Supplementary Information

Metal-free electrochemical synthesis of α -ketoamides via decarboxylative coupling of α -keto acids with isocyanides and water

Feng Zhao,^a Na Meng,^c Ting Sun,^a Jiangwei Wen^c, Xiaohui Zhao^{*b} and Wei Wei,^{b,c*}

^a Key Laboratory of Functional Organic Molecule, School of Chemistry and Materials Science, Guizhou Education University, Guiyang 550018, P. R. China.

^b Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai 810008, China ^cSchool of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China * Corresponding author.

E-mail: weiweiqfnu@163.com; xhzhao@nwipb.cas.cn

Table of Content

1.	Gener	eral information	S1
2.	Gene	eral procedure for electrochemical synthesis of α -ketoamides from the synthesis of α -ketoamides from the synthesis of th	om α-
	охоса	arboxylic acids, isocyanides and water	S2
3. Preliminary mechanistic studies			S3-S7
	3.1.	The reaction of $1a$ and $2a$ was carried out in the absence of H_2O	S3
	3.2.	The reaction of $1a$ and $2a$ was carried out under H_2O^{18}	.\$3-\$4
	3.3.	The reaction of $1a$ and $2a$ in the presence of I_2	S4
	3.4.	The reaction of 1a and 2a in the presence of NIS	
	3.5.	Cyclic voltammetry (CV) tests	.S5-S6
4.	Chara	acterization data of products 3a–3u S	\$6-S13
5.	Copie	es of NMR spectra for 3a–3u	14-S36

1. General information

All commercially available reagent grade chemicals were purchased from Aldrich, Acros, Bidepharm and Energy Chemical Company and used as received without further purification unless otherwise stated. ¹H NMR and ¹³C NMR were recorded in CDCl₃ on a Bruker Avance III spectrometer with TMS as internal standard (500/400 MHz ¹H, 125/400 MHz ¹³C) at room temperature, the chemical shifts (δ) were expressed in ppm and *J* values were given in Hz. The following abbreviations are used to indicate the multiplicity: singlet (s), doublet (d), triplet (t), quartet (q), doublet of doublets (dd), doublet of triplets (dt), and multiplet (m). All first order splitting patterns were assigned on the basis of the appearance of the multiplet. Splitting patterns that could not be easily interpreted were designated as multiplet (m). Mass analyses and HRMS were obtained on a Finnigan-LCQDECA mass spectrometer and a Bruker Daltonics Bio-TOF-Q mass spectrometer by the ESI method, respectively. Column chromatography was performed on silica gel (200-300 mesh). The instrument for electrolysis is dual-display potentiostat (DJS-292B) (made in China), the carbon rod (d: 6 mm), Pt (1.5 x 1.5 cm x 2) was purchased from Xuzhou Xinke Instrument and Meter Co. LTD.

2. General procedure for electrochemical synthesis of α -ketoamides from α -oxocarboxylic acids, isocyanides and water.

$$\begin{array}{c} O \\ R^{1} \\ COOH \end{array}^{+} \\ \mathbf{N}C - R^{2} \\ \mathbf{n} - Bu_{4}NI (0.5eq), rt, air \\ \mathbf{1} \\ \mathbf{2} \\ CH_{3}CN/H_{2}O (5:1) \\ \mathbf{3} \end{array}$$

In an oven-dried undivided three-necked flask (25 mL) equipped with a stir bar, α -oxocarboxylic acids 1 (0.2 mmol), isocyanide 2 (0.4 mmol), n-Bu₄NI (0.01 mmol) and CH₃CN/H₂O (5:1, 12 ml) were combined and added. The flask was equipped with graphite rod (d: 6.0 mm) anode and graphite rod cathode (distance between electrodes (5 - 10 mm)). The reaction mixture was stirred and electrolyzed at a constant current of 5 mA under room temperature for 5 h. After completion of the reaction, the solution was concentrated in vacuum. The residue was purified by flash column chromatography using a mixture of petroleum ether and ethyl acetate (10:1) as eluent to give the desired product 3.

- 3. Preliminary mechanistic studies
- 3.1 The reaction of 1a and 2a was carried out in the absence of H₂O.

In an oven-dried undivided three-necked flask (25 mL) equipped with a stir bar, α oxocarboxylic acid 1 (0.2 mmol), isocyanide 2 (0.4 mmol), n-Bu₄NI (0.01 mmol), 4Å Ms and CH₃CN (10 mL) were combined and added. The flask was equipped with graphite rod (d: 6.0 mm) anode and graphite rod cathode (distance between electrodes (5 - 10 mm)). The reaction mixture was stirred and electrolyzed at a constant current of 5 mA under room temperature for 5 h. After completion of the reaction, the solution was concentrated in vacuum, only a trace amount of the desired product **3a** was detected.

3.2 The reaction of 1a and 2a was carried out under H_2O^{18} .

In an oven-dried undivided three-necked flask (25 mL) equipped with a stir bar, α - oxocarboxylic acid **1a** (0.2 mmol), isocyanide **2a** (0.4 mmol), n-Bu₄NI (0.01 mmol), CH₃CN/H₂¹⁸O (5:1, 12 ml) were combined and added. The flask was equipped with graphite rod (d: 6.0 mm) anode and graphite rod cathode (distance between electrodes (5 - 10 mm)). The reaction mixture was stirred and electrolyzed at a constant current of 5 mA under room temperature for 5 h. After completion of the reaction, the solution was concentrated in vacuum. The residue was purified by flash column chromatography using a mixture of petroleum ether and ethyl acetate as eluent to give the desired product **¹⁸O-3a** (33.1mg, 70%).

3.3 The reaction of 1a and 2a in the presence of I₂.

In an oven-dried undivided three-necked flask (25 mL) equipped with a stir bar, α -oxocarboxylic acid **1a** (0.2 mmol), isocyanide **2a** (0.4 mmol), I₂ (0.4 mmol), CH₃CN/H₂O (5:1, 2.4 ml) were combined and added. The reaction mixture was stirred at room temperature for 24 h. After completion of the reaction, the solution was concentrated in vacuum. Only a trace amount of product **3a** was detected.

3.4 The reaction of 1a and 2a in the presence of NIS.

In an oven-dried undivided three-necked flask (25 mL) equipped with a stir bar, α -oxocarboxylic acid **1a** (0.2 mmol), isocyanide **2a** (0.4 mmol), NIS (0.4 mmol), CH₃CN/H₂O (5:1, 2.4 ml) were combined and added. The reaction mixture was stirred at room temperature for 24 h. After completion of the reaction, the solution was concentrated in vacuum. The residue was purified by flash column chromatography using a mixture of petroleum ether and ethyl acetate as eluent to give the desired product **3a** (23.8mg, 51%).

3.5 Cyclic voltammetry (CV) tests

Figure S1. Conditions: glass carbon as work electrode, Pt plate $(1.5 \times 1.5 \text{ cm}^2)$ as conter electrode Ag/AgCl (KCl) as reference electrode in 0.1 M LiClO₄ with different solvent under **1a** (0.2 mM), the mixed solvent of CH₃CN/H₂O, scan rate: 100 mV s⁻¹.

Figure S2. Conditions: glass carbon as work electrode, Pt plate $(1.5 \text{ x } 1.5 \text{ cm}^2)$ as conter electrode and Ag/AgCl (KCl) as reference electrode in 0.1 M LiClO₄ at 100 mV s⁻¹ : (I) 0.1 mM of n-Bu₄NI, anhydrous CH₃CN, (II) 0.2 mM of PhCOCOOH, CH₃CN/H₂O (5 : 1) and (III) 0.2 mM of PhCOCOOH, anhydrous CH₃CN.

Figure S3. Cyclic voltammograms of 0.2 mM PhCOCOOH in 0.1 M LiClO₄ in (a) CH₃CN/H₂O (5 : 1), and (b) anhydrous CH₃CN using glass carbon as the working electrode, Pt plate (1.5 x 1.5 cm²) and Ag/AgCl (KCl) as the counter and reference electrodes at 100 mV s⁻¹.

4. Characterization data of products 3a - 3u

ethyl (2-oxo-2-phenylacetyl)glycinate

Compound **3a** was obtained in 78% yield (36.7 mg) according to the general procedure (petroleum ether/EtOAc, 10:1). Yellow oil. ¹H NMR (CDCl₃, 500 MHz, ppm): δ 8.32 (d, *J* = 8.3 Hz, 2H), 7.64 - 7.60 (m, 2H), 7.48 (t, *J* = 7.7 Hz, 2H), 4.26 (q, *J* = 7.1 Hz, 2H), 4.17 (d, *J* = 5.6 Hz, 2H), 1.31 (t, *J* = 7.2 Hz, 3H); ¹³C{¹H} NMR (CDCl₃, 125 MHz, ppm): δ 186.9, 169.0, 161.9, 134.5, 133.1, 131.2, 128.5, 61.8, 41.2, 14.1; MS (ESI) m/z: [M + H]⁺ Calcd for C₁₂H₁₄NO₄ 236.0923; found 236.0856.

ethyl (2-oxo-2-(p-tolyl)acetyl)glycinate

Compound **3b** was obtained in 71% yield (35.4 mg) according to the general procedure (petroleum ether/EtOAc, 5:1). Yellow solid. mp = 80.7 - 81.2 °C; ¹H NMR (CDCl₃, 500 MHz, ppm): δ 8.25 (d, *J* = 8.3 Hz, 2H), 7.56 (s, 1H), 7.28 (d, *J* = 8.3 Hz, 2H), 4.26 (q, *J* = 7.1 Hz, 2H), 4.16 (d, *J* = 5.6 Hz, 2H), 2.42 (s, 3H), 1.31 (t, *J* = 7.1 Hz, 3H); ¹³C {¹H} NMR (CDCl₃, 125 MHz, ppm): δ 186.4, 169.0, 162.1, 145.8, 131.4, 130.7, 129.3, 61.8,

41.2, 21.9, 14.2; MS (ESI) m/z: $[M + H]^+$ Calcd for $C_{13}H_{16}NO_4$ 250.1079; found 250.0975.

ethyl (2-oxo-2-(o-tolyl)acetyl)glycinate

Compound **3c** was obtained in 64% yield (31.9 mg) according to the general procedure (petroleum ether/EtOAc, 5:1). Yellow oil. ¹H NMR (CDCl₃, 500 MHz, ppm): δ 7.93 - 7.91 (m, 1H), 7.54 (s, 1H), 7.45 (t, *J* = 7.5 Hz, 1H), 7.30 - 7.27 (m, 2H), 4.26 (q, *J* = 7.1 Hz, 2H), 4.16 (d, *J* = 5.6 Hz, 2H), 2.51 (s, 3H), 1.31 (t, *J* = 7.1 Hz, 3H); ¹³C{¹H} NMR (CDCl₃, 125 MHz, ppm): δ 190.4, 169.0, 162.3, 140.3, 132.9, 132.5, 132.1, 131.7, 125.4, 61.8, 41.4, 20.9, 14.2; MS (ESI) m/z: [M + H]⁺ Calcd for C₁₃H₁₆NO₄ 250.1079; found 250.1020.

ethyl (2-(3,4-dimethylphenyl)-2-oxoacetyl)glycinate

Compound **3d** was obtained in 76% yield (39.8 mg) according to the general procedure (petroleum ether/EtOAc, 10:1). Yellow oil. ¹H NMR (CDCl₃, 500 MHz, ppm): δ 8.10 - 8.08 (m, 2H), 7.56 (s, 1H), 7.23 (d, J = 8.4 Hz, 1H), 4.26 (q, J = 7.2 Hz, 2H), 4.16 (d, J = 5.6 Hz, 2H), 2.33 (s, 3H), 2.31 (s, 3H), 1.31 (t, J = 7.2 Hz, 3H); ¹³C{¹H} NMR (CDCl₃, 125 MHz, ppm): δ 186.7, 169.0, 162.3, 144.6, 137.0, 132.0, 131.0, 129.9, 129.1, 61.8, 41.2, 20.3, 19.7, 14.2; MS (ESI) m/z: [M + H]⁺ Calcd for C₁₃H₁₆NO₅ 264.1236; found 264.1185.

ethyl (2-(4-methoxyphenyl)-2-oxoacetyl)glycinate

Compound **3e** was obtained in 75% yield (39.7 mg) according to the general procedure (petroleum ether/EtOAc, 5:1). Yellow solid. mp = 99.7 - 100.2 °C; ¹H NMR (CDCl₃, 500 MHz, ppm): δ 8.39 (d, *J* = 8.8 Hz, 2H), 7.61 (s, 1H), 6.95 (d, *J* = 8.8 Hz, 2H), 4.26

(q, J = 7.1 Hz, 2H), 4.15 (d, J = 5.6 Hz, 2H), 3.88 (s, 3H), 1.31 (t, J = 7.1 Hz, 3H); ¹³C{¹H} NMR (CDCl₃, 125 MHz, ppm): δ 184.9, 169.0, 164.8, 162.5, 133.9, 126.2, 113.9, 61.7, 55.6, 41.2, 14.1; MS (ESI) m/z: [M + H]⁺ Calcd for C₁₂H₁₄NO₄ 266.1028; found 266.0972.

ethyl (2-(3,4-dimethoxyphenyl)-2-oxoacetyl)glycinate

Compound **3f** was obtained in 60% yield (35.4 mg) according to the general procedure (petroleum ether/EtOAc, 3:1). Yellow solid. mp = 81.5 - 81.9 °C; ¹H NMR (CDCl₃, 500 MHz, ppm): δ 8.24 - 8.21 (m, 1H), 7.85 (d, *J* = 1.9 Hz, 1H), 7.60 (s, 1H), 6.92 (d, *J* = 8.6 Hz, 1H), 4.26 (q, *J* = 7.2 Hz, 2H), 4.16 (d, *J* = 5.6 Hz, 2H), 3.97 (s, 3H), 3.95 (s, 3H), 1.31 (t, *J* = 7.4 Hz, 3H); ¹³C{¹H} NMR (CDCl₃, 125 MHz, ppm): δ 184.7, 169.0, 162.4, 154.8, 148.9, 127.4, 126.2, 112.5, 110.2, 61.8, 56.2, 56.0, 41.2, 14.2; MS (ESI) m/z: [M + H]⁺ Calcd for C₁₄H₁₈NO₆ 296.1134; found 296.1083.

ethyl (2-(4-fluorophenyl)-2-oxoacetyl)glycinate

Compound **3g** was obtained in 66% yield (33.4 mg) according to the general procedure (petroleum ether/EtOAc, 10:1). Yellow oil. ¹H NMR (CDCl₃, 500 MHz, ppm): δ 8.44 - 8.41 (m, 2H), 7.64 (s, 1H), 7.17 - 7.14 (m, 2H), 4.29 - 4.24 (m, 2H), 4.16 (d, *J* = 5.7 Hz, 2H), 1.33 - 1.30 (m, 3H); ¹³C{¹H} NMR (CDCl₃, 125 MHz, ppm): δ 185.0, 168.9, 166.7 (d, *J* = 256.4 Hz), 134.2 (d, *J* = 9.6 Hz), 129.6 (d, *J* = 2.9 Hz), 115.8 (d, *J* = 21.8 Hz), 61.8, 41.2, 14.1; ¹⁹F NMR (CDCl₃, 500 MHz): -101.9; MS (ESI) m/z: [M + H]⁺ Calcd for C₁₂H₁₃FNO₄ 254.0829; found 254.0765.

ethyl (2-(3-fluorophenyl)-2-oxoacetyl)glycinate

Compound 3h was obtained in 62% yield (31.3 mg) according to the general procedure

(C/Pt, petroleum ether/EtOAc, 10:1). Yellow oil. ¹H NMR (CDCl₃, 500 MHz, ppm): δ 8.17 (d, J = 7.8 Hz, 1H), 8.06 - 8.04 (m, 1H), 7.59 (s, 1H), 7.49 - 7.45 (m, 1H), 7.36 -7.32 (m, 1H), 4.27 (q, J = 7.2 Hz, 2H), 4.17 (d, J = 5.6 Hz, 2H), 1.32 (t, J = 7.2 Hz, 3H); ¹³C{¹H} NMR (CDCl₃, 125 MHz, ppm): δ 185.5, 168.8, 162.4(d, J = 246.2 Hz), 161.3, 134.9 (d, J = 7.0 Hz), 130.2 (d, J = 7.5 Hz), 127.1(d, J = 3.3 Hz), 121.6 (d, J =21.3 Hz), 117.8 (d, J = 23.1 Hz), 61.9, 41.3, 14.1; ¹⁹F NMR (CDCl₃, 500 MHz): -111.5; MS (ESI) m/z: [M + H]⁺ Calcd for C₁₂H₁₃FNO₄ 254.0829; found 254.0766.

ethyl (2-(4-chlorophenyl)-2-oxoacetyl)glycinate

Compound **3i** was obtained in 70% yield (37.8 mg) according to the general procedure (petroleum ether/EtOAc, 10:1). Yellow solid. mp = 51.8 - 52.2 °C; ¹H NMR (CDCl₃, 500 MHz, ppm): δ 8.34 - 8.30 (m, 2H), 7.60 (s, 1H), 7.47 - 7.43 (m, 2H), 4.26 (q, *J* = 7.1 Hz, 2H), 4.16 (d, *J* = 5.6 Hz, 2H), 1.31 (t, *J* = 7.1 Hz, 3H); ¹³C{¹H} NMR (CDCl₃, 125 MHz, ppm): δ 185.4, 168.8, 161.5, 141.3, 132.7, 131.5, 128.9, 61.9, 41.2, 14.2; MS (ESI) m/z: [M + H]⁺ Calcd for C₁₂H₁₃ClNO₄ 270.0533; found 270.0475.

ethyl (2-(4-bromophenyl)-2-oxoacetyl)glycinate

Compound **3j** was obtained in 62% yield (28.3 mg) according to the general procedure (petroleum ether/EtOAc, 10:1). Yellow oil. ¹H NMR (CDCl₃, 500 MHz, ppm): δ 8.23 (m, *J* = 8.6 Hz, 2H), 7.64 - 7.62 (m, 3H), 4.26 (q, *J* = 7.2 Hz, 2H), 4.15 (d, *J* = 5.6 Hz, 2H), 1.31 (t, *J* = 7.2 Hz, 3H); ¹³C{¹H} NMR (CDCl₃, 125 MHz, ppm): δ 185.7, 168.9, 161.4, 132.7, 131.9, 131.9, 130.3, 61.9, 41.2, 14.2; MS (ESI) m/z: [M + H]⁺ Calcd for C₁₂H₁₃BrNO₄ 314.0028; found 313.9967.

ethyl (2-oxo-2-(3-(trifluoromethyl)phenyl)acetyl)glycinate

Compound **3k** was obtained in 63% yield (38.1 mg) according to the general procedure (C/Pt, petroleum ether/EtOAc, 10:1). Yellow solid. mp = 50.8 - 51.0 °C; ¹H NMR (CDCl₃, 500 MHz, ppm): δ 8.63 (s, 1H), 8.56 (d, *J* = 7.7 Hz, 1H), 7.88 (t, *J* = 7.8 Hz, 1H), 7.65 - 7.62 (m, 2H), 4.27 (q, *J* = 7.1 Hz, 2H), 4.18 (d, *J* = 5.6 Hz, 2H), 1.32 (t, *J* = 7.2 Hz, 3H); ¹³C{¹H} NMR (CDCl₃, 125 MHz, ppm): δ 185.4, 168.8, 161.1, 134.4, 133.7, 131.2 (d, *J* = 33.0 Hz), 130.8 (q, *J* = 3.6 Hz), 129.2, 128.1 (q, *J* = 3.8 Hz), 123.5 (d, *J* = 270.9 Hz), 61.9, 41.3, 14.1; ¹⁹F NMR (CDCl₃, 500 MHz): -62.9; MS (ESI) m/z: [M + H]⁺ Calcd for C₁₃H₁₃F₃NO₄ 304.0797; found 304.0745.

Compound **31** was obtained in 70% yield (43.7 mg) according to the general procedure (petroleum ether/EtOAc, 1:1). Yellow solid. mp = 112.1 - 112.5 °C; ¹H NMR (CDCl₃, 500 MHz, ppm): δ 7.98 - 7.97 (m, 4H), 7.11 (s, 1H), 4.29 - 4.23 (m, 4H), 3.08 (s, 3H), 1.32 (t, *J* = 7.2 Hz, 3H); ¹³C{¹H} NMR (CDCl₃, 125 MHz, ppm): δ 169.8, 165.9, 143.1, 138.7, 128.3, 127.7, 61.8, 44.3, 41.9, 14.2; MS (ESI) m/z: [M + H]⁺ Calcd for C₁₃H₁₆NO₆S 314.0698; found 314.0665.

ethyl (2-(4-nitrophenyl)-2-oxoacetyl)glycinate

Compound **3m** was obtained in 41% yield (22.9 mg) according to the general procedure (petroleum ether/EtOAc, 10:1). Yellow solid. mp = 71.2 - 71.5 °C; ¹H NMR (CDCl₃, 500 MHz, ppm): δ 9.19 - 9.18 (m, 1H), 8.71 - 8.69 (m, 1H), 8.49 - 8.47 (m, 1H), 7.72 - 7.69 (m, 2H), 4.28 (q, *J* = 7.2 Hz, 2H), 4.19 (d, *J* = 5.7 Hz, 2H), 1.33 (t, *J* = 7.2 Hz, 3H); ¹³C{¹H} NMR (CDCl₃, 125 MHz, ppm): δ 184.6, 168.7, 160.7, 148.2, 136.8, 134.3, 129.8, 128.5, 126.1, 62.0, 41.3, 14.1; MS (ESI) m/z: [M + H]⁺ Calcd for C₁₂H₁₃N₂O₆ 281.0774; found 281.0709.

3-methyl-2-oxo-N-(tosylmethyl)pentanamide

Compound **3n** was obtained in 47% yield (27.8 mg) according to the general procedure (C/Pt, petroleum ether/EtOAc, 10:1). Yellow oil. ¹H NMR (CDCl₃, 500 MHz, ppm): δ 7.76 (d, J = 8.2 Hz, 2H), 7.72 (s, 1H), 7.34 (d, J = 8.2 Hz, 2H), 4.74 - 4.64 (m, 2H), 3.25 - 3.18 (m, 1H), 2.43 (s, 3H), 1.62 - 1.53 (m, 1H), 1.33 - 1.25 (m, 1H), 0.98 (d, J = 7.0 Hz, 3H), 0.81 (t, J = 7.5 Hz, 3H); ¹³C {¹H} NMR (CDCl₃, 125 MHz, ppm): δ 200.3, 159.0, 145.7, 133.4, 130.0, 129.0, 60.0, 40.6, 25.2, 21.7, 14.8, 11.4; MS (ESI) m/z: [M + H]⁺ Calcd for C₁₄H₂₀NO₄S 298.1113; found 298.1052.

2-oxo-2-(p-tolyl)-N-(tosylmethyl)acetamide

Compound **30** was obtained in 71% yield (47.1 mg) according to the general procedure (petroleum ether/EtOAc, 5:1). Yellow solid. mp = 96.9 - 97.0 °C; ¹H NMR (CDCl₃, 500 MHz, ppm): δ 7.97 - 7.95 (m, 3H), 7.81 (d, *J* = 8.0 Hz, 2H), 7.32 (d, *J* = 7.8 Hz, 2H), 7.22 (d, *J* = 7.9 Hz, 2H), 4.78 (d, *J* = 7.0 Hz, 2H), 2.41 (d, *J* = 7.3 Hz, 6H); ¹³C{¹H} NMR (CDCl₃, 125 MHz, ppm): δ 185.6, 161.2, 146.3, 145.6, 133.5, 131.2, 130.1, 130.1, 129.3, 129.1, 60.1, 21.9, 21.7; MS (ESI) m/z: [M + H]⁺ Calcd for C₁₇H₁₈NO₄S 332.0957; found 332.0903.

2-oxo-2-phenyl-N-(tosylmethyl)acetamide

Compound **3p** was obtained in 72% yield (45.5 mg) according to the general procedure (petroleum ether/EtOAc, 5:1). White solid. mp = 99.0 - 99.4 °C; ¹H NMR (CDCl₃, 500 MHz, ppm): δ 7.99 - 7.97 (m, 2H), 7.81 (s, 1H), 7.74 (d, *J* = 8.3 Hz, 2H), 7.37 - 7.34 (m, 1H), 7.26 (d, *J* = 8.0 Hz, 2H), 4.71 (d, *J* = 7.0 Hz, 2H), 2.35 (s, 3H); ¹³C{¹H} NMR (CDCl₃, 125 MHz, ppm): δ 186.1, 160.8, 145.7, 134.9, 133.4, 132.5, 131.1, 130.1,

129.1, 128.6, 60.0, 21.7; MS (ESI) m/z: $[M + H]^+$ Calcd for C₁₆H₁₆NO₄S 318.0800; found 318.0744.

methyl (2-oxo-2-phenylacetyl)glycinate

Compound **3q** was obtained in 68% yield (30.1 mg) according to the general procedure (petroleum ether/EtOAc, 5:1). Yellow oil. ¹H NMR (CDCl₃, 500 MHz, ppm): δ 8.34 - 8.33 (m, 2H), 7.64 (t, *J* = 7.5 Hz, 1H), 7.55 (s, 1H), 7.47 (t, *J* = 7.8 Hz, 2H), 4.19 (d, *J* = 5.6 Hz, 2H), 3.81 (s, 3H); ¹³C{¹H} NMR (CDCl₃, 125 MHz, ppm): δ 186.8, 169.4, 161.8, 134.6, 133.1, 131.2, 128.6, 52.6, 41.1; MS (ESI) m/z: [M + H]⁺ Calcd for C₁₁H₁₂NO₄ 222.0766; found 222.0694.

N-cyclohexyl-2-oxo-2-phenylacetamide

Compound **3r** was obtained in 55% yield (25.4 mg) according to the general procedure (C/Pt, petroleum ether/EtOAc, 10:1). Yellow solid. mp = 104.8 - 105.1 °C; ¹H NMR (CDCl₃, 500 MHz, ppm): δ 8.33 (d, *J* = 8.2 Hz, 2H), 7.61 (t, *J* = 7.4 Hz, 1H), 7.47 (t, *J* = 7.7 Hz, 2H), 6.97 (s, 1H), 3.88 - 3.83 (m, 1H), 1.99 (d, *J* = 11.9 Hz, 2H), 1.78 - 1.75 (m, 2H), 1.67 - 1.64 (m, 1H), 1.45 - 1.38 (m, 2H), 1.31 - 1.19 (m, 3H); ¹³C{¹H} NMR (CDCl₃, 125 MHz, ppm): δ 188.1, 160.9, 134.3, 133.5, 131.2, 128.5, 48.5, 32.7, 25.4, 24.8; MS (ESI) m/z: [M + H]⁺ Calcd for C₁₄H₁₈NO₂ 232.1338; found 232.1286.

N-benzyl-2-oxo-2-phenylacetamide

Compound **3s** was obtained in 86% yield (41.2 mg) according to the general procedure (petroleum ether/EtOAc, 15:1). Yellow solid. mp = 95.2 - 95.6 °C; ¹H NMR (CDCl₃, 500 MHz, ppm): δ 8.36 - 8.34 (m, 2H), 7.64 - 7.60 (m, 1H), 7.49 - 7.46 (m, 2H), 7.43(s, 1H), 7.37 - 7.28 (m, 5H), 4.57 (d, *J* = 6.1 Hz, 2H); ¹³C{¹H} NMR (CDCl₃, 125 MHz,

ppm): δ 187.6, 161.6, 137.2, 134.5, 133.3, 131.3, 128.9, 128.5, 127.9, 127.9, 43.5; MS (ESI) m/z: [M + H]⁺ Calcd for C₁₅H₁₄NO₂ 240.1025; found 240.0951.

N-butyl-2-oxo-2-phenylacetamide

Compound **3u** was obtained in 71% yield (29.1 mg) according to the general procedure (petroleum ether/EtOAc, 15:1). Yellow oil. ¹H NMR (CDCl₃, 500 MHz, ppm): δ 8.34 - 8.32 (m, 2H), 7.64 - 7.60 (m, 1H), 7.49 - 7.45 (m, 2H), 7.14 - 7.11 (m, 1H), 3.40 (q, *J* = 6.9 Hz, 2H), 1.63 - 1.56 (m, 2H), 1.46 - 1.36 (m, 2H), 0.96 (t, *J* = 7.3 Hz, 3H); ¹³C{¹H} NMR (CDCl₃, 125 MHz, ppm): δ 187.9, 161.8, 134.3, 133.4, 131.2, 128.5, 39.2, 31.3, 20.1, 13.7; MS (ESI) m/z: [M + H]⁺ Calcd for C₁₂H₁₆NO₂ 206.1181; found 206.1112.

N-(2,6-dimethylphenyl)-2-oxo-2-phenylacetamide

Compound **3t** was obtained in 70% yield (35.4 mg) according to the general procedure (petroleum ether/EtOAc, 15:1). Yellow solid. mp = 111.0 - 111.3 °C; ¹H NMR (CDCl₃, 500 MHz, ppm): δ 8.41 - 8.40 (m, 3H), 7.65 (t, *J* = 7.8 Hz, 1H), 7.50 (t, *J* = 7.8 Hz, 2H), 7.18 - 7.11 (m, 3H), 2.29 (s, 6H); ¹³C{¹H} NMR (CDCl₃, 125 MHz, ppm): δ 187.7, 159.9, 135.2, 134.7, 133.2, 132.5, 131.4, 128.7, 128.4, 127.8, 18.5; MS (ESI) m/z: [M + H]⁺ Calcd for C₁₆H₁₆NO₂ 254.1181; found 254.1123.

5. Copies of NMR Spectra for 3a–3u

¹ 3224
¹ 3081
¹ 3081
¹ 2939
¹ 2939
¹

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm)

Constant of the second s

8.3489 8.3227 8.3227 8.3249 8.3249 8.3249 8.3249 8.3249 7.1195 7.1195 7.1135

3 4209 3 3709 3 3703 3 3703 3 3703 3 3703 3 3703 3 3703 3 3703 1 5596 1 5596 1 5596 1 5596 1 5596 1 5596 1 5596 1 5596 1 5596 1 3607 1 3707 1 3607 1 3707 1

