# **Supporting Information**

# Catalytic Radical Cascade Cyclization of Alkene-Tethered Enones to Fused Bicyclic Cyclopropanols

Ying Xie,<sup>[a, b]</sup> Wei Huang,<sup>[a]</sup> Song Qin,<sup>[a]</sup> Shaomin Fu<sup>\*[a]</sup> and Bo Liu <sup>\*[a]</sup>

<sup>a</sup> Key Laboratory of Green Chemistry &Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China

<sup>b</sup> School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, 180 Hui Xing Road, Zigong 643000, China

E-mail: chembliu@scu.edu.cn; fsm09@aliyun.com

# **Table of Contents**

| 1. General information              |    |
|-------------------------------------|----|
| 2. Screening of Reaction Conditions | 4  |
| 3. Experimental Procedures          | 6  |
| 4. Synthesis of compound 5          | 29 |
| 5. Mechanistic studies              |    |
| 6. X-ray Crystallographic Data:     |    |
| 7 Spectra of Products.              | 41 |
| 8. Computational procedures         | 97 |
| 9. References                       |    |

# 1. General information

All reactions are carried out in flame-dried sealed tubes with magnetic stirring. Unless otherwise noted, all experiments are performed under argon atmosphere. All chemicals were purchased commercially and used without further purification, unless otherwise stated. Solvents are treated with CaH<sub>2</sub> or sodium and distilled prior to use. Purifications of reaction products are carried out by flash chromatography using Qingdao Haiyang Chemical Co. Ltd silica gel (200-300 mm) or Keshi Co. Ltd Aluminum oxide active (200-300). Infrared spectra (IR) are recorded on a Nexus 670FT-IR spectrophotometer and are reported as wavelength numbers (cm<sup>-1</sup>). <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra are recorded with tetramethylsilane (TMS) as internal standard at ambient temperature unless otherwise indicated on a Bruker Avance DPX 400 Fourier Transform spectrometer operating at 400 MHz for <sup>1</sup>H NMR and 100 MHz for <sup>13</sup>C NMR. Chemical shifts are reported in parts per million (ppm) and coupling constants are reported as Hertz (Hz). Splitting patterns are designated as singlet (s), broad singlet (bs), doublet (d), triplet (t). Splitting patterns that could not be interpreted or easily visualized are designated as multiple (m). High resolution mass spectra (HRMS) are recorded on an IF-TOF spectrometer (Micromass). Oil bath was used for reactions that require heating. Low temperature reactor (ethanol bath) was used for reactions that require cooling. In <sup>1</sup>H/<sup>13</sup>C NMR spectrum, nomenclature for compounds **3a-3t** only refers to the depicted enantiomer.

# 2. Screening of Reaction Conditions

**2.1 Table 1**. The effect of the catalyst for the catalytic radical cascade cyclization of alkene-tethered enones.

|                       | 0.2 eq. Catalyst, 2.5 eq.PhSiH <sub>2</sub> (O <i>i</i> -Pr)<br>2.0 eq. B(OMe) <sub>3</sub> , EtOH, 20 °C, 5 h, Ar |
|-----------------------|--------------------------------------------------------------------------------------------------------------------|
| Catalyst              | Yield%                                                                                                             |
| Fe(acac) <sub>3</sub> | 69%                                                                                                                |
| Fe(dpm) <sub>3</sub>  | 45%                                                                                                                |
| Co(salen)             | mess                                                                                                               |
| $Co(acac)_2$          | mess                                                                                                               |
| Fe(TPP) <sub>3</sub>  | mess                                                                                                               |
| $Mn(acac)_3$          | no reaction                                                                                                        |
| Fe(OTf) <sub>3</sub>  | no reaction                                                                                                        |
| $Fe_2(SO_4)_3$        | no reaction                                                                                                        |
| FeCl <sub>3</sub>     | trace                                                                                                              |

**2.2 Table 2.** The effect of the solvent for the catalytic radical cascade cyclization of alkene-tethered enones.

|                                    | 0.2 eq. Fe(acac) <sub>3</sub> , 2.5 eq. PhSiH <sub>2</sub> (O <i>i</i> -Pr)<br>2.0 eq. B(OMe) <sub>3</sub> , solvent, 20 °C, 5 h, Ar |
|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Solvent                            | Yield (%) <sup>a</sup>                                                                                                               |
| MeOH                               | 33%                                                                                                                                  |
| EtOH                               | 69%                                                                                                                                  |
| <i>i</i> -PrOH                     | 78%                                                                                                                                  |
| <i>n</i> -PrOH                     | 90%                                                                                                                                  |
| <i>n</i> -BuOH                     | trace                                                                                                                                |
| CF <sub>3</sub> CH <sub>2</sub> OH | 79%                                                                                                                                  |

| $C_3H_2F_6O$                      | 58% |
|-----------------------------------|-----|
| CH <sub>3</sub> CN                | 65% |
| EA                                | 42% |
| Hexane                            | 2%  |
| 1,4-dioxane                       | 61% |
| THF                               | 69% |
| DCE                               | 25% |
| Toluene                           | 13% |
| 1,4-dioxane: <i>n</i> -PrOH (5:1) | 53% |
| THF: <i>n</i> -PrOH (5:1)         | 49% |
| methyl borate (1.5 ml)            | 84% |

<sup>*a*</sup> isolated yield.

**2.3 Table 3.** The effect of the additive for the catalytic radical cascade cyclization of alkene-tethered enones.

|                     | 0.2 eq. Fe(acac) <sub>3</sub> , 2.5 eq. PhSiH <sub>2</sub> (O <i>i</i> -Pr)<br>2.0 eq. additive, PrOH, 20 °C, 5 h, Ar |
|---------------------|-----------------------------------------------------------------------------------------------------------------------|
| Additive            | Yield (%) <sup>a</sup>                                                                                                |
| B(OMe) <sub>3</sub> | 90                                                                                                                    |
| $B(Oi-Pr)_3$        | 57                                                                                                                    |
| (BPin) <sub>2</sub> | 43                                                                                                                    |
| $BF_3 \cdot Et_2O$  | mess                                                                                                                  |
| -                   | 68                                                                                                                    |

<sup>*a*</sup> isolated yield.

**2.4 Table 4.** The effect of the silane for the catalytic radical cascade cyclization of alkene-tethered enones.



| $Et_3SiH_2$                            | no reaction |
|----------------------------------------|-------------|
| ′PrSiH <sub>2</sub>                    | no reaction |
| $Ph_2SiH_2$                            | 26          |
| (EtO) <sub>2</sub> CH <sub>3</sub> SiH | no reaction |

*<sup>a</sup>* isolated yield.

### **3. Experimental Procedures**

3.1 General procedure for the synthesis of substrate (1a - 1t)

To the solution of the phosphonate <sup>[1]</sup> (524 mg, 2.0 mmol) in the 10 mL dry THF was added NaH (96 mg, 2.4 mmol) under Ar at rt. The reaction was stirred at rt for 30 min. Then aldehyde (1.2 eq.) was added. The mixture was stirred at 30  $^{\circ}$ C for another 24 h and quenched with saturated NH<sub>4</sub>Cl (10 mL). The organic layer was separated and water layer was extracted with EA and dried over Na<sub>2</sub>SO<sub>4</sub>. The combined organic layers were evaporated and the residue was purified via column chromatography to give desired product. <sup>[2]</sup> The other substrates could also be prepared using the similar methods.

2a

Physical state: colorless oil  $\mathbf{Rf} = 0.5$  (PE/EtOAc = 5:1; UV) 349.2 mg, 90% yield

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 6.79 (d, *J* = 16.1 Hz, 1H), 5.99 (d, *J* = 16.1 Hz, 1H), 4.70 (s, 1H), 4.66 (s, 1H), 2.54 – 2.49 (m, 2H), 2.10 – 1.99 (m, 2H), 1.80 – 1.70 (m, 2H), 1.69 (s, 3H), 1.06 (s, 9H).

<sup>13</sup>C NMR (100MHz, CDCl<sub>3</sub>) δ 201.15, 156.84, 145.11, 125.41, 110.48, 39.51, 37.15, 33.68, 28.70, 22.19, 21.92.

**HRMS(ESI**<sup>+</sup>) m/z Calculated for C<sub>13</sub>H<sub>23</sub>O [M+H]<sup>+</sup>:195.1749, found: 195.1749.

**IR (thin film) v** max (cm<sup>-1</sup>): 2962, 1720, 1620, 1364, 988.

2b

Physical state: colorless oil

Rf = 0.5 (PE/EtOAc = 5:1; UV) 252.32 mg, 76% yield

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  6.87 (dt, *J* = 15.9, 6.4 Hz, 1H), 6.08 (dt, *J* = 15.9, 1.7 Hz, 1H),  $\delta$  4.72 (s, 1H), 4.67 (s, 1H), 2.52 (t, *J* = 7.6 Hz, 2H), 2.23 (qdd, *J* = 7.5, 6.3, 1.7 Hz, 2H), 2.03 (t, *J* = 7.4 Hz, 2H), 1.75(q, *J* = 7.6 Hz, 2H) 1.70 (s, 3H), 1.07 (t, *J* = 7.4 Hz, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 200.77, 148.61, 145.16, 129.45, 110.48, 39.29, 37.16, 25.52, 22.22, 21.92, 12.26.

**HRMS(ESI**<sup>+</sup>) m/z Calculated for  $C_{11}H_{19}O [M+H]^+$ : 167.1430, found: 167.1431.

**IR (thin film) v**<sub>max</sub> (cm<sup>-1</sup>): 2934, 1688, 1625, 1446, 1115.



2c

Physical state: colorless oil

Rf = 0.5 (PE/EtOAc = 5:1; UV) 338.4 mg, 94% yield

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 6.79 (dd, J = 16.0, 6.7 Hz, 1H), 6.04 (dd, J = 16.0, 1.5 Hz, 1H), 4.73 (s, 1H), 4.69 (s, 1H), 2.53 (t, J = 7.4 Hz, 2H), 2.46 (qd, J = 6.7, 1.5 Hz, 1H), 2.04 (t, J = 7.5 Hz, 2H), 1.85 - 1.74 (q, J = 7.2 Hz, 2H), 1.72 (s, 3H), 1.07 (d, J = 6.8 Hz, 6H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 201.06, 153.37, 145.19, 127.55, 110.49, 39.38, 37.17, 31.11, 29.71, 22.22, 21.95, 21.34.

**HRMS(ESI**<sup>+</sup>) m/z Calculated for  $C_{12}H_{21}O [M+H]^+$ : 181.1587, found: 181.1589.

**IR (thin film) v**<sub>max</sub> (cm<sup>-1</sup>): 2923, 2851, 1460, 1377.



2d

Physical state: colorless oil

**Rf** = 0.5 (PE/EtOAc = 5:1; UV) 424.8 mg, 90% yield

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 6.82 (dt, *J* = 15.9, 6.9 Hz, 1H), 6.09 (d, *J* = 15.9 Hz, 1H), 4.73 (s, 1H), 4.68 (s, 1H), 2.52 (t, *J* = 7.4 Hz, 2H), 2.20 (qd, *J* = 7.1 Hz, *J* = 1.6 Hz, 2H), 2.04 (t, *J* = 7.5 Hz, 2H), 1.77 (q, *J* = 7.5 Hz, 2H), 1.71 (s, 3H), 1.46 (t, *J* = 7.3 Hz, 2H), 1.40 – 1.15 (m, 8H), 0.88 (t, *J* = 6.6 Hz, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 200.74, 147.48, 145.18, 130.35, 110.48, 39.31, 37.18, 32.47, 31.74, 29.16, 29.06, 28.13, 22.63, 22.22, 21.97, 14.08.

HRMS(ESI<sup>+</sup>) m/z Calculated for C<sub>16</sub>H<sub>29</sub>O [M+H]<sup>+</sup>: 237.2213, found: 237.2213.

IR (thin film) v max (cm<sup>-1</sup>): 2962, 1678, 1625, 1364, 984.



Physical state: colorless oil

Rf = 0.5 (PE/EtOAc = 5:1; UV) 544.6 mg, 92% yield

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 6.78 (dt, *J* = 16.0, 7.0 Hz, 1H), 6.08 (dt, *J* = 16.0, 1.5 Hz, 1H), 4.67 (s, 1H), 4.62 (s, 1H), 3.68 (t, *J* = 6.4 Hz, 2H), 2.47 (t, *J* = 7.6 Hz, 2H), 2.37 (qd, *J* = 6.5, 1.5 Hz, 2H), 1.98 (t, *J* = 7.6 Hz, 2H), 1.75 – 1.67 (m, 2H), 1.66 (s, 3H), 0.84 (s, 9H), 0.00 (s, 6H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 200.50, 145.10, 143.94, 131.93, 110.52, 61.60, 39.15, 37.16, 35.92, 25.87, 22.21, 21.89, 18.29, -5.33.

HRMS(ESI<sup>+</sup>) m/z Calculated for C<sub>17</sub>H<sub>33</sub>O<sub>2</sub>Si [M+H]<sup>+</sup>: 297.2244, found: 297.2241.

IR (thin film) v max (cm<sup>-1</sup>): 2925, 2856, 1254, 1099, 836.



# 2f

Physical state: colorless oil

Rf = 0.4 (PE/EtOAc = 5:1; UV) 259.8 mg, 58% yield

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 6.81 (dt, *J* = 16.0, 6.2 Hz, 1H), 6.12 (d, *J* = 15.9 Hz, 1H), 4.73 (s, 1H), 4.67 (s, 1H), 3.69 (s, 3H), 2.62 – 2.44 (m, 6H), 2.03 (t, *J* = 7.5 Hz, 2H), 1.80 - 1.74 (m, 2H), 1.71 (s, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 200.29, 172.73, 145.08, 144.33, 130.92, 110.54, 51.80, 39.52, 37.10, 32.32, 27.39, 22.20, 21.78.

HRMS(ESI<sup>+</sup>) m/z Calculated for  $C_{13}H_{21}O_3$  [M+H]<sup>+</sup>: 225.1485, found: 225.1469.

IR (thin film) v <sub>max</sub> (cm<sup>-1</sup>): 2932, 1676, 1456, 1118, 885.



2g

Physical state: colorless oil

Rf = 0.5 (PE/EtOAc = 5:1; UV) 242 mg, 50% yield

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>) δ 7.32 (t, *J* =7.4 Hz, 2H), 7.24 (d, *J* = 7.9 Hz, 1H), 7.21 – 7.15 (m, 2H), 6.95 (dd, *J* = 15.9, 6.7 Hz, 1H), 6.08 (dd, *J* = 16.0, 1.6 Hz, 1H), 4.71 (s, 1H), 4.66 (s,

1H), 3.62 (td, *J* = 6.9, 1.5 Hz, 1H), 2.52 (t, *J* = 7.4 Hz, 2H), 2.02 (t, *J* = 7.5 Hz, 2H), 1.77 – 1.73 (m, 2H), 1.69 (s, 3H), 1.43 (d, *J* = 7.0 Hz, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 200.78, 150.45, 145.10, 143.41, 128.81, 128.75, 127.35, 126.81, 110.54, 42.22, 39.43, 37.13, 22.21, 21.84, 20.27.

**HRMS(ESI**<sup>+</sup>) m/z Calculated for C<sub>17</sub>H<sub>23</sub>O [M+H]<sup>+</sup>: 243.1743, found: 243.1741.

**IR (thin film) v** max (cm<sup>-1</sup>):2967, 1672, 1625, 1451, 887, 699.



## 2h

Physical state: colorless oil

**Rf** = 0.5 (PE/EtOAc = 5:1; UV) 338.8 mg, 70% yield.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>) δ 7.29(t, *J* = 7.2 Hz, 2H), 7.22-7.16(m, 3H) 6.84 (dt, *J* = 15.9, 6.8 Hz, 1H), 6.10 (dt, *J* = 15.9, 1.5 Hz, 1H), 4.72 (s, 1H), 4.67 (s, 1H), 2.79 (t, *J* = 7.7 Hz, 2H), 2.56 – 2.48 (m, 4H), 2.02 (t, *J* = 7.6 Hz, 2H), 1.79 – 1.72 (m, 2H), 1.71 (s, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 200.54, 145.89, 145.13, 140.75, 130.80, 128.51, 128.35, 126.22, 110.52, 39.40, 37.15, 34.47, 34.14, 22.22, 21.92.

**HRMS(ESI**<sup>+</sup>) m/z Calculated for C<sub>17</sub>H<sub>23</sub>O [M+H]<sup>+</sup>: 243.1743, found: 243.1739.

**IR (thin film) v** max (cm<sup>-1</sup>):2932, 1670, 1453, 886, 746, 698.



2i

Physical state: colorless oil

 $\mathbf{Rf} = 0.4$  (PE/EtOAc = 5:1; UV) 342.2 mg, 62% yield. (dr = 5.2:1)

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 6.71 (dt, *J* = 15.8, 6.9 Hz, 1H), 6.10 (dt, *J* = 15.7, 1.5 Hz, 1H), 4.73 (s, 1H), 4.67 (s, 1H), 2.85 (dd, *J* = 9.9, 7.5 Hz, 1H), 2.50 (t, *J* = 7.4 Hz, 2H), 2.34 – 2.18 (m, 1H), 2.17 – 2.09 (m, 1H), 2.04 (s, 3H), 2.03 (s, 2H), 1.98 – 1.90 (m, 1H), 1.83 – 1.73 (m, 2H), 1.71 (s, 3H), 1.58 (s, 2H), 1.30 (s, 3H), 0.88 (s, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 207.55, 200.35, 145.11, 144.81, 130.92, 110.53, 54.09, 43.48, 40.79, 39.55, 37.14, 33.29, 30.54, 30.21, 23.03, 22.21, 21.91, 17.32.

**HRMS(ESI**<sup>+</sup>) m/z Calculated for  $C_{18}H_{29}O_2$  [M+H]<sup>+</sup>: 277.2162, found: 277.2161

IR (thin film) v <sub>max</sub> (cm<sup>-1</sup>): 2902, 2848, 1676, 1456, 885.



2j

Physical state: colorless oil

**Rf** = 0.5 (PE/EtOAc = 5:1; UV) 210.2 mg, 51% yield.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 6.80 (dd, *J* = 15.8, 7.9 Hz, 1H), 6.09 (d, *J* = 1.2 Hz, 1H), 4.73 (s, 1H), 4.68 (s, 1H), 2.59 (q, *J* = 8.1 Hz, 1H), 2.52 (t, *J* = 7.4 Hz, 2H), 2.02 (t, *J* = 7.5 Hz, 2H), 1.84 (tdd, *J* = 7.3, 5.5, 3.5 Hz, 2H), 1.77 (q, *J* = 7.5 Hz, 2H), 1.71 (s, 3H), 1.69 – 1.59 (m, 4H), 1.44 – 1.35 (m, 2H).

<sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>) δ 200.87, 151.50, 145.17, 128.41, 110.47, 43.06, 39.38, 37.18, 32.54, 25.31, 22.22, 21.97.

**HRMS(ESI**<sup>+</sup>) m/z Calculated for  $C_{14}H_{23}O [M+H]^+$ : 207.1743, found: 207.1743.

IR (thin film) v <sub>max</sub> (cm<sup>-1</sup>): 2950, 2868, 1669, 1625, 1451, 1371, 885.



2k

Physical state: colorless oil

**Rf** = 0.4 (PE/EtOAc = 5:1; UV) 386.9 mg, 62% yield.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 6.91 (d, *J* = 15.8 Hz, 1H), 6.47 (d, *J* = 15.8 Hz, 1H), 4.73 (s, 1H), 4.68 (s, 1H), 4.64 (s, 2H), 4.14 (d, *J* = 8.8 Hz, 1H), 3.85 (dd, *J* = 8.8 Hz, *J* = 0.6 Hz, 1H), 3.60 (d, *J* = 9.6 Hz, 1H), 3.51 (d, *J* = 9.6 Hz, 1H), 3.36 (s, 3H), 2.56 (t, *J* = 7.4 Hz, 2H), 2.04 (t, *J* = 7.5 Hz, 2H), 1.79 – 1.71 (m, 2H), 1.71 (s, 3H), 1.46 (s, 3H), 1.42 (s, 3H).

<sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>) δ 200.13, 145.02, 144.85, 128.84, 110.84, 110.59, 96.72, 82.04, 71.01, 70.77, 67.99, 55.51, 40.36, 37.08, 26.86, 26.11, 25.62, 22.20, 21.68.

**HRMS(ESI<sup>+</sup>)** m/z Calculated for  $C_{17}H_{29}O_5$  [M+H]<sup>+</sup>: 313.2010, found: 313.2008.

**IR (thin film) v** max (cm<sup>-1</sup>): 2936, 1677, 1371, 1110, 1044.



21

Physical state: colorless oil

**Rf** = 0.5 (PE/EtOAc = 5:1; UV) 286 mg, 65% yield.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 6.76 (dd, *J* = 16.0, 6.8 Hz, 1H), 6.04 (dd, *J* = 16.0, 1.4 Hz, 1H), 4.73 (s, 1H), 4.68 (s, 1H), 2.53 (t, *J* = 7.4 Hz, 2H), 2.13 (tdtd, *J* = 7.9, 6.6, 3.3, 1.6 Hz, 1H), 2.04 (t, *J* = 7.5 Hz, 2H), 1.78 – 1.73 (m, 6H), 1.71 (s, 3H), 1.29 (qt, *J* = 13.6, 2.7 Hz, 2H), 1.24 – 1.08 (m, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 201.09, 152.21, 145.16, 127.85, 110.47, 40.60, 39.34, 37.17, 31.80, 25.93, 25.72, 22.21, 21.98.

**HRMS(ESI**<sup>+</sup>) m/z Calculated for C<sub>15</sub>H<sub>25</sub>O [M+H]<sup>+</sup>: 221.1900, found: 221.1893.

IR (thin film) v max (cm<sup>-1</sup>): 2925, 2832, 1672, 1449, 980.



2m

Physical state: colorless oil

**Rf** = 0.5 (PE/EtOAc = 5:1; UV) 356.7 mg, 91% yield.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.09 (dt, J = 15.6, 6.3 Hz, 1H), 6.74 (dt, J = 15.6, 1.7 Hz, 1H), 5.03 (s, 1H), 4.89 (s, 1H), 3.70 (s, 2H), 2.29 – 2.22 (m, 2H), 1.75 (s, 3H), 1.35 (s, 6H), 1.08 (t, J = 7.4 Hz, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 202.99, 150.25, 142.32, 122.85, 111.54, 81.40, 68.36, 25.69, 23.15, 19.78, 12.23.

**HRMS(ESI<sup>+</sup>)** m/z Calculated for  $C_{12}H_{21}O$  [M+H]<sup>+</sup>:197.1536, found: 197.1536 **IR (thin film)** v max (cm<sup>-1</sup>): 2973, 1697, 1625, 1170, 1071.



2n

Physical state: colorless oil

**Rf** = 0.5 (PE/EtOAc = 5:1; UV) 365 mg, 78% yield.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  6.99 (dt, J = 15.2, 6.5 Hz, 1H), 6.51 (dt, J = 15.2, 1.6 Hz, 1H), 4.66 (s, 1H), 4.62 (s, 1H), 2.27 – 2.19 (m, 2H), 2.06 – 2.02 (m, 2H), 1.80 – 1.76 (m, 2H), 1.67 (s, 3H), 1.64 – 1.56 (m, 5H), 1.36 – 1.26 (m, 5H), 1.07 (t, J = 7.4 Hz, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 203.95, 148.88, 146.05, 123.59, 109.50, 50.31, 36.96, 33.25, 31.74, 26.20, 25.61, 22.89, 22.62, 12.52.

HRMS(ESI<sup>+</sup>) m/z Calculated for C<sub>16</sub>H<sub>27</sub>O [M+H]<sup>+</sup>:235.2056, found: 235.2055.

**IR (thin film) v**<sub>max</sub> (cm<sup>-1</sup>): 2967, 2935, 1672, 1628, 977.

0

20

# Physical state: colorless oil

**Rf** = 0.5 (PE/EtOAc = 5:1; UV) 300.7 mg, 73% yield.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  6.87 (dt, J = 15.9, 6.3 Hz, 1H), 6.09 (dt, J = 15.8, 1.7 Hz, 1H), 5.39 (s, 1H), 2.50 (t, J = 7.4 Hz, 2H), 2.29 – 2.18 (m, 2H), 2.01 – 1.86 (m, 6H), 1.72 (ddd, J = 7.4, 6.8 Hz, 2H), 1.66 – 1.48 (m, 4H), 1.08 (t, J = 7.4 Hz, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 200.98, 148.45, 137.02, 129.46, 121.60, 39.51, 37.48, 28.08, 25.50, 25.22, 22.96, 22.53, 22.21, 12.27.

HRMS(ESI<sup>+</sup>) m/z Calculated for C<sub>14</sub>H<sub>23</sub>O [M+H]<sup>+</sup>: 207.1743, found: 207.1747.

**IR (thin film) v**<sub>max</sub> (cm<sup>-1</sup>): 2960, 1674, 1625, 1364, 984, 889.

2p

Physical state: colorless oil

Rf = 0.5 (PE/EtOAc = 5:1; UV) 365.6 mg, 80 % yield

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 6.07 (p, *J* = 1.3 Hz, 1H), 4.72 (s, 1H), 4.67 (s, 1H), 2.40 (t, *J* = 7.4 Hz, 2H), 2.14 (d, *J* = 1.3 Hz, 3H), 2.02 (t, *J* = 7.9 Hz, 2H), 1.88 (d, *J* = 1.4 Hz, 3H), 1.80 – 1.64 (m, 5H).

<sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>) δ 201.00, 154.82, 145.27, 123.81, 110.33, 43.56, 37.17, 27.63, 22.21, 21.95, 20.66.

HRMS(ESI<sup>+</sup>) m/z Calculated for C<sub>11</sub>H<sub>19</sub>O [M+H]<sup>+</sup>:167.1430, found: 167.1439.

IR (thin film) v max (cm<sup>-1</sup>): 2934, 1688, 1620, 1446, 1110.



2q

Physical state: colorless oil

Rf = 0.5 (PE/EtOAc = 5:1; UV) 232.8 mg, 60% yield.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 6.00 (s, 1H), 4.69 (s, 1H), 4.61(d, *J* = 1.6 Hz ,1H), 2.34 (t, *J* = 7.4 Hz, 2H), 2.15 (qd, *J* = 6.8, 1.1 Hz, 1H), 2.07 (s, 3H), 1.96 (t, *J* = 7.7 Hz ,2H), 1.81 (s, 3H), 1.71 - 1.67 (m, 2H), 0.95 (d, *J* = 6.9 Hz, 6H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 200.13, 154.32, 153.84, 122.80, 105.73, 42.84, 32.82, 32.56, 26.63, 21.53, 20.81, 19.67.

**HRMS(ESI**<sup>+</sup>) m/z Calculated for C<sub>13</sub>H<sub>23</sub>O [M+H]<sup>+</sup>: 195.1743, found: 195.1743.

**IR (thin film) v**<sub>max</sub> (cm<sup>-1</sup>): 2959, 2925, 1687, 1621, 1446.



Physical state: colorless oil

 $\mathbf{Rf} = 0.5$  (PE/EtOAc = 5:1; UV) 313.2 mg, 76% yield.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 5.96 (s, 1H), 4.71 (s, 1H), 4.67 (s, 1H), 2.79 (s, 2H), 2.40 (t, J = 7.2 Hz, 2H), 2.15 (t, J = 6.1 Hz, 2H), 2.02 (t, J = 7.7 Hz, 3H), 1.83 – 1.61 (m, 10H).
<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 201.84, 161.69, 145.34, 121.04, 110.36, 43.77, 38.11, 37.19, 31.23, 29.97, 28.82, 27.93, 26.28, 25.00, 22.24, 22.02, 21.90.

**HRMS(ESI**<sup>+</sup>) m/z Calculated for  $C_{14}H_{23}O[M+H]^+$ : 207.1743, found: 207.1746

IR (thin film) v <sub>max</sub> (cm<sup>-1</sup>): 2929, 2856, 1712, 1620, 1447, 1095.



2s

Physical state: colorless oil

**Rf** = 0.5 (PE/EtOAc = 5:1; UV) 262.8 mg, 73% yield.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 6.84 (d, J = 16.1 Hz, 1H), 6.03 (d, J = 16.1 Hz, 1H), 4.74 (s, 1H), 4.68 (s, 1H), 2.78 – 2.56 (m, 2H), 2.37 – 2.26 (m, 2H), 1.75 (s, 3H), 1.09 (s, 9H).
<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 200.58, 157.06, 144.75, 125.29, 110.07, 38.49, 33.74, 31.86,

28.71, 22.68.

HRMS(ESI<sup>+</sup>) m/z Calculated for C<sub>12</sub>H<sub>21</sub>O [M+H]<sup>+</sup>: 181.1587, found: 181.1598.

**IR (thin film) v**<sub>max</sub> (cm<sup>-1</sup>): 2962, 1672, 1625, 1364, 984.



2t

Physical state: colorless oil

**Rf** = 0.5 (PE/EtOAc = 5:1; UV) 103.2 mg, 20% yield.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 6.67 (d, *J* = 16.2 Hz, 1H), 5.97 (d, *J* = 16.2 Hz, 1H), 4.73 (s, 1H), 4.68 (s, 1H), 2.71 – 2.67 (m, 2H), 2.32 (t, *J* = 8 Hz, 2H), 2.03 (s, 3H), 1.74 (m, 5H), 1.71 – 1.54 (m, 10H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 200.81, 156.89, 144.82, 125.14, 110.06, 41.18, 38.43, 36.61, 35.70, 31.94, 28.07, 22.70.

HRMS(ESI<sup>+</sup>) m/z Calculated for C<sub>18</sub>H<sub>27</sub>O [M+H]<sup>+</sup>: 259.2056, found: 259.2059.

#### **IR (thin film) v**<sub>max</sub> (cm<sup>-1</sup>): 2902, 2848, 1672, 1451, 885.

3.2 General procedure for the synthesis of **2u** and **2v**.



To solution of *N*, *O*-dimethylhydroxyl-amine hydrochloride (11.7 g, 120 mmol) in dry  $CH_2Cl_2$  (50 mL) at 0°C was added the AlMe<sub>3</sub> (60 mL, 120 mmol, 2.0 M in hexane). The reaction was stirred at 0°C for 20 min and tetrahydro-2H-pyran-2-one (8.0 g, 80 mmol) was added slowly. Then the reaction was stirred at 0°C for 1 h. The DCM (30 mL) was added to the above reaction and quenched with aq. HCl (15 mL, 0.1 N). The residue was extracted with DCM (4×10 mL). The organic layer was separated, dried, filtered and concentrated under reduced pressure. The residue was used for the next step without further purified.<sup>[3]</sup>

To a suspension of IBX (44.8 g, 160 mmol) in EA (250 mL) was added above residue and the resulting mixture was stirred at 80 °C for 24 h. Then, the reaction was filtrated and concentrated under reduced pressure. The crude product was purified on SiO<sub>2</sub> to give the *N*methoxy-*N*-methyl-5-oxopentanamide. The <sup>1</sup>H and <sup>13</sup>C NMR spectral data for the rest of *N*methoxy-*N*-methyl-5-oxopentanamide showed good agreement with literature data <sup>[4]</sup>



13
Physical state: colorless oil
Rf = 0.5 (PE/EtOAc = 1:1; anisaldehyde) 11.7 g, 92% yield.
<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 9.75 (s, 1H), 3.66 (s, 3H), 3.16 (s, 3H), 2.52 (td, J = 7.1, 1.5 Hz, 2H), 2.44 (dt, J = 21.9, 7.1 Hz, 2H), 1.95 (p, J = 7.2 Hz, 1H).<sup>[4]</sup>
<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 202.14, 176.44, 61.23, 43.13, 32.17, 30.73, 17.03.

To the suspension of *N*-methoxy-*N*-methyl-5-oxopentanamide (11.2 g, 70 mmol) and dimethyl (1-diazo-2-oxopropyl)phosphonate (20.16 g, 105 mmol) in MeOH (200 mL) was added K<sub>2</sub>CO<sub>3</sub> (19.3 g, 140 mmol). The mixture was stirred at rt for 24 h and the resulting mixture was concentrated under reduced pressure. Then, the water (50 mL) was added and aqueous phase was extracted with EA (4×50 mL). The organic layer was dried and filtrated and concentrated. The crude product was purified on SiO<sub>2</sub> to give the compound *N*-methoxy-*N*-methylhex-5-ynamide (7.16 g, 66%). The <sup>1</sup>H and <sup>13</sup>C NMR spectral data for the rest of *N*-methoxy-*N*-methylhex-5-ynamide showed good agreement with literature data <sup>[5]</sup>

14

Physical state: colorless oil

**Rf** = 0.6 (PE/EtOAc = 1:1; KMnO<sub>4</sub>) 7.16 g, 66% yield.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 3.70 (s,3 H), 3.18 (s, 3H), 2.58 (t, *J* = 7.4 Hz, 2H), 2.29 (td, *J* = 6.9, 2.6 Hz, 2H), 1.98 (t, *J* = 2.6 Hz, 1H), 1.86 (p, *J* = 7.1 Hz, 2H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 173.81, 83.77, 68.88, 61.20, 32.15, 30.39, 23.16, 17.93.<sup>[5]</sup>

HBr gas was prepared by adding the PBr<sub>3</sub> (3.8 mL, 40 mmol) to water (1.5 mL). The HBr was led into the solution of Et<sub>4</sub>NBr (16.8 g, 12 mmol) in DCM (40 mL). *N*-methoxy-*N*-methylhex-5-ynamide (6.2 g, 40 mmol) was added to the above solution and the reaction was heated at 40  $^{\circ}$ C for 5 h. After the reaction was completed (monitored by TLC), water (50 mL) was added into reaction mixture and aqueous phase was extracted with EA ( 3×15 mL), dried over Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated. The crude product was purified on SiO<sub>2</sub> to give the 5-bromo-*N*-methoxy-*N*-methylhex-5-enamide.

15

Physical state: colorless oil

 $\mathbf{Rf} = 0.6 (PE/EtOAc = 1:1; KMnO_4) 7.4 \text{ g}, 76\% \text{ yield}.$ 

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 5.60 (d, *J* = 1.5 Hz, 1H), 5.42 (d, *J* = 1.7 Hz, 1H), 3.68 (s, 3H), 3.18 (s, 3H), 2.57 – 2.47 (m, 2H), 2.44 (t, *J* = 7.3 Hz, 2H), 1.91 (p, *J* = 7.3 Hz, 2H).
<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 173.96, 133.85, 117.15, 61.25, 52.23, 40.69, 30.19, 22.64.

HRMS(ESI+) m/z Calculated for C<sub>8</sub>H<sub>15</sub>BrNO<sub>2</sub> [M+H]+: 236.0286, found:236.0286

**IR (thin film) v** max (cm<sup>-1</sup>): 2937, 1659, 1415, 1385, 1177, 993, 889.

To the solution of dimethyl methylphosphonate (7.45 g, 60 mmol) in dry THF (150 mL) at -78°C was added LDA (60 mmol) under Ar. The reaction was stirred at -78°C for 30 min. Then 5-bromo-N-methoxy-N-methylhex-5-enamide (7.05 g, 30 mmol) was added to the above solution. The mixture was stirred at -78°C for another 2 h and quenched with saturated NH<sub>4</sub>Cl (30 mL). The organic layer was separated and aqueous phase was extracted with EA and dried over Na<sub>2</sub>SO<sub>4</sub>. The combined organic layers were evaporated and the residue was purified via column chromatography to give dimethyl (6-bromo-2-oxohept-6-en-1-yl)phosphonate.

16

Physical state: colorless oil

 $\mathbf{Rf} = 0.3$  (PE/EtOAc = 2:1; anisaldehyde) 6.95 g, 78% yield.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 5.58 (d, *J* = 1.5 Hz, 1H), 5.42 (d, *J* = 1.6 Hz, 1H), 3.79 (s, 3H), 3.77 (s, 3H), 3.11 (s, 1H), 3.05 (s, 1H), 2.64 (t, *J* = 7.1 Hz, 2H), 2.44 (td, *J* = 7.2, 1.1 Hz, 2H), 1.85 (p, *J* = 7.1 Hz, 2H).

<sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>) δ 201.24, 201.17, 133.49, 117.42, 53.11, 53.04, 42.23, 42.03, 40.76, 40.12, 21.45.

HRMS(ESI<sup>+</sup>) m/z Calculated for C<sub>9</sub>H<sub>17</sub>BrO<sub>4</sub>P [M+H]<sup>+</sup>: 299.0048, found:299.0049 IR (thin film) v <sub>max</sub> (cm<sup>-1</sup>): 2939, 1712, 1250, 1022, 885, 808.

To the solution of the phosphonate (594 mg, 2.0 mmol) in the 10 mL dry THF was added NaH (96 mg, 2.4 mmol) under Ar at rt. The reaction was stirred at rt for 30 min. Then aldehyde (1.2 eq.) was added. The mixture was stirred at 30  $^{\circ}$ C for another 24 h and quenched with saturated NH<sub>4</sub>Cl (10 mL). The organic layer was separated and water layer was extracted with EA and dried over Na<sub>2</sub>SO<sub>4</sub>. The combined organic layers were evaporated and the residue was purified via column chromatography to give desired product (377 mg, 82%)



Physical state: colorless oil Rf = 0.3 (PE/EtOAc = 2:1; anisaldehyde) 377 mg, 82% yield.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 6.89 (dt, *J* = 15.9, 6.4 Hz, 1H), 6.09 (dt, *J* = 15.9, 1.7 Hz, 1H), 5.58 (d, *J* = 1.4 Hz, 1H), 5.43 (d, *J* = 1.6 Hz, 1H), 2.56 (t, *J* = 7.3 Hz, 2H), 2.47 (td, *J* = 7.2, 1.2 Hz, 2H), 2.29 - 2.18 (m, 2H), 1.89 (p, *J* = 7.2 Hz, 2H), 1.08 (t, *J* = 7.4 Hz, 3H).
<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 199.98, 148.93, 133.83, 129.33, 117.27, 40.53, 38.06, 25.54, 22.16, 12.25.

**HRMS(ESI**<sup>+</sup>) m/z Calculated for  $C_{10}H_{16}BrO [M+H]^+$ : 231.0385, found:231.0389 **IR (thin film) v** max (cm<sup>-1</sup>): 2925, 1461, 1250, 835, 774.



Compound **18** was synthesized according to known reports.<sup>[6]</sup> To the solution of the compound **18** (176 mg, 0.5 mmol) in dry THF (5 mL) was added 9-BBN (1.2 mL, 0.6 mmol, 0.5 M) under Ar at rt. The reaction was stirred at 40 °C for 4 h. Then Pd(dppf)<sub>2</sub>Cl<sub>2</sub> (14.7 mg, 5 mol%), K<sub>2</sub>CO<sub>3</sub> (109 mg, 0.8 mmol), AsPh<sub>3</sub>(12.2 mg, 10 mol%) was added sequentially to solution of compound **17** (140.8 mg, 0.4 mmol) in 5 mL dry THF under Ar. Finally, the presynthesized boron reagent and water (0.1 mL) was added to the above solution. The reaction was stirred at 60 °C for 12 h. The reaction was quenched with water and extracted with EA. The organic layer was dried over Na<sub>2</sub>SO<sub>4</sub> and filtered and concentrated. The residue was purified via column chromatography to give desired product.



2u

**Physical state:** white solid, m.p 193.4 - 194.9 °C

**Rf** = 0.4 (PE/EtOAc = 5:1; UV) 81.2 mg, 50% yield.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 7.24 (s, 1H), 6.89 – 6.75 (m, 3H), 6.06 (dt, *J* = 15.9, 1.7 Hz, 1H), 4.74 (s, 1H), 4.73 (s, 1H), 3.70 (t, *J* = 8.5 Hz, 1H), 2.90 – 2.75 (m, 2H), 2.52 (td, *J* = 7.4, 3.3 Hz, 4H), 2.38 – 2.15 (m, 4H), 2.12 – 1.98 (m, 4H), 1.96 – 1.89 (m, 1H), 1.85 (ddt, *J* = 11.4, 5.8, 2.8 Hz, 1H), 1.78 – 1.62 (m, 4H), 1.60 – 1.38 (m, 6H), 1.37 – 1.24 (m, 3H), 1.22 – 1.09 (m, 1H), 1.05 (t, *J* = 7.4 Hz, 3H), 0.75 (s, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  200.72, 172.49, 148.66, 148.45, 148.42, 138.22, 137.90, 129.45, 126.37, 121.50, 118.58, 109.85, 81.87, 50.09, 44.15, 43.22, 39.39, 38.50, 36.69, 35.44, 35.33, 34.27, 30.58, 29.54, 27.10, 27.06, 26.17, 25.53, 24.66, 23.14, 22.07, 12.28, 11.06. HRMS(ESI<sup>+</sup>) m/z Calculated for C<sub>33</sub>H<sub>45</sub>O<sub>4</sub>[M+H]<sup>+</sup>: 505.3312, found: 505.3319 IR (thin film) v max (cm<sup>-1</sup>): 2927, 2868, 1755, 1133, 1055.



Compound **19** was synthesized according to the known procedure.<sup>[7]</sup> To the solution of the compound **19** (335 mg, 0.5 mmol) in the 5 mL dry THF was added 9-BBN (1.2 mL, 0.6 mmol, 0.5 M) under Ar at rt. The reaction was stirred at 40 °C for 4 h. Then Pd(dppf)<sub>2</sub>Cl<sub>2</sub> (14.7 mg, 5%), NaOH (32 mg, 0.8 mmol), AsPh<sub>3</sub>(12.2 mg, 10%) was added sequentially to the solution of compound **17** (140.8 mg, 0.4 mmol) in 5 mL dry THF under Ar. Finally, the pre-synthesized boron reagent and water (0.1 mL) was added to above solution. The reaction was stirred at 60 °C for 12 h. The reaction was quenched with water and extracted with EA. The organic layer was dried over Na<sub>2</sub>SO<sub>4</sub> and filtered and concentrated. The residue was purified via column chromatography to give desired product.



2v

Physical state: white solid, m.p. 182.2 – 182.9 °C

**Rf** = 0.5 (PE/EtOAc = 5:1; UV) 170.9 mg, 52% yield.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  6.88 (dt, J = 15.9, 6.4 Hz, 1H), 6.10 (dt, J = 15.8, 1.7 Hz, 1H), 4.74 (s, 2H), 3.66 (d, J = 9.7 Hz, 1H), 3.30 – 3.09 (m, 2H), 2.54 (ddd, J = 8.0, 6.9, 1.4 Hz, 2H), 2.31 – 2.19 (m, 2H), 2.17 (d, J = 13.1 Hz, 1H), 2.01 (t, J = 7.4 Hz, 2H), 1.96 – 1.58 (m, 12H), 1.55 (s, 6H), 1.55 – 1.41 (m, 4H), 1.44 – 1.25 (m, 6H), 1.09 (t, J = 7.4 Hz, 3H), 1.02 (s,

3H), 0.93 (s, 3H), 0.89 (d, J = 1.3 Hz, 21H), 0.83 (s, 3H), 0.79 (d, J = 6.5 Hz, 3H), 0.73 (s, 3H), 0.68 (d, J = 10.6 Hz, 1H), 0.03 (s, 12H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  200.64, 148.48, 148.24, 129.51, 111.08, 79.46, 60.34, 55.35, 50.19, 48.13, 47.52, 44.95, 42.86, 41.02, 39.44, 39.38, 38.73, 37.05, 36.96, 35.99, 35.10, 34.44, 34.38, 33.15, 29.56, 28.42, 27.83, 27.30, 26.93, 25.98, 25.94, 25.56, 22.50, 22.16, 20.99, 19.97, 18.50, 18.33, 18.14, 16.14, 15.91, 15.89, 14.65, 12.33, 0.01, -3.76, -4.90, -5.44. HRMS(ESI<sup>+</sup>) m/z Calculated for C<sub>52</sub>H<sub>95</sub>O<sub>3</sub>Si<sub>2</sub>[M+H]<sup>+</sup>: 823.6814, found: 823.6819 IR (thin film) v <sub>max</sub> (cm<sup>-1</sup>): 2918, 2849, 2360, 1630, 1020.

3.2. General procedures for the radical cascade reaction



Fe(acac)<sub>3</sub> (0.2 eq.) was added to the solution of  $\alpha$ ,  $\beta$ -unsaturated compound (0.1 mmol) in 1.5 mL *n*-PrOH at 20 °C under Ar atmosphere. Then PhSiH<sub>2</sub>(O*i*-Pr) (2.5 eq.) and B(OMe)<sub>3</sub> (2.0 eq) was added to the above solution and the reaction was stirred at 20 °C until the starting material was consumed. Then, the reaction mixture was direct purified by neutral alumina column chromatography. After that 2,6-lutidine (6 eq) was added to the received cyclopropanols in dry DCM (5 mL) and the solution was stirred at 0 °C for 30 min, then slow addition of TBSOTf (3 eq.). The reaction mixture was stirred at 0 °C for another 1h. Then, the reaction was quenched with saturated NaHCO<sub>3</sub> (5 mL) and extracted with EA, the organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>, filtrated and concentrated under reduced pressure. The crude product was purified on SiO<sub>2</sub>.<sup>[8]</sup>



**3**a

**Physical state:** colorless oil **Rf** = 0.9 (PE; anisaldehyde) 28.8 mg, 93%

<sup>1</sup>**H NMR** (400 MHz, Acetone- $d_6$ )  $\delta$  1.94 – 1.80 (m, 2H), 1.52 – 1.45 (m, 1H), 1.23 – 1.18 (m, 1H), 1.17 (s, 3H), 1.12 – 1.00 (m, 2H), 0.99 (s, 9H), 0.92 (d, J = 1.6 Hz, 1H), 0.89 (s, 9H), 0.86 (s, 3H), 0.24 (d, J = 7.4 Hz, 1H), 0.22 (s, 3H), 0.11 (s, 3H).

<sup>13</sup>C NMR (100 MHz, Acetone-*d*<sub>6</sub>) δ 60.50, 36.98, 35.59, 34.02, 33.60, 30.53, 30.10, 29.42, 28.10, 25.39, 18.56, 17.52, -3.73, -3.81.

HRMS(APCI-TOF) m/z Calculated for C<sub>19</sub>H<sub>39</sub>OSi[M+H]<sup>+</sup>: 311.2765, found: 311.2761. IR (thin film) v <sub>max</sub> (cm<sup>-1</sup>): 2954, 2922, 2360, 2337,1462.



# 3b

Physical state: colorless oil

 $\mathbf{Rf} = 0.9$  (PE; anisaldehyde) 20.6 mg ,73%

<sup>1</sup>**H NMR** (400 MHz, Acetone- $d_6$ )  $\delta$  1.94 – 1.82 (m, 2H), 1.50 – 1.40 (m, 2H), 1.32 (dd, J = 14.4, 7.0 Hz, 1H), 1.23 – 1.14 (m, 1H), 1.14 (s, 3H), 1.03 (ddd, J = 15.9, 8.6, 3.1 Hz, 2H), 0.96 (t, J = 7.4 Hz, 3H), 0.87 (s, 9H), 0.86 (s, 3H), 0.47 (d, J = 6.1 Hz, 1H), 0.40 – 0.34 (m, 1H), 0.17 (s, 3H), 0.11 (s, 3H).

<sup>13</sup>C NMR (100 MHz, Acetone-*d*<sub>6</sub>) δ 60.34, 38.04, 36.17, 33.06, 31.06, 28.05, 27.73, 25.25, 25.22, 21.61, 18.49, 17.60, 13.49, -3.87, -3.97.

HRMS(APCI-TOF) m/z Calculated for C<sub>17</sub>H<sub>35</sub>OSi[M+H]<sup>+</sup>: 283.2452, found: 283.2457. IR (thin film) v <sub>max</sub> (cm<sup>-1</sup>): 2925, 2853, 1462, 1250, 1200, 833.



3c

Physical state: colorless oil

Rf = 0.9 (PE; anisaldehyde) 25.5 mg, 86%

<sup>1</sup>H NMR (400 MHz, Acetone-*d*<sub>6</sub>) δ 1.94 – 1.82 (m, 2H), 1.52 – 1.43 (m, 1H), 1.34 (ddd, *J* = 13.4, 9.7, 6.7 Hz, 1H), 1.22 – 1.16 (m, 1H), 1.15 (s, 3H), 1.10 – 1.04 (m, 2H), 0.98 (t, *J* = 6.5 Hz, 6H), 0.87 (s, 9H), 0.86 (s, 3H), 0.52 (d, *J* = 6.0 Hz, 1H), 0.18 (s, 3H), 0.14 (dd, *J* = 9.8, 6.1 Hz, 1H), 0.11 (s, 3H).
<sup>13</sup>C NMR (100 MHz, Acetone-*d*<sub>6</sub>) δ 60.29, 37.76, 36.14, 34.16, 33.26, 30.97, 28.19, 25.21, 21.99, 21.91, 18.46, 17.54, -3.84, -4.04.

HRMS(APCI-TOF) m/z Calculated for C<sub>18</sub>H<sub>37</sub>OSi[M+H]<sup>+</sup>: 297.2608, found: 297.2605. IR (thin film) v <sub>max</sub> (cm<sup>-1</sup>): 2954, 2928, 2361, 1464, 1253, 1200.



Physical state: colorless oil

 $\mathbf{Rf} = 0.9$  (PE; anisaldehyde) 30.7 mg, 84%

<sup>1</sup>**H NMR** (400 MHz, Acetone-*d*<sub>6</sub>) δ 1.94 – 1.82 (m, 2H), 1.51 – 1.44 (m, 1H), 1.39 – 1.28 (m, 14H), 1.22 – 1.16 (m, 1H), 1.14 (s, 3H), 1.10 – 0.97 (m, 3H), 0.93 – 0.89 (m, 2H), 0.88 (s, 9H), 0.86 (s, 3H), 0.48 (d, *J* = 6.1 Hz, 1H), 0.41 – 0.39 (m, 1H), 0.18 (s, 3H), 0.12 (s, 3H).

<sup>13</sup>C NMR (100 MHz, Acetone- $d_6$ )  $\delta$  60.25, 38.01, 36.21, 33.04, 31.77, 31.10, 29.64, 29.55, 29.24, 28.81, 28.47, 28.02, 25.94, 25.28, 22.44, 18.49, 17.61, 13.45, -3.86, -3.93. HRMS(APCI-TOF) m/z Calculated for C<sub>23</sub>H<sub>47</sub>OSi[M+H]<sup>+</sup>: 367.3391, found: 367.3390. IR (thin film) v max (cm<sup>-1</sup>): 2925, 2853, 1462, 1250, 1200, 859.

3e

Physical state: colorless oil

 $\mathbf{Rf} = 0.9$  (PE; anisaldehyde) 33.8 mg, 82%

<sup>1</sup>**H NMR** (400 MHz, Acetone- $d_6$ )  $\delta$  3.72 – 3.67 (m, 2H), 1.97 – 1.81 (m, 2H), 1.76 – 1.60 (m, 1H), 1.59 – 1.40 (m, 3H), 1.15 (s, 3H), 1.11 – 0.99 (m, 2H), 0.90 (s, 9H), 0.88 (d, J = 3.4 Hz, 12H), 0.62 – 0.47 (m, 2H), 0.18 (s, 3H), 0.12 (s, 3H), 0.06 (d, J = 2.1 Hz, 6H).

<sup>13</sup>C NMR (100 MHz, Acetone-*d*<sub>6</sub>) δ 62.94, 59.97, 37.90, 36.15, 32.89, 32.11, 31.03, 27.99, 25.42, 25.29, 22.35, 18.46, 17.92, 17.60, -3.89, -3.94, -5.94, -5.97.

HRMS(APCI-TOF) m/z Calculated for C<sub>23</sub>H<sub>49</sub>O<sub>2</sub>Si<sub>2</sub> [M+H]<sup>+</sup>: 413.3266, found: 413.3269 IR (thin film) v <sub>max</sub> (cm<sup>-1</sup>): 2954, 2929, 1462, 1252, 1097, 834.



3f

Physical state: colorless oil

 $\mathbf{Rf} = 0.8$  (PE; anisaldehyde) 15 mg, 44%

<sup>1</sup>**H NMR** (400 MHz, Acetone- $d_6$ )  $\delta$  3.62 (s, 3H), 2.39 (td, J = 7.5, 5.4 Hz, 2H), 1.96 – 1.82 (m, 2H), 1.68 (q, J = 7.3 Hz, 2H), 1.56 – 1.42 (m, 1H), 1.27 – 1.16 (m, 1H), 1.15 (s, 3H), 1.13 – 0.95 (m, 2H), 0.89 (s, 9H), 0.86 (s, 3H), 0.56 (d, J = 6.0 Hz, 1H), 0.53 – 0.46 (m, 1H), 0.19 (s, 3H), 0.14 (s, 3H).

<sup>13</sup>C NMR (100 MHz, Acetone-*d*<sub>6</sub>) δ 173.25, 60.22, 50.49, 37.98, 36.10, 33.55, 32.79, 30.98, 27.89, 25.25, 24.96, 24.06, 18.41, 17.58, -3.88, -4.00.

**HRMS(APCI-TOF)** m/z Calculated for  $C_{19}H_{37}O_3Si[M+H]^+:341.2506$ , found: 341.2509 **IR (thin film)** v max (cm<sup>-1</sup>): 2952, 2930, 2355, 1744, 1251, 836.



3g

Physical state: colorless oil

Rf = 0.9 (PE; anisaldehyde) 25.3 mg, 1.5:1 dr, 68%

<sup>1</sup>**H** NMR (400 MHz, Acetone- $d_6$ )  $\delta$  7.45 – 7.32 (m, 0.73H), 7.32 – 7.21 (m, 3.25H), 7.19 – 7.08 (m, 1H), 2.61 (dq, J = 9.8, 7.2 Hz, 0.43H), 2.46 (dq, J = 9.5, 6.9 Hz, 0.63H), 2.03 – 1.96 (m, 0.71H), 1.95 – 1.80 (m, 1.47H), 1.55 – 1.42 (m, 1H), 1.35 (d, J = 7.2 Hz, 1.19H), 1.32 (d, J = 6.9 Hz, 1.85H), 1.30 – 1.22 (m, 1H), 1.21 (s, 1.26H), 1.20 – 1.12 (m, 1H), 1.12 – 1.03 (m, 1H), 1.01 (s, 1.84H), 0.97 (dd, J = 5.5, 3.4 Hz, 1H), 0.95 (s, 6.89H), 0.93 – 0.87 (m, 1H), 0.84 (s, 3.53H), 0.75 – 0.57 (m, 2H), 0.34 (s, 1.81H), 0.21 (d, J = 9.4 Hz, 3.57H), 0.17 (d, J = 9.4 Hz, 2.36H).

<sup>13</sup>C NMR (100 MHz, Acetone-*d*<sub>6</sub>) δ 147.74, 147.56, 128.03, 127.83, 127.14, 126.92, 125.63, 125.30, 60.97, 60.83, 40.15, 37.83, 37.64, 37.56, 36.17, 36.07, 33.91, 33.80, 33.14, 32.92, 31.02, 30.97, 28.38, 28.26, 27.60, 25.29, 25.27, 21.03, 20.76, 18.42, 17.64, 17.57, -3.92.

**HRMS(APCI-TOF)** m/z Calculated for C<sub>24</sub>H<sub>41</sub>OSi[M+H]<sup>+</sup>: 373.2927, found: 373.2931. **IR (thin film)** v <sub>max</sub> (cm<sup>-1</sup>): 2954, 2928, 1250, 1199, 832, 773.





### Physical state: colorless oil

 $\mathbf{Rf} = 0.9$  (PE; anisaldehyde) 18.6 mg, 52%

<sup>1</sup>**H NMR** (400 MHz, Acetone-*d*<sub>6</sub>) δ 7.17 – 7.05 (m, 4H), 7.03 – 6.97 (m, 1H), 2.64 – 2.48 (m, 2H), 1.85 – 1.65 (m, 2H), 1.64 – 1.48 (m, 2H), 1.42 – 1.20 (m, 1H), 1.01 (s, 3H), 0.98 – 0.79 (m, 3H), 0.76 (s, 9H), 0.72 (s, 3H), 0.44 (d, *J* = 6.1 Hz, 1H), 0.39 – 0.29 (m, 1H), 0.06 (s, 3H), -0.00 (s, 3H).

<sup>13</sup>C NMR (100 MHz, Acetone-*d*<sub>6</sub>) δ 142.91, 128.28, 128.15, 125.47, 60.30, 38.14, 36.18, 35.86, 32.99, 31.07, 30.97, 28.85, 28.05, 25.53, 25.33, 18.47, 17.63, -3.87.

HRMS(APCI-TOF) m/z Calculated for C<sub>23</sub>H<sub>39</sub>O Si[M+H]<sup>+</sup>: 359.2765, found: 359.2763. IR (thin film) v <sub>max</sub> (cm<sup>-1</sup>): 2925, 2854, 1461, 1250, 835, 774.



3i

Physical state: colorless oil

Rf = 0.8 (PE; anisaldehyde) 31.7 mg, 1.23:1 dr, 84%

<sup>1</sup>**H** NMR (400 MHz, Acetone- $d_6$ )  $\delta$  2.92 – 2.84 (m, 1H), 1.98 (d, J = 1.7 Hz, 3H), 1.94 – 1.85 (m, 3.4H), 1.79 (dt, J = 10.8, 7.7 Hz, 0.63H), 1.51 – 1.36 (m, 2H), 1.30 (d, J = 1.7 Hz, 4H), 1.26 – 1.16 (m, 1H), 1.14 (s, 3H), 1.03 (dtd, J = 20.9, 12.8, 2.7 Hz, 3H), 0.89 (d, J = 3.3 Hz, 10.47H), 0.85 (d, J = 4.6 Hz, 3H), 0.82 (s, 1.57H), 0.51 (d, J = 6.0 Hz, 0.53H), 0.44 (d, J = 6.1 Hz, 0.43H), 0.32 (dt, J = 7.0, 6.1 Hz, 1 H), 0.18 (d, J = 2.1 Hz, 3H), 0.12 (d, J = 2.1 Hz, 3H).

<sup>13</sup>C NMR (100 MHz, Acetone-*d*<sub>6</sub>) δ 206.20, 206.17, 60.29, 59.56, 53.72, 53.56, 42.72, 42.50, 42.03, 41.89, 37.85, 37.78, 36.22, 32.89, 32.82, 31.15, 31.13, 29.89, 29.85, 27.97, 27.91, 25.31, 23.75, 23.54, 23.45, 23.04, 18.45, 17.64, 16.73, 16.54, -3.86, -3.92.

HRMS(APCI-TOF) m/z Calculated for C<sub>24</sub>H<sub>46</sub>O<sub>2</sub>Si [M+H]<sup>+</sup>: 393.3819, found: 393.3813. IR (thin film) v <sub>max</sub> (cm<sup>-1</sup>): 2928, 2855, 1707, 1462, 1359, 1201, 835.



3j

Physical state: colorless oil

 $\mathbf{Rf} = 0.9$  (PE; anisaldehyde) 27 mg, 84%

<sup>1</sup>**H NMR** (400 MHz, Acetone- $d_6$ )  $\delta$  1.90 – 1.80 (m, 3H), 1.78– 1.73 (m, 1H), 1.65 – 1.56 (m, 2H), 1.51 – 1.45 (m, 3H), 1.36 – 1.14 (m, 3H), 1.14 (s, 3H), 1.07 – 0.95 (m, 3H), 0.87 (s, 9H), 0.86 (s, 3H), 0.57 (d, J = 6.0 Hz, 1H), 0.28 (dd, J = 9.5, 6.0 Hz, 1H), 0.18 (s, 3H), 0.11 (s, 3H).

<sup>13</sup>C NMR (100 MHz, Acetone-*d*<sub>6</sub>) δ 60.12, 40.41, 38.23, 36.14, 33.16, 32.43, 32.28, 31.80, 30.97, 28.23, 25.23, 25.01, 24.60, 18.50, 17.55, -3.79, -4.01.

HRMS(APCI-TOF) m/z Calculated for C<sub>20</sub>H<sub>39</sub>OSi [M+H]<sup>+</sup>: 323.2765 found: 323.2763. IR (thin film) v <sub>max</sub> (cm<sup>-1</sup>): 2952, 2929, 1360, 1251, 1201, 884.



3k

Physical state: colorless oil

Rf = 0.7 (PE; anisaldehyde) 37.2 mg, 1.9:1 dr, 87%

<sup>1</sup>**H** NMR (400 MHz, Acetone- $d_6$ )  $\delta$  4.65 (s, 1.30H), 4.63 (s, 0.69H), 4.15 (d, J = 8.3 Hz, 0.31H), 3.80 – 3.65 (m, 2H), 3.58 – 3.49 (m, 1.34H), 3.42 (d, J = 8.8 Hz, 0.28H), 3.32 (d, J = 3.0 Hz, 3H), 1.98 – 1.78 (m, 2H), 1.63 – 1.48 (m, 2H), 1.44 (d, J = 6.7 Hz, 0.43H), 1.34 (d, J = 5.7 Hz, 6H), 1.20 (s, 3H), 1.13 (d, J = 6.9 Hz, 1H), 1.07 – 1.01 (m, 1H), 0.94 (d, J = 7.3 Hz, 1H), 0.89 (d, J = 1.8 Hz, 9H), 0.72 (d, J = 6.7 Hz, 0.45H), 0.24 (s, 2.24H), 0.18 (s, 1.66H), 0.15 (d, J = 4.3 Hz, 3H).

<sup>13</sup>C NMR (100 MHz, Acetone-*d*<sub>6</sub>) δ 107.39, 96.56, 96.53, 82.44, 80.57, 72.59, 71.97, 70.72, 66.77, 59.62, 59.51, 54.25, 54.20, 36.04, 35.41, 33.69, 33.25, 32.74, 32.37, 30.97, 30.87, 30.59, 28.43, 27.21, 26.72, 26.16, 25.35, 25.30, 18.35, 17.53, -3.89.

HRMS(APCI-TOF) m/z Calculated for C<sub>23</sub>H<sub>45</sub>O<sub>5</sub>Si[M+H]<sup>+</sup>: 429.3031, found: 429.3029. IR (thin film) v <sub>max</sub> (cm<sup>-1</sup>): 2925, 1462, 1259, 1047, 799.



31

Physical state: colorless oil

**Rf** = 0.9 (PE; anisaldehyde) 27.9 mg, 83%

<sup>1</sup>**H** NMR (400 MHz, Acetone- $d_6$ )  $\delta$  1.89 (ddd, J = 7.0, 5.8, 3.9 Hz, 3H), 1.80 – 1.60 (m, 4H), 1.49 (ddtd, J = 13.2, 7.1, 5.9, 2.8 Hz, 1H), 1.23 – 1.17 (m, 3H), 1.16 (s, 3H), 1.12 – 0.96 (m,

6H), 0.90 (d, *J* = 2.8 Hz, 1H), 0.89 (s, 9H), 0.86 (s, 1H), 0.54 (d, *J* = 6.0 Hz, 1H), 0.18 (s, 3H), 0.13 (s, 3H).

<sup>13</sup>C NMR (100 MHz, Acetone-*d*<sub>6</sub>) δ 60.05, 38.22, 37.48, 36.17, 33.35, 33.23, 32.75, 32.33, 30.97, 28.62, 28.34, 26.56, 26.41, 26.12, 25.22, 18.49, 17.58, -3.75, -4.04.

HRMS(APCI-TOF) m/z Calculated for  $C_{21}H_{41}OSi [M+H]^+$ : 337.2921, found: 337.2928.

**IR (thin film) v** max (cm<sup>-1</sup>): 2924, 2852, 1462, 1250, 1065, 833.



3m

Physical state: colorless oil

 $\mathbf{Rf} = 0.8$  (PE; anisaldehyde) 25 mg, 80%

<sup>1</sup>**H NMR** (400 MHz, Acetone-*d*<sub>6</sub>) δ 3.29 (d, *J* = 12.0 Hz, 1H), 2.98 (d, *J* = 12.1 Hz, 1H), 1.58 – 1.39 (m, 1H), 1.34 (s, 3H), 1.30 (dd, *J* = 5.7, 2.1 Hz, 1H), 1.16 (s, 3H), 1.08 (s, 3H), 0.98 (t, *J* = 7.4 Hz, 3H), 0.92 (s, 12H), 0.87 (d, *J* = 6.2 Hz, 1H), 0.77 (dt, *J* = 8.3, 6.3 Hz, 1H), 0.23 (s, 3H), 0.11 (s, 3H).

<sup>13</sup>C NMR (100 MHz, Acetone-*d*<sub>6</sub>) δ 71.62, 69.84, 65.22, 36.01, 28.22, 26.35, 25.92, 25.53, 25.14, 21.88, 20.41, 18.05, 13.55, -1.90, -3.91.

HRMS(APCI-TOF) m/z Calculated for C<sub>18</sub>H<sub>37</sub>O<sub>2</sub>Si[M+H]<sup>+</sup>: 313.2557 found: 313.2557. IR (thin film) v <sub>max</sub> (cm<sup>-1</sup>): 2925, 2854, 1250, 1001, 832.



3n

Physical state: colorless oil

**Rf** = 0.9 (PE; anisaldehyde) 21.7 mg, 62%

<sup>1</sup>**H NMR** (400 MHz, Acetone- $d_6$ )  $\delta$  1.84 – 1.68 (m, 4H), 1.63 – 1.50 (m, 5H), 1.47 – 1.36 (m, 4H), 1.27 – 1.17 (m, 3H), 1.15 (s, 3H), 0.95 (m, 12H), 0.85 (s, 3H), 0.73 (d, *J* = 6.1 Hz, 1H), 0.52 (dt, *J* = 8.2, 6.1 Hz, 1H), 0.19 (s, 3H), 0.08 (s, 3H).

<sup>13</sup>C NMR (100 MHz, Acetone-*d*<sub>6</sub>) δ 68.39, 37.63, 35.73, 34.66, 33.52, 32.48, 29.78, 28.10, 27.40, 26.42, 25.84, 24.63, 24.46, 21.63, 20.84, 18.42, 13.74, -1.55, -3.92.

HRMS(APCI-TOF) m/z Calculated for C<sub>22</sub>H<sub>43</sub>OSi[M+H]<sup>+</sup>: 351.3078, found: 351.3074.

**IR (thin film) v** max (cm<sup>-1</sup>): 2925, 2855, 1461, 1250, 1197, 875.



30

Physical state: colorless oil

**Rf** = 0.9 (PE; anisaldehyde) 20.9 mg, 65%

<sup>1</sup>**H NMR** (400 MHz, Acetone- $d_6$ )  $\delta$  2.01 – 1.93 (m, 1H), 1.90 – 1.80 (m, 1H), 1.65 – 1.39 (m, 12H), 1.18 – 1.02 (m, 3H), 1.03 – 0.94 (m, 4H), 0.89 (s, 9H), 0.67 (d, J = 6.1 Hz, 1H), 0.40 (dt, J = 7.5, 6.2 Hz, 1H), 0.18 (s, 3H), 0.13 (s, 3H).

<sup>13</sup>C NMR (100 MHz, Acetone-*d*<sub>6</sub>) δ60.22, 39.78, 36.54, 33.50, 31.59, 26.29, 25.24, 22.06, 21.96, 17.73, 17.60, 13.70, -3.81, -4.04.

HRMS(APCI-TOF) m/z Calculated for C<sub>20</sub>H<sub>39</sub>OSi[M+H]<sup>+</sup>: 323.2765, found:323.2769 IR (thin film) v <sub>max</sub> (cm<sup>-1</sup>): 2928, 2855, 1250, 1197, 879.



**3**p

Physical state: colorless oil

**Rf** = 0.9 (PE; anisaldehyde) 19.7 mg, 70%

<sup>1</sup>H NMR (400 MHz, Acetone-*d*<sub>6</sub>) δ 1.98 – 1.74 (m, 2H), 1.58 (ddq, *J* = 16.7, 9.7, 3.5 Hz, 1H), 1.49 – 1.38 (m, 1H), 1.19 (dt, *J* = 13.7, 3.7 Hz, 1H), 1.12 (s, 3H), 1.11 (s, 3H), 1.10 (s, 3H), 1.08 (d, *J* = 3.7 Hz, 1H), 0.97 (s, 3H), 0.89 (s, 9H), 0.46 (s, 1H), 0.19 (s, 3H), 0.13 (s, 3H).;
<sup>13</sup>C NMR (100 MHz, Acetone-*d*<sub>6</sub>) δ 61.46, 39.22, 35.43, 31.98, 28.41, 25.36, 24.13, 24.05, 19.45, 17.74, 17.58, -3.87.

HRMS(APCI-TOF) m/z Calculated for C<sub>17</sub>H<sub>35</sub>OSi[M+H]<sup>+</sup>: 283.2452, found: 283.2459. IR (thin film) v <sub>max</sub> (cm<sup>-1</sup>): 2952, 2923, 2364, 1457, 1376.



# 3q

Physical state: colorless oil

Rf = 0.9 (PE; anisaldehyde) 21.1 mg, 1.5:1 dr, 68%

<sup>1</sup>**H** NMR (400 MHz, Acetone- $d_6$ )  $\delta$  1.97 – 1.86 (m, 1.8H), 1.84 – 1.71 (m, 1.2H), 1.61 – 1.30 (m, 4H), 1.18 – 1.12 (m, 4H), 1.07 (s, 1.8H), 0.95 (s, 3H), 0.94 – 0.91 (m, 2H), 0.88 (d, J = 1.6 Hz, 9H), 0.86 (d, J = 6.9 Hz, 1H), 0.79 (d, J = 6.9 Hz, 2H), 0.76 (s, 1.2H), 0.71 (s, 0.4H), 0.45 (s, 0.6H), 0.18 (s, 1.8H), 0.14 (s, 1.16H), 0.12 (d, J = 1.8 Hz, 3H).

<sup>13</sup>C NMR (100 MHz, Acetone-*d*<sub>6</sub>) δ 61.57, 38.14, 37.46, 36.27, 36.12, 34.77, 34.63, 34.40, 31.32, 28.49, 25.40, 25.30, 25.22, 25.17, 25.15, 24.34, 24.10, 23.73, 21.07, 19.82, 19.32, 19.04, 18.17, 17.81, 17.79, 17.68, 17.64, 16.98, 16.75, 16.02, -3.78, -3.83, -3.86.

HRMS(APCI-TOF) m/z Calculated for C<sub>19</sub>H<sub>39</sub>OSi[M+H]<sup>+</sup>: 311.2765, found: 311.2765. IR (thin film) v <sub>max</sub> (cm<sup>-1</sup>): 2928, 2361, 1464, 1253, 884, 835.



3r

Physical state: colorless oil

**Rf** = 0.9 (PE; anisaldehyde) 26.4 mg, 82%

<sup>1</sup>**H** NMR (400 MHz, Acetone- $d_6$ )  $\delta$  1.99 – 1.89 (m, 1H), 1.81 (ddd, J = 15.2, 13.3, 5.1 Hz, 1H), 1.68 – 1.42 (m, 10H), 1.36 – 1.17 (m, 3H), 1.12 (s, 3H), 1.04 (td, J = 13.9, 3.4 Hz, 1H), 0.96 (s, 3H), 0.89 (s, 9H), 0.42 (s, 1H), 0.21 (s, 3H), 0.12 (s, 3H).

<sup>13</sup>C NMR (100 MHz, Acetone-*d*<sub>6</sub>) δ 61.90, 40.48, 36.21, 34.93, 31.99, 30.69, 28.80, 28.29, 26.37, 26.20, 25.47, 25.28, 19.59, 17.64, -3.75, -3.93.

HRMS(APCI-TOF) m/z Calculated for C<sub>20</sub>H<sub>39</sub>OSi [M+H]<sup>+</sup>: 323.2765, found: 323.2757. IR (thin film) v <sub>max</sub> (cm<sup>-1</sup>): 2925, 2854, 1250, 1001, 832.



**3s** 

Physical state: colorless oil

**Rf** = 0.9 (PE; anisaldehyde) 19.8 mg, 67%

<sup>1</sup>H NMR (400 MHz, Acetone-*d*<sub>6</sub>) δ 2.13 (ddd, *J* = 12.2, 11.2, 8.7 Hz, 1H), 1.89 (ddd, *J* = 12.2, 8.2, 0.8 Hz, 1H), 1.25 (ddt, *J* = 13.3, 8.7, 1.1 Hz, 2H), 1.12 (s, 3H), 1.10 (d, *J* = 4.6 Hz, 1H), 1.01 (s, 9H), 0.91 (s, 9H), 0.90 (s, 3H), 0.44 (d, *J* = 4.6 Hz, 1H), 0.22 (s, 3H), 0.15 (s, 3H).;
<sup>13</sup>C NMR (100 MHz, Acetone-*d*<sub>6</sub>) δ 68.88, 38.38, 36.71, 35.84, 34.45, 34.09, 29.43, 28.16, 25.58, 25.54, 17.73, -2.90, -3.83.

HRMS(APCI-TOF) m/z Calculated for C<sub>18</sub>H<sub>37</sub>OSi[M+H]<sup>+</sup>: 297.2608 found:297.2601 IR (thin film) v <sub>max</sub> (cm<sup>-1</sup>): 2956, 2922, 2360, 2327, 1460.



3t

Physical state: colorless oil

**Rf** = 0.9 (PE; anisaldehyde) 17.2 mg, 46%

<sup>1</sup>**H** NMR (400 MHz, Acetone-*d*<sub>6</sub>) δ 2.27 – 2.08 (m, 1H), 1.95 – 1.89 (m, 3H), 1.87 (ddd, *J* = 12.2, 8.3, 0.8 Hz, 1H), 1.80 – 1.73 (m, 3H), 1.69 (s, 5H), 1.63 (d, *J* = 12.0 Hz, 3H), 1.27 – 1.19 (m, 1H), 1.16 (dd, *J* = 4.7, 1.0 Hz, 1H), 1.14 – 1.06 (s, 3H), 0.99 – 0.94 (m, 1H), 0.92 (s, 9H), 0.90 (d, *J* = 3.7 Hz, 1H), 0.87 (s, 3H), 0.22 (d, *J* = 3.0 Hz, 4H), 0.14 (s, 3H).

<sup>13</sup>C NMR (100 MHz, Acetone-*d*<sub>6</sub>) δ 68.76, 42.20, 38.33, 37.03, 35.86, 35.26, 35.05, 34.63, 31.83, 28.87, 28.19, 25.70, 25.61, 17.81, -2.84, -3.81.

HRMS(APCI-TOF) m/z Calculated for  $C_{24}H_{43}OSi [M+H]^+: 375.3078$  found:.375.3083 IR (thin film) v max (cm<sup>-1</sup>): 2955, 2354, 1545, 1118.



3u

**Physical state:** white solid, m.p 284.2 - 284.9 °C

Rf = 0.7 (PE; anisaldehyde) 29.1 mg ,1.5:1 dr, 47%

<sup>1</sup>**H** NMR (400 MHz, Acetone- $d_6$ )  $\delta$  7.30 (d, J = 8.5 Hz, 1H), 6.98 – 6.82 (m, 1H), 6.78 (d, J = 2.4 Hz, 1H), 3.74 (dd, J = 8.7, 7.7 Hz, 1H), 2.85 (dd, J = 9.4, 6.0 Hz, 2H), 2.64 – 2.50 (m,

2H), 2.35 (dt, J = 13.3, 3.7 Hz, 1H), 2.22 (td, J = 10.9, 10.4, 4.0 Hz, 1H), 2.03 – 1.94 (m, 1H), 1.94 – 1.86 (m, 3H), 1.77 – 1.64 (m, 3H), 1.56 – 1.43 (m, 6H), 1.42 – 1.29 (m, 4H), 1.28 – 1.17 (m, 2H), 1.10 – 1.01 (m, 1H), 0.97 (t, J = 7.4 Hz, 3H), 0.92 (s, 9H), 0.88 (d, J = 4.1 Hz, 6H), 0.84 (s, 1H), 0.79 (s, 3H), 0.55 (d, J = 6.1 Hz, 0.35H), 0.51 (d, J = 6.1 Hz, 0.53H), 0.45 (q, J = 6.7 Hz, 0.37H), 0.39 (dt, J = 8.0, 5.9 Hz, 0.58H), 0.08 (s, 3H), 0.07 (s, 3H).

<sup>13</sup>C NMR (100 MHz, Acetone-*d*<sub>6</sub>) δ 171.67, 171.60, 148.89, 137.89, 137.60, 126.16, 121.56, 118.78, 81.67, 60.48, 60.11, 49.50, 44.18, 44.11, 43.45, 41.06, 38.72, 37.06, 36.91, 36.74, 35.41, 35.06, 33.88, 33.83, 33.53, 32.87, 31.59, 31.49, 30.83, 27.48, 27.43, 26.94, 26.90, 26.18, 25.77, 25.75, 25.37, 25.28, 25.26, 24.33, 23.49, 23.20, 23.00, 22.11, 21.70, 18.14, 18.12, 17.77, 17.60, 13.70, 13.52, 10.93.

**HRMS(ESI**<sup>+</sup>) m/z Calculated for  $C_{39}H_{61}O_4Si [M+H]^+: 621.4334$ , found:621.4337 **IR (thin film) v**<sub>max</sub> (cm<sup>-1</sup>): 2929, 1463, 1250, 1166, 1110, 833.



3v

**Physical state:** white solid, m.p. 202.6 - 203.4 °C

**Rf** = 0.9 (PE; anisaldehyde) 58 mg, 2.3:1 dr, 62%

<sup>1</sup>**H** NMR (400 MHz, Acetone- $d_6$ )  $\delta$  3.76 – 3.67 (m, 1H), 3.21 (td, J = 7.6, 3.8 Hz, 2H), 1.92 – 1.78 (m, 3H), 1.74 – 1.17 (m, 27H), 1.16 – 0.99 (m, 10H), 0.99 – 0.89 (m, 9H), 0.88 – 0.78 (m, 34H), 0.69 (s, 3H), 0.48 (d, J = 6.1 Hz, 0.28H), 0.42 (d, J = 6.1 Hz, 0.65H), 0.38 – 0.24 (m, 0.94H), 0.12 (s, 2.59H), 0.06 (s, 2.45H), 0.00 (s, 10.53H), -0.08 (s, 2.59H).

<sup>13</sup>C NMR (100 MHz, Acetone-*d*<sub>6</sub>) δ 79.32, 60.14, 55.15, 50.34, 48.07, 47.92, 46.61, 42.87, 41.42, 41.02, 39.74, 39.24, 38.48, 37.15, 36.90, 34.61, 34.33, 33.55, 31.97, 31.57, 30.50, 28.00, 27.71, 27.27, 26.94, 25.46, 25.28, 23.39, 22.79, 21.69, 20.95, 18.32, 18.00, 17.79, 17.62, 15.75, 15.59, 15.50, 14.48, 13.68, -0.90, -4.45, -5.59, -6.13.

HRMS(APCI-TOF) m/z Calculated for C<sub>58</sub>H<sub>111</sub>O<sub>3</sub>Si<sub>3</sub> [M+H]<sup>+</sup>: 939.7836, found: 939.7833. IR (thin film) v <sub>max</sub> (cm<sup>-1</sup>): 2928, 1462, 1252, 1097, 834.

### 4. Synthesis of compound 5 was confirmed by single-crystal X-ray diffraction analysis



Compound **3e** (0.1 mmol, 41.2 mg) dissolved in 5 mL of methanol was stirred at 0  $^{\circ}$ C for 30 min. Then Bu<sub>4</sub>NHSO<sub>4</sub> (3.5 mg. 0.01 mmol) and p-TsOH (1 mg, 0.006 mmol) was added to above the mixture which was stirred at 0  $^{\circ}$ C for 1 h. The reaction was quenched with water (5 mL) and extracted with EA. the organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>, filtrated and concentrated under reduced pressure. The residue was purified via column chromatography to give desired product **4** (14.4 mg, 35%)

To a solution of compound **4** (14.4 mg, 0.05 mmol) in DCM (5 mL) at rt was added DMAP (0.1 eq) and 4-Nitrobenzoyl chloride (9 mg, 0.05 mmol). the reaction mixture was stirred at rt for 12 h before being concentrated in vacuo to give the crude reaction mixture. The residue was purified via column chromatography to give desired product **4**.

Physical state: yellow solid, m.p.106.6 - 107.4 °C

**Rf** = 0.5 (PE: EA = 5:1; UV) 18.5 mg, 83%

<sup>1</sup>**H NMR** (400 MHz, Acetone-*d*<sub>6</sub>) δ 8.38 (d, *J* = 9.0 Hz, 2H), 8.30 (d, *J* = 9.0 Hz, 2H), 4.46 (qdd, *J* = 10.6, 7.0, 6.2 Hz, 2H), 2.02 – 1.82 (m, 4H), 1.59 – 1.47 (m, 1H), 1.16 (s, 3H), 1.12 – 0.98 (m, 2H), 0.88 (d, *J* = 2.8 Hz, 13H), 0.68 – 0.61 (m, 2H), 0.18 (s, 3H), 0.16 (s, 3H). <sup>13</sup>**C NMR** (100 MHz, Acetone-*d*<sub>6</sub>e) δ 166.19, 137.82, 132.46, 125.42, 67.69, 61.86, 39.57, 37.85, 34.44, 32.76, 29.67, 29.31, 27.06, 24.26, 20.20, 19.40, -2.08, -2.20. **HRMS(APCI-TOF)** m/z Calculated for C<sub>24</sub>H<sub>38</sub>NO<sub>5</sub>Si [M+H]<sup>+</sup>:448.2519, found:44.2514 **IR (thin film) v** max (cm<sup>-1</sup>): 2954, 2929, 1727, 1530, 1277, 836.



The relative configuration of the compound **3e** is confirmed by single-crystal X-ray diffraction analysis where the hydrogen coupling constant between  $H_a$  and  $H_b$  is 6.1 Hz with *trans*-configuration. Moreover, the hydrogen coupling constant of  $H_a$  and  $H_b$  for the other fused bicyclic cyclopropanols in this work is between 3.0-7.6 Hz. Wang & Lv report the coupling constant between  $H_a$  with  $H_b$  in *trans* cyclopropanols I equal to 6.3 Hz. <sup>[9a]</sup> Ollivier and co-workers reveal the coupling constant between  $H_a$  with  $H_{b'}$  in compound II is 5.8 Hz with *trans*-configuration while the coupling constant between  $H_a$  with  $H_{b'}$  is 10.4 Hz with *cis*-configuration. <sup>[9b]</sup> In above cases, the value of coupling constant in *cis*-configuration is much higher than the value in *trans*-configuration. Based on the above information, we determine the relative configurations of other fused bicyclic cyclopropanols in our work are consistent with compound **3e**.

# 5. Preliminary mechanistic studies

5.1 Synthesis of compound 3a'



Fe(acac)<sub>3</sub> (7 mg, 0.02 mmol) was added to the solution of a,  $\beta$ -unsaturated compound (19.8 mg, 0.1 mmol) in 1.5 mL *n*-PrOH at 20 °C under Ar atmosphere. Then PhSiH<sub>2</sub>(O*i*-Pr) (2.5 eq.) and B(OMe)<sub>3</sub> (2.0 eq.) was added to the above solution and the reaction was stirred at 20 °C until the starting material was consumed. Then, the reaction mixture was direct purified by neutral alumina column chromatography.

Physical state: oil,

**Rf** = 0.4 (PE: EA = 5:1; anisaldehyde) 17.6 mg, 90%

<sup>1</sup>**H NMR** (400 MHz, Acetone- $d_6$ )  $\delta$  3.88 (s, 1H), 1.92 – 1.78(m, 2H), 1.48 – 1.43 (m, 1H), 1.14 (ddddd, J = 13.4, 8.2, 6.6, 5.4, 2.9 Hz, 1H), 1.08 (s, 3H), 1.04 – 1.01 (m, 1H), 0.99 (s, 9H), 0.98 – 0.92 (m, 1H), 0.84 (s, 3H), 0.80 (d, J = 7.4 Hz, 1H), 0.26 (d, J = 7.4 Hz, 1H).

<sup>13</sup>C NMR (100 MHz, Acetone-*d*<sub>6</sub>) δ 58.64, 37.75, 35.96, 34.50, 33.46, 30.84, 30.18, 29.53, 28.66, 27.81, 18.49.

HRMS(APCI-TOF) m/z Calculated for C<sub>13</sub>H<sub>24</sub>DO[M+H]<sup>+</sup>:197.1095, found: 197.1099.

**IR (thin film) v** max (cm<sup>-1</sup>): 2925, 1705, 1461, 1365.

5.2 Deuteration study with PhSiD<sub>3</sub>



Fe(acac)<sub>3</sub> (0.5 eq.) was added to the solution of a,  $\beta$ -unsaturated compound (0.1 mmol) in 1.5 mL EtOH and 0.3 mL (CH<sub>2</sub>OH)<sub>2</sub> under Ar atmosphere. Then PhSiD<sub>3</sub> (2.5 eq.) was added to the above solution and the reaction was stirred at 60 °C for 12 h. Then, the reaction mixture was direct purified by neutral alumina column chromatography to give the desired compound (11.8 mg, 60%) (D = 97%; dr = 1.06:1 or 1:1.06)

<sup>1</sup>**H NMR** (400 MHz, Acetone- $d_6$ )  $\delta$  3.85 (s, 1H), 1.99 – 1.71 (m, 2H), 1.57 – 1.38 (m, 1H), 1.16 (ddddd, J = 13.4, 8.2, 6.6, 5.4, 2.9 Hz, 1H), 1.09 (s, 1.41H), 1.08 – 1.06 (m, 1.09H), 1.04 (dd, J = 8.2, 3.2 Hz, 1H), 1.01 (s, 9H), 0.97 (dd, J = 9.6, 3.1 Hz, 1H), 0.85 (s, 1.50H), 0.83 (t, J = 1.8 Hz, 1.03H), 0.81 (d, J = 7.4 Hz, 1H), 0.27 (d, J = 7.3 Hz, 1H).; <sup>13</sup>C **NMR** (100 MHz, Acetone- $d_6$ )  $\delta$  59.41, 38.53, 36.68, 35.24, 34.23, 31.55, 30.91, 30.27, 29.37, 28.48, 19.23. **HRMS(APCI-TOF)** m/z Calculated for C<sub>13</sub>H<sub>24</sub>DO[M+H]<sup>+</sup>:198.1963, found: 198.1962.

**IR (thin film) v** max (cm<sup>-1</sup>): 2925, 1705, 1461, 1365.

5.3 Competitive experimental study



To solution of **2a** (20.1 mg, 0.1 mmol) and Fe(acac)<sub>3</sub> (0.5 eq.) in 1.5 mL EtOH and 0.3 mL  $(CH_2OH)_2$  was added PhSiD<sub>3</sub> (1.25 eq) and PhSiH<sub>3</sub> (1.25 eq.) under Ar atmosphere. Then the reaction was stirred at 60 °C for 12 h. Then, the reaction mixture was direct purified by neutral alumina column chromatography to give the desired compound (10.3 mg, 53%).

<sup>1</sup>**H NMR** (400 MHz, Acetone-*d*<sub>6</sub>) δ 3.85 (s, 1H), 1.96 – 1.76 (m, 2H), 1.54 – 1.39 (m, 1H), 1.22 – 1.12 (m, 1H), 1.09 (s, 2.44H), 1.07 – 1.05 (m, 0.44H), 1.04 (dd, *J* = 8.2, 3.2 Hz, 1H), 1.01 (s, 9H), 0.99 – 0.91 (m, 1H), 0.85 (s, 2.55H), 0.84 – 0.82 (m, 0.37H), 0.81 (d, *J* = 7.4 Hz, 1H), 0.27 (d, *J* = 7.3 Hz, 1H).

5.4 Radical inhibiting experiment



Fe(acac)<sub>3</sub> was added to the solution of compound **2a** (0.1 mmol, 20 mg) in 1.5 mL *n*-PrOH at 20 °C under Ar atmosphere. Then PhSiH<sub>2</sub>(O*i*-Pr) (2.5 eq) and B(OMe)<sub>3</sub> (2 eq) was added to the above solution. After that, TEMPO (1.5 eq) or DMPO (1.5 eq) was added to above solution and the reaction was stirred at 20 °C for 5 h. The reaction didn't proceed under this condition.

5.5 Radical clock experiment



Fe(acac)<sub>3</sub> (0.2 eq) was added to the solution of a,  $\beta$ -unsaturated compound (35.6 mg, 0.2 mmol) in 3 mL *n*-PrOH at 20 °C under Ar atmosphere. Then PhSiH<sub>2</sub>(O*i*-Pr) (2.5 eq) and B(OMe)<sub>3</sub> (2.0 eq) was added to the above solution and the reaction was stirred at 20 °C until the starting material was consumed. The resulting mixture was the direct purified by column chromatography to give the 7 (15.8 mg, 44%) and **8** (12.9 mg, 36%)



Physical state: colorless oil

<sup>1</sup>**H** NMR (400 MHz, CD<sub>3</sub>OD)  $\delta$  5.67 – 5.40 (m, 2H), 2.80 (d, J = 8.6 Hz, 1H), 2.40 – 2.28 (m, 2H), 2.17 – 1.99 (m, 2H), 1.98 – 1.82 (m, 2H), 1.80 – 1.47 (m, 2H), 1.00 (t, J = 7.5 Hz, 3H), 0.96 (s, 3H), 0.82 (s, 3H).; <sup>13</sup>**C** NMR (100 MHz, CD<sub>3</sub>OD)  $\delta$  216.22, 138.72, 125.33, 66.89, 42.15, 41.29, 39.82, 30.32, 27.60, 24.68, 24.15, 14.95.

HRMS(APCI-TOF) m/z Calculated for C<sub>12</sub>H<sub>21</sub>O [M+H]<sup>+</sup>:181.1587, found: 181.1584. IR (thin film) v <sub>max</sub> (cm<sup>-1</sup>): 2959, 2930, 1710, 1460, 1075.



#### Physical state: colorless oil

<sup>1</sup>**H NMR** (400 MHz, CD<sub>3</sub>OD) δ 5.57 (t, *J* = 7.5 Hz, 1H), 2.39 (t, *J* = 6.8 Hz, 2H), 2.11 (q, *J* = 7.4 Hz, 2H), 2.00 – 1.80 (m, 2H), 1.77 – 1.55 (m, 2H), 1.40 (q, *J* = 7.4 Hz, 2H), 1.08 (s, 6H), 0.89 (t, *J* = 7.4 Hz, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 211.78, 151.70, 133.91, 133.88, 64.76, 44.36, 43.34, 43.16, 43.10, 42.08, 34.81, 34.51, 32.18, 30.71, 27.57, 26.84, 26.52, 26.42, 25.41, 24.65, 24.56, 16.88, 16.63.

**HRMS(APCI-TOF)** m/z Calculated for  $C_{12}H_{21}O[M+H]^+$ : 181.1587, found: 181.1580. **IR (thin film)** v <sub>max</sub> (cm<sup>-1</sup>): 2917, 2850, 1463, 1084, 1023.

5.6 The experiment for exploring the relative stereochemistry of cyclopropanols



Imidazole (3.4 g, 48.8 mmol) and tert-butyldimethylsilyl chloride (7.4 g, 48.8 mmol). was slowly added to a solution of 3-hydroxy-propionic acid methyl ester (1.8 g, 18 mmol) in 20 mL of  $CH_2Cl_2$  at RT. The reaction was stirred for 2 h, Then, the reaction was poured into 50 mL of water, and extracted with  $CH_2Cl_2$  (3 x 50 mL). The combined organic layers were dried with  $Na_2SO_4$ , filtered and concentrated. The oil was purified by flash chromatography to give the desired product **21** (3.8 g, 99%).

Physical state: colorless oil

 $\mathbf{Rf} = 0.7$  (PE; anisaldehyde)

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 3.88 (t, *J* = 6.4 Hz, 2H), 3.67 (s, 3H), 2.52 (t, *J* = 6.4 Hz, 2H), 0.86 (s, 9H), 0.04 (s, 6H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 172.26, 59.08, 51.51, 37.91, 25.81, 18.23, -5.43.

A dry flask was charged with compound **21** (1.09 g, 5 mmol) and EtOD (5 mL) under Ar atmosphere. The reaction was stirred at 0 °C for 30 min. Then NaBD<sub>4</sub> (246 mg, 6 mmol) was

added to the above suspension and the reaction was stirred at 0  $^{\circ}$ C for another 2 h. The reaction was the direct concentrated under reduced pressure to give the desired product which was used for the next step without the further purified. To a suspension of IBX (3.36 g, 12 mmol) in EA was added above residue and the mixture was stirred at 80  $^{\circ}$ C for 12 h, the reaction was filtrated and concentrated under reduced pressure. The crude product was purified on SiO<sub>2</sub> to give the compound **23** (472.5 mg, 50 %, D = 99%).

Physical state: colorless oil

 $\mathbf{Rf} = 0.7$  (PE : EA = 10:1; anisaldehyde)

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 9.74 (t, *J* = 2.1 Hz, 0.01 H), 3.92 (t, *J* = 6.1 Hz, 2H), 2.53 (t, *J* = 6.0 Hz, 2H), 0.82 (s, 9H), 0.00 (s, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 202.04, 201.78, 201.51, 57.40, 46.44, 46.40, 46.37, 25.81, 18.22, -5.45.

To the solution of the phosphonate (524 mg, 2.0 mmol) in the 10 mL dry THF was added NaH (96 mg, 2.4 mmol) under Ar at rt. The reaction was stirred at rt for 30 min. Then aldehyde **23** (453.6 mg, 2.4 mmol) was added. The mixture was stirred at 30 °C for another 24 h and quenched with saturated NH<sub>4</sub>Cl (10 mL). The organic layer was separated and water layer was extracted with EA and dried over Na<sub>2</sub>SO<sub>4</sub>. The combined organic layers were evaporated and the residue was purified via column chromatography to give desired product (415.8 mg, 70%, D = 99%).

Physical state: colorless oil

Rf = 0.8 (PE : EA = 10:1; UV)

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 6.78 (dt, *J* = 15.9, 7.0 Hz, 0.01H). 6.07 (s, 1H), 4.67 (s, 1H), 4.62 (s, 1H), 3.68 (t, *J* = 6.4 Hz, 2H), 2.50 – 2.45 (m, 2H), 2.41 – 2.30 (m, 2H), 2.04 – 1.93 (m, 2H), 1.76 – 1.68 (m, 2H), 1.66 (s, 3H), 0.84 (s, 9H), 0.00 (s, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 200.52, 145.11, 131.85, 110.52, 61.59, 39.14, 37.16, 35.81, 25.88, 22.21, 21.90, 18.29, -5.32

HRMS(ESI<sup>+</sup>) m/z Calculated for C<sub>17</sub>H<sub>32</sub>DO<sub>2</sub>Si [M+H]<sup>+</sup>: 298.2307, found: 298.2301 IR (thin film) v <sub>max</sub> (cm<sup>-1</sup>): 2954.14, 2925.26, 1461.96, 1377.12, 1100.72.



Fe(acac)<sub>3</sub> (0.2 eq) was added to the solution of compound *d*-2e (0.1 mmol, 30 mg) in 1.5 mL *n*-PrOH at 20 °C under Ar atmosphere. Then PhSiH<sub>2</sub>(O*i*-Pr) (2.5 eq.) and B(OMe)<sub>3</sub> (2 eq.) was added to the above solution and the reaction was stirred at 20 °C for 4 h. The resulting mixture was directed purified by neutral alumina column chromatography. After that 2,6-lutidine (6 eq.) was added to the received compound 7-d-2e<sup>4</sup> in dry DCM (5 mL) and the solution was stirred at 0 °C for 30min, then slow addition of TBSOTf (3 eq.). The reaction was stirred at 0 °C for another 1h. The reaction was quenched with saturated NaHCO<sub>3</sub> (5 mL) and extracted with EA, the organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>, filtrated and concentrated under reduced pressure. the crude product was purified on SiO<sub>2</sub> to give the compound 7-d-2e (32 mg, 78%)

<sup>1</sup>H NMR (400 MHz, Acetone-*d*<sub>6</sub>) δ 3.64 (ddd, *J* = 7.0, 6.5, 2.4 Hz, 2H), 1.92 – 1.70 (m, 2H),
1.59 (dt, *J* = 13.5, 6.8 Hz, 1H), 1.54 – 1.37 (m, 2H), 1.09 (s, 3H), 1.06 – 0.88 (m, 3H), 0.85 (s, 9H), 0.82 (s, 9H), 0.81 (s, 3H), 0.49 (s, 1.02H), 0.13 (s, 3H), 0.07 (s, 3H), 0.00 (d, *J* = 2.1 Hz, 6H).

<sup>13</sup>C NMR (100 MHz, Acetone-*d*<sub>6</sub>) δ 62.92, 59.91, 37.76, 36.17, 32.84, 31.99, 31.06, 28.01, 25.43, 25.29, 18.46, 17.92, 17.61, -3.88, -3.94, -5.93, -5.97.

HRMS(APCI-TOF) m/z Calculated for C<sub>23</sub>DH<sub>47</sub>O<sub>2</sub>Si<sub>2</sub>[M+H]<sup>+</sup>: 414.3328, found: 414.3329. IR (thin film) v <sub>max</sub> (cm<sup>-1</sup>): 2928, 2856, 1462, 1195, 1092, 833.

6. X-ray Crystallographic Data:




| 1. X-ray crystallographic data for compound 5 (CCDC 2083784): |                                                    |  |
|---------------------------------------------------------------|----------------------------------------------------|--|
| Table 5 Crystal data and structure refinement for compound 5  |                                                    |  |
| Empirical formula                                             | C <sub>24</sub> H <sub>37</sub> NO <sub>5</sub> Si |  |
| Formula weight                                                | 447.63                                             |  |
| Temperature/K                                                 | 293.15                                             |  |
| Crystal system                                                | monoclinic                                         |  |
| Space group                                                   | P2 <sub>1</sub> /c                                 |  |
| a/Å                                                           | 25.9894(16)                                        |  |
| b/Å                                                           | 7.4776(8)                                          |  |
| c/Å                                                           | 13.2343(12)                                        |  |
| $\alpha'^{\circ}$                                             | 90                                                 |  |
| β/°                                                           | 95.539(7)                                          |  |
| $\gamma/^{\circ}$                                             | 90                                                 |  |
| Volume/Å <sup>3</sup>                                         | 2559.9(4)                                          |  |
| Z                                                             | 4                                                  |  |

| $ ho_{calc}g/cm^3$                   | 1.161                                                |
|--------------------------------------|------------------------------------------------------|
| µ/mm <sup>-1</sup>                   | 0.124                                                |
| F(000)                               | 968.0                                                |
| Crystal size/mm <sup>3</sup>         | $0.35 \times 0.3 \times 0.25$                        |
| Radiation                            | $MoK\alpha(\lambda = 0.71073)$                       |
| $2\Theta$ range for data collection/ | 6.186 to 52.744                                      |
| Index ranges                         | $-32 \le h \le 29, -9 \le k \le 9, -14 \le l \le 16$ |
| Reflections collected                | 11655                                                |
| Independent reflections              | 5225 [ $R_{int} = 0.0550, R_{sigma} = 0.0834$ ]      |
| Data/restraints/parameters           | 5225/0/287                                           |
| Goodness-of-fit on F <sup>2</sup>    | 1.020                                                |
| Final R indexes [I>= $2\sigma$ (I)]  | $R_1 = 0.0959, wR_2 = 0.2056$                        |
| Final R indexes [all data]           | $R_1 = 0.1638, wR_2 = 0.2474$                        |
| Largest diff. peak/hole / e Å-3      | 0.28/-0.34                                           |

2. X-ray crystallographic data for compound 2v (CCDC 2083785):



# Table 6 Crystal data and structure refinement for compound $2 v \ensuremath{\mathcal{V}}$

| Empirical formula     | $\mathrm{C}_{51}\mathrm{H}_{92}\mathrm{O}_3\mathrm{Si}_2$ |
|-----------------------|-----------------------------------------------------------|
| Formula weight        | 809.42                                                    |
| Temperature/K         | 293.15                                                    |
| Crystal system        | monoclinic                                                |
| Space group           | P2 <sub>1</sub>                                           |
| a/Å                   | 11.479(3)                                                 |
| b/Å                   | 12.0136(15)                                               |
| c/Å                   | 20.224(3)                                                 |
| α/°                   | 90                                                        |
| β/°                   | 105.64(2)                                                 |
| γ/°                   | 90                                                        |
| Volume/Å <sup>3</sup> | 2685.7(9)                                                 |
| Z                     | 2                                                         |
| $\rho_{calc}g/cm^3$   | 1.001                                                     |
| µ/mm <sup>-1</sup>    | 0.101                                                     |
| F(000)                | 900.0                                                     |
|                       |                                                           |

| Crystal size/mm <sup>3</sup>                | 0.35 	imes 0.3 	imes 0.25                              |
|---------------------------------------------|--------------------------------------------------------|
| Radiation                                   | MoKa ( $\lambda = 0.71073$ )                           |
| $2\Theta$ range for data collection/°       | 6.276 to 52.74                                         |
| Index ranges                                | $-10 \le h \le 14, -13 \le k \le 15, -22 \le l \le 25$ |
| Reflections collected                       | 11934                                                  |
| Independent reflections                     | 9462 [ $R_{int} = 0.0149, R_{sigma} = 0.0539$ ]        |
| Data/restraints/parameters                  | 9462/6/512                                             |
| Goodness-of-fit on F <sup>2</sup>           | 1.010                                                  |
| Final R indexes [I>=2 $\sigma$ (I)]         | $R_1 = 0.0776, wR_2 = 0.1931$                          |
| Final R indexes [all data]                  | $R_1 = 0.1253, wR_2 = 0.2296$                          |
| Largest diff. peak/hole / e Å <sup>-3</sup> | 0.33/-0.33                                             |
| Flack parameter                             | -0.04(6)                                               |

# 7 Spectra of Products.



(E)-2,2,9-trimethyldeca-3,9-dien-5-one (2a) (Using CDCl<sub>3</sub> as solvent)



# (*E*)-9-methyldeca-3,9-dien-5-one (**2b**) (Using CDCl<sub>3</sub> as solvent)



(*E*)-2,9-dimethyldeca-3, 9-dien-5-one (2c) (Using CDCl<sub>3</sub> as solvent)



### (*E*)-2-methylpentadeca-1,7-dien-6-one (2d) (Using CDCl<sub>3</sub> as solvent)

(E)-1-((tert-butyldimethylsilyl)oxy)-9-methyldeca-3,9-dien-5-one (2e) (Using CDCl<sub>3</sub> as solvent)





methyl (*E*)-10-methyl-6-oxoundeca-4,10-dienoate (2f) (Using CDCl<sub>3</sub> as solvent)



(*E*)-9-methyl-2-phenyldeca-3,9-dien-5-one (**2g**) (Using CDCl<sub>3</sub> as solvent)

110 100 f1 (ppm) 



(*E*)-7-methyl-1-phenylocta-1,7-dien-3-one (**2h**) (Using CDCl<sub>3</sub> as solvent)







# (E)-1-cyclopentyl-7-methylocta-1,7-dien-3-one (2j) (Using CDCl<sub>3</sub> as solvent)







(*E*)-1-cyclohexyl-7-methylocta-1,7-dien-3-one (2l) (Using CDCl<sub>3</sub> as solvent)



(*E*)-2-methyl-2-((2-methylallyl)oxy)hept-4-en-3-one (2m) (Using CDCl<sub>3</sub> as solvent)

10 200 190 110 100 fl (ppm) 140 130 120 



(*E*)-1-(1-(3-methylbut-3-en-1-yl)cyclohexyl)pent-2-en-1-one (**2n**) (Using CDCl<sub>3</sub> as solvent)



### (*E*)-1-(cyclohex-1-en-1-yl)oct-5-en-4-one (**20**) (Using CDCl<sub>3</sub> as solvent)

2,8-dimethylnona-2,8-dien-4-one  $(\mathbf{2p})$  (Using CDCl<sub>3</sub> as solvent)





2,9-dimethyl-8-methylenedec-2-en-4-one (2q) (Using CDCl<sub>3</sub> as solvent)

1-cyclohexylidene-6-methylhept-6-en-2-one (2r) (Using CDCl<sub>3</sub> as solvent)







(*E*)-7-methyl-1-((2*S*, 3*aS*, 5*R*)-octahydro-7aH-2,5-methanoinden-7a-yl)octa-1,7-dien-3-one (**2t**) (Using  $CDCl_3$  as solvent)













(E)-9-bromodeca-3,9-dien-5-one (17) (Using CDCl<sub>3</sub> as solvent)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)



(8R,9S,13S,14S)-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta [a]phenanthren-3-yl (*E*)-6-methylene-10-oxotetradec-11-enoate (**2u**) (Using CDCl<sub>3</sub> as solvent)

cyclopenta[a]chrysen-1-yl)-9-methylenedodec-3-en-5-one (2v) (Using CDCl<sub>3</sub> as solvent)







tert-butyl(((1S,6R,7R)-7-(tert-butyl)-5,5-dimethylbicyclo[4.1.0]heptan-1-yl)oxy) dimethyl-silane (**3a**) (Using Acetone- $d_6$  as solvent)





tert-butyl(((1S,6R,7S)-7-ethyl-5,5-dimethylbicyclo[4.1.0]heptan-1-yl)oxy)dimethylsilane (**3b**) (Using Acetone- $d_6$  as solvent)

tert-butyl(((1S,6R,7S)-7-isopropyl-5,5-dimethylbicyclo[4.1.0]heptan-1-yl)oxy)dimethylsilane (3c) (Using Acetone- $d_6$  as solvent)







tert-butyl(2-((1S,6R,7S)-1-((tert-butyldimethylsilyl)oxy)-5,5-dimethylbicyclo[4.1.0]heptan-7-yl)ethoxy)dimethylsilane (**3e**) (Using Acetone- $d_6$  as solvent)







200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

tert-butyl(((1S,6R,7S)-5,5-dimethyl-7-(2-phenylpropyl)bicyclo[4.1.0]heptan-1-yl)oxy)dimethyl silane (**3g**) (Using Acetone- $d_6$  as solvent)




tert-butyl(((1S,6R,7S)-5,5-dimethyl-7-phenethylbicyclo[4.1.0]heptan-1-yl)oxy)dimethylsilane (**3h**) (Using Acetone- $d_6$  as solvent)



210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)



tert-butyl(((1S,6R,7S)-7-cyclopentyl-5,5-dimethylbicyclo[4.1.0]heptan-1-yl)oxy) dimethylsilane (**3j**) (Using Acetone- $d_6$  as solvent)





tert-butyl(((1S,6R,7S)-7-cyclohexyl-5,5-dimethylbicyclo[4.1.0]heptan-1-yl)oxy) dimethylsilane **(3l)** (Using Acetone- $d_6$  as solvent)



tert-butyl(((1S,6R,7S)-7-ethyl-2,2,5,5-tetramethyl-3-oxabicyclo[4.1.0]heptan-1-yl)oxy)-dimethylsilane **(3m)** (Using Acetone- $d_6$  as solvent)



78

tert-butyl(((1S,6R,7S)-7-ethyl-5,5-dimethylspiro[bicyclo[4.1.0]heptane-2,1'-cyclohexan]-1-yl)oxy)dimethylsilane (**3n**) (Using Acetone- $d_6$  as solvent)



tert-butyl(((1R,6S,7S)-7-ethylspiro[bicyclo[4.1.0]heptane-2,1'-cyclohexan]-6-yl)oxy)-dimethylsilane (**30**) (Using Acetone- $d_6$  as solvent)







tert-butyl(((1R,6S)-5-isopropyl-5,7,7-trimethylbicyclo[4.1.0]heptan-1-yl)oxy) dimethylsilane **(3q)** (Using Acetone- $d_6$  as solvent)

tert-butyl((((1S,6R)-2,2-dimethylspiro[bicyclo[4.1.0]heptane-7,1'-cyclohexan]-6-yl)oxy)-dimethylsilane (**3r**) (Using Acetone- $d_6$  as solvent)



tert-butyl(((1S,5R,6R)-6-(tert-butyl)-4,4-dimethylbicyclo[3.1.0]hexan-1-yl)oxy) dimethyl-silane (**3s**) (Using Acetone- $d_6$  as solvent)



(((1R,5R,6R)-6-((1r,3R)-adamantan-1-yl)-4,4-dimethylbicyclo[3.1.0]hexan-1-yl) oxy)(tertbutyl)dimethylsilane (3t) (Using Acetone- $d_6$  as solvent)



(8R, 9S, 13S, 14S)-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a] phenanthren-3-yl 5-(6-((tert-butyldimethylsilyl)oxy)-7-ethyl-2-methylbicyclo[4.1.0]heptan-2-yl)pentanoate **(3u)** (Using Acetone- $d_6$  as solvent)



tert-butyl(((1*S*, 3*aS*, 5*aR*, 5*bR*, 7*aR*, 9*S*, 11*aR*, 11*bR*, 13*aR*, 13*bR*)-9-((tert-butyldimethylsilyl) oxy)-1-((2*R*)-1-(6-((tert-butyldimethylsilyl)oxy)-7-ethyl-2-methylbicyclo[4.1.0]heptan-2-yl) propan-2-yl)-5a,5b,8,8,11a-pentamethylicosahydro-3aH-cyclopenta[a]chrysen-3a-yl)methoxy) dimethylsilane (**3v**) (Using Acetone- $d_6$  as solvent)







2-((1S, 6R, 7S)-1-((tert-butyldimethylsilyl)oxy)-5,5-dimethylbicyclo[4.1.0]heptan-7-yl)ethyl 4-nitrobenzoate (5) (Using Acetone- $d_6$  as solvent)





(1*S*, 6R,7R)-7-(tert-butyl)-5,5-dimethylbicyclo[4.1.0]heptan-1-ol (**3a'**) (Using Acetone- $d_6$  as solvent)



(1S,6R,7R)-7-(tert-butyl)-5-methyl-5-(methyl-d)bicyclo[4.1.0]heptan-1-ol (d-3a' and epi-d-3a') (Using Acetone- $d_6$  as solvent)

110 100 fl (ppm) 210 200 

competitive experimental study, 3a'



(E)-2-(but-1-en-1-yl)-3,3-dimethylcyclohexan-1-one (7) (Using CD<sub>3</sub>OD as solvent)





(E)-2-butylidene-3,3-dimethylcyclohexan-1-one (8) (Using CD<sub>3</sub>OD as solvent)





methyl 3-((tert-butyldimethylsilyl)oxy)propanoate (21) (Using CDCl<sub>3</sub> as solvent)





3-((tert-butyldimethylsilyl)oxy)propanal-1-d (23) (Using CDCl<sub>3</sub> as solvent)





(*E*)-1-((tert-butyldimethylsilyl)oxy)-9-methyldeca-3,9-dien-5-one-3-d (d-2e) (Using CDCl<sub>3</sub> as solvent)





tert-butyl(2-((1S,6R,7S)-1-((tert-butyldimethylsilyl)oxy)-5,5-dimethylbicyclo[4.1.0]heptan-7-yl-7-d)ethoxy)dimethylsilane (7-*d*-2e) (Using Acetone- $d_6$  as solvent)





#### 8. Computational procedures

All calculations were carried out using Gaussian 09 software package<sup>[10]</sup>. Since the DFT functional combined method has been demonstrated to generate accurate results for organometallics especially in the description of non-covalent interactions, the geometric structures of the intermediates and transition states were full-optimized at the B3LYP/6-31G(d,p) level in the gas-phase<sup>[11]</sup>. Frequency analyses were also performed on the optimized structures to confirm that the intermediates are local minima and the transition states have only one imaginary frequency. The solvation effect was considered into single-point calculation at the M06(PCM, *n*-PrOH)/6-311G(d,p) level<sup>[12]</sup>. This model was used for single-point energy calculations based on B3LYP-optimzed geometries. The main discussion was based on Gibbs free energies in the solution phase, which was obtained from the addition of solvation single-point energy and gas-phase thermal correction to Gibbs free energies.

#### **Summary of energies**

Table SX: Total energies (in a.u.) of various species in the reaction.

| Species                 | B3LYP/6-31G(d,j | M06/6-311G(d,p) |              |
|-------------------------|-----------------|-----------------|--------------|
|                         | ZPG G           |                 | PCM-SCF      |
| H-Fe(acac) <sub>2</sub> | 0.180122        | -1954.5042      | -1954.424057 |

| Substrate          | 0.275099 | -583.57672   | -583.5370484 |
|--------------------|----------|--------------|--------------|
| n-PrOH             | 0.081121 | -194.278245  | -194.2734448 |
| IM0                | 0.478446 | -2538.08589  | -2537.981025 |
| TS1                | 0.478719 | -2538.071736 | -2537.960085 |
| IM1                | 0.486772 | -2538.084969 | -2538.019101 |
| TS2                | 0.486044 | -2538.071215 | -2537.996743 |
| IM2                | 0.486996 | -2538.094099 | -2538.020305 |
| anti-TS3           | 0.488638 | -2538.091264 | -2538.017479 |
| anti-IM3           | 0.494827 | -2538.117945 | -2538.056556 |
| syn-TS3            | 0.490132 | -2538.068462 | -2537.998589 |
| syn-IM3            | 0.493981 | -2538.097548 | -2538.048489 |
| Iso-TS3            | 0.487235 | -2538.072403 | -2537.994889 |
| Iso-IM3            | 0.493443 | -2538.114603 | -2538.048489 |
| TS4                | 0.591353 | -2732.378178 | -2732.337232 |
| IM4                | 0.593547 | -2732.387779 | -2732.350642 |
| TS5                | 0.459373 | -2863.593506 | -2863.500936 |
| Pro                | 0.307937 | -584.757134  | -584.7622298 |
| Ph(iPrO)-          | 0.168714 | -715.990189  | -715.9309611 |
| SiH <sub>2</sub>   |          |              |              |
| Ph(iPrO)(nPrOH)SiH | 0.247981 | -909.125157  | -909.0611194 |

# **Optimized Structures** H-Fe(acac)<sub>2</sub> Standard orientation:

| Center | Ato | mic  | Atomic   | Coordi    | nates (Angst | roms) |
|--------|-----|------|----------|-----------|--------------|-------|
| Number | Nu  | mber | Туре     | Х         | Y            | Ζ     |
| 1      | 8   | 0    | 1.340080 | 1.356347  | 0.154399     |       |
| 2      | 8   | 0    | 1.339173 | -1.356577 | 0.153074     |       |
| 3      | 6   | 0    | 2.563958 | 1.230728  | -0.194429    |       |
| 4      | 6   | 0    | 2.563176 | -1.231396 | -0.195589    |       |
| 5      | 6   | 0    | 3.209678 | -0.000465 | -0.386100    |       |
| 6      | 6   | 0    | 3.315559 | 2.524372  | -0.400444    |       |
| 7      | 1   | 0    | 3.306881 | 3.097045  | 0.532814     |       |
| 8      | 1   | 0    | 2.795200 | 3.128653  | -1.150521    |       |
| 9      | 6   | 0    | 3.313981 | -2.525336 | -0.402601    |       |
| 10     | 1   | 0    | 2.792911 | -3.129029 | -1.152650    |       |
| 11     | 1   | 0    | 4.346569 | -2.365307 | -0.718594    |       |
| 12     | 1   | 0    | 4.249895 | -0.000659 | -0.686339    |       |
| 13     | 1   | 0    | 4.348224 | 2.363956  | -0.715989    |       |
| 14     | 1   | 0    | 3.305528 | -3.098416 | 0.530418     |       |
| 15     | 26  | 0    | 0.000015 | -0.000037 | 0.707169     |       |

| 16 | 8 | 0 | -1.339165 | 1.356557  | 0.153130  |
|----|---|---|-----------|-----------|-----------|
| 17 | 8 | 0 | -1.340162 | -1.356349 | 0.154546  |
| 18 | 6 | 0 | -2.563972 | -1.230716 | -0.194510 |
| 19 | 6 | 0 | -2.563143 | 1.231417  | -0.195611 |
| 20 | 6 | 0 | -3.209629 | 0.000495  | -0.386321 |
| 21 | 6 | 0 | -3.315632 | -2.524344 | -0.400414 |
| 22 | 1 | 0 | -4.347901 | -2.363920 | -0.717250 |
| 23 | 1 | 0 | -2.794533 | -3.129354 | -1.149376 |
| 24 | 1 | 0 | -3.308218 | -3.096271 | 0.533323  |
| 25 | 1 | 0 | -4.249809 | 0.000715  | -0.686687 |
| 26 | 6 | 0 | -3.313950 | 2.525379  | -0.402486 |
| 27 | 1 | 0 | -2.792747 | 3.129275  | -1.152278 |
| 28 | 1 | 0 | -3.305709 | 3.098232  | 0.530675  |
| 29 | 1 | 0 | -4.346471 | 2.365391  | -0.718720 |
| 30 | 1 | 0 | 0.000200  | 0.000030  | 2.364634  |
|    |   |   |           |           |           |

| Substrate             |
|-----------------------|
| Standard orientation: |

| С  | enter | Atomic | Atomic    | Coordinat | es (Angstroms) |
|----|-------|--------|-----------|-----------|----------------|
| Nu | mber  | Number | Туре      | Х         | Y Z            |
|    | 6     | 0      | -1 704279 | 0 163710  | -0.919630      |
| 2  | 6     | 0      | -0.759007 | 1 367339  | -1.145518      |
| 3  | 6     | 0      | 0.030976  | 1 736394  | 0 105804       |
| 4  | 6     | 0      | 1 300525  | 1.037671  | 0.431072       |
| 5  | 6     | Ő      | -3 747271 | -0 733904 | 0.330899       |
| 6  | 6     | 0      | 1 897590  | 0.095043  | -0.314272      |
| 7  | 1     | Õ      | -2 136853 | -0 110487 | -1 888903      |
| 8  | 1     | Ő      | -1 124788 | -0 703858 | -0 580961      |
| 9  | 1     | 0<br>0 | -1.346938 | 2.249800  | -1.416297      |
| 10 | 1     | 0      | -0.084148 | 1.146695  | -1.979371      |
| 11 | 8     | Ő      | -0.393040 | 2.591169  | 0.875297       |
| 12 | 1     | Ő      | 1.732580  | 1.367191  | 1.372196       |
| 13 | 6     | Ő      | -4.628428 | -1.157764 | -0.819844      |
| 14 | 6     | Ő      | 3.187394  | -0.640392 | -0.012596      |
| 15 | 6     | 0      | 4.167037  | -0.382191 | -1.182694      |
| 16 | 6     | 0      | 2.866911  | -2.153352 | 0.052088       |
| 17 | 6     | 0      | 3.833840  | -0.193461 | 1.308457       |
| 18 | 1     | 0      | 1.431215  | -0.206175 | -1.253061      |
| 19 | 1     | 0      | -5.259994 | -0.325023 | -1.156087      |
| 20 | 1     | 0      | -4.038543 | -1.471708 | -1.690050      |
| 21 | 1     | 0      | -5.281484 | -1.989332 | -0.541705      |
| 22 | 1     | 0      | 5.094213  | -0.946849 | -1.035199      |
| 23 | 1     | 0      | 3.734880  | -0.692859 | -2.140382      |
| 24 | 1     | 0      | 3.784453  | -2.731009 | 0.209203       |
| 25 | 1     | 0      | 4.760819  | -0.750033 | 1.480909       |
| 26 | 1     | 0      | 4.082923  | 0.872490  | 1.292988       |
| 27 | 1     | 0      | 3.172348  | -0.375442 | 2.161496       |
| 28 | 1     | 0      | 4.422722  | 0.679684  | -1.256093      |
| 29 | 1     | 0      | 2.178966  | -2.375740 | 0.873997       |
| 30 | 1     | 0      | 2.406052  | -2.503496 | -0.878203      |
| 31 | 6     | 0      | -3.779112 | -1.365555 | 1.509232       |

| 32 | 1 | 0 | -3.152740 | -1.052715 | 2.340351  |
|----|---|---|-----------|-----------|-----------|
| 33 | 1 | 0 | -4.435332 | -2.213819 | 1.685775  |
| 34 | 6 | 0 | -2.830171 | 0.448733  | 0.094720  |
| 35 | 1 | 0 | -3.420124 | 1.300845  | -0.274006 |
| 36 | 1 | 0 | -2.391936 | 0.768863  | 1.044722  |

#### n-PrOH

#### Standard orientation:

| Cen | ter | Atomic | Atomic    | Coordi    | nates (Ans | 251        |
|-----|-----|--------|-----------|-----------|------------|------------|
| Num | ber | Number | Туре      | X         | Y          | Z          |
| 1   | 8   | 0      | 1.382174  | -0.637158 | -0.21966   | 0          |
| 2   | 6   | 0      | 0.772252  | 0.543796  | 0.29137    | 9          |
| 3   | 6   | 0      | -0.634229 | 0.643957  | -0.28853   | 3          |
| 4   | 6   | 0      | -1.543268 | -0.515764 | 0.12897    | 7          |
| 5   | 1   | 0      | 2.246726  | -0.734844 | 0.19710    | 0          |
| 6   | 1   | 0      | -1.677857 | -0.539018 | 1.21695    | 2          |
| 7   | 1   | 0      | -2.534283 | -0.427405 | -0.32765   | 2          |
| 8   | 1   | 0      | -1.067174 | 1.601322  | 0.02883    | 4          |
| 9   | 1   | 0      | -0.552038 | 0.680588  | -1.38180   | 7          |
| 10  | 1   | 0      | 0.716032  | 0.516546  | 1.39292    | 9          |
| 11  | 1   | 0      | 1.351755  | 1.439825  | 0.01497    | '3         |
| 12  | 1   | 0      | -1.109085 | -1.471682 | -0.17499   | <b>)</b> 2 |

#### IM0

| Ce  | nter | Atomic | Atomic    | Coordi    | inates (Angst | troms |
|-----|------|--------|-----------|-----------|---------------|-------|
| Nun | nber | Number | Туре      | Х         | Y Z           |       |
| 1   | 6    | 0      | 1.609172  | -3.148476 | 1.493992      |       |
| 2   | 6    | 0      | 2.422594  | -2.774764 | 0.240077      |       |
| 3   | 6    | 0      | 1.709948  | -1.836017 | -0.768191     |       |
| 4   | 6    | 0      | 1.666613  | -0.362395 | -0.417673     |       |
| 5   | 6    | 0      | 2.886683  | 0.464257  | -0.410378     |       |
| 6   | 6    | 0      | 1.216379  | -2.020443 | 2.416556      |       |
| 7   | 6    | 0      | 4.101571  | 0.070972  | -0.830712     |       |
| 8   | 1    | 0      | 2.218029  | -3.882586 | 2.047218      |       |
| 9   | 1    | 0      | 0.703050  | -3.681381 | 1.180268      |       |
| 10  | 1    | 0      | 2.657971  | -3.704982 | -0.291406     |       |
| 11  | 1    | 0      | 3.386852  | -2.344709 | 0.530866      |       |
| 12  | 1    | 0      | 0.681380  | -2.158856 | -0.945110     |       |
| 13  | 1    | 0      | 2.242629  | -1.908916 | -1.725111     |       |
| 14  | 8    | 0      | 0.600346  | 0.237977  | -0.208544     |       |
| 15  | 1    | 0      | 2.712824  | 1.478571  | -0.064094     |       |
| 16  | 6    | 0      | 2.317899  | -1.194288 | 3.040454      |       |
| 17  | 6    | 0      | -0.085262 | -1.792253 | 2.732470      |       |
| 18  | 6    | 0      | 5.366742  | 0.899163  | -0.884543     |       |
| 19  | 6    | 0      | 5.853228  | 0.925775  | -2.353853     |       |
| 20  | 6    | 0      | 6.432828  | 0.190296  | -0.013704     |       |
| 21  | 6    | 0      | 5.162583  | 2.336637  | -0.381260     |       |
| 22  | 1    | 0      | 4.226488  | -0.947291 | -1.198569     |       |
| 23  | 1    | 0      | 3.072040  | -0.858517 | 2.318701      |       |

| 24 | 1  | 0 | 1.911991  | -0.303160 | 3.528078  |
|----|----|---|-----------|-----------|-----------|
| 25 | 1  | 0 | 2.862210  | -1.768712 | 3.806133  |
| 26 | 1  | 0 | -0.331812 | -1.106639 | 3.536860  |
| 27 | 1  | 0 | -0.952704 | -0.686140 | 1.637975  |
| 28 | 1  | 0 | -0.844991 | -2.524900 | 2.475818  |
| 29 | 1  | 0 | 6.802919  | 1.466198  | -2.427799 |
| 30 | 1  | 0 | 6.012862  | -0.086860 | -2.740114 |
| 31 | 1  | 0 | 7.387094  | 0.724368  | -0.075835 |
| 32 | 1  | 0 | 6.104232  | 2.891195  | -0.442254 |
| 33 | 1  | 0 | 4.421345  | 2.871966  | -0.983051 |
| 34 | 1  | 0 | 4.831921  | 2.353773  | 0.661915  |
| 35 | 1  | 0 | 5.126006  | 1.424564  | -3.002054 |
| 36 | 1  | 0 | 6.127428  | 0.159316  | 1.036827  |
| 37 | 1  | 0 | 6.603031  | -0.838824 | -0.348088 |
| 38 | 26 | 0 | -1.464768 | 0.121197  | 0.185937  |
| 39 | 8  | 0 | -3.251773 | -0.725315 | 0.731328  |
| 40 | 8  | 0 | -2.645158 | 1.426690  | -0.950979 |
| 41 | 8  | 0 | -1.433730 | -1.179380 | -1.357364 |
| 42 | 8  | 0 | -1.123669 | 1.821852  | 1.300862  |
| 43 | 6  | 0 | -1.591042 | 3.004592  | 1.224991  |
| 44 | 6  | 0 | -2.934551 | 2.657700  | -0.813749 |
| 45 | 6  | 0 | -2.469715 | 3.470229  | 0.233150  |
| 46 | 6  | 0 | -1.122273 | 3.956582  | 2.307373  |
| 47 | 6  | 0 | -2.373500 | -1.940978 | -1.781589 |
| 48 | 6  | 0 | -3.969761 | -1.543022 | 0.077918  |
| 49 | 6  | 0 | -3.597651 | -2.154002 | -1.139712 |
| 50 | 6  | 0 | -2.082900 | -2.652530 | -3.086390 |
| 51 | 1  | 0 | -1.178963 | -3.261869 | -2.978834 |
| 52 | 1  | 0 | -2.906196 | -3.291406 | -3.412289 |
| 53 | 1  | 0 | -1.876688 | -1.908105 | -3.862538 |
| 54 | 1  | 0 | -4.302603 | -2.833412 | -1.602860 |
| 55 | 6  | 0 | -5.316262 | -1.869332 | 0.689817  |
| 56 | 1  | 0 | -5.897339 | -0.947207 | 0.793520  |
| 57 | 1  | 0 | -5.167320 | -2.268370 | 1.698265  |
| 58 | 1  | 0 | -5.886349 | -2.588620 | 0.098139  |
| 59 | 1  | 0 | -1.528448 | 4.963810  | 2.191128  |
| 60 | 1  | Õ | -0.028488 | 4.004937  | 2.297568  |
| 61 | 6  | 0 | -3.844747 | 3.243231  | -1.873598 |
| 62 | 1  | 0 | -4.776820 | 2.669909  | -1.905627 |
| 63 | 1  | Õ | -4.075094 | 4.296497  | -1.698334 |
| 64 | 1  | Ő | -2.787293 | 4.505186  | 0.268888  |
| 65 | 1  | Õ | -1.415819 | 3.561790  | 3.285629  |
| 66 | 1  | Õ | -3.370982 | 3.138064  | -2.855299 |
|    |    |   |           |           |           |
|    |    |   |           |           |           |

#### IM0'

| С | enter | Ato | mic A  | tomic   | Coordin    | nates (Ang | gstroms) |
|---|-------|-----|--------|---------|------------|------------|----------|
|   | Numb  | ber | Number | Туре    | Х          | Y          | Ζ        |
|   |       |     |        |         |            |            |          |
|   | 1     | 6   | 0      | -6.4219 | 925 -0.680 | 864 -0.0   | 25042    |
|   | 2     | 6   | 0      | -5.1280 | 068 -0.669 | 0445 -0.8  | 50160    |
|   | 3     | 6   | 0      | -4.1718 | 873 0.464  | 536 -0.4   | 68441    |
|   | 4     | 6   | 0      | -2.8765 | 568 0.460  | 733 -1.2   | 74622    |

| 5               | 6  | Δ | 1 850202  | 1 500100                           | 1.024010  |
|-----------------|----|---|-----------|------------------------------------|-----------|
| 5               | 6  | 0 | -1.830293 | 1.000190                           | -1.024919 |
| 7               | 6  | 0 | -0.320372 | -1.062320                          | 0.006000  |
| 0               | 0  | 0 | -1.942310 | 2.404657                           | -0.090090 |
| 0               | 1  | 0 | 6 80/735  | -1.337899                          | -0.300030 |
| 10              | 1  | 0 | -0.894735 | 0.511626                           | 1 010255  |
| 10              | 1  | 0 | -5.584175 | 1 630506                           | -1.910233 |
| 11              | 1  | 0 | -4.010/10 | -1.030300                          | -0.707049 |
| 12              | 1  | 0 | -3.921444 | 1 /375/3                           | 0.598101  |
| 13              | 8  | 0 | -4.002970 | 0.305085                           | 2 133776  |
| 14              | 1  | 0 | -2.001917 | 1 /12315                           | -2.133770 |
| 16              | 6  | 0 | 5 255240  | 1.412515                           | 1 088255  |
| 17              | 6  | 0 | -0.936886 | 3 552364                           | 0.215083  |
| 18              | 6  | 0 | -0.930880 | 3.332304                           | 1 661/06  |
| 10              | 6  | 0 | 1 672001  | <i>J.J27972</i><br><i>A</i> 011770 | 0.130770  |
| 20              | 6  | 0 | -1.072901 | 4.911//9                           | 0.139779  |
| 20              | 1  | 0 | 0.230317  | 2 /08131                           | -0.733909 |
| $\frac{21}{22}$ | 1  | 0 | -2.851520 | 1 876120                           | 1 427557  |
| 22              | 1  | 0 | 5 251587  | 1 053602                           | 3.03/85/  |
| $\frac{23}{24}$ | 1  | 0 | 0 255680  | -1.955092                          | 1 0/010/  |
| 24              | 1  | 0 | -1 260587 | 3 325610                           | 2 378085  |
| 25              | 1  | 0 | -0.994659 | 5 725759                           | 0.418547  |
| 20              | 1  | 0 | 0 924413  | 4 392466                           | -0 507294 |
| $\frac{27}{28}$ | 1  | 0 | 0.924413  | 2 636453                           | -0.694036 |
| 20              | 1  | 0 | -0 072304 | 3 695296                           | -1 790015 |
| 30              | 1  | 0 | 0.097652  | 2 373956                           | 1 747901  |
| 31              | 1  | 0 | -2 040554 | 5 108471                           | -0.872902 |
| 32              | 1  | 0 | -2 529539 | 4 942127                           | 0.872902  |
| 33              | 6  | Ő | -7 573897 | -0.809642                          | 2 242815  |
| 34              | 1  | Ő | -7 799163 | 0 264648                           | 2 269382  |
| 35              | 1  | Ő | -8.448445 | -1.298321                          | 1.793250  |
| 36              | 1  | Ő | -7.479058 | -1.163753                          | 3.272730  |
| 37              | 1  | Ő | 1.181474  | 0.005417                           | 1.526340  |
| 38              | 26 | 0 | 2.227647  | -0.638783                          | 0.412478  |
| 39              | 8  | Ő | 4.008783  | -0.971313                          | 1.200740  |
| 40              | 8  | Õ | 3.020605  | 1.046580                           | -0.335691 |
| 41              | 6  | Õ | 4.168371  | 1.576295                           | -0.157716 |
| 42              | 6  | Ő | 5.065797  | -0.248388                          | 1.235008  |
| 43              | 6  | Õ | 5.202629  | 0.988980                           | 0.591446  |
| 44              | 6  | Ő | 4.380103  | 2.919870                           | -0.815409 |
| 45              | 1  | Õ | 3.641730  | 3.629874                           | -0.428835 |
| 46              | 1  | 0 | 5.383645  | 3.315529                           | -0.647891 |
| 47              | 1  | 0 | 4.200612  | 2.826624                           | -1.891295 |
| 48              | 1  | 0 | 6.143189  | 1.517907                           | 0.680051  |
| 49              | 6  | 0 | 6.210036  | -0.819484                          | 2.038297  |
| 50              | 1  | 0 | 6.471217  | -1.806457                          | 1.642980  |
| 51              | 1  | 0 | 5.884279  | -0.966512                          | 3.073322  |
| 52              | 1  | 0 | 7.093315  | -0.178111                          | 2.025193  |
| 53              | 8  | 0 | 1.396823  | -0.837780                          | -1.362592 |
| 54              | 8  | 0 | 1.917588  | -2.582123                          | 0.655891  |
| 55              | 6  | 0 | 1.338160  | -3.435366                          | -0.101576 |
| 56              | 6  | 0 | 0.869526  | -1.857264                          | -1.937364 |
| 57              | 6  | 0 | 0.831220  | -3.143539                          | -1.375671 |
| 58              | 6  | 0 | 1.218748  | -4.830441                          | 0.464669  |

| 59 | 1 | 0 | 0.747197  | -5.526455 | -0.231726 |
|----|---|---|-----------|-----------|-----------|
| 60 | 1 | 0 | 0.633588  | -4.793397 | 1.389619  |
| 61 | 6 | 0 | 0.238611  | -1.596100 | -3.279132 |
| 62 | 1 | 0 | 0.878875  | -0.927974 | -3.861746 |
| 63 | 1 | 0 | 0.059030  | -2.518574 | -3.835724 |
| 64 | 1 | 0 | 0.362122  | -3.938044 | -1.942115 |
| 65 | 1 | 0 | 2.214493  | -5.199146 | 0.731087  |
| 66 | 1 | 0 | -0.721875 | -1.090508 | -3.115706 |
|    |   |   |           |           |           |

### TS1

| Center |      | Atomic | Atomic    | Coordi    | nates (Ang |
|--------|------|--------|-----------|-----------|------------|
| Nun    | nber | Number | Туре      | Х         | Y Z        |
| 1      | 6    | 0      | 1.120290  | -3.405471 | 0.551387   |
| 2      | 6    | 0      | 1.994010  | -2.856976 | -0.595898  |
| 3      | 6    | 0      | 1.414788  | -1.585310 | -1.251453  |
| 4      | 6    | 0      | 1.548309  | -0.309698 | -0.444195  |
| 5      | 6    | 0      | 2.865584  | 0.257890  | -0.091981  |
| 6      | 6    | 0      | 0.990347  | -2.508637 | 1.757218   |
| 7      | 6    | 0      | 4.046011  | -0.110271 | -0.616964  |
| 8      | 1    | 0      | 1.561176  | -4.367355 | 0.861674   |
| 9      | 1    | 0      | 0.123647  | -3.633668 | 0.155248   |
| 10     | 1    | 0      | 2.089730  | -3.628746 | -1.370286  |
| 11     | 1    | 0      | 3.008827  | -2.673368 | -0.227752  |
| 12     | 1    | 0      | 0.350351  | -1.716231 | -1.458288  |
| 13     | 1    | 0      | 1.916690  | -1.421061 | -2.215385  |
| 14     | 8    | 0      | 0.550000  | 0.345574  | -0.109023  |
| 15     | 1    | 0      | 2.797823  | 1.088081  | 0.605495   |
| 16     | 6    | 0      | 2.245142  | -2.185069 | 2.526158   |
| 17     | 6    | 0      | -0.250384 | -2.022386 | 2.157715   |
| 18     | 6    | 0      | 5.405421  | 0.501066  | -0.347655  |
| 19     | 6    | 0      | 5.957313  | 1.041988  | -1.688691  |
| 20     | 6    | 0      | 6.339765  | -0.621595 | 0.164161   |
| 21     | 6    | 0      | 5.354702  | 1.637912  | 0.685281   |
| 22     | 1    | 0      | 4.065847  | -0.925920 | -1.340197  |
| 23     | 1    | 0      | 2.960415  | -1.572168 | 1.961514   |
| 24     | 1    | 0      | 2.016508  | -1.651216 | 3.453209   |
| 25     | 1    | 0      | 2.783196  | -3.106384 | 2.797010   |
| 26     | 1    | 0      | -0.350108 | -1.553141 | 3.133496   |
| 27     | 1    | 0      | -0.725560 | -0.713358 | 1.405499   |
| 28     | 1    | 0      | -1.145875 | -2.516711 | 1.787666   |
| 29     | 1    | 0      | 6.967443  | 1.442982  | -1.551164  |
| 30     | 1    | 0      | 6.011051  | 0.251430  | -2.445152  |
| 31     | 1    | 0      | 7.353274  | -0.234235 | 0.315351   |
| 32     | 1    | 0      | 6.359261  | 2.040533  | 0.850243   |
| 33     | 1    | 0      | 4.717661  | 2.461215  | 0.346793   |
| 34     | 1    | 0      | 4.973228  | 1.286752  | 1.649374   |
| 35     | 1    | 0      | 5.322746  | 1.842524  | -2.081657  |
| 36     | 1    | 0      | 5.984287  | -1.026542 | 1.116930   |
| 37     | 1    | 0      | 6.400533  | -1.447662 | -0.552784  |
| 38     | 26   | 0      | -1.712829 | 0.286342  | 0.291331   |
| 39     | 8    | 0      | -3.601098 | -0.057530 | 0.833316   |

| 40 | 8 | 0 | -1.728848 | 1.573586  | -1.300681 |
|----|---|---|-----------|-----------|-----------|
| 41 | 8 | 0 | -1.918447 | -1.303913 | -0.968679 |
| 42 | 8 | 0 | -1.607254 | 1.883189  | 1.478063  |
| 43 | 6 | 0 | -1.243414 | 3.069852  | 1.169398  |
| 44 | 6 | 0 | -1.403791 | 2.803007  | -1.295311 |
| 45 | 6 | 0 | -1.113448 | 3.557492  | -0.139903 |
| 46 | 6 | 0 | -0.977567 | 3.989157  | 2.341383  |
| 47 | 6 | 0 | -2.986972 | -1.901505 | -1.330316 |
| 48 | 6 | 0 | -4.491515 | -0.798567 | 0.295424  |
| 49 | 6 | 0 | -4.255535 | -1.689169 | -0.764662 |
| 50 | 6 | 0 | -2.826276 | -2.919242 | -2.439061 |
| 51 | 1 | 0 | -2.111811 | -3.687689 | -2.125164 |
| 52 | 1 | 0 | -3.768413 | -3.398193 | -2.712613 |
| 53 | 1 | 0 | -2.402661 | -2.426933 | -3.320468 |
| 54 | 1 | 0 | -5.090070 | -2.263165 | -1.147692 |
| 55 | 6 | 0 | -5.878728 | -0.680197 | 0.885320  |
| 56 | 1 | 0 | -6.214983 | 0.358865  | 0.808974  |
| 57 | 1 | 0 | -5.838336 | -0.924567 | 1.951830  |
| 58 | 1 | 0 | -6.603632 | -1.331667 | 0.393265  |
| 59 | 1 | 0 | -0.692331 | 4.996857  | 2.032197  |
| 60 | 1 | 0 | -0.180864 | 3.562711  | 2.959962  |
| 61 | 6 | 0 | -1.344947 | 3.472668  | -2.653176 |
| 62 | 1 | 0 | -2.315780 | 3.368639  | -3.148412 |
| 63 | 1 | 0 | -1.084248 | 4.531431  | -2.593065 |
| 64 | 1 | 0 | -0.831278 | 4.595320  | -0.268550 |
| 65 | 1 | 0 | -1.873623 | 4.043430  | 2.968187  |
| 66 | 1 | 0 | -0.610036 | 2.955439  | -3.278941 |

#### **TS1'**

| Center | Aton  | nic Ato | mic       | Coordinates | (Angstroms) |
|--------|-------|---------|-----------|-------------|-------------|
| Numł   | ber 1 | Number  | Туре      | X           | Ŷ Z         |
| 1      | 6     | 0       | -1.143457 | -3.366982   | -2.036069   |
| 2      | 6     | 0       | -1.819626 | -2.030755   | -1.669150   |
| 3      | 6     | 0       | -1.598408 | -1.651561   | -0.182714   |
| 4      | 6     | 0       | -1.752969 | -0.158967   | 0.007802    |
| 5      | 6     | 0       | -3.074029 | 0.463844    | 0.226988    |
| 6      | 6     | 0       | 0.362619  | -3.347160   | -1.841877   |
| 7      | 6     | 0       | -4.231181 | -0.203489   | 0.364985    |
| 8      | 1     | 0       | -1.396281 | -3.598332   | -3.082226   |
| 9      | 1     | 0       | -1.584161 | -4.174132   | -1.435974   |
| 10     | 1     | 0       | -2.892393 | -2.073152   | -1.893589   |
| 11     | 1     | 0       | -1.400044 | -1.239641   | -2.298919   |
| 12     | 1     | 0       | -0.576662 | -1.896735   | 0.109198    |
| 13     | 1     | 0       | -2.284675 | -2.213784   | 0.459063    |
| 14     | 8     | 0       | -0.773793 | 0.591201    | -0.077398   |
| 15     | 1     | 0       | -3.036897 | 1.548305    | 0.278567    |
| 16     | 6     | 0       | 1.116063  | -2.308816   | -2.328153   |
| 17     | 6     | 0       | -5.608699 | 0.379523    | 0.597004    |
| 18     | 6     | 0       | -6.154126 | -0.205545   | 1.922439    |
| 19     | 6     | 0       | -6.518805 | -0.077667   | -0.568934   |
| 20     | 6     | 0       | -5.602027 | 1.914522    | 0.674788    |

| 21 | 1  | 0    | -4.216127     | -1.292461 | 0.309539  |
|----|----|------|---------------|-----------|-----------|
| 22 | 1  | 0    | 0.727498      | -1.656752 | -3.105541 |
| 23 | 1  | 0    | 2.199943      | -2.354285 | -2.273786 |
| 24 | 1  | 0    | -7.176485     | 0.145776  | 2.099508  |
| 25 | 1  | 0    | -6.175706     | -1.300547 | 1.896530  |
| 26 | 1  | 0    | -7.544504     | 0.271877  | -0.408691 |
| 27 | 1  | 0    | -6.617736     | 2.285984  | 0.844633  |
| 28 | 1  | 0    | -4.974532     | 2.272234  | 1.497413  |
| 29 | 1  | 0    | -5.234333     | 2.362484  | -0.253965 |
| 30 | 1  | 0    | -5.536321     | 0.100500  | 2.772644  |
| 31 | 1  | 0    | -6.167070     | 0.323793  | -1.524607 |
| 32 | 1  | 0    | -6.545910     | -1.169831 | -0.650059 |
| 33 | 6  | 0    | 0.962684      | -4.410425 | -0.962646 |
| 34 | 1  | 0    | 0.562780      | -4.370988 | 0.062774  |
| 35 | 1  | 0    | 0.736011      | -5.418938 | -1.338039 |
| 36 | 1  | 0    | 2.050596      | -4.314579 | -0.897269 |
| 37 | 1  | 0    | 1.044337      | -0.934970 | -1.282783 |
| 38 | 26 | 0    | 1.559980      | 0.320083  | -0.158683 |
| 39 | 8  | 0    | 3.515195      | -0.019149 | 0.028874  |
| 40 | 8  | 0    | 1.285884      | -0.882426 | 1.452767  |
| 41 | 6  | 0    | 2.164787      | -1.403297 | 2.216521  |
| 42 | 6  | 0    | 4.152371      | -0.641129 | 0.945451  |
| 43 | 6  | 0    | 3.555078      | -1.316239 | 2.022493  |
| 44 | 6  | 0    | 1.625315      | -2.173594 | 3.402916  |
| 45 | 1  | 0    | 0.988498      | -2.989507 | 3.044437  |
| 46 | 1  | 0    | 2.414984      | -2.586980 | 4.033637  |
| 47 | 1  | 0    | 0.992226      | -1.511952 | 4.003097  |
| 48 | 1  | 0    | 4.202366      | -1.804773 | 2.740404  |
| 49 | 6  | 0    | 5.659256      | -0.622338 | 0.813932  |
| 50 | 1  | 0    | 6.008058      | 0.415587  | 0.826008  |
| 51 | 1  | 0    | 5.941976      | -1.042392 | -0.156874 |
| 52 | 1  | 0    | 6.159411      | -1.179707 | 1.608600  |
| 53 | 8  | 0    | 1.284637      | 2.021176  | 0.945409  |
| 54 | 8  | 0    | 1.771436      | 1.523995  | -1.753727 |
| 55 | 6  | 0    | 1.592921      | 2.786413  | -1.852956 |
| 56 | 6  | 0    | 1.174172      | 3.223867  | 0.551427  |
| 57 | 6  | 0    | 1.283989      | 3.646241  | -0.788653 |
| 58 | 6  | 0    | 1.755972      | 3.352356  | -3.247969 |
| 59 | 1  | 0    | 1.602568      | 4.433001  | -3.286954 |
| 60 | 1  | 0    | 1.045113      | 2.862953  | -3.922165 |
| 61 | 6  | 0    | 0.922699      | 4.252277  | 1.635981  |
| 62 | 1  | 0    | 1.742630      | 4.219722  | 2.361183  |
| 63 | 1  | 0    | 0.831163      | 5.267697  | 1.244141  |
| 64 | 1  | 0    | 1.168573      | 4.701880  | -1.002/90 |
| 65 | 1  | 0    | 2.759713      | 3.116518  | -3.616839 |
| 66 | 1  | 0    | 0.007436      | 3.989126  | 2.1/6432  |
|    |    |      | IM1           |           |           |
|    |    | Stan | dard orientat | ion:      |           |

| Cei | nter | Atomic | Atomic   | Coordi    | nates | (Angstror | ns) |
|-----|------|--------|----------|-----------|-------|-----------|-----|
| Nun | nber | Number | Type     | X         | Y     | Z         |     |
| 1   | 6    | 0      | 0.088396 | -2.484536 | 1.74  | 0372      |     |

| 2              | 6        | 0      | 1.526878  | -2.524884 | 1.191568  |
|----------------|----------|--------|-----------|-----------|-----------|
| 3              | 6        | 0      | 1.738356  | -1.944361 | -0.233447 |
| 4              | 6        | 0      | 1.875707  | -0.441101 | -0.227491 |
| 5              | 6        | 0      | 3.186248  | 0.229827  | -0.317006 |
| 6              | 6        | 0      | -0.560873 | -1.131126 | 2.070962  |
| 7              | 6        | 0      | 4.379434  | -0.384643 | -0.377736 |
| 8              | 1        | 0      | 0.106763  | -3.080732 | 2.673183  |
| 9              | 1        | 0      | -0.557144 | -3.040905 | 1.048977  |
| 10             | 1        | 0      | 1.833115  | -3.577308 | 1.150980  |
| 11             | 1        | 0      | 2.218656  | -2.041369 | 1.892358  |
| 12             | 1        | 0      | 0.870778  | -2.184737 | -0.853944 |
| 13             | 1        | 0      | 2.621839  | -2.401790 | -0.686006 |
| 14             | 8        | 0      | 0.880720  | 0.286748  | -0.109002 |
| 15             | 1        | 0      | 3.112216  | 1.313600  | -0.304428 |
| 16             | 6        | 0      | 0.321671  | -0.269020 | 2.971938  |
| 17             | 6        | 0      | -1.900098 | -1.393531 | 2.776391  |
| 18             | 6        | 0      | 5.744971  | 0.264473  | -0.437997 |
| 19             | 6        | 0      | 6.451747  | -0.239625 | -1.719925 |
| 20             | 6        | 0      | 6.547195  | -0.207597 | 0.799464  |
| 21             | 6        | Ő      | 5.678483  | 1.799967  | -0.455139 |
| 22             | 1        | Ő      | 4.410707  | -1.474114 | -0.378397 |
| 23             | 1        | 0      | 1.266282  | 0.023990  | 2.502984  |
| 24             | 1        | Õ      | -0.194199 | 0.651859  | 3.256054  |
| 25             | 1        | Ő      | 0 576461  | -0.810259 | 3 901289  |
| 26             | 1        | Ő      | -1.726624 | -1.891025 | 3.748188  |
| 27             | 1        | 0      | -2 446817 | -0 467497 | 2 982379  |
| 28             | 1        | 0<br>0 | -2 558646 | -2 048958 | 2 195760  |
| 29             | 1        | 0      | 7 470055  | 0.160571  | -1 772397 |
| $\frac{2}{30}$ | 1        | 0      | 6 520286  | -1 332886 | -1 735161 |
| 31             | 1        | 0      | 7 566111  | 0.193202  | 0 764597  |
| 32             | 1        | 0      | 6 688946  | 2 218035  | -0 505297 |
| 32             | 1        | 0      | 5 122029  | 2.218033  | -0.303257 |
| 34             | 1        | 0      | 5 200164  | 2.100207  | 0 447965  |
| 35             | 1        | 0      | 5 914178  | 0.078412  | -2 618877 |
| 36             | 1        | 0      | 6 077026  | 0.133521  | 1 727584  |
| 27             | 1        | 0      | 6 618061  | 1 200085  | 0.827484  |
| 28             | $26^{1}$ | 0      | 1 201406  | -1.300085 | 0.837484  |
| 20             | 20       | 0      | 2 207015  | -0.023040 | 0.310703  |
| 39<br>40       | 0        | 0      | -3.30/913 | -0.1/1029 | 1 410825  |
| 40<br>41       | 0        | 0      | -1.2/100/ | 1.204079  | -1.410823 |
| 41<br>12       | 0        | 0      | -1.529028 | -1.000743 | -0.96/9/3 |
| 42<br>12       | 6        | 0      | -1.440997 | 2 808122  | 0.045700  |
| 43             | 6        | 0      | -1.000130 | 2.090132  | 1 490676  |
| 44             | 6        | 0      | -1.43/944 | 2.430307  | -1.4690/0 |
| 45             | 6        | 0      | -1.39/043 | 2.007557  | -0.360134 |
| 40             | 6        | 0      | -1./9442/ | 3.907337  | 2.03/103  |
| 4/<br>10       | 6        | 0      | -2.304/07 | -2.031262 | -1.0/939/ |
| 40             | 6        | 0      | -4.0/8033 | -0.783703 | -0.312/13 |
| 49<br>50       | 0        | 0      | -5.04/092 | -1.0000/8 | -1.499009 |
| 50             | 0        | 0      | -1.73039/ | -3.039621 | -2.74/103 |
| 51             | 1        | 0      | -1.420032 | -3.910283 | -2.284903 |
| 52<br>52       | 1        | 0      | -2.80/313 | -3.423/89 | -3.299003 |
| 55             | 1        | 0      | -1.20092/ | -2.000100 | -3.446248 |
| 54             | I<br>C   | 0      | -4.39334/ | -2.140438 | -2.13/003 |
| 22             | 0        | 0      | -3.334/19 | -0.491339 | -0.330342 |

| 56 | 1 | 0 | -5.726987 | 0.579611  | -0.504948 |
|----|---|---|-----------|-----------|-----------|
| 57 | 1 | 0 | -5.862377 | -0.725761 | 0.667788  |
| 58 | 1 | 0 | -6.173202 | -1.056108 | -1.057424 |
| 59 | 1 | 0 | -1.909585 | 4.927903  | 1.685112  |
| 60 | 1 | 0 | -0.937593 | 3.866465  | 2.737918  |
| 61 | 6 | 0 | -1.464180 | 3.036578  | -2.891890 |
| 62 | 1 | 0 | -2.254359 | 2.546675  | -3.470188 |
| 63 | 1 | 0 | -1.627523 | 4.116541  | -2.902627 |
| 64 | 1 | 0 | -1.735817 | 4.381743  | -0.582934 |
| 65 | 1 | 0 | -2.679863 | 3.634640  | 2.641084  |
| 66 | 1 | 0 | -0.515905 | 2.811833  | -3.391553 |
|    |   |   |           |           |           |

| 1 | LS2 |  |
|---|-----|--|
|   |     |  |

| Ce  | enter | Atomic | Atomic    | Coord     | inates (Angs | stroms) |
|-----|-------|--------|-----------|-----------|--------------|---------|
| Nun | nber  | Number | Туре      | Х         | Y Z          |         |
| 1   | 8     | 0      | -2.461387 | -1.125129 | 0.878851     |         |
| 2   | 6     | 0      | -3.657322 | -1.550145 | 0.792930     |         |
| 3   | 6     | 0      | -4.631224 | -1.030384 | -0.083939    |         |
| 4   | 6     | 0      | -4.393262 | 0.025597  | -0.977567    |         |
| 5   | 8     | 0      | -3.273841 | 0.628079  | -1.123518    |         |
| 6   | 6     | 0      | -5.516767 | 0.523039  | -1.863067    |         |
| 7   | 6     | 0      | -4.023720 | -2.692926 | 1.719721     |         |
| 8   | 1     | 0      | -5.623708 | -1.464578 | -0.060516    |         |
| 9   | 1     | 0      | -6.447076 | -0.030481 | -1.717588    |         |
| 10  | 1     | 0      | -5.211161 | 0.446235  | -2.911928    |         |
| 11  | 1     | 0      | -5.695212 | 1.584601  | -1.660745    |         |
| 12  | 1     | 0      | -3.361544 | -3.543869 | 1.526947     |         |
| 13  | 1     | 0      | -5.061028 | -3.015307 | 1.605416     |         |
| 14  | 1     | 0      | -3.855211 | -2.385506 | 2.757315     |         |
| 15  | 6     | 0      | 1.548731  | -3.588195 | -0.153353    |         |
| 16  | 6     | 0      | 2.064706  | -3.354793 | -1.583870    |         |
| 17  | 6     | 0      | 1.258140  | -2.222665 | -2.259459    |         |
| 18  | 6     | 0      | 0.861795  | -1.170803 | -1.243859    |         |
| 19  | 6     | 0      | 1.885721  | -0.602207 | -0.353626    |         |
| 20  | 6     | 0      | 1.861954  | -2.450749 | 0.815754     |         |
| 21  | 6     | 0      | 3.146078  | -0.252105 | -0.856924    |         |
| 22  | 1     | 0      | 1.990889  | -4.513449 | 0.246923     |         |
| 23  | 1     | 0      | 0.465097  | -3.754323 | -0.191376    |         |
| 24  | 1     | 0      | 1.976275  | -4.270794 | -2.177333    |         |
| 25  | 1     | 0      | 3.129862  | -3.102209 | -1.554710    |         |
| 26  | 1     | 0      | 0.331034  | -2.603679 | -2.695284    |         |
| 27  | 1     | 0      | 1.836058  | -1.759508 | -3.068511    |         |
| 28  | 8     | 0      | -0.338819 | -0.882313 | -1.116210    |         |
| 29  | 1     | 0      | 1.465538  | 0.015248  | 0.435322     |         |
| 30  | 6     | 0      | 3.268622  | -2.484539 | 1.362858     |         |
| 31  | 6     | 0      | 0.790096  | -2.170784 | 1.839340     |         |
| 32  | 6     | 0      | 4.093337  | 0.804824  | -0.323508    |         |
| 33  | 6     | 0      | 4.188895  | 1.920526  | -1.398289    |         |
| 34  | 6     | 0      | 5.502231  | 0.190572  | -0.136816    |         |
| 35  | 6     | 0      | 3.624970  | 1.432725  | 1.000955     |         |
| 36  | 1     | 0      | 3.485186  | -0.727600 | -1.776768    |         |

| 37                                                                                                                                                                                 | 1                                                             | 0                                                                                      | 4.022903                                                                                                                                                                                      | -2.565389                                                                                                                                                            | 0.574588                                                                                                                                                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 38                                                                                                                                                                                 | 1                                                             | 0                                                                                      | 3.494508                                                                                                                                                                                      | -1.599070                                                                                                                                                            | 1.962794                                                                                                                                                                                    |
| 39                                                                                                                                                                                 | 1                                                             | 0                                                                                      | 3.382844                                                                                                                                                                                      | -3.361348                                                                                                                                                            | 2.018685                                                                                                                                                                                    |
| 40                                                                                                                                                                                 | 1                                                             | 0                                                                                      | 0.669931                                                                                                                                                                                      | -3.049681                                                                                                                                                            | 2.493635                                                                                                                                                                                    |
| 41                                                                                                                                                                                 | 1                                                             | 0                                                                                      | 1.046145                                                                                                                                                                                      | -1.322342                                                                                                                                                            | 2.480648                                                                                                                                                                                    |
| 42                                                                                                                                                                                 | 1                                                             | 0                                                                                      | -0.185302                                                                                                                                                                                     | -1.971766                                                                                                                                                            | 1.387143                                                                                                                                                                                    |
| 43                                                                                                                                                                                 | 1                                                             | 0                                                                                      | 4.900346                                                                                                                                                                                      | 2.693712                                                                                                                                                             | -1.085324                                                                                                                                                                                   |
| 44                                                                                                                                                                                 | 1                                                             | 0                                                                                      | 4.530983                                                                                                                                                                                      | 1.518662                                                                                                                                                             | -2.358445                                                                                                                                                                                   |
| 45                                                                                                                                                                                 | 1                                                             | 0                                                                                      | 6.223685                                                                                                                                                                                      | 0.965728                                                                                                                                                             | 0.145970                                                                                                                                                                                    |
| 46                                                                                                                                                                                 | 1                                                             | 0                                                                                      | 4.353202                                                                                                                                                                                      | 2.179250                                                                                                                                                             | 1.335740                                                                                                                                                                                    |
| 47                                                                                                                                                                                 | 1                                                             | 0                                                                                      | 2.659952                                                                                                                                                                                      | 1.938060                                                                                                                                                             | 0.893297                                                                                                                                                                                    |
| 48                                                                                                                                                                                 | 1                                                             | 0                                                                                      | 3.532217                                                                                                                                                                                      | 0.685004                                                                                                                                                             | 1.795465                                                                                                                                                                                    |
| 49                                                                                                                                                                                 | 1                                                             | 0                                                                                      | 3.215517                                                                                                                                                                                      | 2.394632                                                                                                                                                             | -1.557532                                                                                                                                                                                   |
| 50                                                                                                                                                                                 | 1                                                             | 0                                                                                      | 5.504329                                                                                                                                                                                      | -0.573551                                                                                                                                                            | 0.645928                                                                                                                                                                                    |
| 51                                                                                                                                                                                 | 1                                                             | 0                                                                                      | 5.858214                                                                                                                                                                                      | -0.273501                                                                                                                                                            | -1.063649                                                                                                                                                                                   |
| 52                                                                                                                                                                                 | 26                                                            | 0                                                                                      | -1.574227                                                                                                                                                                                     | 0.425542                                                                                                                                                             | -0.098661                                                                                                                                                                                   |
| 52                                                                                                                                                                                 | -                                                             | -                                                                                      | 0 = 10 0 1 1                                                                                                                                                                                  | 0.050(00                                                                                                                                                             | 1 002025                                                                                                                                                                                    |
| 55                                                                                                                                                                                 | 8                                                             | 0                                                                                      | -0.743844                                                                                                                                                                                     | 2.050693                                                                                                                                                             | -1.003935                                                                                                                                                                                   |
| 55<br>54                                                                                                                                                                           | 8<br>6                                                        | 0<br>0                                                                                 | -0.743844<br>-0.263879                                                                                                                                                                        | 2.050693<br>3.101214                                                                                                                                                 | -1.003935<br>-0.477901                                                                                                                                                                      |
| 53<br>54<br>55                                                                                                                                                                     | 8<br>6<br>6                                                   | 0<br>0<br>0                                                                            | -0.743844<br>-0.263879<br>-0.019308                                                                                                                                                           | 2.050693<br>3.101214<br>3.263926                                                                                                                                     | -1.003935<br>-0.477901<br>0.905418                                                                                                                                                          |
| 55<br>54<br>55<br>56                                                                                                                                                               | 8<br>6<br>6                                                   | 0<br>0<br>0<br>0                                                                       | -0.743844<br>-0.263879<br>-0.019308<br>-0.287746                                                                                                                                              | 2.050693<br>3.101214<br>3.263926<br>2.274601                                                                                                                         | -1.003935<br>-0.477901<br>0.905418<br>1.863377                                                                                                                                              |
| 53<br>54<br>55<br>56<br>57                                                                                                                                                         | 8<br>6<br>6<br>8                                              | 0<br>0<br>0<br>0<br>0                                                                  | -0.743844<br>-0.263879<br>-0.019308<br>-0.287746<br>-0.740889                                                                                                                                 | 2.050693<br>3.101214<br>3.263926<br>2.274601<br>1.104095                                                                                                             | -1.003935<br>-0.477901<br>0.905418<br>1.863377<br>1.603629                                                                                                                                  |
| 55<br>54<br>55<br>56<br>57<br>58                                                                                                                                                   | 8<br>6<br>6<br>8<br>6                                         | 0<br>0<br>0<br>0<br>0<br>0                                                             | -0.743844<br>-0.263879<br>-0.019308<br>-0.287746<br>-0.740889<br>0.054065                                                                                                                     | 2.050693<br>3.101214<br>3.263926<br>2.274601<br>1.104095<br>4.239272                                                                                                 | -1.003935<br>-0.477901<br>0.905418<br>1.863377<br>1.603629<br>-1.428175                                                                                                                     |
| 53<br>54<br>55<br>56<br>57<br>58<br>59                                                                                                                                             | 8<br>6<br>6<br>8<br>6<br>6                                    | 0<br>0<br>0<br>0<br>0<br>0<br>0                                                        | -0.743844<br>-0.263879<br>-0.019308<br>-0.287746<br>-0.740889<br>0.054065<br>-0.031288                                                                                                        | 2.050693<br>3.101214<br>3.263926<br>2.274601<br>1.104095<br>4.239272<br>2.562512                                                                                     | -1.003935<br>-0.477901<br>0.905418<br>1.863377<br>1.603629<br>-1.428175<br>3.328320                                                                                                         |
| 53<br>54<br>55<br>56<br>57<br>58<br>59<br>60                                                                                                                                       | 8<br>6<br>6<br>8<br>6<br>6<br>1                               | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                              | -0.743844<br>-0.263879<br>-0.019308<br>-0.287746<br>-0.740889<br>0.054065<br>-0.031288<br>0.366988                                                                                            | 2.050693<br>3.101214<br>3.263926<br>2.274601<br>1.104095<br>4.239272<br>2.562512<br>4.216351                                                                         | -1.003935<br>-0.477901<br>0.905418<br>1.863377<br>1.603629<br>-1.428175<br>3.328320<br>1.248761                                                                                             |
| 55<br>56<br>57<br>58<br>59<br>60<br>61                                                                                                                                             | 8<br>6<br>6<br>8<br>6<br>6<br>1<br>1                          | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                         | $\begin{array}{r} -0.743844\\ -0.263879\\ -0.019308\\ -0.287746\\ -0.740889\\ 0.054065\\ -0.031288\\ 0.366988\\ 0.779861\end{array}$                                                          | 2.050693<br>3.101214<br>3.263926<br>2.274601<br>1.104095<br>4.239272<br>2.562512<br>4.216351<br>3.898484                                                             | -1.003935<br>-0.477901<br>0.905418<br>1.863377<br>1.603629<br>-1.428175<br>3.328320<br>1.248761<br>-2.174559                                                                                |
| 55<br>56<br>57<br>58<br>59<br>60<br>61<br>62                                                                                                                                       | 8<br>6<br>6<br>8<br>6<br>1<br>1<br>1                          | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                    | $\begin{array}{r} -0.743844\\ -0.263879\\ -0.019308\\ -0.287746\\ -0.740889\\ 0.054065\\ -0.031288\\ 0.366988\\ 0.779861\\ 0.452300\end{array}$                                               | 2.050693<br>3.101214<br>3.263926<br>2.274601<br>1.104095<br>4.239272<br>2.562512<br>4.216351<br>3.898484<br>5.119664                                                 | -1.003935<br>-0.477901<br>0.905418<br>1.863377<br>1.603629<br>-1.428175<br>3.328320<br>1.248761<br>-2.174559<br>-0.918694                                                                   |
| 55<br>56<br>57<br>58<br>59<br>60<br>61<br>62<br>63                                                                                                                                 | 8<br>6<br>6<br>8<br>6<br>1<br>1<br>1<br>1<br>1                | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                          | -0.743844<br>-0.263879<br>-0.019308<br>-0.287746<br>-0.740889<br>0.054065<br>-0.031288<br>0.366988<br>0.779861<br>0.452300<br>-0.854292                                                       | 2.050693<br>3.101214<br>3.263926<br>2.274601<br>1.104095<br>4.239272<br>2.562512<br>4.216351<br>3.898484<br>5.119664<br>4.517455                                     | -1.003935<br>-0.477901<br>0.905418<br>1.863377<br>1.603629<br>-1.428175<br>3.328320<br>1.248761<br>-2.174559<br>-0.918694<br>-1.972628                                                      |
| 55<br>56<br>57<br>58<br>59<br>60<br>61<br>62<br>63<br>64                                                                                                                           | 8<br>6<br>6<br>8<br>6<br>1<br>1<br>1<br>1<br>1<br>1<br>1      | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                | -0.743844<br>-0.263879<br>-0.019308<br>-0.287746<br>-0.740889<br>0.054065<br>-0.031288<br>0.366988<br>0.779861<br>0.452300<br>-0.854292<br>0.375908                                           | 2.050693<br>3.101214<br>3.263926<br>2.274601<br>1.104095<br>4.239272<br>2.562512<br>4.216351<br>3.898484<br>5.119664<br>4.517455<br>3.561667                         | -1.003935<br>-0.477901<br>0.905418<br>1.863377<br>1.603629<br>-1.428175<br>3.328320<br>1.248761<br>-2.174559<br>-0.918694<br>-1.972628<br>3.498257                                          |
| 55<br>56<br>57<br>58<br>59<br>60<br>61<br>62<br>63<br>64<br>65                                                                                                                     | 8<br>6<br>6<br>8<br>6<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0           | $\begin{array}{r} -0.743844\\ -0.263879\\ -0.019308\\ -0.287746\\ -0.740889\\ 0.054065\\ -0.031288\\ 0.366988\\ 0.779861\\ 0.452300\\ -0.854292\\ 0.375908\\ 0.663569\end{array}$             | 2.050693<br>3.101214<br>3.263926<br>2.274601<br>1.104095<br>4.239272<br>2.562512<br>4.216351<br>3.898484<br>5.119664<br>4.517455<br>3.561667<br>1.817596             | -1.003935<br>-0.477901<br>0.905418<br>1.863377<br>1.603629<br>-1.428175<br>3.328320<br>1.248761<br>-2.174559<br>-0.918694<br>-1.972628<br>3.498257<br>3.730782                              |
| <ul> <li>53</li> <li>54</li> <li>55</li> <li>56</li> <li>57</li> <li>58</li> <li>59</li> <li>60</li> <li>61</li> <li>62</li> <li>63</li> <li>64</li> <li>65</li> <li>66</li> </ul> |                                                               | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | $\begin{array}{r} -0.743844\\ -0.263879\\ -0.019308\\ -0.287746\\ -0.740889\\ 0.054065\\ -0.031288\\ 0.366988\\ 0.779861\\ 0.452300\\ -0.854292\\ 0.375908\\ 0.663569\\ -0.967621\end{array}$ | 2.050693<br>3.101214<br>3.263926<br>2.274601<br>1.104095<br>4.239272<br>2.562512<br>4.216351<br>3.898484<br>5.119664<br>4.517455<br>3.561667<br>1.817596<br>2.457026 | $\begin{array}{r} -1.003935\\ -0.477901\\ 0.905418\\ 1.863377\\ 1.603629\\ -1.428175\\ 3.328320\\ 1.248761\\ -2.174559\\ -0.918694\\ -1.972628\\ 3.498257\\ 3.730782\\ 3.886688\end{array}$ |

| Cer | nter | Atomic | Atomic    | Coordi    | nates (Angs |
|-----|------|--------|-----------|-----------|-------------|
| Nur | nber | Number | Туре      | Х         | Y Z         |
| 1   | 8    | 0      | -1.560464 | -1.720831 | 0.660305    |
| 2   | 6    | 0      | -2.524066 | -2.547487 | 0.593528    |
| 3   | 6    | 0      | -3.691923 | -2.359648 | -0.176557   |
| 4   | 6    | 0      | -3.936673 | -1.231845 | -0.973594   |
| 5   | 8    | 0      | -3.145360 | -0.232448 | -1.106214   |
| 6   | 6    | 0      | -5.223863 | -1.142370 | -1.765410   |
| 7   | 6    | 0      | -2.371001 | -3.816400 | 1.409438    |
| 8   | 1    | 0      | -4.446655 | -3.136710 | -0.153490   |
| 9   | 1    | 0      | -5.861623 | -2.019263 | -1.635459   |
| 10  | 1    | 0      | -4.986627 | -1.022147 | -2.827796   |
| 11  | 1    | 0      | -5.776219 | -0.247302 | -1.459832   |
| 12  | 1    | 0      | -1.465489 | -4.345563 | 1.093427    |
| 13  | 1    | 0      | -3.227094 | -4.487835 | 1.314435    |
| 14  | 1    | 0      | -2.236114 | -3.553147 | 2.463851    |
| 15  | 6    | 0      | 2.866195  | -3.123382 | -0.062273   |
| 16  | 6    | 0      | 3.060487  | -2.778813 | -1.543694   |
| 17  | 6    | 0      | 1.845295  | -1.982318 | -2.045940   |
| 18 | 6  | 0 | 1.326392  | -0.992949 | -1.019549 |
|----|----|---|-----------|-----------|-----------|
| 19 | 6  | 0 | 2.230492  | -0.614813 | 0.142518  |
| 20 | 6  | 0 | 2.840834  | -1.880565 | 0.876206  |
| 21 | 6  | 0 | 3.195634  | 0.333434  | -0.513667 |
| 22 | 1  | 0 | 3.647202  | -3.812006 | 0.280498  |
| 23 | 1  | 0 | 1.916040  | -3.666103 | 0.035368  |
| 24 | 1  | 0 | 3.170585  | -3.691484 | -2.139109 |
| 25 | 1  | 0 | 3.987047  | -2.210647 | -1.685266 |
| 26 | 1  | 0 | 1.007841  | -2.655639 | -2.265612 |
| 27 | 1  | 0 | 2.053426  | -1.448294 | -2.981637 |
| 28 | 8  | 0 | 0.203285  | -0.490329 | -1.169214 |
| 29 | 1  | 0 | 1.614169  | -0.066773 | 0.859065  |
| 30 | 6  | 0 | 4.262412  | -1.575185 | 1.383074  |
| 31 | 6  | 0 | 1.933110  | -2.196755 | 2.082079  |
| 32 | 6  | 0 | 3.098724  | 1.843789  | -0.539503 |
| 33 | 6  | 0 | 2.412380  | 2.303431  | -1.855935 |
| 34 | 6  | 0 | 4.541557  | 2.403324  | -0.513984 |
| 35 | 6  | 0 | 2.315404  | 2.411165  | 0.659352  |
| 36 | 1  | 0 | 3.943747  | -0.095140 | -1.177608 |
| 37 | 1  | 0 | 4.978220  | -1.452093 | 0.564355  |
| 38 | 1  | 0 | 4.283087  | -0.657903 | 1.980918  |
| 39 | 1  | 0 | 4.616787  | -2.396585 | 2.015871  |
| 40 | 1  | 0 | 2.245424  | -3.130878 | 2.563771  |
| 41 | 1  | 0 | 1.983164  | -1.400124 | 2.832735  |
| 42 | 1  | 0 | 0.886462  | -2.300507 | 1.775435  |
| 43 | 1  | 0 | 2.424984  | 3.398184  | -1.925434 |
| 44 | 1  | 0 | 2.937168  | 1.908272  | -2.732951 |
| 45 | 1  | 0 | 4.529102  | 3.497187  | -0.575372 |
| 46 | 1  | 0 | 2.331111  | 3.505790  | 0.630226  |
| 47 | 1  | 0 | 1.268038  | 2.100521  | 0.649126  |
| 48 | 1  | 0 | 2.758903  | 2.096701  | 1.610902  |
| 49 | 1  | 0 | 1.370772  | 1.973392  | -1.895596 |
| 50 | 1  | 0 | 5.060755  | 2.120288  | 0.407761  |
| 51 | 1  | 0 | 5.128109  | 2.027932  | -1.360294 |
| 52 | 26 | 0 | -1.438902 | 0.149947  | -0.166845 |
| 53 | 8  | 0 | -1.319696 | 2.043603  | -0.944160 |
| 54 | 6  | 0 | -1.511153 | 3.136247  | -0.326452 |
| 55 | 6  | 0 | -1.554064 | 3.265860  | 1.080714  |
| 56 | 6  | 0 | -1.361462 | 2.200073  | 1.969893  |
| 57 | 8  | 0 | -1.128083 | 0.984994  | 1.627953  |
| 58 | 6  | 0 | -1.683965 | 4.369480  | -1.190430 |
| 59 | 6  | 0 | -1.402923 | 2.453697  | 3.461835  |
| 60 | 1  | 0 | -1.736463 | 4.249247  | 1.497279  |
| 61 | 1  | 0 | -0.789309 | 4.506245  | -1.807248 |
| 62 | 1  | 0 | -1.858063 | 5.276351  | -0.607047 |
| 63 | 1  | 0 | -2.523174 | 4.213673  | -1.876096 |
| 64 | 1  | 0 | -1.579436 | 3.502949  | 3.707937  |
| 65 | 1  | 0 | -0.456996 | 2.131935  | 3.910373  |
| 66 | 1  | 0 | -2.191820 | 1.841105  | 3.911220  |
|    |    |   |           |           |           |

## syn-TS3

| ~      |        |        |                         |
|--------|--------|--------|-------------------------|
| Center | Atomic | Atomic | Coordinates (Angstroms) |

| Nun | nber          | Number | Туре      | Х         | Y        | Ζ        |
|-----|---------------|--------|-----------|-----------|----------|----------|
| 1   | 8             | 0      | -1.269275 | -1.841548 | 0.65434  | <br>14   |
| 2   | 6             | Ő      | -2.083913 | -2.810723 | 0.5437   | 50       |
| 3   | 6             | Ő      | -3.231770 | -2.804295 | -0.2780] | 18       |
| 4   | 6             | 0      | -3.617249 | -1.718856 | -1.07574 | 44       |
| 5   | 8             | 0      | -2.995480 | -0.599494 | -1.1526  | 71       |
| 6   | 6             | 0      | -4.858566 | -1.821908 | -1.9346  | 70       |
| 7   | 6             | 0      | -1.762586 | -4.047944 | 1.35845  | 55       |
| 8   | 1             | 0      | -3.849889 | -3.693749 | -0.29710 | )7       |
| 9   | 1             | 0      | -5.350349 | -2.793377 | -1.85171 | 15       |
| 10  | 1             | 0      | -4.589606 | -1.640814 | -2.9806  | 67       |
| 11  | 1             | 0      | -5.564387 | -1.035377 | -1.6471  | 04       |
| 12  | 1             | 0      | -0.787113 | -4.441765 | 1.0526   | 68       |
| 13  | 1             | 0      | -2.512775 | -4.834024 | 1.2488   | 92       |
| 14  | 1             | 0      | -1.679961 | -3.772407 | 2.4148   | 28       |
| 15  | 6             | 0      | 3.250336  | -2.768360 | -0.0320  | 19       |
| 16  | 6             | 0      | 3.292927  | -2.404929 | -1.5211  | 14       |
| 17  | 6             | 0      | 1.975954  | -1.725776 | -1.9255  | 12       |
| 18  | 6             | 0      | 1.481280  | -0.720968 | -0.9020  | 55       |
| 19  | 6             | 0      | 2.356829  | -0.365447 | 0.2736   | 75       |
| 20  | 6             | 0      | 3.167031  | -1.542223 | 0.9234   | 66       |
| 21  | 6             | 0      | 3.052595  | 0.644155  | -0.5775  | 74       |
| 22  | 1             | 0      | 4.122061  | -3.374324 | 0.2425   | 44       |
| 23  | 1             | 0      | 2.370561  | -3.405519 | 0.1309   | 66       |
| 24  | 1             | 0      | 3.437713  | -3.306268 | -2.1269  | 23       |
| 25  | 1             | 0      | 4.151812  | -1.757612 | -1.7351  | 09       |
| 26  | 1             | 0      | 1.182331  | -2.482367 | -1.9965  | 42       |
| 27  | 1             | 0      | 2.032789  | -1.259082 | -2.9161  | 48       |
| 28  | 8             | 0      | 0.322730  | -0.236153 | -1.0348  | 17       |
| 29  | 1             | 0      | 1.740624  | 0.123653  | 1.0303   | 15       |
| 30  | 6             | 0      | 4.580841  | -1.067896 | 1.3067   | 90       |
| 31  | 6             | 0      | 2.411415  | -1.970511 | 2.1977   | 82       |
| 32  | 6             | 0      | 2.771925  | 2.131369  | -0.6584  | 80       |
| 33  | 6             | 0      | 2.171008  | 2.480346  | -2.0452  | 38       |
| 34  | 6             | 0      | 4.134234  | 2.858568  | -0.5163  | 14       |
| 35  | 6             | 0      | 1.821444  | 2.628327  | 0.4449   | 98       |
| 36  | 1             | 0      | 3.838083  | 0.287791  | -1.2384  | 02       |
| 37  | 1             | 0      | 5.195262  | -0.848737 | 0.4278   | 28       |
| 38  | 1             | 0      | 4.541940  | -0.159309 | 1.9174   | 40       |
| 39  | 1             | 0      | 5.094120  | -1.841588 | 1.8885   | 85       |
| 40  | 1             | 0      | 2.866307  | -2.865978 | 2.6374   | 34       |
| 41  | 1             | 0      | 2.432525  | -1.178625 | 2.9550   | 18       |
| 42  | 1             | 0      | 1.362318  | -2.192855 | 1.9729   | 91       |
| 43  | 1             | 0      | 2.064906  | 3.566621  | -2.1523  | 27       |
| 44  | l             | 0      | 2.819489  | 2.127584  | -2.8552  | 47       |
| 45  | 1             | 0      | 3.997685  | 3.942304  | -0.60/// | 83       |
| 46  | 1             | 0      | 1.685141  | 3./11418  | 0.3567   | 11       |
| 4/  | 1             | 0      | 0.836189  | 2.164424  | 0.3698   | 22<br>40 |
| 48  | 1             | 0      | 2.224591  | 2.426456  | 1.4437   | 49       |
| 49  | 1             | 0      | 1.184840  | 2.025447  | -2.16/3  | 22       |
| 50  | 1             | 0      | 4.393033  | 2.034820  | 0.4559   | 38<br>04 |
| 51  | $\frac{1}{2}$ | 0      | 4.030/40  | 2.343370  | -1.2901  | 04       |
| 54  | 20            | U      | -1.401944 | 0.033223  | -0.1044  | ·/+      |

| 53 | 8 | 0 | -1.655212 | 1.937174 | -0.878805 |
|----|---|---|-----------|----------|-----------|
| 54 | 6 | 0 | -2.054916 | 2.955758 | -0.234961 |
| 55 | 6 | 0 | -2.145823 | 3.029656 | 1.173799  |
| 56 | 6 | 0 | -1.789689 | 1.984480 | 2.035147  |
| 57 | 8 | 0 | -1.358208 | 0.833586 | 1.664180  |
| 58 | 6 | 0 | -2.434820 | 4.162846 | -1.067816 |
| 59 | 6 | 0 | -1.888275 | 2.180448 | 3.532377  |
| 60 | 1 | 0 | -2.498117 | 3.954396 | 1.614492  |
| 61 | 1 | 0 | -3.236566 | 3.883435 | -1.759265 |
| 62 | 1 | 0 | -1.577560 | 4.464268 | -1.678710 |
| 63 | 1 | 0 | -2.760873 | 5.011139 | -0.462156 |
| 64 | 1 | 0 | -2.246165 | 3.175160 | 3.806042  |
| 65 | 1 | 0 | -0.904584 | 2.013892 | 3.984134  |
| 66 | 1 | 0 | -2.562321 | 1.426328 | 3.952296  |
|    |   |   |           |          |           |

| Ce  | nter | Atomic | Atomic    | Coordi    | nates (Angs | stroms) |
|-----|------|--------|-----------|-----------|-------------|---------|
| Nun | nber | Number | Type      | Х         | Y Z         |         |
| 1   | 8    | 0      | -0.959011 | -1.741831 | 1.074641    | -       |
| 2   | 6    | 0      | -1.171055 | -2.987419 | 0.887996    |         |
| 3   | 6    | 0      | -1.834226 | -3.519032 | -0.230738   |         |
| 4   | 6    | 0      | -2.347693 | -2.717671 | -1.261480   |         |
| 5   | 8    | 0      | -2.271331 | -1.441081 | -1.292502   |         |
| 6   | 6    | 0      | -3.051456 | -3.351657 | -2.438272   |         |
| 7   | 6    | 0      | -0.654415 | -3.907858 | 1.969523    |         |
| 8   | 1    | 0      | -1.962038 | -4.592169 | -0.296159   |         |
| 9   | 1    | 0      | -3.102720 | -4.439373 | -2.360442   |         |
| 10  | 1    | 0      | -2.528112 | -3.078473 | -3.360455   |         |
| 11  | 1    | 0      | -4.064886 | -2.944540 | -2.514391   |         |
| 12  | 1    | 0      | 0.430613  | -3.789221 | 2.058415    |         |
| 13  | 1    | 0      | -0.886383 | -4.956653 | 1.774208    |         |
| 14  | 1    | 0      | -1.087457 | -3.612198 | 2.930464    |         |
| 15  | 6    | 0      | 3.252466  | -2.218322 | 0.007900    |         |
| 16  | 6    | 0      | 2.969095  | -1.940557 | -1.473582   |         |
| 17  | 6    | 0      | 1.620469  | -1.225302 | -1.636525   |         |
| 18  | 6    | 0      | 1.481295  | 0.009420  | -0.750844   |         |
| 19  | 6    | 0      | 2.408805  | 0.151891  | 0.450526    |         |
| 20  | 6    | 0      | 3.411378  | -0.942809 | 0.880131    |         |
| 21  | 6    | 0      | 2.591978  | 1.040526  | -0.771752   |         |
| 22  | 1    | 0      | 4.149454  | -2.841301 | 0.117215    |         |
| 23  | 1    | 0      | 2.415075  | -2.811043 | 0.401569    |         |
| 24  | 1    | 0      | 2.948133  | -2.884340 | -2.031392   |         |
| 25  | 1    | 0      | 3.780474  | -1.349441 | -1.917004   |         |
| 26  | 1    | 0      | 0.822003  | -1.923688 | -1.353645   |         |
| 27  | 1    | 0      | 1.440840  | -0.947493 | -2.683052   |         |
| 28  | 8    | 0      | 0.179712  | 0.457384  | -0.628501   |         |
| 29  | 1    | 0      | 1.928963  | 0.656163  | 1.285931    |         |
| 30  | 6    | 0      | 4.859692  | -0.419151 | 0.793742    |         |
| 31  | 6    | 0      | 3.111490  | -1.317866 | 2.345905    |         |
| 32  | 6    | 0      | 2.393896  | 2.568515  | -0.796717   |         |
| 33  | 6    | 0      | 1.735663  | 2.943211  | -2.141895   |         |

| 34 | 6  | 0 | 3.786705  | 3.229597  | -0.710141 |
|----|----|---|-----------|-----------|-----------|
| 35 | 6  | 0 | 1.530808  | 3.107057  | 0.360077  |
| 36 | 1  | 0 | 3.417706  | 0.752070  | -1.422829 |
| 37 | 1  | 0 | 5.157837  | -0.204032 | -0.237098 |
| 38 | 1  | 0 | 4.975836  | 0.505649  | 1.369291  |
| 39 | 1  | 0 | 5.563238  | -1.157331 | 1.196685  |
| 40 | 1  | 0 | 3.743796  | -2.150312 | 2.677118  |
| 41 | 1  | 0 | 3.296887  | -0.470702 | 3.016377  |
| 42 | 1  | 0 | 2.063374  | -1.614657 | 2.464014  |
| 43 | 1  | 0 | 1.638851  | 4.031020  | -2.242842 |
| 44 | 1  | 0 | 2.335563  | 2.583498  | -2.986349 |
| 45 | 1  | 0 | 3.701741  | 4.322217  | -0.738041 |
| 46 | 1  | 0 | 1.408815  | 4.191437  | 0.255003  |
| 47 | 1  | 0 | 0.540492  | 2.648400  | 0.368122  |
| 48 | 1  | 0 | 2.003912  | 2.924953  | 1.331242  |
| 49 | 1  | 0 | 0.740598  | 2.496254  | -2.218463 |
| 50 | 1  | 0 | 4.296986  | 2.955264  | 0.219886  |
| 51 | 1  | 0 | 4.426526  | 2.924049  | -1.546230 |
| 52 | 26 | 0 | -1.424625 | -0.142618 | -0.045854 |
| 53 | 8  | 0 | -2.660391 | 1.199658  | -0.871389 |
| 54 | 6  | 0 | -3.160302 | 2.266053  | -0.381604 |
| 55 | 6  | 0 | -3.071917 | 2.635133  | 0.972647  |
| 56 | 6  | 0 | -2.430871 | 1.844652  | 1.935771  |
| 57 | 8  | 0 | -1.842623 | 0.733254  | 1.690230  |
| 58 | 6  | 0 | -3.894414 | 3.152036  | -1.361219 |
| 59 | 6  | 0 | -2.406509 | 2.279872  | 3.382328  |
| 60 | 1  | 0 | -3.539319 | 3.559093  | 1.289064  |
| 61 | 1  | 0 | -3.200406 | 3.470577  | -2.146039 |
| 62 | 1  | 0 | -4.329759 | 4.033237  | -0.886024 |
| 63 | 1  | 0 | -4.685110 | 2.573188  | -1.849140 |
| 64 | 1  | 0 | -2.941775 | 3.216888  | 3.547311  |
| 65 | 1  | 0 | -1.366786 | 2.395678  | 3.705812  |
| 66 | 1  | 0 | -2.848846 | 1.494411  | 4.003593  |
|    |    |   |           |           |           |

#### anti-TS3

| Cen | ter | Atomic | Atomic    | Coordi    | nates (Angs |
|-----|-----|--------|-----------|-----------|-------------|
| Num | ber | Number | Type      | Х         | Y Z         |
|     |     | ·      |           |           |             |
| 1   | 8   | 0      | -2.054713 | -1.532402 | 0.635445    |
| 2   | 6   | 0      | -3.149375 | -2.169450 | 0.551316    |
| 3   | 6   | 0      | -4.259913 | -1.760333 | -0.220226   |
| 4   | 6   | 0      | -4.285396 | -0.593924 | -0.994259   |
| 5   | 8   | 0      | -3.323755 | 0.249490  | -1.094818   |
| 6   | 6   | 0      | -5.520498 | -0.254496 | -1.799647   |
| 7   | 6   | 0      | -3.230679 | -3.461421 | 1.340311    |
| 8   | 1   | 0      | -5.142171 | -2.388945 | -0.218273   |
| 9   | 1   | 0      | -6.309387 | -1.002825 | -1.698397   |
| 10  | 1   | 0      | -5.246795 | -0.158196 | -2.855623   |
| 11  | 1   | 0      | -5.904974 | 0.720141  | -1.480592   |
| 12  | 1   | 0      | -2.461818 | -4.154213 | 0.981254    |
| 13  | 1   | 0      | -4.207126 | -3.944646 | 1.263819    |
| 14  | 1   | 0      | -3.010644 | -3.255591 | 2.392846    |

| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15       | 6      | 0      | 2.562106        | -3.178344 | -0.283092 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------|--------|-----------------|-----------|-----------|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 16       | 6      | 0      | 2.864376        | -2.617469 | -1.675138 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 17       | 6      | 0      | 1.721598        | -1.699424 | -2.144932 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 18       | 6      | 0      | 1.065468        | -0.917640 | -1.020276 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 19       | 6      | Ō      | 1.742041        | -0.814048 | 0.329051  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20       | 6      | Ő      | 2.488208        | -2.100887 | 0.834769  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 21       | 6      | 0<br>0 | 2 276326        | 0 524819  | -0 126507 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 21       | 1      | Õ      | 3 309671        | -3 929960 | -0.002058 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 22       | 1      | 0      | 1 599032        | -3.705301 | -0.327490 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 23       | 1      | 0      | 2 08/280        | 3 /36180  | 2 303535  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 24       | 1      | 0      | 2.904200        | 2 083800  | 1 663010  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 25       | 1      | 0      | 0.010271        | -2.085899 | -1.003910 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20       | 1      | 0      | 2 027224        | 1.028003  | -2.300977 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 21       | 1      | 0      | 2.03/234        | -1.028005 | -2.932140 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 28       | ð<br>1 | 0      | -0.110961       | -0.483041 | -1.206240 |
| 30 $6$ $0$ $3.884344$ $-1.808484$ $1.40877$ $31$ $6$ $0$ $1.620378$ $-2.675607$ $1.978692$ $32$ $1$ $0$ $4.607494$ $-1.526288$ $0.640894$ $33$ $1$ $0$ $3.845707$ $-1.002353$ $2.148247$ $34$ $1$ $0$ $4.273830$ $-2.700554$ $1.912508$ $35$ $1$ $0$ $2.005555$ $-3.649571$ $2.302641$ $36$ $1$ $0$ $1.619941$ $-2.007647$ $2.847285$ $37$ $1$ $0$ $0.581198$ $-2.805316$ $1.658526$ $38$ $26$ $0$ $-1.573459$ $0.294684$ $-0.174583$ $39$ $8$ $0$ $-1.282612$ $2.218904$ $-0.787539$ $40$ $6$ $0$ $-1.005501$ $3.250891$ $-0.105440$ $41$ $6$ $0$ $-0.707299$ $3.238386$ $1.278159$ $42$ $6$ $0$ $-0.707299$ $3.238386$ $1.278159$ $42$ $6$ $0$ $-0.707299$ $3.238386$ $1.278159$ $42$ $6$ $0$ $-0.998040$ $4.566723$ $-0.856923$ $45$ $6$ $0$ $-0.998040$ $4.566723$ $-0.856923$ $45$ $6$ $0$ $-0.771536$ $4.512519$ $-1.674497$ $48$ $1$ $0$ $-0.756839$ $5.418781$ $-0.217640$ $49$ $1$ $0$ $-1.259209$ $1.802271$ $4.113305$ $53$ $6$ $0$ $3.550892$                                | 29       | l      | 0      | 0.96061/        | -0.5/9245 | 1.056880  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30       | 6      | 0      | 3.884544        | -1.808484 | 1.408///  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 31       | 6      | 0      | 1.620378        | -2.6/560/ | 1.9/8692  |
| 3310 $3.845707$ $-1.002353$ $2.148247$ 3410 $4.273830$ $-2.700554$ $1.912508$ 3510 $2.005555$ $-3.649571$ $2.302641$ 3610 $1.619941$ $-2.007647$ $2.847285$ 3710 $0.581198$ $-2.805316$ $1.658526$ 38260 $-1.573459$ $0.294684$ $-0.174583$ 3980 $-1.282612$ $2.218904$ $-0.787539$ 4060 $-1.005501$ $3.250891$ $-0.105440$ 4160 $-0.707299$ $3.238386$ $1.278159$ 4260 $-0.707299$ $3.238386$ $1.278159$ 4260 $-0.707299$ $3.238386$ $1.278159$ 4380 $-0.963429$ $0.894913$ $1.631129$ 4460 $-0.998040$ $4.566723$ $-0.856923$ 4560 $-0.401523$ $2.170838$ $3.540456$ 4610 $-0.756839$ $5.418781$ $-0.217640$ 4910 $-1.980420$ $4.724819$ $-1.313741$ 5010 $-0.167239$ $3.188240$ $3.860679$ 5110 $0.442777$ $1.514263$ $3.776144$ 5210 $-1.259209$ $1.802271$ $4.113305$ 5360 $3.508921$ $1.207689$ $-0.616127$ 5460 $4.299075$ $1.762322$ <td>32</td> <td>l</td> <td>0</td> <td>4.60/494</td> <td>-1.526288</td> <td>0.640894</td>                                                    | 32       | l      | 0      | 4.60/494        | -1.526288 | 0.640894  |
| 3410 $4.273830$ $-2.700554$ $1.912508$ $35$ 10 $2.005555$ $-3.649571$ $2.302641$ $36$ 10 $1.619941$ $-2.007647$ $2.847285$ $37$ 10 $0.581198$ $-2.805316$ $1.658526$ $38$ $26$ 0 $-1.573459$ $0.294684$ $-0.174583$ $39$ 80 $-1.282612$ $2.218904$ $-0.787539$ $40$ 60 $-1.005501$ $3.250891$ $-0.105440$ $41$ 60 $-0.707299$ $3.238386$ $1.278159$ $42$ 60 $-0.712033$ $2.079499$ $2.062327$ $43$ 80 $-0.963429$ $0.894913$ $1.631129$ $44$ 60 $-0.998040$ $4.566723$ $-0.856923$ $45$ 60 $-0.486244$ $4.181757$ $1.762841$ $47$ 10 $-0.271536$ $4.512519$ $-1.674497$ $48$ 10 $-0.756839$ $5.418781$ $-0.217640$ $49$ 10 $-1.980420$ $4.724819$ $-1.313741$ $50$ 10 $-0.167239$ $3.188240$ $3.860679$ $51$ 10 $0.442777$ $1.514263$ $3.776144$ $52$ 10 $-1.259209$ $1.802271$ $4.113305$ $53$ 60 $3.50892$ $1.207689$ $-0.616127$ $54$ 60 $4.299075$ $1.762322$ $0.629962$ $55$ 1 <td< td=""><td>33</td><td>1</td><td>0</td><td>3.845707</td><td>-1.002353</td><td>2.148247</td></td<> | 33       | 1      | 0      | 3.845707        | -1.002353 | 2.148247  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 34       | 1      | 0      | 4.273830        | -2.700554 | 1.912508  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 35       | 1      | 0      | 2.005555        | -3.649571 | 2.302641  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 36       | 1      | 0      | 1.619941        | -2.007647 | 2.847285  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 37       | 1      | 0      | 0.581198        | -2.805316 | 1.658526  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 38       | 26     | 0      | -1.573459       | 0.294684  | -0.174583 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 39       | 8      | 0      | -1.282612       | 2.218904  | -0.787539 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 40       | 6      | 0      | -1.005501       | 3.250891  | -0.105440 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 41       | 6      | 0      | -0.707299       | 3.238386  | 1.278159  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 42       | 6      | 0      | -0.712033       | 2.079499  | 2.062327  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 43       | 8      | 0      | -0.963429       | 0.894913  | 1.631129  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 44       | 6      | 0      | -0.998040       | 4.566723  | -0.856923 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 45       | 6      | 0      | -0.401523       | 2.170838  | 3.540456  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 46       | 1      | 0      | -0.486244       | 4.181757  | 1.762841  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 47       | 1      | 0      | -0.271536       | 4.512519  | -1.674497 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 48       | 1      | 0      | -0.756839       | 5.418781  | -0.217640 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 49       | 1      | 0      | -1.980420       | 4.724819  | -1.313741 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 50       | 1      | ů<br>0 | -0.167239       | 3.188240  | 3.860679  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 51       | 1      | Ő      | 0.442777        | 1.514263  | 3,776144  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 52       | 1      | Ő      | -1 259209       | 1 802271  | 4 113305  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 53       | 6      | 0      | 3 550892        | 1 207689  | -0.616127 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 54       | 6      | 0      | 4 200072        | 1.207007  | 0.629962  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 55       | 1      | 0      | 3 632314        | 2 374052  | 1 246383  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 56       | 1      | 0      | <i>A</i> 60/136 | 0.056753  | 1.240303  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 57       | 1      | 0      | 5 120778        | 2 202020  | 0.215420  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 58       | 6      | 0      | 2 006066        | 2.392930  | 1 471120  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 50       | 1      | 0      | 2.090900        | 2.419330  | -1.4/1139 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 59       | 1      | 0      | 2.430200        | 2.006000  | -0.900198 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 00<br>61 | 1      | 0      | 3.902/89        | 3.000982  | -1./93930 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 61       | 1      | 0      | 2.552/83        | 2.089360  | -2.361800 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 02       | I      | 0      | 1.300300        | 1.2/1141  | 0.050814  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 03       | 0      | 0      | 4.541294        | 0.394980  | -1.408005 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 64       | 1      | 0      | 4.9/021/        | -0.451595 | -0.930973 |
| 00 1 0 5.3/4543 1.042599 -1.762778                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 65       | 1      | 0      | 4.076339        | 0.026814  | -2.3869/3 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 66       | 1      | 0      | 5.5/4543        | 1.042599  | -1./62//8 |

anti-IM3

| Co<br>Nun | enter<br>1ber | Atomic<br>Number | Atomic<br>Type | Coord<br>X | linates (Angstroms)<br>Y Z |
|-----------|---------------|------------------|----------------|------------|----------------------------|
|           | 8             | 0                | 1 461846       | 1 552075   | 0 905565                   |
| 2         | 6             | 0                | 1 923767       | 2 721888   | 0.668914                   |
| 3         | 6             | 0                | 2 660000       | 3 069342   | -0.473107                  |
| 4         | 6             | 0                | 2.000000       | 2 147089   | -1 484756                  |
| 5         | 8             | 0<br>0           | 2.576120       | 0.914706   | -1 467465                  |
| 6         | 6             | 0<br>0           | 3 763377       | 2 591071   | -2 695900                  |
| 7         | 6             | 0                | 1 627493       | 3 763559   | 1 722989                   |
| 8         | 1             | 0                | 3.000951       | 4.091495   | -0.578703                  |
| 9         | 1             | Ő                | 4.036737       | 3.6472.58  | -2.655394                  |
| 10        | 1             | 0                | 3 170511       | 2 404704   | -3 597417                  |
| 11        | 1             | Ő                | 4 670171       | 1 983462   | -2 779183                  |
| 12        | 1             | Ő                | 0.543339       | 3.877546   | 1.827032                   |
| 13        | 1             | Ő                | 2.069583       | 4,733940   | 1.488799                   |
| 14        | 1             | Ő                | 2.005858       | 3.415381   | 2.689446                   |
| 15        | 6             | Ő                | -2.550704      | 2.435735   | 0.565418                   |
| 16        | 6             | Ő                | -2.741568      | 2.233291   | -0.938458                  |
| 17        | 6             | Ő                | -1.671189      | 1.284929   | -1.504175                  |
| 18        | 6             | Ő                | -1.390717      | 0.032819   | -0.667646                  |
| 19        | 6             | 0<br>0           | -2.010725      | -0.053315  | 0.726048                   |
| 20        | 6             | 0<br>0           | -2.724571      | 1.142893   | 1.404890                   |
| 21        | 6             | Ő                | -2.407489      | -1.049384  | -0.390031                  |
| 22        | 1             | 0                | -3.239326      | 3.204466   | 0.939495                   |
| 23        | 1             | Ő                | -1.534384      | 2.818746   | 0.730649                   |
| 24        | 1             | Ő                | -2.663241      | 3.197498   | -1.455725                  |
| 25        | 1             | 0                | -3.749583      | 1.866302   | -1.141623                  |
| 26        | 1             | 0                | -0.721120      | 1.832019   | -1.529331                  |
| 27        | 1             | 0                | -1.889793      | 1.010505   | -2.543081                  |
| 28        | 8             | 0                | -0.087176      | -0.418379  | -0.847587                  |
| 29        | 1             | 0                | -1.360242      | -0.563235  | 1.433597                   |
| 30        | 6             | 0                | -4.213794      | 0.872820   | 1.694101                   |
| 31        | 6             | 0                | -2.020669      | 1.371397   | 2.762608                   |
| 32        | 1             | 0                | -4.810564      | 0.796628   | 0.782922                   |
| 33        | 1             | 0                | -4.339063      | -0.059858  | 2.254172                   |
| 34        | 1             | 0                | -4.637499      | 1.684027   | 2.298574                   |
| 35        | 1             | 0                | -2.416742      | 2.265671   | 3.258709                   |
| 36        | 1             | 0                | -2.175751      | 0.520287   | 3.435865                   |
| 37        | 1             | 0                | -0.942266      | 1.501327   | 2.625328                   |
| 38        | 26            | 0                | 1.557714       | -0.140753  | -0.162649                  |
| 39        | 8             | 0                | 2.637499       | -1.690790  | -0.811844                  |
| 40        | 6             | 0                | 2.914998       | -2.801206  | -0.247427                  |
| 41        | 6             | 0                | 2.620328       | -3.107861  | 1.092089                   |
| 42        | 6             | 0                | 1.987759       | -2.204140  | 1.957639                   |
| 43        | 8             | 0                | 1.602926       | -1.029061  | 1.627662                   |
| 44        | 6             | 0                | 3.616353       | -3.815916  | -1.120420                  |
| 45        | 6             | 0                | 1.723341       | -2.590608  | 3.394652                   |
| 46        | 1             | 0                | 2.905837       | -4.079164  | 1.475961                   |
| 47        | 1             | 0                | 2.985141       | -4.040628  | -1.986383                  |
| 48        | 1             | 0                | 3.844002       | -4.741913  | -0.588814                  |
| 49        | 1             | 0                | 4.544073       | -3.380597  | -1.505752                  |

Standard orientation:

| 50 | 1 | 0 | 2.091625  | -3.589794 | 3.635083  |
|----|---|---|-----------|-----------|-----------|
| 51 | 1 | 0 | 0.646356  | -2.546225 | 3.587718  |
| 52 | 1 | 0 | 2.196757  | -1.859603 | 4.058037  |
| 53 | 6 | 0 | -3.674891 | -1.522036 | -1.144390 |
| 54 | 6 | 0 | -4.524039 | -2.373237 | -0.174530 |
| 55 | 1 | 0 | -3.920572 | -3.161730 | 0.288796  |
| 56 | 1 | 0 | -4.948616 | -1.762331 | 0.627115  |
| 57 | 1 | 0 | -5.352611 | -2.856228 | -0.706106 |
| 58 | 6 | 0 | -3.158568 | -2.441087 | -2.280126 |
| 59 | 1 | 0 | -2.567514 | -3.273014 | -1.882247 |
| 60 | 1 | 0 | -3.995914 | -2.865103 | -2.846619 |
| 61 | 1 | 0 | -2.521769 | -1.885826 | -2.976523 |
| 62 | 1 | 0 | -1.848748 | -1.959527 | -0.171151 |
| 63 | 6 | 0 | -4.584157 | -0.467398 | -1.798545 |
| 64 | 1 | 0 | -5.048047 | 0.201923  | -1.071525 |
| 65 | 1 | 0 | -4.050057 | 0.136281  | -2.536589 |
| 66 | 1 | 0 | -5.398585 | -0.977380 | -2.325922 |
|    |   |   |           |           |           |

|     |       | Sta    | indard orient | ation:    |             |
|-----|-------|--------|---------------|-----------|-------------|
| Се  | enter | Atomic | Atomic        | Coord     | inates (Ang |
| Num | nber  | Number | Type          | Х         | Y Z         |
| 1   | 8     | 0      | -3.180091     | -0.848717 | 1.093553    |
| 2   | 6     | 0      | -4.336150     | -1.297550 | 0.768867    |
| 3   | 6     | 0      | -4.922358     | -1.164897 | -0.496598   |
| 4   | 6     | 0      | -4.306372     | -0.491712 | -1.572224   |
| 5   | 8     | 0      | -3.160797     | 0.057476  | -1.516739   |
| 6   | 6     | 0      | -5.025401     | -0.387243 | -2.900945   |
| 7   | 6     | 0      | -5.081701     | -2.014860 | 1.872992    |
| 8   | 1     | 0      | -5.906228     | -1.590345 | -0.652876   |
| 9   | 1     | 0      | -6.007543     | -0.864773 | -2.889209   |
| 10  | 1     | 0      | -4.410544     | -0.848629 | -3.680903   |
| 11  | 1     | 0      | -5.139943     | 0.668553  | -3.167624   |
| 12  | 1     | 0      | -4.474981     | -2.851856 | 2.234344    |
| 13  | 1     | 0      | -6.055513     | -2.388724 | 1.549696    |
| 14  | 1     | 0      | -5.220185     | -1.333406 | 2.719142    |
| 15  | 6     | 0      | 2.395805      | -2.422888 | 1.093534    |
| 16  | 6     | 0      | 1.657460      | -3.302243 | 0.066785    |
| 17  | 6     | 0      | 1.204388      | -2.580821 | -1.227470   |
| 18  | 6     | 0      | 0.690618      | -1.193864 | -0.913739   |
| 19  | 6     | 0      | 1.591200      | -0.106071 | -0.771998   |
| 20  | 6     | 0      | 3.710007      | -1.781307 | 0.708422    |
| 21  | 6     | 0      | 2.956185      | -0.170700 | -1.028034   |
| 22  | 1     | 0      | 2.590248      | -3.050033 | 1.982643    |
| 23  | 1     | 0      | 1.709938      | -1.642348 | 1.448247    |
| 24  | 1     | 0      | 0.764936      | -3.694548 | 0.566803    |
| 25  | 1     | 0      | 2.265838      | -4.173135 | -0.204303   |
| 26  | 1     | 0      | 0.401279      | -3.149801 | -1.703836   |
| 27  | 1     | 0      | 2.033091      | -2.525448 | -1.940288   |
| 28  | 8     | 0      | -0.560298     | -1.063916 | -0.702169   |

**iso-TS3** Standard orientation:

| 29 | 1  | 0 | 1.154615  | 0.816227  | -0.399650 |
|----|----|---|-----------|-----------|-----------|
| 30 | 6  | 0 | 4.682883  | -2.619743 | -0.079410 |
| 31 | 6  | 0 | 4.311423  | -0.975540 | 1.831682  |
| 32 | 6  | 0 | 3.805660  | 1.099757  | -1.148944 |
| 33 | 6  | 0 | 3.356866  | 1.803364  | -2.459921 |
| 34 | 6  | 0 | 5.300886  | 0.755506  | -1.291512 |
| 35 | 6  | 0 | 3.609128  | 2.077859  | 0.026275  |
| 36 | 1  | 0 | 3.319666  | -0.991904 | -1.638103 |
| 37 | 1  | 0 | 4.243239  | -3.038109 | -0.990809 |
| 38 | 1  | 0 | 5.575207  | -2.054335 | -0.362293 |
| 39 | 1  | 0 | 5.025913  | -3.477866 | 0.524306  |
| 40 | 1  | 0 | 4.619305  | -1.647383 | 2.652597  |
| 41 | 1  | 0 | 5.203890  | -0.420972 | 1.529961  |
| 42 | 1  | 0 | 3.590276  | -0.270137 | 2.256619  |
| 43 | 1  | 0 | 3.965340  | 2.698299  | -2.636687 |
| 44 | 1  | 0 | 3.472209  | 1.141937  | -3.325446 |
| 45 | 1  | 0 | 5.881885  | 1.661554  | -1.494607 |
| 46 | 1  | 0 | 4.188846  | 2.990954  | -0.149112 |
| 47 | 1  | 0 | 2.562823  | 2.372968  | 0.148458  |
| 48 | 1  | 0 | 3.947396  | 1.644501  | 0.970329  |
| 49 | 1  | 0 | 2.306873  | 2.104842  | -2.406708 |
| 50 | 1  | 0 | 5.705247  | 0.300225  | -0.384801 |
| 51 | 1  | 0 | 5.469593  | 0.061472  | -2.122835 |
| 52 | 26 | 0 | -1.855222 | 0.163640  | 0.018480  |
| 53 | 8  | 0 | -1.506831 | 2.078642  | -0.421214 |
| 54 | 6  | 0 | -0.956323 | 3.010155  | 0.263009  |
| 55 | 6  | 0 | -0.339630 | 2.829788  | 1.510229  |
| 56 | 6  | 0 | -0.288778 | 1.586837  | 2.178731  |
| 57 | 8  | 0 | -0.763150 | 0.501981  | 1.718034  |
| 58 | 6  | 0 | -1.001950 | 4.387132  | -0.362837 |
| 59 | 6  | 0 | 0.363100  | 1.501966  | 3.543816  |
| 60 | 1  | 0 | 0.088789  | 3.695447  | 2.000771  |
| 61 | 1  | 0 | -0.551609 | 4.347759  | -1.360094 |
| 62 | 1  | 0 | -0.487963 | 5.140850  | 0.237409  |
| 63 | 1  | 0 | -2.046690 | 4.686675  | -0.498382 |
| 64 | 1  | 0 | 0.790114  | 2.452976  | 3.869397  |
| 65 | 1  | 0 | 1.149105  | 0.739985  | 3.524581  |
| 66 | 1  | 0 | -0.381016 | 1.172598  | 4.276804  |

| Ce<br>Nun | nter<br>nber | Atomic<br>Number | Atomic<br>Type | Coordi<br>X | nates<br>Y | (Angstron<br>Z |
|-----------|--------------|------------------|----------------|-------------|------------|----------------|
| 1         | 8            | 0                | -3.177095      | -0.796173   | 1.16       | 5443           |
| 2         | 6            | 0                | -4.280919      | -1.367973   | 0.86       | 0045           |
| 3         | 6            | 0                | -4.879413      | -1.315695   | -0.40      | 6875           |
| 4         | 6            | 0                | -4.322536      | -0.604090   | -1.48      | 3113           |
| 5         | 8            | 0                | -3.228020      | 0.050321    | -1.42      | 4449           |
| 6         | 6            | 0                | -5.028339      | -0.572324   | -2.81      | 8896           |
| 7         | 6            | 0                | -4.943475      | -2.131925   | 1.98       | 2611           |
| 8         | 1            | 0                | -5.817121      | -1.835309   | -0.55      | 8461           |
| 9         | 1            | 0                | -5.970690      | -1.123609   | -2.80      | 9945           |

Standard orientation:

| 10       | 1             | 0 | -4.368724                           | -0.996322 | -3.583219 |
|----------|---------------|---|-------------------------------------|-----------|-----------|
| 11       | 1             | 0 | -5.218188                           | 0.467935  | -3.102259 |
| 12       | 1             | 0 | -4.261598                           | -2.911144 | 2.338787  |
| 13       | 1             | 0 | -5.887144                           | -2.589160 | 1.678879  |
| 14       | 1             | 0 | -5.122113                           | -1.455044 | 2.824427  |
| 15       | 6             | 0 | 2.634935                            | -2.509772 | 1.014014  |
| 16       | 6             | 0 | 1.927267                            | -3.379570 | -0.042580 |
| 17       | 6             | 0 | 1.122391                            | -2.604727 | -1.124458 |
| 18       | 6             | 0 | 0.693773                            | -1.229630 | -0.656763 |
| 19       | 6             | 0 | 1.620119                            | -0.279963 | -0.374262 |
| 20       | 6             | 0 | 3.712337                            | -1.476223 | 0.556539  |
| 21       | 6             | 0 | 3.107479                            | -0.509534 | -0.565911 |
| 22       | 1             | 0 | 3.127055                            | -3.189062 | 1.722696  |
| 23       | 1             | 0 | 1.869018                            | -1.979738 | 1.589291  |
| 24       | 1             | 0 | 1.240125                            | -4.037328 | 0.503021  |
| 25       | 1             | 0 | 2.646964                            | -4.042451 | -0.536937 |
| 26       | 1             | 0 | 0.234496                            | -3.170493 | -1.418063 |
| 27       | 1             | 0 | 1.737708                            | -2.491761 | -2.025714 |
| 28       | 8             | 0 | -0.618434                           | -1.055675 | -0.497629 |
| 29       | 1             | 0 | 1.272474                            | 0.671569  | 0.013821  |
| 30       | 6             | Ő | 4.917821                            | -2.275944 | 0.010724  |
| 31       | 6             | Ő | 4.145719                            | -0.737327 | 1.839140  |
| 32       | ő             | Ő | 3 821049                            | 0.855325  | -0.943123 |
| 33       | 6             | Ő | 3 181028                            | 1 335362  | -2 270146 |
| 34       | 6             | 0 | 5 330209                            | 0.688932  | -1 215612 |
| 35       | 6             | 0 | 3 644544                            | 1 988118  | 0.094821  |
| 36       | 1             | 0 | 3 213220                            | -1 104495 | -1 484699 |
| 37       | 1             | 0 | 4 666396                            | -2 802213 | -0.916745 |
| 38       | 1             | 0 | 5 785709                            | -2.802213 | -0.192700 |
| 30       | 1             | 0 | 5 229422                            | -3.031045 | 0 742119  |
| 40       | 1             | 0 | <i>J.22J422</i><br><i>A A</i> 22465 | -1.463373 | 2 612858  |
| 41       | 1             | 0 | 5 013040                            | -0.092597 | 1 679020  |
| 42       | 1             | 0 | 3 332530                            | -0.092397 | 2 241793  |
|          | 1             | 0 | 3 634312                            | 2 279532  | -2 593104 |
| 45<br>11 | 1             | 0 | 2 224427                            | 0.601510  | 2.595104  |
| 44       | 1             | 0 | 5.334427                            | 1 619477  | -3.009834 |
| 45       | 1             | 0 | J./35356<br>4.001297                | 1.0104//  | -1.034238 |
| 40       | 1             | 0 | 4.091207                            | 2.909318  | -0.297088 |
| 4/       | 1             | 0 | 2.393403                            | 2.207023  | 1.044025  |
| 40       | 1             | 0 | 4.130234                            | 1.709023  | 2 160525  |
| 49       | 1             | 0 | 2.105504                            | 1.491383  | -2.109333 |
| 50       | 1             | 0 | 5.900501                            | 0.4/2255  | -0.308//0 |
| 51       | $\frac{1}{2}$ | 0 | 3.324381                            | -0.10849/ | -1.940484 |
| 52       | 20            | 0 | -1.80/10/                           | 0.1/1014  | 0.030894  |
| 55       | 8             | 0 | -1.430042                           | 1.9394/0  | -0.729665 |
| 54       | 6             | 0 | -0.853543                           | 2.9/2868  | -0.225947 |
| 55<br>57 | 6             | 0 | -0.399949                           | 3.04/038  | 1.100067  |
| 50       | 6             | 0 | -0.5/8256                           | 2.002271  | 2.024684  |
| 57       | 8             | 0 | -1.145865                           | 0.892274  | 1./52619  |
| 58       | 6             | 0 | -0.654399                           | 4.139/85  | -1.164238 |
| 39       | 6             | 0 | -0.08/155                           | 2.154665  | 3.445454  |
| 60       | 1             | 0 | 0.087127                            | 3.955457  | 1.431339  |
| 61       | 1             | 0 | -0.069969                           | 3.810//1  | -2.029692 |
| 62       | 1             | 0 | -0.149127                           | 4.981093  | -0.686078 |
| 63       | 1             | 0 | -1.62/936                           | 4.46/823  | -1.542825 |

| 64 | 1 | 0 | 0.374652  | 3.126804 | 3.628399 |
|----|---|---|-----------|----------|----------|
| 65 | 1 | 0 | 0.637735  | 1.363098 | 3.661920 |
| 66 | 1 | 0 | -0.927032 | 2.015273 | 4.133676 |

#### TS4

| (<br>Nui        | Center<br>nber | Atomic<br>Number | Atomic<br>Type       | Coor<br>X | dinates (Ang<br>Y Z | (stroms) |
|-----------------|----------------|------------------|----------------------|-----------|---------------------|----------|
| 1               | 8              | 0                | -1.163427            | -1.788714 | -0.254639           |          |
| 2               | 6              | 0                | -2.016119            | -2.701064 | 0.017218            |          |
| 3               | 6              | 0                | -3.326812            | -2.458057 | 0.458144            |          |
| 4               | 6              | 0                | -3.853318            | -1.167086 | 0.620347            |          |
| 5               | 8              | 0                | -3.194685            | -0.087229 | 0.433788            |          |
| 6               | 6              | 0                | -5.296264            | -0.984633 | 1.030601            |          |
| 7               | 6              | 0                | -1.539066            | -4.121486 | -0.180307           |          |
| 8               | 1              | 0                | -3.972252            | -3.306018 | 0.649759            |          |
| 9               | 1              | 0                | -5.815485            | -1.934304 | 1.173124            |          |
| 10              | 1              | 0                | -5.816767            | -0.398658 | 0.266024            |          |
| 11              | 1              | 0                | -5.337456            | -0.405944 | 1.959159            |          |
| 12              | l              | 0                | -1.195754            | -4.249424 | -1.212013           |          |
| 13              | l              | 0                | -2.314640            | -4.858875 | 0.035413            |          |
| 14              | I              | 0                | -0.6//014            | -4.303921 | 0.469844            |          |
| 15              | 6              | 0                | 2.8948/4             | -2.895259 | -0.504216           |          |
| 10              | 0              | 0                | 2.//4933             | -2.3/3809 | -1.9410/9           |          |
| 1/              | 6              | 0                | 1.002070             | -1.319101 | -2.034070           |          |
| 10              | 6              | 0                | 1./0/402             | -0.222800 | -0.981412           |          |
| 20              | 6              | 0                | 2.039730             | -0.404970 | 0.232002            |          |
| 20              | 6              | 0                | 3 114798             | 0.400154  | -0.856778           |          |
| $\frac{21}{22}$ | 1              | 0                | 3 588884             | -3 744601 | -0.459139           |          |
| $\frac{22}{23}$ | 1              | 0                | 1.910090             | -3.279061 | -0.205577           |          |
| 24              | 1              | Ő                | 2.544732             | -3.203281 | -2.620970           |          |
| 25              | 1              | 0                | 3.733901             | -1.964261 | -2.284365           |          |
| 26              | 1              | 0                | 0.698842             | -1.815337 | -1.872848           |          |
| 27              | 1              | 0                | 1.634512             | -0.867688 | -3.035785           |          |
| 28              | 8              | 0                | 0.610530             | 0.515992  | -0.798306           |          |
| 29              | 1              | 0                | 2.283905             | 0.034974  | 1.121170            |          |
| 30              | 6              | 0                | 4.874905             | -1.679039 | 0.516012            |          |
| 31              | 6              | 0                | 2.901909             | -2.287360 | 1.929748            |          |
| 32              | 6              | 0                | 3.312774             | 2.016205  | -0.677874           |          |
| 33              | 6              | 0                | 2.875343             | 2.714527  | -1.983547           |          |
| 34              | 6              | 0                | 4.817114             | 2.275684  | -0.444809           |          |
| 35              | 6              | 0                | 2.527221             | 2.616026  | 0.503198            |          |
| 36              | 1              | 0                | 3.870579             | 0.096239  | -1.532122           |          |
| 37              | 1              | 0                | 5.258279             | -1.420864 | -0.476069           |          |
| 38              | 1              | 0                | 5.199059             | -0.893449 | 1.207334            |          |
| 39              | l              | 0                | 5.352800             | -2.616848 | 0.823445            |          |
| 40              | 1              | 0                | 3.291232             | -3.288032 | 2.152004            |          |
| 41              | 1              | 0                | 5.2//106             | -1.605960 | 2.703178            |          |
| 42              | 1              | 0                | 1.809/2/             | -2.318462 | 2.000448            |          |
| 43              | 1              | 0                | 3.062010<br>2.411672 | 2.190032  | -1.942002           |          |
| 44              | 1              | 0                | 3.4110/3             | 2.300200  | -2.040413           |          |

| 45 | 1  | 0 | 5.013884  | 3.347972  | -0.328755 |
|----|----|---|-----------|-----------|-----------|
| 46 | 1  | 0 | 2.698215  | 3.698248  | 0.546931  |
| 47 | 1  | 0 | 1.456224  | 2.437002  | 0.397978  |
| 48 | 1  | 0 | 2.857523  | 2.196218  | 1.459668  |
| 49 | 1  | 0 | 1.803396  | 2.579226  | -2.153255 |
| 50 | 1  | 0 | 5.169811  | 1.769112  | 0.460423  |
| 51 | 1  | 0 | 5.420505  | 1.915439  | -1.286253 |
| 52 | 26 | 0 | -1.238252 | 0.196169  | 0.104671  |
| 53 | 8  | 0 | -1.398556 | 0.744207  | -1.847840 |
| 54 | 6  | 0 | -2.056141 | 0.051674  | -2.897079 |
| 55 | 6  | 0 | -3.393679 | 0.711569  | -3.232880 |
| 56 | 6  | 0 | -3.247602 | 2.153367  | -3.725420 |
| 57 | 1  | 0 | -0.197015 | 0.646745  | -1.677350 |
| 58 | 1  | 0 | -2.660451 | 2.197032  | -4.650736 |
| 59 | 1  | 0 | -4.223850 | 2.605915  | -3.928766 |
| 60 | 1  | 0 | -3.896703 | 0.098517  | -3.993777 |
| 61 | 1  | 0 | -4.024372 | 0.686629  | -2.335708 |
| 62 | 1  | 0 | -1.407590 | 0.060639  | -3.787027 |
| 63 | 1  | 0 | -2.218229 | -1.002131 | -2.625586 |
| 64 | 1  | 0 | -2.736237 | 2.761857  | -2.974906 |
| 65 | 8  | 0 | -1.420776 | 2.077334  | 0.735691  |
| 66 | 6  | 0 | -1.217749 | 2.596531  | 1.883253  |
| 67 | 6  | 0 | -0.761352 | 1.886414  | 3.007445  |
| 68 | 6  | 0 | -0.466359 | 0.516004  | 2.982942  |
| 69 | 8  | 0 | -0.578895 | -0.236329 | 1.952446  |
| 70 | 6  | 0 | -1.495167 | 4.077945  | 1.984766  |
| 71 | 6  | 0 | 0.023444  | -0.172744 | 4.235885  |
| 72 | 1  | 0 | -0.626099 | 2.425938  | 3.936373  |
| 73 | 1  | 0 | -0.846388 | 4.611853  | 1.282695  |
| 74 | 1  | 0 | -1.333886 | 4.467143  | 2.991863  |
| 75 | 1  | 0 | -2.527793 | 4.272526  | 1.678289  |
| 76 | 1  | 0 | 0.102843  | 0.507968  | 5.085695  |
| 77 | 1  | 0 | 1.001195  | -0.624896 | 4.040611  |
| 78 | 1  | 0 | -0.660869 | -0.989136 | 4.489632  |

## IM4

| Center |     | Atomic | Atomic   | Coordinates (Angstroms |           |   |
|--------|-----|--------|----------|------------------------|-----------|---|
| Num    | ber | Number | Туре     | Х                      | Y         | Ζ |
| 1      | 8   | 0      | 1.207509 | 1.737247               | -0.75877  | 1 |
| 2      | 6   | 0      | 2.019343 | 2.708567               | -0.62140  | 7 |
| 3      | 6   | 0      | 3.303561 | 2.605990               | -0.05193  | 7 |
| 4      | 6   | 0      | 3.856687 | 1.403271               | 0.406371  | l |
| 5      | 8   | 0      | 3.257868 | 0.270267               | 0.397574  | 1 |
| 6      | 6   | 0      | 5.266532 | 1.379090               | 0.950487  | 7 |
| 7      | 6   | 0      | 1.536105 | 4.047621               | -1.133725 | 5 |
| 8      | 1   | 0      | 3.909117 | 3.501701               | 0.006474  | 1 |
| 9      | 1   | 0      | 5.739066 | 2.363195               | 0.937435  | 5 |
| 10     | 1   | 0      | 5.869033 | 0.680982               | 0.36003   | 1 |
| 11     | 1   | 0      | 5.250915 | 0.998276               | 1.97693   | 6 |
| 12     | 1   | 0      | 1.282274 | 3.958952               | -2.19509  | 8 |
| 13     | 1   | 0      | 2.276831 | 4.839514               | -1.00659  | 9 |

| 14 | 1  | 0 | 0.618166  | 4.324724  | -0.604860 |
|----|----|---|-----------|-----------|-----------|
| 15 | 6  | 0 | -3.009204 | 2.760446  | -0.826951 |
| 16 | 6  | 0 | -2.937941 | 2.049709  | -2.184468 |
| 17 | 6  | 0 | -1.843297 | 0.971682  | -2.162173 |
| 18 | 6  | 0 | -1.977128 | 0.032157  | -0.974765 |
| 19 | 6  | 0 | -2.784167 | 0.444234  | 0.224467  |
| 20 | 6  | 0 | -3.429190 | 1.843602  | 0.354882  |
| 21 | 6  | 0 | -3.298496 | -0.651603 | -0.703396 |
| 22 | 1  | 0 | -3.696161 | 3.614805  | -0.877522 |
| 23 | 1  | 0 | -2.013303 | 3.171680  | -0.613731 |
| 24 | 1  | 0 | -2.711494 | 2.775718  | -2.973767 |
| 25 | 1  | 0 | -3.911587 | 1.615434  | -2.446108 |
| 26 | 1  | 0 | -0.867258 | 1.462098  | -2.079989 |
| 27 | 1  | 0 | -1.844000 | 0.395498  | -3.098286 |
| 28 | 8  | 0 | -0.779916 | -0.683203 | -0.687692 |
| 29 | 1  | 0 | -2.375089 | 0.061175  | 1.155691  |
| 30 | 6  | 0 | -4.965453 | 1.728984  | 0.421242  |
| 31 | 6  | 0 | -2.926770 | 2.483729  | 1.664717  |
| 32 | 6  | 0 | -3.505583 | -2.125162 | -0.300497 |
| 33 | 6  | 0 | -3.125083 | -3.015466 | -1.503129 |
| 34 | 6  | 0 | -5.005232 | -2.319227 | 0.013220  |
| 35 | 6  | 0 | -2.692486 | -2.561486 | 0.933644  |
| 36 | 1  | 0 | -4.075641 | -0.331471 | -1.398039 |
| 37 | 1  | 0 | -5.392563 | 1.353924  | -0.514212 |
| 38 | 1  | 0 | -5.272223 | 1.044887  | 1.219928  |
| 39 | 1  | 0 | -5.416579 | 2.707297  | 0.623901  |
| 40 | 1  | 0 | -3.292695 | 3.512276  | 1.765789  |
| 41 | 1  | 0 | -3.277819 | 1.919340  | 2.537183  |
| 42 | 1  | 0 | -1.832229 | 2.503564  | 1.689964  |
| 43 | 1  | 0 | -3.358900 | -4.067348 | -1.301935 |
| 44 | 1  | 0 | -3.673289 | -2.718573 | -2.404823 |
| 45 | 1  | 0 | -5.212072 | -3.357637 | 0.296496  |
| 46 | 1  | 0 | -2.874159 | -3.623568 | 1.134657  |
| 47 | 1  | 0 | -1.620942 | -2.417305 | 0.785485  |
| 48 | 1  | 0 | -2.994757 | -2.006205 | 1.828064  |
| 49 | 1  | 0 | -2.054454 | -2.947016 | -1.719118 |
| 50 | 1  | 0 | -5.321077 | -1.675448 | 0.841417  |
| 51 | 1  | 0 | -5.630720 | -2.079635 | -0.854578 |
| 52 | 26 | 0 | 1.370554  | -0.164005 | -0.051049 |
| 53 | 8  | 0 | 1.528018  | -0.949014 | -1.727884 |
| 54 | 6  | 0 | 2.471934  | -0.724854 | -2.743538 |
| 55 | 6  | 0 | 3.627636  | -1.732634 | -2.687749 |
| 56 | 6  | 0 | 3.166768  | -3.184289 | -2.837070 |
| 57 | 1  | 0 | -0.397416 | -1.048424 | -1.509876 |
| 58 | 1  | 0 | 2.668043  | -3.343098 | -3.801077 |
| 59 | 1  | 0 | 4.011283  | -3.879464 | -2.780717 |
| 60 | 1  | 0 | 4.343414  | -1.476843 | -3.482000 |
| 61 | 1  | 0 | 4.150258  | -1.602897 | -1.732195 |
| 62 | 1  | 0 | 1.970647  | -0.806993 | -3.722941 |
| 63 | 1  | 0 | 2.880502  | 0.297185  | -2.680535 |
| 64 | 1  | 0 | 2.457594  | -3.441094 | -2.045642 |
| 65 | 8  | 0 | 1.459270  | -1.900915 | 0.948216  |
| 66 | 6  | 0 | 1.365411  | -2.138877 | 2.199312  |
| 67 | 6  | 0 | 0.977022  | -1.198160 | 3.165914  |
|    |    |   |           |           |           |

| 68 | 6 | 0 | 0.610146  | 0.122458  | 2.854628 |
|----|---|---|-----------|-----------|----------|
| 69 | 8 | 0 | 0.605221  | 0.621825  | 1.680013 |
| 70 | 6 | 0 | 1.694961  | -3.554790 | 2.615645 |
| 71 | 6 | 0 | 0.169270  | 1.052511  | 3.964745 |
| 72 | 1 | 0 | 0.935949  | -1.512579 | 4.201415 |
| 73 | 1 | 0 | 1.022596  | -4.247533 | 2.098897 |
| 74 | 1 | 0 | 1.610210  | -3.707412 | 3.693509 |
| 75 | 1 | 0 | 2.712709  | -3.796844 | 2.292962 |
| 76 | 1 | 0 | 0.245367  | 0.594495  | 4.953058 |
| 77 | 1 | 0 | -0.867460 | 1.359250  | 3.791240 |
| 78 | 1 | 0 | 0.779674  | 1.960882  | 3.937947 |
|    |   |   |           |           |          |

| 7 | <b>`S5</b>   |
|---|--------------|
|   | $\mathbf{D}$ |

| Center |      | Atomic | Atomic    | Coordin   | nates (Angs | stroms) |
|--------|------|--------|-----------|-----------|-------------|---------|
| Nun    | nber | Number | Туре      | Х         | Y Z         |         |
| 1      | 8    | 0      | 2.854546  | -0.203760 | -0.742753   | -       |
| 2      | 8    | 0      | 1.397683  | -1.355329 | 1.259287    |         |
| 3      | 6    | 0      | 2.380810  | -2.165905 | 1.332991    |         |
| 4      | 6    | 0      | 3.707020  | -1.118106 | -0.464425   |         |
| 5      | 6    | 0      | 3.531228  | -2.092389 | 0.527768    |         |
| 6      | 6    | 0      | 2.247567  | -3.258294 | 2.367941    |         |
| 7      | 1    | 0      | 1.335120  | -3.830110 | 2.170695    |         |
| 8      | 1    | 0      | 3.104619  | -3.934534 | 2.378899    |         |
| 9      | 1    | 0      | 2.132270  | -2.803075 | 3.357052    |         |
| 10     | 1    | 0      | 4.314477  | -2.824750 | 0.677305    | i       |
| 11     | 6    | 0      | 4.967658  | -1.104179 | -1.297682   | 2       |
| 12     | 1    | 0      | 5.661790  | -1.900118 | -1.021161   |         |
| 13     | 1    | 0      | 5.464008  | -0.134812 | -1.184687   | 7       |
| 14     | 1    | 0      | 4.704150  | -1.206133 | -2.355673   | ;       |
| 15     | 14   | 0      | -1.639561 | -0.145197 | -0.82869.   | 3       |
| 16     | 8    | 0      | -0.012314 | -0.445678 | -1.421054   | 1       |
| 17     | 26   | 0      | 1.138651  | 0.300636  | 0.159248    | 3       |
| 18     | 8    | 0      | 1.185031  | 2.037886  | -0.827510   | )       |
| 19     | 8    | 0      | 1.516310  | 1.362990  | 1.785791    |         |
| 20     | 6    | 0      | 1.022148  | 3.219334  | -0.377736   | )       |
| 21     | 6    | 0      | 1.363335  | 2.622129  | 1.989877    | ,       |
| 22     | 6    | 0      | 1.090309  | 3.559062  | 0.987576    |         |
| 23     | 6    | 0      | 0.753596  | 4.281900  | -1.414264   | Ļ       |
| 24     | 1    | 0      | 1.515497  | 4.228455  | -2.197753   |         |
| 25     | 1    | 0      | 0.730932  | 5.288071  | -0.991040   | )       |
| 26     | 6    | 0      | 1.511931  | 3.062461  | 3.426454    |         |
| 27     | 1    | 0      | 2.498882  | 2.764540  | 3.795397    | 1       |
| 28     | 1    | 0      | 1.391302  | 4.140572  | 3.548473    |         |
| 29     | 1    | 0      | 0.967693  | 4.597427  | 1.268589    |         |
| 30     | 1    | 0      | -0.212139 | 4.064268  | -1.882784   | ŀ       |
| 31     | 1    | 0      | 0.769832  | 2.542924  | 4.041566    |         |
| 32     | 1    | 0      | -0.584913 | 0.169004  | 0.545153    |         |
| 33     | 6    | 0      | 0.321301  | -0.625309 | -2.816108   | 3       |
| 34     | 6    | 0      | 0.174307  | -2.081615 | -3.248825   | 5       |
| 35     | 6    | 0      | 1.105326  | -3.049529 | -2.514331   |         |
| 36     | 1    | 0      | 0.944382  | -4.079242 | -2.849477   | 7       |

| 37 | 1 | 0 | 0.932696  | -3.015559 | -1.435206 |
|----|---|---|-----------|-----------|-----------|
| 38 | 1 | 0 | 2.157866  | -2.801409 | -2.692259 |
| 39 | 1 | 0 | 0.365638  | -2.124093 | -4.330077 |
| 40 | 1 | 0 | -0.869951 | -2.381072 | -3.104171 |
| 41 | 1 | 0 | 1.353319  | -0.281011 | -2.928508 |
| 42 | 1 | 0 | -0.327858 | 0.019220  | -3.417275 |
| 43 | 1 | 0 | -2.288242 | -0.552540 | -2.130223 |
| 44 | 8 | 0 | -2.043952 | 1.492857  | -0.760958 |
| 45 | 6 | 0 | -3.301688 | 2.017347  | -0.327658 |
| 46 | 1 | 0 | -3.653797 | 1.441218  | 0.541971  |
| 47 | 6 | 0 | -4.349885 | 1.916740  | -1.439542 |
| 48 | 1 | 0 | -4.520861 | 0.875786  | -1.727328 |
| 49 | 1 | 0 | -5.305085 | 2.342507  | -1.112114 |
| 50 | 1 | 0 | -4.011369 | 2.463460  | -2.326137 |
| 51 | 6 | 0 | -3.070782 | 3.461867  | 0.112045  |
| 52 | 1 | 0 | -3.991185 | 3.900980  | 0.512069  |
| 53 | 1 | 0 | -2.295661 | 3.505632  | 0.882254  |
| 54 | 1 | 0 | -2.742813 | 4.068959  | -0.739242 |
| 55 | 6 | 0 | -2.547148 | -1.367719 | 0.311290  |
| 56 | 6 | 0 | -2.275959 | -1.524712 | 1.681897  |
| 57 | 6 | 0 | -3.573727 | -2.153224 | -0.245169 |
| 58 | 6 | 0 | -3.003408 | -2.421680 | 2.465762  |
| 59 | 1 | 0 | -1.477318 | -0.942178 | 2.132872  |
| 60 | 6 | 0 | -4.305527 | -3.053371 | 0.532129  |
| 61 | 1 | 0 | -3.799374 | -2.058675 | -1.305032 |
| 62 | 6 | 0 | -4.021205 | -3.187576 | 1.892147  |
| 63 | 1 | 0 | -2.775914 | -2.525993 | 3.523677  |
| 64 | 1 | 0 | -5.093519 | -3.649223 | 0.078575  |
| 65 | 1 | 0 | -4.587197 | -3.887413 | 2.501588  |

### Product

| Center |      | Atomic | Atomic    | Coordinates (Angstroms) |           |   |
|--------|------|--------|-----------|-------------------------|-----------|---|
| Num    | ıber | Number | Туре      | Х                       | Y Z       | _ |
| 1      | 6    | 0      | -2.706949 | 0.329838                | -0.402308 |   |
| 2      | 6    | 0      | -1.954384 | 1.345505                | -1.270881 |   |
| 3      | 6    | 0      | -0.913138 | 2.096048                | -0.428267 |   |
| 4      | 6    | 0      | 0.003925  | 1.164966                | 0.351970  |   |
| 5      | 6    | 0      | -0.430082 | -0.255113               | 0.602675  |   |
| 6      | 6    | 0      | -1.814687 | -0.800946               | 0.180842  |   |
| 7      | 6    | 0      | 0.704947  | 0.036095                | -0.374140 |   |
| 8      | 1    | 0      | -3.530945 | -0.121684               | -0.968919 |   |
| 9      | 1    | 0      | -3.168767 | 0.879214                | 0.429424  |   |
| 10     | 1    | 0      | -2.661129 | 2.065067                | -1.700097 |   |
| 11     | 1    | 0      | -1.477265 | 0.847021                | -2.124643 |   |
| 12     | 1    | 0      | -1.436034 | 2.721545                | 0.307190  |   |
| 13     | 1    | 0      | -0.318089 | 2.774107                | -1.057239 |   |
| 14     | 8    | 0      | 0.642708  | 1.797161                | 1.444394  |   |
| 15     | 1    | 0      | -0.086107 | -0.634220               | 1.562116  |   |
| 16     | 6    | 0      | -1.659638 | -1.939399               | -0.847980 | ) |
| 17     | 6    | 0      | -2.510137 | -1.369931               | 1.434506  |   |
| 18     | 6    | 0      | 2.170204  | -0.400873               | -0.179500 | ) |

| 19 | 6 | 0 | 3.086535  | 0.715710  | -0.726600 |
|----|---|---|-----------|-----------|-----------|
| 20 | 6 | 0 | 2.398544  | -1.682940 | -1.008783 |
| 21 | 6 | 0 | 2.546359  | -0.695966 | 1.285399  |
| 22 | 1 | 0 | 0.422838  | -0.024813 | -1.425663 |
| 23 | 1 | 0 | -1.242087 | -1.585176 | -1.795609 |
| 24 | 1 | 0 | -0.994749 | -2.722559 | -0.467908 |
| 25 | 1 | 0 | -2.631178 | -2.398473 | -1.064838 |
| 26 | 1 | 0 | -3.524694 | -1.711980 | 1.199499  |
| 27 | 1 | 0 | -1.955436 | -2.223480 | 1.840928  |
| 28 | 1 | 0 | -2.583660 | -0.611251 | 2.221375  |
| 29 | 1 | 0 | 4.138072  | 0.406700  | -0.710547 |
| 30 | 1 | 0 | 2.828498  | 0.970537  | -1.760889 |
| 31 | 1 | 0 | 3.433012  | -2.031822 | -0.910197 |
| 32 | 1 | 0 | 3.611991  | -0.943556 | 1.351276  |
| 33 | 1 | 0 | 2.345933  | 0.159983  | 1.932496  |
| 34 | 1 | 0 | 1.988269  | -1.554261 | 1.674177  |
| 35 | 1 | 0 | 3.001634  | 1.626773  | -0.124399 |
| 36 | 1 | 0 | 1.738265  | -2.490147 | -0.673900 |
| 37 | 1 | 0 | 2.204309  | -1.511308 | -2.073863 |
| 38 | 1 | 0 | 1.226664  | 2.478526  | 1.083478  |
|    |   |   |           |           |           |

# Ph(iPrO)-SiH<sub>2</sub>

Standard orientation:

| Cen | ter | Atomic | Atomic    | Coordin   | nates (Ang | stroms) |
|-----|-----|--------|-----------|-----------|------------|---------|
| Num | ber | Number | Туре      | Х         | Y Z        | Z       |
| 1   | 6   | 0      | 2.646252  | 0.604219  | -0.068129  |         |
| 2   | 1   | 0      | 3.666517  | 0.662443  | -0.469462  |         |
| 3   | 6   | 0      | 2.740285  | 0.331122  | 1.433407   | ,       |
| 4   | 1   | 0      | 1.747260  | 0.304991  | 1.897170   | )       |
| 5   | 1   | 0      | 3.238329  | -0.623130 | 1.628131   |         |
| 6   | 1   | 0      | 3.314828  | 1.122893  | 1.925351   |         |
| 7   | 6   | 0      | 1.929518  | 1.918382  | -0.380570  | )       |
| 8   | 1   | 0      | 2.469245  | 2.764130  | 0.059272   |         |
| 9   | 1   | 0      | 1.872949  | 2.070901  | -1.462018  | 3       |
| 10  | 1   | 0      | 0.911037  | 1.914412  | 0.02016    | 0       |
| 11  | 6   | 0      | -0.883383 | -0.584134 | -0.13744   | 9       |
| 12  | 6   | 0      | -1.491583 | -0.564817 | 1.13068    | 9       |
| 13  | 6   | 0      | -1.555923 | 0.052525  | -1.19844   | 2       |
| 14  | 6   | 0      | -2.718964 | 0.068938  | 1.33663    | 0       |
| 15  | 1   | 0      | -1.002498 | -1.056093 | 1.96912    | 1       |
| 16  | 6   | 0      | -2.780959 | 0.688675  | -0.99893   | 0       |
| 17  | 1   | 0      | -1.118408 | 0.050469  | -2.19447   | 9       |
| 18  | 6   | 0      | -3.364132 | 0.697824  | 0.27096    | 5       |
| 19  | 1   | 0      | -3.171143 | 0.070476  | 2.32467    | 5       |
| 20  | 1   | 0      | -3.283555 | 1.173392  | -1.83150   | 1       |
| 21  | 1   | 0      | -4.319631 | 1.191051  | 0.42705    | 7       |
| 22  | 14  | 0      | 0.756899  | -1.463829 | -0.40029   | 8       |
| 23  | 1   | 0      | 1.013509  | -2.254123 | 0.83829    | 3       |
| 24  | 1   | 0      | 0.661527  | -2.372376 | -1.56911   | 0       |
| 25  | 8   | 0      | 2.034597  | -0.475281 | -0.78593   | 8       |
|     |     |        |           |           |            |         |

Ph(iPrO)(nPrOH)SiH

| Center A |      | Atomic | Atomic    | Coordinates (Angstroms) |           |   |
|----------|------|--------|-----------|-------------------------|-----------|---|
| Nun      | nber | Number | Type      | Х                       | Y Z       |   |
| 1        | 14   | 0      | 0.323425  | 0.161793                | -0.681316 | - |
| 2        | 8    | 0      | 1.527517  | -0.890172               | -0.261205 |   |
| 3        | 6    | 0      | 2.917481  | -0.630053               | -0.478174 |   |
| 4        | 6    | 0      | 3.720564  | -1.897344               | -0.205556 |   |
| 5        | 6    | 0      | 3.602279  | -2.391073               | 1.238930  |   |
| 6        | 1    | 0      | 4.176656  | -3.310559               | 1.390588  |   |
| 7        | 1    | 0      | 2.558169  | -2.594243               | 1.491064  |   |
| 8        | 1    | 0      | 3.978347  | -1.641088               | 1.944607  |   |
| 9        | 1    | 0      | 4.770512  | -1.689278               | -0.451089 |   |
| 10       | 1    | 0      | 3.382409  | -2.678213               | -0.897808 |   |
| 11       | 1    | 0      | 3.244771  | 0.179748                | 0.188387  |   |
| 12       | 1    | 0      | 3.081595  | -0.297675               | -1.514105 |   |
| 13       | 1    | 0      | 0.379852  | 0.428179                | -2.149662 |   |
| 14       | 8    | 0      | 0.575019  | 1.555798                | 0.183929  |   |
| 15       | 6    | 0      | -0.209468 | 2.754864                | 0.086493  |   |
| 16       | 1    | 0      | -1.247708 | 2.490849                | -0.166953 |   |
| 17       | 6    | 0      | 0.356919  | 3.660066                | -1.007705 |   |
| 18       | 1    | 0      | 0.343378  | 3.157252                | -1.979249 |   |
| 19       | 1    | 0      | -0.229194 | 4.581450                | -1.092009 | 1 |
| 20       | 1    | 0      | 1.392756  | 3.928136                | -0.775212 |   |
| 21       | 6    | 0      | -0.198803 | 3.422995                | 1.458175  |   |
| 22       | 1    | 0      | -0.791526 | 4.343582                | 1.447336  |   |
| 23       | 1    | 0      | -0.613308 | 2.752097                | 2.215852  |   |
| 24       | 1    | 0      | 0.827366  | 3.672629                | 1.747099  |   |
| 25       | 6    | 0      | -1.323322 | -0.611203               | -0.264750 | ) |
| 26       | 6    | 0      | -1.833181 | -0.589684               | 1.046592  |   |
| 27       | 6    | 0      | -2.092898 | -1.231605               | -1.264183 |   |
| 28       | 6    | 0      | -3.061545 | -1.177255               | 1.349806  |   |
| 29       | 1    | 0      | -1.262760 | -0.107092               | 1.836367  |   |
| 30       | 6    | 0      | -3.322195 | -1.822167               | -0.966256 | ) |
| 31       | 1    | 0      | -1.728441 | -1.253604               | -2.289149 | ) |
| 32       | 6    | 0      | -3.806788 | -1.795547               | 0.342717  |   |
| 33       | 1    | 0      | -3.439277 | -1.152948               | 2.368382  |   |
| 34       | 1    | 0      | -3.901750 | -2.298957               | -1.752003 |   |
| 35       | 1    | 0      | -4.764343 | -2.252342               | 0.577653  |   |

Standard orientation:

#### 9. References

- 1) Grieco, P. A.; Pogonowski, C. S. J. Am. Chem. Soc., 1973, 95, 3071-3072.
- 2) Zhu, K.; Hu, S.; Liu, M.; Peng, H.; Chen, F.-E. Angew. Chem. Int. Ed., 2019, 58, 9923-9927.
- Fernández, D. F.; Gulías, M.; Mascareñas, J. L.; López, F. Angew. Chem. Int. Ed. 2017, 32, 9541-9545.

- 4) Lakeland, C. P.; Watson, D. W.; Harrity, J. P. A. Chem. Eur. J. 2020, 1, 155-159.
- García-Domínguez, P.; Lepore, I.; Erb, C.; Gronemeyer, H.; Altucci, L.; Álvarez, R. Org. Biomol. Chem. 2011, 20, 6979-6987.
- 6) McCourt, R. O.; Scanlan, E. M. Chem. Eur. J., 2020, 26, 15804-15810.
- Zhang, K.; Chang, L.; An, Q.; Wang, X.; Zuo, Z.; J. Am. Chem. Soc., 2019, 141, 10556-10564.
- Peil, S.; Bistoni, G.; Goddard, R.; Fürstner, A. J. Am. Chem. Soc., 2020, 142, 18541-18553.
- (a) Xie, T.; Zhou, L.; Shen, M.; Li, J.; Lv, X.; Wang, X. Tetrahedron. Lett., 2015, 56, 3982-3987.
  (b) Lecornué, F.; Ollivier, J. Org. Biomol. Chem., 2003, 3600.
- Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, **2013**.
- 11) (a) Becke, A. D. J. Chem. Phys., 1996, 104, 1040-10446; (b) Becke, A. D. J. Chem. Phys., 1997, 107, 8554-8560.
- 12) Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc., 2008, 120, 215-241.