Supporting Information

Customized Self-assembled Molecules: Rim Adjustable

Coronal Polygons with Multiple-Folds Symmetry

Mingzhao Chen,^{a‡} Jia-nan Cao,^{b‡} Suqing Li,^b Die Liu,^{*a} Jun Wang,^b He Zhao,^b Guotao Wang,^b Tun Wu,^a Zhilong Jiang,^a Pingshan Wang^{*ab}

- [a] Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
- [b] Department of Organic and Polymer Chemistry; Hunan Key Laboratory of Micro & Nano Materials Interface Science; College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China

Table of Content

1. General Procedures	1
2. Schematic illustration of a mixture formed from 120° bis-terpyridine ligand L	2
3. Synthesis of the MOL ligand LA and tetragonum wreath Fe_8LA_4	4
4. Synthesis of the MOL ligand LB and and pentagon wreath $Fe_{10}LB_5$	
5. Synthesis of the MOL ligand LC and hexagon wreath $Fe_{12}LC_6$	21
6. ¹ H NMR, ¹³ C NMR, COSY and NOESY spectra of other compounds	
7. ESI-MS spectra data of ligands and complexes	47
8. References	

1. General Procedures

All starting materials were purchased from Aldrich and Alfa Aesar, and used without further purification. Organic ligand L and 4'-Boronatopenyl[2,2':6',2"]terpyridine were synthesized according to the reported methods^{S1-2}. Column chromatography was conducted using basic Al₂O₃ (Sinopharm Chemical Reagents Co. Ltd, 200-300 mesh) or SiO₂ (Qingdao Haiyang Chemical Co., Ltd, 200-300 mesh) and the separated products were confirmed by NMR spectra using a Bruker Avance 400-MHz or 500-MHz NMR spectrometers in CDCl₃, MeOD, and CD₃CN with a TMS standard. Transmission electron microscopy (TEM) was conducted on JEOL 2010. Electro-spray ionization (ESI) mass spectra were recorded with a Bruker microOTOF-QII or a Waters Synapt HDMS G2 instrument, using solutions of 0.01 mg/mL in CHCl₃/MeCN (1:3, v/v) for ligands and 0.2 mg/mL in MeCN or MeCN/MeOH (3:1, v/v) for complexes.

ESI and TWIM MS. ESI mass spectrometry and traveling wave ion mobility (TWIM) experiments were conducted on a Waters Synapt HDMS G2 instrument with a LockSpray ESI source, using the following parameters: ESI capillary voltage, 1.3-3.0 kV; sample cone voltage, 20-25 V; extraction cone voltage, 1.1-3 V; desolvation gas flow, 800 L/h (N₂); trap collision energy (CE), 4 V; transfer CE, 0 V; trap gas flow, 2.0 mL/min (Ar); source temperature, 30 °C; and desolvation temperature, 30 °C. All samples were dissolved in CH₃CN or CH₃CN/CH₃NO₂ (1:1, v/v) and then infused into the -100, KD Scientific). For TWIM experiments, the helium cell gas flow was held at 180.0 mL/min and the ion mobility cell gas flow was held at 90.0 mL/min (N₂). The TWIM DC traveling wave velocity and height were set as 683 m/s and 26.3 V, respectively. Data were collected and analyzed by using MassLynx 4.1 and DriftScope 2.4 (Waters).

Molecular Modeling. Calculations were proceeded with Geometry Optimization and followed by Anneal in Forcite module of Materials Studio version 7.0 program (Accelrys Software, Inc.)., the counterions were omitted.

TEM. The samples were dissolved in MeCN at a concentration of $\sim 10^{-7}$ M. The solutions were dropped cast on to a carbon-coated Cu grid (300-400 mesh) and the extra solution was blotted by filter paper to avoid aggregation. The TEM images of the samples were taken with a JEOL 2010 Transmission Electron Microscope.

2. Schematic illustration of a mixture formed from 120° bis-terpyridine ligand L

Scheme 1: Schematic illustration of a mixture formed from 120° bis-terpyridine ligand LS1

Organic ligand L (3.2 mg, 4.1 μ mol), and FeCl₂·4H₂O (0.8 mg, 4.1 μ mol) was added in a 50 mL flask, then a solvent mixture of CH₃CN/MeOH (20 mL, V:V, 2:1) was added. The mixture was refluxed for 12 h, after cooled to ambient temperature, excess bistrifluoromethanesulfonimide lithium salt (LiNTf₂) in MeOH was added to get a violet precipitate, which was filtered and washed with H₂O and MeOH to generate a purplish solid: 5.4 mg (94.7%).

Figure S1: ¹H NMR spectrum (500 MHz) of resultant mixture from ligand L in CD₃CN.

Figure S2: Comparison of the ¹H NMR spectra (500 MHz) of ligand L in $CDCl_3$ and the resultant mixture in CD_3CN .

Figure S3: DOSY spectrum (500 MHz) of the resultant mixture in CD₃CN.

Figure S4: ESI-MS of resultant mixture from ligand L.

3. Synthesis of the MOL ligand LA and tetragonum wreath Fe₈LA₄

Scheme 2: Synthesis of MOL ligand A. Reagent and conditions: (i) Tpy-B(OH)₂, Pd(PPh₃)₄, THF, NaOH, reflux ; (ii) RuCl₃•3H₂O, EtOH, reflux; (iii) 2-acetylpyridine, KOH, EtOH, NH₃•H₂O, reflux; (iv) Br₂, CHCl₃, reflux; (v) N-ethylmorpholine, CH₃OH/CHCl₃ (V:V, 1:3), reflux; (vi) Tpy-B(OH)₂, Pd(PPh₃)₄, CH₃CN/CH₃OH(V:V, 2:1), K₂CO₃, reflux.

Compound **S2**: 1,2,3-trimethoxyl-4,6-dibromobenzene **S1** 10 4'-(3.3 g, mmol) and Boronatopenyl[2,2':6',2"]terpyridine (3.5 g, 10 mmol) was added to a 500 mL flask, then THF (250 mL) and NaOH (1.2 g, 30 mmol, in 30 mL water) was added. The system was degassed for 10 min, and Pd(PPh₃)₄ (0.46 g, 0.4 mmol) as the catalyst was added. The mixture was stirred at 85 °C under nitrogen for 12 h, after cooled to ambient temperature, then concentrated in vacuo followed by column chromatography (Al₂O₃), eluting with the mixture of petroleum ether and CH₂Cl₂ to pure the product, as white solid: 3.32 g, 60%. ¹H NMR (400 MHz, CDCl₃) & 8.79(s, 2H, tpy-*H*^{3',5'}), 8.75-8.74 (d, *J* = 4 Hz, 2H, tpy-*H*^{6,6"}), 8.71-8.69 (d, *J* = 8 Hz, 4H, tpy-*H*^{3,3"}), 7.98-7.96(d, *J* = 8 Hz, 2H, tpy-*H*^g), 7.92-7.88 (t, *J* = 16 Hz, 2H, tpy-*H*^{4,4}"), 7.65-7.63 (d, *J* = 8 Hz, 2H, tpy-*H*^h), 7.39-7.36 (m, 3H, tpy-*H*^{5,5}", Ph-H^a), 4.00 (s, 3H, H^c), 3.97 (s, 3H, H^b), 3.68 (s, 3H, H^d).

Compound S3: To a solution of **S2** (200.0 mg, 0.4 mmol) and RuCl₃•3H₂O (105.0 mg, 0.4 mmol) in EtOH (50 mL). The mixture was stirred at 75 °C for 24 h. After cooling to ambient temperature, the precipitates were filtered and washed with MeOH to afford **S3**: 250.0 mg, 90.0%.

Compound S5: To a solution of NaOH powder (240.0 mg, 6 mmol) in EtOH (200 mL), 3, 5-diformylbromobenzene **S4** (3.54 g, 2 mmol) and 2-acetylpyridine (5.14 g, 4.8 mmol) was added. After stirring at room temperature for 24 h, aqueous NH₃•H₂O (28%, 150 mL) was added, the resulting mixture was refluxed for 20 h. After cooling to room temperature, the solid was collected by suction filtration and was washed with CH₃OH to give the product as a white

solid: 9.97 g, 85.0%) . ¹H NMR (400 MHz, CDCl₃) δ 8.78 (s, 4H, tpy-*H*^{3',5'}), 8.75-8.74 (d, *J* = 4 Hz, 4H, tpy-*H*^{6,6"}), 8.71- 8.69 (d, *J* = 8 Hz, 4H, tpy-*H*^{3,3"}), 8.29 (s, 1H, Ph-*H*^a), 8.12(s, 2H, Ph-*H*^b), 7.92-7.88 (t, *J* = 16 Hz, 4H, tpy-*H*^{4,4"}), 7.39-7.36 (t, *J* = 12 Hz, 4H, tpy-*H*^{5,5"}). ¹³C NMR (101 MHz, CDCl₃) δ 156.21, 155.99, 149.18, 148.75, 141.50, 136.96, 130.78, 125.13, 124.01, 121.47, 119.10, 77.33, 77.22, 77.01, 76.70.

Compound S6: 1, 3-dimethoxybromobenzene **S8** (0.78 g, 3.6 mmol) and **S5** (2.00 g, 3.4 mmol) was added to a 500 mL flask, then THF (250 mL) and NaOH (410.0 mg, 10.3 mmol) in 10 mL of water was added. The system was degassed for 10 min, and Pd(PPh₃)₄ (0.46 g, 0.4 mmol) as the catalyst was added. The mixture was stirred at 85 °C under nitrogen for 12 h, after cooled to ambient temperature, then concentrated in vacuo followed by column chromatography (Al₂O₃), eluting with the mixture of petroleum ether and CH₂Cl₂ to pure the product, as white solid: 1.50 g, 65%. ¹H NMR (500 MHz, CDCl₃) δ 8.87 (s, 4H, tpy- $H^{3,5'}$), 8.75-8.74 (d, *J* = 4 Hz, 4H, tpy- $H^{6,6''}$), 8.72-8.70 (d, *J* = 8 Hz, 4H, tpy- $H^{3,3''}$), 8.38 (s, 1H, H^d), 7.98 (s, 2H, H^c), 7.92-7.89 (t, *J* = 12 Hz, 4H, tpy- $H^{4,4''}$), 7.38-7.35 (m, 5H, tpy- $H^{5,5''}$, Ph- H^a) 6.73-6.72 (d, *J* = 4 Hz, 2H, H^b), 3.79 (s, 6H, H^{-OCH3}). ¹³C NMR (101 MHz, CDCl₃) δ 161.86, 158.19, 157.70, 156.34, 155.68, 150.45, 150.29, 149.10, 139.41, 138.90, 136.90, 131.04, 130.85, 124.66, 123.76, 121.45, 119.49, 118.61, 118.47, 105.22, 104.14, 55.93. ESI-MS (676.26 calcd. For C₄₆H₃₂N₆O₂): m/z 699.28[M+Na⁺]⁺ (calcd m/z: 699.24).

Compound S7: To a solution of **S6** (500.0 mg, 0.74 mmol) in CHCl₃ (50 mL), a solution of Br₂ (5 mL, 97.5 mmol) in CHCl₃ (5 mL) was added dropwise. After refluxing for 24 h, the mixture was washed by saturated NaHSO₃ until colorless. The organic layer was dried (anhydrous Na₂SO₄), and then concentrated in vacuo to give **S7**, as white solid: 494.0 mg, 80%. ¹H NMR (500 MHz, CDCl₃) δ 8.87 (s, 4H, tpy- $H^{3',5'}$), 8.76-8.75 (d, *J* = 4 Hz, 4H, tpy- $H^{6,6''}$), 8.73-8.71 (d, *J* = 8 Hz, 4H, tpy- $H^{3,3''}$), 8.49 (s, 1H, H^d), 8.12 (s, 2H, H^c), 7.94-7.91 (t, *J* = 12 Hz, 4H, tpy- $H^{4,4''}$), 7.86 (s, 1H, H^a), 7.41-7.38 (d, *J* = 12 Hz, 4H, tpy- $H^{5,5''}$), 3.51 (s, 6H, H^{-OCH3}). ¹³C NMR (101 MHz, CDCl₃)

δ 156.12, 155.06, 149.75, 149.11, 139.72, 137.01, 135.53, 134.44, 131.48, 129.75, 125.94, 123.95, 121.52, 119.31, 113.31, 60.85.¹³C NMR (101 MHz, CDCl₃) δ 156.29, 156.12, 149.90, 149.21, 136.88, 136.45, 133.73, 133.66, 128.52, 127.38, 125.80, 123.86, 121.39, 119.08, 77.33, 77.01, 76.69. ESI-MS (834.08 calcd. For C₄₆H₃₀N₆O₂Br₂): m/z 857.11[M+Na⁺]⁺ (calcd m/z: 857.07).

Compound S9: To a flask containing a mixture of **S3** (450.0 mg, 0.6 mmol)) and **S7** (259.0 mg, 0.3 mmol), MeOH (150 mL), CHCl₃ (150 mL), and 6 drops of N-ethylmorpholine were added. The mixture was stirred at 75 °C for 24 h. After cooling to ambient temperature, the solvent was evaporated in vacuo and the residue was purified by column chromatography (Al₂O₃), eluting with a mixture of MeOH and CH₂Cl₂. The complex was obtained, as a red precipitate: 485.0 mg, 70.4%. ¹H NMR (400 MHz, CD₃CN) δ 9.36(s, 4H, A-tpy- $H^{3',5'}$), 9.16(s, 1H, H^{a}), 9.14(s, 4H, B-tpy- $H^{3',5'}$), 8.85-8.83(d, *J* =8 Hz, 4H, A-tpy- $H^{3,3''}$), 8.75-8.73(d, *J* =8 Hz, 4H, B-tpy- $H^{3,3''}$), 8.58(s, 2H, H^{b}), 8.34-8.31(d, *J* =12 Hz, 4H, H^{a}), 8.14(s, 1H, H^{a}), 8.02-7.99(m, 8H, A-tpy- $H^{4,4''}$, B-tpy- $H^{4,4''}$), 7.91-7.89(d, *J* =12 Hz, 4H, H^{b}), 7.53-7.52(m, 9H, A-tpy- $H^{6,6''}$, B-tpy- $H^{6,6''}$, H^{c} '), 7.25(m, 8H, A-tpy- $H^{5,5''}$, B-tpy- $H^{5,5''}$), 4.02(s, 6H, H^{-OCH3}), 3.97(s, 6H, H^{-OCH3}), 3.79(s, 6H, H^{-OCH3}), 3.75(s, 6H, H^{-OCH3}). ESI-MS (2725.46 calcd. For C₁₀₄H₇₈Br₄F₂₄N₁₂O₈P₄Ru₂): m/z 763.60 [M – 3PF₆⁻]³⁺ (calcd m/z: 763.53), 1217.85[M – 2PF₆⁻]²⁺ (calcd m/z: 1217.77).

MOL ligand LA: S9 (100.0 mg, 0.04 mmol) and 4'-Boronatopenyl[2,2':6',2"]terpyridine (365.0 mg, 1.0 mmol) was added to a 100 mL flask, then acetonitrile (40 mL), methanol (20 mL) and K₂CO₃ (95.0 mg, 0.7 mmol) in 0.7 mL

of water was added. The system was degassed for 10 min, and Pd(PPh₃)₄ (60.0 mg, 50 µmol) as the catalyst was added. The mixture was stirred at 85 °C under nitrogen for 4 d, after cooled to ambient temperature, then concentrated in vacuo followed by column chromatography (Al₂O₃), eluting with the mixture of CH₃OH and CH₂Cl₂ to pure the product, as red solid: 72.2 mg, 50.7%. ¹H NMR (400 MHz, CD₃CN) δ 9.44(s, 4H, A-tpy-*H*^{3,5'}), 8.90-8.88(d, *J* =8 Hz, 4H, A-tpy-*H*^{3,3''}), 8.87(s, 4H, C-tpy-*H*^{3',5'}), 8.84(s, 4H, D-tpy-*H*^{3',5'}), 8.78-8.73(m, 22H, B-tpy-*H*^{3,3''}, C-tpy-*H*^{3,3''}, C-tpy-*H*^{3,3''}, C-tpy-*H*^{6,6''}, D-tpy-*H*^{6,6''}, *H*^b), 8.36-8.34(d, *J* =8 Hz, 4H, B-*H*[§]), 8.18-8.16(d, *J* =8 Hz, 4H, C-*H*[§]), 8.09-8.00 (m, 28H, A-tpy-*H*^{4,4''}, B-tpy-*H*^{4,4''}, C-tpy-*H*^{4,4''}, D-tpy-*H*^{8,5''}, B-*H*^h, C-*H*^h), 7.87-7.85 (m, 5H, D-*H*^h, *H*^d), 7.56-7.50 (m, 16H, A-tpy-*H*^{6,6''}, B-tpy-*H*^{6,6''}, C-tpy-*H*^{5,5''}, D-tpy-*H*^{5,5''}), 7.40(s, 2H, *H*^c), 7.28-7.25(m, 8H, A-tpy-*H*^{5,5''}, B-tpy-*H*^{5,5''}), 4.08(s, 6H, *H*^{-OCH3}), 3.88(s, 6H, *H*^{-OCH3}), 3.85(s, 6H, *H*^{-OCH3}), 3.54(s, 6H, *H*^{-OCH3}). ¹³C NMR (101 MHz, CD₃CN) δ 158.90, 158.79, 158.41, 157.46, 156.88, 156.39, 156.23, 156.03, 153.16, 151.82, 149.94, 138.73, 137.99, 136.43, 136.33, 132.16, 130.81, 130.71, 128.98, 128.61, 128.30, 127.94, 125.45, 125.24, 125.00, 122.02, 121.81, 118.94, 117.99, 2.12, 1.52, 1.31, 1.11, 0.90, 0.69, 0.49, 0.28. ESI-MS (3639.3 calcd. For C₁₈₈H₁₃₄F₂₄N₂₄O₈P₄Ru₂): m/z 764.87 [M - 4PF₆]⁴⁺ (calcd m/z: 764.86), 1068.12 [M - 3PF₆]³⁺ (calcd m/z: 1068.14), 1674.61[M - 2PF₆]²⁺ (calcd m/z: 1674.69).

Metallosupramolecular tetragonum wreaths Fe₈LA₄: MOL LA (3.0 mg, 0.8 µmol), and FeCl₂·4H₂O (0.3 mg, 1.6 µmol) was added in a 50 mL flask, then a solvent mixture of CH₃CN/glycol (10 mL, V:V, 1:2) was added and heated at 180 °C for 12 h, after cooled to ambient temperature, excess bistrifluoromethanesulfonimide lithium salt (LiNTf₂) in MeOH was added to get a purplish precipitate, which was filtered and washed with H₂O and MeOH, to generate a purplish solid: 3.5 mg (96%).¹H NMR (500 MHz, CD₃CN) δ 9.45(s, 16H, A-tpy- $H^{3',5'}$), 9.30(m, 36H, C-tpy- $H^{3',5'}$, D-tpy- $H^{3',5'}$, H^a), 9.16(s, 16H, B-tpy- $H^{3',5'}$), 8.90(s, 20H, A-tpy- $H^{3,3''}$, H^b), 8.77-8.69(m, 48H, B-tpy- $H^{3,3''}$,

C-tpy- $H^{3,3"}$, D-tpy- $H^{3,3"}$), 8.55-8.48(m, 16H, C- H^{g} , D- H^{g}), 8.39-8.31(m, 16H, B- H^{g} , C- H^{h}), 8.08-7.95(m, 80H, A-tpy- $H^{4,4"}$, B-tpy- $H^{4,4"}$, C-tpy- $H^{4,4"}$, D-tpy- $H^{4,4"}$, B- H^{h} , D- H^{h}), 7.63-7.59 (m, 32H, A-tpy- $H^{6.6"}$, B-tpy- $H^{6.6"}$), 7.45(s, 4H, H^{d}), 7.30-7.26(m, 56H, C-tpy- $H^{6.6"}$, D-tpy- $H^{6.6"}$, A-tpy- $H^{5.5"}$, B-tpy- $H^{5.5"}$), 7.14(m, 32H, C-tpy- $H^{5.5"}$, D-tpy- $H^{5.5"}$), 4.15 (m, 24H, $H^{-\text{OCH3}}$), 4.00 (m, 48H, $H^{-\text{OCH3}}$), 3.73 (m, 24H, $H^{-\text{OCH3}}$). ESI-MS (21648.85 calcd. For C₈₁₆H₅₃₆F₁₉₂Fe₈N₁₂₈O₁₆₀Ru₈S₆₄): m/z 1884.75 [M - 10N(SO₂CF₃)₂⁻]¹⁰⁺ (calcd m/z: 1884.74), m/z 1687.50 [M - 10N(SO₂CF₃)₂⁻]¹¹⁺ (calcd m/z: 1687.93), m/z 1523.25 [M - 10N(SO₂CF₃)₂⁻]¹²⁺ (calcd m/z: 1523.92), m/z 1385.00 [M - 10N(SO₂CF₃)₂⁻]¹³⁺ (calcd m/z: 1385.15), m/z 1265.91 [M - 10N(SO₂CF₃)₂⁻]¹⁴⁺ (calcd m/z: 1266.20), m/z 1163.23 [M - 10N(SO₂CF₃)₂⁻]¹⁵⁺ (calcd m/z: 1163.11), m/z 1072.53 [M - 10N(SO₂CF₃)₂⁻]¹⁶⁺ (calcd m/z: 1072.91), m/z 993.05 [M - 10N(SO₂CF₃)₂⁻]¹⁶⁺ (calcd m/z: 993.32).

Figure S5: ¹H NMR spectrum (500 MHz) of Fe₈LA₄ in CD₃CN.

Figure S6: ¹H NMR spectrum (500 MHz) of Fe_8LA_4 in CD₃CN under different concentration (2.0 mg/mL and 0.50 mg/mL).

Figure S7: 2D COSY spectrum (500 MHz) of Fe₈LA₄ in CD₃CN.

Figure S8: 2D NOESY spectrum (500 MHz) of Fe₈LA₄ in CD₃CN

Figure S9: (A) ESI-MS and (B) TWIM-MS plot (m/z vs drift time) of Fe₈LA₄ with 32 PF₆⁻.

Figure S10: Theoretical (top) and experimental (bottom) isotope patterns for the different charge states observed from $[Fe_8LA_4]-32(NTf_2^-)$.

4. Synthesis of the MOL ligand LB and and pentagon wreath Fe₁₀LB₅

Scheme S3: Synthesis of MOL ligand B. Reagent and conditions: (i) bisdiboron, Pd(PPh₃)₄, THF, NaOH, reflux;
(ii) Pd(PPh₃)₄, THF, NaOH, reflux; (iii) 2-acetylpyridine, KOH, EtOH, NH₃•H₂O, reflux; (iv) Br₂, CHCl₃, reflux;
(v) RuCl₃•3H₂O, EtOH, reflux; (vi) N-ethylmorpholine, CH₃OH/CHCl₃ (V:V, 1:3); (vii) Tpy-B(OH)₂, Pd(PPh₃)₄, CH₃CN/CH₃OH(V:V, 2:1), K₂CO₃, reflux.

Compound S11: 2, 7 - dibromonaphthalene (500.0 mg, 1.6 mmol), bisdiboron (1.10 g, 4.2 mmol), potassium acetate (1.40 g, 14.3 mmol) was added to a 50 mL round bottom flask, added 15 mL DMSO as solvent. The system was degassed for 10 min, and [1,1'-Bis(diphenylphosphino)ferrocene]dichloropalladium(II) (154.0 mg, 0.2 mmol) as the catalyst was added. The mixture was stirred at 85 °C under nitrogen for 24 h , after cooled to ambient temperature, the system was extracted with water and dichloromethane, then recrystallized with methanol and petroleum etherthen, collected the liquid and recrystallized with methanol and H₂O to pure the product, as white solid: 565.0 mg, 85%. ¹H NMR (400 MHz, CDCl₃) δ 8.34(s, 2H, *H*^e), 7.80-7.78 (d, 2H, *J*=4Hz, *H*^a), 7.74-7.72(d, 2H, *J*=4Hz, *H*^b), 1.31(s, 24H, *H*^{-CH3}). ¹³C NMR (101 MHz, CDCl₃) δ 137.16, 132.44, 131.54, 126.77, 84.63, 83.87, 77.34, 77.01, 76.71, 24.93.

Compound S13: **S11** (500 mg 1.32 mmol) and **S12** 4'-bromo-2,2':6',2"-terpyridine(705.0 mg, 2.2 mmol) was added to a 250 mL flask, then 30 mL H₂O, 30 mL methylbenzene, 10 mL tert-butyl alcohol and K₂CO₃(1.10 g, 7.9 mmol) was added. The system was degassed for 10 min, and Pd(PPh₃)₄ (216.0 mg, 0.2 mmol) as the catalyst was added. The mixture was stirred at 90 °C under nitrogen for 2 d , after cooled to ambient temperature, then the system was concentrated in vacuo followed by column chromatography (Al₂O₃), eluting with the mixture of petroleum ether and CH₂Cl₂ to pure the product, as white solid: 312 mg, 40%. ¹H NMR (400 MHz, CDCl₃) δ 8.94 (s, 4H, tpy-*H*³ ^{5'}), 8.79-8.78(d, 8H, *J*=2Hz, tpy-*H*³ ^{3"}), 8.73-8.71(d, 8H, *J*=4Hz, tpy-*H*⁶ ^{6"}), 8.56(s, 2H, Ph-*H*^a), 8.12-8.10(d, 2H, *J*=8Hz, PH-*H*^b), 8.06-8.04(d, 2H, *J*=8Hz, Ph-*H*^e), 7.92-7.89(t, 4H, tpy-*H*⁴ ^{4"}), 7.39-7.36((t, 4H, tpy-*H*⁵ ^{5"}). ESI-MS (590.29 calcd. For C₂₀H₂₆N₆): m\z 591.29 [M+H⁺]⁺ (calcd m/z: 591.23).

Compound S14: To a solution of **S7** (200 mg, 0.24 mmol) and $RuCl_3 \cdot 3H_2O$ (134.75 mg, 0.53 mmol) in EtOH (50 mL). The mixture was stirred at 75 °C for 2 d. After cooling to ambient temperature, the precipitates were filtered and washed with MeOH to afford **S14**: 275 mg, 92%.

Compound S15: To a flask containing a mixture of **S14** (80.0 mg, 60 μ mol) and **S13** (81.6 mg, 0.14 mmol), MeOH (40 mL), CHCl₃ (120 mL), and 6 drops of N-ethylmorpholine were added. The mixture was stirred at 75 °C for 2 d. After cooling to ambient temperature, the solvent was evaporated in vacuo and the residue was purified by column chromatography (Al₂O₃), eluting with a mixture of MeOH and CH₂Cl₂. The complex was obtained, as a red precipitate: 128 mg, 64%. ¹H NMR (400 MHz, MeOD) δ 9.75(s, 4H, A-tpy- $H^{3'5'}$), 9.24(s, 4H, B-tpy- $H^{3'5'}$), 9.17(s,

1H, Ph-H^a), 9.02-9.01(m, 6H, C-tpy- $H^{3'5'}$, Ph- $H^{e'}$), 8.84-8.73(m, 18H, A-tpy- $H^{3'5'}$, B-tpy- $H^{3'5'}$, C-tpy- $H^{3'5'}$, C-tpy- $H^{6'}$), 8.61(s, 2H, Ph- H^{b}), 8.46 (d, 2H, J=8Hz, Ph- H^{e}), 8.40 (d, 2H, J=8Hz, Ph- $H^{e'}$), 8.29 (d, 2H, J=8Hz, Ph- H^{d}), 8.22 (d, 2H, J=8Hz, Ph- $H^{d'}$), 8.15 (s, 1H, Ph- H^{m}), 8.05-7.99(m, 12H, A-tpy- $H^{4''}$, B-tpy- $H^{4''}$, C-tpy- $H^{4''}$), 7.59-7.57 (m, 8H, A-tpy- $H^{6''}$), B-tpy- $H^{6''}$), 7.51-7.49 (m, 4H, C-tpy- $H^{5''}$), 7.32-7.27 (m, 8H, A-tpy- $H^{5''}$), B-tpy- $H^{5''}$), 3.78(s, 6H, H^{-OMe}). ESI-MS (3338.63 cacld. For C₁₃₂H₈₂Br₂F₂₄N₂₂O₁₈Ru₂S₈): m/z 832.64 [M–3N(SO₂CF₃)₂⁻]³⁺ (calcd. m/z: 832.73), 1388.87 [M–2N(SO₂CF₃)₂⁻]²⁺ (calcd. m/z: 1389.17).

MOL ligand B: Compound S15 (40 mg, 0.017 mmol) and 4'-Boronatopenyl[2,2':6',2"]terpyridine (190.4 mg, 0.5 mmol) was added to a 100 mL flask, then acetonitrile (40 mL), methanol (20 mL) and K₂CO₃ (56.3 mg, 0.4 mmol) in 0.5 mL of water was added. The system was degassed for 10 min, and Pd(PPh₃)₄ (47.2 mg, 41 µmol) as the catalyst was added. The mixture was stirred at 85 °C under nitrogen for 4 d, after cooled to ambient temperature, then concentrated in vacuo followed by column chromatography (Al₂O₃), eluting with the mixture of MeOH and CH₂Cl₂ to pure the product, as red solid: 29.8 mg, 65%. ¹H NMR (400 MHz, CD₃CN) δ 9.41(s, 4H, A-tpy-H^{3',5'}), 9.30(s, 4H, B-tpy-H^{3',5'}), 9.21(s, 1H, H^a), 9.07(s, 2H, H^b), 9.05(s, 4H, C-tpy-H^{3',5'}), 8.87(s, 4H, D-tpy-H^{3',5'}), 8.85-8.82(d, J =12 Hz, 4H, A-tpy-H^{3,3}"), 8.81-8.76(m, 20H, B-tpy-H^{3,3}", C-tpy-H^{3,3}", D-tpy-H^{3,3}", C-tpy-H^{6,6}", D-tpy- $H^{6,6"}$), 8.43(m, 4H, H^e), 8.30(m, 4H, H^d), 8.17-8.15(d, J=8 Hz, 4H, D-H^g), 8.09-8.03(m, 21H, A-tpy- $H^{4,4"}$, B-tpy-H^{4,4}", C-tpy-H^{4,4}", D-tpy-H^{4,4}", D-H^h, Hⁱ), 7.88(s, 2H, H^c), 7.59-7.58(d, J=4 Hz, 8H, A-tpy-H^{6,6}", B-tpy-H^{6,6}"), 7.55-7.51(m, 8H, C-tpy-H^{5,5}", D-tpy-H^{5,5}"), 7.31-7.28(m, 8H, A-tpy-H^{5,5}", B-tpy-H^{5,5}"), 3.56(s, 6H, H^{-OCH3}).¹³C NMR (101 MHz, CD₃CN) δ 158.88, 158.78, 158.20, 157.66, 157.62, 157.01, 156.97, 156.37, 156.29, 156.18, 153.23, 153.15, 153.11, 152.44, 152.37, 152.30, 151.21, 149.95, 149.56, 149.42, 149.32, 141.02, 139.25, 139.05, 138.82, 138.75, 138.50, 138.48, 137.96, 137.91, 137.02, 129.11, 129.01, 128.78, 128.26, 127.92, 125.53, 125.04, 125.01, 124.92, 122.81, 122.76, 122.48, 122.44, 121.77, 121.72, 119.27, 119.06, 117.91, 61.51, 1.59, 1.52, 1.39, 1.36, 1.31, 1.18, 1.11, 0.90, 0.69, 0.49, 0.28, -0.47.ESI-MS (3254.87 cacld. For $C_{166}H_{110}F_{24}N_{24}O_2P_4Ru_2$): m/z 668.71 [M – 4PF₆]⁴⁺ (calcd. m/z: 668.76), 939.93 $[M - 3PF_6]^{3+}$ (calcd. m/z: 939.99), 1482.34 $[M - 2PF_6]^{2+}$ (calcd. m/z: 1482.47).

Metallosupramolecular pentagon wreaths Fe₁₀LB₅: MOL ligand B (3.0 mg, 0.8 µmol), and FeCl₂·4H₂O (0.3 mg, 1.6 µmol) was added in a 50 mL flask, then a solvent mixture of CH₃CN/glycol (10 mL, V:V, 1:2) was added and heated at 180 °C for 12 h, after cooled to ambient temperature, excess bistrifluoromethanesulfonimide lithium salt (LiNTf₂) in MeOH was added to get a purplish precipitate, which was filtered and washed with H₂O and MeOH to generate a purplish solid: 5.8 mg (93.5%). ¹H NMR (500 MHz, CD₃CN) δ 9.49(s, 20H, A-tpy-H^{3'5'}), 9.46(s, 20H, B-tpy-H^{3'5'}), 9.40(s, 20H, C-tpy-H^{3'5'}), 9.31(m, 25H, D-tpy-H^{3'5'}, Ph-H^a), 9.22(s, 5H, Ph-H^{c'}), 9.18(s, 10H, Ph-H^b), 9.08(s, 5H, Ph-H^c), 8.94-8.85(m, 40H, A-tpy-H³³", B-tpy-H³³"), 8.79-8.75(m, 20H, C-tpy-H³³"), 8.73-8.68(m, 20H, D-tpy-H^{3 3"}), 8.67-8.51(m, 60H, Ph-H^{e,d,e',d',h}), 8.34-8.30(m, 20H, Ph-H^g), 8.13 -7.94(m, 85H, A-tpy-H^{4 4"}, B-tpy-H⁴ ⁴", C-tpy-*H*⁴⁴", D-tpy-*H*⁴⁴", Ph-H^{*i*}), 7.68-7.62(m, 40H, A-tpy-*H*⁶⁶", B-tpy-*H*⁶⁶"), 7.38-7.27(m, 80H, C-tpy-*H*⁶⁶", Dtpy-H⁶ 6", A-tpy-H⁵ 5", B-tpy-H⁵ 5"), 7.26-7.12(m, 40H, C-tpy-H⁵ 5", D-tpy-H⁵ 5"), 3.66(s, 30H, H^{-OMe}). ESI-MS $(25138.93 \ \text{calcd} \ . \ \text{For} \ C_{910}H_{550}F_{240}Fe_{10}N_{160}O_{170}Ru_{10}S_{80}): \ m/z \ 2233.50 \ [M \ - \ 13N(SO_2CF_3)_2^{-}]^{10+} \ (\text{calcd} \ m/z: 10^{-1} \text{ calcd} \ m/z) = 10^{-1} \text{ (calcd} \ m/z) = 10$ 2233.75), 2005.05 $[M - 14N(SO_2CF_3)_2^{-}]^{11+}$ (calcd m/z: 2005.21), 1814.41 $[M - 15N(SO_2CF_3)_2^{-}]^{12+}$ (calcd m/z: 2005.21) 1814.76), 1653.37 $[M - 13N(SO_2CF_3)_2]^{13+}$ (calcd m/z: 1653.61), 1515.22 $[M - 14N(SO_2CF_3)_2]^{14+}$ (calcd m/z: 1515.49), 1395.57 $[M - 15N(SO_2CF_3)_2]^{15+}$ (calcd m/z: 1395.78), 1291.05 $[M - 16N(SO_2CF_3)_2]^{16+}$ (calcd m/z: 1291.03), 1198.67 $[M - 17N(SO_2CF_3)_2^-]^{17+}$ (calcd m/z: 1198.61), 1116.55 $[M - 18N(SO_2CF_3)_2^-]^{18+}$ (calcd m/z: 1198.61) 1116.46), 1042.99 $[M - 19N(SO_2CF_3)_2^-]^{19+}$ (calcd m/z: 1042.95), 976.94 $[M - 20N(SO_2CF_3)_2^-]^{20+}$ (calcd m/z: 1042.95), 976.94 $[M - 20N(SO_2CF_3)_2^-]^{20+}$ 976.80), 916.88 $[M - 21N(SO_2CF_3)_2]^{21+}$ (calcd m/z: 916.94).

Figure S12: ¹H NMR spectrum (500 MHz) of **Fe₁₀LB**₅ in CD₃CN under different concentration (2.0 mg/mL and 0.50 mg/mL).

Figure S13: 2D COSY spectrum (400 MHz) of Fe₁₀LB₅ in CD₃CN.

Figure S14: 2D NOESY spectrum (400 MHz) of Fe₁₀LB₅ in CD₃CN.

Figure S15: (A) ESI-MS and (B) TWIM-MS plot (m/z vs drift time) of $Fe_{10}LB_5$ with 40 PF_6^- .

Figure S16: Theoretical (top) and experimental (bottom) isotope patterns for the different charge states observed from $[Fe_{10}LB_5]-40(NTf_2^{-})$.

5. Synthesis of the MOL ligand LC and hexagon wreath Fe₁₂LC₆

Scheme S4: Synthesis of MOL ligand C. Reagent and conditions: (i) 2-acetylpyridine, KOH, EtOH, NH₃•H₂O, reflux; (ii) Tpy-B(OH)₂, Pd(PPh₃)₄, THF, NaOH, reflux; (iii) Br₂, CHCl₃, reflux; (iv) RuCl₃•3H₂O, EtOH, reflux; (v) N-ethylmorpholine, CH₃OH/CHCl₃(V:V, 1:3), reflux; (vi) Tpy-B(OH)₂, Pd(PPh₃)₄, CH₃CN/CH₃OH(V:V, 2:1), K₂CO₃, reflux.

Compound S17: To a solution of **S16** (3.2 g, 2 mmol) in EtOH (200 mL), 2-acetylpyridine (5.1 g, 4.8 mmol) and NaOH powder (240.0 mg, 6 mmol) was added. After stirring at room temperature for 24 h, aqueous NH₃•H₂O (28%, 150 mL) was added, the resulting mixture was refluxed for 20 h. After cooling to room temperature, the solid was collected by suction filtration and was washed with CH₃OH to give the product as a white solid: 8.1 g, 72.6%). ¹H NMR (500 MHz, CDCl₃) δ 8.83 (s, 4H, tpy- $H^{3'5'}$), 8.77-8.76 (d, 4H, J = 2Hz, tpy- $H^{3'3'}$), 8.72-8.70 (d, 4H, J = 4Hz, tpy- $H^{6'6'}$), 7.99 (s, 1H, Ph- H^{a}), 7.93-7.90 (t, 4H, tpy- $H^{4'4'}$), 7.53 (s, 2H, PH- H^{b}), 7.40-7.38 (t, 4H, tpy- $H^{5'5'}$), 4.04 (s, 3H, H^{-OMe}). ¹³C NMR (101 MHz, CDCl₃) δ 160.67, 156.24, 156.02, 150.21, 149.15, 140.97, 136.89, 123.85, 121.45, 119.33, 119.06, 113.68, 55.87.

Compound S18: To a flask containing a mixture of **S14** (80.0 mg, 0.06 mmol) and **S17** (86.0 mg, 0.15 mmol), MeOH (40 mL), CHCl₃ (120 mL), and 6 drops of N-ethylmorpholine were added. The mixture was stirred at 75 °C for 2 d. After cooling to ambient temperature, the solvent was evaporated in vacuo and the residue was purified by column chromatography (Al₂O₃), eluting with a mixture of MeOH and CH₂Cl₂. The complex was obtained, as a red precipitate: 101.8 mg, 72.3%.¹H NMR (500 MHz, MeOD) δ 9.76(s, 4H, A-tpy-H^{3',5'}), 9.57(s, 1H, H^a), 9.47 (s, 4H, B-tpy-H^{3',5'}), 9.26-9.24 (d, 4H, *J* = 4 Hz, A-tpy-H^{3,3''}), 9.06-9.05 (d, 4H, *J* = 4 Hz, B-tpy-H^{3,3''}), 8.97 (s, 4H, C-tpy-H^{3',5'}), 8.81-8.80 (m, 8H, C-tpy-H³^{3''}, C-tpy-H⁶^{6''}), 8.70(s, 2H, H^b), 8.48(s, 2H, H^d), 8.11-8.05 (m, 15H, A,B,C-tpy-H^{4,4''}, H^e, H^o), 7.86 (s, 2H, H^f), 7.71-7.70 (d, 4H, *J* = 2 Hz,B-tpy-H⁶^{6''}), 7.66-7.65 (d, 4H, J = 2 Hz, A-tpy-H⁶^{6''}), 7.60-7.59 (d, 4H, *J* = 2 Hz, C-tpy-H^{5,5''}), 7.37-7.35 (m, 8H, A,B-tpy-H^{5,5''}), 4.21 (s, 6H, H^{-OMe}), 3.77 (s, 6H, H^{-OMe}). ¹³C NMR (101 MHz, CD₃CN) δ 159.66, 158.89, 158.78, 157.10, 157.08, 157.03, 157.02, 156.98, 156.39, 156.29, 156.27, 156.17, 156.03, 154.36, 153.21, 153.19, 153.13, 153.09, 153.06, 150.24, 149.96, 148.69, 148.53, 148.03, 147.75, 147.31, 147.01, 138.89, 138.83, 138.76, 138.61, 138.53, 138.13, 131.27, 131.17, 129.72, 128.26, 128.18, 127.33, 127.19, 125.38, 125.15, 122.68, 122.48, 122.39, 121.97, 119.45, 119.37, 117.99, 113.32, 61.62, 61.27. ESI-MS (2319.82 calcd. For C₁₁₈H₈₂Br₂Cl₂N₁₈O₄Ru₂): m/z 737.82 [M - 3Cl⁻]³⁺ (calcd m/z: 737.82), 1124.46 [M - 2Cl⁻]²⁺ (calcd m/z: 1124.46).

MOL ligand C: Compound **S18** (60 mg, 0.02 mmol) and 4'-Boronatopenyl[2,2':6',2"]terpyridine (109.0 mg, 0.31 mmol) was added to a 100 mL flask, then acetonitrile (40 mL), methanol (20 mL) and K_2CO_3 (69 mg, 0.5 mmol) in 0.5 mL of water was added. The system was degassed for 10 min, and Pd(PPh₃)₄ (29.0 mg, 0.03 mmol) as the

catalyst was added. The mixture was stirred at 85 °C under nitrogen for 2 d, after cooled to ambient temperature, then concentrated in vacuo followed by column chromatography (Al₂O₃), eluting with the mixture of MeOH and CH₂Cl₂ to pure the product, as red solid: 45.0 mg, 63%. ¹H NMR (400 MHz, CD₃CN) δ 9.39(s, 4H, A-tpy- $H^{3',5'}$), 9.18(s, 5H, B-tpy- $H^{3',5'}$, H^{a}), 9.00(s, 4H, C-tpy- $H^{3',5'}$), 8.90(s, 4H, D-tpy- $H^{3',5'}$), 8.86-8.84(d, J =8 Hz, 4H, A-tpy- $H^{3,3''}$), 8.81-8.76(m, 22H, B-tpy- $H^{3,3''}$, C-tpy- $H^{3,3''}$, C-tpy- $H^{6,6''}$, D-tpy- $H^{6,6''}$, H^{b}), 8.29(s, 2H, H^{c}), 8.16-8.14 (d, J =8 Hz, 4H, D- H^{a}), 8.08-8.00 (m, 18H, A-tpy- $H^{4,4''}$, B-tpy- $H^{4,4''}$, C-tpy- $H^{4,4''}$, D-tpy- $H^{4,4''}$, D- H^{b}), 7.92(s, 2H, H^{c}), 7.87(s, 1H, H^{f}), 7.75(s, 2H, H^{d}), 7.58-7.55 (m, 16H, A-tpy- $H^{6,6''}$, B-tpy- $H^{6,6''}$, C-tpy- $H^{5,5''}$, D-tpy- $H^{5,5''}$), 7.29-7.27 (m, 8H, A-tpy- $H^{5,5''}$), 4.18(s, 6H, H^{-OCH3}), 3.55(s, 6H, H^{-OCH3}).1³C NMR (126 MHz, CD₃CN) δ 161.39, 158.27, 158.19, 156.47, 156.30, 155.99, 155.72, 155.52, 152.61, 152.44, 149.78, 149.56, 149.38, 149.34, 147.99, 147.07, 141.71, 139.27, 138.88, 138.19, 138.17, 137.48, 137.35, 137.28, 130.99, 130.12, 130.07, 127.67, 127.56, 127.30, 124.76, 124.46, 124.35, 122.17, 121.83, 121.27, 121.20, 121.08, 119.11, 119.02, 118.65, 118.28, 114.66, 60.82, 55.86, 48.87. ESI-MS (3755.49 calcd. For C₁₆₈H₁₁₀F₂₄N₂₈O₂₀Ru₂S₈): m/z 971.42 [M - 3 N(SO₂CF₃)₂⁻]³⁺ (calcd m/z: 971.68), 1597.52 [M - 2 N(SO₂CF₃)₂⁻]²⁺ (calcd m/z: 1597.60).

Metallosupramolecular hexagon wreaths $Fe_{12}LC_6$: MOL ligand C (3.0 mg, 0.09 µmol), and $FeCl_2·4H_2O$ (0.4 mg, 0.19 µmol) was added in a 50 mL flask, then a solvent mixture of CH₃CN/glycol (10 mL, V:V, 1:2) was added and heated at 180 °C for 12 h, after cooled to ambient temperature, excess bistrifluoromethanesulfonimide lithium salt (LiNTf₂) in MeOH was added to get a purplish precipitate, which was filtered and washed with H₂O and MeOH,

to generate a purplish solid: 3.1 mg (96.4%). ¹H NMR (500 MHz, CD3CN) δ 9.45-9.20(m, 102H, A-tpy- $H^{3'5'}$, B-tpy- $H^{3'5'}$, C-tpy- $H^{3'5'}$, D-tpy- $H^{3'5'}$, Ph- H^{a}), 9.00-8.51(m, 144H, A-tpy- $H^{3'3''}$, B-tpy- $H^{3'3''}$, C-tpy- $H^{3'3''}$, C-tpy- $H^{3'5'}$, D-tpy- $H^{4''}$, Ph- H^{b} , Ph- H^{b}), 8.35-7.82(m, 144H, A-tpy- $H^{4'4''}$, B-tpy- $H^{4'4''}$, C-tpy- $H^{4'4''}$, D-tpy- $H^{4'4''}$, Ph- H^{g} , Ph- H^{c} , Ph- H^{d}), 7.69-7.48(m, 78H, A-tpy- $H^{6'6''}$, B-tpy- $H^{6'6''}$, Ph- H^{e}), 7.32-7.06(m, 120H, D-tpy- $H^{6'6''}$, A-tpy- $H^{5'5''}$, B-tpy- $H^{5'}$ ^{5"}, C-tpy- $H^{5'5''}$, D-tpy- $H^{5'5''}$), 4.33(s, 36H, H^{-OMe}), 3.59(s, 36H, H^{-OMe}). ESI-MS (29926.30 cacld. For C₁₀₅₆H₆₆₀F₂₈₈Fe₁₂N₁₉₂O₂₁₆Ru₁₂S₉₆): m/z 1590.19 [M - 16N(SO₂CF₃)₂⁻]¹⁶⁺ (calcd m/z: 1590.24), 1480.07 [M - 17N(SO₂CF₃)₂⁻]¹⁷⁺ (calcd m/z: 1480.22), 1382.12 [M - 18N(SO₂CF₃)₂⁻]²⁰⁺ (calcd m/z: 1382.43), 1294.76 [M - 19N(SO₂CF₃)₂⁻]¹⁹⁺ (calcd m/z: 1294.92), 1215.88 [M - 20N(SO₂CF₃)₂⁻]²⁰⁺ (calcd m/z: 1216.17), 1144.84 [M - 21N(SO₂CF₃)₂⁻]²¹⁺ (calcd m/z: 1144.92), 1080.04 [M - 22N(SO₂CF₃)₂⁻]²²⁺ (calcd m/z: 1080.14), 1020.93 [M - 23N(SO₂CF₃)₂⁻]²³⁺ (calcd m/z: 1021.00), 966.63 [M - 24N(SO₂CF₃)₂⁻]²⁴⁺ (calcd m/z: 966.78).

Figure S17:¹H NMR spectrum (500 MHz) of Fe₁₂LC₆ in CD₃CN.

Figure S18: ¹H NMR spectrum (500 MHz) of $Fe_{12}LC_6$ in CD₃CN under different concentration (2.0 mg/mL and 0.50 mg/mL).

Figure S19: 2D COSY spectrum (400 MHz) of Fe₁₂LC₆ in CD₃CN.

Figure S20: 2D NOESY spectrum (400 MHz) of Fe₁₂LC₆ in CD₃CN.

Figure S21: (A) ESI-MS and (B) TWIM-MS plot (m/z vs drift time) of Fe₁₂LC₆ with 48 PF₆⁻.

Figure S22: Theoretical (top) and experimental (bottom) isotope patterns for the different charge states observed from $[Fe_{12}LC_6]$ -48(NTf₂⁻).

6. ¹H NMR, ¹³C NMR, COSY and NOESY spectra of other compounds

Figure S23: ¹H NMR spectrum (500 MHz) of S2 in CDCl₃

Figure S24: 2D COSY spectrum (500 MHz) of S2 in CDCl₃.

Figure S25: ¹H NMR spectrum (500 MHz) of S5 in CDCl₃

Figure S26: ¹³C NMR spectrum (100 MHz) of S5 in CDCl₃.

Figure S27: ¹H NMR spectrum (400 MHz) of S6 in CDCl₃

Figure S28: 2D COSY spectrum (400 MHz) of S6 in CDCl₃.

Figure S31: 2D COSY spectrum (400 MHz) of S7 in CDCl₃.

Figure S32: ¹³C NMR spectrum (100 MHz) of S7 in CDCl₃.

Figure S33: ¹H NMR spectrum (500 MHz) of S9 in CD₃CN.

Figure S34: 2D COSY spectrum (500 MHz) of S9 in CD₃CN.

Figure S35: 2D NOESY spectrum (400 MHz) of S9 in CD₃CN.

Figure S36: ¹H NMR spectrum (500 MHz) of S11 in CDCl₃.

Figure S37: ¹³C NMR spectrum (125 MHz) of S11 in CDCl₃.

Figure S38: ¹H NMR spectrum (500 MHz) of S13 in CDCl₃.

Figure S39: 2D NOESY spectrum (500 MHz) of S13 in CDCl₃.

Figure S40: ¹³C NMR spectrum (125 MHz) of S13 in CDCl₃.

Figure S41:¹H NMR spectrum (400 MHz) of S15 in CD₃CN.

Figure S42: 2D COSY spectrum (500 MHz) of S15 in CD₃CN.

Figure S43: 2D NOESY spectrum (400 MHz) of S15 in CD₃CN.

Figure S44:¹H NMR spectrum (400 MHz) of S17 in CDCl₃

Figure S45: 2D COSY spectrum (400 MHz) of S17 in CDCl₃.

Figure S46: ¹³C NMR spectrum (400 MHz) of S17 in CDCl₃.

Figure S47: ¹H NMR spectrum (400 MHz) of S18 in CD₃CN.

Figure S48: 2D COSY spectrum (400 MHz) of S18 in CD₃CN.

Figure S49: 2D NOESY spectrum (400 MHz) of S18 in CD₃CN.

Figure S50: ¹³C NMR spectrum (125 MHz) of S18 in CD₃CN.

Figure S51: ¹H NMR spectrum (500 MHz) of LA in CD₃CN.

Figure S52: 2D COSY spectrum (400 MHz) of LA in CD₃CN.

Figure S54: ¹H NMR spectrum (500 MHz) of LB in CD₃CN.

Figure S55: 2D COSY spectrum (400 MHz) of LB in CD₃CN.

Figure S56: 2D NOESY spectrum (400 MHz) of LB in CD₃CN.

Figure S57: ¹³C NMR spectrum (125 MHz) of LB in CD₃CN.

Figure S58: ¹H NMR spectrum (400 MHz) of LC in CD₃CN.

Figure S59: 2D COSY spectrum (400 MHz) of LC in CD₃CN.

Figure S60: 2D NOESY spectrum (400 MHz) of LC in CD₃CN.

Figure S61: ¹³C NMR spectrum (400 MHz) of LC in CD₃CN.

7. ESI-MS spectra data of ligands and complexes

Figure S62: Isotope patterns and ESI-MS spectrum of S6.

Figure S63: Isotope patterns and ESI-MS spectrum of S7.

Figure S64: Isotope patterns and ESI-MS spectrum of S13

Figure S65: Isotope patterns and ESI-MS spectrum of S9.

Figure S66: Isotope patterns and ESI-MS spectrum of LA.

Figure S67: Isotope patterns and ESI-MS spectrum of S15.

Figure S68: Isotope patterns and ESI-MS spectrum of LB.

Figure S69: Isotope patterns and ESI-MS spectrum of S18.

Figure S70: Isotope patterns and ESI-MS spectrum of LC.

8. References

- S1. J. L. Wang, X. Li, X. Lu, I. F. Hsieh, Y. Cao, C. N. Moorefield, C. Wesdemiotis, S. Z. Cheng and G. R. Newkome, *J. Am. Chem. Soc.*, 2011, **133**, 11450-11453
- S2. M. Chen, J. Wang, S.-C. Wang, Z. Jiang, D. Liu, Q. Liu, H. Zhao, J. Yan, Y.-T. Chan and P. Wang, J. Am. Chem. Soc., 2018, 140, 12168-12174.