Supporting Information

Multifunctional P-ligand -Controlled "Silicon-Centered" Selectivity in Rh/Cu –Catalyzed Si-C bond Cleavage of Silacyclobutanes

Xu Wang, Shuai-Shuai Huang, Feng-Jiao Zhang, Jia-Le Xie, Zhao Li, Zheng Xu, Fei Ye, Li-Wen Xu*

Content

1. General Information	1
2. Experimental Procedures and Spectral Data of Reactants	1
3. Experimental Procedures and Spectral Data of Products	5
3.1. General procedure for the Rh/Cu-cocatalyzed (3+2) annulation	ı of
silacycles with internal alkynes	6
Table S1. The effect of Rhodium metal salts	33
Table S2. The effect of P-ligands.	34
Table S3. The effect of Additive and Temperature.	36
Table S4. The effect of the amount.	37
Table S5. The effect of solvent.	38
Table S6. Control Experiments.	39
3.2. General procedure for the synthesis of Ar-BINMOL-Phos.	40
3.3. General procedure for the asymmetric version for the Rh/Cu-cocataly	yzed
(3+2) annulation of silacycles with internal alkynes.	46
Table S7. The effect of chiral phosphoramidite ligands.	56
Table S8. The effect of temperature.	58
Table S9. Comparative Experiment.	58
3.4. General procedure for the synthesis of 4a.	59
4. Downstream transformation of product 3g.	60
5. Supplementary Figures	61
Figure S1. NOESY spectrum of 3g. The determination of the structur	e of
product 3g	61
Figure S2. NOESY spectrum of <i>anti</i> -4a. The determination of the structur	e of
product <i>anti</i> -4a	62
6. Determination of Absolute Configuration by ECD Experiments	63
Figure S3. DFT calculation for the ECD spectrum of chiral product 3p	64
Figure S4. Experimentally tested ECD spectrum of chiral product 3p	66
Figure S5. DFT calculation for the ECD spectrum of chiral product 3g	67

Figure S6. Experimentally tested ECD spectrum of chiral pro	duct 3g. 67
7. References	68
8. ¹ H NMR, ¹³ C NMR and ³¹ P NMR Spectra	69
9. HPLC Spectra	

1. General Information

Unless specifically stated, all reagents were commercially obtained and where appropriate, purified prior to use. For example, all the aldehydes recrystallized or distilled prior to use. Dichloromethane, toluene, were freshly distilled from CaH₂, tetrahydrofuran (THF) and 1,4- dioxane were dried and distilled from metal sodium and benzophenone. Et₃N solvents were dried. Other commercially available reagents and solvents were used directly without purification. Reactions were monitored by thin layer chromatography (TLC) using silica gel plates. Flash column chromatography was performed over silica (300-400 mesh). ¹H NMR, ¹³C NMR spectra were recorded on a Bruker 400 MHz or 500 MHz spectrometer in CDCl₃. Multiplicities were given as: s (singlet); d (doublet); dd (doublets of doublet); t (triplet); q (quartet); or m (multiplets). High resolution mass spectra (HRMS) of the products were obtained on a Bruker Daltonics micro TOFspectrometer. HPLC was carried out with a Agilent 1260 infinity, Waters AcQuity HPLC or Waters AcQuity UPLC using a chiralcel AD-H column, a chiralcel OJ-H column, a chiralcel IA column, a chiralcel OD-H column, a chiralcel IC column, or a chiralcel OX-H column, a chiralcel OP column, a chiralcel Phenomenex column.

2. Experimental Procedures and Spectral Data of Reactants

2.1. General procedure for the synthesis of Silacyclobutanes (S3).¹

Magnesium (60 mmol), 5 mL solution of the **S1** in THF (3.12 mL of the **S1** was dissolved in 20 mL THF) and a grain of I_2 in dry THF was heated to reflux. The rest of the **S1** solution was added dropwise over a period of 1 h and the resulting solution was refluxed for additional 4 h. **S2** (30 mmol) dissolved in 30 mL THF was added dropwise

over a period of 3 h and the resulting solution was refluxed overnight. The reaction was allowed to cool to room temperature before quenching with 15 mL aq. NH₄Cl. The mixture was extracted with EtOAc (3×15 mL). The combined organic layers were then dried over Na₂SO₄ and concentrated under reduced vacuum. The residue was purified by silica gel flash column chromatography (eluent: petroleum ether) to afford **S3** as colorless oil.

1-([1,1'-biphenyl]-3-yl)-1-methylsiletane (1x):

Colorless oil, ¹H NMR (400 MHz, Chloroform-*d*) δ 8.16 (s, 1H), 7.93-7.85 (m, 4H), 7.77-7.67 (m, 3H), 7.61 (t, *J* = 6.8 Hz, 1H), 2.60-2.45 (m, 2H), 1.74-1.60 (m, 2H), 1.58-1.43 (m, 2H), 0.89 (d, *J* = 1.1 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 142.6, 141.9, 140.3, 133.5, 133.4, 129.9, 129.5, 129.4, 128.4, 128.3, 15.6, -0.5. GC MS (EI) m/z: 238.1, 210.1, 195.1, 181.0, 165.1, 152.1.

1-(2-methoxyphenyl)-1-methylsiletane (1aq):

Colorless oil, ¹H NMR (400 MHz, Chloroform-*d*) δ 7.55 (dd, *J* = 7.1, 1.8 Hz, 1H), 7.50-7.40 (m, 1H), 7.06 (t, *J* = 7.2 Hz, 1H), 6.92 (d, *J* = 8.1 Hz, 1H), 3.87 (s, 3H), 2.28-2.13 (m, 2H), 1.45-1.32 (m, 2H), 1.29-1.15 (m, 2H), 0.58 (s, 3H).¹³C NMR (100 MHz, Chloroform-*d*) δ 164.2, 135.1, 131.4, 126.8, 120.7, 109.7, 55.3, 18.4, 14.5, -0.6. GC MS (EI) m/z: 192.1, 164.1, 149.0, 134.1, 121.1, 105.0, 59.0.

2.2. General procedure for the synthesis of propyl 3-(m-tolyl)propiolate (S6).²

Dry THF (20 mL) was added to the S4 (1 equiv, 10.0 mmol) in a round-bottom flask equipped with a stir bar. The solution was cooled to -78 °C, and n-BuLi (2.5 M in hexanes, 12.0 mmol) was added dropwise, and the resulting solution was stirred. After 1 hours, S5 (1.2 equiv, 12.0 mmol) was added dropwise to the mixture at -78 °C and the resulting mixture was stirred for 8 h. The reaction was then diluted with ethyl acetate, and water was added. The organic layer was washed with brine and dried over anhydrous sodium sulfate. Concentration in vacuo yielded a yellow oil which, upon purification by column chromatography, yielded the corresponding ester S6.

Propyl 3-(m-tolyl)propiolate (2d):

Yellow oil, ¹H NMR (400 MHz, Chloroform-d) δ 7.31-7.26 (m, 2H), 7.18-7.11 (m, 2H), 4.09 (t, *J* = 6.7 Hz, 2H), 2.23 (s, 3H), 1.73-1.51 (m, 2H), 0.89 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-d) δ 154.2, 138.4, 133.4, 131.5, 130.1, 128.5, 119.4, 86.3, 80.4, 67.5, 21.9, 21.1, 10.3. HRMS (ESI-TOF) m/z: [M+ Na]+ calculated for C₁₃H₁₄NaO₂: 225.0886, found: 225.0873.

2.3. General procedure for the synthesis of tert-butyl 3-phenylpropiolate (S9).³

The reaction of **S8** (1.2 eq, 36 mmol) with **S7** (30 mmol) in THF at 65 °C in the presence of Pd(PPh₃)₄ (2 mol%), copper(I) iodide (4 mol %) and K₂CO₃ (2 eq) afforded the ester **S9** after 6 h. The mixture was extracted with EtOAc (3 × 15 mL). The combined organic layers were then dried over Na₂SO₄ and concentrated under reduced vacuum. The residue was purified by silica gel flash column chromatography (eluent: EA/PE = 50/1) to afford **S9**.

Tert-butyl 3-(4-ethoxyphenyl)propiolate (21):

White solid, mp 48 - 51 °C ¹H NMR (400 MHz, Chloroform-*d*) δ 7.43 (d, *J* = 8.8 Hz, 2H), 6.77 (d, *J* = 8.8 Hz, 2H), 3.96 (q, *J* = 7.0 Hz, 2H), 1.46 (s, 6H), 1.34 (t, *J* = 7.0 Hz, 2H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 159.8, 152.5, 133.9, 113.7, 110.6, 83.8, 82.3, 80.5, 62.7, 27.2, 13.8. HRMS (ESI-TOF) m/z: [M+ Na]+ calculated for C₁₅H₁₈NaO₃: 269.1148, found: 269.1154.

Tert-butyl 3-(phenanthren-9-yl)propiolate (2ad):

White solid, mp 73 - 76 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.58-8.46 (m, 2H), 8.35-8.26 (m, 1H), 8.04 (s, 1H), 7.76-7.70 (m, 1H),, 7.61-7.54 (m, 3H), 7.53-7.44 (m, 1H), 1.51 (s, 9H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 153.4, 135.2, 131.1, 130.8, 130.7, 130.0, 129.1, 128.6, 127.6, 127.5, 127.2, 126.8, 122.9, 122.8, 116.5, 86.3, 83.7, 82.4, 28.2. HRMS (ESI-TOF) m/z: [M+ Na]+ calculated for C₂₁H₁₈NaO₂:325.1199, found:325.1194.

2.4. General procedure for the synthesis of triisopropylsilyl 3-(m-tolyl)propiolate (S13).⁴

a) An oven dried 25 mL round-bottomed glass flask equipped with a magnetic stirring bar was charged with the **S11** (20 mmol), Pd(PPh₃)₄ (1 mmol), and DBU (40 mmol) in dimethyl sulfoxide (40 mL), to which was added **S10** (22 mmol). The reaction mixture was stirred at 35 °C for 12 h. The corresponding **S12** was isolated after addition of 30 mL of saturated Na₂CO₃ solution and extraction with ethyl acetate. The crude product was recrystallized or purified by column chromatography.

b) To a solution of **S12** (10 mmol) and triethylamine (10 mmol) in Et₂O (20 mL) was slowly added TIPSCl (12 mmol) at room temperature. Volatiles were removed under reduced pressure. And then, hexane (20 mL) was added to the crude product and the residue was purified by silica gel flash column chromatography (eluent: EA/PE = 50/1) to afford **S13**.

Triisopropylsilyl 3-(m-tolyl)propiolate (2ae):

Yellow oil, ¹H NMR (400 MHz, Chloroform-*d*) δ 7.35-7.27 (m, 2H), 7.19-7.13 (m, 2H), 2.25 (s, 3H), 1.34-1.21 (m, 3H), 1.04 (d, *J* = 7.5 Hz, 18H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 153.3, 138.4, 133.6, 131.4, 130.2, 128.5, 119.9, 85.5, 82.0, 21.2, 17.8, 12.1. HRMS (ESI-TOF) m/z: [M+ Na]+ calculated for C₁₉H₂₈NaO₂Si:339.1751, found:339.1760.

3. Experimental Procedures and Spectral Data of Products

3.1. General procedure for the Rh/Cu-cocatalyzed (3+2) annulation of silacycles with internal alkynes

Silacyclobutane 1 (0.2 mmol), $[Rh(C_2H_4)_2Cl]_2$ (3.2 mg, 0.008 mmol), CuCl (2.0 mg, 0.02 mmol) and P13 (16.8 mg, 0.025 mmol) in TEA (2 mL) was stirred at room temperature for 30 min. Then the substrate 2 (2.5 eq, 0.5 mmol) was added to the reaction mixture, and the reaction was stirred at 70 °C for 14 h. Upon reaction completion, the mixture was concentrated under reduced vacuum. The residue was purified by silica gel flash column chromatography (eluent: PE and EtOAc) to afford 3.

Methyl 1-(4-methoxyphenyl)-1-methyl-3-(m-tolyl)-1,4,5,6-tetrahydrosiline-2carboxylate (3a):

Yellow oil (52 mg, 71% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.45 (d, J = 8.4 Hz, 2H), 7.08 (t, J = 7.6 Hz, 1H), 6.99-6.88 (m, 3H), 6.82 (d, J = 8.5 Hz, 2H), 3.68 (s, 3H), 3.21 (s, 3H), 2.59-2.40 (m, 2H), 2.23 (s, 3H), 1.91-1.83 (m, 2H), 1.01-0.91 (m, 1H), 0.84-0.74 (m, 1H), 0.44 (s, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 171.8, 163.3, 160.7, 144.6, 137.7, 135.8, 129.6, 128.4, 128.1, 127.7, 127.1, 123.7, 113.7, 55.1, 51.1, 37.0, 21.5, 21.3, 11.3, -3.2; IR (KBr, cm ⁻¹): 2917.8, 1700.0, 1591.9 1502.9, 1277.9, 1245.8, 1181.8, 1110.9, 1028.8, 800.4, 703.9; HRMS (ESI-TOF) m/z: [M+Na]+ calculated for C₂₂H₂₆NaO₃Si: 389.1543, found: 389.1529.

Ethyl 1-(4-methoxyphenyl)-1-methyl-3-(m-tolyl)-1,4,5,6-tetrahydrosiline-2carboxylate (3b):

Colorless oil (50 mg, 65% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.48 (d, *J* = 8.6 Hz, 2H), 7.10 (t, *J* = 7.5 Hz, 1H), 7.02-6.90 (m, 3H), 6.83 (d, *J* = 8.5 Hz, 2H), 3.75-3.67 (m, 5H), 2.61-2.50 (m, 1H), 2.51-2.39 (m, 1H), 2.24 (s, 3H), 1.94-1.85 (m, 2H), 1.04-0.92 (m, 1H), 0.87-0.76 (m, 1H), 0.72 (t, *J* = 7.1 Hz, 3H), 0.46 (s, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 171.3, 163.2, 160.7, 144.7, 137.6, 135.8, 129.8, 128.3, 128.0, 127.8, 127.25 , 123.8, 113.6, 59.8, 55.1, 37.1, 21.5, 21.3, 13.8, 11.3, -3.1; IR (KBr, cm ⁻¹): 2920.9, 1695.5, 1592.3, 1502.9, 1278.2, 1181.2, 1111.1, 805.6, 703.8; HRMS (ESI-TOF) m/z: [M+ Na]+ calculated for C₂₃H₂₈NaO₃Si: 403.1700, found: 403.1717.

Benzyl 1-(4-methoxyphenyl)-1-methyl-3-(m-tolyl)-1,4,5,6-tetrahydrosiline-2carboxylate (3c):

Colorless oil (71.6 mg, 81% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.43 (d, J = 8.5 Hz, 2H), 7.12-7.04 (m, 4H), 7.00-6.90 (m, 3H), 6.80 (d, J = 8.5 Hz, 2H), 6.72-6.67 (m, 2H), 4.64 (dd, 2H), 3.71 (s, 3H), 2.59-2.41 (m, 2H), 2.20 (s, 3H), 1.94-1.84 (m, 2H), 0.99-0.92 (m, 1H), 0.86-0.75 (m, 1H), 0.43 (s, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 171.2, 163.4, 160.7, 144.7, 137.8, 135.9, 135.9, 129.5, 128.4, 128.2, 128.2, 127.7, 127.6, 127.2, 123.8, 113.7, 65.9, 55.1, 37.1, 21.5, 21.2, 11.4, -3.3; IR (KBr, cm⁻¹):

2918.8, 1696.2, 1592.2, 1502.5, 1278.3, 1180.5, 1111.3, 806.8, 696.9; HRMS (ESI-TOF) m/z: [M+ Na]+ calculated for C₂₈H₃₀NaO₃Si: 465.1856, found: 465.1870.

Propyl 1-(4-methoxyphenyl)-1-methyl-3-(m-tolyl)-1,4,5,6-tetrahydrosiline-2carboxylate (3d):

Colorless oil (53 mg, 67% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.48 (d, J = 8.5 Hz, 2H), 7.10 (t, J = 7.5 Hz, 1H), 7.01-6.90 (m, 3H), 6.83 (d, J = 8.5 Hz, 2H), 3.72 (s, 3H), 3.64-3.57 (m, 1H), 2.60-2.51 (m, 1H), 2.50-2.39 (m, 1H), 2.24 (s, 3H), 1.97-1.79 (m, 2H), 1.22-1.09 (m, 2H), 1.00-0.91 (m, 1H), 0.85-0.75 (m, 1H), 0.50 (t, J = 7.4 Hz, 3H), 0.46 (s, 3H); ¹³C NMR (100 MHz, Chloroform-d) δ 171.5, 162.9, 160.7, 144.7, 137.7, 135.8, 129.8, 128.3, 128.1, 127.9, 127.3, 123.7, 113.6, 65.7, 55.1, 37.1, 21.7, 21.5, 21.3, 11.4, 10.3, -3.2; IR (KBr, cm ⁻¹): 2920.6, 1694.3, 1592.4, 1502.9, 1278.2, 1181.1, 1111.2, 802.0; HRMS (ESI-TOF) m/z: [M+ Na]+ calculated for C₂₄H₃₀NaO₃Si: 417.1856, found: 417.1881.

Phenyl 1-(4-methoxyphenyl)-1-methyl-3-(m-tolyl)-1,4,5,6-tetrahydrosiline-2carboxylate (3e):

Colorless oil (66 mg, 77% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.54 (d, J = 8.4 Hz, 2H), 7.15 (t, J = 7.4 Hz, 1H), 7.10-7.02 (m, 5H), 6.96 (t, J = 7.4 Hz, 1H), 6.85 (d, J = 8.4 Hz, 2H), 6.32 (d, J = 7.8 Hz, 2H), 3.71 (s, 3H), 2.73-2.58 (m, 1H), 2.58-2.47 (m, 1H), 2.26 (s, 3H), 2.09-1.82 (m, 2H), 1.10-1.01 (m, 1H), 0.93-0.81 (m, 1H), 0.55

(s, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 169.9, 163.7, 160.9, 150.7, 144.5, 137.9, 136.0, 129.4, 129.1, 128.7, 128.3, 127.4, 127.2, 125.4, 124.0, 121.6, 113.8, 55.1, 36.9, 21.5, 21.3, 11.2, -3.3; IR (KBr, cm⁻¹): 2912.1, 1717.1, 1591.4, 1278.2, 1248.1, 1159.0, 1110.7, 971.3, 802.2; HRMS (ESI-TOF) m/z: [M+ Na]+ calculated for C₂₇H₂₈NaO₃Si: 451.1700, found: 451.1716.

Isopropyl 1-(4-methoxyphenyl)-1-methyl-3-(m-tolyl)-1,4,5,6-tetrahydrosiline-2carboxylate (3f):

Colorless oil (59 mg, 75% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.48 (d, *J* = 8.4 Hz, 2H), 7.09 (t, *J* = 7.4 Hz, 1H), 7.00-6.93 (m, 3H), 6.82 (d, *J* = 8.5 Hz, 2H), 4.66-4.56 (m, 1H), 3.71 (s, 3H), 2.60-2.50 (m, 1H), 2.48-2.38 (m, 1H), 2.23 (s, 3H), 1.94-1.84 (m, 2H), 1.01-0.92 (m, 1H), 0.85-0.78 (m, 1H), 0.75 (d, *J* = 6.3 Hz, 3H), 0.68 (d, *J* = 6.3 Hz, 3H), 0.47 (s, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 170.8, 162.2, 160.7, 144.6, 137.5, 135.9, 130.2, 128.2, 128.0, 127.8, 127.4, 123.8, 113.6, 67.0, 55.1, 36.9, 21.5, 21.5, 21.3, 21.3, 11.3, -3.2; IR (KBr, cm ⁻¹): 2919.5, 1692.9, 1592.7, 1503.3, 1278.8, 1245.2, 1181.7, 1109.9, 803.1; HRMS (ESI-TOF) m/z: [M+ Na]+ calculated for C₂₄H₃₀NaO₃Si: 417.1856, found: 417.1841.

Tert-butyl 1-(4-methoxyphenyl)-1-methyl-3-(m-tolyl)-1,4,5,6-tetrahydrosiline-2carboxylate (3g): Yellow oil (63.4 mg, 78% yield).¹H NMR (400 MHz, Chloroform-*d*) δ 7.49 (d, *J* = 8.5 Hz, 2H), 7.11 (t, *J* = 7.6 Hz, 1H), 7.02-6.91 (m, 3H), 6.83 (d, *J* = 8.6 Hz, 2H), 3.72 (s, 3H), 2.57-2.38 (m, 2H), 2.24 (s, 3H), 1.93-1.84 (m, 2H), 0.97 (s, 10H), 0.83-0.74 (m, 1H), 0.46 (s, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 170.6, 161.6, 160.7, 144.8, 137.4, 136.0, 131.3, 128.1 (d, *J* = 2.8 Hz), 128.0, 127.6, 123.9, 113.5, 79.8, 55.1, 36.8, 27.7, 21.5, 21.3, 11.5, -3.2; IR (KBr, cm ⁻¹): 2912.9, 1691.3, 1592.9, 1503.2, 1278.5, 1246.2, 1156.6, 1111.3, 806.8, 696.9; HRMS (ESI-TOF) m/z: [M+ Na]+ calculate*d* for C₂₅H₃₂NaO₃Si: 431.2013, found: 431.2026.

Tert-butyl 1-(4-methoxyphenyl)-1-methyl-3-(p-tolyl)-1,4,5,6-tetrahydrosiline-2carboxylate (3h):

Yellow oil (69.4 mg, 85% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.48 (d, J = 8.5 Hz, 2H), 7.07-6.99 (m, 4H), 6.82 (d, J = 8.5 Hz, 2H), 3.71 (s, 3H), 2.57-2.39 (m, 2H), 2.25 (s, 3H), 1.94-1.82 (m, 2H), 0.98 (s, 9H), 0.95-0.89 (m, 1H), 0.83-0.75 (m, 1H), 0.45 (s, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 170.5, 161.8, 160.7, 142.0, 137.0, 135.9, 131.1, 128.7, 128.2, 126.8, 113.5, 79.8, 55.1, 37.0, 27.8, 21.4, 21.3, 11.6, -3.2; IR (KBr, cm ⁻¹): 2920.9, 1689.9, 1592.7, 1503.1, 1365.4, 1278.4, 1245.9, 1156.1, 1111.1, 803.5; HRMS (ESI-TOF) m/z: [M+ Na]+ calculated for C₂₅H₃₂NaO₃Si: 431.2013, found: 431.2001.

3-(4-(tert-butyl)phenyl)-1-(4-methoxyphenyl)-1-methyl-1,4,5,6-

tetrahydrosiline-2-carboxylate (3i):

Yellow oil (83.7 mg, 93% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.49 (d, *J* = 8.5 Hz, 2H), 7.23 (d, *J* = 8.3 Hz, 2H), 7.08 (d, *J* = 8.3 Hz, 2H), 6.83 (d, *J* = 8.5 Hz, 2H), 3.72 (s, 3H), 2.59-2.39 (m, 2H), 1.91-1.85 (m, 2H), 1.23 (s, 9H), 0.94 (s, 9H), 0.90-0.73 (m, 2H), 0.46 (s, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 170.7, 161.3, 160.7, 150.3, 142.0, 136.0, 131.3, 128.2, 126.7, 124.8, 113.6, 79.8, 55.1, 36.7, 34.6, 31.5, 27.7, 21.4, 11.5, -3.1; IR (KBr, cm ⁻¹): 2961.9, 1689.4, 1592.7, 1503.1, 1364.8, 1278.3, 1245.8, 1158.1, 1111.2, 801.1; HRMS (ESI-TOF) m/z: [M+ Na]+ calculated for C₂₈H₃₈NaO₃Si: 473.2482, found: 473.2467.

Tert-butyl3-(4-ethylphenyl)-1-(4-methoxyphenyl)-1-methyl-1,4,5,6-tetrahydrosiline-2-carboxylate (3j):

Yellow oil (78.4 mg, 93% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.49 (d, J = 8.4 Hz, 2H), 7.10-7.02 (m, 4H), 6.83 (d, J = 8.5 Hz, 2H), 3.72 (s, 3H), 2.59-2.49 (m, 3H), 2.47-2.37 (m, 1H), 1.93-1.82 (m, 2H), 1.14 (t, J = 7.6 Hz, 3H), 0.97 (s, 9H), 0.95-0.90 (m, 1H), 0.83-0.75 (m, 1H), 0.46 (s, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 170.6, 161.7, 160.6, 143.5, 142.2, 136.0, 131.1, 128.2, 127.5, 126.9, 113.5, 79.8, 55.1, 36.9, 28.7, 27.7, 21.3, 15.8, 11.5, -3.2; IR (KBr, cm ⁻¹): 2965.8, 1690.0, 1592.7, 1503.1, 1365.5, 1278.6, 1246.1, 1156.8, 1111.2, 802.4; HRMS (ESI-TOF) m/z: [M+ Na]+ calculated for C₂₆H₃₄NaO₃Si: 445.2169, found: 445.2175.

Tert-butyl

1,3-bis(4-methoxyphenyl)-1-methyl-1,4,5,6-tetrahydrosiline-2-

carboxylate (3k):

Colorless oil (74.9 mg, 88% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.48 (d, J = 8.4 Hz, 2H), 7.10 (d, J = 8.6 Hz, 2H), 6.83 (d, J = 8.5 Hz, 2H), 6.75 (d, J = 8.6 Hz, 2H), 3.72 (d, J = 2.7 Hz, 6H), 2.59-2.35 (m, 2H), 1.93-1.80 (m, 2H), 1.00 (s, 9H), 0.98-0.88 (m, 1H), 0.83-0.74 (m, 1H), 0.46 (s, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 170.7, 161.1, 160.6, 159.1, 137.3, 136.0, 130.9, 128.2, 128.2, 113.5, 113.4, 79.9, 55.3, 55.1, 36.9, 27.8, 21.4, 11.6, -3.2; IR (KBr, cm ⁻¹): 2907.6, 1688.3, 1592.6, 1503.9, 1278.6, 1244.5, 1154.9, 1110.5, 1029.7, 802.0; HRMS (ESI-TOF) m/z: [M+ Na]+ calculated for C₂₅H₃₂NaO₄Si: 447.1962, found: 447.1951.

Tert-butyl3-(4-ethoxyphenyl)-1-(4-methoxyphenyl)-1-methyl-1,4,5,6-tetrahydrosiline-2-carboxylate (3l):

Colorless oil (82.9 mg, 95% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.48 (d, J = 8.5 Hz, 2H), 7.09 (d, J = 8.7 Hz, 2H), 6.83 (d, J = 8.5 Hz, 2H), 6.74 (d, J = 8.7 Hz, 2H), 3.94 (q, J = 7.0 Hz, 2H), 3.72 (s, 3H), 2.57-2.37 (m, 2H), 1.91-1.83 (m, 2H), 1.32 (t, J = 7.0 Hz, 3H), 1.00 (s, 9H), 0.99-0.89 (m, 1H), 0.82-0.73 (m, 1H), 0.45 (s, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 170.8, 161.1, 160.6, 158.4, 137.2, 136.0, 130.9, 128.2, 128.2, 113.9, 113.5, 79.9, 63.5, 55.1, 36.9, 27.8, 21.4, 14.9, 11.6, -3.2; IR (KBr, cm ⁻¹): 2975.9, 1689.2, 1593.0, 1477.2, 1278.9, 1243.8, 1155.9, 1111.3, 804.2; HRMS (ESI-TOF) m/z: [M+ Na]+ calculated for C₂₆H₃₄NaO₄Si: 461.2119, found: 461.2122.

Tert-butyl3-([1,1'-biphenyl]-4-yl)-1-(4-methoxyphenyl)-1-methyl-1,4,5,6-tetrahydrosiline-2-carboxylate (3m):

Yellow oil (86.8 mg, 92% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.52-7.48 (m, 4H), 7.45 (d, J = 8.3 Hz, 2H), 7.34 (t, J = 7.6 Hz, 2H), 7.27-7.20 (m, 3H), 6.83 (d, J = 8.5 Hz, 2H), 3.71 (s, 3H), 2.62-2.41 (m, 2H), 1.96-1.85 (m, 2H), 0.97 (s, 9H), 0.95-0.76 (m, 2H), 0.48 (s, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 170.5, 161.0, 160.7, 143.9, 141.0, 140.2, 136.0, 131.7, 128.8, 127.9, 127.4, 127.3, 127.1, 126.7, 113.5, 80.0, 55.1, 36.8, 27.8, 21.3, 11.5, -3.2; IR (KBr, cm ⁻¹): 2922.8, 1688.9, 1592.3, 1502.6, 1278.4, 1246.1, 1155.8, 1110.9, 801.2, 759.9, 696.4; HRMS (ESI-TOF) m/z: [M+ Na]+ calculated for C₃₀H₃₄NaO₃Si: 493.2169, found: 493.2154.

Tert-butyl 1-(4-methoxyphenyl)-1-methyl-3-(4-propylphenyl)-1,4,5,6tetrahydrosiline-2-carboxylate (3ae):

Yellow oil (72.8 mg, 83% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.49 (d, J = 8.4 Hz, 2H), 7.04 (q, J = 8.1 Hz, 4H), 6.83 (d, J = 8.4 Hz, 2H), 3.72 (s, 3H), 2.56-2.41 (m, 4H), 1.95-1.82 (m, 2H), 1.54 (q, J = 7.5 Hz, 2H), 0.96 (s, 9H), 0.93-0.75 (m, 5H), 0.46 (s, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 170.7, 161.4, 160.6, 142.2, 141.9, 136.0, 131.1, 128.1, 126.8, 113.5, 79.8, 55.1, 37.9, 36.8, 27.7, 24.7, 21.3, 13.9, 11.5, -3.2; IR (KBr, cm ⁻¹): 2927.7, 1691.1, 1592.8, 1564.2, 1278.2, 1246.4, 1157.5, 1111.2, 1031.7, 805.5; HRMS (ESI-TOF) m/z: [M+ Na]+ calculated for C₂₇H₃₆NaO₃Si: 459.2326, found: 459.2315.

Tert-butyl3-(4-chlorophenyl)-1-(4-methoxyphenyl)-1-methyl-1,4,5,6-tetrahydrosiline-2-carboxylate (30):

Light yellow oil (69.5 mg, 81% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.47 (d, *J* = 8.5 Hz, 2H), 7.20 (d, *J* = 8.5 Hz, 2H), 7.09 (d, *J* = 8.4 Hz, 2H), 6.83 (d, *J* = 8.5 Hz, 2H), 3.73 (s, 3H), 2.55-2.35 (m, 2H), 1.93-1.84 (m, 2H), 0.99 (s, 9H), 0.97-0.89 (m, 1H), 0.84-0.75 (m, 1H), 0.46 (s, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 170.2, 160.7, 160.0, 143.3, 136.0, 133.1, 132.3, 128.3, 128.2, 127.7, 113.6, 80.2, 55.1, 36.8, 27.8, 21.3, 11.4, -3.3; IR (KBr, cm ⁻¹): 2925.3, 1693.1, 1592.9, 1503.0, 1278.8, 1181.9, 1111.1, 800.6; HRMS (ESI-TOF) m/z: [M+ Na]+ calculated for C₂₄H₂₉ClNaO₃Si: 451.1467, found: 451.1459.

Colorless oil (66.9 mg, 79% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.49 (d, J = 8.5 Hz, 2H), 7.13 (t, J = 7.8 Hz, 1H), 6.83 (d, J = 8.5 Hz, 2H), 6.77-6.66 (m, 3H), 3.72 (d, J = 5.4 Hz, 6H), 2.59-2.37 (m, 2H), 1.88 (t, J = 5.9 Hz, 2H), 0.97 (s, 9H), 0.98-0.89 (m, 1H), 0.86-0.77 (m, 1H), 0.46 (s, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 170.4, 161.1, 160.7, 159.3, 146.3, 136.0, 131.5, 129.1, 127.9, 119.4, 113.5, 113.0, 112.3, 79.9, 55.3, 55.1, 36.8, 27.7, 21.3, 11.4, -3.2; IR (KBr, cm ⁻¹): 2924.7, 1690.3, 1592.0, 1503.0, 1278.6, 1246.1, 1156.3, 1110.9, 1031.1, 806.1; HRMS (ESI-TOF) m/z: [M+ Na]+

calculated for C₂₅H₃₂NaO₄Si: 447.1962, found: 447.1951.

Colorless oil (81.6 mg, 86% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.50 (d, J = 8.4 Hz, 4H), 7.40 (d, J = 9.1 Hz, 1H), 7.39-7.21 (m, 5H), 7.12 (d, J = 7.7 Hz, 1H), 6.83 (d, J = 8.5 Hz, 2H), 3.71 (s, 3H), 2.65-2.42 (m, 2H), 1.95-1.85 (m, 2H), 1.02-0.95 (m, 1H), 0.92 (s, 9H), 0.87-0.76 (m, 1H), 0.48 (s, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 170.5, 161.1, 160.7, 145.5, 141.1, 141.0, 136.0, 131.8, 128.8, 128.5, 127.9, 127.4, 127.3, 126.0, 125.8, 125.7, 113.6, 80.0, 55.1, 36.9, 27.7, 21.3, 11.4, -3.2; IR (KBr, cm⁻¹): 2924.9, 1691.7, 1592.1, 1502.7, 1246.3, 1155.6, 1111.1, 802.9, 755.3, 703.4; HRMS (ESI-TOF) m/z: [M+ Na]+ calculated for C₃₀H₃₄NaO₃Si: 493.2169, found: 493.2172.

Tert-butyl3-(3-chlorophenyl)-1-(4-methoxyphenyl)-1-methyl-1,4,5,6-tetrahydrosiline-2-carboxylate (3r):

Colorless oil (45.9 mg, 53% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.48 (d, J = 8.5 Hz, 2H), 7.19-7.15 (m, 3H), 7.07-7.00 (m, 1H), 6.84 (d, J = 8.5 Hz, 2H), 3.73 (s, 3H), 2.57-2.33 (m, 2H), 1.94-1.82 (m, 2H), 0.99 (s, 9H), 0.97-0.90 (m, 1H), 0.85-0.77 (m, 1H), 0.47 (s, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 170.1, 160.8, 159.3, 146.5, 136.0, 133.9, 132.7, 129.4, 127.6, 127.4, 127.1, 125.0, 113.6, 80.3, 55.2, 36.6, 27.8, 21.2, 11.3, -3.3; IR (KBr, cm ⁻¹): 2925.2, 1693.4, 1592.0, 1503.0, 1278.8, 1246.3,

1155.6, 1111.2, 803.6, 779.8, 696.0; HRMS (ESI-TOF) m/z: [M+ Na]+ calculated for C₂₄H₂₉ClNaO₃Si: 451.1467, found: 451.1483.

Yellow oil (47.7 mg, 57% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.48 (d, J = 8.5 Hz, 2H), 7.22-7.16 (m, 1H), 6.95-6.82 (m, 5H), 3.73 (s, 3H), 2.56-2.35 (m, 2H), 1.94-1.84 (m, 2H), 0.99 (s, 9H), 0.96-0.89 (m, 1H), 0.85-0.78 (m, 1H), 0.47 (s, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 170.2, 163.8, 161.4, 160.8, 159.5, 147.0 (d, J = 7.3 Hz), 136.0, 132.5, 129.6 (d, J = 8.1 Hz), 127.6, 122.6 (d, J = 2.9 Hz), 114.1 (dd, J = 21.3, 11.7 Hz), 113.6, 80.2, 55.2, 36.6, 27.7, 21.2, 11.3, -3.3; IR (KBr, cm ⁻¹): 2928.3, 1694.0, 1592.8, 1503.4, 1279.3, 1246.8, 1152.9, 1111.9, 945.7, 810.8; HRMS (ESITOF) m/z: [M+ Na]+ calculated for C₂₄H₂₉FNaO₃Si: 435.1762, found: 435.1747.

Tert-butyl3-(3,5-dimethylphenyl)-1-(4-methoxyphenyl)-1-methyl-1,4,5,6-tetrahydrosiline-2-carboxylate (3t):

Yellow oil (70.5 mg, 84% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.49 (d, J = 8.6 Hz, 2H), 6.86-6.81 (m, 3H), 6.77 (d, J = 1.7 Hz, 2H), 3.72 (s, 3H), 2.59-2.37 (m, 2H), 2.20 (s, 6H), 1.92-1.82 (m, 2H), 0.98 (s, 9H), 0.96-0.90 (m, 1H), 0.81-0.75 (m, 1H), 0.46 (s, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 170.7, 161.8, 160.6, 144.8, 137.4,

136.0, 131.1, 129.0, 128.1, 124.6, 113.5, 79.8, 55.1, 36.8, 27.7, 21.4, 21.3, 11.5, -3.1; IR (KBr, cm⁻¹): 2915.8, 1690.9, 1592.6, 1503.1, 1277.8, 1246.3, 1156.3, 1111.4, 804.4; HRMS (ESI-TOF) m/z: [M+ Na]+ calculated for C₂₆H₃₄NaO₃Si: 445.2169, found: 445.2172.

Tert-butyl 1-(3-methoxyphenyl)-1-methyl-3-(m-tolyl)-1,4,5,6-tetrahydrosiline-2carboxylate (3u):

Colorless oil (45 mg, 55% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.24-7.19 (m, 1H), 7.18-7.07 (m, 3H), 7.02-6.91 (m, 3H), 6.86-6.78 (m, 1H), 3.74 (s, 3H), 2.60-2.36 (m, 2H), 2.24 (s, 3H), 1.93-1.83 (m, 2H), 0.97 (s, 9H), 0.88-0.74 (m, 2H), 0.48 (s, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 170.4, 162.3, 159.0, 144.8, 139.0, 137.5, 130.8, 128.9, 128.1, 128.0, 127.6, 126.8, 123.9, 120.0, 114.5, 79.9, 55.2, 36.9, 27.7, 21.5, 21.3, 11.3, -3.3; IR (KBr, cm ⁻¹): 2922.1, 1690.8, 1570.5, 1282.8, 1245.0, 1228.2, 1155.8, 779.3, 695.2; HRMS (ESI-TOF) m/z: [M+ Na]+ calculated for C₂₅H₃₂NaO₃Si: 431.2013, found: 431.2004.

Tert-butyl 1-([1,1'-biphenyl]-4-yl)-1-methyl-3-(m-tolyl)-1,4,5,6-tetrahydrosiline-2-carboxylate (3v):

Colorless oil (66.1 mg, 73% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.64 (d, J = 8.1 Hz, 2H), 7.55-7.47 (m, 4H), 7.34 (t, J = 7.6 Hz, 2H), 7.29-7.20 (m, 1H), 7.16-7.07 (m, 1H), 7.02-6.92 (m, 3H), 2.59-2.43 (m, 2H), 2.24 (s, 3H), 1.95-1.86 (m, 2H), 1.07-1.00 (m, 1H), 0.97 (s, 9H), 0.89-0.77 (m, 1H), 0.51 (s, 3H); ¹³C NMR (100 MHz,

Chloroform-*d*) δ 170.5, 162.2, 144.8, 142.0, 141.3, 137.5, 136.1, 135.0, 130.9, 128.9, 128.1, 128.0, 127.6, 127.4, 127.3, 126.5, 123.9, 80.0, 36.9, 27.7, 21.5, 21.3, 11.3, -3.3; IR (KBr, cm ⁻¹): 2921.1, 1689.1, 1365.5, 1246.8, 1156.4, 804.8, 755.9, 697.6; HRMS (ESI-TOF) m/z: [M+ Na]+ calculated for C₃₀H₃₄NaO₂Si: 477.2220, found: 477.2201.

Tert-butyl 1-methyl-3-(m-tolyl)-1-(p-tolyl)-1,4,5,6-tetrahydrosiline-2-carboxylate (3w):

Colorless oil (46 mg, 59% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.46 (d, J = 7.6 Hz, 2H), 7.13-7.07 (m, 3H), 7.02-6.91 (m, 3H), 2.57-2.39 (m, 2H), 2.25 (d, J = 7.7 Hz, 6H), 1.93-1.81 (m, 2H), 0.97 (s, 9H), 0.95-0.92 (m, 1H), 0.83-0.73 (m, 1H), 0.47 (s, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 170.5, 161.8, 144.9, 139.1, 137.5, 134.5, 133.6, 131.1, 128.6, 128.1, 128.0, 127.6, 123.9, 79.9, 36.9, 27.7, 21.6, 21.5, 21.3, 11.4, -3.2; IR (KBr, cm ⁻¹): 2917.4, 1691.7, 1246.3, 1157.1, 781.6; HRMS (ESI-TOF) m/z: [M+ Na]+ calculated for C₂₅H₃₂NaO₂Si: 415.2064, found: 415.2052.

Tert-butyl 1-([1,1'-biphenyl]-3-yl)-1-methyl-3-(m-tolyl)-1,4,5,6-tetrahydrosiline-2-carboxylate (3x):

Colorless oil (47.2 mg, 52% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.75 (s, 1H), 7.59-7.46 (m, 4H), 7.40-7.30 (m, 3H), 7.30-7.20 (m, 3H), 7.16-7.07 (m, 1H), 7.02-6.92 (m, 3H), 2.59-2.52 (m, 1H), 2.49-2.40 (m, 1H), 2.24 (s, 3H), 1.94-1.87 (m, 2H), 1.05-0.95 (m, 1H), 0.94 (s, 9H), 0.90-0.77 (m, 1H), 0.53 (s, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 170.5, 162.4, 144.8, 141.7, 140.5, 137.9, 137.5, 133.5, 133.2, 130.8,

128.8, 128.2, 128.0, 127.7, 127.4, 127.3, 123.9, 80.0, 36.9, 27.7, 21.5, 21.4, 11.4, -3.2; IR (KBr, cm ⁻¹): 2920.2, 1689.7, 1246.2, 1155.7, 812.9, 752.1, 699.9; HRMS (ESI-TOF) m/z: [M+ Na]+ calculated for C₃₀H₃₄NaO₂Si: 477.2220, found: 477.2222.

Colorless oil (38 mg, 47% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.17-7.10 (m, 3H), 7.03-6.89 (m, 4H), 2.61-2.52 (m, 1H), 2.45-2.37 (m, 1H), 2.24 (d, *J* = 4.2 Hz, 9H), 1.93-1.85 (m, 2H), 1.05-1.01 (m, 1H), 0.98 (s, 9H), 0.83-0.77 (m, 1H), 0.48 (s, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 170.7, 161.7, 144.9, 137.5, 136.9, 136.9, 132.1, 131.2, 131.0, 128.1, 128.0, 127.7, 123.9, 79.8, 36.9, 27.7, 21.5, 21.4, 11.2, 1.2, -2.9; IR (KBr, cm ⁻¹): 2918.5, 1691.9, 1365.2, 1246.0, 1157.6, 1139.9, 781.2; HRMS (ESI-TOF) m/z: [M+ Na]+ calculated for C₂₆H₃₄NaO₂Si: 429.2220, found: 429.2229.

Tert-butyl1-(4-fluorophenyl)-1-methyl-3-(m-tolyl)-1,4,5,6-tetrahydrosiline-2-carboxylate (3z):

Colorless oil (53.6 mg, 68% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.57-7.51 (m, 2H), 7.12 (t, *J* = 7.5 Hz, 1H), 7.03-6.91 (m, 5H), 2.58-2.51 (m, 1H), 2.48-2.39 (m, 1H), 2.24 (s, 3H), 1.95-1.80 (m, 2H), 0.96 (s, 9H), 0.93-0.90 (m, 1H), 0.85-0.78 (m, 1H), 0.48 (s, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 170.4, 165.2, 162.7, 162.4, 144.7, 137.5, 136.5, 136.4, 132.8, 132.8, 130.7, 128.2, 128.0, 127.6, 123.8, 115.0, 114.8, 80.0, 36.8, 27.7, 21.5, 21.3, 11.4, -3.3; IR (KBr, cm⁻¹): 2922.7, 1689.5, 1587.1, 1231.2,

1160.4, 812.8, 782.1; HRMS (ESI-TOF) m/z: [M+ Na]+ calculated for C₂₄H₂₉FNaO₂Si: 419.1813, found: 419.1802.

Colorless oil (28 mg, 31% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.69 (d, *J* = 7.3 Hz, 2H), 7.52 (d, *J* = 7.1 Hz, 2H), 7.13 (t, *J* = 7.5 Hz, 1H), 7.01 (d, *J* = 7.6 Hz, 1H), 6.95 (d, *J* = 9.1 Hz, 2H), 2.61-2.41 (m, 2H), 2.26 (s, 3H), 1.97-1.80 (m, 2H), 0.96 (s, 9H), 0.95-0.79 (m, 2H), 0.51 (s, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 170.2, 163.5, 144.6, 142.7, 137.6, 134.8, 129.9, 128.3, 128.1, 127.6, 124.3, 124.3, 124.3, 124.2, 123.8, 80.3, 36.9, 27.7, 21.5, 21.2, 11.1, -3.5; IR (KBr, cm ⁻¹): 2924.2, 1688.5, 1323.5, 1158.6, 1124.6, 1059.3, 805.4, 698.3; HRMS (ESI-TOF) m/z: [M+ Na]+ calculated for C₂₅H₂₉F₃NaO₂Si: 469.1781, found: 469.1783.

Tert-butyl1-methyl-3-(m-tolyl)-1-(4-(trimethylsilyl)phenyl)-1,4,5,6-tetrahydrosiline-2-carboxylate (3ab):

Colorless oil (37.8 mg, 42% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.55 (d, J = 7.2 Hz, 2H), 7.43 (d, J = 7.9 Hz, 2H), 7.12 (t, J = 7.5 Hz, 1H), 7.03-6.89 (m, 3H), 2.58-2.38 (m, 2H), 2.25 (s, 3H), 1.95-1.83 (m, 2H), 1.05-0.97 (m, 1H), 0.96 (s, 9H), 0.86-0.75 (m, 1H), 0.48 (s, 3H), 0.18 (s, 9H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 170.5, 161.9, 144.9, 141.5, 137.8, 137.5, 133.7, 132.6, 131.0, 128.1, 128.0, 127.6, 123.9, 80.0,

36.9, 27.7, 21.5, 21.3, 11.1, -1.1, -3.4; IR (KBr, cm⁻¹): 2954.7, 1692.2, 1247.2, 1157.6, 1134.2, 837.4, 800.5, 782.5, 752.7; HRMS (ESI-TOF) m/z: [M+ Na]+ calculated for C₂₇H₃₈NaO₂Si₂: 473.2303, found: 473.2299.

Tert-butyl1-(4-methoxyphenyl)-1-methyl-3-(naphthalen-2-yl)-1,4,5,6-tetrahydrosiline-2-carboxylate (3ac):

White solid (81.9 mg, 92% yield), mp 79 - 83 °C, ¹H NMR (400 MHz, Chloroform-*d*) δ 7.75-7.66 (m, 3H), 7.61 (s, 1H), 7.52 (d, *J* = 8.5 Hz, 2H), 7.39-7.31 (m, 2H), 7.29 (dd, *J* = 8.5, 1.8 Hz, 1H), 6.84 (d, *J* = 8.5 Hz, 2H), 3.71 (s, 3H), 2.66-2.59 (m, 1H), 2.55-2.47 (m, 1H), 1.97-1.88 (m, 2H), 1.03-0.95 (m, 1H), 0.88 (s, 9H), 0.84-0.75 (m, 1H), 0.50 (s, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 170.6, 161.2, 160.7, 142.3, 136.0, 133.2, 132.7, 132.1, 128.1, 127.9, 127.7, 127.6, 126.2, 125.9, 125.5, 125.4, 113.6, 80.0, 55.1, 36.8, 27.7, 21.4, 11.5, -3.1. IR (KBr, cm ⁻¹): 2914.7, 1688.1, 1592.3, 1502.6, 1278.4, 1245.9, 1155.5, 1111.0, 806.5, 745.6; HRMS (ESI-TOF) m/z: [M+ Na]+ calculated for C₂₈H₃₂NaO₃Si: 467.2013, found: 467.2010.

Tert-butyl1-(4-methoxyphenyl)-1-methyl-3-(phenanthren-9-yl)-1,4,5,6-tetrahydrosiline-2-carboxylate (3ad):

Yellow oil (37.0 mg, 37% yield), mp 104 - 108 °C, ¹H NMR (400 MHz, Chloroform-*d*) δ 8.66-8.53 (m, 2H), 7.85-7.71 (m, 2H), 7.63-7.46 (m, 6H), 7.40 (d, *J* = 11.7 Hz, 1H),

6.92-6.86 (m, 2H), 3.75 (s, 3H), 2.68-2.38 (m, 2H), 2.06-1.92 (m, 2H), 1.13-0.84 (m, 2H), 0.64-0.45 (m, 12H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 169.8 (d, *J* = 46.1 Hz), 161.5 (d, *J* = 37.3 Hz), 160.7, 141.6 (d, *J* = 24.2 Hz), 136.0, 135.9, 133.4, 131.7 (d, *J* = 7.2 Hz), 130.4 (d, *J* = 3.0 Hz), 130.1 , 130.0-129.7 (m), 128.6 (d, *J* = 3.5 Hz), 128.3, 128.1, 126.9, 126.8 (d, *J* = 3.7 Hz), 126.7 (d, *J* = 4.1 Hz), 126.4 (d, *J* = 4.5 Hz), 124.1, 123.8, 122.9 (d, *J* = 4.6 Hz), 122.6, 113.7, 79.7, 55.2, 37.3 (d, *J* = 50.2 Hz), 27.3 (d, *J* = 7.2 Hz), 21.5, 11.8 (d, *J* = 10.5 Hz), -2.8 (d, *J* = 50.5 Hz). IR (KBr, cm ⁻¹): 2922.6, 1697.2, 1590.8, 1277.7, 1246.9, 1160.6, 1110.4, 1028.3, 810.5, 758.3, 726.9; HRMS (ESI-TOF) m/z: [M+ Na]+ calculated for C₃₂H₃₄NaO₃Si: 517.2169, found: 517.2159.

Triisopropylsilyl 1-(4-methoxyphenyl)-1-methyl-3-(m-tolyl)-1,4,5,6tetrahydrosiline-2-carboxylate (3ae):

Colorless oil (45.7 mg, 45% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.50 (d, *J* = 8.5 Hz, 2H), 7.10 (t, *J* = 7.9 Hz, 1H), 6.99-6.93 (m, 3H), 6.82 (d, *J* = 8.5 Hz, 2H), 3.73 (s, 3H), 2.57-2.47 (m, 1H), 2.46-2.36 (m, 1H), 2.23 (s, 3H), 1.91-1.81 (m, 2H), 0.93-0.76 (m, 5H), 0.72-0.64 (m, 18H), 0.51 (s, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 171.2, 162.4, 160.8, 145.3, 137.8 136.1, 131.1, 128.2, 128.2, 128.1, 127.6, 124.0, 113.7, 55.2, 37.8, 21.5, 21.3, 17.8, 12.2, 12.1, 1.2, -3.4; IR (KBr, cm ⁻¹): 2923.9, 2865.9, 1686.7, 1593.1, 1502.8, 1279.2, 1245.7, 1111.9, 802.8, 705.0; HRMS (ESI-TOF) m/z: [M+ Na]+ calculated for C₃₀H₄₄NaO₃Si₂: 531.2721, found: 531.2725.

Methyl 1-(4-methoxyphenyl)-1-methyl-3-(p-tolyl)-1,4,5,6-tetrahydrosiline-2carboxylate (3af):

Light yellow oil (52.8 mg, 72% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.56 (d, J = 8.5 Hz, 2H), 7.13 (s, 4H), 6.94 (d, J = 8.5 Hz, 2H), 3.82 (s, 3H), 3.35 (s, 3H), 2.71-2.62 (m, 1H), 2.60-2.51 (m, 1H), 2.35 (s, 3H), 2.04-1.95 (m, 2H), 1.12-1.03 (m, 1H), 0.95-0.86 (m, 1H), 0.55 (s, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 171.9, 163.4, 160.7, 141.7, 137.4, 135.8, 129.4, 128.9, 127.8, 126.5, 113.7, 55.1, 51.1, 37.1, 21.3 (d, J = 4.4 Hz), 11.3, -3.2; IR (KBr, cm⁻¹): 2918.3, 1698.2, 1592.0, 1502.9, 1277.9, 1246.1, 1181.8, 1110.8, 798.8; HRMS (ESI-TOF) m/z: [M+ Na]+ calculated for C₂₂H₂₆NaO₃Si: 389.1543, found: 389.1547.

Methyl 3-(4-ethylphenyl)-1-(4-methoxyphenyl)-1-methyl-1,4,5,6-tetrahydrosiline-2-carboxylate (3ag):

Yellow oil (51 mg, 67% yield).¹H NMR (400 MHz, Chloroform-*d*) δ 7.57 (d, *J* = 8.5 Hz, 2H), 7.16 (s, 4H), 6.94 (d, *J* = 8.5 Hz, 2H), 3.82 (s, 3H), 3.35 (s, 3H), 2.71-2.53 (m, 4H), 2.05-1.95 (m, 2H), 1.25 (t, *J* = 7.6 Hz, 3H), 1.10-1.03 (m, 1H), 0.96-0.86 (m, 1H), 0.56 (s, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 172.0, 163.2, 160.7, 143.7, 141.9, 135.8, 129.4, 127.8, 127.6, 126.6, 55.1, 51.1, 37.0, 28.6, 21.3, 15.5, 11.3, -3.2; IR (KBr, cm ⁻¹): 2928.9, 1698.5, 1591.9, 1502.9, 1277.9, 1246.3, 1181.9, 1110.9, 798.8; HRMS (ESI-TOF) m/z: [M+ Na]+ calculated for C₂₃H₂₈NaO₃Si: 403.1700, found:403.1690.

Methyl 3-(4-(tert-butyl)phenyl)-1-(4-methoxyphenyl)-1-methyl-1,4,5,6tetrahydrosiline-2-carboxylate (3ah):

Yellow oil (51 mg, 62% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.56 (d, J = 8.6 Hz, 2H), 7.34 (d, J = 8.4 Hz, 2H), 7.18 (d, J = 8.4 Hz, 2H), 6.93 (d, J = 8.5 Hz, 2H), 3.82 (s, 3H), 3.33 (s, 3H), 2.73-2.52 (m, 2H), 2.05-1.95 (m, 2H), 1.33 (s, 9H), 1.12-1.03 (m, 1H), 0.95-0.88 (m, 1H), 0.56 (s, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 172.0, 162.9, 160.7, 150.6, 141.5, 135.8, 129.4, 127.8, 126.3, 125.0, 113.7, 55.1, 51.0, 36.9, 34.6, 31.4, 21.3, 11.3, -3.2; IR (KBr, cm ⁻¹): 2956.8, 1699.9, 1592.1, 1503.2, 1278.1, 1247.1, 1115.2, 798.8; HRMS (ESI-TOF) m/z: [M+ Na]+ calculated for C₂₅H₃₂NaO₃Si: 431.2013, found: 431.2014.

Methyl 3-([1,1'-biphenyl]-4-yl)-1-(4-methoxyphenyl)-1-methyl-1,4,5,6tetrahydrosiline-2-carboxylate (3ai):

Yellow oil (40 mg, 47% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.66-7.55 (m, 6H), 7.49-7.42 (m, 2H), 7.39-7.30 (m, 3H), 6.95 (d, J = 8.6 Hz, 2H), 3.83 (s, 3H), 3.37 (s, 3H), 2.77-2.56 (m, 2H), 2.08-1.98 (m, 2H), 1.15-1.07 (m, 1H), 0.98-0.90 (m, 1H), 0.58 (s, 3H); 13C NMR (100 MHz, Chloroform-*d*) δ 171.9, 162.6, 160.8, 143.6, 140.7, 140.4, 135.8, 130.0, 128.9, 127.6, 127.4, 127.1 (d, J = 2.5 Hz), 126.9, 113.7, 55.1, 51.2, 37.0, 21.3, 11.3, -3.2; IR (KBr, cm ⁻¹): 2917.7, 1697.8, 1591.4, 1502.4, 1277.8, 1245.9, 1181.9, 1110.5, 761.9, 696.3; HRMS (ESI-TOF) m/z: [M+ Na]+ calculate*d* for C₂₇H₂₈NaO₃Si : 451.1700 , found: 451.1688.

Methyl 1-(4-methoxyphenyl)-1-methyl-3-(4-propylphenyl)-1,4,5,6tetrahydrosiline-2-carboxylate (3aj):

Yellow oil (50.5 mg, 64% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.46 (d, J = 8.5 Hz, 2H), 7.09-6.99 (m, 4H), 6.83 (d, J = 8.6 Hz, 2H), 3.72 (s, 3H), 3.23 (s, 3H), 2.63-2.40 (m, 4H), 1.96-1.84 (m, 2H), 1.64-1.48 (m, 2H), 1.03-0.93 (m, 1H), 0.84 (t, J = 7.3 Hz, 4H), 0.45 (s, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 172.0, 163.1, 160.7, 142.2, 141.9, 135.8, 129.4, 128.2, 127.8, 126.5, 113.7, 55.1, 51.0, 37.8, 36.9, 24.5, 21.3, 13.9, 11.3, -3.2; IR (KBr, cm ⁻¹): 2926.1, 1698.8, 1591.9, 1502.8, 1277.9, 1246.0, 1181.8, 1110.8, 798.2; HRMS (ESI-TOF) m/z: [M+ Na]+ calculated for C₂₄H₃₀NaO₃Si: 417.1856 , found: 417.1848.

Methyl 3-(4-chlorophenyl)-1-(4-methoxyphenyl)-1-methyl-1,4,5,6tetrahydrosiline-2-carboxylate (3ak):

Yellow oil (30.9 mg, 40% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.45 (d, *J* = 9.0 Hz, 2H), 7.19 (t, *J* = 5.4 Hz, 2H), 7.06 (d, *J* = 6.5 Hz, 2H), 6.84 (d, J = 8.6 Hz, 2H), 3.74 (s, 3H), 3.26 (s, 3H), 2.58-2.36 (m, 2H), 1.97-1.85 (m, 2H), 1.05-0.92 (m, 1H), 0.87-0.74 (m, 1H), 0.46 (s, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 171.5, 161.8, 160.8, 143.0, 135.8, 133.5, 130.7, 128.4, 128.0, 127.4, 113.8, 55.1, 51.2, 37.0, 21.2, 11.2, -3.2; IR (KBr, cm ⁻¹): 2912.0, 1700.2, 1592.41, 1502.8, 1278.3, 1246.4, 1181.9,

1110.9, 798.4; HRMS (ESI-TOF) m/z: [M+ Na]+ calculated for C₂₁H₂₃ClNaO₃Si: 409.0997, found: 409.0987.

Methyl 3-(4-fluorophenyl)-1-(4-methoxyphenyl)-1-methyl-1,4,5,6tetrahydrosiline-2-carboxylate (3al):

Colorless oil (28.16 mg, 38% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.45 (d, J = 8.5 Hz, 2H), 7.14-7.08 (m, 2H), 6.91 (t, J = 8.7 Hz, 2H), 6.84 (d, J = 8.5 Hz, 2H), 3.73 (s, 3H), 3.25 (s, 3H), 2.61-2.38 (m, 2H), 1.95-1.85 (m, 2H), 1.05-0.93 (m, 1H), 0.86-0.78 (m, 1H), 0.46 (s, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 171.7, 163.5, 161.9, 161.1, 160.8, 140.6 (d, J = 3.5 Hz), 135.8, 130.4, 128.3 (d, J = 8.1 Hz), 127.5, 115.2, 115.0, 113.7, 55.1, 51.2, 37.2, 21.3, 11.2, -3.2; IR (KBr, cm ⁻¹): 2911.9, 1699.5, 1593.3, 1503.6, 1278.2, 1246.3, 1182.2, 1110.8, 798.8; HRMS (ESI-TOF) m/z: [M+ Na]+ calculated for C₂₁H₂₃FNaO₃Si: 393.1293 , found: 393.1279.

Methyl 3-(4-ethoxyphenyl)-1-(4-methoxyphenyl)-1-methyl-1,4,5,6tetrahydrosiline-2-carboxylate (3am):

Colorless oil (28.6 mg, 36% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.54 (d, J = 8.5 Hz, 2H), 7.16 (d, J = 8.7 Hz, 2H), 6.92 (d, J = 8.4 Hz, 2H), 6.83 (d, J = 8.7 Hz, 2H), 4.02 (q, J = 7.0 Hz, 2H), 3.81 (s, 3H), 3.35 (s, 3H), 2.74-2.48 (m, 2H), 2.04-1.91 (m, 2H), 1.41 (t, J = 7.0 Hz, 3H), 1.10-0.98 (m, 1H), 0.94-0.84 (m, 1H), 0.53 (s, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 172.2, 162.6, 160.7, 158.6, 136.8, 135.8, 129.1,

128.0, 127.8, 114.0, 113.7, 63.5, 55.1, 51.2, 36.9, 21.3, 15.0, 11.3, -3.2; IR (KBr, cm⁻¹): 2924.1, 1697.3, 1592.2, 1503.8, 1242.0, 1179.7, 1110.6, 1044.5, 798.7; HRMS (ESI-TOF) m/z: [M+ Na]+ calculated for C₂₃H₂₈NaO₄Si: 419.1649, found: 419.1654.

Methyl 3-(3-methoxyphenyl)-1-(4-methoxyphenyl)-1-methyl-1,4,5,6tetrahydrosiline-2-carboxylate (3an):

Yellow oil (50 mg, 65% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.46 (d, J = 8.7 Hz, 2H), 7.17-7.08 (m, 1H), 6.83 (d, J = 8.6 Hz, 2H), 6.75-6.66 (m, 3H), 3.70 (d, J = 6.2 Hz, 6H), 3.24 (s, 3H), 2.61-2.39 (m, 2H), 1.94-1.83 (m, 2H), 1.02-0.93 (m, 1H), 0.85-0.76 (m, 1H), 0.45 (s, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 171.7, 162.5, 160.7, 159.4, 146.0, 135.8, 129.9, 129.2, 127.5, 119.0, 113.7, 113.3, 112.0, 55.3, 55.1, 51.1, 36.8, 21.2, 11.2, -3.2; IR (KBr, cm ⁻¹): 2910.1, 1699.1, 1591.4, 1502.9, 1278.0, 1245.4, 1181.6, 1110.8, 1033.2, 799.9; HRMS (ESI-TOF) m/z: [M+ Na]+ calculated for C₂₂H₂₆NaO₄Si: 405.1493, found: 405.1498.

Methyl 3-(3-fluorophenyl)-1-(4-methoxyphenyl)-1-methyl-1,4,5,6-

tetrahydrosiline-2-carboxylate (3ao):

Colorless oil (23.7 mg, 32% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.46 (d, J = 8.5 Hz, 2H), 7.24-7.14 (m, 1H), 6.94-6.78 (m, 5H), 3.74 (s, 3H), 3.26 (s, 3H), 2.62-2.38 (m, 2H), 1.95-1.86 (m, 2H), 1.04-0.93 (m, 1H), 0.88-0.76 (m, 1H), 0.46 (s, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 171.4, 163.9, 161.4 (d, J = 6.0 Hz), 160.8, 146.8 (d,

J = 7.3 Hz), 135.8, 130.8, 129.7 (d, J = 8.4 Hz), 127.3, 122.3 (d, J = 2.5 Hz), 114.5 (d, J = 21.1 Hz), 113.7 (d, J = 3.0 Hz), 113.5, 55.1, 51.2, 36.9, 21.2, 11.2, -3.3; IR (KBr, cm ⁻¹): 2948.6, 1703.4, 1592.4, 1503.1, 1278.6, 1246.9, 1111.4, 801.1, 697.2; HRMS (ESI-TOF) m/z: [M+Na]+ calculated for C₂₁H₂₃FNaO₃Si: 393..1293, found: 393.1307.

Yellow oil (33 mg, 45% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.49-7.42 (m, 2H), 7.11-7.03 (m, 3H), 6.95-6.83 (m, 3H), 3.74 (s, 3H), 3.20 (d, *J* = 5.4 Hz, 3H), 2.43-2.25 (m, 2H), 2.18 (d, *J* = 24.0 Hz, 3H), 1.95-1.80 (m, 2H), 1.02-0.94 (m, 1H), 0.89-0.77 (m, 1H), 0.47 (d, *J* = 7.8 Hz, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 170.3, 166.4 (d, *J* = 18.3 Hz), 160.7, 144.7 (d, *J* = 13.8 Hz), 135.7 (d, *J* = 6.6 Hz), 133.4 (d, *J* = 60.0 Hz), 129.8 (d, *J* = 10.3 Hz), 129.0 (d, *J* = 24.0 Hz), 128.1 (d, *J* = 21.1 Hz), 127.0 (d, *J* = 5.0 Hz), 126.2 (d, *J* = 60.0 Hz), 125.5 (d, *J* = 10.4 Hz), 113.7 (d, *J* = 3.7 Hz), 55.1 , 51.0 , 37.8 (d, *J* = 21.8 Hz), 21.2 (d, *J* = 11.9 Hz), 19.5 (d, *J* = 27.5 Hz), 11.8 (d, *J* = 20.4 Hz), -3.0 (d, *J* = 8.8 Hz); IR (KBr, cm ⁻¹): 2909.4, 1716.3, 1591.9, 1502.7, 1277.5, 1246.6, 1181.9, 1110.8, 799.7; HRMS (ESI-TOF) m/z: [M+ Na]+ calculated for C₂₂H₂₆NaO₃Si: 389.1543, found: 389.1534.

Methyl 1-(2-methoxyphenyl)-1-methyl-3-(m-tolyl)-1,4,5,6-tetrahydrosiline-2carboxylate (3aq): Yellow oil (22 mg, 30% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.51-7.44 (m, 1H), 7.32-7.25 (m, 1H), 7.12 (t, *J* = 7.5 Hz, 1H), 7.04-6.85 (m, 4H), 6.76 (d, *J* = 8.2 Hz, 1H), 3.72 (s, 3H), 3.27 (s, 3H), 2.53-2.42 (m, 2H), 2.26 (s, 3H), 1.91-1.75 (m, 2H), 1.18-1.07 (m, 1H), 0.82-0.71 (m, 1H), 0.44 (s, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 172.2, 164.3, 162.8, 144.9, 137.7, 136.6, 131.2, 129.9, 128.3, 128.1, 127.2, 124.9, 123.8, 120.6, 109.6, 55.2, 51.1, 37.1, 21.6, 21.3, 10.8, -2.8; IR (KBr, cm ⁻¹): 2909.0, 1703.9, 1587.3, 1427.5, 1233.8, 1044.9, 802.6, 756.7; HRMS (ESI-TOF) m/z: [M+ Na]+ calculated for C₂₂H₂₆NaO₃Si: 389.1543, found: 389.1563.

Methyl 1-(3-methoxyphenyl)-1-methyl-3-(m-tolyl)-1,4,5,6-tetrahydrosiline-2carboxylate (3ar):

Yellow oil (41.1 mg, 56% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.31 (t, *J* = 8.2 Hz, 1H), 7.25-7.17 (m, 3H), 7.13-7.00 (m, 3H), 6.93 (dd, *J* = 8.2, 2.7 Hz, 1H), 3.83 (s, 3H), 3.35 (s, 3H), 2.71-2.51 (m, 2H), 2.35 (s, 3H), 2.06-1.93 (m, 2H), 1.14-1.05 (m, 1H), 0.96-0.87 (m, 1H), 0.57 (s, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 171.7, 164.1, 159.0, 144.6, 138.7, 137.7, 129.1, 129.0, 128.5, 128.1, 127.1, 126.6, 123.7, 119.8, 114.6, 55.2, 51.1, 37.1, 21.6, 21.2, 11.1, -3.3; IR (KBr, cm ⁻¹): 2918.1, 1699.5, 1570.1 1281.7, 1227.4, 1045.3, 782.1, 695.5; HRMS (ESI-TOF) m/z: [M+ Na]+ calculated for C₂₂H₂₆NaO₃Si: 389.1543, found: 389.1561.

Methyl 1-([1,1'-biphenyl]-3-yl)-1-methyl-3-(m-tolyl)-1,4,5,6-tetrahydrosiline-2carboxylate (3as):

Colorless oil (31.4 mg, 38% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.74 (s, 1H), 7.56-7.48 (m, 4H), 7.37 (t, *J* = 8.1 Hz, 3H),7.27 (t, *J* = 10.7 Hz, 1H), 7.12 (t, *J* = 7.5 Hz, 1H), 7.04-6.92 (m, 3H), 3.27 (s, 3H), 2.64-2.42 (m, 2H), 2.26 (s, 3H), 1.97-1.87 (m, 2H), 1.10-1.02 (m, 1H), 0.91-0.83 (m, 1H), 0.52 (s, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 171.8, 164.1, 144.6, 141.7, 140.6, 137.8, 137.7, 133.3, 133.1, 129.1, 128.9, 128.5, 128.3, 128.1, 127.4, 127.3, 127.1, 123.7, 51.2, 37.1, 21.6, 21.3, 11.1, -3.2; IR (KBr, cm ⁻¹): 2919.6, 1699.2, 1428.6 1228.9, 1046.6, 799.5, 699.6, 646.4; HRMS (ESI-TOF) m/z: [M+ Na]+ calculated for C₂₇H₂₈NaO₂Si: 435.1751, found: 435.1737.

Methyl 1-methyl-3-(m-tolyl)-1-(p-tolyl)-1,4,5,6-tetrahydrosiline-2-carboxylate (3at):

Colorless oil (36.5 mg, 52% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.54 (d, J = 7.9 Hz, 2H), 7.25-7.18 (m, 3H), 7.12-7.01 (m, 3H), 3.35 (s, 3H), 2.70-2.52 (m, 2H), 2.36 (d, J = 5.5 Hz, 6H), 2.08-1.93 (m, 2H), 1.15-1.02 (m, 1H), 0.96-0.88 (m, 1H), 0.56 (s, 3H);¹³C NMR (100 MHz, Chloroform-*d*) δ 171.8, 163.7, 144.7, 139.3, 137.7, 134.3, 133.3, 129.4, 128.8, 128.4, 128.1, 127.1, 123.7, 51.1, 37.1, 21.6, 21.5, 21.3, 11.2, -3.3; IR (KBr, cm ⁻¹): 2919.1, 1700.6, 1578.8 1429.8, 1229.1, 1106.5, 786.5, 703.9; HRMS (ESI-TOF) m/z: [M+ Na]+ calculated for C₂₂H₂₆NaO₂Si: 373.1594, found: 373.1607.

Methyl 1-([1,1'-biphenyl]-4-yl)-1-methyl-3-(m-tolyl)-1,4,5,6-tetrahydrosiline-2carboxylate (3au): Light yellow oil (43 mg, 52% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.61 (d, J = 8.2 Hz, 2H), 7.52 (d, J = 9.8 Hz, 4H), 7.35 (t, J = 7.6 Hz, 2H), 7.27 (t, J = 7.4 Hz, 1H), 7.12 (t, J = 8.0 Hz, 1H), 7.03-6.91 (m, 3H), 3.26 (s, 3H), 2.64-2.46 (m, 2H), 2.26 (s, 3H), 1.98-1.87 (m, 2H), 1.10-0.98 (m, 1H), 0.90-0.81 (m, 1H), 0.51 (s, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 171.8, 164.1, 144.6, 142.1, 141.2, 137.8, 135.8, 134.8, 129.1, 128.9, 128.5, 128.1, 127.5, 127.3, 127.1, 126.7, 123.7, 51.1, 37.1, 21.6, 21.3, 11.2, -3.3; IR (KBr, cm⁻¹): 2919.2, 1698.9, 1203.1, 1112.9, 798.3, 755.1, 697.2; HRMS (ESI-TOF) m/z: [M+ Na]+ calculated for C₂₇H₂₈NaO₂Si: 435.1751, found: 435.1774.

Methyl 1-(4-fluorophenyl)-1-methyl-3-(m-tolyl)-1,4,5,6-tetrahydrosiline-2carboxylate (3av):

Yellow oil (41.8 mg, 59% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.60 (dd, J = 2.1 Hz, 2H), 7.20 (t, J = 7.5 Hz, 1H), 7.13-6.97 (m, 5H), 3.32 (s, 3H), 2.70-2.49 (m, 2H), 2.35 (s, 3H), 2.04-1.89 (m, 2H), 1.16-0.99 (m, 1H), 0.99-0.87 (m, 1H), 0.56 (s, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 171.7, 165.2, 164.2, 162.8, 144.5, 137.8, 136.3 (d, J = 7.8 Hz), 132.5 (d, J = 3.7 Hz), 129.0, 128.6, 128.1, 127.1, 123.6, 115.2, 115.0, 51.1, 37.1, 21.6, 21.2, 11.2, -3.3; IR (KBr, cm⁻¹): 2919.9, 1699.3, 1586.2 1498.9, 1228.9, 1163.0, 1114.1, 824.5, 798.4, 703.5; HRMS (ESI-TOF) m/z: [M+ Na]+ calculated for C₂₁H₂₃FNaO₂Si: 377.1344, found: 377.1331.

Methyl 1-(3,5-dimethylphenyl)-1-methyl-3-(m-tolyl)-1,4,5,6-tetrahydrosiline-2carboxylate (3aw):

Yellow oil (29.2 mg, 40% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.15-7.08 (m, 3H), 7.03-6.91 (m, 4H), 3.26 (s, 3H), 2.64-2.54 (m, 1H), 2.50-2.40 (m, 1H), 2.25 (d, *J* = 5.9 Hz, 9H), 1.96-1.86 (m,2H), 1.05-0.97 (m, 1H), 0.84-0.77 (m, 1H), 0.46 (s, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 171.8, 163.6, 144.7, 137.7, 137.1, 136.7, 132.0, 131.2, 129.5, 128.5, 128.1, 127.1, 123.7, 51.1, 37.1, 21.6, 21.3, 11.2, -3.1; IR (KBr, cm ⁻¹): 2916.9, 1701.3, 1428.9, 1229.0, 1139.3, 856.5, 784.2, 694.9; HRMS (ESI-TOF) m/z: [M+ Na]+ calculated for C₂₃H₂₈NaO₂Si: 387.1751, found: 387.1735.

Si- + OMe 1a	Catalyst (2 mol%) PPh ₃ (5 mol%) Toluene, 60 °C CO ₂ Me 2a	MeO ₂ C Si 3a	OMe E.Me MeO ₂ C Si anti-4a	• MeO ₂ C Si syn-4a
Entry	Catalyst	Con.(%) ^b	3a:4a (%) ^b	$dr ext{ of 4a } (\%)^{b}$
1	[Rh(nbd) ₂ Cl] ₂	nr	/	
2	$[Rh(OAc)]_2$	nr	/	
3	Rh(CO) ₄ Cl ₂	nr	/	
4	Rh(acac)(CO) ₂	nr	/	
5	$[Rh(cod)_2Cl]_2$	nr	/	
6	$[Rh(C_2H_4)_2Cl]_2$	15	7:93	32:68
7	[Rh(cod)2]BF4	nr	/	
8	Rh(PPh ₃) ₃ Cl	nr	/	
9	RhCl ₃	nr	/	

Table S1. The effect of Rhodium metal salts in this reaction.^a

^{*a*}All the reactions were run on a 0.2 mmol scale in 2.0 mL solvents for 14 h. ^{*b*}Determined by GC-MS.
Si- + OMe	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	0Me 1%) MeO₂C Si +	MeO ₂ C Si Me	+ MeO ₂ C Si
1a	2a	3a	anti- 4a	syn- 4a
Entry	Ligand	Con.(%) ^b	3a:4a (%) ^b	$dr ext{ of } 4a (\%)^{b}$
1	DPEphos	15	28:72	17:83
2	JohnPhos	trace	/	/
3	Xantphos	nr	/	/
4	DavePhos	nr	/	/
5	S-Phos	nr	/	/
6	RuPhos	nr	/	/
7	CyJohnPhos	nr	/	/
8	Xphos	nr	/	/
9	Brettphos	nr	/	/
10	P1	76	31:69	74:26
11	P2	36	11:89	56:44
12	P3	19	12:87	59:41
13	P4	30	90:10	13:87
14	P5	25	24:76	61:39
15	P6	nr	/	/
16	P7	nr	/	/
17	P8	nr	/	/
18	P9	nr	/	/
19	P10	nr	/	/
20	P11	nr	/	/
21	P12	nr	/	/

Table S2. The effect of P-ligands in this reaction.^a

^{*a*}All the reactions were run on a 0.2 mmol scale in 2.0 mL solvents for 14 h. ^{*b*}Determined by GC-MS.

Ρ5

P6

Р9

P10

P11

P12

Si- OMe	+ [Rh(C ₂ H ₄) ₂ Cl] ₂ additive (5 n P4 (5 mol Toluene, Te CO ₂ Me	(2 mol%) nol%) %) → MeO ₂ C mp	OMe Si Me + MeO ₂			
1a	2a	3a	a	nti- 4 a	syn-4a	P4
Entry	additive	Temp (°C)	Con.(%) ^b	3a:4a (%) ^b	<i>dr</i> of 4a ($(\%)^{b}$ 3a $(\%)^{c}$
1	Cu(CH ₃ CN) ₄ PF ₆	60	nr	/	/	/
2	Cu(CH ₃ CN) ₄ BF ₄	60	35	90:10	20:80	/
3	CuF_2	60	18	94:6	17:83	/
4	Cu(OTf) ₂	60	nr	/	/	/
5	CuI	60	46	55:45	38:62	/
6	$Cu(acac)_2$	60	23	94:6	13:87	/
7	$Cu(OAc)_2$	60	18	92:8	14:86	/
8	CuCl ₂	60	43	89:11	9:91	19
9	Cu_2SO_4	60	12	95:5	17:83	/
10	CuBr ₂	60	48	41:59	55:45	/
11	CuCl ₂	70	54	88:12	10:90	21
12	CuCl ₂	80	58	76:24	8:92	18
13	CuCl	70	65	80:20	28:72	28
14	CuCN	70	67	65:35	14:86	15
15	CuBr	70	10	64:36	26:74	6
16	LiBF ₄	70	21	94:6	21:79	10
17	ZnCl ₂	70	39	82:18	23:77	16
18	NaSbF ₆	70	nr	/	/	/
19	NaBH ₄	70	nr	/	/	/
20	^t BuONa	70	nr	/	/	/
21	Et ₃ NaBH	70	nr	/	/	/
22	^{<i>i</i>} Pr ₂ NH	70	nr	/	/	/
23	^t BuOK	70	nr	/	/	/
24	AgSbF ₆	70	nr	/	/	/
25	AgBF ₄	70	nr	/	/	/

Table S3. The effect of Additive and Temperature in this reaction.^a

^{*a*}All the reactions were run on a 0.2 mmol scale in 2.0 mL solvents for 14 h. ^{*b*}Determined by GC-MS. ^{*c*}Determind by ¹H NMR. ^{*c*}Yield of the isolated product.

Si- OMe	+ CO ₂	[Rł	n(C ₂ H ₄) ₂ CuCl (; P4 (Z Toluend	Cil ₂ (Y mol%) X mol%) mol%) e, 70 °C		Ae + MeO ₂ C	OMe 		P4
Entry	2a	Х	Y	Z	Con.(%) ^b	3a:4a (%) ^b	dr of $4a (\%)^{b}$	3a (%) ^c	3a (%) ^d
1	1.2 eq	5	2	5	65	80:20	28:72	28	25
2	2.5 eq	5	2	5	67	85:15	19:81	42	40
3	2.5 eq	10	2	5	85	82:18	22:78	52	48
4	2.5 eq	10	4	5	95	83:17	17:83	62	58
5	2.5 eq	10	4	12.5	96	93:7	22:78	70	65

Table S4. The effect of the amount of 2a/catalyst/L8/additive in this reaction.^a

^{*a*}All the reactions were run on a 0.2 mmol scale in 2.0 mL solvents for 14 h. ^{*b*}Determined by GC-MS. ^{*c*}Determind by ¹H NMR. ^{*c*}Determind by ¹H NMR. ^{*d*}Yield of the isolated product.

			QMe	QMe	OMe ;	
Si- + OMe +	[Rh(C ₂ H ₄) ₂ Cl] ₂ (4 r CuCl (10 mol%) P4 (12.5 mol%) solvent, 70 °C CO ₂ Me		Si + MeO ₂ C	Si Me + MeO ₂ C Si Aa syn-	Si Me	P4
Entry	Solvent	Con.(%) ^b	3a:4a(%) ^b	$dr ext{ of } 4a (\%)^{t}$	^o 3a (%) ^c	3a (%) ^d
1	Tol	96	93:7	22:78	70	65
2	PhCl	92	89:11	17:83	63	51
4	EA	80	92:8	17:83	/	/
5	1,4-Dioxane	80	81:19	10:90	/	/
6	CH ₃ CN	49	52:48	30:70	/	/
7	<i>p</i> -xylene	74	75:25	29:71	/	/
8	Benzotrifluoride	35	95:5	27:73	/	/

Table S5. The effect of solvent in this reaction.^a

^{*a*}All the reactions were run on a 0.2 mmol scale in 2.0 mL solvents for 14 h. ^{*b*}Determined by GC-MS. ^{*c*}Determind by ¹H NMR. ^{*c*}Determind by ¹H NMR. ^{*d*}Yield of the isolated product.

Table S6. Control Experiments.^a

		OMe	OMe	OMe
Si- + OMe	[Rh(C ₂ H ₄) ₂ Cl] ₂ (4 mc CuCl (10 mol%) P4 (12.5 mol%) Toluene, 70 °C CO ₂ Me	I%) MeO₂C Si + N 3a	heO ₂ C Si Me + MeO ₂ C anti-4a syn-	Aa P4
Entry	Without	Con.(%) ^b	3a:4a (%) ^b	<i>dr</i> of 4a (%) ^b
1	CuCl and P4	nr	/	/
2	[Rh(C ₂ H ₄) ₂ Cl] ₂	< 5%	/	/
3	CuCl	30	90:10	13:87

^{*a*}All the reactions were run on a 0.2 mmol scale in 2.0 mL solvents for 14 h. ^{*b*}Determined by GC-MS.

3.2. General procedure for the synthesis of Ar-BINMOL-Phos.⁵

a) (S)-BINOL (30 mmol, 8.6 g) and K₂CO₃ (1.2 eq, 5g) in acetone solution was heated to reflux and stir for 1 hour. Then 3,5-'Bu-PhCH₂Br (1.1 eq, 8.3 ml) was added to the reaction mixture, and the reaction was stirred at 70 °C for 2 h. After the completion of the reaction was detected by TLC, the reaction flask was removed and cooled to room temperature, and the reactants were suction filtered. Wash with EtOAc. Take the lower layer of filtrate and spin dry under reduced pressure to obtain a concentrated organic phase, which is separated by chromatographic column (PE/EA, 50/1) to obtain L1-a (71% yield, 10.40 g)

b) Dry THF (20 mL) was added to the NaH (1.5 eq, 0.77g) in a round-bottom flask equipped with a stir bar. The solution was cooled to 0 °C, slowly drop the L1-a solution into the flask, continue to stir at 0°C for 1 hour, then extract MOMBr (1.5 eq, 0.90 ml) and slowly drop it into the reaction system, and then add the reaction system Transfer

to room temperature and stir overnight. After the completion of the reaction was detected by TLC, the reaction was quenched with saturated aqueous NH_4Cl at low temperature. After stirring for 5 min, it was extracted with EtOAc. The organic phases were combined and spin-dried under reduced pressure to obtain a concentrated organic phase. Column separation (PE/EA, 50/1) to obtain L1-b (67% yield, 7.60 g)

c) 6.85 mL (17.1 mmol) of 2.5M solution n-BuLi in hexanes was added dropwise to a solution of compound L1-b (7.6 g, 14.3 mmol) in 30 mL of THF at -78 °C. The resulting solution was stirred at -78 °C for 1 h, and then 5 mL of PPh₂Cl (3.08 mL, 17.16 mmol, 1.2 equiv) in THF was added slowly at the same temperature. The reaction mixture was stirred for 6 hours. When the reaction is completed, it was quenched with saturated aqueous NH₄Cl (5 mL) and stirred vigorously for 5 minutes. The aqueous phase was extracted with ethyl acetate (3×20 mL). The combined organic layers were dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (PE/EA, 10/1) to give 3.07 g (30% yield, 4.29 mmol) of the compound L1-c.

d) To a solution of L1-c (3.07 g, 4.29 mmol) in 10 mL of THF, 2 mL of 12M aqueous HCl was added at 40 °C for 2 h. The organic phase was extracted with water ($3 \times 30 \text{ mL}$) and ethyl acetate ($3 \times 30 \text{ mL}$). The combined organic layers were dried over Na₂SO₄ and concentrated under reduced pressure. the residue was purified by silica gel column chromatography (PE/EA, 10/1 to 5/1) to give 2.59 g (90% yield) of compound L1-d. e) To a solution of L1-d (2.59 g, 3.86 mmol) in 10 mL of THF, 6.18 mL (15.44 mmol, 4 equiv) of 2.5M solution n-BuLi in hexanes was added at -78 °C for 5 min and the color of the mixture turn to jasper. Then the reaction continued to stir at room temperature for additional 2 h. At last, it was quenched with saturated aqueous NH₄Cl (10 mL) and stirred for 5 minutes. The aqueous phase was extracted with ethyl acetate ($3 \times 20 \text{ mL}$). The combined organic layers were dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (PE/EA, 10/1 to 5/1) to give 1.82 g (2.7 mmol, 70% yield) of L1. The synthesis of L8/L9 are similarly to that of L1.

(S)-2'-((3,5-di-tert-butylbenzyl)oxy)-[1,1'-binaphthalen]-2-ol (L1-a):

White Solid, mp 67 – 77 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.95 (d, *J* = 9.0 Hz, 1H), 7.86-7.73 (m, 3H), 7.47 (d, *J* = 9.1 Hz, 1H), 7.31-7.26 (m, 2H), 7.25-7.16 (m, 2H), 7.18-7.10 (m, 3H), 7.04 (d, *J* = 7.9 Hz, 1H), 6.81 (d, *J* = 1.8 Hz, 2H), 5.06-4.95 (m, 2H), 1.09 (s, 18H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 155.4, 151.4, 150.9, 135.9, 134.2, 134.0, 131.1, 129.9, 129.8, 129.3, 128.3, 128.2, 127.4, 126.6, 125.2, 125.0, 124.5, 123.4, 121.6, 121.2, 117.7, 116.5, 115.7, 115.3, 71.7, 34.8, 31.5; HRMS (ESI-TOF) m/z: [M+Na]+ calculate*d* for C₃₅H₃₆NaO₂: 511.2608, found: 511.2587.

(S)-2-((3,5-di-tert-butylbenzyl)oxy)-2'-(methoxymethoxy)-1,1'-binaphthalene (L1-b):

White Solid, mp 92 – 95 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.86 (t, *J* = 9.1 Hz, 2H), 7.77 (dd, *J* = 8.2, 3.7 Hz, 2H), 7.50 (d, *J* = 9.0 Hz, 1H), 7.42 (d, *J* = 9.0 Hz, 1H), 7.27-7.18 (m, 2H), 7.14-7.10 (m, 5H), 6.72 (d, *J* = 1.8 Hz, 2H), 4.99-4.83 (m, 4H), 3.01 (s, 3H), 1.06 (s, 18H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 154.4, 152.8, 150.7, 136.5, 134.3, 134.2, 130.1, 129.5, 129.5, 128.1, 128.0, 126.5, 126.4, 125.7, 125.6, 124.2, 123.8, 121.5, 121.3, 121.1, 120.7, 117.5, 116.0, 95.3, 71.9, 55.9, 34.8, 31.5; HRMS (ESI-TOF) m/z: [M+ Na]+ calculate*d* for C₃₇H₄₀NaO₃: 555.2870, found: 555.2852.

(S)-(2'-((3,5-di-tert-butylbenzyl)oxy)-2-(methoxymethoxy)-[1,1'-binaphthalen]-3yl)diphenylphosphane (L1-c):

White Solid, mp 113-116 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.84 (d, *J* = 9.0 Hz, 1H), 7.72 (d, *J* = 8.0, 1.2 Hz, 1H), 7.51 (d, *J* = 7.9 Hz, 1H), 7.37 (d, *J* = 9.0 Hz, 1H), 7.28 (d, *J* = 3.8 Hz, 5H), 7.21-7.06 (m, 11H), 6.84 (t, *J* = 7.7 Hz, 2H), 6.73 (d, *J* = 1.8 Hz, 2H), 5.01 (q, *J* = 11.9 Hz, 2H), 4.62 (d, *J* = 5.4 Hz, 1H), 4.51 (d, *J* = 5.5 Hz, 1H), 2.60 (s, 3H), 1.03 (s, 18H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 155.2, 155.0, 154.7, 150.7, 137.2, 137.1, 136.8, 136.7, 136.4, 134.7, 134.7, 134.5, 134.4, 134.2, 134.0, 133.9, 132.8, 132.7, 131.1, 129.9, 129.2, 129.0, 128.6, 128.6, 128.5, 128.4, 128.3, 127.9, 126.8, 126.7, 125.8, 125.7, 125.1-124.8 (m), 123.8, 121.5, 121.0, 120.0, 114.8, 99.0 (d, *J* = 6.3 Hz), 71.5, 56.8 (d, *J* = 5.0 Hz), 34.8, 31.5; HRMS (ESI-TOF) m/z: [M+ H]+ calculated for C₄₉H₅₀O₃P: 717.3492, found: 717.3461.

(*S*)-2'-((3,5-di-tert-butylbenzyl)oxy)-3-(diphenylphosphanyl)-[1,1'-binaphthalen]-2-ol (L1-d):

White Solid, mp 127 – 133 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.11 (d, J = 9.0 Hz, 1H), 7.98 (d, J = 8.0 Hz, 1H), 7.79-7.72 (m, 1H), 7.62 (d, J = 9.1 Hz, 1H), 7.59-7.51 (m, 2H), 7.52-7.27 (m, 14H), 7.08 (t, J = 6.8 Hz, 2H), 6.98 (d, J = 2.0 Hz, 2H), 5.21 (s, 2H), 1.28 (s, 18H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 155.3, 152.4, 152.3, 150.8, 136.3, 136.2, 136.2, 136.1, 134.6, 134.5, 134.4, 134.1, 133.9, 133.7, 131.1, 129.7, 129.3, 129.3, 129.1, 128.7, 128.6 (d, J = 2.1 Hz), 128.5, 128.4, 128.4, 128.3, 127.4,

127.1, 126.4, 126.3, 125.0, 124.8, 124.4, 123.5, 121.6, 121.0, 116.3, 115.5, 115.3 (d, *J* = 2.0 Hz), 71.7, 34.8, 31.5; HRMS (ESI-TOF) m/z: [M+H]+ calculate*d* for C₄₇H₄₆O₂P: 673.3230, found: 673.3207.

(S)-2'-((R)-(3,5-di-tert-butylphenyl)(hydroxy)methyl)-3-(diphenylphosphanyl)-[1,1'-binaphthalen]-2-ol (L1):

White Solid, mp 93 – 106 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.86 (d, J = 8.7 Hz, 1H), 7.81 (d, J = 8.1 Hz, 1H), 7.58-7.53 (m, 2H), 7.44-7.30 (m, 12H), 7.22-7.18 (m, 1H), 7.16-7.08 (m, 3H), 7.07-7.02 (m, 1H), 6.87 (d, J = 1.8 Hz, 2H), 6.81 (d, J = 8.3 Hz, 1H), 5.85 (s, 1H), 5.64 (s, 1H), 1.09 (s, 18H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 152.5, 152.4, 150.5, 142.2, 142.0, 135.2, 135.2, 135.0, 134.7, 134.2, 134.1, 134.0, 133.9, 133.5, 132.8, 129.8, 129.6, 129.5, 129.1, 129.1, 129.0, 128.9, 128.9, 128.9, 128.4, 128.3, 127.5, 126.8, 126.5, 126.4, 126.0, 125.7, 125.2, 124.0, 121.2, 120.5, 117.9, 73.8, 34.9, 31.5; ³¹P NMR (162 MHz, Chloroform-*d*) δ -17.18; HRMS (ESI-TOF) m/z: [M+H]+ calculated for C₄₇H₄₆O₂P: 673.3230, found: 673.3241.

(*S*)-2-((3,5-dibromobenzyl)oxy)-2'-(methoxymethoxy)-1,1'-binaphthalene (L8-a): White Solid, mp 68 - 71 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.92-7.76 (m, 4H), 7.51 (d, *J* = 9.0 Hz, 1H), 7.34 (s, 1H), 7.29-7.22 (m, 3H), 7.18-7.14 (m, 3H), 7.04 (d, *J* = 9.5 Hz, 1H), 6.91 (d, *J* = 1.7 Hz, 2H), 5.03 (d, *J* = 6.8 Hz, 1H), 4.92-4.87 (m, 2H), 4.82 (d, *J* = 13.0 Hz, 1H), 3.00 (s, 3H).¹³C NMR (100 MHz, Chloroform-*d*) δ 153.5, 152.8, 141.6, 134.2, 134.0, 133.1, 130.0, 129.9, 129.7, 129.6, 128.4, 128.3, 128.0, 126.7, 126.6, 125.7, 125.3, 124.3, 124.2, 122.9, 121.2, 120.9, 117.3, 115.8, 95.2, 69.8, 55.9. HRMS (ESI-TOF) m/z: [M+ Na]+ calculated for C₂₉H₂₂Br₂NaO₃: 598.9828, found: 600.9807.

(S)-(5-(((2'-(methoxymethoxy)-[1,1'-binaphthalen]-2-yl)oxy)methyl)-1,3phenylene) bis (trimethylsilane) (L8-b):

White Solid, mp 87 – 94 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.82 (dd, *J* = 11.0, 9.0 Hz, 2H), 7.76-7.70 (m, 2H), 7.44 (d, *J* = 9.0 Hz, 1H), 7.37 (d, *J* = 9.0 Hz, 1H), 7.31 (s, 1H), 7.22-7.16 (m, 2H), 7.11-7.04 (m, 4H), 6.98 (s, 2H), 4.94-4.80 (m, 4H), 2.96 (s, 3H), -0.00 (s, 18H).¹³C NMR (100 MHz, Chloroform-*d*) δ 155.4, 153.8, 140.5, 138.4, 136.6, 135.3, 135.2, 133.4, 131.0, 130.6, 130.5, 129.1, 129.0, 127.5, 126.6, 125.2, 124.9, 122.4, 121.8, 118.5, 117.1, 96.3, 72.9, 56.9, -0.0. HRMS (ESI-TOF) m/z: [M+ Na]+ calculate*d* for C₃₅H₄₀NaO₃Si₂: 587.2408, found: 587.2427.

(S)-2'-((R)-(3,5-bis(trimethylsilyl)phenyl)(hydroxy)methyl)-3-

(diphenylphosphaneyl)-[1,1'-binaphthalen]-2-ol (L8):

White Solid, mp 92 – 104 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.78 (d, *J* = 8.6 Hz, 1H), 7.71 (d, *J* = 8.0 Hz, 1H), 7.47 (dd, *J* = 8.4, 3.5 Hz, 2H), 7.31-7.19 (m, 13H), 7.11-7.04 (m, 5H), 6.96 (t, *J* = 7.1 Hz, 1H), 6.71 (d, *J* = 8.3 Hz, 1H), 5.71 (s, 1H), 5.59 (s, 1H), -0.00 (s, 18H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 153.5, 153.4, 143.0, 142.0, 140.2, 138.0, 136.7, 136.6, 136.5, 136.4, 136.1 (d, *J* = 4.1 Hz), 135.8, 135.2, 135.1, 135.0, 134.9, 134.5, 133.8, 132.8, 130.8, 130.7, 130.3, 130.2, 130.1 (d, *J* = 2.2 Hz),

129.9, 129.8 (d, J = 2.2 Hz), 129.8, 129.4, 129.3, 128.4, 127.8, 127.5, 126.6, 126.0, 124.9, 118.6, 74.6, 0.0. ³¹P NMR (162 MHz, Chloroform-d) δ -17.57; HRMS (ESI-TOF) m/z: [M+ Na]+ calculated for C₄₅H₄₅NaO₂PSi₂: 727.2588, found: 727.2590.

(S)-3-(bis(3,5-dimethylphenyl)phosphaneyl)-2'-((R)-(3,5-di-tert-butylphenyl) (hydroxy)methyl)-[1,1'-binaphthalen]-2-ol (L9):

White Solid, mp 99 – 115 °C; ¹H NMR (400 MHz, Chloroform-d) δ 7.86 (d, J = 8.7 Hz, 1H), 7.80 (d, J = 8.1 Hz, 1H), 7.59 (dd, J = 13.7 Hz, 2H), 7.44-7.30 (m, 2H), 7.21-6.79 (m, 14H), 5.65 (s, 1H), 2.27 (d, J = 6.3 Hz, 1H), 2.20 (d, J = 5.3 Hz, 11H), 1.09 (s, 18H). ¹³C NMR (100 MHz, CDCl₃) δ 152.5, 152.3, 150.4, 142.3, 141.9, 138.5, 138.4, 138.4, 138.3, 135.4, 135.4, 135.0, 133.5, 132.8, 131.8, 131.6, 131.6, 131.5, 131.4, 129.8, 129.6, 129.1, 129.1, 128.4, 128.3, 127.4, 126.7, 126.5, 126.3, 125.7, 125.2, 123.9, 121.0, 120.5, 117.9, 73.7, 34.9, 31.5, 21.5. ³¹P NMR (162 MHz, Chloroform-d) δ -16.84; HRMS (ESI-TOF) m/z: [M + Na]+ calculated for C₅₁H₅₃NaO₂P: 751.3675, found: 751.3665.

3.3. General procedure for the asymmetric version for the Rh/Cu-cocatalyzed (3+2) annulation of silacycles with internal alkynes.

Silacyclobutane 1 (0.2 mmol), [Rh(C₂H₄)₂Cl]₂ (3.2 mg, 0.008 mmol), CuCl (2.0 mg,

0.02 mmol) and chiral Ar-BINMOL-Phos (L1) (16.8 mg, 0.025 mmol) in TEA (2 mL) was stirred at room temperature for 30 min. Then the substrate 2 (2.5 eq, 0.5 mmol) was added to the reaction mixture, and the reaction was stirred at 40 °C for 14 h. Upon reaction completion, the mixture was concentrated under reduced vacuum. The residue was purified by silica gel flash column chromatography (eluent: PE and EtOAc) to afford 3. The *er* value was detected by chiral HPLC.

Methyl (*S*)-1-(4-methoxyphenyl)-1-methyl-3-(m-tolyl)-1,4,5,6-tetrahydrosiline-2carboxylate (3a):

Yellow oil (38.1 mg, 52% yield), $[\alpha]_{D}^{25} = + 8.3$ (c = 1.09, CHCl₃). Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (hexanes: 2-propanol = 99:1, 0.8 mL/min, 254 nm, 80:20 *er*); major enantiomer t_r =9.558 min, minor enantiomer t_r =8.253 min.

Ethyl (*S*)-1-(4-methoxyphenyl)-1-methyl-3-(m-tolyl)-1,4,5,6-tetrahydrosiline-2carboxylate (3b):

Colorless oil (25.1 mg, 33% yield), $[\alpha]_{D}^{25}$ = + 14.6 (c = 0.67, CHCl₃). Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (hexanes: 2-propanol = 99:1, 0.8 mL/min, 254 nm, 82:18 *er*); major enantiomer t_r =9.597 min, minor enantiomer t_r =8.538 min.

Benzyl (*S*)-1-(4-methoxyphenyl)-1-methyl-3-(m-tolyl)-1,4,5,6-tetrahydrosiline-2carboxylate (3c):

Colorless oil (36.3 mg, 41% yield), $[\alpha]_{D}^{25} = +5.6$ (c = 0.97, CHCl₃). Enantiomeric excess was determined by HPLC with a Chiralpak OX-H column (hexanes: 2-propanol = 98:2, 0.8 mL/min, 254 nm, 82:18 *er*); major enantiomer t_r =10.021 min, minor enantiomer t_r =8.941 min.

Propyl (*S*)-1-(4-methoxyphenyl)-1-methyl-3-(m-tolyl)-1,4,5,6-tetrahydrosiline-2carboxylate (3d):

Colorless oil (23.7 mg, 30% yield), $[\alpha]_{D}^{25} = +9.5$ (c = 0.66, CHCl₃). Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (hexanes: 2-propanol = 95:5, 0.8 mL/min, 254 nm, 83:17 *er*); major enantiomer t_r =6.401 min, minor enantiomer t_r =5.811 min.

Phenyl (*S*)-1-(4-methoxyphenyl)-1-methyl-3-(m-tolyl)-1,4,5,6-tetrahydrosiline-2carboxylate (3e):

Colorless oil (30.0 mg, 35% yield), $[\alpha]_{D}^{25} = +16.2$ (c = 0.54, CHCl₃). Enantiomeric

excess was determined by HPLC with a Chiralpak OX-H column (hexanes: 2-propanol = 99:1, 0.5 mL/min, 254 nm, 85:15 *er*); major enantiomer $t_r = 13.431$ min, minor enantiomer $t_r = 15.078$ min.

Isopropyl (S)-1-(4-methoxyphenyl)-1-methyl-3-(m-tolyl)-1,4,5,6-tetrahydrosiline-

2-carboxylate (3f):

Colorless oil (37.9 mg, 48% yield), $[\alpha]_{D}^{25} = +$ 10.4 (c = 1.19, CHCl₃). Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (hexanes: 2-propanol = 98:2, 0.8 mL/min, 254 nm, 86:14 *er*); major enantiomer t_r =9.165 min, minor enantiomer t_r =8.271 min.

Tert-butyl (S)-1-(4-methoxyphenyl)-1-methyl-3-(m-tolyl)-1,4,5,6-tetrahydrosiline-

2-carboxylate (3g):

Yellow oil (36.7 mg, 45% yield), $[\alpha]_D^{25} = +9$ (c = 0.91, CHCl₃). Enantiomeric excess was determined by HPLC with a Chiralpak OJ-H column (hexanes: 2-propanol = 95:5, 0.6 mL/min, 254 nm, 91:9 *er*); major enantiomer t_r =7.238 min, minor enantiomer t_r =11.427 min.

Tert-butyl (S)-1-(4-methoxyphenyl)-1-methyl-3-(p-tolyl)-1,4,5,6-tetrahydrosiline-

2-carboxylate (3h):

Yellow oil (44.5 mg, 52% yield), $[\alpha]_D^{25} = + 3.1$ (c = 0.64, CHCl₃). Enantiomeric excess was determined by HPLC with a Chiralpak OJ-H column (hexanes: 2-propanol = 98:2, 0.8 mL/min, 254 nm, 87:13 *er*); major enantiomer t_r =14.725 min, minor enantiomer t_r =22.732 min.

Yellow oil (47.7 mg, 53% yield), $[\alpha]_{D}^{25} = +11.7$ (c = 0.44, CHCl₃). Enantiomeric excess was determined by HPLC with a Chiralpak OJ-H column (hexanes: 2-propanol = 99:1, 0.4 mL/min, 254 nm, 88:12 *er*); major enantiomer t_r =29.537 min, minor enantiomer t_r =42.964 min.

Tert-butyl (*S*)-3-(4-ethylphenyl)-1-(4-methoxyphenyl)-1-methyl-1,4,5,6tetrahydrosiline-2-carboxylate (3j):

Yellow oil (45.6 mg, 54% yield), $[\alpha]_{D}^{25} = +13.2$ (c = 0.54, CHCl₃). Enantiomeric excess was determined by HPLC with a Chiralpak OJ-H column (hexanes: 2-propanol = 99:1, 0.4 mL/min, 254 nm, 87:13 *er*); major enantiomer t_r =45.383 min, minor enantiomer t_r =68.063 min.

Tert-butyl (*S*)-1,3-bis(4-methoxyphenyl)-1-methyl-1,4,5,6-tetrahydrosiline-2carboxylate (3k):

Colorless oil (36.5 mg, 43% yield), $[\alpha]_{D}^{25} = +$ 10.1 (c = 0.47, CHCl₃). Enantiomeric excess was determined by HPLC with a Chiralpak OJ-H column (hexanes: 2-propanol = 97:3, 0.6 mL/min, 254 nm, 86:14 *er*); major enantiomer t_r =13.998 min, minor enantiomer t_r =26.843 min.

Tert-butyl (S)-3-(4-ethoxyphenyl)-1-(4-methoxyphenyl)-1-methyl-1,4,5,6-

tetrahydrosiline-2-carboxylate (31):

Colorless oil (44.7 mg, 51% yield), $[\alpha]_{D}^{25} = +8.7$ (c = 1.01, CHCl₃). Enantiomeric excess was determined by HPLC with a Chiralpak OJ-H column (hexanes: 2-propanol = 99:1, 0.6 mL/min, 254 nm, 94:6 *er*); major enantiomer t_r =16.134 min, minor enantiomer t_r =35.521 min.

Tert-butyl(S)-3-([1,1'-biphenyl]-4-yl)-1-(4-methoxyphenyl)-1-methyl-1,4,5,6-tetrahydrosiline-2-carboxylate (3m):

Yellow oil (45.2 mg, 48% yield), $[\alpha]_{D}^{25} = -6.7$ (c = 0.30, CHCl₃). Enantiomeric excess

was determined by HPLC with a Chiralpak OD-H + OD-H column (hexanes: 2propanol = 98:2, 0.8 mL/min, 254 nm, 85:15 *er*); major enantiomer t_r =41.056 min, minor enantiomer t_r =45.257 min.

Tert-butyl (*S*)-1-(4-methoxyphenyl)-1-methyl-3-(4-propylphenyl)-1,4,5,6tetrahydrosiline-2-carboxylate (3n):

Yellow oil (42.7 mg, 49% yield), $[\alpha]_{D}^{25} = +2.3$ (c = 0.55, CHCl₃). Enantiomeric excess was determined by HPLC with a Chiralpak OJ-H column (hexanes: 2-propanol = 99:1, 0.4 mL/min, 254 nm, 86:14 *er*); major enantiomer t_r =40.847 min, minor enantiomer t_r =59.647 min.

Tert-butyl(S)-3-(4-chlorophenyl)-1-(4-methoxyphenyl)-1-methyl-1,4,5,6-tetrahydrosiline-2-carboxylate (30):

Light yellow oil (35.1 mg, 41% yield), $[\alpha]_D^{25} = +10.5$ (c = 0.33, CHCl₃). Enantiomeric excess was determined by HPLC with a Chiralpak OJ-H column (hexanes: 2-propanol = 99:1, 0.6 mL/min, 254 nm, 90:10 *er*); major enantiomer t_r =11.111 min, minor enantiomer t_r =26.919 min.

Tert-butyl (S)-3-(3-methoxyphenyl)-1-(4-methoxyphenyl)-1-methyl-1,4,5,6tetrahydrosiline-2-carboxylate (3p):

Colorless oil (38.2 mg, 45% yield), $[\alpha]_{D}^{25} = +2.3$ (c = 0.65, CHCl₃). Enantiomeric excess was determined by HPLC with a Chiralpak OJ-H column (hexanes: 2-propanol = 99:1, 0.6 mL/min, 254 nm, 92:8 *er*); major enantiomer t_r =13.94 min, minor enantiomer t_r =29.795 min.

Tert-butyl (*S*)-3-([1,1'-biphenyl]-3-yl)-1-(4-methoxyphenyl)-1-methyl-1,4,5,6tetrahydrosiline-2-carboxylate (3q):

Yellow oil (45.1 mg, 48% yield), $[\alpha]_{D}^{25} = +2.84$ (c = 0.58, CHCl₃). Enantiomeric excess was determined by HPLC with a Chiralpak OP-H column (hexanes: 2-propanol = 99:1, 0.6 mL/min, 254 nm, 86:14 *er*); major enantiomer t_r =21.172 min, minor enantiomer t_r =27.967 min.

Tert-butyl(S)-3-(3-chlorophenyl)-1-(4-methoxyphenyl)-1-methyl-1,4,5,6-tetrahydrosiline-2-carboxylate (3r):

Colorless oil (19.7 mg, 23% yield), $[\alpha]_{\rm p}^{25} = -27$ (c = 0.1, CHCl₃). Enantiomeric excess was determined by HPLC with a Chiralpak OJ-H column (hexanes: 2-propanol = 98:2, 0.6 mL/min, 254 nm, 87:13 *er*); major enantiomer t_r =9.685 min, minor enantiomer t_r =19.648 min.

Yellow oil (20.6 mg, 25% yield), $[\alpha]_{D}^{25} = -7.4$ (c = 0.22, CHCl₃). Enantiomeric excess was determined by HPLC with a Chiralpak OJ-H column (hexanes: 2-propanol = 98:2, 0.6 mL/min, 254 nm, 87:13 *er*); major enantiomer t_r =9.112 min, minor enantiomer t_r =24.856 min.

Tert-butyl (*S*)-3-(3,5-dimethylphenyl)-1-(4-methoxyphenyl)-1-methyl-1,4,5,6tetrahydrosiline-2-carboxylate (3t):

Yellow oil (38.0 mg, 45% yield), $[\alpha]_D^{25} = +5.8$ (c = 0.72, CHCl₃). Enantiomeric excess was determined by HPLC with a Chiralpak OJ-H column (hexanes: 2-propanol = 99:1, 0.4 mL/min, 254 nm, 90:10 *er*); major enantiomer t_r =43.165 min, minor enantiomer t_r =82.033 min.

Tert-butyl (*S*)-1-(3-methoxyphenyl)-1-methyl-3-(m-tolyl)-1,4,5,6-tetrahydrosiline-2-carboxylate (3u):

Colorless oil (22.1 mg, 27% yield), $[\alpha]_D^{25} = +$ 8.6 (c = 0.22, CHCl₃). Enantiomeric

excess was determined by HPLC with a Chiralpak OJ-H column (hexanes: 2-propanol = 98:2, 0.6 mL/min, 254 nm, 75:25 *er*); major enantiomer t_r =22.798 min, minor enantiomer t_r =30.510 min.

Tert-butyl(S)-1-([1,1'-biphenyl]-4-yl)-1-methyl-3-(m-tolyl)-1,4,5,6-tetrahydrosiline-2-carboxylate (3v):

Colorless oil (37.2 mg, 41% yield), $[\alpha]_D^{25} = -5.2$ (c = 0.31, CHCl₃). Enantiomeric excess was determined by HPLC with a Chiralpak phenomenex column (hexanes: 2-propanol = 99:1, 0.8 mL/min, 254 nm, 84:16 *er*); major enantiomer t_r =5.662 min, minor enantiomer t_r =5.176 min.

Tert-butyl(S)-1-methyl-3-(m-tolyl)-1-(p-tolyl)-1,4,5,6-tetrahydrosiline-2-carboxylate (3w):

Colorless oil (24.3 mg, 31% yield), $[\alpha]_D^{25} = +$ 7.4 (c = 0.20, CHCl₃). Enantiomeric excess was determined by HPLC with a Chiralpak AD-H + OJ-H column (hexanes: 2-propanol = 99.5:0.5, 0.8 mL/min, 254 nm, 83:17 *er*); major enantiomer t_r =53.514 min, minor enantiomer t_r =60.933 min.

				OMe	OMe	OMe
□ _{Si}		$[Rh(C_2H_4)_2C]$] ₂ (4 mol%)			
	+	L (12.5 r	nol%)	E Me +	Ľ_ ∃_Me +	,Me
		Solvent, 4	10 °C M	eO ₂ C Si	MeO ₂ C S i	MeO ₂ C Si
 OMe	CO ₂ Me	9	Ì			
1a	2a			3a	anti- 4a	syn- 4a
Entry	Ligand	solvent	Con.(%) ^b	3a:4a (%) ^b	$dr ext{ of 4a } (\%)^{b}$	<i>er</i> of 3a (%) ^c
1	L1	Tol	17	77:23	73:27	64:36
2	L2	Tol	25	63:37	69:31	62:38
3	L3	Tol	40	77:23	68:32	64:36
4	L4	Tol	36	59:41	55:45	56:44
5	L5	Tol	20	79:21	64:36	61:39
6	L6	Tol	24	72:68	70:30	64:36
7	L7	Tol	52	83:17	59:41	58:42
8	L10	Tol	< 5	/	/	67:33
9	L11	Tol	nr	/	/	/
10	L12	Tol	< 5	/	/	84:16
11	L13	Tol	nr	/	/	/
12	L14	Tol	nr	/	/	/
13	L15	Tol	< 5	/	/	50:50
14	L16	Tol	nr	/	/	/
15	L17	Tol	< 5	/	/	53:47
16	L1	TEA	54	100:0	/	80:20
17	L2	TEA	10	100:0	/	81:19
18	L3	TEA	9	100:0	/	81:19
19	L4	TEA	21	100:0	/	72:22
20	L5	TEA	11	100:0	/	81:19
21	L6	TEA	10	100:0	/	81:19
22	L7	TEA	13	100:0	/	67:33
23	L8	TEA	21	100:0	/	79:21
24	L9	TEA	56	100:0	/	80:20
25	L10	TEA	nr	/	/	/
26	L11	TEA	nr	/	/	/
27	L12	TEA	nr	/	/	/
28	L13	TEA	nr	/	/	/
29	L14	TEA	nr	/	/	/
30	L15	TEA	nr	/	/	/
31	L16	TEA	nr	/	/	/
32	L17	TEA	nr	/	/	/
33	L18	TEA	nr	/	/	/

Table S7. The effect of chiral phosphoramidite ligands in this reaction.^a

34	L19	TEA	nr	/	/	/
35	L20	TEA	nr	/	/	/

^aAll the reactions were run on a 0.2 mmol scale in 2.0 mL solvents for 14 h. ^bDetermined by GC-MS. ^cer of **3a** was determined by chiral HPLC analysis.

L18

L19

юн он

Ph

L20

57

Si- + OMe 1a	CO ₂ Me	[Rh(C ₂ H ₄) ₂ Cl] ₂ (4 mol ⁶ CuCl (10 mol%) L1 (12.5 mol%) TEA, Temp	%) → MeO ₂ C Si 3a	PPh ₂ OH OH T tBu
Entry		Temp	3a (%) ^b	<i>er</i> of 3a (%) ^c
1		30	18	83:17
2		40	54	80:20
3		50	55	77:23
4		70	85	74:26

Table S8. The effect of temperature in this reaction.^a

^{*a*}All the reactions were run on a 0.2 mmol scale in 2.0 mL solvents for 14 h. ^{*b*}Determind by ¹H NMR. ^{*c*}*er* of **3a** was determined by chiral HPLC analysis.

Table S9. Comparative Experiment.^a

^{*a*}All the reactions were run on a 0.2 mmol scale in 2.0 mL solvents for 14 h. ^{*b*}Determind by ¹H NMR. ^{*c*}*er* of **3a** was determined by chiral HPLC analysis. ^{*d*}Without CuCl. ^{*e*}KOt-Bu (12.5 mol%). 3.4. General procedure for the synthesis of 4a.

Methyl (1*R*,2*S*)-1-(4-methoxyphenyl)-1-methyl-3-(m-tolyl)-1,2,5,6tetrahydrosiline-2-carboxylate (*anti*-4a):

Yellow oil, ¹H NMR (400 MHz, Chloroform-*d*) δ 7.48 (d, J = 8.4 Hz, 2H), 7.20-7.07 (m, 3H), 7.02 (d, J = 7.4 Hz, 1H), 6.91 (d, J = 8.3 Hz, 2H), 6.34 (t, J = 4.9 Hz, 1H), 3.81 (s, 3H), 3.65 (s, 3H), 3.51 (s, 1H), 2.76-2.62 (m, 1H), 2.56-2.46 (m, 1H), 2.32 (s, 3H), 1.13-1.01 (m, 2H), 0.39 (s, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 173.9, 161.0, 144.4, 137.9, 135.3, 134.7, 132.8, 128.3, 127.6, 126.7, 123.0, 114.0, 55.2, 51.7, 37.4, 23.2, 21.7, 7.5, -4.8. HRMS (ESI-TOF) m/z: [M+ Na]+ calculated for C_{22H26}NaO₃Si: 389.1543, found: 389.1547.

Methyl (1*S*,2*S*)-1-(4-methoxyphenyl)-1-methyl-3-(m-tolyl)-1,2,5,6tetrahydrosiline-2-carboxylate (*syn*-4a):

Yellow oil, ¹H NMR (400 MHz, Chloroform-*d*) δ 7.48 (d, J = 8.6 Hz, 2H), 7.20-7.10 (m, 3H), 7.03 (d, J = 7.2 Hz, 1H), 6.93 (d, J = 8.6 Hz, 2H), 6.34 (t, J = 4.8 Hz, 1H), 3.82 (s, 3H), 3.34 (s, 1H), 3.18 (s, 3H), 2.94-2.82 (m, 1H), 2.64-2.48 (m, 1H), 2.33 (s, 3H), 1.45-1.36 (m, 1H), 0.96-0.87 (m, 1H), 0.44 (s, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 173.6, 161.1, 144.5, 137.9, 135.8, 134.4, 132.1, 128.3, 127.6, 126.8, 125.6, 123.0, 113.7, 55.2, 51.3, 38.8, 23.7, 21.7, 5.6, -4.3. HRMS (ESI-TOF) m/z: [M+H]+ calculated for C₂₂H₂₇O₃Si: 367.1724, found: 367.1715.

4. Downstream transformation of product 3g.

Add toluene (0.1 mL) solution of **3g** (0.2 mol) to PhMgBr (1.5 eq, 0.3 mol) in toluene (0.1 mL). Reflux the mixture for 6 hours under N₂. After completion of the reaction, pour the mixture into 3% aqueous HCl at 0 °C. Extract the mixture with ethyl acetate. The residue was purified by silica gel flash column chromatography (eluent: PE / EA = 2/1) to afford **5**.

(*S*)-1-(4-methoxyphenyl)-1-methyl-3-(m-tolyl)-1,4,5,6-tetrahydrosiline-2carboxylic acid (5):

White solid (23.9 mg, 68% yield),mp 112 - 118 °C; $[\alpha]_{D}^{25} = -2.23$ (c = 0.47, CHCl₃). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.45 (d, J = 8.6 Hz, 2H), 7.06 (t, J = 7.5 Hz, 1H), 7.01-6.89 (m, 3H), 6.82 (d, J = 8.5 Hz, 2H), 3.73 (s, 3H), 2.58-2.40 (m, 2H), 2.22 (s, 3H), 1.96-1.80 (m, 2H), 1.01-0.92 (m, 1H), 0.84-0.75 (m, 1H), 0.43 (s, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 175.8, 164.5, 160.8, 144.2, 137.9, 135.9, 128.8, 128.7, 128.2, 127.6, 127.2, 123.8, 113.7, 55.1, 37.3, 21.5, 21.2, 11.4, -3.3. HRMS (ESI-TOF) m/z: [M+ Na]+ calculate*d* for C₂₁H₂₄NaO₃Si:375.1387, found:375.1374. Enantiomeric excess was determined by HPLC with a Chiralpak OJ-H column (hexanes: 2-propanol = 90:10, 0.8 mL/min, 254 nm, 91:9 *er*); major enantiomer t_r =8.439 min, minor enantiomer t_r =15.628 min.

5. Supplementary Figures

Figure S1. NOESY spectrum of 3g. The determination of the structure of product 3g

Figure S2. NOESY spectrum of *anti*-4a. The determination of the structure of product *anti*-4a

6. Determination of Absolute Configuration by ECD Experiments

ECD experiments: ECD spectra of **3g**, **3p** at a concentration of 1.0×10^{-3} M in acetonitrile, were recorded in a 1 mm pathlength quartz cuvette, using a MOS-450/AF Circular Dichroism Spectrometer (Bio-Logic, France). The experimental conditions were as follows: bandwidth, 1 nm; wavelength range, 200-600 nm; wavelength step size, 1 nm; time-per-point, 1.0 s; temperature, 25 °C. Acetonitrile was measured under the same conditions to obtain baseline.

ECD computations: Geometry optimization of the conformers were carried out in the framework of density functional theory (DFT) using the M06L hybrid density functional and 6-311G(d,p) basis set, IEFPCM in acetonitrile with Gaussian 09 (Gaussian Inc., Wallingford, CT). Frequency calculations were also carried out to confirm the geometries obtained were true minima of the potential energy surface by exhibiting no imaginary frequencies. Rotatory strengths in velocity form (Rvel) and length form (Rlen), oscillator strengths and excitation energies of the 30 lowest electronic transitions were calculated for each conformer employing time-dependent density functional theory (TD-DFT) at M06l/6-311G(d,p), IEFPCM in acetonitrile. Boltzmann-population-weighted composite ECD spectra were then generated with SpecDis.

Figure S3. DFT calculation for the ECD spectrum of chiral product 3p.

Figure S4. Experimentally tested ECD spectrum of chiral product 3p (1.0×10^{-3} M) in CH₃CN.

Figure S5. DFT calculation for the ECD spectrum of chiral product 3g.

Figure S6. Experimentally tested ECD spectrum of chiral product 3g (1.0×10^{-3} M) in CH₃CN.

7. References

- 1. Zhen-Lei Song, et al. Angew. Chem. Int. Ed. 2019, 58, 4695-4699.
- 2. Webster L. Santos, et al. J. Org. Chem. 2018, 83, 17, 10436-10444
- 3. Eckert, Thomas, Ipaktschi, Junes, Synthetic ommunications. 1998, 8, 327-335.
- 4. Yan-Hong He, et al. Tetrahedron. 2019, 75, 130763
- 5. Li-Wen Xu, et al. Org. Lett. 2019, 21, 4355-4358

8. ¹H NMR, ¹³C NMR and ³¹P NMR Spectra

9. HPLC Spectra

	Time/min	Area	Height	Area%
1	8.449	2352	105.9	50.010
2	9.563	2351.1	119.7	49.990
m4U 120- 100- 80- 40- 20- 0-	6	Book services	M	OMe EtOOC Si Me (S)-3b
	Time/min	Area	Height	Area%
1	8.538	627.8	28.2	17.508
2	9.597	2958.2	138.9	82.492

	Time/min	Area	Height	Area%
1	8.973	3712.4	209.4	49.785
2	10.074	3744.4	186.8	50.215

3344.1

81.993

165.4

2

10.021

	Time/min	Area	Height	Area%
1	13.427	5542	192.7	49.824
2	15.035	5581.1	171.1	50.176

_	Time/min	Area	Height	Area%
1	8.281	4221.9	142.9	49.767
2	9.16	4261.4	165.7	50.233

	Time/min	Area	Height	Area%
1	7.25	850.9	16.5	50.692
2	11.352	827.7	4.4	49.308
mAU 200 175 160 125 100 75 60 25 0	2 4 6	e e e e e e e e e e e e e e e e e e e	10 12 14	OMe ^t BuOOC Si Me (S)-3g
	Time/min	Area	Height	Area%
1	7.238	11232.4	212.9	90.638
2	11.427	1160.2	8.4	9.362

	Time/min	Area	Height	Area%
1	15.738	2444349	19374	50.86
2	25.842	2362113	7904	49.14

	Time/min	Area	Height	Area%
1	14.725	5758452	46581	87.42
2	22.732	828617	3721	12.58

1	30.143	16479937	56507	50.82
2	43.643	15946264	37134	49.18

	Time/min	Area	Height	Area%
1	29.537	17631221	58071	88.44
2	42.964	2303590	6516	11.56

	Time/min	Area	Height	Area%	
1	13.904	3979.6	31.2	50.900	
2	26.044	3838.8	11.5	49.100	

	Time/min	Area	Height	Area%
1	13.989	2231.9	17.3	83.072
2	26.844	545.8	1.4	16.928

	Time/min	Area	Height	Area%
1	41.056	9461729	129353	84.94
2	45.257	1677055	23642	15.06

	Time/min	Area	Height	Area%
1	40.847	7830199	22268	85.92
2	59.647	1283308	2758	14.08

	Time/min	Area	Height	Area%
1	10.91	6930.4	63	50.036
2	25.111	6920.5	21	49.964

_	Time/min	Area	Height	Area%
1	11.111	1148.5	10	89.967
2	26.919	128.1	0.52	10.033

	Time/min	Area	Height	Area%
1	14.184	8065.4	59.4	50.323
2	30.58	7962	18.2	49.677

	Time/min	Area	Height	Area%
1	13.94	2944.9	22.5	92.009
2	29.795	255.8	0.95	7.991

	Time/min	Area	Height	Area%
1	41.926	25630447	82270	50.88
2	82.237	24747592	18608	49.12

	Time/min	Area	Height	Area%
1	43.165	23231254	52155	89.63
2	82.033	2688343	2384	10.37

	Time/min	Area	Height	Area%
1	22.798	3787257	18481	75.25
2	30.510	1245375	6381	24.75

	Time/min	Area	Height	Area%
1	5.121	6427.7	509.8	49.931
2	5.622	6445.3	551.3	50.069

	Time/min	Area	Height	Area%	
1	50.597	166515097	1957671	49.91	
2	55.084	167112889	926944	50.09	

	Time/min	Area	Height	Area%	
1	53.514	22397903	137505	83.59	
2	60.933	4397811	25834	16.41	

	Time/min	Area	Height	Area%
1	8.452	35371.5	397	50.935
2	15.879	34072.7	164	49.065

