 \mathrm{mg}, 166 \mu \mathrm{~mol}, 86 \%)$ as a colorless oil.

IR (neat) $v_{\max }=3491,2955,2930,2888,2860,1459,1372,1254,1117,1072,836,774 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.26-5.25(\mathrm{brm}, 1 \mathrm{H}), 4.42-4.38(\mathrm{~m}, 1 \mathrm{H}), 2.18(\mathrm{brd}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.08-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.80(\mathrm{dd}, J$ $=15.0,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.73(\mathrm{dd}, J=16.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.67-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}), 1.57-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.49(\mathrm{~s}$, $1 \mathrm{H}), 1.42-1.36(\mathrm{~m}, 2 \mathrm{H}), 1.24(\mathrm{~s}, 3 \mathrm{H}), 0.91(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.063(\mathrm{~s}, 3 \mathrm{H})$, $0.060(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.8,119.9,73.8,71.6,60.5,40.0,41.9,41.6,41.0,34.60,34.56$, 32.7, 31.3, $25.8(3 \mathrm{C}), 21.9,17.8,14.5,-3.6,-4.9$; HRMS (ESI) m / z calcd. for $\mathrm{C}_{21} \mathrm{H}_{38} \mathrm{O}_{2} \mathrm{SiNa}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 373.2533$, found 373.2525 .

(\pm)-Penicibilaene A (1)

To a solution of $21(50.1 \mathrm{mg}, 143 \mu \mathrm{~mol})$ in THF $(950 \mu \mathrm{~L})$ was added TBAF (1.0 M in THF, $500 \mu \mathrm{~L}, 500 \mu \mathrm{~mol}$) at $0{ }^{\circ} \mathrm{C}$. The solution was stirred for 19 h at rt . The reaction mixture was quenched by the addition sat $\mathrm{NH}_{4} \mathrm{Cl}$ aq. and diluted with EtOAc. After the layers were separated, the aqueous layer was extracted with EtOAc. The combined organic solution was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to give a residue. The residue was purified by flash column chromatography (Hexane/EtOAc $=100 / 0$ to $3 / 2$) to give (\pm)-penicibilaene $\mathrm{A}(\mathbf{1})(32.6$ $\mathrm{mg}, 138 \mu \mathrm{~mol}, 97 \%)$ as a white solid.

IR (KBr) $v_{\max }=3361,3306,2962,2942,2912,2887,1442,1415,1145,1114,1037,807 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (600 MHz , acetone $\left.-d_{6}\right) \delta 5.22(\mathrm{dd}, J=3.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.46-4.42(\mathrm{~m}, 1 \mathrm{H}), 3.41(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{~s}, 1 \mathrm{H}), 2.14$ (brd, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.06-2.02(\mathrm{~m}, 1 \mathrm{H}), 2.02-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.88(\mathrm{dd}, J=14.4,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.86(\mathrm{td}, J=11.4,3.0$ $\mathrm{Hz}, 1 \mathrm{H}), 1.75-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.62(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.49(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.45(\mathrm{~d}, J=6.6$ $\mathrm{Hz}, 1 \mathrm{H}), 1.38(\mathrm{td}, J=11.4,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.29(\mathrm{ddd}, J=11.4,4.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H}), 0.87(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (150 MHz, CDCl_{3}) $\delta 140.9,120.7,73.4,71.3,61.4,42.6,42.5$ (2C), 42.4, 36.0, 35.3, 33.2, 31.4, 22.2, 15.0; HRMS (ESI) m / z calcd. for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$259.1699, found 259.1707.

(土)-Penicibilaene B (2)

(\pm)-penicibilaene A (1)

99\%

(\pm)-penicibilaene B(2)

To a solution of (\pm)-penicibilaene A (1) $(5.03 \mathrm{mg}, 21.3 \mu \mathrm{~mol})$ and DMAP ($1.1 \mathrm{mg}, 9.0 \mu \mathrm{~mol})$ in pyridine (450 $\mu \mathrm{L}$) was added $\mathrm{Ac}_{2} \mathrm{O}(10.0 \mu \mathrm{~L}, 106 \mu \mathrm{~mol})$ at rt . The solution was stirred for 2 h at rt . The reaction mixture was quenched by the addition sat $\mathrm{NH}_{4} \mathrm{Cl}$ aq. and diluted with EtOAc. After the layers were separated, the aqueous layer was extracted with EtOAc. The combined organic solution was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to give a residue. The residue was purified by flash column chromatography (Hexane/EtOAc = 100/0 to $7 / 3$) to give (\pm)-penicibilaene B (2) $(5.87 \mathrm{mg}, 21.1 \mu \mathrm{~mol}, 99 \%)$ as a white solid.

IR (KBr) $v_{\max }=3493,2955,2926,2888,2842,1716,1456,1372,1276,1147,1111,1022,929,818 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.36(\mathrm{ddd}, J=13.8,7.8,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{ddd}, J=12.6,7.8$, $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}), 1.83(\mathrm{dd}, J=15.0,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.79-$ $1.70(\mathrm{~m}, 4 \mathrm{H}), 1.65(\mathrm{brs}, 3 \mathrm{H}), 1.53(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.44(\mathrm{dd}, J=11.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.37(\mathrm{dt}, J=12.6,9.0 \mathrm{~Hz}$, 1 H), $1.15(\mathrm{~s}, 3 \mathrm{H}), 1,15$ (overlap, 1H), $0.91(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.9,140.3,119.4$, $71.1,56.8,41.8,41.7,41.2,38.3,34.4,34.2,31.9,30.3,21.8,21.4,13.9$; HRMS (ESI) m / z calcd. for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{Na}$ $\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 301.1774$, found 301.1782 .

$\left(1 S^{*}, 3 R^{*}, 3 \mathrm{a} R^{*}, 7 \mathrm{a} R^{*}\right)$-3-((tert-butyldimethylsilyl)oxy)-1-methyl-7a-propyl-1,2,3,3a,7,7a-hexahydro-4H-

 inden-4-one (S3)

A suspension of $16(202.9 \mathrm{mg}, 629 \mu \mathrm{~mol})$ and $10 \% \mathrm{Pd} / \mathrm{C}(67.2 \mathrm{mg}, 63.2 \mu \mathrm{~mol})$ in $\mathrm{MeOH}(6.3 \mathrm{~mL})$ was stirred under hydrogen atmosphere at rt for 1.5 h . The mixture was filtered through a pad of Celite and washed with MeOH . The filtrate was concentrated to give crude $\mathbf{S 2}$, which was used next reaction without further purification.

To a solution of crude $\mathbf{S} \mathbf{2}$ in THF (12.5 mL) was added LHMDS (1 M in THF, $1.9 \mathrm{~mL}, 1.9 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. The solution was stirred for 55 min at same temperature. To this solution was added $\mathrm{TMSCl}(360 \mu \mathrm{~L}, 2.84 \mathrm{mmol})$ and the resulting mixture was stirred for 45 min at $0^{\circ} \mathrm{C}$. The reaction mixture was quenched by the addition of sat. NaHCO_{3} aq. and diluted with hexane. After the layers were separated, the aqueous layer was extracted with hexane. The combined organic solution was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to give crude silyl enol ether, which was used next reaction without further purification.

To a solution of crude silyl enol ether in a mixture of a mixture of $\mathrm{PhCl}(2.1 \mathrm{~mL})$ and $\mathrm{DMSO}(2.1 \mathrm{~mL})$ was added IBX ($529.7 \mathrm{mg}, 1.89 \mathrm{mmol})$ and MPO $(237.3 \mathrm{mg}, 1.90 \mathrm{mmol})$ at rt . The solution was stirred for 15.5 h at the same temperature. The reaction mixture was quenched by the addition of sat. NaHCO_{3} aq. and diluted with a mixture of hexane/EtOAc (7:3). After the layers were separated, the aqueous layer was extracted with a mixture of
hexane/EtOAc (7:3). The combined organic solution was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to give a residue. The residue was purified by flash column chromatography (Hexane/Et ${ }_{2} \mathrm{O}=100 / 0$ to $24 / 1)$ to give $\mathbf{S 3}(105.2 \mathrm{mg}, 326 \mu \mathrm{~mol}, 52 \%)$ as pale yellow oil.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.76-6.73(\mathrm{~m}, 1 \mathrm{H}), 5.96(\mathrm{ddd}, J=10.2,3.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(q u i n, 1 \mathrm{H}), 2.58(\mathrm{~d}$, $J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{dt}, J=19.8,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{dt}, J=13.8,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.13(\mathrm{ddd}, J=19.8,4.8,1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 1.87-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.61(\mathrm{td}, J=12.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.37-1.28(\mathrm{~m}, 2 \mathrm{H}), 1.26-1.17(\mathrm{~m}, 1 \mathrm{H}), 1.11(\mathrm{td}, J=12.0$, $3.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.92(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 200.0,147.9,128.1,75.3,61.8,47.1,42.8,40.0,35.4,31.3,25.8$ (3C), 18.2, 17.9, 14.8, 14.7, $-4.9,-5.0$; HRMS (ESI) m / z calcd. for $\mathrm{C}_{19} \mathrm{H}_{35} \mathrm{O}_{2} \mathrm{Si}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 323.2401$, found 323.2401.
$\left(1 S^{*}, 3 R^{*}, 3 a R^{*}, 6 S^{*}, 7 \mathrm{a} R^{*}\right)$-3-((tert-butyldimethylsilyl)oxy)-1-methyl-6-(prop-1-en-2-yl)-7a-propyloctahydro$4 H$-inden-4-one (S4) and ($\left.1 S^{*}, 3 R^{*}, 3 \mathrm{a} R^{*}, 6 R^{*}, 7 \mathrm{a} R^{*}\right)$-3-((tert-butyldimethylsilyl)oxy)-1-methyl-6-(prop-1-en-2-yl)-7a-propyloctahydro-4H-inden-4-one (S5)

To a solution of $\mathbf{S 3}(30.0 \mathrm{mg}, 93.0 \mu \mathrm{~mol}),(\pm)$-BINAP ($29.0 \mathrm{mg}, 46.6 \mu \mathrm{~mol}$), $20(138.3 \mathrm{mg}, 935 \mu \mathrm{~mol})$, and $\left[\mathrm{Rh}(\operatorname{cod}) \mathrm{Cl}_{2}(28.2 \mathrm{mg}, 57.2 \mu \mathrm{~mol})\right.$ in heptane $(9.3 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(930 \mu \mathrm{~L})$ was added $\mathrm{Et}_{3} \mathrm{~N}(130 \mu \mathrm{~L}, 933 \mathrm{mmol})$ at rt . The solution was refluxed for 18.5 h . The reaction mixture was cooled to rt and passed through a pad of Celite, and the filtrate was diluted with hexane and brine. After the layers were separated, the aqueous layer was extracted with hexane. The combined organic solution was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to give a residue. The residue was purified by flash column chromatography (Hexane/toluene $=100 / 0$ to $3 / 1$) to give $\mathbf{S 4}$ (18.2 mg , $49.9 \mu \mathrm{~mol}, 54 \%)$ as a white solid and $\mathbf{S 5}(11.4 \mathrm{mg}, 31.3 \mu \mathrm{~mol}, 34 \%)$ as colorless oil.

S4: ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.77-4.75(\mathrm{~m}, 2 \mathrm{H}), 4.71$ (brs, 1 H), $2.50(\mathrm{brs}, 1 \mathrm{H}), 2.38-2.33(\mathrm{~m}, 2 \mathrm{H}), 2.21-$ $2.15(\mathrm{~m}, 2 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.71-1.55(\mathrm{~m}, 4 \mathrm{H}), 1.40-1.33(\mathrm{~m} 3 \mathrm{H}), 1.10-1.05(\mathrm{~m}, 1 \mathrm{H}), 0.93(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.85$ ($\mathrm{s}, 9 \mathrm{H}$) $0.84(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($\left.150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 211.9,147.7,109.6,71.0$, $64.0,49.5,45.9,41.8,40.0,38.3,35.4,34.5,25.7$ (3C), 20.6, 17.8, 17.5, 14.7, 12.6, $-4.8,-5.0$; HRMS (ESI) m / z calcd. for $\mathrm{C}_{22} \mathrm{H}_{40} \mathrm{O}_{2} \mathrm{SiNa}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 387.2690$, found 387.2680 .

S5: ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.77$ (brt, $J=1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 4.72 (brs, 1 H), 4.57-4.54 (m, 1H), 2.52-2.47 (m, $3 \mathrm{H}), 2.39-2.36(\mathrm{~m}, 1 \mathrm{H}), 2.28(\mathrm{dd}, J=15.0,13.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.76(\mathrm{brd}, 13.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 1.74-1.70(\mathrm{~m}, 1 \mathrm{H})$, $1.48-1.42(\mathrm{~m}, 1 \mathrm{H}), 1.35-1.20(\mathrm{~m}, 5 \mathrm{H}), 0.95(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}),-0.010(\mathrm{~s}$, $3 \mathrm{H}),-0.012(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \quad \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 212.8,147.6,109.6,74.6,66.9,50.2,43.4,43.2,42.2,40.7$, $35.4,25.7$ (3C), 20.7, 17.9, 17.4, 16.7, 14.7, $-4.83,-4.85$; HRMS (ESI) m / z calcd. for $\mathrm{C}_{22} \mathrm{H}_{40} \mathrm{O}_{2} \mathrm{SiNa}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$ 387.2690 , found 387.2687 .

From S4: A suspension of $\mathbf{S 4}(5.3 \mathrm{mg}, 14.5 \mu \mathrm{~mol})$ and $10 \% \mathrm{Pd} / \mathrm{C}(2.3 \mathrm{mg}, 2.2 \mu \mathrm{~mol})$ in $\mathrm{MeOH}(730 \mu \mathrm{~L})$ was stirred under hydrogen atmosphere at rt for 1.5 h . The mixture was filtered through a pad of Celite and washed with MeOH . The filtrate was concentrated to give a residue. The residue was purified by flash column chromatography (Hexane/ $\mathrm{Et}_{2} \mathrm{O}=100 / 0$ to $19 / 1$) to give $\mathbf{S 6}(5.2 \mathrm{mg}, 14.2 \mu \mathrm{~mol}, 97 \%)$ as a colorless oil.

From 18: A suspension of $18(14.6 \mathrm{mg}, 40.3 \mu \mathrm{~mol})$ and $10 \% \mathrm{Pd} / \mathrm{C}(4.6 \mathrm{mg}, 4.3 \mu \mathrm{~mol})$ in $\mathrm{MeOH}(800 \mu \mathrm{~L})$ was stirred under hydrogen atmosphere at rt for 1.5 h . The mixture was filtered through a pad of Celite and washed with MeOH . The filtrate was concentrated to give a residue. The residue was purified by flash column chromatography (Hexane/ $\mathrm{Et}_{2} \mathrm{O}=100 / 0$ to $19 / 1$) to give $\mathbf{S 6}(16.1 \mathrm{mg}, 43.9 \mu \mathrm{~mol}$, quant.) as a colorless oil.
${ }^{1} \mathrm{H}^{\mathrm{NMR}}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 474-4.71(\mathrm{~m}, 1 \mathrm{H}), 2.47$ (brs, 1 H), 2.31 (ddd, $\left.J=13.2,3.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.18-2.13$ $(\mathrm{m}, 1 \mathrm{H}), 1.92(\mathrm{t}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.65-1.43\left(\mathrm{~m}\right.$, overlap with $\left.\mathrm{H}_{2} \mathrm{O}, 6 \mathrm{H}\right), 1.39-1.31(\mathrm{~m}, 3 \mathrm{H}), 1.08-1.03(\mathrm{~m}, 1 \mathrm{H}), 0.93$ (t, $J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 0.82(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.02(\mathrm{~s}$, $3 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \quad \mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 212.9,71.1,64.1,49.4,44.5,41.8,39.3,38.3,35.6,32.74,32.66$, $25.8(3 \mathrm{C}), 19.7,19.3,17.8,17.5,14.8,12.5,-4.8,-5.0 ; \mathrm{HRMS}(\mathrm{ESI}) \mathrm{m} / z$ calcd. for $\mathrm{C}_{22} \mathrm{H}_{43} \mathrm{O}_{2} \mathrm{Si}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 367.3027$, found 367.3017 .

3. Supplementary Tables and Scheme

Table S1. Optimization of 1,4-addition of the Grignard reagent prepared from chloride 9.

S1

entry	S1 (eq.)	CuBr• SMe_{2} (eq.)	additive (eq.)	temp. $\left({ }^{\circ} \mathrm{C}\right)$	time (h)	results ${ }^{\text {a.b }}$
1	3.0	1.0	$\mathrm{TMSCl}(7.0)$, TMEDA (7.0)	-78 to -25	1.5	$\mathbf{1 1}(72 \%), \mathrm{dr}=1: 1.7$
2	10.0	1.3	-	-78 to -35	16.5	$\mathbf{1 1}(52 \%), \mathrm{dr}=1: 1$
3	3.0	1.0	$\mathrm{TMSCl}(7.0)$	-78 to -50	16.5	$\mathbf{1 1}(65 \%), \mathrm{dr}=1: 1.7$
4	4.0	1.0	$\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(3.0)$	-78 to -50	14	$\mathbf{1 1}(97 \%), \mathrm{dr}=1: 1$
5	3.0	1.0	$\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(1.7)$	-78 to -50	14	$\mathbf{1 1}(83 \%), \mathrm{dr}=1: 1.2$
6	5.0	1.0	$\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(1.7)$	-78	14.5	$\mathbf{1 1 (4 6 \%) , \mathrm { dr } = 1 : 1}$

${ }^{a}$ NMR yield. ${ }^{b} \mathrm{dr}=$ desired : undesired

Table S2. Optimization of the stereoselective incorporation of the isopropenyl group.

entry	reagent (eq.)	solvents	temp. $\left({ }^{\circ} \mathrm{C}\right)$	time	results ${ }^{\text {a }}$
1	Cul (2.0), 17 (4.0)	THF	-78 to 0	20 min	19 (71\%) ${ }^{\text {b }}$
2	Cul (2.0), 17 (6.0), TMEDA (10.0)	THF	-78 to 0	1 h	18 (trace), 19 (84\%)
3	Cul (2.0), 17 (12.0), $\mathrm{BF}_{3} \cdot \mathrm{EtO}_{2}(5.0)$	THF	-78 to 0	1 h	18 (trace), 19 (58\%)
4	$[\mathrm{Rh}(\mathrm{cod}) \mathrm{Cl}]_{2}(0.5), 20$ (10), $\mathrm{KF}(10), \mathrm{TTBP} \cdot \mathrm{HBF}_{4}{ }^{\mathrm{c}}$ (1.0)	heptane/ $/ \mathrm{H}_{2} \mathrm{O}(10 / 1)$	50 to 60	18.5 h	18 (35\%), 19 (18\%)
5	$[\mathrm{Rh}(\mathrm{cod}) \mathrm{Cl}]_{2}(0.5), 20(10), \mathrm{KF}(10),{\mathrm{TTBP} \cdot \mathrm{HBF}_{4}{ }^{\mathrm{c}} \text { (1.0) }}^{\text {(}}$	heptane/ $/ \mathrm{H}_{2} \mathrm{O}(10 / 1)$	30	7 days	4 (56\%), 18 (22\%), 19 (8\%)
6	$\left[\mathrm{Rh}(\mathrm{cod}) \mathrm{Cl}_{2}(0.5), 20\right.$ (10), TEA (10), TTBP. $\mathrm{HBF}_{4}{ }^{\text {c }}$ (1.0)	heptane/ $/ \mathrm{H}_{2} \mathrm{O}(10 / 1)$	60	22 h	18 (59\%), 19 (32\%)
7	$\left[\mathrm{Rh}(\operatorname{cod}) \mathrm{Cl}_{2}(0.5), 20\right.$ (10), TEA (10), BINAP (0.5)	heptane/ $\mathrm{H}_{2} \mathrm{O}(10 / 1)$	reflux	2 h	18 (53\%) ${ }^{\text {b }}, 19(30 \%)^{\text {b }}$
8	$[\mathrm{Rh}(\operatorname{cod}) \mathrm{Cl}]_{2}(0.5), 20$ (10), TEA (10), BINAP (0.5)	heptane/ $/ \mathrm{H}_{2} \mathrm{O}(10 / 1)$	30	24 h	18 (41\%), 19 (18\%)

${ }^{a}$ NMR yield (DMF was used as an internal standard). ${ }^{b}$ Isolated yield. ${ }^{c}$ Tri-tert-butylphosphin tetrafluoroborate

Scheme S1. Reduction of double bond of allyl group and Rh-mediated 1,4-addition of $\mathbf{2 0}$.

4. Single-crystal X-ray analysis of 3 .

Single crystals of $\mathbf{3}$ suitable for X-ray crystallographic analysis was obtained by slow evaporation of a solution of $\mathbf{3}$ in Hexane at $23{ }^{\circ} \mathrm{C}$. All measurements were made on a Rigaku XtaLaB Synergy-DW diffractometer using graphite monochromated $\mathrm{Cu}-\mathrm{K} \alpha$ radiation. The structure was solved by direct methods and expanded using Fourier techniques. The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were refined using the riding model. Refined crystallographic parameters are summarized in Table S3. The ORTEP representation of $\mathbf{3}$ is depicted in Figure S1.

Table S3. Summary of crystallographic data of 3.

	3
Empirical formula	$\mathrm{C}_{46} \mathrm{H}_{84} \mathrm{O}_{4} \mathrm{Si}_{2}$
Formula Weight	757.31
Temperature/K	90(2)
Crystal system	monoclinic
Space group	P 21
a (\AA)	15.8123(9)
b (\AA)	10.6777(6)
c (\AA)	14.1023(7)
α	90°
β	$95.002(5)^{\circ}$
γ	90°
Volume (\AA^{3})	2371.9(2)
Z	2
$\mathrm{D}_{\text {calc }}\left(\mathrm{g} / \mathrm{cm}^{3}\right)$	1.060
F_{000}	840.0
Goodness of Fit Indicator	1.074

Figure S1. ORTEP diagram of 3 at the 50% probability level.

5. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopic data

Table S2. NMR spectroscopic data (acetone- d_{6}) for natural and synthetic (\pm)-penicibilaene A (1). ${ }^{(S 1, S 2)}$

penicibilaene A (1)

No.	Natural 1 ${ }^{\text {a, S1 }}$		Dong's synthetic $\mathbf{1}^{a, \mathrm{~S} 2}$		Our synthetic $\mathbf{1}^{b}$	
	δ_{C}	$\delta_{H}($ mult, J in Hz)	δ_{C}	$\delta_{H}($ mult, J in Hz)	δ_{C}	$\delta_{H}($ mult, J in Hz)
1	42.58		42.54		42.52	
2	42.62	1.69 (m)	42.60	1.69 (m)	42.57	1.68 (m)
3α	42.5	2.07 (m)	42.5	2.07 (m)	42.52	2.06 (m)
3β		1.38 (dt, 11.7, 8.6)		1.38 (dt, 11.8, 8.6)		1.38 (dt, 11.4, 9.0)
4	73.4	4.45 (m)	73.4	4.45 (p, 6.9)	73.4	4.44 (m)
5	61.5	1.46 (d, 6.2)	61.5	1.46 (d, 6.2)	61.4	1.45 (d, 6.6)
6	71.3		71.3		71.3	
7α	33.3	1.86 (dd, 12.0, 4.8)	33.3	1.86 (m)	33.2	1.86 (td, 11.4, 3.0)
7β		1.30 (dd, 12.0, 3.9)		1.30 (ddd, 11.6, 4.0, 1.4)		1.29 (ddd, 11.4, 4.2, 1.2)
8	36.1	2.15 (dd, 4.8, 3.9)	36.0	2.15 (d, 8.5)	36.0	2.14 (brd, 9.0)
9	140.9		140.9		140.9	
10	120.7	5.23 (dd, 3.1, 1.5)	120.7	5.23 (d, 4.9)	120.7	5.22 (dd, 3.0, 1.8)
11α	35.4	2.01 (d, 16.3)	35.4	2.00 (m)	35.3	2.01 (brd, 15.6)
11β		1.74 (m)		1.74 (m)		1.73 (m)
12α	42.4	1.90 (dd, 14.2, 5.6)	42.4	1.89 (m)	42.4	1.88 (dd, 14.4, 9.0)
12β		1.50 (d, 14.2)		1.50 (d, 14.2)		1.49 (d, 13.8)
13	15.0	0.89 (d, 7.1)	15.0	0.88 (d, 7.0)	15.0	0.87 (d, 7.2)
14	31.4	1.26 (s)	31.4	1.26 (s)	31.2	1.25 (s)
15	22.2	1.63 (brs)	22.2	1.63 (d, 2.0)	22.2	1.62 (d, 1.8)
4-OH		3.40 (d, 5.2)		3.41 (d, 5.3)		3.41 (d, 5.4)
6-OH		3.20 (s)		3.21 (s)		3.21 (s)

${ }^{a}$ Measured at 500 MHz for ${ }^{1} \mathrm{H}$ and 125 MHz for ${ }^{13} \mathrm{C}$. ${ }^{b}$ Measured at 600 MHz for ${ }^{1} \mathrm{H}$ and 150 MHz for ${ }^{13} \mathrm{C}$.

penicibilaene $B(2)$

No.	Natural $\mathbf{2}^{\text {a, }{ }^{\text {S1) }}}$		Dong's synthetic $\mathbf{2}^{\text {a, S2) }}$		Our synthetic $\mathbf{2}^{\text {b }}$	
	δ_{C}	δ_{H} (mult, J in Hz)	δ_{C}	$\delta_{H}(\mathrm{mult}, J$ in Hz)	δ_{C}	$\delta_{H}($ mult, J in Hz)
1	41.5		41.2		41.2	
2	42.1	1.80 (m)	41.8	1.83 (dd, 14.7, 9.1)	41.8	1.83 (dd, 15.0, 9.6)
3α	38.6	2.28 (ddd, 12.5, 7.1, 6.6)	38.3	2.31 (ddd, 12.8, 7.5, 5.8)	38.3	2.31 (ddd, 12.6, 7.8, 6.0)
3β		1.34 (dt, 12.5, 8.7)		1.37 (dt, 12.4, 8.7)		1.37 (dt, 12.6, 9.0)
4	75.8	5.33 (ddd, 8.7, 6.6, 6.0)	75.5	5.36 (ddd, 8.7, 7.6, 6.0)	75.5	5.36 (ddd, 13.8, 7.8, 6.0)
5	57.1	1.70 (d, 6.0)	56.8	1.72 (d, 6.1)	56.8	1.72 (d, 6.0)
6	71.3		71.1		71.1	
7α	32.2	1.78 (dd, 11.9, 6.2)	31.9	1.77 (m)	31.9	1.77 (m)
7β		1.41 (dd, 11.9, 2.5)		1.44 (ddd, 11.8, 3.9, 1.5)		1.44 (dd, 11.4, 2.4)
8	34.7	2.18 (dd, 6.2, 2.5)	34.4	2.22 (d, 9.2)	34.4	2.21 (d, 9.0)
9	140.5		140.3		140.3	
10	119.7	5.24 (d, 4.2)	119.4	5.26 (d, 4.9)	119.4	5.26 (d, 4.8)
11α	34.4	2.02 (d, 16.0)	34.2	2.05 (d, 17.0)	34.2	2.05 (d, 16.8)
11β		1.70 (m)		1.70 (m)		1.70 (m)
12α	41.9	1.75 (dd, 14.5, 6.3)	41.7	1.75 (m)	41.7	1.74 (m)
12β		1.50 (d, 14.5)		1.53 (dt, 14.6, 1.3)		1.53 (d, 15.0)
13	14.1	0.88 (d, 6.9)	13.9	0.91 (d, 6.9)	13.9	0.91 (d, 6.6)
14	30.5	1.13 (s)	30.3	1.15 (s)	30.3	1.15 (s)
15	22.1	1.63 (m)	21.8	1.65 (dt, 2.7, 1.5)	21.8	1.65 (brs)
1^{\prime}	171.1		170.9		170.9	
2^{\prime}	21.6	1.97 (s)	21.4	2.00 (s)	21.4	2.00 (s)
6-OH				1.13 (s)		1.15 (s)

${ }^{a}$ Measured at 500 MHz for ${ }^{1} \mathrm{H}$ and 125 MHz for ${ }^{13} \mathrm{C} .{ }^{b}$ Measured at 600 MHz for ${ }^{1} \mathrm{H}$ and 150 MHz for ${ }^{13} \mathrm{C}$.

Figure S2. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 9 .

Figure S3. ${ }^{13} \mathrm{C}$ NMR spectrum (150 MHz , acetone- d_{6}) of compound 9 .

Figure S4. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 10 .

Figure S5. ${ }^{13} \mathrm{C}$ NMR spectrum ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 10.

Figure S6. ${ }^{\mathbf{1}} \mathrm{H}$ NMR spectrum ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 12 .

Figure $\mathrm{S} 7 .{ }^{13} \mathrm{C}$ NMR spectrum ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 12 .

Figure S8. ${ }^{\mathbf{1}} \mathrm{H}$ NMR spectrum ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 13 .

Figure $\mathrm{S9} .{ }^{13} \mathrm{C}$ NMR spectrum ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 13 .

Figure S10. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 14 .

Figure $\mathrm{S} 11 .{ }^{13} \mathrm{C}$ NMR spectrum ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 14.

Figure S12. NOESY spectrum ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 14.

Figure S13. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 15.

Figure S14. ${ }^{13} \mathrm{C}$ NMR spectrum ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 15.

Figure S15. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 16.

Figure S16. ${ }^{13} \mathrm{C}$ NMR spectrum ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 16.

Figure S17. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 4.

Figure S18. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 4 .

Figure S19. ${ }^{1}$ H NMR spectrum $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 18.

Figure S20. ${ }^{13} \mathrm{C}$ NMR spectrum ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 18.

Figure $\mathrm{S} 21 .{ }^{1} \mathrm{H}$ NMR spectrum $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 19.

Figure $\mathrm{S} 22 .{ }^{13} \mathrm{C}$ NMR spectrum ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 19.

Figure S23. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 3.

Figure $\mathrm{S} 24 .{ }^{13} \mathrm{C}$ NMR spectrum $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 3 .

Figure S25. ${ }^{\mathbf{1}} \mathrm{H}$ NMR spectrum $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 21 .

Figure S26. ${ }^{13} \mathrm{C}$ NMR spectrum ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 21 .

Figure S27. ${ }^{1} \mathrm{H}$ NMR spectrum (600 MHz , acetone- d_{6}) of penicibilaene A (1).

Figure S28. ${ }^{13} \mathrm{C}$ NMR spectrum (150 MHz , acetone- d_{6}) of penicibilaene \mathbf{A} (1).

Figure S29. $^{1} \mathrm{H}$ NMR spectrum $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of penicibilaene \mathbf{B} (2).

Figure $\operatorname{S30} .{ }^{13} \mathrm{C}$ NMR spectrum ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of penicibilaene \mathbf{B} (2).

Figure S31. ${ }^{1}$ H NMR spectrum $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $S 3$.

Figure $\mathrm{S} 32 .{ }^{13} \mathrm{C}$ NMR spectrum ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound S 3 .

Figure S33. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound S 4 .

Figure S34. ${ }^{13} \mathrm{C}$ NMR spectrum ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound S 4 .

Figure S35. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{S 5}$.

Figure $\mathrm{S} 36 .{ }^{13} \mathrm{C}$ NMR spectrum ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound S 5 .

Figure S37. ${ }^{1}$ H NMR spectrum $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound S6.

Figure S38. ${ }^{13} \mathrm{C}$ NMR spectrum ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{S 6}$.

6. References

(S1) Meng, L. H.; Li, X. M.; Liu, Y.; Wang, B. G. Org. Lett. 2014, 16, 6052-6055.
(S2) Xue, Y.; Dong, G. J. Am. Chem. Soc. 2021, 143, 8272-8277.

