Supporting Information

MeSeSO₃Na Reagent for Oxidative Aminoselenomethylation of

Maleimides

Ge Wu,*^{a,b} Yujing Yao,^a Wenliang Zhang,^a

^aSchool of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China

^bState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.

*E-mail: wuge@wmu.edu.cn

Table of Contents

(1) General considerations, experimental data	S2-S24
(2) References for known compounds	
(3) ¹ H, ¹³ C and ¹⁹ F NMR spectra of products	S26-S59

General Information

N-substituent Maleimides¹ were prepared according to the reported procedures. ¹H and ¹³C spectra of known compounds were in accordance with those described in the literatures. All other reagents were purchased from TCI, Sigma-Aldrich, Alfa Aesar, Acros, and Meryer and used without further purification. ¹H NMR (500 MHz), ¹³C NMR (125 MHz) and ¹⁹F NMR (470 MHz) spectra were recorded in CDCl₃ and DMSO-D6 solutions using a Burker AVANCE 500 spectrometer. High-resolution mass spectra were recorded on an ESI-Q-TOF mass spectrometer. Analysis of crude reaction mixture was done on the Varian 4000 GC/MS and 1200 LC. All reactions were conducted using standard Schlenk techniques. Column chromatography was performed using EM silica gel 60 (300–400 m).

Synthesis of MeSe-SO₃Na reagent:

A flask was charged with finely powdered selenium (3.79 g, 48 mmol), sodium thiosulfate (15.178 g, 96 mmol, 2 equiv) and water (50.0 mL). The reaction mixture was stirred and heated to 140 °C for 4 h. The reaction mixture was cooled to rt, and then added the iodomethane (40 mmol) in 120 mL MeOH. The solution was stirred for additional 12 h at room temperature. Then, the mixture was cooled to rt, and concentrated on a rotovap at a bath temperature of 50 °C to remove the MeOH and water. The resultant solid was treated with MeOH (100mL), let it stand at room temperature for 6 hours, and filtered through a frit funnel. The filtrate was concentrated to a solid, trituration with hexanes, filtration, and drying under vacuum to give MeSe-SO₃Na reagent.

General Procedure of Copper-catalyzed Oxidative Aminoselenomethylation of Maleimides with Alkylamines and MeSeSO₃Na Reagent:

A 25 mL Schlenk tube equipped with a stir bar was charged with MeSe-SO₃Na (0.6 mmol), maleimide (0.2 mmol), alkylamines (0.6 mmol), CuBr (0.02 mol) and 2 mL toluene. The tube was fitted with a rubber septum, and then it was evacuated and refilled with dioxygen three times, then the septum was replaced by a Teflon screwcap under oxygen flow. The reaction mixture was stirred at 100 $^{\circ}$ C (aluminium block heating mantle) for 24 h. After cooling down, the reaction mixture was diluted with 10 mL of ethyl ether, filtered through a pad of silica gel, followed by washing the pad of the silica gel with the same solvent (20 mL), concentrated under reduced pressure. The residue was then purified by flash chromatography on silica gel to provide the corresponding product.

5mmol scale-up reaction:

A 125 mL Schlenk tube equipped with a stir bar was charged with MeSe-SO₃Na (15.0 mmol), *N*-phenyl maleimide (5.0 mmol), morpholine (15.0 mmol), CuBr (0.5 mol) and 50 mL toluene. The tube was fitted with a rubber septum, and then it was evacuated and refilled with dioxygen three times, then the septum was replaced by a Teflon screwcap under oxygen flow. The reaction mixture was stirred at 100 $^{\circ}$ C (oil bath) for 24 h. After cooling down, the reaction mixture was diluted with 10 mL of ethyl ether, filtered through a pad of silica gel, followed by washing the pad of the silica gel with the same solvent (20 mL), concentrated under reduced pressure. The residue was then purified by flash chromatography on silica gel to provide the corresponding product (66%, isolated yield).

CH₃Se-SO₃Na 1a	+ N-Ph + H O 2a	HNO CuBr (toluene, O	10 mol %) ₂, 100 ºC, 24 h	H ₃ CSe O N-Ph O 4a
entry	[Cu]	additive	solvent	Yield (%) ^b
1	CuI		toluene	45
2	CuBr		toluene	79
3	CuCl		toluene	30
4	Cu(OAc)2		toluene	0
5	CuF2		toluene	0
6	CuCl2		toluene	0
7	CuBr2		toluene	0
8	Cu(acac)2		toluene	0
9	CuBr	BF ₃ .2H ₂ O	toluene	23
10	CuBr	TsOH	toluene	47
11	CuBr	FeCl ₃	toluene	56
12	CuBr	Ag ₂ CO ₃	toluene	0
13	CuBr	1,10-phen	toluene	55
14	CuBr	2,2'-bipyridine	toluene	40
15	CuBr		DCE	61
16	CuBr		CH ₃ CN	0
17	CuBr		DMSO	0
18	CuBr		benzene	60
19			toluene	0
20°	CuBr		toluene	0
21 ^d	CuBr		toluene	48

Screening with different reaction conditions

^aReaction conditions unless specified otherwise: **1a** (0.6 mmol), **2a** (0.2 mmol), **3a** (0.6 mmol), catalyst (0.02 mmol), additive (0.04 mmol), solvent (2.0 mL), under O_2 , 100 °C, 24 h,. ^bIsolated yield. ^cUnder N_2 . ^dUnder air atmosphere.

Mechanism investigation:

(a) Radical scavenger

A 25 mL Schlenk tube equipped with a stir bar was charged with MeS-SO₃Na (0.6 mmol), *N*-phenyl maleimide (0.2 mmol), morpholine (0.6 mmol), CuBr (0.02 mol), TEMPO (0.6 mmol) and 2 mL toluene. The tube was fitted with a rubber septum, and then it was evacuated and refilled with dioxygen three times, then the septum was replaced by a Teflon screwcap under oxygen flow. The reaction mixture was stirred at 100 °C for 24 h. After cooling down, the reaction mixture was diluted with 10 mL of ethyl ether, filtered through a pad of silica gel, followed by washing the pad of the silica gel with the same solvent (20 mL), concentrated under reduced pressure. The residue was then purified by flash chromatography on silica gel (petroleum ether : EtOAc = 9 : 1) to give **4a** product in 60% yield. This result excludes the involvement of a radical species in the reaction progress.

(b) Probing key intermediate

A 25 mL Schlenk tube equipped with a stir bar was charged with *N*-phenyl maleimide (0.2 mmol), morpholine (0.6 mmol), CuBr (0.02 mol) and 2 mL toluene. The tube was fitted with a rubber septum, and then it was evacuated and refilled with dioxygen three times, then the septum was replaced by a Teflon screwcap under oxygen flow. The reaction mixture was stirred at 100 $^{\circ}$ C for 24 h. After cooling down, the reaction mixture was diluted with 10 mL of ethyl ether, filtered through a pad of silica gel, followed by washing the pad of the silica gel with the same solvent (20 mL), concentrated under reduced pressure. The residue was then purified by flash chromatography on silica gel (petroleum ether : EtOAc = 9 : 1) to give product in 81% yield.

A 25 mL Schlenk tube equipped with a stir bar was charged with *N*-phenyl maleimide (0.2 mmol), MeSe-SO₃Na (0.6 mmol), CuBr (0.02 mol) and 2 mL toluene. The tube was fitted with a rubber septum, and then it was evacuated and refilled with dioxygen three times, then the septum was replaced by a Teflon screwcap under oxygen flow. The reaction mixture was stirred at 100 $^{\circ}$ C for 24 h. After cooling down, the reaction mixture was diluted with 10 mL of ethyl ether, filtered through a pad of silica gel, the oxidative selenomethylation of maleimide was not detected by GC-MS, the Se-Michael addition product was detected by GC-MS.

A 25 mL Schlenk tube equipped with a stir bar was charged with 3-morpholino-1-phenyl-1Hpyrrole-2,5-dione (0.2 mmol), MeSe-SO₃Na (0.6 mmol), CuBr (0.02 mol) and 2 mL toluene. The tube was fitted with a rubber septum, and then it was evacuated and refilled with dioxygen three times, then the septum was replaced by a Teflon screwcap under oxygen flow. The reaction

mixture was stirred at 100 °C for 24 h. After cooling down, the reaction mixture was diluted with 10 mL of ethyl ether, filtered through a pad of silica gel, the oxidative selenomethylation product was not detected by GC-MS.

$$N$$
 Ph + MeSe-SO₃Na + HN O $CuBr (10 mol \%)$
toluene, O₂, 100 °C, 24 h N N Ph
 73%

A 25 mL Schlenk tube equipped with a stir bar was charged with 3-morpholino-1-phenyl-1Hpyrrole-2,5-dione (0.2 mmol), MeSe-SO₃Na (0.6 mmol), morpholine (0.6 mmol), CuBr (0.02 mol) and 2 mL toluene. The tube was fitted with a rubber septum, and then it was evacuated and refilled with dioxygen three times, then the septum was replaced by a Teflon screwcap under oxygen flow. The reaction mixture was stirred at 100 $^{\circ}$ C for 24 h. After cooling down, the reaction mixture was diluted with 10 mL of ethyl ether, filtered through a pad of silica gel, the corresponding product was isolated in 73% yield. This result shows that the morpholine not only works as substrate in multi-component reaction, but also function as activator of Se-Bunte salt to furnish the corresponding selenomethylation reactions.

(c) H/D exchange

A 25 mL Schlenk tube equipped with a stir bar was charged with 3-morpholino-1-phenyl-1Hpyrrole-2,5-dione (0.2 mmol), D_2O (2.0 mmol), CuI (0.02 mol), and 1 mL DCE. The tube was fitted with a rubber septum, and then it was evacuated and refilled with dioxygen three times, then the septum was replaced by a Teflon screwcap under oxygen flow. The reaction mixture was stirred at 100 °C. After stirring for 18 h, the reaction mixture was cooled to room temperature and the reaction was filtered through a pad of Celite and diluted with ethyl acetate (10 mL), deuterium-hydrogen exchange was observed in 3-morpholino-1-phenyl-1H-pyrrole-2,5-dione, which suggest the C-H activation was occurred under the current reaction condition.

Characterization of Products in Details:

sodium Se-methyl sulfurothioate

CH₃Se-SO₃Na

¹H NMR (400 MHz, D₂O): δ 2.77 (s, 3H); ¹³C NMR (100MHz, CDCl₃): δ 10.8;

HRMS (ESI): calcd for CH₃O₃Na₂SSe [M + Na]⁺ 220.8764, found 220.8763.

sodium Se-trideuteromethyl sulfurothioate

CD₃Se-SO₃Na

¹³C NMR (100MHz, CDCl₃): δ 10.8;

HRMS (ESI): calcd for CD₃SeSO₃Na₂ [M + Na]⁺ 223.8952, found 223.8960.

3-(methylselanyl)-4-morpholino-1-phenyl-1H-pyrrole-2,5-dione

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow solid (55.6 mg, 79% yield), Mp = 106-107 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.49-7.45 (m, 2H), 7.38-7.35 (m, 3H), 4.20 (t, *J* = 4.72 Hz, 4H), 3.87 (t, *J* = 4.80 Hz, 4H), 2.30 (s, 3H); ¹³C NMR (100MHz, CDCl₃): δ 169.0, 165.6, 148.4, 131.9, 128.9, 127.7, 126.3, 90.6, 67.1, 48.9, 9.6; HRMS (ESI): calcd for C₁₅H₁₇N₂O₃Se [M + H]⁺ 353.0404, found 353.0410.

tert-butyl 4-(4-(methylselanyl)-2,5-dioxo-1-phenyl-2,5-dihydro-1H-pyrrol-3-yl)piperazine-1carboxylate

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (65.8 mg, 73% yield). ¹H NMR (500 MHz, CDCl₃): δ 7.47-7.43 (m, 2H), 7.35-7.33 (m, 3H), 4.11 (t, *J* = 5.2 Hz, 4H), 3.60 (t, *J* = 5.2 Hz, 4H), 2.29 (s, 3H), 1.50 (s, 9H); ¹³C NMR (125MHz, CDCl₃): δ 168.8, 165.5, 154.5, 148.5, 131.9, 128.9, 127.5, 126.2, 91.3, 80.4, 48.3, 28.4, 26.9, 9.4; HRMS (ESI): calcd for C₂₀H₂₅N₃O₄NaSe [M + Na]⁺ 474.0908, found 474.0912.

methyl 1-(4-(methylselanyl)-2,5-dioxo-1-phenyl-2,5-dihydro-1H-pyrrol-3-yl)piperidine-4carboxylate

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (53.0 mg, 65% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.47-7.44 (m, 2H), 7.37-7.34 (m, 3H), 4.90-4.84 (m, 2H), 3.74 (s, 3H), 3.41 (ddd, *J* = 13.7, 11.0, 2.9 Hz, 2H), 2.68 (tt, *J* = 10.5, 4.2 Hz, 1H), 2.28 (s, 3H), 2.09 (dt, *J* = 13.8, 3.9 Hz, 2H), 1.93 (dtd, *J* = 14.2, 10.7, 3.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 174.5, 169.1, 165.6, 148.9, 132.0, 128.9, 127.5, 126.3, 89.9, 52.0, 48.2, 40.4, 28.7, 9.6; HRMS (ESI): calcd for C₁₈H₂₁N₂O₄Se [M + H]⁺ 409.0667, found 409.0672.

tert-butyl (1-(4-(methylselanyl)-2,5-dioxo-1-phenyl-2,5-dihydro-1H-pyrrol-3-yl)piperidin-4yl)carbamate

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow solid (65.1 mg, 70% yield), Mp = 122-123 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.46-7.43 (m, 2H), 7.35-7.32 (m, 3H), 4.93 (d, *J* = 13.5 Hz, 2H), 4.53 (d, *J* = 7.9 Hz, 1H), 3.78 (s, 1H), 3.33-3.28 (m, 2H), 2.28 (s, 3H), 2.11 (dd, *J* = 13.4, 3.9 Hz, 2H), 1.55 (dtd, *J* = 13.2, 11.2, 3.9 Hz, 2H), 1.47 (s, 9H); ¹³C NMR (125MHz, CDCl₃): δ 169.0, 165.5, 155.1, 148.8, 132.0, 128.8, 127.5, 126.2, 90.3, 79.7, 47.8, 47.4, 33.1, 28.4, 9.5; HRMS (ESI): calcd for C₂₁H₂₇N₃O₄NaSe [M + Na]⁺ 488.1064, found 488.1073.

tert-butyl (1-(4-(methylselanyl)-2,5-dioxo-1-phenyl-2,5-dihydro-1H-pyrrol-3-yl)pyrrolidin-3-yl)carbamate

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (64.0 mg, 71% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.48-7.44 (m, 2H), 7.38-7.32 (m, 3H), 4.77 (brs, 1H), 4.34 (brs, 1H), 4.26 (dd, *J* = 13.1, 5.8 Hz, 1H), 4.17 (dt, *J* = 8.9, 6.4 Hz, 2H), 4.03 (dd, *J* = 13.1, 4.1 Hz, 1H), 2.6-2.17 (m, 4H), 1.98 (dq, *J* = 12.5, 6.1 Hz, 1H), 1.49 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 169.7, 165.1, 155.3, 147.5, 132.1, 128.9, 127.5, 126.2, 86.2, 80.1, 56.8, 49.7, 31.2, 28.4, 14.3, 10.6; HRMS (ESI): calcd for C₂₀H₂₅N₃O₄NaSe [M + Na]⁺ 474.0908, found 474.0909.

3-(azepan-1-yl)-4-(methylselanyl)-1-phenyl-1H-pyrrole-2,5-dione

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow solid (56.1 mg, 77% yield), Mp = 70-71 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.49-7.45 (m, 2H), 7.41-7.33 (m, 3H), 4.14 (t, *J* = 6.1 Hz, 4H), 2.28 (s, 3H), 1.92-1.89 (m, 4H), 1.68 (q, *J* = 3.1 Hz, 4H); ¹³C NMR (100 MHz, CDCl₃): δ 165.2, 156.3, 148.4, 132.2, 128.9, 127.4, 126.3, 85.4, 53.0, 28.6, 26.5, 10.3; HRMS (ESI): calcd for C₁₇H₂₁N₂O₂Se [M + H]⁺ 365.0768, found 365.0778.

3-(cyclohexyl(methyl)amino)-4-(methylselanyl)-1-phenyl-1H-pyrrole-2,5-dione

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a

yellow liquid (55.9 mg, 74% yield). ¹H NMR (500 MHz, CDCl₃): δ 7.46-7.43 (m, 2H), 7.37-7.31 (m, 3H), 4.79 (tt, *J* = 11.8, 3.5 Hz, 1H), 3.34 (s, 3H), 2.27 (s, 3H), 1.88 (tt, *J* = 11.3, 3.1 Hz, 4H), 1.72 (d, *J* = 13.5 Hz, 1H), 1.60 (qd, *J* = 12.7, 12.1, 3.8 Hz, 3H), 1.45 (qt, *J* = 12.9, 3.7 Hz, 2H), 1.15 (qt, *J* = 13.1, 3.6 Hz, 1H); ¹³C NMR (125MHz, CDCl₃): δ 169.4, 165.6, 150.0, 132.2, 128.8, 127.3, 126.3, 87.3, 59.5, 33.6, 30.4, 25.4, 25.3, 10.0; HRMS (ESI): calcd for C₁₈H₂₃N₂O₂Se [M + H]⁺ 379.0925, found 379.0926.

3-(methyl(phenethyl)amino)-4-(methylselanyl)-1-phenyl-1H-pyrrole-2,5-dione

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow solid (64.0 mg, 80% yield), Mp = 96-97 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.49-7.46 (m, 2H), 7.38-7.25 (m, 8H), 4.19 (t, *J* = 7.7 Hz, 2H), 3.54 (s, 3H), 3.04 (t, *J* = 7.7 Hz, 2H), 2.27 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 169.3, 165.4, 148.9, 138.0, 132.1, 129.1, 128.9, 128.7, 127.5, 126.8, 126.4, 87.5, 55.6, 41.4, 34.8, 10.3; HRMS (ESI): calcd for C₂₀H₂₁N₂O₂Se [M + H]⁺ 401.0768, found 401.0772.

3-(methyl(pentyl)amino)-4-(methylselanyl)-1-phenyl-1H-pyrrole-2,5-dione

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (60.0 mg, 82% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.4-7.45 (m, 2H), 7.39-7.33 (m, 3H), 3.93-3.89 (m, 2H), 3.55 (s, 3H), 2.27 (s, 3H), 1.74 (p, *J* = 7.7 Hz, 2H), 1.39 (dq, *J* = 13.0, 7.7, 7.2 Hz, 4H), 0.96 (t, *J* = 6.9 Hz, 3H); ¹³C NMR (100MHz, CDCl₃): δ 169.5, 165.4, 148.9, 132.2, 128.9, 127.4, 126.4, 86.3, 54.3, 41.0, 28.6, 28.0, 22.5, 14.1, 10.3; HRMS (ESI): calcd for C₁₇H₂₃N₂O₂Se [M + H]⁺ 367.0925, found 367.0928.

3-(benzyl(methyl)amino)-4-(methylselanyl)-1-phenyl-1H-pyrrole-2,5-dione

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (54.0 mg, 70% yield). ¹H NMR (500 MHz, CDCl₃): δ 7.48-7.45 (m, 2H), 7.42-7.39 (m, 4H), 7.36-7.32 (m, 2H), 7.31-7.28 (m, 2H), 5.23 (s, 2H), 3.47 (s, 3H), 2.21 (s, 3H); ¹³C NMR (125MHz, CDCl₃): δ 169.2, 165.5, 149.4, 136.7, 134.2, 132.1, 128.9, 128.8, 127.8, 127.4, 126.3, 88.7, 56.8, 40.5, 10.3; HRMS (ESI): calcd for C₁₉H₁₉N₂O₂Se [M + H]⁺ 387.0612, found 387.0606.

3-((4-fluorobenzyl)(methyl)amino)-4-(methylselanyl)-1-phenyl-1H-pyrrole-2,5-dione

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (46.8 mg, 58% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.47 (t, *J* = 7.7 Hz, 2H), 7.42-7.34 (m, 3H), 7.29 (dd, *J* = 8.4, 5.3 Hz, 2H), 7.10 (td, *J* = 8.8, 2.4 Hz, 2H), 5.17 (s, 2H), 3.45 (s, 3H), 2.23 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 169.2, 165.6, 162.4 (d, *J* = 246.3 Hz), 149.3, 132.4 (d, *J* = 3.2 Hz), 132.1, 129.3 (d, *J* = 8.2 Hz), 128.9, 127.6, 126.3, 115.8 (d, *J* = 21.6 Hz), 89.0, 56.1, 40.4, 10.3; ¹⁹F NMR (375 MHz, CDCl₃): δ -114.4 (s, 1F); HRMS (ESI): calcd for C₁₉H₁₇N₂O₂NaSeF [M + Na]⁺ 427.0337, found 427.0340.

3-((4-chlorobenzyl)(methyl)amino)-4-(methylselanyl)-1-phenyl-1H-pyrrole-2,5-dione

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (55.4 mg, 66% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.50-7.46 (m, 2H), 7.41-7.34 (m, 5H), 7.25 (d, *J* = 8.3 Hz, 2H), 5.18 (s, 2H), 3.47 (s, 3H), 2.24 (s, 3H); ¹³C NMR (125MHz, CDCl₃): δ 169.1, 165.5, 149.1, 135.2, 133.7, 132.0, 129.0, 128.9, 128.8, 127.5, 126.2, 89.4, 56.2, 40.4, 10.2; HRMS (ESI): calcd for C₁₉H₁₇N₂O₂NaClSe [M + Na]⁺ 443.0041, found 443.0042.

1-methyl-3-(methylselanyl)-4-morpholino-1H-pyrrole-2,5-dione

5a

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (43.5 mg, 75% yield). ¹H NMR (500 MHz, CDCl₃): δ 4.15 (t, *J* = 4.7 Hz, 4H), 3.81 (t, *J* = 4.7 Hz, 4H), 3.00 (s, 3H), 2.19 (s, 3H); ¹³C NMR (125MHz, CDCl₃): δ 170.3, 166.9, 148.8, 89.6, 67.0, 48.6, 24.2, 9.7; HRMS (ESI): calcd for C₁₀H₁₄N₂O₃NaSe [M + Na]⁺ 313.0067, found 313.0072.

1-(tert-butyl)-3-(methylselanyl)-4-morpholino-1H-pyrrole-2,5-dione

5b

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (47.8 mg, 72% yield). ¹H NMR (500 MHz, CDCl₃): δ 4.03 (t, *J* = 4.5 Hz, 4H), 3.80 (t, *J* = 4.8 Hz, 4H), 2.19 (s, 3H), 1.58 (s, 9H); ¹³C NMR (125MHz, CDCl₃): δ 171.2, 167.4, 148.4,

92.0, 67.0, 57.8, 48.7, 29.1, 9.3; **HRMS** (ESI): calcd for $C_{13}H_{20}N_2O_3NaSe [M + Na]^+$ 355.0537, found 355.0540.

1-cyclohexyl-3-(methylselanyl)-4-morpholino-1H-pyrrole-2,5-dione

5c

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow solid (53.0 mg, 74% yield), Mp = 63-64 °C. ¹H NMR (400 MHz, CDCl₃): δ 4.12 (t, *J* = 4.7 Hz, 4H), 3.94 (tt, *J* = 12.6, 4.0 Hz, 1H), 3.82 (t, *J* = 4.7 Hz, 4H), 2.21 (s, 3H), 2.06 (qd, *J* = 12.5, 3.5 Hz, 2H), 1.85-1.81 (m, 2H), 1.68-1.64 (m, 3H), 1.37-1.19 (m, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 170.2, 166.6, 148.5, 89.9, 67.1, 51.1, 48.6, 29.9, 26.1, 25.2, 9.5; HRMS (ESI): calcd for C₁₅H₂₂N₂O₃NaSe [M + Na]⁺ 381.0693, found 381.0692.

1-benzyl-3-(methylselanyl)-4-morpholino-1H-pyrrole-2,5-dione

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow solid (55.6 mg, 76% yield), Mp = 97-98 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.30-7.28 (m, 2H), 7.25-7.22 (m, 2H), 7.20-7.17 (m, 1H), 4.57 (s, 2H), 4.04 (t, *J* = 4.5 Hz, 4H), 3.71 (t, *J* = 4.6 Hz, 4H), 2.11 (s, 3H); ¹³C NMR (125MHz, CDCl₃): δ 169.9, 166.4, 148.6, 136.6, 128.6, 128.6, 127.7, 89.5, 67.0, 48.5, 41.9, 9.6; HRMS (ESI): calcd for C₁₆H₁₈N₂O₃NaSe [M + Na]⁺ 389.0380, found 389.0382.

1-(4-methylbenzyl)-3-(methylselanyl)-4-morpholino-1H-pyrrole-2,5-dione

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow solid (59.3 mg, 78% yield), Mp = 85-86 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.29 (d, *J* = 8.0 Hz, 2H), 7.14 (d, *J* = 7.8 Hz, 2H), 4.63 (s, 2H), 4.13 (t, *J* = 4.5 Hz, 4H), 3.80 (t, *J* = 4.6 Hz, 4H), 2.34 (s, 3H), 2.20 (s, 3H); ¹³C NMR (125MHz, CDCl₃): δ 169.9, 166.4, 148.7, 137.4, 133.7, 129.2, 128.7, 89.7, 67.0, 48.5, 41.6, 21.1, 9.6; HRMS (ESI): calcd for C₁₇H₂₀N₂O₃NaSe [M + Na]⁺ 403.0537, found 403.0537.

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (63.4 mg, 80% yield). ¹H NMR (500 MHz, CDCl₃): δ 7.33 (d, *J* = 8.6 Hz, 2H), 6.85 (d, *J* = 8.6 Hz, 2H), 4.60 (s, 2H), 4.14-4.12 (m, 4H), 3.80-3.78 (m, 7H), 2.20 (s, 3H); ¹³C NMR (125MHz, CDCl₃): δ 169.9, 166.4, 159.2, 148.7, 130.1, 128.9, 113.9, 89.7, 67.0, 55.2, 48.5, 41.3, 9.6; HRMS (ESI): calcd for C₁₇H₂₀N₂O₄NaSe [M + Na]⁺ 419.0486, found 419.0487.

1-(4-fluorobenzyl)-3-(methylselanyl)-4-morpholino-1H-pyrrole-2,5-dione

5g

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a

yellow solid (53.0 mg, 69% yield), Mp = 115-116 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.37-7.35 (m, 2H), 7.02-6.98 (m, 2H), 4.62 (s, 2H), 4.14 (t, J = 4.7 Hz, 4H), 3.80 (t, J = 4.7 Hz, 4H), 2.20 (s, 2H), 4.62 (s, 2H), 4.62 (s, 2H), 4.14 (t, J = 4.7 Hz, 4H), 3.80 (t, J = 4.7 Hz, 4H), 2.80 (s, 2H), 4.64 (s,3H); ¹³C NMR (125MHz, CDCl₃): δ 169.8, 166.3, 162.3 (d, J = 246.2 Hz), 148.6, 132.4 (d, J = 3.2 Hz), 130.5 (d, J = 8.2 Hz), 115.4 (d, J = 21.4 Hz), 89.5, 67.0, 48.5, 41.1, 9.6; ¹⁹F NMR (375 MHz, CDCl₃): δ -114.5 (s, 1F); HRMS (ESI): calcd for C₁₆H₁₇N₂O₃NaSeF [M + Na]⁺ 407.0286, found 407.0288.

1-(4-chlorobenzyl)-3-(methylselanyl)-4-morpholino-1H-pyrrole-2,5-dione

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow solid (56.8 mg, 71% yield), Mp = 95-96 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.35-7.29 (m, 4H), 4.64 (s, 2H), 4.15 (t, J = 4.7 Hz, 4H), 3.82 (t, J = 4.7 Hz, 4H), 2.22 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 169.9, 166.4, 148.7, 135.1, 133.7, 130.2, 128.8, 89.5, 67.0, 48.6, 41.2, 9.8; **HRMS** (ESI): calcd for $C_{16}H_{17}N_2O_3NaClSe [M + Na]^+ 422.9991$, found 422.9988.

1-(4-bromobenzyl)-3-(methylselanyl)-4-morpholino-1H-pyrrole-2,5-dione

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow solid (64.8 mg, 73% yield), Mp = 80-81 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.43 (d, J = 8.3 Hz, 2H), 7.25 (d, J = 8.4 Hz, 2H), 4.60 (s, 2H), 4.13 (t, J = 4.7 Hz, 4H), 3.79 (t, J = 4.7 Hz, 4H), 2.19 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 169.7, 166.3, 148.6, 135.5, 131.7, 130.4, 121.8, 89.6, 67.0, 48.6, 41.2, 9.6; **HRMS** (ESI): calcd for $C_{16}H_{17}N_2O_3NaSeBr [M + Na]^+$ 466.9485, found 466.9483.

3-(methylselanyl)-4-morpholino-1-(4-(trifluoromethyl)benzyl)-1H-pyrrole-2,5-dione

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow solid (52.9 mg, 61% yield), Mp = 88-89 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.58 (d, *J* = 8.0 Hz, 2H), 7.48 (d, *J* = 8.0 Hz, 2H), 4.71 (s, 2H), 4.15 (t, *J* = 4.7 Hz, 4H), 3.81 (t, *J* = 4.7 Hz, 4H), 2.21 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 169.6, 166.3, 148.6, 140.4, 130.0 (q, *J* = 32.4 Hz), 128.9, 125.6 (q, *J* = 3.7 Hz), 124.0 (q, *J* = 270.5 Hz), 89.6, 67.0, 48.6, 41.4, 9.6; ¹⁹F NMR (375 MHz, CDCl₃): δ -62.5 (s, 3F); HRMS (ESI): calcd for C₁₇H₁₇N₂O₃F₃NaSe [M + Na]⁺ 457.0254, found 457.0255.

1-(3,4-dichlorobenzyl)-3-(methylselanyl)-4-morpholino-1H-pyrrole-2,5-dione

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (55.5 mg, 64% yield). ¹H NMR (500 MHz, CDCl₃): δ 7.46 (d, *J* = 2.1 Hz, 1H), 7.39 (d, *J* = 8.2 Hz, 1H), 7.22 (dd, *J* = 8.2, 2.1 Hz, 1H), 4.60 (s, 2H), 4.15 (t, *J* = 4.7 Hz, 4H), 3.81 (t, *J* = 4.7 Hz, 4H), 2.21 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 169.6, 166.2, 148.6, 136.6, 132.6, 131.9, 130.6, 130.6, 128.1, 89.5, 67.0, 48.6, 40.8, 9.7; HRMS (ESI): calcd for C₁₆H₁₆N₂O₃NaCl₂Se [M + H]⁺ 456.9601, found 456.9605.

3-(methylselanyl)-4-morpholino-1-(thiophen-2-ylmethyl)-1H-pyrrole-2,5-dione

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow solid (52.1 mg, 70% yield), Mp = 96-97 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.22 (dd, J = 5.1, 1.3 Hz, 1H), 7.08 (dd, J = 3.5, 1.2 Hz, 1H), 6.94 (dd, J = 5.1, 3.5 Hz, 1H), 4.84 (s, 2H), 4.14 (t, J = 4.7 Hz, 4H), 3.80 (t, J = 4.7 Hz, 4H), 2.21 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 169.3, 166.0, 148.6, 138.4, 127.5, 126.8, 125.7, 89.7, 67.0, 48.6, 35.9, 9.6; HRMS (ESI): calcd for C₁₄H₁₆N₂O₃NaSSe [M + Na]⁺ 394.9945, found 394.9948.

(R)-3-(methyl(3-phenyl-3-(o-tolyloxy)propyl)amino)-4-(methylselanyl)-1-phenyl-1Hpyrrole-2,5-dione

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (63.4 mg, 61% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.46 (t, *J* = 7.7 Hz, 2H), 7.39-7.35 (m, 5H), 7.32-7.16 (m, 3H), 7.17 (d, *J* = 7.3 Hz, 1H), 7.00 (td, *J* = 7.8, 1.8 Hz, 1H), 6.83 (t, *J* = 7.4 Hz, 1H), 6.63 (d, *J* = 8.2 Hz, 1H), 5.32 (dd, *J* = 8.9, 3.7 Hz, 1H), 4.06 (qdd, *J* = 14.2, 9.3, 5.8 Hz, 2H), 3.47 (s, 3H), 2.45 (ddt, *J* = 12.9, 8.8, 4.5 Hz, 1H), 2.39 (s, 3H), 2.31 (tdd, *J* = 10.1, 6.0, 3.1 Hz, 1H), 1.47 (s, 1H), 1.35-1.30 (m, 1H), 0.93-0.90 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 165.6, 164.3, 155.5, 141.5, 141.1, 131.5, 130.9, 129.0, 128.9, 127.9, 127.8, 126.9, 126.7, 126.4, 125.7, 120.6, 112.5, 93.2, 51.0, 40.1, 37.6, 27.0, 22.7, 16.6; HRMS (ESI): calcd for C₂₈H₂₈N₂O₃NaSe [M + Na]⁺ 543.1163, found 543.1170.

3-((3-(10,11-dihydro-5H-dibenzo[a,d][7]annulen-5-ylidene)propyl)(methyl)amino)-4-

(methylselanyl)-1-phenyl-1H-pyrrole-2,5-dione

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (69.7 mg, 66% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.47 (dd, *J* = 8.8, 6.8 Hz, 2H), 7.38-7.30 (m, 4H), 7.26-7.16 (m, 6H), 7.09 (dd, *J* = 6.9, 2.1 Hz, 1H), 5.93 (t, *J* = 7.5 Hz, 1H), 4.03 (q, *J* = 7.8 Hz, 2H), 3.45-3.33 (m, 5H), 3.00 (t, *J* = 14.6 Hz, 1H), 2.82 (d, *J* = 13.9 Hz, 1H), 2.65-2.56 (m, 2H), 2.17 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 169.3, 165.4, 148.6, 145.7, 140.8, 139.7, 139.5, 137.2, 132.1, 130.2, 128.9, 128.5, 128.3, 128.2, 127.8, 127.5, 127.4, 126.6, 126.4, 126.2, 125.9, 86.9, 53.7, 41.2, 33.8, 32.1, 28.7, 10.2; HRMS (ESI): calcd for C₃₀H₂₈N₂O₂NaSe [M + Na]⁺ 551.1214, found 551.1222.

3-(4-(2-chlorodibenzo[b,f][1,4]oxazepin-11-yl)piperazin-1-yl)-4-(methylselanyl)-1-phenyl-1Hpyrrole-2,5-dione

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (65.9 mg, 57% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.50-7.46 (m, 3H), 7.40-7.35 (m, 4H), 7.30-7.26 (m, 2H), 7.19-7.14 (m, 2H), 7.11-7.07 (m, 1H), 4.32 (brs, 4H), 3.79 (brs, 4H), 2.32 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 170.0, 165.6, 159.5, 158.6, 151.9, 148.6, 133.0, 131.9, 130.6, 129.0, 128.9, 127.7, 127.2, 126.3, 126.0, 125.2, 124.7, 123.0, 120.3, 91.3, 48.2, 47.9, 9.6; HRMS (ESI): calcd for C₂₈H₂₄N₄O₃ClSe [M + Na]⁺ 579.0702, found 579.0703.

1,1'-(methylenebis(4,1-phenylene))bis(3-(methylselanyl)-4-morpholino-1H-pyrrole-2,5-dione)

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (97.4 mg, 68% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.24 (brs, 8H), 4.16 (t, *J* = 4.7 Hz, 8H), 4.01 (s, 2H), 3.83 (t, *J* = 4.7 Hz, 8H), 2.25 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 169.0, 165.6, 148.4, 140.1, 130.0, 129.6, 126.3, 90.6, 67.1, 48.9, 41.1, 9.6; HRMS (ESI): calcd for C₃₁H₃₂N₄O₆NaSe₂ [M + Na]⁺ 739.0564, found 739.0565.

1,1'-(1,3-phenylene)bis(3-(methylselanyl)-4-morpholino-1H-pyrrole-2,5-dione)

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow solid (81.4 mg, 65% yield), Mp = 84-85 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.55-7.49 (m, 2H), 7.39 (dd, *J* = 8.1, 2.0 Hz, 2H), 4.20 (t, *J* = 4.7 Hz, 8H), 3.87 (t, *J* = 4.7 Hz, 8H), 2.29 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 168.6, 165.2, 148.3, 132.3, 129.1, 124.6, 123.1, 90.8, 67.1, 48.9, 9.6; HRMS (ESI): calcd for C₂₄H₂₆N₄O₆NaSe₂ [M + Na]⁺ 649.0080, found 649.0087.

3-((methyl-d3)selanyl)-4-morpholino-1-phenyl-1H-pyrrole-2,5-dione

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a

yellow solid (54.7 mg, 77% yield), Mp = 107-108 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.49-7.45 (m, 2H), 7.38-7.34 (m, 3H), 4.20 (t, J = 4.72 Hz, 4H), 3.87 (t, J = 4.80 Hz, 4H); ¹³C NMR (100MHz, CDCl₃): δ 169.0, 165.6, 148.4, 131.9, 128.9, 127.7, 126.3, 90.6, 67.1, 48.9; HRMS (ESI): calcd for C₁₅H₁₃D₃N₂O₃NaSe [M + Na]⁺ 378.0412, found 378.0415.

2-(methylselanyl)-3-morpholinonaphthalene-1,4-dione

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a purple liquid (45.8 mg, 68% yield). ¹H NMR (500 MHz, CDCl₃): δ 8.08-8.06 (m, 1H), 8.02-8.00 (m, 1H), 7.72-7.65 (m, 2H), 3.89 (t, *J* = 4.5 Hz, 4H), 3.59 (t, *J* = 4.5 Hz, 4H), 2.47 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 182.1, 181.7, 152.6, 133.7, 133.0, 132.1, 128.6, 126.6, 126.3, 67.6, 52.3, 18.5; HRMS (ESI): calcd for C₁₅H₁₅NO₃NaSe [M + Na]⁺ 360.0115, found 360.0119.

References:

(1) (a) Ding, G.; Li, C.; Shen, Y.; Lu, B.; Zhang, Z.; Xie, X. Adv. Synth. Catal. 2016, 358, 1241-1250. (b) Matuszak, N.; Muccioli, G. G.; Labar, G.; Lambert, D. M. J. Med Chem. 2009, 52, 7410-7420.

¹H, ¹³C and ¹⁹F NMR spectra of product

