Supporting Information

Cobalt-Catalyzed Coupling Reactions of 2-Halobenzamides with Alkynes: Investigation of the Ligand-Controlled Dual Pathways

Vijaykumar H. Thorat,^a Hasil Aman,^b Yu-Lin Tsai,^a Gangaram Pallikonda,^a Gary Jing Chuang*^b and Jen-Chieh Hsieh*^a

^aDepartment of Chemistry, Tamkang University, New Taipei City, 251301, Taiwan (R.O.C.)

jchsieh@mail.tku.edu.tw

^bDepartment of Chemistry, Chung Yuan Christian University, Taoyuan, 320314, Taiwan (R.O.C.) <u>gjchuang@cycu.edu.tw</u>

Table of Contents	Page No
General Information and procedure	S2–S3
Optimization study	S3–S4
Synthetic procedures of substrates, alkaloids and O-cyclization products	S4–S7
Spectral data for all products	S8–S17
References	S17
¹ H and ¹³ C NMR spectra of all products	S18–S74
¹ H and ¹³ C NMR spectra of 1a-f	S75
¹ H and ¹³ C NMR spectra of 4a-D	S76
NOE spectra of products 3x	S77
X-ray data	S78–S84

General information:

All reagents were purchased from Sigma-Aldrich, Alfa-Aesar, TCI and Fisher-Acros, which were used without further purification unless otherwise noted. All manipulations of oxygen- and moisture-sensitive materials were conducted with a standard Schlenk technique or in the glove box. Flash column chromatography was performed using silica gel (230-400 mesh). Analytical thin layer chromatography (TLC) was performed on 60 F₂₅₄ (0.25 mm) plates and visualization was accomplished with UV light (254 and 354 nm) and/or an aqueous alkaline KMnO₄ solution followed by heating. Proton and carbon nuclear magnetic resonance spectra (¹H NMR and ¹³C NMR) were recorded on Bruker 300, 400 or 600 spectrometer with Me₄Si or solvent resonance as the internal standard (¹H NMR, Me₄Si at 0 ppm, CDCl₃ at 7.26 ppm, d_6 -DMSO at 2.49 ppm; ¹³C NMR, Me₄Si at 0 ppm, CDCl₃ at 77.0 ppm, *d*₆-DMSO at 39.7 ppm). ¹H NMR data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, quint = quintet, sext = sextet, sept = septet, br = broad, m = multiplet), coupling constants (Hz), and integration. IR spectral data were recorded on a Bruker TENSOR 37 spectrometer. Melting points (mp) were determined using SRS OptiMelt MPA100 or Buchi B-540. GC-MS data were obtained from the HP 5890 Series II GC/HP 5972 GC MASS Spectrometer System. High Resolution Mass spectral data were obtained from MAT-95XL HRMS by using EI method. X-ray data was obtained from Bruker APEX DUO.

General procedure for the Co-catalyzed cyclization reaction:

Addition of all reagents was conducted in a glove box. A screw-capped vial (10-mL) was added $Co(dppe)Br_2$ (dppe = 1,2-bis(diphenylphosphino)ethane) (31 mg, 0.05 mmol), Zn (1.0 mmol), NEt₃ (1.0 mmol), substrate **1** (0.5 mmol) and alkyne **2** (0.75 mmol) in dry CH₃CN (1.5 mL). The vial was then removed from the glove box, and allowed to stir at 90 °C for 16 h. The mixture was filtered through a celite pad and washed with CH₂Cl₂. The filtrate was concentrated and the residue was purified through a column chromatography by using hexane and ethyl acetate as eluent to afford the desired products **3**.

All structures were characterized by the HRMS, ¹H NMR and ¹³C NMR spectra; products **3a** and **3w** were verified by single crystal X-ray diffraction. Spectral data, melting point, IR data, HRMS data and the copies of ¹H NMR and ¹³C NMR spectra for all compounds are listed below.

General procedure for the Co-catalyzed reductive coupling reaction:

Addition of all reagents was conducted in a glove box. A screw-capped vial (10-mL) was added $Co(dppf)Cl_2$ (dppf = 1,2-bis(diphenylphosphino)ferrocene) (33 mg, 0.05 mmol), Zn (1.0 mmol), H₂O (0.4 mmol), substrate **1** (0.5 mmol) and alkyne **2** (0.6 mmol) in dry CH₃CN (2.0 mL). The vial was then removed from the glove box, and allowed to stir at 90 °C for 20 h. The mixture was filtered through a celite pad and washed with CH₂Cl₂. The filtrate was concentrated and the residue was purified through a column chromatography by using hexane and ethyl acetate as eluent to afford the desired products **4**.

All structures were characterized by the HRMS, ¹H NMR and ¹³C NMR spectra; products **4a** and **4v**' were verified by single crystal X-ray diffraction. Spectral data, melting point, IR data, HRMS data and the copies of ¹H NMR and ¹³C NMR spectra for all compounds are listed below.

Table S1. Optimization study of the Co-catalyzed cyclization	Ta	ble	S1 .	Opt	timiza	tion	study	of th	e Co-ca	atalyze	ed cy	ycliza	tion ^{a,}	b
--	----	-----	-------------	-----	--------	------	-------	-------	---------	---------	-------	--------	--------------------	---

	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$										
vield (%) vield (%)							(%)				
entry	[Co]/ligand	base	solvent	3a	4a	entry	[Co]/ligand	base	solvent	3a	4a
1	CoI ₂ /PPh ₃	Et ₃ N	CH ₃ CN	9	23	13	Co(dppe)Br ₂	pyrolidine	CH ₃ CN	10	16
2	CoI ₂ /PCy ₃	Et ₃ N	CH ₃ CN	18	20	14	Co(dppe)Br ₂	morpholine	CH ₃ CN	trace	13
3	CoI ₂ /dppe	Et ₃ N	CH ₃ CN	58	trace	15	Co(dppe)Br ₂	DIPEA	CH ₃ CN	trace	36
4	CoI ₂ /dppp	Et ₃ N	CH ₃ CN	46	8	16	Co(dppe)Br ₂	DBU	CH ₃ CN	21	17
5	CoI ₂ /dppb	Et ₃ N	CH ₃ CN	41	27	17	Co(dppe)Br ₂	NaHCO ₃	CH ₃ CN	trace	13
6	CoI ₂ /dppm	Et ₃ N	CH ₃ CN	14	17	18	Co(dppe)Br ₂	K_2CO_3	CH ₃ CN	trace	22
7	CoI ₂ /dppf	Et ₃ N	CH ₃ CN	0	31	19	Co(dppe)Br ₂	Et ₃ N	DMSO	19	24
8	Co(acac) ₂ /dppe	Et ₃ N	CH ₃ CN	41	8	20	Co(dppe)Br ₂	Et ₃ N	DMF	22	15
9	Co(dppe)I ₂	Et ₃ N	CH ₃ CN	68	17	21	Co(dppe)Br ₂	Et ₃ N	THF	46	10
10	Co(dppe)Br ₂	Et ₃ N	CH ₃ CN	63	10	22	Co(dppe)Br ₂	Et ₃ N	1,4-dioxane	53	11
11	Co(dppf)Br ₂	Et ₃ N	CH ₃ CN	0	45	23	Co(dppe)Br ₂	Et ₃ N	DCM	trace	20
12	Co(dppe)Br ₂	pyridine	CH ₃ CN	18	13	24	Co(dppe)Br ₂	Et ₃ N	toluene	18	0

^{*a*}Reaction conditions: **1a** (0.2 mmol, 1.0 equiv), **2a** (0.3 mmol, 1.5 equiv), cobalt source (0.02 mmol, 10 mol%), bidentate ligand (0.02 mol, 10 mol%; for PPh₃, 20 mol% was used), base (0.4 mmol, 2 equiv) in 0.6 mL solvent at 80 °C for 16 h. ^{*b*}Yields were measured from the crude products by ¹H NMR integration method using mesitylene as an internal standard.

Table S2.	Optimization	study of the	Co-catalyzed	cyclization ^{a, b}

	O N Br 1a (1.0 equiv)	- Ph—=== 2a (1.5 e	Ca ⊡Ph — squiv)	o(dppe)Br ₂ Zn (2.0 e Et ₃ N (2.0 solvent, <i>t</i> ^o	(10 mol%) equiv) equiv) ℃, 16 h	O N Ph 3a	+	0 ↓ N H Ph Ph 4a	
entry	solvent	<i>t</i> (°C)	yield	l (%)	entrv	solvent	<i>t</i> (°C)	yield	(%)
	501, 611	<i>I</i> (0)	3 a	4 a	01101 J		(())	3 a	4 a
1	CH ₃ CN	80	63	10	7	1,4-dioxane	90	67	21
2	CH ₃ CN	90	73	6	8	toluene	80	18	0
3	CH ₃ CN	100	58	13	9	toluene	90	26	0
4	THF	80	46	10	10	toluene	100	41	0
5	THF	90	57	12	11	toluene	110	38	0
6	1,4-dioxane	80	53	11	12	toluene	120	19	0

^{*a*}Reaction conditions: **1a** (0.2 mmol, 1.0 equiv), **2a** (0.3 mmol, 1.5 equiv), Co(dppe)Br₂ (0.02 mmol, 10 mol%), Et₃N (0.4 mmol, 2 equiv) in 0.6 mL solvent at t °C for 16 h. ^{*b*}Yields were measured from the crude products by ¹H NMR integration method using mesitylene as an internal standard.

	0 N H Br 1a (1.0 equiv) 2a (←Ph Ph Proton source solvent, 90 °C, 20 h 1.2 equiv)	O N H Ph 4a	+ NH H 1'	
entry	[Co]	proton source (x equiv)	solvent	yield (%	%)
				4a	1'
1	CoI ₂ /dppf	H_2O (1.0 equiv)	CH ₃ CN	61	14
2	Co(dppf)I ₂	H_2O (1.0 equiv)	CH ₃ CN	67	20
3	Co(dppf)Br ₂	H_2O (1.0 equiv)	CH ₃ CN	71	18
4	Co(dppf)Cl ₂	H_2O (1.0 equiv)	CH ₃ CN	74	12
5	Co(dppf)Cl ₂	H_2O (1.2 equiv)	CH ₃ CN	54	33
6	Co(dppf)Cl ₂	H ₂ O (0.8 equiv)	CH ₃ CN	79	11
7	Co(dppf)Cl ₂	H ₂ O (0.6 equiv)	CH ₃ CN	71	6
8	Co(dppf)Cl ₂	H ₂ O (0.4 equiv)	CH ₃ CN	57	7
8	Co(dppf)Cl ₂	MeOH (1.0 equiv)	CH ₃ CN	43	45
9	Co(dppf)Cl ₂	EtOH (1.0 equiv)	CH ₃ CN	73	10
10	Co(dppf)Cl ₂	IPA (1.0 equiv)	CH ₃ CN	79	11
11	Co(dppf)Cl ₂	TFA (1.0 equiv)	CH ₃ CN	38	45
12	Co(dppf)Cl ₂	2,6-DTBP (1.0 equiv)	CH ₃ CN	74	5
13	Co(dppf)Cl ₂	HOAc (1.0 equiv)	CH ₃ CN	27	61
14	Co(dppf)Cl ₂	H_2O (1.0 equiv)	THF	21	64
15	Co(dppf)Cl ₂	$H_2O(1.0 \text{ equiv})$	DMF	16	57

Table S3. Optimization study of the Co-catalyzed reductive coupling reaction^{*a*, *b*}

^{*a*}Reaction conditions: **1a** (0.2 mmol, 1.0 equiv), **2a** (0.24 mmol, 1.2 equiv), Co(dppf)X₂ (0.02 mmol, 10 mol%), proton source (x equiv) in 0.8 mL dry solvent at 90 °C for 20 h. ^{*b*}Yields were measured from the crude products by ¹H NMR integration method using mesitylene as an internal standard. IPA = isopropanol; 2,6-DTBP = 2,6-di-*tert*-butylphenol.

Procedure for the synthesis of 2-halo-*N*-substitutedbenzamide (1):¹

2-Halo-benzoic acid (20 mmol, 1.0 equiv) stirring in SOCl₂ (12.5 mL) was added DMF (0.1 mL) and kept stirring at 50 °C for 2 h. The resulted mixture was concentrated in *vacuo* and then dissolved in CH₂Cl₂ (100 mL). Amine (40 mmol, 2.0 equiv) was then added to the residue/CH₂Cl₂ solution at 0 °C and kept stirring at room temperature for 18 h. Upon completion of the reaction as observed by TLC, the mixture was diluted with 10% HCl solution at 0 °C and then extracted with EtOAc (4 x 150 mL). The organic layer was collected, dried over anhydrous Na₂SO₄ and concentrated *in vacuo*. The residue was purified by flash column chromatography to give compound **1**. The spectral data and the copies of NMR spectra, please see reference 1 for the detail.

Procedure for the synthesis of 2-(methylcarbamoyl)phenyltrifluoromethanesulfonate (1a-f):

2-Hydroxy-N-methylbenzamide (554 mg, 4 mmol, 1.0 equiv) was kept stirring with NaH (336 mg, 14 mmol, 3.5 equiv) in THF (20 mL) at 0 °C for 2 h. The suspension solution was then moved from ice bath and allowed to increase the temperature slowly from 0 °C to room temperature. TfCl (0.47 mL) was added into the solution mixture and kept stirring at room temperature for 6 h. Upon completion of the reaction as observed by TLC, the mixture was extracted by brine and EtOAc (3 x 50 mL), and the organic layer was collected, dried over anhydrous MgSO₄ and concentrated *in vacuo*. The residue was purified through a flash column chromatography by using hexane and ethyl acetate as eluent to provide the desired compound as white powder (962 mg, 85%); mp: 86 °C; IR (KBr): 3287, 1638, 1207, 901, 729, 626, 519, 467 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.80 (dd, *J* = 7.5, 1.8 Hz, 1H), 7.54 (td, *J* = 7.5, 1.8 Hz, 1H), 7.46 (td, *J* = 7.5, 0.9 Hz, 1H), 7.33 (d, *J* = 8.1 Hz, 1H), 3.02 (d, *J* = 4.8 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 164.6, 146.0, 132.2, 131.0, 129.6, 128.7, 122.2, 118.6 (q, *J*_{C-F} = 318 Hz), 26.8; HRMS [(ESI), (M+H)⁺]: 284.0204 (cal. for C₉H₉NO₄F₃S 284.0204); New compound.

Procedure for the synthesis of 4-(benzo[d][1,3]dioxol-5-yl)but-3-yn-1-ol (2n):

To a solution of 1-bromo-3,4-(methylenedioxy)benzene (2.05 mL, 17 mmol, 1.0 equiv) in ultra pure water (35 mL) was added but-3-yn-1-ol (1.54 mL, 20.4 mmol, 1.2 equiv), pyrrolidine (1.40 mL, 17 mmol, 1.0 equiv), Pd(PPh₃)₄ (982 mg, 0.85 mmol, 5 mol%) and CuI (324 mg, 1.7 mmol, 10 mol%) under nitrogen atmosphere. The reaction mixture was kept stirring at 60 °C for 4 h and cooled to the room temperature. The aqueous layer was extracted with EtOAc (100 mL×2), and the organic layer was washed with H₂O and brine, dried over MgSO₄ and concentrated in *vacuo*. The residue was purified by flash column chromatography [R_f = 0.4 (25 % ethyl acetate in hexanes)] to give compound **2n** as brownish oil (2.59 g, 80%); IR (KBr): 3005, 1643, 1275, 1260, 1038 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 6.92 (dd, *J* = 8.4, 1.2 Hz, 1H), 6.85 (d, *J* = 1.2 Hz, 1H), 6.71 (d, *J* = 7.8 Hz, 1H), 5.94 (s, 2H), 3.78 (t, *J* = 6.0 Hz, 2H), 2.64 (t, *J* = 6.0 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 147.5, 147.3, 126.0, 116.5, 111.6, 108.3, 101.2, 84.6, 82.1, 61.1, 23.7; HRMS [(EI), (M⁺)]: 190.0627 (cal. for C₁₁H₁₀O₃ 190.0630); Registry Number: [912649-12-8].

Procedure for the synthesis of (Z)-N-(3,4-diphenyl-1*H*-isochromen-1-ylidene)methanamine (6):

Compound **4a** (125 mg, 0.4 mmol, 1.0 equiv), I₂ (340 mg, 1.2 mmol, 3.0 equiv) and NaHCO₃ (100 mg, 1.2 mmol, 3.0 equiv) in CHCl₃ (5 mL) was kept stirring at 70 °C. Upon completion of the reaction as observed by TLC, the mixture was diluted with CH₂Cl₂, filtered through a celite pad, washed with CH₂Cl₂, and then concentrated *in vacuo*. The residue was purified by flash column chromatography to

afford compound **6** as yellow solid (100 mg, 81%); mp: 130 °C; IR(KBr): 3450, 1664, 1383, 756, 698 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ 8.28 (d, J = 7.2 Hz, 1H), 7.40–7.35 (m, 5H), 7.31–7.30 (m, 2H), 7.25–7.18 (m, 4H), 6.99 (d, J = 7.8 Hz, 1H), 6.85–6.83 (m, 1H), 3.29 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 151.9, 148.9, 135.1, 134.6, 133.9, 131.5, 131.4, 128.9, 128.7, 128.5, 127.9, 127.8, 127.7, 126.6, 126.2, 123.7, 115.4, 33.6; HRMS [(ESI), (M+H)⁺]: 312.1388 (cal. for C₂₂H₁₈NO 312.1391); New compound.

Procedure for the synthesis of (*Z*)-*N*-(3-benzyl-3-phenylisobenzofuran-1(3*H*)-ylidene)methanamine (7):

Compound **4a** (250 mg, 0.8 mmol) in CH₂Cl₂ (10 mL) was slowly added TfOH (48 mg, 0.32 mmol, 40 mol%), and kept stirring at room temperature. Upon completion of the reaction as observed by TLC, the mixture was diluted with CH₂Cl₂, filtered through a celite pad and washed with CH₂Cl₂. The filtrate was then extracted by CH₂Cl₂ and brine solution. The combined organic layer was collected, dried over anhydrous Na₂SO₄ and concentrated *in vacuo*. The residue was purified by flash column chromatography using ethyl acetate and hexane as eluent to afford compound **7** as yellow solid (183 mg, 73%); mp: 148 °C; IR(KBr): 3415, 1713, 1244, 638, 516 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ 8.22 (d, *J* = 7.8 Hz, 1H), 7.86 (t, *J* = 7.2 Hz, 1H), 7.63 (d, *J* = 7.8 Hz, 1H), 7.57 (t, *J* = 7.2 Hz, 1H), 7.48–7.46 (m, 5H), 7.16 (t, *J* = 7.2 Hz, 1H), 7.08 (t, *J* = 7.2 Hz, 2H), 6.76 (d, *J* = 7.2 Hz, 2H), 3.90 (d, *J* = 14.4 Hz, 1H), 3.77 (d, *J* = 14.4 Hz, 1H), 3.33 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 171.2, 149.5, 136.5, 136.1, 131.7, 130.9, 130.0, 129.3, 128.3, 128.0, 126.1, 125.5, 123.4, 123.3, 102.4, 45.5, 30.2; HRMS [(ESI), (M+H)⁺]: 314.1543 (cal. for C₂₂H₂₀NO 314.1545); New compound.

Synthetic pathway to approach oxynitidine and nitidine chloride:

Procedures and spectral data:

Procedure for the synthesis compound 3y:

In an nitrogen-filled glove box, a 4-mL vial equipped with a magnetic stirrer bar was charged sequentially with **1g** (136 mg, 0.5 mmol, 1.0 equiv), **2n** (143 mg, 0.75 mmol, 1.5 equiv), Co(dppe)Br₂ (62 mg, 0.1 mmol), Zn (65 mg, 1.0 mmol), and Et₃N (0.14 mL, 1.0 mmol, 2.0 equiv), followed by the addition of CH₃CN (1.5 mL). The vial was closed and removed from the glove box, and the mixture was kept stirring at 90 °C for 20 h. Upon cooling to room temperature, the reaction mixture was diluted with CH₂Cl₂ (10 mL) and filtered through a celite pad with additional CH₂Cl₂ (10 mL) as an eluent. The organic solution was concentrated under reduced pressure, and the residue was purified through flash column chromatography [R_f = 0.2 (75 % ethyl acetate in hexanes)] to give the desired compound **3y** as white solid (136 mg, 71%); mp: 237 °C; IR (KBr): 2875, 1636, 1240, 1034 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.90 (s, 1H), 7.11 (s, 1H), 6.93 (d, *J* = 8.4 Hz, 1H), 6.74–6.73 (m, 2H),

6.07 (s, 2H), 4.03 (s, 3H), 4.01 (s, 3H), 3.72 (t, J = 7.2 Hz, 2H), 3.26 (s, 3H), 2.82–2.73 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 161.7, 153.4, 149.1, 148.2, 148.0, 140.2, 131.7, 128.9, 123.1, 119.6, 110.9, 109.7, 108.8, 108.2, 103.7, 101.5, 62.5, 56.2, 56.1, 34.0, 31.9; HRMS [(EI), (M⁺)]: 383.1363 (cal. for C₂₁H₂₁NO₆ 383.1369); Registry Number: [1207666-57-6].

Procedure for the synthesis compound 3y':

Compound **3y** (115 mg, 0.3 mmol, 1.0 equiv) was dissolved in dry CH₂Cl₂ (10 mL) and stirred at 0 °C in an ice bath. The solution was added Dess-Martin periodinane (191 mg, 0.45 mmol, 1.5 equiv) in one portion and the reaction was kept stirring at room temperature for 4 h. The reaction was quenched at 0°C by stirring with a solution of Na₂S₂O₃ (0.2 g in 5 mL water) and NaHCO_{3(aq)} (saturated, 5 mL) for 10 min to quench the unreacted Dess-Martin reagent. The reaction mixture was diluted with CH₂Cl₂, and extracted by aqueous NaHCO₃. The combined organic layer was collected, dried over the MgSO₄ and concentrated *in vacuo*. The residue was purified through flash column chromatography [R_f = 0.5 (40% ethyl acetate in hexanes)] to give the compound **3y**' as pale yellow solid (94 mg, 82%); mp: 223 °C; IR (KBr): 3005, 1716, 1638, 1514, 1274, 1035 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 9.56 (s, 1H), 7.87 (s, 1H), 6.91 (d, *J* = 8.4 Hz, 1H), 6.75 (s, 1H), 6.71–6.70 (m, 2H), 6.05 (s, 2H), 3.99 (s, 3 H), 3.93 (s, 3H), 3.51–3.50 (m, 2H), 3.30 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 199.6, 161.8, 153.5, 149.2, 148.4, 148.3, 141.6, 131.4, 128.4, 122.9, 119.4, 109.3, 109.0, 108.3, 106.0, 103.3, 101.6, 56.2, 56.0, 44.4, 34.2; HRMS [(EI), (M⁺)]: 381.1216 (cal. for C₂₁H₁₉NO₆ 381.1212); Registry Number: [1207666-60-1].

Procedure for the synthesis of oxynitidine:

To a solution of compound **3y'** (114 mg, 0.3 mmol, 1.0 equiv) in acetic acid (4 mL) was added 10% hydrochloric acid (0.2 mL) at room temperature. After stirring the reaction for 8 h, acetic acid was removed in *vacuo*. The resulted solid was then dissolved in CH₂Cl₂ and extracted by aqueous NaHCO₃. The combined organic layer was collected, dried over the MgSO₄ and concentrated *in vacuo*. The residue was purified through flash column chromatography [R_f= 0.59 (70% ethyl acetate in hexanes)] to give oxynitidine as white solid (96 mg, 88%); mp: 279 °C; IR (KBr): 3005, 1637, 1274, 1041 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.99 (d, *J* = 9.0 Hz, 1H), 7.93 (s, 1H), 7.64 (s, 1H), 7.59 (s, 1H), 7.56 (d, *J* = 9.0 Hz, 1H), 7.18 (s, 1H), 6.10 (s, 2H), 4.10 (s, 3H), 4.06 (s, 3H), 3.98 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 164.3, 153.5, 149.7, 147.5, 147.0, 135.9, 131.8, 128.9, 123.2, 121.0, 119.1, 118.3, 116.7, 108.6, 104.8, 102.8, 102.6, 101.5, 56.3, 56.1, 41.2; HRMS [(EI), (M⁺)]: 363.1110 (cal. for C₂₁H₁₇NO₅ 363.1107); Registry Number: [548-31-2].

Procedure for the synthesis of nitidine chloride:

LiAlH₄ (11 mg, 0.3 mmol, 1.0 equiv) was added to a solution of oxynitidine (109 mg, 0.3 mmol, 1.0 equiv) in dry THF (5 mL) and kept stirring at room temperature for 60 min. EtOAc was then added to quench the excess hydride. Filter and concentrated, the reaction residue was then treated with 10% HCl (5 mL) at room temperature. the resulting precipitates were collected by filtration to afford nitidine chloride as yellow solid (95 mg, 91%); mp: 280 °C; IR (KBr): 1260, 1275, 1636 cm⁻¹; ¹H NMR (600 MHz, DMSO-*d*₆) δ 9.87 (s, 1H), 8.89 (d, *J* = 9.0 Hz, 1H), 8.35 (s, 1H), 8.30 (s, 1H), 8.27 (d, *J* = 9.0 Hz, 1H), 7.91 (s, 1H), 7.76 (s, 1H), 6.33 (s, 2H), 4.89 (s, 3H), 4.22 (s, 3H), 4.03 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 164.3, 153.5, 149.7, 147.5, 147.0, 135.9, 131.9, 128.9, 123.2, 121.0, 119.2, 118.4, 116.7, 108.7, 104.8, 102.8, 102.7, 101.5, 56.3, 56.1, 41.2; HRMS [(FAB), (M⁺)]: 348.1236 (cal. for C₂₁H₁₈NO₄⁺ 348.1236); Registry Number: [13063-04-2].

Spectral data for all products:

2-Methyl-3,4-diphenylisoquinolin-1(2H)-one (3a):

Work-up and purification by column chromatography, white solid (117 mg, 75%), mp: 246–248 °C; IR (KBr): 1646, 1604, 1552, 1489, 1414, 1176, 1074, 1025, 924, 781 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ 8.57 (d, *J* = 7.6 Hz, 1H), 7.53–7.47 (m, 2H), 7.26–7.12 (m, 9H), 7.07–7.05 (m, 2H), 3.36 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 162.7, 141.2, 137.1, 136.4, 135.0, 132.0, 131.5, 129.9, 128.1, 127.9,

127.7, 126.7, 126.5, 125.3, 124.9, 118.8, 34.3; HRMS [(ESI), $(M+H)^+$]: 312.1374 (cal. for C₂₂H₁₈NO 312.1388); Registry Number: [148564-77-6].

7-Methoxy-2-methyl-3,4-diphenylisoquinolin-1(2*H*)-one (3b):

Work-up and purification by column chromatography, white solid (111 mg, 65%), mp: 213–214 °C; IR (KBr): 2946, 1641, 1606, 1589, 1497, 1352, 1253, 1146, 1052, 949, 833, 727 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ 7.96 (s, 1H), 7.26–7.05 (m, 12H), 3.96 (s, 3H), 3.37 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 162.4, 158.6, 138.9, 136.6, 135.1, 131.5, 131.3, 130.2, 128.1, 128.1, 127.9, 122.5 L18.0, 107.5 55.7 24.5; LIBMS [(ED) (14⁺)]; 241 1416 (acl for

127.1, 126.7, 126.1, 122.5, 118.9, 107.5, 55.7, 34.5; HRMS [(EI), (M^+)]: 341.1416 (cal. for $C_{23}H_{19}NO_2$ 341.1416); Registry Number: [1235478-95-1].

2,7-Dimethyl-3,4-diphenylisoquinolin-1(2*H*)-one (3c):

Work-up and purification by column chromatography, colorless solid (104 mg, 64%), mp: 224–225 °C; IR (KBr): 1645, 1499, 1340, 1145, 948, 830, 769, 730 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 8.36 (s, 1H), 7.35 (dd, *J* = 8.2, 1.8 Hz, 1H), 7.24–7.04 (m, 11H), 3.35 (s, 3H), 2.50 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 162.7, 140.3, 136.7, 136.3, 135.2, 134.9, 133.5, 131.5, 130.0, 128.2, 128.1, 127.8,

127.4, 126.7, 125.3, 124.8, 118.8, 34.3, 21.4; HRMS [(ESI), $(M+Na)^+$]: 348.1361 (cal. for C₂₃H₁₉NONa 348.1364); Registry Number: [1315257-16-9].

2-Methyl-3,4-diphenyl-7-(trifluoromethyl)isoquinolin-1(2H)-one (3d):

Work-up and purification by column chromatography, colorless solid (144 mg, 76%), mp: 199–200 °C; IR (KBr): 3054, 2924, 1727, 1652, 1553, 1496, 1409, 1313, 1117, 1070, 1008, 839, 703 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 8.85 (s, 1H), 7.70 (dd, *J* = 8.6, 2.0 Hz, 1H), 7.29–7.03 (m, 10H), 6.84 (s, 1H), 3.37 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 162.1, 143.6, 139.5, 135.1 (q, *J*_{C-F} = 90

Hz), 131.4, 129.6, 128.7, 128.5, 128.3, 128.1, 128.0 (q, $J_{C-F} = 3$ Hz), 127.2, 126.3, 125.8, 125.6 (q, $J_{C-F} = 4$ Hz), 124.6, 123.4 (q, $J_{C-F} = 272$ Hz), 118.3, 34.5; HRMS [(ESI), (M+Na)⁺]: 402.1076 (cal. for C₂₃H₁₆NOF₃Na 402.1082); Registry Number: [1315257-17-0].

2,6-Dimethyl-3,4-diphenylisoquinolin-1(2*H*)-one (3e):

Work-up and purification by column chromatography, white solid (99 mg, 61%), mp: 230–231 °C; IR (KBr): 2980, 1665, 1278, 1107, 1039, 816, 721 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ 8.45 (d, J = 8.1 Hz, 1H), 7.32 (d, J = 8.1 Hz, 1H), 7.26–7.14 (m, 6H), 7.12 (d, J = 7.2 Hz, 2H), 7.06 (d, J = 7.2 Hz, 2H), 6.93 (s, 1H), 3.34 (s, 3H), 2.34 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 162.8, 142.5,

141.3, 137.2, 136.6, 135.2, 131.6, 129.9, 128.2, 128.1, 128.1, 127.9, 126.7, 125.0, 122.8, 118.7, 34.2, 21.0; HRMS [(ESI), $(M+Na)^+$]: 348.1358 (cal. for C₂₃H₁₉NONa 348.1364); Registry Number: [1989524-19-7].

6-Chloro-2-methyl-3,4-diphenylisoquinolin-1(2H)-one (3f):

Work-up and purification by column chromatography, colorless solid (119 mg, 69%), mp: 266–267 °C; IR (KBr): 1649, 1597, 1443, 1416, 1360, 1190, 1070, 936, 869, 834, 784 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ 8.48 (d, J = 8.4 Hz, 1H), 7.41 (d, J = 8.4 Hz, 1H), 7.28–7.00 (m, 10H), 6.91 (s, 1H), 3.37 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 152.1, 142.7, 138.7, 138.5, 135.7, 131.4, 129.8,

128.4, 128.3, 128.2, 128.1, 127.2, 127.1, 124.7, 123.3, 118.0, 34.4; HRMS [(EI), (M^+)]: 345.0926 (cal. for C₂₂H₁₆CINO 345.0920); Registry Number: [1315257-11-4].

6,7-Dimethoxy-2-methyl-3,4-diphenylisoquinolin-1(2H)-one (3g):

Work-up and purification by column chromatography, white solid (113 mg, 61%), mp: 240–242 °C; IR (KBr): 2954, 1645, 1604, 1483, 1415, 1230, 1143, 1072, 1001, 856, 781 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.93 (s, 1H), 7.26–7.04 (m, 10H), 6.50 (s, 1H), 4.03 (s, 3H), 3.68 (s, 3H), 3.35 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 162.0, 153.1, 149.1, 140.0, 136.4, 135.2, 132.6,

131.1, 130.1, 128.2, 128.1, 128.0, 126.8, 119.0, 118.6, 107.7, 105.7, 56.3, 55.7, 34.5; HRMS [(EI), (M^+)]: 371.1520 (cal. for C₂₄H₂₁NO₃ 371.1521); Registry Number: [2101507-74-6].

2,5-Dimethyl-3,4-diphenylisoquinolin-1(2*H*)-one (3h):

Work-up and purification by column chromatography, white solid (63 mg, 39%), mp: 200–201 °C; IR (KBr): 1644, 1495, 1337, 1142, 949, 834, 769, 733 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ 8.55 (d, *J* = 7.8 Hz, 1H), 7.39 (t, *J* = 7.5 Hz, 1H), 7.36 (d, *J* = 7.2 Hz, 1H), 7.21–7.15 (m, 3H), 7.08–7.03 (m, 7H), 3.29 (s, 3H), 1.74 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 162.9, 141.9, 139.9, 136.3, 135.5, 135.0, 0, 128.0, 127.8, 126.7, 126.7, 126.6, 126.2, 118.6, 24.2, 22.7, UPM (50 MHz, 126.7), 126.7, 126.6, 126.2, 118.6, 24.2, 22.7, UPM (50 MHz, 126.7), 126.7, 126.6, 126.2, 118.6, 24.2, 22.7, UPM (50 MHz, 126.7), 126.7, 126.

134.9, 132.0, 130.0, 128.0, 127.8, 127.3, 126.7, 126.5, 126.5, 126.3, 118.6, 34.3, 23.7; HRMS [(ESI), $(M+Na)^+$]: 348.1361 (cal. for C₂₃H₁₉NONa 348.1364); New compound.

2-Methyl-3,4-diphenyl-2,7-naphthyridin-1(2H)-one (3i):

Work-up and purification by column chromatography, brown solid (83 mg, 53%), mp: 185–186 °C; IR (KBr): 1667, 1495, 1337, 1142, 1010, 940, 834, 769, 743 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 8.71–8.65 (m, 2H), 8.34 (d, *J* = 5.1 Hz, 1H), 7.29–7.21 (m, 6H), 7.16–7.09 (m, 4H), 3.39 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 161.5, 148.9, 145.6, 143.3, 134.5, 134.2, 131.6, 131.3, 129.8, 129.6, 128.7, 128.4, 0, 117.2, 34.7; HPMS [(FSI) (M+H)⁺]; 313 1335 (cgl. for C. H.-N-O 313 1341);

128.2, 127.4, 120.0, 117.2, 34.7; HRMS [(ESI), $(M+H)^+$]: 313.1335 (cal. for C₂₁H₁₇N₂O 313.1341); New compound.

6-Methyl-4,5-diphenylthieno[2,3-c]pyridin-7(6H)-one (3j):

Work-up and purification by column chromatography, colorless oil (95 mg, 60%); IR (KBr): 3058, 1640, 1567, 1488, 1441, 789, 713 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.59 (d, *J* = 5.2 Hz, 1H), 7.27–7.05 (m, 10H), 6.92 (d, *J* = 5.2 Hz, 1H), 3.39 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 158.8, 145.6, 142.4, 136.8, 134.6, 132.7, 130.6, 130.1, 128.8, 128.4, 128.3, 127.9, 126.8, 124.7, 117.7, 34.2; HRMS [(ESI), (M+Na)⁺]:

340.0766 (cal. for C₂₀H₁₅NOSNa 340.0772); Registry Number: [1235479-02-3].

3,4-Bis(4-methoxyphenyl)-2-methylisoquinolin-1(2*H*)-one (3k):

Work-up and purification by column chromatography, white solid (102 mg, 55%); mp: 224–225 °C; IR (KBr): 3502, 1698, 1329, 782 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ 8.54 (d, J = 7.2 Hz, 1H), 7.52 (td, J = 7.2, 0.6 Hz, 1H), 7.47 (t, J = 7.8 Hz, 1H), 7.18 (d, J = 7.8 Hz, 1H), 7.03 (d, J = 8.7 Hz, 2H), 6.97 (d, J = 8.4 Hz, 2H), 6.77 (d, J = 7.8 Hz, 2H), 6.75 (d, J = 7.8 Hz, 2H), 3.76 (s, 6H), 3.35 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 162.8, 159.1,

158.2, 141.3, 137.5, 132.5, 131.9, 131.1, 128.9, 127.8, 127.6, 126.4, 125.3, 124.9, 118.7, 113.6, 113.4,

55.1, 55.0, 34.3; HRMS [(ESI), $(M+Na)^+$]: 394.1414 (cal. for C₂₄H₂₁NO₃Na 394.1419); Registry Number: [161730-00-3].

3,4-Diethyl-2-methylisoquinolin-1(2H)-one (3l):

Work-up and purification by column chromatography, yellow oil (57 mg, 53%); IR (KBr): 1646, 1587, 1557, 1457, 1372, 1173, 1057, 898, 740 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 8.45 (dd, *J* = 7.6, 1.2 Hz, 1H), 7.63–7.61 (m, 2H), 7.41 (t, *J* = 7.6 Hz, 1H), 3.65 (s, 3H), 2.80–2.72 (m, 4H), 1.25–1.17 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 162.9, 140.7, 136.2, 132.0, 128.3, 125.6, 124.8, 122.4, 114.9, 31.1, 22.7, 20.5, 14.8, 13.5; HRMS $[(ESI), (M+Na)^+]$: 238.1204 (cal. for C₁₄H₁₇NONa 238.1208); New compound.

2-Methyl-3,4-dipropylisoquinolin-1(2H)-one (3m):

Work-up and purification by column chromatography, colorless solid (66 mg, 54%), mp: 72 °C; IR (KBr): 3274, 1644, 1587, 1591, 1555, 1448, 1333, 1173, 1057, 892, 776, 703 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 8.45 (dd, J = 8.0, 1.0 Hz, 1H), 7.62-7.61 (m, 2H), 7.42-7.38 (m, 1H), 3.65 (s, 3H), 2.73-2.67 (m, 4H), 1.66-1.54 (m, 4H), 1.06 (q, J = 6.8 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 162.9, 139.8,

136.5, 131.9, 128.3, 125.5, 124.8, 122.6, 113.8, 31.8, 31.3, 29.8, 23.6, 22.6, 14.4, 14.2; HRMS [(ESI), $(M+Na)^+$]: 266.1515 (cal. for C₁₆H₂₁NONa 266.1521); Registry Number: [1315257-19-2].

3,4-Diethyl-6,7-dimethoxy-2-methylisoquinolin-1(2H)-one (3n):

Work-up and purification by column chromatography, yellow oil (66 mg, 48%); IR (KBr): 2994, 1635, 1611, 1483, 1425, 1229, 1155, 1069, 1011, 876, 787 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.80 (s, 1H), 6.98 (s, 1H), 3.98 (s, 6H), 3.66 (s, 3H), 2.77 (q, J = 7.2 Hz, 4H), 1.26–1.20 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 162.1, 153.1, 148.3, 139.4, 131.7, 118.8, 114.5, 108.2, 102.9, 56.1,

56.0, 31.2, 22.7, 20.9, 14.7, 13.6; HRMS [(EI), (M⁺)]: 275.1521 (cal. for C₁₆H₂₁NO₃ 275.1521); New compound.

6,7-Dimethoxy-2-methyl-3,4-dipropylisoquinolin-1(2H)-one (30):

Work-up and purification by column chromatography, white solid (65 mg, 43%), mp: 93 °C; IR (KBr): 2974, 1645, 1617, 1411, 1217, 1143, 1072, 1001, 967, 856, 781 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.82 (s, 1H), 6.94 (s, 1H), 3.97 (s, 6H), 3.63 (s, 3H), 2.70–2.63 (m, 4H), 1.59 (sext, J = 7.2 Hz, 4H), 1.07-1.02 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 162.1, 153.1, 148.3,

138.6, 132.0, 118.8, 113.4, 108.1, 103.2, 56.1, 55.8, 31.8, 31.4, 30.1, 23.6, 22.7, 14.5, 14.3; HRMS $[(EI), (M^+)]$: 303.1829 (cal. for C₁₈H₂₅NO₃ 303.1834); New compound.

6-Chloro-2-methyl-3,4-dipropylisoquinolin-1(2H)-one (3p):

Work-up and purification by column chromatography, white solid (82 mg, 59%). mp: 88 °C; IR (KBr): 3283, 1653, 1547, 1451, 1257, 1340, 1197, 1075, 939, 868 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 8.37 (d, J = 8.6 Hz, 1H), 7.57 (d, J = 1.9 Hz, 1H), 7.35 (dd, J = 8.6, 1.8 Hz, 1H), 3.64 (s, 3H), 2.73–2.62 (m, 4H), 1.67–1.53 (m, 4H), 1.08 (q, J = 7.0 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 162.4, 141.5, 138.6, 137.9, 130.2, 126.1, 123.1, 122.2, 113.1, 31.9, 31.4, 29.8, 23.6, 22.5, 14.4, 14.3;

HRMS [(ESI), $(M+Na)^+$]: 300.1132 (cal. for C₁₆H₂₀ClNONa 300.1131); New compound.

3,4-Diethyl-2-methyl-7-(trifluoromethyl)isoquinolin-1(2H)-one (3q):

Work-up and purification by column chromatography, white solid (89 mg, 63%), mp: 82-83 °C; IR (KBr): 2953, 1648, 1604, 1483, 1315, 1230, 1110, 1072, 1001, 855, 777 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 8.73 (s, 1H), 7.81–7.73 (m, 2H), 3.68 (s, 3H), 2.85–2.75 (m, 4H), 1.29–1.20 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 162.3, 143.5, 138.7, 127.9 (q, $J_{C-F} = 3$ Hz), 127.4 (q, $J_{C-F} = 33$ Hz),

126.1 (q, $J_{C-F} = 4$ Hz), 124.5, 124.1 (q, $J_{C-F} = 270$ Hz), 123.4, 114.5, 31.3, 22.9, 20.6, 14.7, 13.4; HRMS [(ESI), (M+H)⁺]: 284.1264 (cal. for C₁₅H₁₇F₃NO 284.1262); New compound.

2,3,4-Triphenylisoquinolin-1(2*H*)-one (3r):

Work-up and purification by column chromatography, white solid (86 mg, 46%), mp: 202-203 °C; IR (KBr): 3013, 1951, 1652, 1613, 1588, 1489, 1422, 1327, 1257, 1120, 1029, 922, 803, 767 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 8.58 (d, J = 7.5 Hz, 1H), 7.60 (t, J = 7.2 Hz, 1H), 7.54 (t, J = 7.2 Hz, 1H), 7.28–7.11 (m, 11H), 6.90 (br, 5H); ¹³C NMR (100 MHz, CDCl₃): δ 162.7, 141.1, 139.5, 137.7, 136.4, 134.8, 132.6, 131.1, 129.5, 128.6, 128.3, 128.0, 127.6, 127.3, 127.1, 126.9, 126.8, 125.6, 125.5, 118.9; HRMS [(ESI), (M+Na)⁺]: 396.1358 (cal. for C₂₇H₁₉NONa 396.1364); Registry Number: [14959-72-9].

2-(4-Fluorophenyl)-3,4-diphenylisoquinolin-1(2H)-one (3s):

Work-up and purification by column chromatography, white solid (123 mg, 63%), mp: 238–239 °C; IR (KBr): 1899, 1661, 1587, 1554, 1442, 1328, 1227, 1090, 1012, 923, 854, 784, 747 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 8.58 (d, J = 10.6 Hz, 1H), 7.62–7.53 (m, 2H), 7.30–7.08 (m, 8H), 6.95–6.90 (m, 7H); ¹³C NMR (100 MHz, CDCl₃): δ 162.7, 139.3 (d, $J_{C-F} = 234$ Hz), 137.6, 136.2, 134.6, 132.6, 131.5, 131.2, 131.1, 131.0, 130.9, 128.2, 128.0, 127.4, 127.3,

127.0, 126.9, 125.7, 125.4, 119.0, 115.6 (d, $J_{C-F} = 30$ Hz); HRMS [(ESI), (M+Na)⁺]: 414.1263 (cal. for C₂₇H₁₈FNONa 414.1270); Registry Number: [1253388-48-5].

2-(Furan-2-ylmethyl)-3,4-diphenylisoquinolin-1(2H)-one (3t):

Work-up and purification by column chromatography, brown solid (108 mg, 57%), mp: 152–153 °C; IR (KBr): 1950, 1656, 1606, 1557, 1486, 1422, 1324, 1008, 748 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 8.59 (s, 1H), 7.56–7.48 (m, 2H), 7.25–7.06 (m, 12H), 6.25–6.23 (m, 1H), 6.06 (dd, *J* = 3.2, 0.6 Hz, 1H), 5.13 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 162.3, 150.5, 141.5, 140.9, 137.3,

136.4, 134.2, 132.3, 131.5, 130.5, 128.3, 128.1, 127.9, 127.8, 126.8, 126.7, 125.4, 125.1, 119.4, 110.3, 108.2, 42.6; HRMS [(EI), (M⁺)]: 377.1412 (cal. for C₂₆H₁₉NO₂ 377.1416); New compound.

2,4-Dimethyl-3-phenylisoquinolin-1(2*H*)-one (3u):

Work-up and purification by column chromatography, yellow solid (54 mg, 43%), mp: 104–105 °C; IR (KBr): 2978, 1644, 1641, 1283, 1085, 762, 709 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 8.54 (d, *J* = 8.4 Hz, 1H), 7.70–7.69 (m, 2H), 7.53–7.46 (m, 4H) 7.28–7.26 (m, 2H), 3.26 (s, 3H), 2.02 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 162.6, 140.2, 137.1, 135.8, 132.1, 129.4, 129.0, 128.7, 128.1, 126.4, 125.2, 123.2, 110.4,

34.2, 14.8; HRMS [(EI), (M^+)]: 249.1142 (cal. for $C_{17}H_{15}NO$ 249.1154); Registry Number: [51089-64-6]. For this stereoisomer, spectral data matches the reported literature.² NOE data was not collected.

4-Ethyl-2-methyl-3-phenylisoquinolin-1(2*H*)-one (3v):

Work-up and purification by column chromatography, pale yellow solid (53 mg, 40%), mp: 144 °C; IR (KBr): 2968, 1648, 1613, 1487, 1333, 1055, 762, 703 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 8.56 (d, *J* = 8.0 Hz, 1H), 7.72–7.70 (m, 2H), 7.53–7.48 (m, 4H), 7.30–7.26 (m, 2H), 3.23 (s, 3H), 2.44 (q, *J* = 7.2 Hz, 2H), 1.05 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 162.4, 140.1, 136.0, 135.6, 132.0,

129.1, 129.0, 128.7, 128.4, 126.3, 125.7, 123.1, 116.6, 34.0, 21.6, 14.8; HRMS [(ESI), $(M+Na)^+$]: 286.1206 (cal. for C₁₈H₁₇NONa 286.1208); Registry Number: [1235479-12-5]. For this stereoisomer, spectral data matches the reported literature.² NOE data was not collected.

2-Methyl-3-phenyl-4-(trimethylsilyl)isoquinolin-1(2*H*)-one (3w):

Work-up and purification by column chromatography, white solid (80 mg, 52%), mp: 174–175 °C; IR (KBr): 3275, 1645, 1328, 928, 524 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ 8.53 (d, *J* = 8.1 Hz, 1H), 7.88 (d, *J* = 8.1 Hz, 1H), 7.63 (t, *J* = 7.8 Hz, 1H), 7.49–7.47 (m, 4H), 7.30–7.30 (m, 2H), 3.19 (s, 3H), -0.04 (s, 9H); ¹³C NMR (150 MHz, CDCl₃): δ 163.1, 148.7, 139.6, 137.7, 131.1, 130.2, 129.2, 128.6, 128.2, 127.2,

125.9, 125.6, 111.7, 34.0, 2.0; HRMS [(ESI), $(M+H)^+$]: 308.1473 (cal. for $C_{19}H_{22}NOSi$ 308.1471); New compound.

2,6-Dimethyl-3-phenyl-4-(trimethylsilyl)isoquinolin-1(2*H*)-one (3x):

Work-up and purification by column chromatography, white solid (74 mg, 46%), mp: 134–135 °C; IR (KBr): 3726, 2958, 1650, 885 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ 8.41 (d, *J* = 8.1 Hz, 1H), 7.64 (s, 1H), 7.47–7.46 (m, 3H), 7.31–7.28 (m, 3H), 3.17 (s, 3H), 2.50 (s, 3H), -0.04 (s, 9H); ¹³C NMR (150 MHz, CDCl₃): δ 163.1, 148.8, 141.4, 139.7, 137.8, 130.2, 129.1, 128.6, 128.2, 127.5, 127.2, 123.3,

111.4, 33.9, 22.1, 2.1; HRMS [(ESI), $(M+H)^+$]: 322.1631 (cal. for C₂₀H₂₄NOSi 322.1627); New compound.

(*E*)-2-(1,2-Diphenylvinyl)-*N*-methylbenzamide (4a):

Work-up and purification by column chromatography, yellow solid (118 mg, 75%), mp: 132–133 °C; IR (KBr): 3449, 1625, 1312, 764, 517 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ 7.51 (d, *J* = 7.8 Hz, 1H), 7.44–7.39 (m, 2H), 7.36 (t, *J* = 7.2 Hz, 1H), 7.22–7.10 (m, 10H), 6.79 (s, 1H), 2.61 (d, *J* = 4.8 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 170.0, 142.2, 141.9, 139.4, 137.1, 136.5, 130.9, 130.6, 130.4, 129.9,

129.4, 128.3, 128.1, 128.0, 127.8, 127.6, 127.1, 26.6; HRMS [(EI), (M^+)]: 313.1462 (cal. for $C_{22}H_{19}NO$ 313.1467); Registry Number: [1315257-10-3].

(*E*)-2-(1,2-Diphenylvinyl)-5-methoxy-*N*-methylbenzamide (4b):

113.2, 55.5, 26.6; HRMS [(ESI), (M+H)⁺]: 344.1650 (cal. for C₂₃H₂₂NO₂ 344.1651); New compound.

(*E*)-2-(1,2-Diphenylvinyl)-4,5-dimethoxy-*N*-methylbenzamide (4c):

Work-up and purification by column chromatography, yellow solid (121 mg, 65%), mp: 228–230 °C; IR (KBr): 3262, 1633, 1316, 761, 565 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ 7.21–7.09 (m, 11H), 6.85 (s, 1H), 6.79 (s, 1H), 3.92 (s, 3H), 3.90 (s, 3H), 2.62 (d, *J* = 4.8 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 169.3, 149.9, 148.4, 142.0, 139.2, 136.9, 135.2, 130.3, 130.1, 129.3, 128.5,

128.1, 127.8, 127.2, 113.8, 111.8, 56.1, 56.0, 26.7; HRMS [(ESI), $(M+H)^+$]: 374.1757 (cal. for C₂₄H₂₄NO₃ 374.1756); New compound.

(*E*)-2-(1,2-Diphenylvinyl)-*N*,4-dimethylbenzamide (4d):

Work-up and purification by column chromatography, white solid (105 mg, 64%), mp: 154–155 °C; IR (KBr): 3283, 1622, 1309, 831, 696 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ 7.44 (d, J = 7.8 Hz, 1H), 7.21–7.12 (m, 12H), 6.78 (s, 1H), 2.61 (d, J = 4.8 Hz, 3H), 2.39 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 169.9, 142.1, 142.1, 139.9, 139.4, 137.1, 133.6, 131.5, 130.3, 129.4, 128.5, 128.4, 128.1, 127.5, 127.1,

26.6, 21.3; HRMS [(ESI), $(M+H)^+$]: 328.1703 (cal. for C₂₃H₂₂NO 328.1701); Registry Number: [1427042-11-2].

(*E*)-2-(1,2-Diphenylvinyl)-*N*,3-dimethylbenzamide (4e):

Work-up and purification by column chromatography, white solid (93 mg, 57%), mp: 157–158 °C; IR (KBr): 1702, 1516, 1328, 1122, 936, 836, 762, 730 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ 7.43 (d, *J* = 7.2 Hz, 1H), 7.31–7.21 (m, 2H), 7.21 (br, 5H), 7.18 (br, 5H), 6.63 (s, 1H), 2.76 (d, J = 4.8 Hz, 3H), 2.27 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 170.4, 140.9, 140.1, 138.8, 137.3, 137.1, 131.9, 130.8, 130.0,

129.2, 128.2, 128.1, 127.4, 127.3, 127.1, 125.5, 26.7, 20.5; HRMS [(ESI), (M+H)⁺]: 328.1702 (cal. for C₂₃H₂₂NO 328.1701); New compound.

(E)-4-Chloro-2-(1,2-diphenylvinyl)-N-methylbenzamide (4f):

Work-up and purification by column chromatography, pale yellow solid (117 mg, 67%), mp: 177–178 °C; IR (KBr): 3302, 1626, 1307, 952, 712, 564 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ 7.46 (d, J = 8.1 Hz, 1H), 7.40 (s, 1H), 7.33 (d, J = 8.1 Hz, 1H), 7.23–7.10 (m, 10H), 6.79 (s, 1H), 2.60 (d, J = 4.8 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 169.0, 144.0, 140.7, 138.7, 136.6, 135.7, 134.9,

131.4, 130.7, 130.3, 129.8, 129.4, 128.2, 128.1, 127.9, 127.8, 127.4, 26.6; HRMS [(ESI), (M+H)⁺]: 348.1158 (cal. for C₂₂H₁₉NOCl 348.1155); New compound.

(E)-2-(1,2-diphenylvinyl)-N-methyl-5-(trifluoromethyl)benzamide (4g):

Work-up and purification by column chromatography, white solid (130 mg, 68%), mp: 158–159 °C; IR (KBr): 3279, 1648, 1341, 774 cm⁻¹; ¹H NMR (600 MHz, C_6D_6): δ 7 .57 (s, 1H), 7.29 (d, J = 8.4 Hz, 1H), 7.18–7.10 (m, 4H), 7.04 (d, J = 7.8 Hz, 1H), 6.99–6.92 (m, 6H), 6.64 (s, 1H), 4.74 (br, 1H), 2.20 (d, J = 4.8 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 168.5, 140.5, 145.7, 138.7, 137.1, 136.4, 131.7, 131.3, 131.3, 130.3, 129.8 (q, J_{C-F} = 33 Hz), 129.4, 128.2, 128.1, 127.9, 127.5, 126.4 (q, $J_{C-F} = 4 \text{ Hz}$, 125.3 (q, $J_{C-F} = 4 \text{ Hz}$), 120 (q, $J_{C-F} = 271 \text{ Hz}$), 26.6; HRMS [(ESI), (M+Na)⁺]: 404.1238

(cal. for C₂₃H₁₈F₃NONa 404.1238); New compound.

(E)-3-(1,2-Diphenylvinyl)-N-methylthiophene-2-carboxamide (4h):

Work-up and purification by column chromatography, white solid (107 mg, 67%), mp: 170–171 °C; IR (KBr): 3445, 1698, 1339, 749 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ 7.35 (dd, J = 4.8, 1.8 Hz, 1H), 7.27–7.26 (m, 4H), 7.20–7.19 (m, 4H), 7.16–7.15 (m, 2H), 6.88–6.87 (m, 2H), 6.44 (s, 1H), 2.76 (d, J = 4.8 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃): § 162.9, 143.7, 138.6, 136.5, 136.0, 135.6, 132.2, 130.8, 129.5, 129.3, 128.6,

128.3, 128.1, 128.0, 127.7, 26.5; HRMS [(ESI), $(M+Na)^+$]: 342.0925 (cal. for C₂₀H₁₇NOSNa 342.0928); Registry Number: [1315257-18-1].

(E)-2-(But-2-en-2-vl)-N-methylbenzamide (4i):

Work-up and purification by column chromatography, colorless liquid, (47 mg, 50%); IR (KBr): 3446, 1698, 1540, 740 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ 7.61 (d, J = 7.8 Hz, 1H), 7.33 (t, J = 7.8 Hz, 1H), 7.26 (t, J = 7.8 Hz, 1H), 7.13 (d, J = 7.8 Hz, 1H), 6.11 (s, 1H), 5.60 (q, J = 6.6 Hz, 1H), 2.92 (d, J = 4.8 Hz, 3H), 1.91 (s, 3H), 1.77 (d, J = 6.6 Hz, 3H); 13 C NMR (150 MHz, CDCl₃); δ 170.1, 143.5, 137.3, 134.1, 130.1,

129.2, 128.5, 126.9, 125.1, 26.8, 17.7, 14.1; HRMS $[(ESI), (M+Na)^+]$: 212.1052 (cal. for C₁₂H₁₅NONa 212.1051); New compound.

(E)-2-(Hex-3-en-3-yl)-N-methylbenzamide (4j):

Work-up and purification by column chromatography, colorless liquid, (59 mg, 54%); IR (KBr): 3421, 1646, 1540, 750 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ 7.70 (dd, J = 7.8, 1.8 Hz, 1H), 7.34 (td, J = 7.8, 1.8 Hz, 1H), 7.29 (t, J = 7.8, 1.2 Hz, 1H), 7.12 (d, J = 7.2 Hz, 1H), 6.24 (s, 1H), 5.47 (t, J = 7.8 Hz, 1H), 2.91 (d, J = 5.4 Hz, 3H), 2.34 (q, J = 7.2 Hz, 2H), 2.20 (quint, J = 7.2 Hz, 2H), 1.05 (t, J = 7.8 Hz, 3H), 0.84 (t, J = 7.8 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 169.8, 142.8, 141.8, 134.0, 132.1, 130.1, 130.0, 128.8, 127.1, 26.6, 25.0, 21.4, 14.4, 13.0; HRMS [(ESI), (M+Na)⁺]: 240.1373 (cal. for C₁₄H₁₉NONa 240.1364); New compound.

(E)-N-Methyl-2-(oct-4-en-4-yl)benzamide (4k):

2H), 1.22 (sext, J = 7.8 Hz, 2H), 0.97 (t, J = 7.8 Hz, 3H), 0.81 (t, J = 7.8 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 169.7, 142.3, 142.1, 133.9, 131.3, 130.1, 130.0, 128.8, 127.0, 34.0, 30.3, 26.6, 22.9, 21.5, 13.9, 13.8; HRMS [(ESI), (M+Na)⁺]: 268.1678 (cal. for C₁₆H₂₃NONa 268.1677); Registry Number: [1427042-15-6].

(E)-2-(1,2-Bis(4-fluorophenyl)vinyl)-N-methylbenzamide (41):

Work-up and purification by column chromatography, white solid (112 mg, 64%), mp: 139–140 °C; IR (KBr): 3446, 1683, 1457, 1262, 746 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ 7.46 (d, J = 7.8 Hz, 1H), 7.43 (t, J = 7.8 Hz, 1H), 7.39–7.34 (m, 2H), 7.09–7.05 (m, 4H), 6.91 (t, J = 8.4 Hz, 2H), 6.87 (t, J = 8.4 Hz, 2H), 6.73 (s, 1H), 5.59 (s, 1H), 2.63 (d, J = 4.8 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 169.9, 162.7 (d, J_{C-F} = 247 Hz), 161.8 (d, J_{C-F} = 246 Hz),

141.9, 140.8, 136.6, 135.2 (d, $J_{C-F} = 3$ Hz), 133.0 (d, $J_{C-F} = 3$ Hz), 132.2 (d, $J_{C-F} = 8$ Hz), 131 (d, $J_{C-F} = 8$ Hz), 130.7, 129.9, 129.2, 128 (d, $J_{C-F} = 9$ Hz), 115.1 ($J_{C-F} = 21$ Hz), 115.1 (d, $J_{C-F} = 21$ Hz), 26.5; HRMS [(ESI), (M+Na)⁺]: 372.1172 (cal. for $C_{22}H_{17}F_2$ NONa 372.1175); New compound.

(E)-2-(1,2-Bis(4-(trifluoromethyl)phenyl)vinyl)-N-methylbenzamide (4m):

CF₃ Work-up and purification by column chromatography, colorless liquid, (153 mg, 68%); IR (KBr): 3445, 1698, 1324, 749 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ 7.47–7.36 (m, 8H), 7.26–7.24 (m, 2H), 7.17 (d, J = 8.4 Hz, 2H), 6.86 (s, 1H), 5.55 (s, 1H), 2.58 (d, J = 4.8 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 169.7, 142.9, 142.7, 141.3, 140.1, 136.8, 130.9, 130.8, 130.1, CF₃ 129.8, 129.6, 129.1 (q, J_{C-F} = 32 Hz), 128.3, 127.6, 125.2, 125.1, 125.0, _{-F} = 270 Hz), 123.9 (q, J_{C-F} = 270 Hz), 26.4; HRMS [(ESI), (M+Na)⁺]: 472.1110

125.0, 124.0 (q, $J_{C-F} = 270 \text{ Hz}$), 123.9 (q, $J_{C-F} = 270 \text{ Hz}$), 26.4; HRMS [(ESI), (M+Na)⁺]: 472.1110 (cal. for C₂₄H₁₇F₆NONa 472.1112); New compound.

(E)-2-(1,2-Bis(4-methoxyphenyl)vinyl)-N-methylbenzamide (4n):

Work-up and purification by column chromatography, white solid (117 mg, 63%), mp: 231–232 °C; IR (KBr): 3310, 1645, 1540, 757 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ 7.52 (d, *J* = 7.8 Hz, 1H), 7.41–7.31 (m, 3H), 7.08 (d, *J* = 8.4 Hz, 2H), 7.04 (d, *J* = 8.4 Hz, 2H), 6.74 (d, *J* = 8.4 Hz, 2H), 6.71 (d, *J* = 8.4 Hz, 2H), 6.65 (s, 1H), 5.82 (s, 1H), 3.76 (s, 6H), 2.62 (d, *J* = 4.8 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 169.9, 158.8, 158.5, 142.6, 139.7, 136.3,

131.9, 131.5, 130.8, 130.5, 129.8, 129.7, 129.3, 128.4, 127.5, 113.5, 113.4, 55.1, 55.0, 26.6; HRMS

 $[(ESI), (M+Na)^{+}]$: 396.1568 (cal. for C₂₄H₂₃NO₃Na 396.1575); Registry Number: [1427042-13-4].

(E)-2-(1,2-Di-*m*-tolylvinyl)-*N*-methylbenzamide (40):

Work-up and purification by column chromatography, yellow solid (107 mg, 63%), mp: 118–119 °C; IR (KBr): 3445, 1646, 1540, 744 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ 7.55 (d, *J* = 7.8Hz, 1H), 7.43–7.40 (m, 1H), 7.37–7.34 (m, 2H), 7.10 (t, *J* = 7.8 Hz, 1H), 7.04 (t, *J* = 7.8 Hz, 2H), 6.97 (d, *J* = 7.2 Hz, 2H), 6.93–6.89 (m, 3H), 6.72 (s, 1H), 5.74 (s, 1H), 2.65 (d, *J* = 5.4 Hz, 3H), 2.22 (d, *J* = 3.6 Hz, 6H); ¹³C NMR (150 MHz, CDCl₃): δ 169.9, 142.3, 141.7, 139.4,

137.6, 137.5, 136.9, 136.3, 130.8, 130.7, 130.6, 130.3, 129.8, 128.4, 128.3, 127.9, 127.9, 127.8, 127.7, 127.4, 126.3, 26.6, 21.3; HRMS [(ESI), $(M+Na)^+$]: 364.1671 (cal. for C₂₄H₂₃NONa 364.1677); New compound.

((Z)-2-(1,2-Di(thiophen-2-yl)vinyl)-N-methylbenzamide (4p):

Work-up and purification by column chromatography, white solid (96 mg, 59%), mp: 227–228 °C; IR (KBr): 3556, 1652, 1540, 744 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ 7.51 (d, *J* = 7.8 Hz, 1H), 7.41–7.37 (m, 3H), 7.35–7.33 (m, 1H), 7.17 (d, *J* = 4.8 Hz, 1H), 7.09 (d, *J* = 3.6 Hz, 1H), 7.05 (d, *J* = 3.6 Hz, 1H), 7.04–7.03 (m, 1H), 6.95 (s, 1H), 6.93 (t, *J* = 4.8 Hz, 1H), 5.77 (s, 1H), 2.78 (d, *J* = 5.4 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 170.1, 140.9, 140.3, 139.6, 136.3, 132.2, 129.9,

129.8, 129.3, 128.3, 127.9, 127.5, 127.1, 126.6, 126.5, 126.1, 26.8; HRMS [(ESI), $(M+Na)^+$]: 348.0491 (cal. for $C_{18}H_{15}NOS_2Na$ 348.0492); New compound.

(E)-4-Chloro-2-(hex-3-en-3-yl)-N-methylbenzamide (4q):

Work-up and purification by column chromatography, white solid (70 mg, 56%), mp: 181–182 °C; IR (KBr): 3283, 1653, 1547, 1451, 1257, 1340, 1197, 1075, 939, 868 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.65 (d, *J* = 8.4 Hz, 1H), 7.36 (dd, *J* = 8.4, 2.1 Hz, 1H), 7.12 (d, *J* = 2.1 Hz, 1H), 5.50 (t, *J* = 7.5 Hz, 1H), 2.90 (d, *J* = 4.8 Hz, 3H), 2.32 (q, *J* = 7.5 Hz, 2H), 2.20 (quint, *J* = 7.5 Hz, 2H), 1.05 (t, *J* =

7.5 Hz, 3H), 0.85 (t, J = 7.5 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 168.7, 143.5, 141.8, 135.8, 133.0, 132.3, 130.4, 130.0, 127.2, 26.7, 24.8, 21.4, 14.3, 13.0; HRMS [(EI), (M⁺)]: 251.1075 (cal. for C₁₄H₁₈NOCl 251.1077); New compound.

(E)-2-(1,2-Bis(4-methoxyphenyl)vinyl)-N-methyl-5-(trifluoromethyl)benzamide (4r):

Work-up and purification by column chromatography, brown liquid (128 mg, 58%); IR (KBr): 3446, 1652, 1508, 744 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ 7.79 (s, 1H), 7.65 (d, *J* = 7.2 Hz, 1H), 7.50 (d, *J* = 8.4 Hz, 1H), 7.09 (d, *J* = 8.4 Hz, 2H), 7.03 (d, *J* = 8.4 Hz, 2H), 6.77 (d, *J* = 9 Hz, 2H), 6.73 (d, *J* = 8.4 Hz, 2H), 6.68 (s, 1H), 5.74 (s, 1H), 3.79 (s, 3H), 3.78 (s, 3H), 2.65 (d, *J* = 4.8 Hz, 3H); ¹³C NMR (150 MHz,

CDCl₃): δ 168.6, 159.1, 158.9, 146.3, 138.3, 136.9, 131.6, 131.3, 130.7, 130.6, 130.4, 129.7 (q, $J_{C-F} = 33 \text{ Hz}$), 129.3, 126.4, 125.6, 123.7 (q, $J_{C-F} = 270 \text{ Hz}$), 114 (q, $J_{C-F} = 14 \text{ Hz}$), 113.7, 113.6, 55.1, 26.7; HRMS [(ESI), (M+Na)⁺]: 464.1453 (cal. for C₂₅H₂₂F₃NO₃Na 464.1449); New compound.

(E)-N-Methyl-2-(1-phenylprop-1-en-1-yl)benzamide (4s):

Work-up and purification by column chromatography, colorless viscous oil (42 mg, 34%); IR (KBr): 3445, 1635, 1507, 741 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ 7.48 (d, J = 7.8 Hz, 1H), 7.38 (t, J = 7.8 Hz, 1H), 7.32–7.28 (m, 4H), 7.22 (t, J = 7.2 Hz, 1H), 7.12 (d, J = 7.2 Hz, 2H), 5.98 (q, J = 7.2 Hz, 1H), 5.63 (s, 1H), 2.63 (d, J = 4.8 Hz, 3H), 1.92 (d, J = 6.6 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 170.1, 141.9, 141.7, 130.8, 129.7, 128.2, 127.8, 127.3, 127.2, 127.0, 26.5, 15.8; HRMS [(FSI)

139.1, 136.1, 130.8, 129.8, 129.7, 128.2, 127.8, 127.3, 127.2, 127.0, 26.5, 15.8; HRMS [(ESI), $(M+Na)^+$]: 274.1205 (cal. for C₁₇H₁₇NONa 274.1207); New compound.

(E)-N-Methyl-2-(1-phenylprop-1-en-2-yl)benzamide (4s'):

Work-up and purification by column chromatography, white solid (19 mg, 15%), mp: 149–150 °C; IR (KBr): 3501, 1635, 1456, 748 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ 7.68 (d, J = 7.8 Hz, 1H), 7.44–7.26 (m, 8H), 6.59 (s, 1H), 6.10 (s, 1H), 2.95 (d, J =4.8 Hz, 3H), 2.21 (d, J = 1.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 169.9, 143.6, 139.0, 137.4, 134.4, 130.3, 130.1, 128.9, 128.9, 128.7, 128.4, 127.4, 126.9, 26.9,

20.0; HRMS [(ESI), (M+Na)⁺]: 274.1208 (cal. for C₁₇H₁₇NONa 274.1207); New compound.

(*E*)-*N*-Methyl-2-(1-phenylbut-1-en-1-yl)benzamide (4t):

Work-up and purification by column chromatography, white solid (38 mg, 28%), mp: 128–129 °C; IR (KBr): 3520, 1646, 1540, 759 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ 7.50 (d, J = 7.8 Hz, 1H), 7.39–7.36 (m, 1H), 7.31–7.28 (m, 4H), 7.22 (t, J = 7.2 Hz, 1H), 7.12 (d, J = 7.2 Hz, 2H), 5.85 (t, J = 7.2 Hz, 1H), 5.68 (s, 1H), 2.66 (d, J = 5.4 Hz, 3H), 2.32 (quint, J = 7.8 Hz, 2H), 1.07 (t, J = 7.8 Hz, 3H); ¹³C NMR

(150 MHz, CDCl₃): δ 170.0, 141.8, 140.2, 139.4, 136.1, 134.9, 130.8, 129.7, 129.6, 128.2, 127.8, 127.3, 127.1, 26.5, 23.0, 14.5; HRMS [(ESI), $(M+Na)^+$]: 288.1364 (cal. for C₁₈H₁₉N₁O₁Na 288.1363); New compound.

(E)-N-Methyl-2-(1-phenylbut-1-en-2-yl)benzamide (4t'):

Work-up and purification by column chromatography, white solid (24 mg, 18%), mp: 93–94 °C; IR (KBr): 3419, 1646, 1521, 760 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ 7.73 (d, J = 7.2 Hz, 1H), 7.44–7.35 (m, 4H), 7.33 (d, J = 7.2 Hz, 2H), 7.28 (t, J =7.2 Hz, 2H), 6.54 (s, 1H), 6.19 (s, 1H), 2.93 (d, J = 4.8 Hz, 3H), 2.62 (q, J = 7.8 Hz, 2H), 0.93 (t, J = 7.8 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 169.8, 145.7, 141.5,

137.2, 134.5, 130.1, 129.9, 129.6, 128.9, 128.6, 128.4, 127.5, 126.9, 26.9, 25.6, 12.9; HRMS [(ESI), $(M+Na)^{+}$]: 288.1364 (cal. for C₁₈H₁₉N₁O₁Na 288.1363); Registry Number: [1427042-14-5].

(E)-N-Methyl-2-(1-phenylpent-1-en-1-yl)benzamide (4u):

Work-up and purification by column chromatography, white solid (43 mg, 31%), mp: 78-79 °C; IR (KBr): 3565, 1698, 1540, 1264, 748 cm⁻¹; ¹H NMR (600 MHz, $CDCl_3$): δ 7.49 (d, J = 7.2 Hz, 1H), 7.38 (t, J = 7.8 Hz, 1H), 7.31–7.28 (m, 4H), 7.22 $(t, J = 7.2 \text{ Hz}, 1\text{H}), 7.12 (d, J = 7.2 \text{ Hz}, 2\text{H}), 5.87 (t, J = 7.2 \text{ Hz}, 1\text{H}), 5.70 (s, 1\text{$ 2.66 (d, J = 4.8 Hz, 3H), 2.29 (q, J = 7.8 Hz, 2H), 1.49 (sext, J = 7.2 Hz, 2H), 0.94 $(t, J = 7.2 \text{ Hz}, 3\text{H}); {}^{13}\text{C} \text{ NMR} (150 \text{ MHz}, \text{CDCl}_3): \delta 170.0, 141.9, 140.8, 139.5, 136.1, 133.3, 130.8, 130.8)$ 129.7, 129.7, 128.3, 127.8, 127.2, 127.0, 31.7, 26.5, 23.2, 13.8; HRMS [(ESI), (M+Na)⁺]: 302.1512 (cal. for C₁₉H₂₁NONa 302.1520); New compound.

(E)-N-Methyl-2-(1-phenylpent-1-en-2-yl)benzamide (4u'):

Work-up and purification by column chromatography, white solid (28 mg, 20%), mp: 92–93 °C; IR (KBr): 3446, 1683, 1558, 1265, 743 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ 7.73 (d, J = 7.2 Hz, 1H), 7.44–7.35 (m, 4H), 7.33–7.27 (m, 4H), 6.57 (s, 1H), 6.19 (s, 1H), 2.95 (d, J = 1.8 Hz, 3H), 2.56–2.53 (m, 2H), 1.31 (sext, J = 7.8 Hz, 2H), 0.82 (t, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 169.8, 144.6, 141.9, 137.2,

134.3, 130.1, 130.1, 129.7, 128.8, 128.6, 128.4, 127.5, 126.9, 34.5, 26.9, 21.7, 14.0; HRMS [(ESI), $(M+Na)^{+}$]: 302.1518 (cal. for C₁₉H₂₁NONa 302.1520); New compound.

(E)-N-Methyl-2-(1-phenyl-2-(trimethylsilyl)vinyl)benzamide (4v):

Work-up and purification by column chromatography, white solid (12 mg, 8%), mp: 95-96 °C; IR (KBr): 3445, 1698, 1558, 749 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ 7.47 (dd, *J* = 7.2, 1.2 Hz, 1H), 7.36 (td, *J* = 7.5, 1.2 Hz, 1H), 7.31–7.26 (m, 5H), 7.18–7.17 (m, 2H), 6.01 (s, 1H), 5.68 (s, 1H), 2.70 (d, J = 5.4 Hz, 3H), -0.03 (s, 9H); ¹³C NMR (150 MHz, CDCl₃): δ 170.0, 157.5, 143.5, 142.1, 135.7,

134.3, 130.2, 129.6, 129.3, 128.0, 127.8, 127.7, 127.6, 26.5, 0.1; HRMS [(ESI), (M+Na)⁺]: 332.1444 (cal. for C₁₉H₂₃NOSiNa 332.1446); New compound.

(Z)-N-Methyl-2-(2-phenyl-1-(trimethylsilyl)vinyl)benzamide (4v'):

Work-up and purification by column chromatography, white solid (85 mg, 55%), mp: 101–102 °C; IR (KBr): 3419, 1683, 1540, 749 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ 7.84 (dd, J = 7.8, 1.2 Hz, 1H), 7.42–7.37 (m, 3H), 7.34–7.30 (m, 5H), 7.09 (dd, J = 7.2, 0.6 Hz, 1H), 6.40 (s, 1H), 2.98 (d, J = 4.8 Hz, 3H), -0.10 (s, 9H); ¹³C NMR (150 MHz, CDCl₃): δ 169.3, 148.9, 145.1, 144.6, 139.0, 133.2, 130.3, 129.0, 128.9, 128.3, 128.2, 127.8, 126.4, 26.7, 0.3; HRMS [(ESI), $(M+Na)^+$]: 332.1444 (cal. for C₁₉H₂₃NOSiNa

2-Methyl-3,4,5,6-tetraphenylpyridine (5):

332.1446); New compound.

Work-up and purification by column chromatography, white solid (119 mg, 60%), mp: 157–158 °C; IR (KBr): 2957, 1537, 1398, 1028, 698 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ 7.34–7.33 (m, 2H), 7.21–7.18 (m, 5H), 7.16–7.15 (m, 1H), 7.06–7.05 (m, 2H), 6.97–6.95 (m, 3H), 6.90–6.88 (m, 3H), 6.85–6.83 (m, 2H), 6.74–6.72 (m, 2H), 2.48 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 156.1, 155.3, 149.3, 140.9,

138.8, 138.4, 138.1, 134.7, 132.6 131.4, 130.2, 130.0, 129.9, 127.8, 127.6, 127.3, 127.2, 126.9, 126.6, 126.1, 24.3; HRMS [(ESI), $(M+H)^+$]: 398.1906 (cal. for C₃₀H₂₄N 398.1909); Registry Number: [41728-97-6].

References

- (1) Abe T.; Takahashi Y.; Matsubara Y.; Yamada K. Org. Chem. Front. 2017, 4, 2124.
- (2) Shu, Z.; Guo, Y.; Li, W.; Wang, B. Catal. Today 2017, 297, 292.

¹H and ¹³C NMR Spectra for Products (CDCl₃) 2-Methyl-3,4-diphenylisoquinolin-1(2*H*)-one (3a) (600 MHz)

7-Methoxy-2-methyl-3,4-diphenylisoquinolin-1(2*H*)-one (3b) (600 MHz)

2,7-Dimethyl-3,4-diphenylisoquinolin-1(2H)-one (3c) (400 MHz)

2-Methyl-3,4-diphenyl-7-(trifluoromethyl)isoquinolin-1(2*H*)-one (3d) (400 MHz)

3,4-Bis(4-methoxyphenyl)-2-methylisoquinolin-1(2H)-one (3k) (600 MHz)

3,4-Diethyl-2-methylisoquinolin-1(2H)-one (3l) (400 MHz)

2-Methyl-3,4-dipropylisoquinolin-1(2H)-one (3m) (400 MHz)

3,4-Diethyl-6,7-dimethoxy-2-methylisoquinolin-1(2H)-one (3n) (400 MHz)

6,7-Dimethoxy-2-methyl-3,4-dipropylisoquinolin-1(2*H*)-one (30) (400 MHz)

6-Chloro-2-methyl-3,4-dipropylisoquinolin-1(2H)-one (3p) (400 MHz)

3,4-Diethyl-2-methyl-7-(trifluoromethyl)isoquinolin-1(2H)-one (3q) (400 MHz)

2,3,4-Triphenylisoquinolin-1(2H)-one (3r) (400 MHz)

2-(4-Fluorophenyl)-3,4-diphenylisoquinolin-1(2H)-one (3s) (400 MHz)

2,4-Dimethyl-3-phenylisoquinolin-1(2H)-one (3u) (400 MHz)

2,6-Dimethyl-3-phenyl-4-(trimethylsilyl)isoquinolin-1(2*H*)-one (3x) (600 MHz)

(E)-2-(1,2-Diphenylvinyl)-N-methylbenzamide (4a) (600 MHz)

(E)-2-(1,2-Diphenylvinyl)-4,5-dimethoxy-N-methylbenzamide (4c) (600 MHz)

(E)-2-(1,2-Diphenylvinyl)-N,4-dimethylbenzamide (4d) (600 MHz)

(E)-2-(1,2-Diphenylvinyl)-N,3-dimethylbenzamide (4e) (600 MHz)

(E)-4-Chloro-2-(1,2-diphenylvinyl)-N-methylbenzamide (4f) (600 MHz)

(E)-2-(1,2-diphenylvinyl)-N-methyl-5-(trifluoromethyl)benzamide (4g) [¹H NMR (600 MHz, C₆D₆); ¹³C NMR (300 MHz, CDCl₃)]

(E)-3-(1,2-Diphenylvinyl)-N-methylthiophene-2-carboxamide (4h) (600 MHz)

(E)-2-(But-2-en-2-yl)-N-methylbenzamide (4i) (600 MHz)

(E)-2-(Hex-3-en-3-yl)-N-methylbenzamide (4j) (600 MHz)

(E)-2-(1,2-Bis(4-(trifluoromethyl)phenyl)vinyl)-N-methylbenzamide (4m) (600 MHz)

(E)-2-(1,2-Bis(4-methoxyphenyl)vinyl)-N-methylbenzamide (4n) (600 MHz)

(E)-2-(1,2-Di-*m*-tolylvinyl)-*N*-methylbenzamide (40) (600 MHz)

(E)-4-Chloro-2-(hex-3-en-3-yl)-N-methylbenzamide (4q) (400 MHz)

(*E*)-2-(1,2-Bis(4-methoxyphenyl)vinyl)-*N*-methyl-5-(trifluoromethyl)benzamide (4r) (600 MHz)

(E)-N-Methyl-2-(1-phenylprop-1-en-1-yl)benzamide (4s) (600 MHz)

(E)-N-Methyl-2-(1-phenylprop-1-en-2-yl)benzamide (4s') (600 MHz)

(E)-N-Methyl-2-(1-phenylbut-1-en-1-yl)benzamide (4t) (600 MHz)

(E)-N-Methyl-2-(1-phenylbut-1-en-2-yl)benzamide (4t') (600 MHz)

(E)-N-Methyl-2-(1-phenylpent-1-en-1-yl)benzamide (4u) (600 MHz)

(E)-N-Methyl-2-(1-phenylpent-1-en-2-yl)benzamide (4u') (600 MHz)

(E)-N-Methyl-2-(1-phenyl-2-(trimethylsilyl)vinyl)benzamide (4v) (600 MHz)

2-Methyl-3,4,5,6-tetraphenylpyridine (5) (600 MHz)

3-(Benzo[d][1,3]dioxol-5-yl)-4-(2-hydroxyethyl)-6,7-dimethoxy-2-methylisoquinolin-1(2H)-one (3y) (600 MHz)

2-(3-(Benzo[d][1,3]dioxol-5-yl)-6,7-dimethoxy-2-methyl-1-oxo-1,2-dihydroisoquinolin-4-yl)acetaldehyde (3y') (600 MHz)

Oxynitidine (600 MHz)

Nitidine Chloride (DMSO-*d*₆ for ¹H NMR and CDCl₃ for ¹³C NMR, 600 MHz)

2-(Methylcarbamoyl)phenyltrifluoromethanesulfonate (1a-f) (600 MHz)

Deuterated product 4a-D (600 MHz)

NOE spectrum of 3x (600 MHz)

Single-Crystal X-Ray Diffraction Analysis:

X-Ray Structure of Compound 3a:

(CCDC 2087800 (**3a**) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via <u>www.ccdc.cam.ac.uk/data_request/cif</u>.)

Figure S1. X-ray crystal structure of 3a. Ellipsoids are drawn at the 50% probability level.

Table S4.	Crystal o	data and	structure	refinement	for 3a.
-----------	-----------	----------	-----------	------------	---------

Identification code	1_a	
Empirical formula	C22H17NO	
Formula weight	311.36	
Temperature	296(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 9.3912(2) Å	$a = 69.3430(10)^{\circ}$.
	b = 9.6810(3) Å	$b = 66.3600(10)^{\circ}$.
	c = 10.9201(3) Å	g = 67.4890(10)°.
Volume	816.58(4) Å ³	-
Z	2	
Density (calculated)	1.266 Mg/m ³	
Absorption coefficient	0.077 mm ⁻¹	
F(000)	328	
Crystal size	? x ? x ? mm ³	
Theta range for data collection	2.343 to 28.052°.	
Index ranges	-12<=h<=12, -12<=k<=12, -14	4<=1<=14
Reflections collected	32840	
Independent reflections	3957 [R(int) = 0.0656]	
Completeness to theta = 25.242°	99.9 %	
Refinement method	Full-matrix least-squares on F	2
Data/restraints/parameters	3957/0/218	
Goodness-of-fit on F^2	1.051	
Final R indices [I>2sigma(I)]	R1 = 0.0565, wR2 = 0.1232	
R indices (all data)	R1 = 0.1061, wR2 = 0.1513	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.193 and -0.209 e.Å ⁻³	

X-Ray Structure of Compound 4a:

(CCDC 2087801 (**4a**) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via <u>www.ccdc.cam.ac.uk/data_request/cif.</u>)

Figure S2. X-ray crystal structure of 4a. Ellipsoids are drawn at the 50% probability level.

Table S5. Crystal data and structure refinement for 4a.

Identification code	GP_75P		
Empirical formula	C22H19NO		
Formula weight	313.38		
Temperature	296(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	$P2_1/n$		
Unit cell dimensions	a = 13.0738(5) Å	= 90°.	
	b = 8.9358(4) Å	= 92.019(2)°.	
	c = 14.7988(7) Å	= 90°.	
Volume	1727.79(13) Å ³		
Z	4		
Density (calculated)	1.205 Mg/m ³		
Absorption coefficient	0.073 mm ⁻¹		
F(000)	664		
Crystal size	? x ? x ? mm ³		
Theta range for data collection	2.663 to 28.318°.		
Index ranges	-17<=h<=16, -11<=k<=11, -19<=l<=19		
Reflections collected	40164		
Independent reflections	4266 [R(int) = 0.1175]		
Completeness to theta = 25.242°	99.6 %		
Refinement method	Full-matrix least-squares on F ²		
Data/restraints/parameters	4266/0/218		
Goodness-of-fit on F ²	1.099		
Final R indices [I>2sigma(I)]	R1 = 0.0828, $wR2 = 0.1294$		
R indices (all data)	ata) $R1 = 0.1618, wR2 = 0.1556$		
Extinction coefficient	n/a		
rgest diff. peak and hole 0.140 and -0.171 e.Å ⁻³			

X-Ray Structure of Compound 3w:

(CCDC 2087803 (**3w**) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via <u>www.ccdc.cam.ac.uk/data_request/cif.</u>)

Figure S3. X-ray crystal structure of 3w. Ellipsoids are drawn at the 50% probability level.

Table S6. Crystal data and structure refinement for 3w.

Identification code	d23248	
Empirical formula	C19H21NOSi	
Formula weight	307.46	
Temperature	200(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P -1	
Unit cell dimensions	a = 8.9558(3) Å	$= 102.940(2)^{\circ}.$
	b = 9.7312(4) Å	$= 96.5450(10)^{\circ}.$
	c = 10.0870(4) Å	$= 103.5060(10)^{\circ}.$
Volume	820.15(5) Å ³	
Z	2	
Density (calculated)	1.245 Mg/m ³	
Absorption coefficient	0.145 mm ⁻¹	
F(000)	328	
Crystal size	0.68 x 0.47 x 0.40 mm ³	
Theta range for data collection	2.23 to 25.09°.	
Index ranges	-10<=h<=10, -11<=k<=11,	-12<=l<=12
Reflections collected	11110	
Independent reflections	2884 [R(int) = 0.0364]	
Completeness to theta = 25.09°	99.0 %	
Absorption correction	multi-scan	
Max. and min. transmission	0.9444 and 0.9080	_
Refinement method	Full-matrix least-squares on	$1 \mathrm{F}^2$
Data/restraints/parameters	2884/0/203	
Goodness-of-fit on F ²	1.047	
Final R indices [I>2sigma(I)]	R1 = 0.0450, wR2 = 0.1275	5
R indices (all data)	R1 = 0.0493, wR2 = 0.1306	5
Largest diff. peak and hole	0.320 and -0.285 e.Å ⁻³	

X-Ray Structure of Compound 4v':

(CCDC 2109230 (**4v**') contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via <u>www.ccdc.cam.ac.uk/data_request/cif.</u>)

Figure S4. X-ray crystal structure of 4v'. Ellipsoids are drawn at the 50% probability level.

Table S7. Crystal data and structure refinement for 4v'.

Identification code Empirical formula Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions	$\begin{array}{llllllllllllllllllllllllllllllllllll$
Volume	2702.1(11) Å ³
Z	4
Density (calculated)	0.761 Mg/m ³
Absorption coefficient	0.088 mm ⁻¹
F(000)	664
Crystal size	0.79 x 0.03 x 0.01 mm ³
Theta range for data collection	2.01 to 25.11°.
Index ranges	-12<=h<=12, -16<=k<=16, -25<=l<=25
Reflections collected	56021
Independent reflections	9592 [R(int) = 0.2132]
Completeness to theta = 25.11°	99.6 % Absorption correction multi-scan
Max. and min. transmission	0.9991 and 0.9337
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	9592/12/201
Goodness-of-fit on F ²	1.686
Final R indices [I>2sigma(I)]	R1 = 0.2415, wR2 = 0.5306
R indices (all data)	R1 = 0.3061, wR2 = 0.5518
Largest diff. peak and hole	0.640 and -1.702 e.Å ⁻³

X-Ray Structure of Compound 5:

(CCDC 2087805 (**5**) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via <u>www.ccdc.cam.ac.uk/data_request/cif</u>.)

Figure S5. X-ray crystal structure of 5. Ellipsoids are drawn at the 50% probability level.

Table S8. Crystal data and structure refinement for 5.

19AP04_1		
C30H23N		
397.2		
296(2) K		
0.71073 Å		
Triclinic		
P-1		
a = 6.5913(10) Å	$= 69.396(4)^{\circ}.$	
b = 11.309(2) Å	$= 84.651(7)^{\circ}.$	
c = 16.066(4) Å	$= 88.169(4)^{\circ}.$	
1116.1(4) Å ³		
4		
1.183 Mg/m ³		
0.068 mm ⁻¹		
420		
0.391 x 0.069 x 0.060 mm ³		
2.718 to 28.355°.		
-8<=h<=8, -15<=k<=15, -21<=l<	=21	
91333		
Independent reflections $5569 [R(int) = 0.0462]$		
Completeness to theta = 25.242° 99.8 %		
Numerical Mu Calculated		
0.7457 and 0.7106		
ement method Full-matrix least-squares on F ²		
5569/0/281		
1.030		
R1 = 0.0453, wR2 = 0.1143		
R1 = 0.0651, wR2 = 0.1292		
n/a		
0.178 and -0.146 e.Å ⁻³		
	$\begin{array}{l} 19AP04_1\\ C30H23N\\ 397.2\\ 296(2) K\\ 0.71073 Å\\ Triclinic\\ P-1\\ a=6.5913(10) Å\\ b=11.309(2) Å\\ c=16.066(4) Å\\ 1116.1(4) Å^3\\ 4\\ 1.183 Mg/m^3\\ 0.068 mm^{-1}\\ 420\\ 0.391 x 0.069 x 0.060 mm^3\\ 2.718 to 28.355^{\circ}.\\ -8<=h<=8, -15<=k<=15, -21<=l<91333\\ 5569 [R(int) = 0.0462]\\ 99.8 \%\\ Numerical Mu Calculated\\ 0.7457 and 0.7106\\ Full-matrix least-squares on F^2\\ 5569/0/281\\ 1.030\\ R1 = 0.0453, wR2 = 0.1143\\ R1 = 0.0651, wR2 = 0.1292\\ n/a\\ 0.178 and -0.146 e.Å^{-3}\\ \end{array}$	

X-Ray Structure of Compound 6:

(CCDC 2089397 (6) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via <u>www.ccdc.cam.ac.uk/data_request/cif</u>.)

Figure S6. X-ray crystal structure of 6. Ellipsoids are drawn at the 50% probability level.

Table S9. Crystal data and structure refinement for 6.

Identification code	02_a	
Empirical formula	C22H17NO	
Formula weight	311.36	
Temperature	296(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	$P2_{1}/n$	
Unit cell dimensions	a = 8.8118(4) Å	= 90°.
	b = 18.3413(8) Å	$= 102.612(2)^{\circ}.$
	c = 10.4793(5) Å	= 90°.
Volume	1652.80(13) Å ³	
Z	4	
Density (calculated)	1.251 Mg/m ³	
Absorption coefficient	0.076 mm ⁻¹	
F(000)	656	
Crystal size	0.468 x 0.272 x 0.214 mm ³	
Theta range for data collection	2.221 to 28.343°.	
Index ranges	-11<=h<=11, -24<=k<=24, -13<=l<=13	
Reflections collected	25049	
Independent reflections	flections $4104 [R(int) = 0.0452]$	
Completeness to theta = 25.242°	99.4 %	
Absorption correction	Numerical Mu Calculated	
Max. and min. transmission	0.7379 and 0.7199	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	4104 / 0 / 218	
Goodness-of-fit on F ²	1.068	
Final R indices [I>2sigma(I)]	$R_1 = 0.0570, wR_2 = 0.1543$	
R indices (all data)	$R_1 = 0.0745, wR_2 = 0.1695$	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.354 and -0.193 e.Å ⁻³	

X-Ray Structure of Compound 7:

(CCDC 2087808 (7) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via <u>www.ccdc.cam.ac.uk/data_request/cif</u>.)

Figure S7. X-ray crystal structure of 7. Ellipsoids are drawn at the 50% probability level.

 Table S10. Crystal data and structure refinement for 7.

Identification code	19JUN01	
Empirical formula	C22H19NO	
Formula weight	313.38	
Temperature	296(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	$P2_1/c$	
Unit cell dimensions	a = 12.0230(3) Å	= 90°.
	b = 7.74160(10) Å	$= 103.8500(10)^{\circ}.$
	c = 19.2617(4) Å	$=90^{\circ}$.
Volume	1740.70(6) Å ³	
Z	4	
Density (calculated)	1.196 Mg/m ³	
Absorption coefficient	0.073 mm ⁻¹	
F(000)	664	
Crystal size	$0.510 \ge 0.270 \ge 0.152 \text{ mm}^3$	
Theta range for data collection	2.848 to 28.316°.	
Index ranges	-16<=h<=15, -10<=k<=10, -25	5<=l<=25
Reflections collected	28519	
Independent reflections	4302 [R(int) = 0.0433]	
Completeness to theta = 25.242°	99.6 %	
Absorption correction	Numerical Mu Calculated	
Max. and min. transmission	0.7457 and 0.7231	_
Refinement method	Full-matrix least-squares on F ²	2
Data/restraints/parameters	4302/0/218	
Goodness-of-fit on F ²	1.045	
Final R indices [I>2sigma(I)]	R1 = 0.0488, wR2 = 0.1079	
R indices (all data)	R1 = 0.0787, wR2 = 0.1268	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.159 and -0.155 e.Å ⁻³	