Intramolecular Iron-Catalyzed Transannulation of Furans with O-Acetyl Oximes: Synthesis of Functionalized Pyrroles

Anton S. Makarov,* Alexander A. Fadeev, and Maxim G. Uchuskin

Supporting Information

Table of Contents

1. General Information	2
2. Synthesis of Starting Materials	3
3. Key Optimization Studies	10
4. Synthesis of Products	14
5. ORTEP Diagram of Pyrrole 2a	21
6. 5-mmol Scale Synthesis of Pyrrole 2a	22
7. Mechanistic Studies	23
8. Synthesis of Pyrrole (<i>Z</i>)-2a	25
9. UV/VIS Spectra of Compounds 2d,k-n,p,v	26
10. CV Curves of Compounds 2d,k-n,p,v	27
11. DTG and DSC Analyses of Compounds 2d,k-m,p,v	29
12. Further Transformations of Pyrrole 2a	31
13. References	33
14. Copies of NMR Spectra	34

1. GENERAL INFORMATION

¹H and ¹³C NMR spectra were recorded with a «Bruker Avance III HD 400» (400 MHz for ¹H and 100 MHz for ¹³C NMR) spectrometer at room temperature; the chemical shifts (δ) were measured in ppm with respect to the solvent (CDCl₃, ¹H: δ = 7.26 ppm, ¹³C: δ = 77.16 ppm; [D₆] DMSO, ¹H: δ = 2.50 ppm, ¹³C: δ = 39.52 ppm). Coupling constants (J) are given in Hertz. Splitting patterns of an apparent multiplets associated with an averaged coupling constants were designated as s (singlet), d (doublet), t (triplet), q (quartet), p (pentet), sept (septet), m (multiplet), dd (doublet of doublets) and br (broadened). High-resolution mass measurements were carried out using a BrukermicroTOF-QTM ESI-TOF (Electro Spray Ionization/Time of Flight) mass spectrometer. GC/MS analysis was performed on an «Agilent 7890B» interfaced to an «Agilent 5977A» mass selective detector. Melting points were determined with a «Stuart SMP 30. Data sets for X-Ray diffraction were collected with a «New Xcalibur, Ruby» diffractometer. ESR experiments were performed on Radiopan SE/X-2544 spectrometer in the Institute of Problems of Chemical Physics, RAS (IPCP RAS) in dioxane under air at 80 °C. Thermal analysis and differential scanning calorimetry were performed on NETZSCH STA 449F1 instrument at a scan rate of 10 °C/min under argon atmosphere. The electrochemical investigations were performed on potentiostat/galvanostat ZRA Interface 1000 in the standard three-electrode cell with a carbon-glass working electrode, a Pt wire as a counter electrode, and Ag/Ag⁺ reference electrode at room temperature at a scan rate of 100 mV s⁻¹. The potential of Ag/Ag⁺ reference electrode was internally calibrated using ferrocene/ferrocenium redox couple. The cyclic voltammetry measurements were performed in 1.0 mM solutions of studied compounds, Et₄NCIO₄ (1 mM) was used as a supporting electrolyte. UV-Vis absorption spectra were recorded in acetonitrile (2 × 10⁻⁵ M) in standard 10 × 10 × 45 mm quartz cuvettes on Shimadzu UV-2600 spectrophotometer. Fluorescence spectra were recorded in acetonitrile (2 × 10⁵ M) in standard 10 × 10 × 45 mm guartz cuvettes on Shimadzu RF-5301pc spectrofluorimeter. Column chromatography was performed on silica gel Macherey Nagel (40-63 µm), unless otherwise noted. Precoated TLC sheets ALUGRAM SIL G/UV₂₅₄ were used for thin-layer analytical chromatography. Starting substituted 2-(3oxoalkyl)furans 3 [1-3] were synthesized according to known procedures. All the reactions were carried out using freshly distilled and dry solvents from solvent stills. All reagent-grade chemicals and solvents commercially available were used without further purification. FeCl₃6H₂O (≥99%) was purchased from Sigma Aldrich and used as received.

2. SYNTHESIS OF STARTING MATERIALS

General procedure for the synthesis of starting α , β -unsaturated ketones S1.

To the solution of an aldehyde (10 mmol) and a methyl ketone (10 mmol) in EtOH (10 mL) was added aq. solution of NaOH (20%, 5 mL) at room temperature. The resulting mixture was stirred until full conversion of starting materials (TLC or GC control). Upon completion, the mixture was poured into water; the formed precipitate was filtered, washed with water, and dried. Crude α , β -unsaturated ketones were recrystallized from EtOH. If necessary, the product could be purified by column chromatography (eluent: petroleum ether/ethyl acetate, 9:1).

(2*E*)-3-(2,3-Dibromo-5,6-dimethoxyphenyl)-1-phenylprop-2-en-1-one (**S1f**). Yield: 3365 mg, 79%; off-white solid; mp = 139–140 °C (EtOH). R_f = 0.45 (ethyl acetate/petroleum ether = 1:3). ¹H NMR (400 MHz, CDCl₃): δ 8.02 (d, *J* = 8.1 Hz, 2H), 7.87 (d, *J* = 15.9 Hz, 1H), 7.74 (d, *J* = 15.9 Hz, 1H), 7.61 – 7.56 (m, 1H), 7.53 – 7.47 (m, 2H), 7.22 (s, 1H), 3.89 (s, 3H), 3.81 (s, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃): δ 190.8, 152.8, 148.3, 140.0, 138.1, 133.1, 131.8, 129.8, 128.9 (2C), 128.8 (2C), 120.6, 118.3, 117.9, 60.8, 56.5. HRMS (ESI/TOF) m/z: [M + H]⁺ calcd for C₁₇H₁₅Br₂O₃⁺ 424.9382, found 424.9378.

 $\begin{array}{ll} (2\textit{E})\mbox{-}3\mbox{-}(4\mbox{-}(Diphenylamino)phenyl)\mbox{-}1\mbox{-}(9\mbox{-}hexyl\mbox{-}9\mbox{-}H\mbox{-}random constants)\mbox{-}1\mbox{-}(9\mbox{-}hexyl\mbox{-}p\mbox{-}random constants)\mbox{-}1\mbox{-}(9\mbox{-}hexyl\mbox{-}p\mbox{-}random constants)\mbox{-}1\mbox{-}(9\mbox{-}hexyl\mbox{-}p\mbox{-}random constants)\mbox{-}1\mbox{-}(9\mbox{-}hexyl\mbox{-}p\mbox{-}random constants)\mbox{-}1\mbox{-}(9\mbox{-}hexyl\mbox{-}p\mbox{-}random constants)\mbox{-}1\mbox{-}1\mbox{-}1\mbox{-}(9\mbox{-}random constants)\mbox{-}1\mb$

(2*E*)-1-(4-(Diphenylamino)phenyl)-3-(9-hexyl-9*H*-carbazol-3-yl)prop-2-en-1-one (**S1n**). Yield: 4548 mg, 83%; orange oil. R_f = 0.55 (ethyl acetate/petroleum ether = 1:3). ¹H NMR (400 MHz, CDCl₃): δ 8.25 (br s, 1H), 8.02 (d, *J* = 7.8 Hz, 1H), 7.95 (d, *J* = 15.5 Hz, 1H), 7.91 – 7.81 (m, 2H), 7.66 (dd, *J* = 8.6, 1.7 Hz, 1H), 7.48 (d, *J* = 15.5 Hz, 1H), 7.41 – 7.35 (m, 1H), 7.32 – 7.15 (m, 7H), 7.10 – 6.95 (m, 8H), 4.18 (t, *J* = 7.3 Hz, 2H), 1.81 – 1.69 (m, 2H), 1.31 – 1.17 (m, 6H), 0.77 (t, *J* = 7.0 Hz, 3H). ¹³C (¹H) NMR (100 MHz, CDCl₃): δ 188.5, 152.0, 146.9 (2C), 145.3, 142.0, 141.2, 131.6, 130.2 (2C), 129.7 (4C), 126.5, 126.4, 126.3, 126.0 (4C), 124.6 (2C), 123.6, 123.0, 121.4, 120.7, 120.3 (2C), 119.7, 119.2, 109.2, 109.1, 43.4, 31.7, 29.1, 27.1, 22.6, 14.1. HRMS (ESI/TOF) m/z: [M + H]⁺ calcd for C₃₉H₃₇N₂O⁺ 549.2900, found 549.2904.

(2*E*)-1-(3,4-Dichlorophenyl)-3-(1-methyl-1*H*-pyrrol-2-yl)prop-2-en-1-one (**S1q**). Yield: 2240 mg, 80%; orange solid; mp = 119–120 °C (EtOH). R_f = 0.40 (ethyl acetate/petroleum ether = 1:3). ¹H NMR (400 MHz, CDCl₃): δ 8.07 (br s, 1H), 7.87 – 7.77 (m, 2H), 7.55 (d, *J* = 8.2 Hz, 1H), 7.18 (d, *J* = 15.1 Hz, 1H), 6.88 (d, *J* = 4.0 Hz, 1H), 6.85 (br s, 1H), 6.24 (br s, 1H), 3.77 (s, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃): δ 187.4, 138.6, 136.9, 133.4, 133.3, 130.7, 130.4, 130.3, 128.7, 127.4, 115.4, 113.4, 110.3, 34.5. HRMS (ESI/TOF) m/z: [M + H]⁺ calcd for C₁₄H₁₂Cl₂NO⁺ 280.0290, found 280.0292.

Michael addition of 2-substituted furans to α , β -unsaturated ketones.

General method A

CuBr₂ (11.2 mg, 2.5 mol %) was added to a solution of α , β -unsaturated ketone (2 mmol) and furan (3 mmol) in CH₂Cl₂ (5 mL). The reaction mixture was stirred at room temperature while controlling the reaction progress by TLC or GC. Upon completion, the mixture was concentrated at reduced pressure. The products were isolated by column chromatography (eluent: petroleum ether/CH₂Cl₂, gradient from 19:1 to 10:1 to 5:1).

3-(2,3-Dibromo-5,6-dimethoxyphenyl)-3-(5-methylfuran-2-yl)-1-phenylpropan-1-one (**3h**). Yield: 577 mg, 57%; pale yellow oil. $R_f = 0.50$ (ethyl acetate/petroleum ether = 1:3). ¹H NMR (400 MHz, CDCl₃): δ 8.00 (d, J = 7.7 Hz, 2H), 7.54 – 7.48 (m, 1H), 7.46 – 7.38 (m, 2H), 7.14 (s, 1H), 5.90 (d, J = 3.1 Hz, 1H), 5.87 (d, J = 3.1 Hz, 1H), 5.66 (t, J = 6.8 Hz, 1H), 4.13 (dd, J = 17.5, 7.7 Hz, 1H), 3.78 (s, 3H), 3.69 (dd, J = 17.5, 6.1 Hz, 1H), 3.56 (s, 3H), 2.19 (s, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃): δ 197.5, 153.4, 152.5, 150.0, 147.9, 137.0, 136.9, 132.9, 128.4 (2C), 128.0 (2C), 116.3 (2C), 106.3 (2C), 105.9, 60.4, 55.9 (2C), 40.4, 13.4. HRMS (ESI/TOF) m/z: [M + H]⁺ calcd for C₂₂H₂₁Br₂O₄⁺ 506.9801, found 506.9785.

1-(3,4-Dichlorophenyl)-3-(5-methylfuran-2-yl)-3-(1-methyl-1*H*-pyrrol-2-yl)propan-1-one (**3q**). Yield: 231 mg, 32%; pale yellow oil. R_f = 0.45 (ethyl acetate/petroleum ether = 1:3). ¹H NMR (400 MHz, CDCl₃): δ 8.02 (d, *J* = 2.1 Hz, 1H), 7.77 (dd, *J* = 8.4, 2.1 Hz, 1H), 7.53 (d, *J* = 8.4 Hz, 1H), 6.54 (s, 1H), 6.06 (d, *J* = 3.5 Hz, 1H), 6.01 (d, *J* = 3.5 Hz, 1H), 5.83 (d, *J* = 3.0 Hz, 1H), 5.79 (d, *J* = 3.0 Hz, 1H), 4.79 (t, *J* = 7.1 Hz, 1H), 3.66 (dd, *J* = 16.8, 7.1 Hz, 1H), 3.61 (s, 3H), 3.57 (dd, *J* = 16.8, 7.1 Hz, 1H), 2.23 (s, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃): δ 195.7, 153.7, 151.2, 137.7, 136.7, 133.4, 132.2, 130.8, 130.2, 127.2, 122.0, 106.9, 106.8, 106.2, 105.8, 43.2, 33.8, 32.3, 13.6. HRMS (ESI/TOF) m/z: [M + H]⁺ calcd for C₁₉H₁₈Cl₂NO₂⁺ 362.0709, found 362.0718.

3-[5-(4-Chlorophenyl)furan-2-yl]propanal (**3s**). Yield: 427 mg, 91%; pale yellow oil. $R_f = 0.40$ (ethyl acetate/petroleum ether = 1:3). ¹H NMR (400 MHz, DMSO-*d*₆): δ 9.75 (s, 1H), 7.67 – 7.60 (m, 2H), 7.48 – 7.40 (m, 2H), 6.85 (d, *J* = 3.3 Hz, 1H), 6.24 (d, *J* = 3.3 Hz, 1H), 2.97 (t, *J* = 7.1 Hz, 2H), 2.83 (t, *J* = 7.1 Hz, 2H). ¹³C {¹H} NMR (100 MHz, DMSO-*d*₆): δ 201.9, 154.7, 150.4, 131.2, 129.2, 128.7, 124.6, 107.8, 107.2, 40.7, 20.3. HRMS (ESI/TOF) m/z: [M + H]⁺ calcd for C₁₃H₁₂ClO₂⁺ 235.0520, found 235.0516.

General method B

TMSCI (60 μ L, 20 mol %) was added to a solution of α , β -unsaturated ketone (2 mmol) and 2-substituted furan (3 mmol) in CH₃CN (5 mL). The reaction vessel was placed into aluminium block preheated to 60 °C and stirred while controlling the reaction progress by TLC or GC. Upon completion, the mixture was concentrated at reduced pressure. The products were isolated by column chromatography (eluent: petroleum ether/CH₂Cl₂, gradient from 19:1 to 10:1 to 5:1).

3-(2,4-Dimethoxyphenyl)-3-(5-methylfuran-2-yl)-1-phenylpropan-1-one (**3f**). Yield: 637 mg, 91%; pale yellow oil. $R_f = 0.45$ (ethyl acetate/petroleum ether = 1:3). ¹H NMR (400 MHz, CDCl₃): δ 8.03 – 7.97 (m, 2H), 7.57 – 7.51 (m, 1H), 7.48 – 7.42 (m, 2H), 7.09 (d, *J* = 8.4 Hz, 1H), 6.50 (d, *J* = 2.4 Hz, 1H), 6.47 (dd, *J* = 8.4, 2.4 Hz, 1H), 5.96 (d, *J* = 3.0 Hz, 1H), 5.87 (d, *J* = 3.0 Hz, 1H), 5.16 (dd, *J* = 8.5, 6.1 Hz, 1H), 3.80 (s, 3H), 3.79 (s, 3H), 3.72 (dd, *J* = 16.3, 8.5 Hz, 1H), 3.50 (dd, *J* = 16.3, 6.1 Hz, 1H), 2.24 (s, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃): δ 198.2, 159.7, 157.6, 154.8, 150.5, 137.2, 132.7, 128.9, 128.4 (2C), 128.1 (2C), 123.2, 106.5, 106.0, 104.5, 98.8, 55.4, 55.2, 43.0, 33.9, 13.5. HRMS (ESI/TOF) m/z: [M + H]⁺ calcd for C₂₂H₂₃O₄⁺ 351.1591, found 351.1591.

3-(5-Methylfuran-2-yl)-3-(6-nitro-1,3-benzodioxol-5-yl)-1-phenylpropan-1-one (**3g**). Yield: 417 mg, 55%; pale yellow oil. $R_f = 0.40$ (ethyl acetate/petroleum ether = 1:3). ¹H NMR (400 MHz, CDCl₃): δ 7.94 (d, J = 7.7 Hz, 2H), 7.56 – 7.51 (m, 1H), 7.46 – 7.40 (m, 2H), 7.36 (s, 1H), 6.85 (s, 1H), 6.03 (d, J = 3.0 Hz, 1H), 6.01 (s, 2H), 5.86 (d, J = 3.0 Hz, 1H), 5.51 (t, J = 7.1 Hz, 1H), 3.76 (dd, J = 17.4, 7.6 Hz, 1H), 3.58 (dd, J = 17.4, 6.6 Hz, 1H), 2.21 (s, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃): δ 196.5, 152.9, 151.6 (2C), 146.6, 143.3, 136.7, 133.9, 133.2, 128.6 (2C), 128.1 (2C), 108.5, 107.7, 106.3, 105.5, 102.9, 43.3, 35.3, 13.5. HRMS (ESI/TOF) m/z: [M + H]⁺ calcd for C₂₁H₁₈NO₆₊ 380.1129, found 380.1135.

1-(3,4-Dichlorophenyl)-3-(5-methylfuran-2-yl)-3-phenylpropan-1-one (**3***j*). Yield: 452 mg, 63%; pale yellow oil. $R_f = 0.65$ (ethyl acetate/petroleum ether = 1:3). ¹H NMR (400 MHz, CDCl₃): δ 8.01 (d, J = 2.1 Hz, 1H), 7.75 (dd, J = 8.4, 2.1 Hz, 1H), 7.51 (d, J = 8.4 Hz, 1H), 7.37 – 7.30 (m, 4H), 7.28 – 7.22 (m, 1H), 5.93 (d, J = 3.0 Hz, 1H), 5.88 (d, J = 3.0 Hz, 1H), 4.78 (t, J = 7.2 Hz, 1H), 3.77 (dd, J = 16.8, 7.2 Hz, 1H), 3.50 (dd, J = 16.8, 7.2 Hz, 1H), 2.25 (s, 3H). ¹³C [¹H] NMR (100 MHz, CDCl₃): δ 195.6, 154.5, 151.2, 141.9, 137.6, 136.7, 133.3, 130.7, 130.2, 128.7 (2C), 127.9 (2C), 127.2, 127.0, 106.8, 106.2, 43.8, 40.7, 13.6. HRMS (ESI/TOF) m/z: [M + H]⁺ calcd for C₂₀H₁₇Cl₂O₂⁺ 359.0600, found 359.0590.

3-[4-(Diphenylamino)phenyl]-1-(9-hexyl-9/*H*-carbazol-3-yl)-3-(5-methylfuran-2-yl)propan-1-one (**3m**). Yield: 1054 mg, 84%; pale orange oil. R_f = 0.55 (ethyl acetate/petroleum ether = 1:4). ¹H NMR (400 MHz, CDCl₃): δ 8.63 (d, *J* = 1.7 Hz, 1H), 8.06 – 8.01 (m, 2H), 7.43 – 7.39 (m, 1H), 7.33 (d, *J* = 8.1 Hz, 1H), 7.29 (d, *J* = 8.7 Hz, 1H), 7.22 – 7.18 (m, 1H), 7.15 – 7.07 (m, 6H), 6.95 – 6.85 (m, 8H), 5.87 (d, *J* = 3.0 Hz, 1H), 5.75 (d, *J* = 3.0 Hz, 1H), 4.73 (t, *J* = 7.2 Hz, 1H), 4.21 (t, *J* = 7.3 Hz, 2H), 3.77 (dd, *J* = 16.4, 7.2 Hz, 1H), 3.56 (dd, *J* = 16.4, 7.2 Hz, 1H), 2.15 (s, 3H), 1.81 – 1.75 (m, 2H), 1.27 – 1.17 (m, 6H), 0.77 (t, *J* = 6.9 Hz, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃): δ 197.3, 155.6, 151.1, 148.0 (2C), 146.4, 143.4, 141.3, 137.1, 129.3 (4C), 128.9, 128.8 (2C), 126.6, 126.4, 124.3 (4C), 124.2 (2C), 123.4, 122.8, 122.7 (2C), 121.8, 120.8, 120.1, 109.4, 108.4, 106.6, 106.1, 43.9, 43.5, 40.5, 31.7, 29.0, 27.1, 22.6, 14.1, 13.7. HRMS (ESI/TOF) m/z: [M + Na]⁺ calcd for C₄₄H₄₂N₂NaO₂⁺ 653.3138, found 653.3131.

1-[4-(Diphenylamino)phenyl]-3-(9-hexyl-9H-carbazol-3-yl)-3-(5-methylfuran-2-yl)propan-1one (**3n**). Yield: 592 mg, 47%; pale orange oil. $R_f = 0.55$ (ethyl acetate/petroleum ether = 1:4). ¹H NMR (400 MHz, CDCl₃): δ 7.90 (d, J = 8.5 Hz, 2H), 7.67 (d, J = 8.5 Hz, 2H), 7.30 – 7.26 (m, 2H), 7.17 – 7.12 (m, 6H), 7.01 – 6.96 (m, 7H), 6.81 (d, J = 8.5 Hz, 2H), 5.81 (d, J = 3.0 Hz, 1H), 5.71 (d, J = 3.0 Hz, 1H), 4.84 (t, J = 7.2 Hz, 1H), 4.07 (t, J = 7.4 Hz, 3H), 3.65 (dd, J = 16.5, 7.2 Hz, 1H), 3.44 (dd, J = 16.5, 7.2 Hz, 1H), 2.08 (s, 3H), 1.71 – 1.67 (m, 2H), 1.19 – 1.13 (m, 6H), 0.73 (t, J = 6.9 Hz, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃): δ 196.3, 156.2, 152.1, 150.9, 146.6 (2C), 140.9, 139.5, 133.0, 130.0, 129.8 (2C), 129.6 (4C), 126.0 (4C), 125.9, 125.6, 124.6 (2C), 123.0, 122.9, 120.4, 119.8 (2C), 119.5, 118.6, 108.7, 108.6, 106.3, 106.1, 44.0, 43.2, 40.9, 31.6, 29.0, 27.0, 22.6, 14.0, 13.6. HRMS (ESI/TOF) m/z: [M + Na]⁺ calcd for C₄₄H₄₂N₂NaO₂⁺ 653.3138, found 653.3146.

1-Furan-2-yl-3-(5-methylfuran-2-yl)-3-(4-methylphenyl)propan-1-one **(3p)**. Yield: 400 mg, 68%; pale yellow oil. $R_f = 0.50$ (ethyl acetate/petroleum ether = 1:3). ¹H NMR (400 MHz, CDCl₃): δ 7.56 (d, J = 1.8 Hz, 1H), 7.27 (d, J = 7.9 Hz, 2H), 7.19 (d, J = 3.6 Hz, 1H), 7.15 (d, J = 7.8 Hz, 2H), 6.50 (dd, J = 3.6, 1.8 Hz, 1H), 5.97 (d, J = 3.0 Hz, 1H), 5.88 (d, J = 3.0 Hz, 1H), 4.79 (t, J = 7.4 Hz, 1H), 3.66 (dd, J = 16.2, 7.4 Hz, 1H), 3.44 (dd, J = 16.2, 7.4 Hz, 1H), 2.35 (s, 3H), 2.25 (s, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃): δ 186.7, 154.9, 152.9, 150.9, 146.2, 139.0, 136.2, 129.1 (2C), 127.7 (2C), 117.0, 112.1, 106.4, 105.9, 43.5, 40.0, 20.9, 13.4. HRMS (ESI/TOF) m/z: [M + H]⁺ calcd for C₁₉H₁₉O₃⁺ 295.1329, found 295.1328.

4-(5-Methylfuran-2-yl)pentan-2-one (**3w**). Yield: 236 mg, 71%; pale yellow oil. $R_f = 0.65$ (ethyl acetate/petroleum ether = 1:3). ¹H NMR (400 MHz, CDCl₃): δ 5.84 (d, J = 3.0 Hz, 1H), 5.82 (d, J = 3.0 Hz, 1H), 3.38 – 3.27 (m, 1H), 2.82 (dd, J = 16.3, 6.0 Hz, 1H), 2.53 (dd, J = 16.3, 7.9 Hz, 1H), 2.24 (s, 3H), 2.11 (s, 3H), 1.23 (d, J = 6.9 Hz, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃): δ 207.4, 157.4, 150.6, 105.9, 104.6, 49.7, 30.4, 29.2, 19.2, 13.6. HRMS (ESI/TOF) m/z: [M + Na]⁺ calcd for C₁₀H₁₄NaO₂⁺ 189.0886, found 189.0882.

acetate/petroleum ether = 1:3). ¹H NMR (400 MHz, CDCl₃): δ 7.37 – 7.16 (m, 10H), 6.04 (d, *J* = 3.0 Hz, 1H), 5.92 (d, *J* = 3.0 Hz, 1H), 5.83 (d, *J* = 3.0 Hz, 1H), 5.78 (d, *J* = 3.0 Hz, 1H), 4.67 (d, *J* = 4.2 Hz, 1H), 4.64 (d, *J* = 4.0 Hz, 1H), 2.88 – 2.81 (m, 1H), 2.68 – 2.57 (m, 1H), 2.27 (s, 3H), 2.24 (s, 3H), 2.42 – 2.09 (m, 6H), 2.00 – 1.61 (m, 8H). ¹³C {¹H} NMR (100 MHz, CDCl₃): δ 218.7, 218.6, 154.7, 153.5, 151.1, 151.0, 141.4, 140.1, 129.2 (2C), 128.7 (2C), 128.6 (2C), 128.3 (2C), 126.9, 126.9, 108.8, 107.2, 106.0 (2C), 54.1, 53.1, 44.9, 44.0, 38.5, 38.4, 26.6, 26.5, 20.7, 20.6, 13.7, 13.6. HRMS (ESI/TOF) m/z: [M + Na]⁺ calcd for C₁₇H₁₈NaO₂⁺ 277.1199, found 277.1199.

2-[(5-Methylfuran-2-yl)(phenyl)methyl]cyclopentanone (**3x**) was isolated as a mixture of inseparable diastereomers in 1:1 ratio. Yield: 371 mg, 73%; pale yellow oil. $R_f = 0.60$ (ethyl

2-[(5-Methylfuran-2-yl)(phenyl)methyl]-1*H*-indene-1,3(2*H*)-dione (**3ab**). Yield: 575 mg, 91%; pale yellow oil. $R_f = 0.35$ (ethyl acetate/petroleum ether = 1:3). ¹H NMR (400 MHz, CDCl₃): $\overline{\sigma}$ 7.93 – 7.87 (m, 2H), 7.77 – 7.73 (m, 2H), 7.41 – 7.36 (m, 2H), 7.26 – 7.16 (m, 3H), 5.96 (d, *J* = 3.1 Hz, 1H), 5.79 (d, *J* = 3.1 Hz, 1H), 4.98 (d, *J* = 3.2 Hz, 1H), 3.70 (d, *J* = 3.2 Hz, 1H), 2.03 (s, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃): $\overline{\sigma}$ 198.8, 198.7, 152.3, 151.1, 142.9, 142.6, 138.7, 135.4 (2C), 129.3 (2C), 128.5 (2C), 127.4, 123.2, 123.1, 109.0, 106.3, 57.6, 44.4, 13.4. HRMS (ESI/TOF) m/z: [M + H]⁺ calcd for C₂₁H₁₇O₃⁺ 317.1172, found 317.1172.

3-(2,4,6-Trimethoxyphenyl)-3-(5-methylfuran-2-yl)-1-phenylpropan-1-one (**3ac**). Yield: 388 mg, 51%; pale yellow oil. $R_f = 0.45$ (ethyl acetate/petroleum ether = 1:3). ¹H NMR (400 MHz, CDCl₃): δ 7.94 (d, J = 7.7 Hz, 2H), 7.53 – 7.48 (m, 1H), 7.44 – 7.39 (m, 2H), 6.12 (s, 2H), 5.79 (d, J = 3.0 Hz, 1H), 5.75 (d, J = 3.0 Hz, 1H), 5.34 (t, J = 7.3 Hz, 1H), 3.87 (dd, J = 16.4, 7.0 Hz, 1H), 3.78 (s, 3H), 3.73 (s, 6H), 3.69 (dd, J = 16.4, 7.5 Hz, 1H), 2.19 (s, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃): δ 199.4, 160.2, 159.5 (2C), 155.9, 149.6, 137.7, 132.6, 128.4 (2C), 128.3 (2C), 111.0, 106.0, 105.2, 91.8 (2C), 56.1 (2C), 55.3, 41.5, 30.3, 13.7. HRMS (ESI/TOF) m/z: [M + H]⁺ calcd for C₂₃H₂₅O₅⁺ 381.1697, found 381.1709.

Synthesis of 3-furan-2-yl-1,3-diphenylpropan-1-one (3r).

To a solution of PhMgBr in Et_2O/THF (3.3 mL of PhMgBr 1 M solution in Et_2O , 3.3 mmol, 3.3 equiv. and 3 mL THF) was added Cul (67 mg, 0.35 mmol) at 0 °C. To the resulting mixture was added (2*E*)-3-furan-2-yl-1-phenylprop-2-en-1-one (198 mg, 1 mmol) in THF (1 mL) over 1 min at 0 °C upon stirring. The reaction mixture was stirred at the same temperature for 1 h (TLC control), after which it was quenched with MeOH (2 mL). The mixture was dry-loaded on basic Al_2O_3 and subjected to column chromatography on basic Al_2O_3 (eluent: petroleum ether/ethyl acetate, gradient from 50:1 to 30:1).

3-Furan-2-yl-1,3-diphenylpropan-1-one (**3r**).^[3] Yield: 171 mg, 62%; pale yellow oil. $R_f = 0.55$ (ethyl acetate/petroleum ether = 1:3). ¹H NMR (400 MHz, CDCl₃): δ 7.99 – 7.93 (m, 2H), 7.59 – 7.54 (m, 1H), 7.48 – 7.44 (m, 2H), 7.35 – 7.30 (m, 5H), 7.26 – 7.22 (m, 1H), 6.29 (dd, *J* = 3.2, 1.9 Hz, 1H), 6.06 (d, *J* = 3.2 Hz, 1H), 4.87 (t, *J* = 7.0 Hz, 1H), 3.84 (dd, *J* = 17.0, 7.0 Hz, 1H), 3.58 (dd, *J* = 17.0, 7.0 Hz, 1H). ¹³C {¹H} NMR (100 MHz, CDCl₃): δ 197.6, 157.0, 141.7, 137.2, 133.2, 128.8 (2C), 128.7 (2C), 128.3, 128.2 (2C), 128.0 (2C), 127.0, 110.3, 106.0, 43.8, 40.5.

General procedure for the synthesis of substituted furans 3t,u

5 mL Wheaton microreaction vial equipped with a spinning bar and a Teflon cap was charged with *E*-chalcone for compound **3t** or (*E*)-1-(4-methoxyphenyl)-3-phenylprop-2-en-1-one for compound **3u** (1 mmol), 2-methylfuran (135 μ L, 1.5 mmol, 1.5 eq.), AcOH (5 mL), and 48% aq. HBr (8.4 mg, 5.6 μ L, 5% mol.). The vial was closed and placed into an aluminum block preheated to 80 °C, and the mixture was stirred for 12 h (TLC control). Upon completion, the solvent was evaporated. The products were isolated by column chromatography (eluent: petroleum ether/CH₂Cl₂, 4:1).

4-(3,5-Diphenylfuran-2-yl)butan-2-one (**3t**).^[4] Yield: 249 mg, 86%; pale yellow oil. $R_f = 0.45$ (ethyl acetate/petroleum ether = 1:3). ¹H NMR (400 MHz, CDCl₃): δ 7.68 (d, J = 7.9 Hz, 2H), 7.41 (t, J = 7.6 Hz, 2H), 7.35 (d, J = 7.9 Hz, 2H), 7.30 – 7.24 (m, 3H), 6.77 (s, 1H), 3.17 (t, J = 7.6 Hz, 2H), 2.92 (t, J = 7.6 Hz, 2H), 2.41 (s, 3H), 2.21 (s, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃): δ 207.1, 152.1, 149.5, 133.8, 130.8, 128.8 (4C), 127.8 (2C), 127.3, 126.8, 123.6 (3C), 106.9, 41.8, 29.9, 21.5. HRMS (ESI⁺) m/z: [M + H]⁺ calcd for C₂₀H₁₉O₂⁺ 291.1380, found 291.1384.

4-[5-(4-Methoxyphenyl)-3-phenylfuran-2-yl]butan-2-one (**3u**).^[4] Yield: 288 mg, 90%; pale yellow oil. $R_f = 0.30$ (ethyl acetate/petroleum ether = 1:3). ¹H NMR (400 MHz, CDCl₃): δ 7.59 (d, J = 8.7 Hz, 2H), 7.44 – 7.38 (m, 4H), 7.31 – 7.27 (m, 1H), 6.93 (d, J = 8.7 Hz, 2H), 6.62 (s, 1H), 3.84 (s, 3H), 3.14 (t, J = 7.6 Hz, 2H), 2.89 (t, J = 7.6 Hz, 2H), 2.18 (s, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃): δ 207.3, 159.2, 152.3, 148.8, 134.0, 128.8 (2C), 127.9 (2C), 126.8, 125.1 (2C), 124.1, 123.6, 114.4 (2C), 105.4, 55.5, 42.0, 30.0, 21.6. HRMS (ESI⁺) m/z: [M + H]⁺ calcd for C₂₁H₂₁O₃⁺ 321.1485, found 321.1495.

Synthesis of 3-(5-methylfuran-2-yl)-4-nitro-1-phenylbutan-1-one (3y).

To a stirred solution of (2*E*)-3-(5-methylfuran-2-yl)-1-phenylprop-2-en-1-one (424 mg, 2.0 mmol) in MeOH (10 mL) was added nitromethane (540 μ L, 10 mmol, 5 equiv.) and freshly calcined K₂CO₃ (276 mg, 2 mmol, 1 equiv.) at room temperature. The resulting mixture was refluxed up to the full conversion of the starting material (TLC or GC control). Upon completion, the reaction mixture was concentrated under reduced pressure and subjected to column chromatography (eluent: petroleum ether/CH₂Cl₂, 3:1).

3-(5-Methylfuran-2-yl)-4-nitro-1-phenylbutan-1-one (**3y**). Yield: 393 mg, 72%; pale yellow oil. R_f = 0.35 (ethyl acetate/petroleum ether = 1:4). ¹H NMR (400 MHz, CDCl₃): δ 8.00 – 7.91 (m, 2H), 7.61 – 7.56 (m, 1H), 7.50 – 7.43 (m, 2H), 6.04 (d, *J* = 3.0 Hz, 1H), 5.85 (d, *J* = 3.0 Hz, 1H), 4.78 (dd, *J* = 12.5, 6.2 Hz, 1H), 4.72 (dd, *J* = 12.5, 7.2 Hz, 1H), 4.26 (p, *J* = 6.7 Hz, 1H), 3.50 (dd, *J* = 17.8, 6.1 Hz, 1H), 3.40 (dd, *J* = 17.8, 7.5 Hz, 1H), 2.23 (s, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃): δ 196.8, 152.1, 150.1, 136.5, 133.7, 128.8 (2C), 128.2 (2C), 108.0, 106.4, 77.5, 39.2, 33.4, 13.6. HRMS (ESI/TOF) m/z: [M + H]⁺ calcd for C₁₅H₁₆NO₄⁺ 274.1074, found 274.1072.

Synthesis of 3-(5-methylfuran-2-yl)-1-phenyl-3-(phenylsulfanyl)propan-1-one (3z).

To a stirred solution of (2E)-3-(5-methylfuran-2-yl)-1-phenylprop-2-en-1-one (424 mg, 2.0 mmol) in CH₂Cl₂ (5 mL) was added thiophenol (245 µL, 2.4 mmol, 1.2 equiv.) and FeCl₃ (65 mg, 20 mol%) under argon at 0 °C. The resulting mixture was allowed to reach room temperature over 1 h and then stirred up to the full conversion of the starting material (TLC or GC control). Upon completion, the reaction mixture was concentrated under reduced pressure and subjected to column chromatography (eluent: petroleum ether/CH₂Cl₂, gradient from 1:0 to 10:1 to 3:1).

3-(5-Methylfuran-2-yl)-1-phenyl-3-(phenylsulfanyl)propan-1-one (**3z**). Yield: 187 mg, 29%; pale yellow oil. $R_f = 0.60$ (ethyl acetate/petroleum ether = 1:3). ¹H NMR (400 MHz, CDCl₃): δ 7.96 – 7.92 (m, 2H), 7.60 – 7.56 (m, 1H), 7.50 – 7.45 (m, 2H), 7.41 – 7.36 (m, 2H), 7.30 – 7.27 (m, 3H), 5.93 (d, *J* = 3.1 Hz, 1H), 5.81 (d, *J* = 3.1 Hz, 1H), 4.96 (dd, *J* = 7.9, 6.2 Hz, 1H), 3.70 (dd, *J* = 17.0, 7.9 Hz, 1H), 3.52 (dd, *J* = 17.0, 6.2 Hz, 1H), 2.26 (s, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃): δ 196.9, 151.8, 151.5, 137.0, 133.9 (2C), 133.8, 133.4, 128.9 (2C), 128.8 (2C), 128.3 (2C), 128.0, 108.3, 106.4, 42.4, 42.1, 13.7. HRMS (ESI/TOF) m/z: [M + Na]⁺ calcd for C₂₀H₁₈NaO₂S⁺ 345.0920, found 345.0928.

Synthesis of diethyl [3-(4-chlorophenyl)-1-(5-methylfuran-2-yl)-3-oxopropyl]propanedioate (3aa).

To a stirred solution of (2E)-1-(4-chlorophenyl)-3-(5-methylfuran-2-yl)prop-2-en-1-one (493 mg, 2.0 mmol) in EtOH (10 mL) was added diethylmalonate (340 µL, .2.2 mmol, 1.1 equiv.) and freshly calcined K₂CO₃ (55 mg, 0.8 mmol, 0.4 equiv.) at room temperature. The resulting mixture stirred up to the full conversion of the starting material (TLC or GC control). Upon completion, the reaction mixture was concentrated under reduced pressure and subjected to column chromatography (eluent: petroleum ether/CH₂Cl₂, gradient from 19:1 to 9:1 to 1:1).

Diethyl [3-(4-chlorophenyl)-1-(5-methylfuran-2-yl)-3-oxopropyl]propanedioate (**3aa**). Yield: 455 mg, 56%; pale yellow oil. $R_f = 0.50$ (ethyl acetate/petroleum ether = 1:3). ¹H NMR (400 MHz, CDCl₃): δ 7.79 (d, J = 8.5 Hz, 2H), 7.31 (d, J = 8.5 Hz, 2H), 5.85 (d, J = 3.1 Hz, 1H), 5.68 (d, J = 3.1 Hz, 1H), 4.17 – 4.05 (m, 3H), 4.01 (q, J = 7.1 Hz, 2H), 3.78 (d, J = 8.0 Hz, 1H), 3.40 (dd, J = 16.7, 8.0 Hz, 1H), 3.33 (dd, J = 16.7, 5.0 Hz, 1H), 2.08 (s, 3H), 1.15 (t, J = 7.1 Hz, 3H), 1.08 (t, J = 7.1 Hz, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃): δ 196.4, 168.1, 167.8, 151.5, 151.1, 139.5, 135.3, 129.6, 128.9, 107.8, 106.1, 61.5, 61.4, 55.3, 39.9, 34.6, 14.0, 13.9, 13.4. HRMS (ESI/TOF) m/z: [M + H]⁺ calcd for C₂₁H₂₄ClO₆⁺ 407.1256, found 407.1266.

Synthesis of 1,6,6-tris(5-methylfuran-2-yl)-1-phenylhexan-3-one (3ad).

To the solution of 5,5-bis(5-methylfuran-2-yl)pentan-2-one^[5] (1.23 g, 5 mmol) and benzaldehyde (510 µL, 5 mmol) in EtOH (2.5 mL) was added aqueous solution of NaOH (20%, 2.5 mL) at room temperature. The resulting mixture was stirred until full conversion of either aldehyde or ketone (TLC or GC control). Upon completion, the mixture was poured into water (50 mL) and extracted with ethyl acetate (2 × 30 mL). Combined organic fractions were washed with water (2 × 15 mL) and brine (20 mL). The combined organic fractions were washed with water (2 × 15 mL) and brine (20 mL). The combined organic fractions were dried with anhydrous NaSO₄, concentrated and subjected to column chromatography (eluent: petroleum ether/CH₂Cl₂, gradient from 6:1 to 4:1). Unpolar major fraction that corresponded to α , β -unsaturated ketone was collected (R_f = 0.85, ethyl acetate/petroleum ether = 1:3; verified by GC and NMR), concentrated, and dissolved in acetonitrile (15 mL). To the resulting solution was added 2-methylfuran (885 µL, 10 mmol, 2 equiv.) and TMSCI (150 µL, 20 mol%), the reaction vessel was placed into aluminium block preheated to 60 °C and stirred while controlling the reaction progress by TLC or GC. Upon completion, the mixture was concentrated at reduced pressure. The product was isolated by column chromatography (eluent: petroleum ether/CH₂Cl₂, 9:1).

1,6,6-Tris(5-methylfuran-2-yl)-1-phenylhexan-3-one (**3ad**). Yield: 1373 mg, 66%; pale yellow oil. $R_f = 0.70$ (ethyl acetate/petroleum ether = 1:4). ¹H NMR (400 MHz, CDCl₃): δ 7.15 – 7.03 (m, 5H), 5.77 (d, J = 3.0 Hz, 1H), 5.74 (d, J = 3.1 Hz, 1H), 5.73 – 5.68 (m, 4H), 4.42 (t, J = 7.4 Hz, 1H), 3.78 (t, J = 7.6 Hz, 1H), 3.00 (dd, J = 16.4, 7.4 Hz, 1H), 2.77 (dd, J = 16.4, 7.4 Hz, 1H), 2.28 – 2.17 (m, 2H), 2.09 (s, 6H), 2.07 (s, 3H), 2.06 – 2.02 (m, 2H). ¹³C {¹H} NMR (100 MHz, CDCl₃): δ 207.6, 154.8, 153.2, 153.1, 151.0, 150.8 (2C), 142.1, 128.5 (2C), 127.8 (2C), 126.7, 106.6, 106.5, 106.4, 106.1, 106.0 (2C), 47.8, 40.9, 40.4, 38.1, 26.8, 13.5 (2C), 13.4. HRMS (ESI/TOF) m/z: [M + H]⁺ calcd for C₂₇H₂₉O₄⁺ 417.2060, found 417.2057.

Synthesis of N-(acetyloxy)-3-(5-methylfuran-2-yl)-1,3-diphenylpropan-1-imine (1a).

To a stirred solution of 3-(5-methylfuran-2-yl)-1,3-diphenylpropan-1-one (**3a**) (1.45 g, 5 mmol) in MeOH (50 ml) was added NaOAc·3H₂O (816 mg, 1.2 eq.) and NH₂OH·HCI (417 mg, 1.2 eq.). The resulting reaction mixture was refluxed until full conversion of **3a** by TLC was observed (ca. 8 h). Solvent was evaporated, water (20 ml) was added, the product was extracted with ethyl acetate (3 \times 25 ml), and the extracts were dried with anhydrous Na₂SO₄. After filtration and evaporation of ethyl acetate, a mixture of stereoisomeric oximes was obtained as a pale yellow oil in nearly quantitative yield. Obtained mixture was dissolved in CH₂Cl₂ (30 ml), Ac₂O (710 µl, 1.5 eq.) was added in a single portion at room temperature and the reaction mixture was stirred up to the full conversion of the intermediate oximes (TLC control). Upon completion, the reaction mixture was concentrated under reduced pressure and subjected to column chromatography (eluent: petroleum ether/CH₂Cl₂, gradient from 10:1 to 3:1).

N-(Acetyloxy)-3-(5-methylfuran-2-yl)-1,3-diphenylpropan-1-imine (**1a**) was isolated as a mixture of inseparable diastereomers. Yield: 1648 mg, 95%; off-white solid; mp = 83–84 °C (ethyl acetate/petroleum ether). R_f = 0.60 (ethyl acetate/petroleum ether = 1:3). ¹H NMR (400 MHz, CDCl₃): δ 7.59 – 7.52 (m, 2H), 7.44 – 7.36 (m, 3H), 7.29 – 7.21 (m, 5H), 5.92 (d, *J* = 3.0 Hz, 1H), 5.83 (d, *J* = 3.0 Hz, 1H), 4.23 (t, *J* = 7.8 Hz, 1H), 3.60 (dd, *J* = 13.2, 7.4 Hz, 1H), 3.52 (dd, *J* = 13.3, 8.3 Hz, 1H), 2.20 (s, 3H), 2.17 (s, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃): δ 168.5, 164.3, 153.6, 151.3, 140.8, 133.8, 130.3, 128.4 (2C), 128.3 (2C), 127.7 (2C), 127.4 (2C), 127.0, 107.0, 105.9, 42.6, 33.8, 19.6, 13.4. HRMS (ESI/TOF) m/z: [M + H]⁺ calcd for C₂₂H₂₂NO₃⁺ 348.1594, found 348.1589.

3. KEY OPTIMIZATION STUDIES

General notes.

All reactions, unless otherwise stated, were performed in a 3 mL Wheaton microreaction vials equipped with spinning bars and Teflon pressure caps. The vials were charged with reaction components under ambient conditions on air. Preheated aluminum blocks were used for heating the reaction vials.

Table S1. Screening of the catalyst.

				Ph
		Ph	Catalyst (10 mol%)	CH ₃
H ₃ 0	C0	ך ∥ – Ph [∾] OAc	dioxane (0.05 M) Ph ⁻ 50 °C, 3 h	NH O
	1a	I		(Z/E)- 2a
_	0.1 mmo	l scale		
_	Entry	Catalyst	Combined yield o	f (<i>Z/E</i>)- 2a , % ^[a]
	1	CuBr ₂	trac	e
	2	NiBr ₂	N/R ^I	[b]
	3	HBr ^[d]	0 ^[c]	
	4	CuCl	trac	е
	5	CuCl₂·2H₂O	N/R ^I	[b]
	6	HCI ^[e]	0 ^[c]	
	7	Cu(OAc) ₂ ·H ₂	D N/R ^I	[b]
	8	FeSO ₄ ·7H ₂ C	N/R ^I	[b]
	9	CoSO ₄ ·7H ₂ C	N/R ^l	[b]
	10	Sc(OTf) ₃	54	
	11	TfOH	0 ^[c]	
	12	FeCl ₃	94	
	13	FeCl ₃ ·6H ₂ O	94	
	14	Fe(acac) ₃	75	
	15	Pd(OAc) ₂	61	
	16	PdCl ₂	49	
	17	TEMPO	N/R ^I	[b]
	18	Blue LED ^[f]	N/R ^I	[b]

^[a] Analytical yield, determined by ¹H NMR with CH_2Br_2 as an internal standard. ^[b] <5% conversion of **1a**. ^[c] Partial decomposition of **1a**. ^[d] Aqueous solution (48% w/w). ^[e] Aqueous solution (36% w/w). ^[f] Wavelength 465-475 nm.

Table S2. Screening of different oximes.

H₃C	Ph	Ph N _n OR	10 mol% FeCl ₃ 6H ₂ O dioxane (0.05 M) 50 °C, 3 h	СН ₃ Т О
0.1	ہ 1 mmol scal	е	(<i>Z/E</i>)-Za	
	Entry	R	Combined yield of (<i>Z</i> / <i>E</i>)- 2a , % ^[a]	
	1	Н	N/R ^[b]	
	2	Me	N/R	
	3	Ac	94	
	4	Bz	51	
	5	FBz	N/R	
	6	Ms	26	
	7	Cl₃CO	43	

			_/ Ph
		Ph	10 mol% FeCl ₃ ·6H ₂ O CH ₂
H ₃ 0	0~_0/~	Y ∭ Ph ^N ∿OAc	solvent (0.05 M) 50 °C, 3 h
	1a	a	(<i>Z/E</i>)- 2 a
	0.1 mmc	ol scale	
	Entry	Solvent	Combined yield of (<i>Z</i> / <i>E</i>)- 2a , % ^[a]
	1	DCE	69
	2	toluene	72
	3	Dioxane	94
	4	ethyl acetat	e 74
	5	MeOH	N/R ^[b]

^[a] Analytical yield, determined by ¹H NMR with CH_2Br_2 as an internal standard. ^[b] <5% conversion of **1a**.

Table S4. Screening of FeCl₃·6H₂O loading.

н₃с∕	Ph	Ph N _n OAc	X mol% FeCl ₃ 6H ₂ O dioxane (0.05 M) 50 °C, 3 h	СН₃ Ү О
	1a		(<i>Z</i> / <i>E</i>)- 2 a	
0.1 r	nmol scal	е		
	Entry	Х	Combined yield of (<i>Z</i> / <i>E</i>)- 2a , % ^[a]	
	1	10	94	
	2	5	89	
	3	2.5	85	
	4	1	82	
	5	0,5	68	
	6	0,1	45	
	7	0	N/R ^[b]	
-		ution via	d determined by ¹ U NMP with	

^[a] Analytical yield, determined by ¹H NMR with CH_2Br_2 as an internal standard. ^[b] <5% conversion of **1a**.

Table S5. Screening of reaction conditions (temperature and time).

					Ph	
		Ph	1 m	ol% FeCl ₃ ·6H ₂ O	The mark	СНа
Ha	C0	Υ Ph ο/	di Ac	oxane (0.05 M) <i>T</i> °C, t, h	Ph N O	
	1a	I			(<i>Z/E</i>)- 2a	
	0.1 mmo	l scale				
	Entry	T,°C	t, h	Combined yiel	ld of (<i>Z</i> / <i>E</i>)- 2a , % ^[a]	
	1	22 (rt)	24		35	_
	2	50	5		89	
	3	60	5		91	
	4	80	1.5		92	
	5	100	1.5		92	
	6	80 ^[b]	1.5		84	
	7	80 ^[c]	1.5		88	
	8	80 ^[d]	1.5	Ν	V/R ^[e]	

^[a] Analytical yield, determined by ¹H NMR with CH₂Br₂ as an internal standard. ^[b] 10 equiv. H₂O was added. ^[c] Reaction was performed under argon. ^[d] No FeCl₃·6H₂O was added. ^[e] <5% conversion of **1a**.

Table S6. Isomerization of the (Z/E)-2a into 2a.

PI	า			_/ Ph	
\square	CH ₃	blue LEDs (465-4	475 nm)		CH ₃
Ph N H	0 0	solvent (concen rt, 30 min	tration)	Ph N H	T
(Z/E)- 2 a			2a	
0.1 mm	ol scale				
Z/E ratio fro	m 1:3 to 1:6				
Entry	Solvent (c	oncentration)	Yield	of 2a , %(<i>Z</i> / <i>E</i> r	atio) ^[a]
1	dioxan	e (0.05M)		70 (1:12)	
2	dioxane	e (0.025M)		78 (1:14)	
3	CHCl ₃	(0.025M)	De	grades over ti	me
4	EtOAc	(0.025M)		93 (>1:19)	

 $^{[a]}$ Analytical yield, determined by ^1H NMR with CH_2Br_2 as an internal standard.

Table S7. Screening of different oximes under optimal reaction conditions.

Example of the procedure for the optimization of reaction conditions for the synthesis of pyridine (Z/E)-2a (Table S5, entry 4)

3 mL Weaton microreactor was charged with oxime **1a** (35 mg, 0.1 mmol), dioxane (2 mL) and the solution of FeCl₃·6H₂O in dioxane (10 μ L, 13.5 mg/mL, 1% mol.). The microreactor was capped with a Teflon pressure cap and placed into pre-heated (80 °C) aluminum block. The reaction mixture was stirred for 1.5 h at this temperature. Then the reaction mixture was filtered through a pad of silica gel washed with ethyl acetate, concentrated *in vacuo*, dissolved in DMSO-*d*₆ (0.6 mL). CH₂Br₂ (7 μ L, 0.1 mmol, 1 equiv) was added to the solution, and the resulting mixture was analyzed by ¹H NMR.

4. SYNTHESIS OF PRODUCTS

General procedure for the synthesis of pyrroles 2.

To a stirred solution of substrate 3 (0.5 mmol) and NaOAc·3H₂O (81.6 mg, 0.6 mmol, 1.2 eq.) in MeOH (5 ml) was added NH₂OH·HCl (41.7 mg, 0.6 mmol, 1.2 eq.), and the reaction mixture was refluxed until full conversion of the starting material by TLC was observed (typically 5-12 h). The reaction mixture was poured into water (60 mL), and the product was extracted with ethyl acetate (3×15 mL). Combined organic fractions were washed with water (2 × 15 mL) and dried over anhydrous Na₂SO₄. After filtration and evaporation of ethyl acetate, a mixture of stereoisomeric oximes was obtained as a pale yellow oil. The resulting oil was dissolved in 1,4-dioxane (10 ml), Ac₂O (71 µL, 1.5 eq.) was added in a single portion at room temperature, and the reaction mixture was stirred for 30 min (TLC control). The solution of FeCl₃·6H₂O in 1,4-dioxane (100 µL, 13.5 mg/mL, 1% mol.) was added, and stirring was continued at 80 °C (aluminium block) for 1.5 h (TLC control). The colour of the reaction mixture turns yellow almost right away, which indicates the beginning of the key rearrangement process. The colour of the reaction mixture gets dark yellow when the process is close to completion. After that the reaction mixture was cooled to room temperature and filtered through a pad of silica gel, washed with mixture of petroleum ether/ethyl acetate, 1:1, dissolved in ethyl acetate (20 ml) and irradiated with blue LEDs (MOTOKO MTK-600B3528-12 LED strip, 12 V, 24 LEDs, 80 mW/LED, declared wavelength 465 - 475 nm) for 30 min at room temperature upon stirring (TLC control). NOTE: prolonged irradiation leads to partial decomposition of the products! Products were purified by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate, 5:1). It is convenient to dry-load the reaction mixture on silica gel using ethyl acetate or CH₃CN solutions due to poor solubility of the products. Alternatively, the products could be purified via recrystallization from ethyl acetate or CH₃CN as yellow amorphous solids, needles, or plates. The yields of the products are referred to isolated yields after column chromatography.

Blue LED step setup:

The inner diameter of a 600 mL glass beaker (outer diameter = 90 mm, height = 150 mm) was lined with a blue LED strip and placed onto magnetic stirring plate. A 50 mL round-bottom flask charged with a magnetic stirring bar and a mixture of isomeric pyrroles in ethyl acetate (20 mL) was placed in the middle of the beaker (the distance between the reaction flask and LED is ca. 15-20 mm, cotton could be used to support the flask). The beaker was covered with aluminium foil for additional eye protection.

(3*E*)-4-(3,5-Diphenyl-1*H*-pyrrol-2-yl)but-3-en-2-one (**2a**). Yield: 123 mg, 86%; yellow solid; mp = 196–197 °C (ethyl acetate). R_f = 0.25 (ethyl acetate/petroleum ether = 1:3). ¹H NMR (400 MHz, DMSO-*d*₆): 11.62 (s, 1H), 7.89 – 7.86 (m, 2H), 7.50 – 7.39 (m, 8H), 7.37 – 7.29 (m, 2H), 6.92 (d, *J* = 16.0 Hz, 1H), 6.87 (d, *J* = 2.5 Hz, 1H), 2.23 (s, 3H). ¹³C {¹H} NMR (100 MHz, DMSO-*d*₆): δ 196.7, 136.4, 134.9, 132.7, 131.1, 130.7, 128.7 (2C), 128.6 (2C), 128.5 (2C), 127.3, 126.8, 125.6, 124.9 (2C), 121.4, 108.8, 27.3. HRMS (ESI/TOF) m/z: [M + H]⁺ calcd for $C_{20}H_{18}NO^+$ 288.1383, found 288.1373.

(3*E*)-4-{5-Phenyl-3-[4-(trifluoromethyl)phenyl]-1*H*-pyrrol-2-yl}but-3-en-2-one (**2b**). Yield: 133 mg, 75%; yellow solid; mp = 200–201 °C (ethyl acetate). R_f = 0.20 (ethyl acetate/petroleum ether = 1:3). ¹H NMR (400 MHz, DMSO-*d*₆): δ 11.74 (br s, 1H), 7.91 – 7.85 (m, 2H), 7.81 (d, *J* = 8.2 Hz, 2H), 7.68 (d, *J* = 8.2 Hz, 2H), 7.49 – 7.42 (m, 2H), 7.41 (d, *J* = 16.2 Hz, 1H), 7.35 – 7.28 (m, 1H), 6.96 (d, *J* = 2.4 Hz, 1H), 6.95 (d, *J* = 16.2 Hz, 1H), 2.26 (s, 3H). ¹³C {¹H} NMR (100 MHz, DMSO-*d*₆): δ 196.9, 139.1, 136.6, 130.9, 130.6, 130.2, 129.0 (2C), 128.7 (2C), 127.4, 127.1 (q, ²*J*_{C-F} = 32 Hz), 126.1, 125.5 (q, ³*J*_{C-F} = 4 Hz, 2C), 124.9 (2C) 124.3 (q, ¹*J*_{C-F} = 272 Hz), 122.4, 108.9, 27.3. HRMS (ESI/TOF) m/z: [M + H]⁺ calcd for C₂₁H₁₇F₃NO⁺ 356.1257, found 356.1266.

(3E)-4-[3-(4-Bromophenyl)-5-phenyl-1*H*-pyrrol-2-yl]but-3-en-2-one (**2c**). Yield: 117 mg, 64%; yellow solid; mp = 215–216 °C (ethyl acetate). R_f = 0.20 (ethyl acetate/petroleum ether = 1:3). ¹H NMR (400 MHz, DMSO-*d*₆): δ 11.65 (br s, 1H), 7.90 – 7.83 (m, 2H), 7.68 – 7.62 (m, 2H), 7.47 – 7.40 (m, 4H), 7.37 (d, *J* = 16.1 Hz, 1H), 7.34 – 7.29 (m, 1H), 6.90 (d, *J* = 16.1 Hz, 1H), 6.88 (br s, 1H), 2.24 (s, 3H). ¹³C {¹H} NMR (100 MHz, DMSO-*d*₆): δ 196.8, 136.5, 134.1, 131.5 (2C), 131.1, 130.9, 130.4 (2C), 130.3, 128.7 (2C), 127.4, 125.7, 124.9 (2C), 121.9, 120.0, 108.7, 27.3. HRMS (ESI/TOF) m/z: [M + H]⁺ calcd for C₂₀H₁₇BrNO⁺ 366.0488, found 366.0493.

(3E)-4-[3-(2-Bromophenyl)-5-phenyl-1*H*-pyrrol-2-yl]but-3-en-2-one (**2d**). Yield: 148 mg, 81%; yellow solid; mp = 162–163 °C (ethyl acetate). R_f = 0.25 (ethyl acetate/petroleum ether = 1:3). ¹H NMR (400 MHz, DMSO-*d*₆): δ 11.73 (br s, 1H), 7.89 – 7.82 (m, 2H), 7.76 (dd, *J* = 8.0, 1.2 Hz, 1H), 7.49 – 7.41 (m, 3H), 7.39 – 7.28 (m, 3H), 7.05 (d, *J* = 16.1 Hz, 1H), 6.80 (br s, 1H), 6.77 (d, *J* = 16.1 Hz, 1H), 2.17 (s, 3H). ¹³C {¹H} NMR (100 MHz, DMSO-*d*₆): δ 196.8, 135.8, 135.7, 132.9, 132.5, 131.2, 131.1, 130.7, 129.4, 128.8 (2C), 127.7, 127.4, 126.5, 124.8 (2C), 123.5, 121.1, 110.2, 27.6. λ_{max} (acetonitrile)/nm 274 (ϵ /dm³ mol⁻¹ cm⁻¹ 14 100), 382 (27 300). HRMS (ESI⁺) m/z: [M + H]⁺ calcd for C₂₀H₁₇BrNO⁺ 366.0488, found 366.0493.

(3E)-4-[3-(4-Methoxyphenyl)-5-phenyl-1*H*-pyrrol-2-yl]but-3-en-2-one (**2e**). Yield: 105 mg, 66%; yellow solid; mp = 201–202 °C (ethyl acetate). R_f = 0.15 (ethyl acetate/petroleum ether = 1:3). ¹H NMR (400 MHz, DMSO-*d*₆): δ 11.53 (br s, 1H), 7.90 – 7.82 (m, 2H), 7.46 – 7.36 (m, 5H), 7.32 – 7.28 (m, 1H), 7.07 – 7.01 (m, 2H), 6.87 (d, *J* = 16.0 Hz, 1H), 6.81 (d, *J* = 2.6 Hz, 1H), 3.81 (s, 3H), 2.22 (s, 3H). ¹³C {¹H} NMR (100 MHz, DMSO-*d*₆): δ 196.7, 158.4, 136.4, 132.7, 131.1, 130.9, 129.6 (2C), 128.7 (2C), 127.3 (2C), 125.4, 124.8 (2C), 120.9, 114.2 (2C), 108.7, 55.1, 27.3. HRMS (ESI/TOF) m/z: [M + H]⁺ calcd for C₂₁H₂₀NO₂⁺ 318.1489, found 318.1478.

(3*E*)-4-[3-(2,4-Dimethoxyphenyl)-5-phenyl-1*H*-pyrrol-2-yl]but-3-en-2-one (**2f**). Yield: 108 mg, 62%; yellow solid; mp = 183–184 °C (ethyl acetate). $R_f = 0.20$ (ethyl acetate/petroleum ether = 1:3). ¹H NMR (400 MHz, DMSO-*d*₆): δ 11.50 (br s, 1H), 7.86 – 7.79 (m, 2H), 7.46 – 7.39 (m, 2H), 7.31 – 7.25 (m, 1H), 7.19 (d, *J* = 16.1 Hz, 1H), 7.13 (d, *J* = 8.4 Hz, 1H), 6.76 (d, *J* = 16.1 Hz, 1H), 6.70 (d, *J* = 2.4 Hz, 1H), 6.68 (d, *J* = 2.4 Hz, 1H), 6.62 (dd, *J* = 8.4, 2.4 Hz, 1H), 3.82 (s, 3H), 3.75 (s, 3H), 2.18 (s, 3H). ¹³C (¹H) NMR (100 MHz, DMSO-*d*₆): δ 196.8, 160.1, 157.5, 135.8, 131.9, 131.8, 131.4, 129.2, 128.7 (2C), 127.1, 126.6, 124.7 (2C), 120.2, 116.1, 110.4, 105.0, 98.9, 55.4, 55.2, 27.2. HRMS (ESI⁺) m/z: [M + H]⁺ calcd for C₂₂H₂₂NO₃⁺ 348.1594, found 348.1585.

OCH₃

ő

2k

CH₃

 $\begin{array}{ll} (3E)-4-[3-(2,3-Dibromo-5,6-dimethoxyphenyl)-5-phenyl-1H-pyrrol-2-yl]but-3-en-2-one \\ (2h). \\ Yield: 177 mg, 70%; yellow solid; mp = 195-196 °C (ethyl acetate). R_f = 0.15 (ethyl acetate/petroleum ether = 1:4). ^1H NMR (400 MHz, DMSO-d_6): <math>\delta$ 11.72 (br s, 1H), 7.86 – 7.80 (m, 2H), 7.53 (s, 1H), 7.47 – 7.40 (m, 2H), 7.32 – 7.26 (m, 1H), 6.92 (d, *J* = 16.0 Hz, 1H), 6.68 (d, *J* = 2.4 Hz, 1H), 6.65 (d, *J* = 16.0 Hz, 1H), 3.89 (s, 3H), 3.51 (s, 3H), 2.16 (s, 3H). ^{13}C {^1H} NMR (100 MHz, DMSO-d_6): \delta 196.7, 152.5, 147.2, 135.9, 132.3, 131.1, 130.4, 128.8 (2C), 127.9, 127.3, 126.6, 124.6 (2C), 120.8, 118.9, 117.5, 117.2, 110.0, 60.4, 56.4, 27.8. HRMS (ESI⁺) m/z: [M + H]⁺ calcd for C₂₂H₂₀Br₂NO₃⁺ 503.9804, found 503.9806. \\ \end{array}

(3*E*)-4-(5-Naphthalen-2-yl-3-phenyl-1*H*-pyrrol-2-yl)but-3-en-2-one (**2i**). Yield: 142 mg, 84%; yellow solid; mp = 202–203 °C (ethyl acetate). R_f = 0.25 (ethyl acetate/petroleum ether = 1:3). ¹H NMR (400 MHz, DMSO-*d*₆): δ 11.77 (br s, 1H), 8.44 (d, *J* = 1.8 Hz, 1H), 8.02 (dd, *J* = 8.6, 1.8 Hz, 1H), 7.97 (d, *J* = 8.6 Hz, 1H), 7.94 – 7.90 (m, 2H), 7.58 – 7.48 (m, 7H), 7.45 (d, *J* = 16.0 Hz, 1H), 7.40 – 7.35 (m, 1H), 7.04 (d, *J* = 2.5 Hz, 1H), 6.97 (d, *J* = 16.0 Hz, 1H), 2.26 (s, 3H). ¹³C {¹H} NMR (100 MHz, DMSO-*d*₆): δ 196.8, 136.4, 134.9, 133.1, 132.8, 132.1, 130.7, 128.6 (2C), 128.5, 128.4 (2C), 128.2, 127.7, 127.6, 126.8, 126.6, 126.0, 125.9, 123.5, 122.7, 121.6, 109.5, 27.4. HRMS (ESI⁺) m/z: [M + H]⁺ calcd for C₂₄H₂₀NO⁺ 338.1539, found 338.1547.

(3E)-4-[5-(3,4-Dichlorophenyl)-3-phenyl-1*H*-pyrrol-2-yl]but-3-en-2-one (**2j**). Yield: 141 mg, 79%; yellow solid; mp = 235–236 °C (ethyl acetate). R_f = 0.50 (ethyl acetate/petroleum ether = 1:3). ¹H NMR (400 MHz, DMSO-*d*₆): δ 11.67 (br s, 1H), 8.19 (d, *J* = 2.1 Hz, 1H), 7.84 (dd, *J* = 8.5, 2.1 Hz, 1H), 7.66 (d, *J* = 8.5 Hz, 1H), 7.49 – 7.36 (m, 6H), 7.02 (d, *J* = 2.4 Hz, 1H), 6.88 (d, *J* = 16.1 Hz, 1H), 2.24 (s, 3H). ¹³C {¹H} NMR (100 MHz, DMSO-*d*₆): δ 196.8, 134.6, 133.5, 132.5, 131.7, 131.6, 130.8, 130.5, 129.2, 128.6 (2C), 128.4 (2C), 126.9, 126.5, 126.0, 124.8, 122.2, 110.1, 27.3. HRMS (ESI⁺) m/z: [M + H]⁺ calcd for C₂₀H₁₆Cl₂NO⁺ 356.0603, found 356.0613.

O₂N

(3*E*)-4-[5-(4-Methoxyphenyl)-3-(4-nitrophenyl)-1*H*-pyrrol-2-yl]but-3-en-2-one (**2l**). Yield: 134 mg, 74%; red solid; mp = 254–255 °C (ethyl acetate). R_f = 0.10 (ethyl acetate/petroleum ether = 1:3). ¹H NMR (400 MHz, DMSO-*d*₆): δ 11.69 (br s, 1H), 8.30 (d, *J* = 8.7 Hz, 2H), 7.82 (d, *J* = 8.8 Hz, 2H), 7.72 (d, *J* = 8.7 Hz, 2H), 7.40 (d, *J* = 16.0 Hz, 1H), 7.03 (d, *J* = 8.8 Hz, 2H), 6.92 (d, *J* = 16.0 Hz, 1H), 6.89 (d, *J* = 2.2 Hz, 1H), 3.81 (s, 3H), 2.26 (s, 3H). ¹³C {¹H} NMR (100 MHz, DMSO-*d*₆): δ 196.9, 159.0, 145.8, 142.0, 137.1, 130.1, 129.9, 129.1 (2C), 126.4 (2C), 125.9, 123.8 (2C), 123.5, 122.4, 114.2 (2C), 107.9, 55.2, 27.2. *A*_{max}(acetonitrile)/nm 363 (ε/dm³ mol⁻¹ cm⁻¹ 30 980). HRMS (ESI⁺) m/z: [M + H]⁺ calcd for C₂₁H₁₉N₂O₄⁺ 363.1339, found 363.1346.

N H

Ρń

2n

(3*E*)-4-{3-[4-(Diphenylamino)phenyl]-5-(9-hexyl-9*H*-carbazol-3-yl)-1*H*-pyrrol-2-yl}but-3-en-2-one (**2m**). Yield: 223 mg, 71%; orange solid; mp = 178–179 °C (ethyl acetate). R_f = 0.25 (ethyl acetate/petroleum ether = 1:3). ¹H NMR (400 MHz, DMSO-*d*₆): δ 11.56 (br s, 1H), 8.68 (br s, 1H), 8.18 (d, *J* = 7.7 Hz, 1H), 7.96 (d, *J* = 8.6 Hz, 1H), 7.64 (d, *J* = 8.6 Hz, 1H), 7.59 (d, *J* = 8.2 Hz, 1H), 7.51 – 7.41 (m, 4H), 7.35 – 7.30 (m, 4H), 7.26 – 7.22 (m, 1H), 7.10 – 7.04 (m, 8H), 6.93 (d, *J* = 15.9 Hz, 1H), 6.89 (d, *J* = 2.4 Hz, 1H), 4.39 (t, *J* = 7.2 Hz, 2H), 2.25 (s, 3H), 1.84 – 1.71 (m, 2H), 1.32 – 1.19 (m, 6H), 0.80 (t, *J* = 6.9 Hz, 3H). ¹³C {¹H} NMR (100 MHz, DMSO-*d*₆): δ 196.5, 147.1 (3C), 146.0, 140.4, 139.5, 138.2, 132.8, 130.8, 129.4 (4C), 129.3 (2C), 125.9, 124.8, 124.0 (4C), 123.4, 123.3 (2C), 123.0 (2C), 122.3, 122.2, 122.1, 120.1, 120.0, 118.9, 116.8, 109.4, 107.9, 42.3, 30.8, 28.4, 27.4, 26.0, 21.9, 13.7. *A*_{max}(acetonitrile)/nm 276 (ε/dm³ mol⁻¹ cm⁻¹ 25 700), 414 (27 000). HRMS (ESI⁺) m/z: [M + H]⁺ calcd for C₄₄H₄₂N₃O⁺ 628.3322, found 628.3323.

(3*E*)-4-(5-(4-(Diphenylamino)phenyl)-3-(9-hexyl-9H-carbazol-3-yl)-1H-pyrrol-2-yl)but-3-en-2-one (**2n**). Yield: 201 mg, 64%; deep orange solid; mp = 106–107 °C (ethyl acetate). R_f = 0.30 (ethyl acetate/petroleum ether = 1:3). ¹H NMR (400 MHz, DMSO-*d*₆): δ 11.48 (br s, 1H), 8.24 – 8.17 (m, 2H), 7.81 (d, *J* = 8.6 Hz, 2H), 7.65 (d, *J* = 8.6 Hz, 1H), 7.59 (d, *J* = 8.2 Hz, 1H), 7.54 – 7.44 (m, 3H), 7.35 – 7.30 (m, 4H), 7.22 – 7.18 (m, 1H), 7.10 – 7.03 (m, 8H), 6.87 (d, *J* = 15.5 Hz, 1H), 6.85 (d, *J* = 2.4 Hz, 1H), 4.39 (t, *J* = 7.2 Hz, 2H), 2.20 (s, 3H), 1.82 – 1.76 (m, 2H), 1.32 – 1.22 (m, 6H), 0.81 (t, *J* = 6.9 Hz, 3H). ¹³C {¹H} NMR (100 MHz, DMSO-*d*₆): δ 196.5, 146.9 (2C), 146.4, 140.3, 139.1, 136.5, 134.3, 131.4, 129.5 (4C), 126.6, 126.1 (2C), 125.7, 125.6, 125.5, 125.3, 124.3, 124.0 (4C), 123.2 (2C), 123.1 (2C), 122.4, 122.0, 120.3, 120.0, 118.7, 109.3, 109.2, 108.6, 42.3, 30.8, 28.4, 27.1, 26.0, 21.9, 13.7. λ_{max}(acetonitrile)/nm 304 (ε/dm³ mol⁻¹ cm⁻¹ 32 700), 330 (31 900), 416 (26 050). HRMS (ESI⁺) m/z: [M + H]⁺ calcd for C₄₄H₄₂N₃O⁺ 628.3322, found 628.3335.

(3*E*)-4-(5-Phenyl-3-thiophen-2-yl-1*H*-pyrrol-2-yl)but-3-en-2-one (**2o**). Yield: 113 mg, 77%; yellow solid; mp = 191–192 °C (ethyl acetate). R_f = 0.25 (ethyl acetate/petroleum ether = 1:3). ¹H NMR (400 MHz, DMSO-*d*₆): δ 11.63 (br s, 1H), 7.86 (d, *J* = 7.8 Hz, 2H), 7.65 (d, *J* = 16.0 Hz, 1H), 7.56 (d, *J* = 5.2 Hz, 1H), 7.47 – 7.42 (m, 2H), 7.34 – 7.29 (m, 1H), 7.23 (d, *J* = 3.6 Hz, 1H), 7.18 – 7.15 (m, 1H), 6.92 (d, *J* = 16.0 Hz, 1H), 6.92 (br s, 1H), 2.28 (s, 3H). ¹³C {¹H} NMR (100 MHz, DMSO-d6): δ 196.8, 136.7, 136.4, 130.8, 130.1, 128.7 (2C), 127.9, 127.5, 125.7, 125.4, 125.2, 125.1, 124.9 (2C), 121.8, 108.5, 27.2. HRMS (ESI⁺) m/z: [M + H]⁺ calcd for C₁₈H₁₆NOS⁺ 294.0947, found 294.0956.

(3E)-4-[5-Furan-2-yl-3-(4-methylphenyl)-1*H*-pyrrol-2-yl]but-3-en-2-one (**2p**). Yield: 103 mg, 71%; yellow solid; mp = 171–172 °C (ethyl acetate). R_f = 0.30 (ethyl acetate/petroleum ether = 1:3). ¹H NMR (400 MHz, DMSO-*d*₆): δ 11.75 (br s, 1H), 7.73 (d, *J* = 1.8 Hz, 1H), 7.38 (d, *J* = 16.0 Hz, 1H), 7.32 (d, *J* = 8.0 Hz, 2H), 7.26 (d, *J* = 8.0 Hz, 2H), 6.90 (d, *J* = 3.4 Hz, 1H), 6.80 (d, *J* = 16.0 Hz, 1H), 6.65 – 6.58 (m, 2H), 2.35 (s, 3H), 2.22 (s, 3H). ¹³C {¹H} NMR (100 MHz, DMSO-*d*₆): δ 196.6, 146.7, 142.4, 136.2, 132.4, 131.7, 130.6, 129.2 (2C), 128.3 (2C), 128.0, 125.1, 121.2, 111.9, 107.6, 105.8, 27.3, 20.6. λ_{max} (acetonitrile)/nm 280 (ϵ /dm³ mol⁻¹ cm⁻¹ 26 550), 395 (26 400). HRMS (ESI⁺) m/z: [M + H]⁺ calcd for C₁₉H₁₈NO₂⁺ 292.1332, found 292.1337.

2p

(3E)-4-[5'-(3,4-dichlorophenyl)-1-methyl-1*H*,1'*H*-2,3'-bipyrrol-2'-yl]but-3-en-2-one (**2q**). Yield: >5 mg, traces; yellow oil. R_f = 0.40 (ethyl acetate/petroleum ether = 1:3). ¹H NMR (400 MHz, DMSO-*d*₆): δ 11.68 (br s, 1H), 8.18 (d, *J* = 2.2 Hz, 1H), 7.85 (dd, *J* = 8.5, 2.2 Hz, 1H), 7.68 (d, *J* = 8.5 Hz, 1H), 7.34 (d, *J* = 16.2 Hz, 1H), 6.99 (d, *J* = 2.4 Hz, 1H), 6.90 – 6.85 (m, 1H), 6.77 (d, *J* = 16.2 Hz, 1H), 6.01 (dd, *J* = 3.6, 1.8 Hz, 1H), 3.60 (s, 3H), 2.22 (s, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃): δ 197.0, 133.5, 131.8, 131.7, 130.9, 130.8, 129.2, 128.1, 126.1, 126.0, 124.9, 123.8, 123.7, 121.6, 110.4, 109.7, 107.4, 34.5, 27.2. HRMS (ESI⁺) m/z: [M + H]⁺ calcd for C₁₉H₁₇Cl₂N₂O⁺ 359.0712, found 359.0706.

CH₃

CHa

// 0

CH₃

(2*E*)-3-(3,5-Diphenyl-1*H*-pyrrol-2-yl)prop-2-enal (**2r**). Yield: 98 mg, 72%; yellow solid; mp = 209–210 °C (ethyl acetate). $R_f = 0.30$ (ethyl acetate/petroleum ether = 1:3). ¹H NMR (400 MHz, DMSO-*d*₆): δ 11.68 (br s, 1H), 9.52 (d, *J* = 7.9 Hz, 1H), 7.93 – 7.84 (m, 2H), 7.52 – 7.43 (m, 7H), 7.40 – 7.31 (m, 2H), 6.92 (d, *J* = 2.5 Hz, 1H), 6.88 (dd, *J* = 15.6, 7.9 Hz, 1H). ¹³C {¹H} NMR (100 MHz, DMSO-*d*₆): δ 193.3, 139.9, 137.5, 134.6, 133.5, 130.8, 128.7 (2C), 128.6 (2C), 128.5 (2C), 127.6, 126.9, 125.8, 125.0 (2C), 123.0, 109.2. HRMS (ESI⁺) m/z: [M + H]⁺ calcd for C₁₉H₁₆NO⁺ 274.1226, found 274.1218.

(2*E*)-1-(4-Chlorophenyl)-3-(1*H*-pyrrol-2-yl)prop-2-en-1-one (**2s**). Yield: 51 mg, 44%; yellow solid; mp = 164–165 °C (ethyl acetate). $R_f = 0.30$ (ethyl acetate/petroleum ether = 1:3). ¹H NMR (400 MHz, DMSO- d_6): δ 11.68 (br s, 1H), 8.06 – 8.00 (m, 2H), 7.65 – 7.58 (m, 3H), 7.52 (d, *J* = 15.4 Hz, 1H), 7.17 – 7.12 (m, 1H), 6.78 – 6.72 (m, 1H), 6.26 – 6.20 (m, 1H). ¹³C {¹H} NMR (100 MHz, DMSO- d_6): δ 187.2, 137.3, 137.0, 134.6, 129.7 (2C), 129.0, 128.7 (2C), 124.4, 116.4, 114.2, 110.6. HRMS (ESI⁺) m/z: [M + H]⁺ calcd for C₁₃H₁₁CINO₊ 232.0524, found 232.0530.

(2Z)-3-(5-Methyl-1*H*-pyrrol-2-yl)-1,3-diphenylprop-2-en-1-one (**2t**). Yield: 60 mg, 42%; yellow oil. R_f = 0.70 (ethyl acetate/petroleum ether = 1:3). ¹H NMR (400 MHz, CDCl₃): δ 14.03 (br s, 1H), 8.05 – 7.98 (m, 2H), 7.55 – 7.40 (m, 8H), 6.57 (s, 1H), 6.23 (d, *J* = 3.1 Hz, 1H), 6.11 (d, *J* = 3.1 Hz, 1H), 2.50 (s, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃): δ 189.5, 150.4, 143.3, 141.0, 135.8, 132.0, 131.0, 129.2 (2C), 128.5 (2C), 128.4, 128.2 (2C), 128.0 (2C), 122.6, 112.6, 111.4, 14.1. HRMS (ESI⁺) m/z: [M + H]⁺ calcd for C₂₀H₁₈NO⁺ 288.1383, found 288.1375.

(2*Z*)-1-(4-Methoxyphenyl)-3-(5-methyl-1*H*-pyrrol-2-yl)-3-phenylprop-2-en-1-one (**2u**). Yield: 62 mg, 39%; yellow oil. $R_f = 0.70$ (ethyl acetate/petroleum ether = 1:3). ¹H NMR (400 MHz, CDCl₃): δ 13.95 (br s, 1H), 8.03 – 7.99 (m, 2H), 7.51 – 7.47 (m, 2H), 7.44 – 7.40 (m, 3H), 6.96 – 6.92 (m, 2H), 6.54 (s, 1H), 6.15 (d, *J* = 3.8 Hz, 1H), 6.06 (d, *J* = 3.8 Hz, 1H), 3.87 (s, 3H), 2.47 (s, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃): δ 188.3, 162.9, 149.7, 143.5, 135.3, 133.5, 130.9, 130.5 (2C), 129.2 (2C), 128.3, 128.0 (2C), 122.0, 113.8 (2C), 112.7, 111.0, 55.6, 14.0. HRMS (ESI⁺) m/z: [M + H]⁺ calcd for C₂₁H₂₀NO₂⁺ 318.1489, found 318.1490.

(3E)-4-(5-Phenyl-1*H*-pyrrol-2-yl)but-3-en-2-one (**2v**). Yield: 79 mg, 75%; yellow solid; mp = 169–170 °C (ethyl acetate). R_f = 0.20 (ethyl acetate/petroleum ether = 1:3). ¹H NMR (400 MHz, DMSO-*d*₆): δ 11.59 (br s, 1H), 7.80 – 7.74 (m, 2H), 7.45 – 7.38 (m, 3H), 7.29 – 7.23 (m, 1H), 6.72 – 6.66 (m, 3H), 2.25 (s, 3H). ¹³C {¹H} NMR (100 MHz, DMSO-*d*₆): δ 196.9, 136.6, 132.9, 131.4, 129.8, 128.7 (2C), 126.9, 124.4 (2C), 121.0, 116.7, 108.7, 26.8. λ_{max} (acetonitrile)/nm 263 (ϵ /dm³ mol⁻¹ cm⁻¹ 5 800), 375 (28 050). HRMS (ESI⁺) m/z: [M + H]⁺ calcd for C₁₄H₁₄NO⁺ 212.1070, found 212.1066.

(3E)-4-(3,5-Dimethyl-1*H*-pyrrol-2-yl)but-3-en-2-one (**2w**). Yield: 57 mg, 70%; greenish solid; mp = 191–192 °C (ethyl acetate). R_f = 0.20 (ethyl acetate/petroleum ether = 1:3). ¹H NMR (400 MHz, DMSO-*d*₆): δ 10.95 (br s, 1H), 7.32 (d, *J* = 15.9 Hz, 1H), 6.28 (d, *J* = 15.9 Hz, 1H), 5.77 (d, *J* = 2.4 Hz, 1H), 2.20 (s, 3H), 2.19 (s, 3H), 2.10 (s, 3H). ¹³C {¹H} NMR (100 MHz, DMSO-*d*₆): δ 196.4, 134.1, 130.7, 127.2, 123.9, 117.1, 110.8, 26.7, 12.7, 11.0. HRMS (ESI⁺) m/z: [M + H]⁺ calcd for C₁₀H₁₄NO⁺ 164.1070, found 164.1068.

(3*E*)-4-(3-Phenyl-1,4,5,6-tetrahydrocyclopenta[*b*]pyrrol-2-yl)but-3-en-2-one (**2x**). Yield: 84 mg, 67%; yellow solid; mp = 176–177 °C (ethyl acetate). R_{*f*} = 0.10 (ethyl acetate/petroleum ether = 1:3). ¹H NMR (400 MHz, DMSO-*d*₆): δ 11.43 (br s, 1H), 7.45 – 7.40 (m, 2H), 7.37 – 7.28 (m, 4H), 6.49 (d, *J* = 15.8 Hz, 1H), 2.74 (t, *J* = 7.2 Hz, 2H), 2.64 (t, *J* = 7.0 Hz, 2H), 2.42 – 2.35 (m, 2H), 2.16 (s, 3H). ¹³C {¹H} NMR (100 MHz, DMSO-*d*₆): δ 196.2, 143.8, 135.0, 132.1, 128.5 (2C), 128.4 (2C), 128.0, 127.5, 126.6, 126.2, 118.3, 28.3, 27.1, 24.8, 24.4. HRMS (ESI⁺) m/z: [M + H]⁺ calcd for C₁₇H₁₈NO⁺ 252.1383, found 252.1393.

 $\begin{array}{l} (3\textit{E})\mbox{-}4\mbox{-}[3\mbox{-}(Nitromethyl)\mbox{-}5\mbox{-}phenyl\mbox{-}1\mbox{H}\mbox{-}pytrol\mbox{-}2\mbox{-}y]but\mbox{-}3\mbox{-}n\mbox{-}2\mbox{-}omethyl\mbox{-}1\mbox{-}7\mbox{-}(2y). Yield: 97 mg, 72\%; yellow solid; mp = 173\mbox{-}174 \mbox{}^{\circ}C (ethyl acetate). R_{f} = 0.25 (ethyl acetate/petroleum ether = 1:3). \mbox{}^{1}\text{H} \mbox{NMR} (400 \mbox{ MHz}, \mbox{DMSO-}d_{6}): \mbox{δ} 11.72 (br s, 1\mbox{H}), 7.80 (d, J = 7.7 \mbox{Hz}, 2\mbox{H}), 7.58 (d, J = 16.2 \mbox{ Hz}, 1\mbox{H}), 7.46 \mbox{-} 7.40 (m, 2\mbox{H}), 7.33 \mbox{-} 7.27 (m, 1\mbox{H}), 6.86 (d, J = 16.2 \mbox{Hz}, 1\mbox{H}), 6.81 (d, J = 2.4 \mbox{ Hz}, 1\mbox{H}), 5.82 (s, 2\mbox{H}), 2.31 (s, 3\mbox{H}). \mbox{}^{13}\text{C} \mbox{}^{1}\text{H} \mbox{NMR} (100 \mbox{MHz}, \mbox{DMSO-}d_{6}): \mbox{δ} 197.4, 136.1, 130.8, 129.7, 129.1, 128.7 (2\mbox{C}), 127.4, 124.7 (2\mbox{C}), 123.0, 119.5, 110.4, 71.4, 26.8. \mbox{HRMS} (ESI^{+}) \mbox{m/z}: \mbox{[M + H]}^{+} calcd for C_{15}\mbox{H}_{15}\mbox{N}_{2}\mbox{O}_{3}^{+} 271.1077, found 271.1075. \end{array}$

(3E)-4-[5-Phenyl-3-(phenylsulfanyl)-1*H*-pyrrol-2-yl]but-3-en-2-one (**2z**). Yield: 64 mg, 40%; yellow solid; mp = 181–182 °C (ethyl acetate). R_f = 0.35 (ethyl acetate/petroleum ether = 1:3). ¹H NMR (400 MHz, DMSO-*d*₆): δ 11.98 (br s, 1H), 7.86 – 7.78 (m, 2H), 7.51 – 7.40 (m, 3H), 7.36 – 7.24 (m, 3H), 7.19 – 7.11 (m, 3H), 6.95 (d, *J* = 16.2 Hz, 1H), 2.23 (s, 3H). ¹³C {¹H} NMR (100 MHz, DMSO-*d*₆): δ 196.9, 138.0, 136.8, 131.9, 130.6, 129.1 (2C), 128.8, 128.7 (2C), 127.6, 126.2 (2C), 125.4, 124.7 (2C), 122.7, 116.9, 114.3, 27.4. HRMS (ESI⁺) m/z: [M + H]⁺ calcd for C₂₀H₁₈NOS⁺ 320.1104, found 320.1108.

Diethyl {5-(4-chlorophenyl)-2-[(1*E*)-3-oxobut-1-en-1-yl]-1*H*-pyrrol-3-yl}propanedioate (**2aa**). Yield: 177 mg, 88%; yellow solid; mp = 214–215 °C (ethyl acetate). R_f = 0.30 (ethyl acetate/petroleum ether = 1:3). ¹H NMR (400 MHz, DMSO-*d*₆): δ 11.54 (br s, 1H), 7.81 (d, *J* = 8.3 Hz, 2H), 7.54 – 7.44 (m, 3H), 6.76 (d, *J* = 16.1 Hz, 1H), 6.71 (d, *J* = 2.4 Hz, 1H), 5.16 (s, 1H), 4.21 – 4.12 (m, 4H), 2.28 (s, 3H), 1.20 (t, *J* = 7.1 Hz, 6H). ¹³C {¹H} NMR (100 MHz, DMSO-*d*₆): δ 197.4, 167.7 (2C), 134.5, 131.6, 130.3, 129.8, 128.7 (2C), 127.9, 126.3 (2C), 122.3, 122.2, 109.7, 61.2 (2C), 49.2, 26.6, 13.8 (2C). HRMS (ESI⁺) m/z: [M + H]⁺ calcd for C₂₁H₂₃CINO₅⁺ 404.1259, found 404.1255.

2-[(1*E*)-3-Oxobut-1-en-1-yl]-3-phenylindeno[1,2-*b*]pyrrol-4(1*H*)-one (**2ab**). Yield: 59 mg, 38%; yellow solid; mp = 270–271 °C (ethyl acetate). $R_f = 0.15$ (ethyl acetate/petroleum ether = 1:3). ¹H NMR (400 MHz, DMSO-*a*₆): δ 12.65 (br s, 1H), 7.59 (d, *J* = 7.1 Hz, 2H), 7.52 – 7.35 (m, 6H), 7.32 – 7.24 (m, 2H), 6.65 (d, *J* = 16.0 Hz, 1H), 2.26 (s, 3H). ¹³C {¹H} NMR (100 MHz, DMSO-*a*₆): δ 196.5, 184.7, 153.3, 139.6, 134.1, 133.4, 131.8, 130.6, 130.5, 129.1, 129.0 (2C), 128.5 (2C), 127.8, 127.7, 123.0, 122.7, 121.5, 118.7, 27.4. HRMS (ESI⁺) m/z: [M + H]⁺ calcd for C₂₁H₁₆NO₂⁺ 314.1176, found 314.1184.

Synthesis of 6,10-dimethoxy-3-(5-methylfuran-2-yl)-2-phenyl-1-azaspiro[4.5]deca-1,6,9-trien-8-one (4).

The product was obtained following the general protocol for the synthesis of pyrroles 2.

6,10-Dimethoxy-3-(5-methylfuran-2-yl)-2-phenyl-1-azaspiro[4.5]deca-1,6,9-trien-8-one (4). Yield: 131 mg, 72%; pale yellow oil. $R_f = 0.45$ (ethyl acetate/petroleum ether = 1:3). ¹H NMR (400 MHz, CDCl₃): δ 7.95 (d, J = 7.5 Hz, 2H), 7.51 – 7.43 (m, 3H), 5.93 (d, J = 3.0 Hz, 1H), 5.81 (d, J = 3.0 Hz, 1H), 5.60 (s, 1H), 5.20 (s, 1H), 4.14 (t, J = 10.0 Hz, 1H), 3.79 (s, 3H), 3.62 (dd, J = 16.6, 10.0 Hz, 1H), 3.50 (dd, J = 16.6, 10.0 Hz, 2H), 3.43 (s, 3H), 2.17 (s, 3H). ¹³C (¹H} NMR (100 MHz, DMSO- d_6): δ 188.0, 178.0, 170.8, 169.8, 151.6, 149.2, 133.3, 131.8, 128.7, 128.5, 107.7, 106.2, 101.6, 101.5, 81.6, 56.5, 55.7, 46.6, 40.5, 13.6. HRMS (ESI⁺) m/z: [M + H]⁺ calcd for C₂₂H₂₂NO₄⁺ 364.1543, found 364.1554.

5. ORTEP-DIAGRAM OF PYRROLE 2a

Figure S1. Structure of (3*E*)-4-(3,5-diphenyl-1*H*-pyrrol-2-yl)but-3-en-2-one (**2a**) according to the X-ray diffraction data; non-hydrogen atoms are shown as thermal vibration ellipsoids with a probability of 50%.

6. Synthesis (5 mmol scale) of (3E)-4-(3,5-diphenyl-1H-pyrrol-2-yl)but-3-en-2-one (2a).

To a stirred solution of compound **3a** (1.45 g, 5 mmol) and NaOAc·3H₂O (816 mg, 6 mmol, 1.2 eq.) in MeOH (50 ml) was added NH₂OH·HCl (417 mg, 6 mmol, 1.2 eq.), and the reaction mixture was refluxed until full conversion of the starting material by TLC was observed (ca. 8 h). The reaction mixture was poured into water (200 mL), and the product was extracted with ethyl acetate (3 × 40 mL). Combined organic fractions were washed with water (2 × 40 mL) and dried over anhydrous Na₂SO₄. After filtration and evaporation of ethyl acetate, a mixture of stereoisomeric oximes was obtained as a pale yellow oil that solidified upon drying. The crude oxime was dissolved in dioxane (100 ml), Ac₂O (710 µl, 1.5 eq.) was added in a single portion at room temperature, and the reaction mixture was stirred for 60 min (TLC control). The solution of FeCl₃·6H₂O in 1,4-dioxane (1 mL, 13.5 mg/ml, 1% mol.) was added, and stirring was continued at 80°C (aluminium block) for 3 h (TLC control). After that the reaction mixture was cooled to room temperature and filtered through a pad of SiO₂, washed with mixture of petroleum ether/ethyl acetate (1:1), dissolved in ethyl acetate (200 ml) and irradiated with blue LEDs (MOTOKO MTK-600B3528-12 LED strip, 12 V, 24 LEDs, 80 mW/LED, declared wavelength 465 – 475 nm) for 30 min at room temperature upon stirring (TLC control). Product was isolated by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate, 5:1) with 78 % yield (1.12 g).

7. MECHANISTIC STUDIES

CV curve of oxime 1a (mixture of isomers, 5:1)

1 cycle

15 cycles

Mechanistic experiments with TEMPO

Experiment A

To the solution of *O*-acetyl oxime **1a** (104 mg, 0.3 mmol) in dioxane (6 mL) was added the solution of FeCl₃·6H₂O in 1,4-dioxane (60 μ l, 13.5 mg/ml, 1% mol.) and TEMPO (1.17 g, 7.5 mmol, 25 equiv). The resulting mixture was stirred at 80 °C (aluminium block) for 1.5 h. After 1.5 h the reaction mixture was concentrated under reduced pressure. The major portion of TEMPO was removed by vacuum distillation on rotary evaporator at 80 °C under reduced pressure (*ca.* 15 mBar), and the residue was subjected to column chromatography (eluent: petroleum ether/ethyl acetate, gradient from 1:0 to 15:1 to 5:1). The product (*Z*/*E*)-**2a** was isolated with 77 mg, 89% combined yield, *Z*/*E* = 5:1.

Experiment B

To the solution of *O*-acetyl oxime **1a** (104 mg, 0.3 mmol) in dioxane (6 mL) was added TEMPO (47 mg, 0.3 mmol, 1 equiv). The resulting mixture was stirred at 80 °C (aluminium block) for 1.5 h. After 1.5 h the reaction mixture was concentrated under reduced pressure. The major portion of TEMPO was removed by vacuum distillation on rotary evaporator at 80 °C under reduced pressure (*ca.* 15 mBar), and the residue was subjected to column chromatography (eluent: petroleum ether/ethyl acetate, gradient from 1:0 to 15:1 to 5:1). The starting *O*-acetyl oxime **1a** was recovered (98 mg, conversion < 5%).

FeCl₃(η^1 -TEMPO)-catalyzed synthesis of (*Z*/*E*)-2a.

To the solution of O-acetyl oxime **1a** (104 mg, 0.3 mmol) in dioxane (6 mL) was added $\text{FeCl}_3(\eta^1-\text{TEMPO})^{[6]}$ (47 mg, 0.3 mmol, 1 equiv). The resulting mixture was stirred at 80 °C (aluminium block) for 1.5 h. After 1.5 h the reaction mixture was cooled to room temperature, concentrated under reduced pressure and subjected to column chromatography (eluent: petroleum ether/ethyl acetate, gradient from 1:0 to 15:1 to 5:1). The starting O-acetyl oxime **1a** was recovered (98 mg, conversion < 5%).

Synthesis of (3,3-bis(5-methylfuran-2-yl)propyl)-3-phenyl-1H-pyrrol-2-yl)but-3-en-2-one (5).

The product was obtained following the general protocol for the synthesis of pyrroles **2**. Pyrrole **5** was isolated by column chromatography (eluent: petroleum ether/ethyl acetate, gradient from 15:1 to 5:1)

(*E*)-4-{5-[3,3-bis(5-methylfuran-2-yl)propyl]-3-phenyl-1*H*-pyrrol-2-yl}but-3-en-2-one (**5**). Yield: 171 mg, 83%; pale yellow oil. $R_f = 0.30$ (ethyl acetate/petroleum ether = 1:3). ¹H NMR (400 MHz, CDCl₃): δ 9.69 (br s, 1H), 7.39 (d, *J* = 16.1 Hz, 1H), 7.32 – 7.25 (m, 4H), 7.24 – 7.16 (m, 1H), 6.41 (d, *J* = 16.1 Hz, 1H), 6.06 (d, *J* = 2.5 Hz, 1H), 5.86 (d, *J* = 3.1 Hz, 2H), 5.75 (d, *J* = 3.0 Hz, 2H), 3.93 (t, *J* = 7.6 Hz, 1H), 2.62 (t, *J* = 7.6 Hz, 2H), 2.27 (q, *J* = 7.6 Hz, 2H), 2.14 (s, 3H), 2.13 (s, 6H). ¹³C {¹H} NMR (100 MHz, DMSO-*d*₆): δ 199.0, 153.4 (2C), 151.0 (2C), 139.2, 135.7, 133.6, 133.5, 128.9 (2C), 128.7 (2C), 126.9, 123.9, 120.2, 109.7, 106.7 (2C), 106.2 (2C), 38.6, 32.6, 26.0, 25.9, 13.6 (2C). HRMS (ESI⁺) m/z: [M + H]⁺ calcd for C₂₇H₂₈NO₃⁺ 414.2064, found 414.2071.

8. Synthesis of (3Z)-4-(3,5-diphenyl-1H-pyrrol-2-yl)but-3-en-2-one (Z)-2a.

(3E)-4-(3,5-Diphenyl-1*H*-pyrrol-2-yl)but-3-en-2-one (**2a**) (0.2 mmol, 57.4 mg) was dissolved in hot toluene (5 ml) and cooled to room temperature, then TFA (1.5 µl, 10% mol.) was added, and the resulting solution was stirred for 2 h at room temperature. Filtration through a pad of silica gel and washing it with mixture of petroleum ether/ethyl acetate 19:1 afforded (*Z*)-**2a** in 50% yield (44% of starting material was recovered).

(3Z)-4-(3,5-Diphenyl-1*H*-pyrrol-2-yl)but-3-en-2-one [Z-(**2a**)]. Yield: 29 mg, 50%; yellow solid; mp = 186–187 °C (ethyl acetate). R_f = 0.55 (ethyl acetate/petroleum ether = 1:3). ¹H NMR (400 MHz, CDCl₃): δ 13.86 (br s, 1H), 7.82 – 7.74 (m, 2H), 7.56 – 7.42 (m, 6H), 7.41 – 7.32 (m, 2H), 7.03 (d, *J* = 2.4 Hz, 1H), 6.80 (d, *J* = 12.2 Hz, 1H), 6.14 (d, *J* = 12.2 Hz, 1H), 2.35 (s, 3H). ¹³C {¹H} NMR (100 MHz, DMSO-*d*₆): δ 199.2, 134.7, 134.5, 134.1, 131.4, 130.5, 129.2 (2C), 128.8 (2C), 128.6 (2C), 127.8, 127.1, 127.0, 124.0 (2C), 116.2, 109.4, 31.0. HRMS (ESI⁺) m/z: [M + H]⁺ calcd for C₂₀H₁₈NO⁺ 288.1383, found 288.1383.

9. UV/VIS SPECTRA OF COMPOUNDS 2d,k-n,p,v

10. CV CURVES OF COMPOUNDS 2d,k-n,p,v

Table S8. Physicochemical properties of selected pyrroles 2

Compound	λ_{max} , nm (ϵ , dm ³ mol ⁻¹ cm ⁻¹)	λ _{onset} , nm	E ^{opt} g, eV ^[a]	E ^{red} onset, V	HOMO, eV ^[b]	LUMO, eV ^[c]	Melting point, °C ^[d]
2d	274 (14 100) 382 (27 300)	458	2.70	- 0.70	- 6.35	- 3.65	162-163
2k	350 (30 450) 423 (44 780)	500	2.48	- 0.67	- 6.17	- 3.69	276-277
21	363 (30 980)	487	2.54	- 0.71	- 6.19	- 3.65	254-255
2n	304 (32 700) 330 (31 900) 416 (26 050)	500	2.48	- 0.68	- 6.15	- 3.67	178-179
2р	280 (26 550) 395 (26 400)	475	2.61	- 0.66	- 6.30	- 3.69	171-172
2v	263 (5 800) 375 (28 050)	455	2.72	- 0.70	- 6.37	- 3.65	169-170

 $\begin{bmatrix} a \end{bmatrix} E^{opt}{}_g = \frac{1240}{\lambda_{onset}}, \quad \lambda_{onset} \quad is \quad the \quad long-wavelength \quad absorption \quad edge. \\ \begin{bmatrix} b \end{bmatrix} E_{HOMO} = E^{opt}{}_g - E_{LUMO}. \quad [c] \quad E_{LUMO} = [-e(E^{red}{}_{onset \ vs \ Ag/AgCI} - E_{Fc \ vs \ Ag/AgCI} + 4.80)], where \ 4.8 \ eV$ is the energy level of ferrocene below the vacuum level. [d] Based on DTG-DSC studies.

Area: -125 2 Jrg

-1

-2

-4

-5

-7

-2

-4

-5

78.65 % (405 30 10)

Danish. 10.00

11. DTG AND DSC ANALYSES OF COMPOUNDS 2d,k-m,p,v

85

80

12. FURTHER TRANSFORMATIONS OF PYRROLE 2a

Synthesis of 5-(3,5-diphenyl-1H-pyrrol-2-yl)-3-methyl-1-phenyl-1H-pyrazole (6).

The mixture of (3*E*)-4-(3,5-diphenyl-1*H*-pyrrol-2-yl)but-3-en-2-one (**2a**) (58 mg, 0.2 mmol) and PhNHNH₂ (44 μ L, 0.4 mmol, 2 equiv.) in DMF (1 mL) was stirred at 100 °C (aluminium block) for 48 h (TLC or GC control). Upon completion, the reaction mixture was concentrated under reduced pressure and subjected to column chromatography (eluent: petroleum ether/ethyl acetate, gradient from 20:1 to 15:1).

5-(3,5-Diphenyl-1*H*-pyrrol-2-yl)-3-methyl-1-phenyl-1*H*-pyrazole (**6**). Yield: 68 mg, 91%; pale yellow oil. $R_f = 0.40$ (ethyl acetate/petroleum ether = 1:3). ¹H NMR (400 MHz, CDCl₃): δ 8.21 (br s, 1H), 7.30 – 7.22 (m, 5H), 7.09 – 7.03 (m, 10H), 6.54 (d, *J* = 2.8 Hz, 1H), 6.18 (s, 1H), 2.25 (s, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃): δ 149.8, 140.0 (2C), 135.6, 135.4, 133.2, 132.0, 129.1 (2C), 128.8 (2C), 128.3 (2C), 127.6 (2C), 127.0, 126.9, 126.2, 124.0 (2C), 123.9 (2C), 118.2, 109.0, 107.2, 13.8. HRMS (ESI/TOF) m/z: [M + H]⁺ calcd for C₂₆H₂₂N₃⁺ 376.1808, found 376.1818.

Synthesis of 1-(3,5-diphenyl-1*H*,1'*H*-2,3'-bipyrrol-4'-yl)ethanone (7).

The mixture of (3*E*)-4-(3,5-diphenyl-1*H*-pyrrol-2-yl)but-3-en-2-one (**2a**) (115 mg, 0.4 mmol), TosMIC (157 mg, 0.8 mmol, 2 equiv.), and Cs_2CO_3 (260 mg, 0.8 mmol, 2 equiv.) in dioxane (3 mL) was stirred at 60 °C (aluminium block) for 24 h (TLC or GC control). Upon completion, the reaction mixture was concentrated under reduced pressure and subjected to column chromatography (eluent: petroleum ether/ ethyl acetate, gradient from 15:1 to 10:1).

1-(3,5-Diphenyl-1*H*,1'*H*-2,3'-bipyrrol-4'-yl)ethanone (**7**). Yield: 129 mg, 79%; off-white solid; mp = 178–179 °C (ethyl acetate). R_f = 0.15 (ethyl acetate/petroleum ether = 1:2). ¹H NMR (400 MHz, , DMSO-*d*₆): δ 12.15 (br s, 1H), 11.55 (br s, 1H), 7.75 (br s, 1H), 7.69 (d, *J* = 7.9 Hz, 2H), 7.40 – 7.35 (m, 4H), 7.32 – 7.27 (m, 2H), 7.20 – 7.14 (m, 2H), 6.72 (d, *J* = 2.9 Hz, 1H), 6.69 (br s, 1H), 2.34 (s, 3H). ¹³C {¹H} NMR (100 MHz, , DMSO-*d*₆): δ 194.2, 137.5, 132.5, 129.3, 128.7 (2C), 128.1 (2C), 127.7 (2C), 127.4, 125.3, 125.2, 123.7, 122.9 (2C), 122.6, 122.5, 119.3, 115.5, 107.1, 27.8. HRMS (ESI/TOF) m/z: [M + H]⁺ calcd for C₂₂H₁₉N₂O⁺ 327.1492, found 327.1489.

Synthesis of 3,5-diphenyl-1*H*-pyrrole-2-carbaldehyde (8).

To the mixture of (3E)-4-(3,5-diphenyl-1*H*-pyrrol-2-yl)but-3-en-2-one (**2a**) (115 mg, 0.4 mmol) was added ethanolic solution of KOH (0.3 g/mL, 5 mL, *ca*. 65 equiv. of KOH) at room temperature. The reaction mixture was refluxed for 1 h (TLC control). Upon completion, the mixture was poured into water (50 mL) and extracted with ethyl acetate (2 × 15 mL) Combined organic fractions were washed with water (2 × 10 mL) and brine (10 mL). The combined organic fractions were dried with anhydrous NaSO₄, concentrated and subjected to column chromatography (eluent: petroleum ether/CH₂Cl₂, gradient from 2:1 to 1:1).

3,5-Diphenyl-1*H*-pyrrole-2-carbaldehyde (**8**).^[7] Yield: 92 mg, 93%; off-white solid; mp = 154–155 °C (ethyl acetate). $R_f = 0.40$ (ethyl acetate/petroleum ether = 1:4). ¹H NMR (400 MHz, DMSO-*d*₆): δ 12.38 (br s, 1H), 9.62 (s, 1H), 7.98 (d, *J* = 7.8 Hz, 2H), 7.63 – 7.59 (m, 2H), 7.50 – 7.39 (m, 4H), 7.39 – 7.32 (m, 2H), 6.94 (d, *J* = 2.4 Hz, 1H). ¹³C {¹H} NMR (100 MHz, DMSO-*d*₆): δ 178.5, 138.7, 136.8, 133.6, 130.5, 129.1, 128.9 (2C), 128.7 (2C), 128.5 (2C), 128.1, 127.4, 125.7 (2C), 109.0.

Synthesis of 2,4-diphenyl-1H-pyrrole (9) and 3-methyl-1-phenyl-1H-pyrazole (10).

(3*E*)-4-(3,5-Diphenyl-1*H*-pyrrol-2-yl)but-3-en-2-one (**2a**) (86 mg, 0.3 mmol) was dissolved in a solution of PhNHNH₂ in DMF (1.2 mL, 32.4 mg/mL, 1.2 eq. of PhNHNH₂) under argon. TFA as a solution in DMF was added (0.4 ml, 22.8 mg/ml, 0.2 eq. of TFA), and the reaction mixture was stirred at 150°C (aluminium block) for 30 min (TLC control). <u>The colour of the reaction mixture changes from yellowish red to dark brown.</u> Upon completion, the reaction mixture was cooled to room temperature, poured into aqueous citric acid (25 mL, 5 mg/mL), extracted with ethyl acetate (3 x 5 mL), washed with water (2 × 15 mL) and dried with anhydrous Na₂SO₄. The extract was filtered and evaporated to dryness at 65 °C under reduced pressure. The residue was subjected to column chromatography (eluent: petroleum ether/CH₂Cl₂, gradient from 10:1 to 6:1 to 4:1). <u>NOTE: 3-Methyl-1-phenyl-1H-pyrazole (10) could be distilled from concentrated crude reaction mixture on rotary evaporator. We observed nearly complete removal of pyrazole (10) at ca. 85 °C, 15 mbar in ca. 1 h.</u>

2,4-Diphenyl-1*H*-pyrrole (**9**).^[8] Yield: 62 mg, 94%; off-white solid; mp = 178–179 °C (ethyl acetate). R_f = 0.50 (ethyl acetate/petroleum ether = 1:3). ¹H NMR (400 MHz, CDCl₃): δ 8.44 (br s, 1H), 7.60 (d, *J* = 7.6 Hz, 2H), 7.53 (d, *J* = 7.7 Hz, 2H), 7.43 – 7.37 (m, 4H), 7.28 – 7.22 (m, 2H), 7.11 (br s, 1H), 6.86 (d, *J* = 2.6 Hz, 1H). ¹³C {¹H} NMR (100 MHz, CDCl₃): 135.5, 132.5, 128.9 (4C), 128.7 (4C), 126.5, 125.8, 125.2, 123.9, 115.6, 104.1.

3-Methyl-1-phenyl-1*H*-pyrazole (**10**).^[9] Yield: 45 mg, 94%; colorless oil. $R_f = 0.65$ (ethyl acetate/petroleum ether = 1:3). ¹H NMR (400 MHz, CDCl₃): δ 7.79 (d, J = 2.3 Hz, 1H), 7.65 (d, J = 8.0 Hz, 2H), 7.45 – 7.38 (m, 2H), 7.26 – 7.20 (m, 1H), 6.23 (d, J = 2.3 Hz, 1H), 2.39 (s, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃): δ 150.6, 140.4, 129.4 (2C), 127.4, 126.0, 119.0 (2C), 107.6, 13.8.

13. REFERENCES

- [1] A. A. Fadeev, M. G. Uchuskin, I. V. Trushkov, A. S. Makarov, Chem. Heterocycl. Compd. 2018, 53, 1286-1293.
- [2] R. O. Shcherbakov, D. A. Eshmemet'eva, A. A. Merkushev, I. V. Trushkov, M. G. Uchuskin, Molecules 2021, 26.
- [3] H. M. Turner, J. Patel, N. Niljianskul, J. M. Chong, Org. Lett. 2011, 13, 5796-5799.
- [4] A. A. Fadeev, A. S. Makarov, M.G. Uchuskin, Acid-Catalyzed Cascade Reaction of 2-Alkylfurans with α,β-Unsaturated Ketones: a Shortcut to Functionalized Furans, submitted to J. Org. Chem. on 16 July 2021.
- [5] A. Corma, O. de la Torre, M. Renz, N. Villandier, Angew. Chem. Int. Ed. 2011, 50, 2375-2378; Angew. Chem. 2011, 123, 2423-2426.
- [6] J. J. Scepaniak, A. M. Wright, R. A. Lewis, G. Wu, T. W. Hayton, J. Am. Chem. Soc. 2012, 134, 19350-19353.
- [7] J. Sun, G. Zheng, Y. Fu, L. Wang, Y. Li, Q. Zhang, *Org. Lett.* **2018**, *20*, 5597-5600.
- [8] F. Chen, T. Shen, Y. Cui, N. Jiao, Org. Lett. 2012, 14, 4926-4929.
- [9] B. A. J. Clark, J. Parrick, P. J. West, A. H. Kelly, J. Chem. Soc. C 1970, 498-501.

14. COPIES OF NMR SPECTRA

#

1H, CDCl3, 400 MHz

7,11500 7,11515 7,11515 7,11515 7,71005</td

