Cobalt-Catalyzed Coupling Reactions of 2-Halobenzamides with Alkynes: Investigation of the Ligand-Controlled Dual Pathways

Vijaykumar H. Thorat, ${ }^{\text {a }}$ Hasil Aman, ${ }^{\text {b }}$ Yu-Lin Tsai, ${ }^{\text {a }}$ Gangaram Pallikonda, ${ }^{\text {a }}$ Gary Jing Chuang* ${ }^{\text {b }}$ and Jen-Chieh Hsieh*a
${ }^{a}$ Department of Chemistry, Tamkang University, New Taipei City, 251301, Taiwan (R.O.C.) jchsieh@mail.tku.edu.tw
${ }^{b}$ Department of Chemistry, Chung Yuan Christian University, Taoyuan, 320314, Taiwan (R.O.C.) gichuang@cycu.edu.tw

Table of Contents Page No
General Information and procedure S2-S3
Optimization study S3-S4
Synthetic procedures of substrates, alkaloids and \boldsymbol{O}-cyclization products S4-S7
Spectral data for all products S8-S17
References S17
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of all products S18-S74
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 1a-f S75
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 4a-D S76
NOE spectra of products $3 x$ S77
X-ray data S78-S84

General information:

All reagents were purchased from Sigma-Aldrich, Alfa-Aesar, TCI and Fisher-Acros, which were used without further purification unless otherwise noted. All manipulations of oxygen- and moisture-sensitive materials were conducted with a standard Schlenk technique or in the glove box. Flash column chromatography was performed using silica gel ($230-400 \mathrm{mesh}$). Analytical thin layer chromatography (TLC) was performed on $60 \mathrm{~F}_{254}(0.25 \mathrm{~mm})$ plates and visualization was accomplished with UV light (254 and 354 nm) and/or an aqueous alkaline KMnO_{4} solution followed by heating. Proton and carbon nuclear magnetic resonance spectra (${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR) were recorded on Bruker 300, 400 or 600 spectrometer with $\mathrm{Me}_{4} \mathrm{Si}$ or solvent resonance as the internal standard (${ }^{1} \mathrm{H} \mathrm{NMR}, \mathrm{Me}_{4} \mathrm{Si}$ at $0 \mathrm{ppm}, \mathrm{CDCl}_{3}$ at $7.26 \mathrm{ppm}, d_{6}$ - DMSO at $2.49 \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}, \mathrm{Me} 4 \mathrm{Si}$ at $0 \mathrm{ppm}, \mathrm{CDCl}_{3}$ at $77.0 \mathrm{ppm}, d_{6}-\mathrm{DMSO}$ at 39.7 ppm$) .{ }^{1} \mathrm{H}$ NMR data are reported as follows: chemical shift, multiplicity $(\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, quint $=$ quintet, sext $=$ sextet, sept $=$ septet, $\mathrm{br}=$ broad, $\mathrm{m}=$ multiplet), coupling constants (Hz), and integration. IR spectral data were recorded on a Bruker TENSOR 37 spectrometer. Melting points (mp) were determined using SRS OptiMelt MPA100 or Buchi B-540. GC-MS data were obtained from the HP 5890 Series II GC/HP 5972 GC MASS Spectrometer System. High Resolution Mass spectral data were obtained from MAT-95XL HRMS by using EI method. X-ray data was obtained from Bruker APEX DUO.

General procedure for the Co-catalyzed cyclization reaction:

Addition of all reagents was conducted in a glove box. A screw-capped vial ($10-\mathrm{mL}$) was added $\mathrm{Co}($ dppe $) \mathrm{Br}_{2}$ (dppe $=1,2$-bis(diphenylphosphino)ethane) $(31 \mathrm{mg}, 0.05 \mathrm{mmol}), \mathrm{Zn}(1.0 \mathrm{mmol}), \mathrm{NEt}_{3}$ $(1.0 \mathrm{mmol})$, substrate $1(0.5 \mathrm{mmol})$ and alkyne $2(0.75 \mathrm{mmol})$ in dry $\mathrm{CH}_{3} \mathrm{CN}(1.5 \mathrm{~mL})$. The vial was then removed from the glove box, and allowed to stir at $90^{\circ} \mathrm{C}$ for 16 h . The mixture was filtered through a celite pad and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filtrate was concentrated and the residue was purified through a column chromatography by using hexane and ethyl acetate as eluent to afford the desired products 3.
All structures were characterized by the HRMS, ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra; products $\mathbf{3 a}$ and $\mathbf{3 w}$ were verified by single crystal X-ray diffraction. Spectral data, melting point, IR data, HRMS data and the copies of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra for all compounds are listed below.

General procedure for the Co-catalyzed reductive coupling reaction:

Addition of all reagents was conducted in a glove box. A screw-capped vial ($10-\mathrm{mL}$) was added $\mathrm{Co}(\mathrm{dppf}) \mathrm{Cl}_{2}\left(\mathrm{dppf}=1,2\right.$-bis(diphenylphosphino)ferrocene) $(33 \mathrm{mg}, 0.05 \mathrm{mmol}), \mathrm{Zn}(1.0 \mathrm{mmol}), \mathrm{H}_{2} \mathrm{O}$ $(0.4 \mathrm{mmol})$, substrate $1(0.5 \mathrm{mmol})$ and alkyne $2(0.6 \mathrm{mmol})$ in dry $\mathrm{CH}_{3} \mathrm{CN}(2.0 \mathrm{~mL})$. The vial was then removed from the glove box, and allowed to stir at $90^{\circ} \mathrm{C}$ for 20 h . The mixture was filtered through a celite pad and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filtrate was concentrated and the residue was purified through a column chromatography by using hexane and ethyl acetate as eluent to afford the desired products 4.
All structures were characterized by the HRMS, ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra; products $\mathbf{4 a}$ and $\mathbf{4 v}$, were verified by single crystal X-ray diffraction. Spectral data, melting point, IR data, HRMS data and the copies of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra for all compounds are listed below.

Table S1. Optimization study of the Co-catalyzed cyclization ${ }^{a, b}$

	$\mathbf{1 a}$ (1.0 equiv) $\mathbf{2 a}$ (1.5 equiv)			$\xrightarrow[\begin{array}{c}\text { base (2.0 equiv) } \\ \text { solvent, } 80^{\circ} \mathrm{C}, 16 \mathrm{~h}\end{array}]{$ [Co]/ligand $\text { (10 mol (2. } \%, 1.1)$$}$			 3a 4a			yield (\%)	
					(\%)						
					4a					3 a	4a
1	$\mathrm{CoI}_{2} / \mathrm{PPh}_{3}$	$\mathrm{Et}_{3} \mathrm{~N}$	$\mathrm{CH}_{3} \mathrm{CN}$	9	23	13	Co (dppe) Br_{2}	pyrolidine	$\mathrm{CH}_{3} \mathrm{CN}$	10	16
2	$\mathrm{CoI}_{2} / \mathrm{PCy}_{3}$	$\mathrm{Et}_{3} \mathrm{~N}$	$\mathrm{CH}_{3} \mathrm{CN}$	18	20	14	Co (dppe) Br_{2}	orpholine	$\mathrm{CH}_{3} \mathrm{CN}$	trace	13
3	$\mathrm{CoI}_{2} /$ dppe	$\mathrm{Et}_{3} \mathrm{~N}$	$\mathrm{CH}_{3} \mathrm{CN}$	58	trace	15	Co (dppe) Br_{2}	DIPEA	$\mathrm{CH}_{3} \mathrm{CN}$	trace	36
4	$\mathrm{CoI}_{2} / \mathrm{dppp}$	$\mathrm{Et}_{3} \mathrm{~N}$	$\mathrm{CH}_{3} \mathrm{CN}$	46	8	16	Co (dppe) Br_{2}	DBU	$\mathrm{CH}_{3} \mathrm{CN}$	21	17
5	$\mathrm{CoI}_{2} / \mathrm{dppb}$	$\mathrm{Et}_{3} \mathrm{~N}$	$\mathrm{CH}_{3} \mathrm{CN}$	41	27	17	$\mathrm{Co}(\mathrm{dppe}) \mathrm{Br}_{2}$	NaHCO_{3}	$\mathrm{CH}_{3} \mathrm{CN}$	trace	13
6	$\mathrm{CoI}_{2} / \mathrm{dppm}$	$\mathrm{Et}_{3} \mathrm{~N}$	$\mathrm{CH}_{3} \mathrm{CN}$	14	17	18	Co (dppe) Br_{2}	$\mathrm{K}_{2} \mathrm{CO}_{3}$	$\mathrm{CH}_{3} \mathrm{CN}$	trace	22
7	$\mathrm{CoI}_{2} / \mathrm{dppf}$	$\mathrm{Et}_{3} \mathrm{~N}$	$\mathrm{CH}_{3} \mathrm{CN}$	0	31	19	Co (dppe) Br_{2}	$\mathrm{Et}_{3} \mathrm{~N}$	DMSO	19	24
8	$\mathrm{Co}(\mathrm{acac})_{2} /$ dppe	$\mathrm{Et}_{3} \mathrm{~N}$	$\mathrm{CH}_{3} \mathrm{CN}$	41	8	20	$\mathrm{Co}(\mathrm{dppe}) \mathrm{Br}_{2}$	$\mathrm{Et}_{3} \mathrm{~N}$	DMF	22	15
9	Co (dppe) I_{2}	$\mathrm{Et}_{3} \mathrm{~N}$	$\mathrm{CH}_{3} \mathrm{CN}$	68	17	21	Co (dppe) Br_{2}	$\mathrm{Et}_{3} \mathrm{~N}$	THF	46	10
10	Co (dppe) Br_{2}	$\mathrm{Et}_{3} \mathrm{~N}$	$\mathrm{CH}_{3} \mathrm{CN}$	63	10	22	Co (dppe) Br_{2}	$\mathrm{Et}_{3} \mathrm{~N}$	1,4-dioxane	53	11
11	Co (dppf) Br_{2}	$\mathrm{Et}_{3} \mathrm{~N}$	$\mathrm{CH}_{3} \mathrm{CN}$	0	45	23	Co (dppe) Br_{2}	$\mathrm{Et}_{3} \mathrm{~N}$	DCM	trace	20
12	Co (dppe) Br_{2}	pyridine	$\mathrm{CH}_{3} \mathrm{CN}$	18	13	24	Co (dppe) Br_{2}	$\mathrm{Et}_{3} \mathrm{~N}$	toluene	18	0

${ }^{a}$ Reaction conditions: 1a ($0.2 \mathrm{mmol}, 1.0$ equiv), 2a ($0.3 \mathrm{mmol}, 1.5$ equiv), cobalt source ($0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%$), bidentate ligand ($0.02 \mathrm{~mol}, 10 \mathrm{~mol} \%$; for $\mathrm{PPh}_{3}, 20 \mathrm{~mol} \%$ was used), base ($0.4 \mathrm{mmol}, 2$ equiv) in 0.6 mL solvent at $80^{\circ} \mathrm{C}$ for 16 h .
${ }^{b}$ Yields were measured from the crude products by ${ }^{1} \mathrm{H}$ NMR integration method using mesitylene as an internal standard.
Table S2. Optimization study of the Co-catalyzed cyclization ${ }^{a, b}$

entry	solvent	$\boldsymbol{t}\left({ }^{\circ} \mathrm{C}\right)$	yield (\%)						
	entry	solvent	$\boldsymbol{t}\left({ }^{\circ} \mathrm{C}\right)$	yield (\%)					
3a	4a								
1	$\mathrm{CH}_{3} \mathrm{CN}$	80	63	10	7	1,4-dioxane	90	67	21
2	$\mathrm{CH}_{3} \mathrm{CN}$	90	73	6	8	toluene	80	18	0
3	$\mathrm{CH}_{3} \mathrm{CN}$	100	58	13	9	toluene	90	26	0
4	THF	80	46	10	10	toluene	100	41	0
5	THF	90	57	12	11	toluene	110	38	0
6	1,4-dioxane	80	53	11	12	toluene	120	19	0

[^0]Table S3. Optimization study of the Co-catalyzed reductive coupling reaction ${ }^{a, b}$

${ }^{a}$ Reaction conditions: 1a ($0.2 \mathrm{mmol}, 1.0$ equiv), 2a ($0.24 \mathrm{mmol}, 1.2$ equiv), $\operatorname{Co}(\mathrm{dppf}) \mathrm{X}_{2}(0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, proton source (x equiv) in 0.8 mL dry solvent at $90^{\circ} \mathrm{C}$ for 20 h . ${ }^{b}$ Yields were measured from the crude products by ${ }^{1} \mathrm{H}$ NMR integration method using mesitylene as an internal standard. IPA $=$ isopropanol; 2,6 -DTBP $=2,6$-di-tert-butylphenol.

Procedure for the synthesis of 2-halo- N-substitutedbenzamide (1): ${ }^{1}$

2-Halo-benzoic acid (20 mmol , 1.0 equiv) stirring in $\mathrm{SOCl}_{2}(12.5 \mathrm{~mL}$) was added DMF $(0.1 \mathrm{~mL})$ and kept stirring at $50{ }^{\circ} \mathrm{C}$ for 2 h . The resulted mixture was concentrated in vacuo and then dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(100 \mathrm{~mL}\right.$). Amine ($40 \mathrm{mmol}, 2.0$ equiv) was then added to the residue $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution at $0{ }^{\circ} \mathrm{C}$ and kept stirring at room temperature for 18 h . Upon completion of the reaction as observed by TLC, the mixture was diluted with $10 \% \mathrm{HCl}$ solution at $0^{\circ} \mathrm{C}$ and then extracted with EtOAc $(4 \times 150 \mathrm{~mL})$. The organic layer was collected, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by flash column chromatography to give compound $\mathbf{1}$. The spectral data and the copies of NMR spectra, please see reference 1 for the detail.

Procedure for the synthesis of 2-(methylcarbamoyl)phenyltrifluoromethanesulfonate (1a-f):

2-Hydroxy-N-methylbenzamide ($554 \mathrm{mg}, 4 \mathrm{mmol}, 1.0$ equiv) was kept stirring with NaH ($336 \mathrm{mg}, 14$ $\mathrm{mmol}, 3.5$ equiv) in THF (20 mL) at $0^{\circ} \mathrm{C}$ for 2 h . The suspension solution was then moved from ice bath and allowed to increase the temperature slowly from $0{ }^{\circ} \mathrm{C}$ to room temperature. $\mathrm{TfCl}(0.47 \mathrm{~mL})$ was added into the solution mixture and kept stirring at room temperature for 6 h . Upon completion of the reaction as observed by TLC, the mixture was extracted by brine and EtOAc ($3 \times 50 \mathrm{~mL}$), and the organic layer was collected, dried over anhydrous MgSO_{4} and concentrated in vacuo. The residue was purified through a flash column chromatography by using hexane and ethyl acetate as eluent to provide the desired compound as white powder ($962 \mathrm{mg}, 85 \%$); mp: $86{ }^{\circ} \mathrm{C}$; IR (KBr): 3287, 1638, $1207,901,729,626,519,467 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.80(\mathrm{dd}, J=7.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.54$ $(\mathrm{td}, J=7.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{td}, J=7.5,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{~d}, J=4.8 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.6,146.0,132.2,131.0,129.6,128.7,122.2,118.6\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=\right.$ $318 \mathrm{~Hz}), 26.8$; HRMS [(ESI), (M+H) ${ }^{+}$]: 284.0204 (cal. for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}_{4} \mathrm{~F}_{3} \mathrm{~S} 284.0204$); New compound.

Procedure for the synthesis of 4-(benzo[d][1,3]dioxol-5-yl)but-3-yn-1-ol (2n):

To a solution of 1-bromo-3,4-(methylenedioxy)benzene ($2.05 \mathrm{~mL}, 17 \mathrm{mmol}, 1.0$ equiv) in ultra pure water (35 mL) was added but-3-yn-1-ol ($1.54 \mathrm{~mL}, 20.4 \mathrm{mmol}, 1.2$ equiv), pyrrolidine ($1.40 \mathrm{~mL}, 17$ $\mathrm{mmol}, 1.0$ equiv), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(982 \mathrm{mg}, 0.85 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ and $\mathrm{CuI}(324 \mathrm{mg}, 1.7 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ under nitrogen atmosphere. The reaction mixture was kept stirring at $60^{\circ} \mathrm{C}$ for 4 h and cooled to the room temperature. The aqueous layer was extracted with EtOAc ($100 \mathrm{~mL} \times 2$), and the organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over MgSO_{4} and concentrated in vacuo. The residue was purified by flash column chromatography $\left[\mathrm{R}_{\mathrm{f}}=0.4\right.$ (25% ethyl acetate in hexanes)] to give compound 2n as brownish oil ($2.59 \mathrm{~g}, 80 \%$); IR (KBr): 3005, 1643, 1275, 1260, $1038 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 6.92(\mathrm{dd}, J=8.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.94(\mathrm{~s}$, $2 \mathrm{H}), 3.78(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.64(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 147.5,147.3$, 126.0, 116.5, 111.6, 108.3, 101.2, 84.6, 82.1, 61.1, 23.7; HRMS [(EI), $\left(\mathrm{M}^{+}\right)$: 190.0627 (cal. for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{O}_{3}$ 190.0630); Registry Number: [912649-12-8].

Procedure for the synthesis of (Z)- N-(3,4-diphenyl-1H-isochromen-1-ylidene)methanamine (6):

$4 a$

6

Compound 4a ($125 \mathrm{mg}, 0.4 \mathrm{mmol}$, 1.0 equiv), $\mathrm{I}_{2}\left(340 \mathrm{mg}, 1.2 \mathrm{mmol}, 3.0\right.$ equiv) and $\mathrm{NaHCO}_{3}(100 \mathrm{mg}$, $1.2 \mathrm{mmol}, 3.0$ equiv) in $\mathrm{CHCl}_{3}(5 \mathrm{~mL})$ was kept stirring at $70^{\circ} \mathrm{C}$. Upon completion of the reaction as observed by TLC, the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, filtered through a celite pad, washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and then concentrated in vacuo. The residue was purified by flash column chromatography to
afford compound 6 as yellow solid ($100 \mathrm{mg}, 81 \%$); mp: $130{ }^{\circ} \mathrm{C}$; $\operatorname{IR}(\mathrm{KBr}): 3450,1664,1383,756,698$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.28(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.35(\mathrm{~m}, 5 \mathrm{H}), 7.31-7.30(\mathrm{~m}, 2 \mathrm{H})$, $7.25-7.18(\mathrm{~m}, 4 \mathrm{H}), 6.99(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.85-6.83(\mathrm{~m}, 1 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz , CDCl_{3}): $\delta 151.9,148.9,135.1,134.6,133.9,131.5,131.4,128.9,128.7,128.5,127.9,127.8,127.7$, $126.6,126.2,123.7,115.4,33.6 ;$ HRMS [(ESI), $\left.(\mathrm{M}+\mathrm{H})^{+}\right]: 312.1388$ (cal. for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{NO} 312.1391$); New compound.

Procedure for the synthesis of (Z)-N-(3-benzyl-3-phenylisobenzofuran-1(3H)-ylidene)metha-

 namine (7):

Compound 4a ($250 \mathrm{mg}, 0.8 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was slowly added $\mathrm{TfOH}(48 \mathrm{mg}, 0.32 \mathrm{mmol}$, $40 \mathrm{~mol} \%$), and kept stirring at room temperature. Upon completion of the reaction as observed by TLC, the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, filtered through a celite pad and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filtrate was then extracted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and brine solution. The combined organic layer was collected, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by flash column chromatography using ethyl acetate and hexane as eluent to afford compound 7 as yellow solid (183 $\mathrm{mg}, 73 \%$); mp: $148{ }^{\circ} \mathrm{C}$; $\operatorname{IR}(\mathrm{KBr}): 3415,1713,1244,638,516 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $8.22(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.48-7.46(\mathrm{~m}, 5 \mathrm{H}), 7.16(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.76(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.90(\mathrm{~d}$, $J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.2,149.5$, $136.5,136.1,131.7,130.9,130.0,129.3,128.3,128.0,126.1,125.5,123.4,123.3,102.4,45.5,30.2$; HRMS [(ESI), $\left.(\mathrm{M}+\mathrm{H})^{+}\right]: 314.1543$ (cal. for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{NO} 314.1545$); New compound.

Synthetic pathway to approach oxynitidine and nitidine chloride:

Procedures and spectral data:

Procedure for the synthesis compound $3 y$:

In an nitrogen-filled glove box, a 4-mL vial equipped with a magnetic stirrer bar was charged sequentially with $\mathbf{1 g}$ ($136 \mathrm{mg}, 0.5 \mathrm{mmol}, 1.0$ equiv), $2 \mathrm{n}\left(143 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.5\right.$ equiv), Co (dppe) Br_{2} $(62 \mathrm{mg}, 0.1 \mathrm{mmol}), \mathrm{Zn}(65 \mathrm{mg}, 1.0 \mathrm{mmol})$, and $\mathrm{Et}_{3} \mathrm{~N}(0.14 \mathrm{~mL}, 1.0 \mathrm{mmol}, 2.0$ equiv $)$, followed by the addition of $\mathrm{CH}_{3} \mathrm{CN}(1.5 \mathrm{~mL})$. The vial was closed and removed from the glove box, and the mixture was kept stirring at $90{ }^{\circ} \mathrm{C}$ for 20 h . Upon cooling to room temperature, the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and filtered through a celite pad with additional $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ as an eluent. The organic solution was concentrated under reduced pressure, and the residue was purified through flash column chromatography $\left[\mathrm{R}_{\mathrm{f}}=0.2\right.$ (75% ethyl acetate in hexanes)) to give the desired compound 3 y as white solid ($136 \mathrm{mg}, 71 \%$); mp: $237{ }^{\circ} \mathrm{C}$; IR (KBr): 2875, 1636, 1240, $1034 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.90(\mathrm{~s}, 1 \mathrm{H}), 7.11(\mathrm{~s}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.74-6.73(\mathrm{~m}, 2 \mathrm{H})$,
$6.07(\mathrm{~s}, 2 \mathrm{H}), 4.03(\mathrm{~s}, 3 \mathrm{H}), 4.01(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.26(\mathrm{~s}, 3 \mathrm{H}), 2.82-2.73(\mathrm{~m}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.7,153.4,149.1,148.2,148.0,140.2,131.7,128.9,123.1,119.6,110.9$, 109.7, 108.8, 108.2, 103.7, 101.5, 62.5, 56.2, 56.1, 34.0, 31.9; HRMS [(EI), (M ${ }^{+}$)]: 383.1363 (cal. for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO}_{6} 383.1369$); Registry Number: [1207666-57-6].
Procedure for the synthesis compound 3y':
Compound $3 y$ ($115 \mathrm{mg}, 0.3 \mathrm{mmol}$, 1.0 equiv) was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and stirred at $0^{\circ} \mathrm{C}$ in an ice bath. The solution was added Dess-Martin periodinane ($191 \mathrm{mg}, 0.45 \mathrm{mmol}, 1.5$ equiv) in one portion and the reaction was kept stirring at room temperature for 4 h . The reaction was quenched at $0^{\circ} \mathrm{C}$ by stirring with a solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}\left(0.2 \mathrm{~g}\right.$ in 5 mL water) and $\mathrm{NaHCO}_{3 \text { (aq) }}$ (saturated, 5 mL) for 10 min to quench the unreacted Dess-Martin reagent. The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and extracted by aqueous NaHCO_{3}. The combined organic layer was collected, dried over the MgSO_{4} and concentrated in vacuo. The residue was purified through flash column chromatography $\left[\mathrm{R}_{\mathrm{f}}=0.5(40 \%\right.$ ethyl acetate in hexanes) $]$ to give the compound $3 y^{\prime}$ as pale yellow solid ($94 \mathrm{mg}, 82 \%$); mp: $223{ }^{\circ} \mathrm{C}$; IR (KBr): $3005,1716,1638,1514,1274,1035 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.56$ $(\mathrm{s}, 1 \mathrm{H}), 7.87(\mathrm{~s}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~s}, 1 \mathrm{H}), 6.71-6.70(\mathrm{~m}, 2 \mathrm{H}), 6.05(\mathrm{~s}, 2 \mathrm{H}), 3.99(\mathrm{~s}, 3$ H), $3.93(\mathrm{~s}, 3 \mathrm{H}), 3.51-3.50(\mathrm{~m}, 2 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 199.6,161.8,153.5$, $149.2,148.4,148.3,141.6,131.4,128.4,122.9,119.4,109.3,109.0,108.3,106.0,103.3,101.6,56.2$, 56.0, 44.4, 34.2; HRMS [(EI), $\left(\mathrm{M}^{+}\right)$]: 381.1216 (cal. for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{NO}_{6}$ 381.1212); Registry Number: [1207666-60-1].

Procedure for the synthesis of oxynitidine:

To a solution of compound $3 \mathbf{y}^{\prime}(114 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.0$ equiv) in acetic acid (4 mL) was added 10% hydrochloric acid $(0.2 \mathrm{~mL})$ at room temperature. After stirring the reaction for 8 h , acetic acid was removed in vacuo. The resulted solid was then dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and extracted by aqueous NaHCO_{3}. The combined organic layer was collected, dried over the MgSO_{4} and concentrated in vacuo. The residue was purified through flash column chromatography $\left[\mathrm{R}_{\mathrm{f}}=0.59\right.$ (70% ethyl acetate in hexanes)] to give oxynitidine as white solid ($96 \mathrm{mg}, 88 \%$); $\mathrm{mp}: 279{ }^{\circ} \mathrm{C}$; IR (KBr): $3005,1637,1274,1041 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.99(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~s}, 1 \mathrm{H}), 7.64(\mathrm{~s}, 1 \mathrm{H}), 7.59(\mathrm{~s}, 1 \mathrm{H}), 7.56$ $(\mathrm{d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~s}, 1 \mathrm{H}), 6.10(\mathrm{~s}, 2 \mathrm{H}), 4.10(\mathrm{~s}, 3 \mathrm{H}), 4.06(\mathrm{~s}, 3 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.3,153.5,149.7,147.5,147.0,135.9,131.8,128.9,123.2,121.0,119.1,118.3$, $116.7,108.6,104.8,102.8,102.6,101.5,56.3,56.1,41.2$; HRMS [(EI), $\left.\left(\mathrm{M}^{+}\right)\right]: 363.1110$ (cal. for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{NO}_{5} 363.1107$); Registry Number: [548-31-2].

Procedure for the synthesis of nitidine chloride:

$\mathrm{LiAlH}_{4}(11 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.0$ equiv) was added to a solution of oxynitidine ($109 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.0$ equiv) in dry THF (5 mL) and kept stirring at room temperature for 60 min . EtOAc was then added to quench the excess hydride. Filter and concentrated, the reaction residue was then treated with 10% $\mathrm{HCl}(5 \mathrm{~mL})$ at room temperature. the resulting precipitates were collected by filtration to afford nitidine chloride as yellow solid ($95 \mathrm{mg}, 91 \%$); mp: $280{ }^{\circ} \mathrm{C}$; IR (KBr): 1260, 1275, $1636 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 9.87(\mathrm{~s}, 1 \mathrm{H}), 8.89(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.35(\mathrm{~s}, 1 \mathrm{H}), 8.30(\mathrm{~s}, 1 \mathrm{H}), 8.27$ $(\mathrm{d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~s}, 1 \mathrm{H}), 7.76(\mathrm{~s}, 1 \mathrm{H}), 6.33(\mathrm{~s}, 2 \mathrm{H}), 4.89(\mathrm{~s}, 3 \mathrm{H}), 4.22(\mathrm{~s}, 3 \mathrm{H}), 4.03(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.3,153.5,149.7,147.5,147.0,135.9,131.9,128.9,123.2,121.0,119.2$, $118.4,116.7,108.7,104.8,102.8,102.7,101.5,56.3,56.1,41.2 ;$ HRMS [(FAB), (${ }^{+}$) $]: 348.1236$ (cal. for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{NO}_{4}{ }^{+} 348.1236$); Registry Number: [13063-04-2].

Spectral data for all products:

2-Methyl-3,4-diphenylisoquinolin-1(2H)-one (3a):

Work-up and purification by column chromatography, white solid (117 mg, 75\%), $\mathrm{mp}: 246-248{ }^{\circ} \mathrm{C}$; IR (KBr): 1646, 1604, 1552, 1489, 1414, 1176, 1074, 1025, 924, $781 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.57(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.47(\mathrm{~m}$, $2 \mathrm{H}), 7.26-7.12(\mathrm{~m}, 9 \mathrm{H}), 7.07-7.05(\mathrm{~m}, 2 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 162.7,141.2,137.1,136.4,135.0,132.0,131.5,129.9,128.1,127.9$, 127.7, 126.7, 126.5, 125.3, 124.9, 118.8, 34.3; HRMS [(ESI), $\left.(\mathrm{M}+\mathrm{H})^{+}\right]: 312.1374$ (cal. for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{NO}$ 312.1388); Registry Number: [148564-77-6].

7-Methoxy-2-methyl-3,4-diphenylisoquinolin-1(2H)-one (3b):

Work-up and purification by column chromatography, white solid (111 mg , 65%), mp: 213-214 ${ }^{\circ} \mathrm{C}$; IR (KBr): 2946, 1641, 1606, 1589, 1497, 1352, 1253, 1146, 1052, 949, 833, $727 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.96(\mathrm{~s}, 1 \mathrm{H})$, $7.26-7.05(\mathrm{~m}, 12 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 162.4,158.6,138.9,136.6,135.1,131.5,131.3,130.2,128.1,128.1,127.9$, 127.1, 126.7, 126.1, 122.5, 118.9, 107.5, 55.7, 34.5; HRMS [(EI), $\left.\left(\mathrm{M}^{+}\right)\right]: 341.1416$ (cal. for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{NO}_{2} 341.1416$); Registry Number: [1235478-95-1].

2,7-Dimethyl-3,4-diphenylisoquinolin-1(2H)-one (3c):

Work-up and purification by column chromatography, colorless solid (104 mg, 64\%), mp: 224-225 ${ }^{\circ} \mathrm{C}$; IR (KBr): 1645, 1499, 1340, 1145, 948, 830, 769, 730 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.36(\mathrm{~s}, 1 \mathrm{H}), 7.35(\mathrm{dd}, J=8.2,1.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.24-7.04(\mathrm{~m}, 11 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $162.7,140.3,136.7,136.3,135.2,134.9,133.5,131.5,130.0,128.2,128.1,127.8$, 127.4, 126.7, 125.3, 124.8, 118.8, 34.3, 21.4; HRMS [(ESI), $(\mathrm{M}+\mathrm{Na})^{+}$]: 348.1361 (cal. for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{NONa} 348.1364$); Registry Number: [1315257-16-9].

2-Methyl-3,4-diphenyl-7-(trifluoromethyl)isoquinolin-1(2H)-one (3d):

Work-up and purification by column chromatography, colorless solid (144 mg , 76%), mp: 199-200 ${ }^{\circ} \mathrm{C}$; IR (KBr): 3054, 2924, 1727, 1652, 1553, 1496, 1409, $1313,1117,1070,1008,839,703 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.85(\mathrm{~s}$, $1 \mathrm{H}), 7.70(\mathrm{dd}, J=8.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.03(\mathrm{~m}, 10 \mathrm{H}), 6.84(\mathrm{~s}, 1 \mathrm{H}), 3.37(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 162.1,143.6,139.5,135.1\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=90\right.$ $\mathrm{Hz}), 131.4,129.6,128.7,128.5,128.3,128.1,128.0\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=3 \mathrm{~Hz}\right), 127.2,126.3,125.8,125.6(\mathrm{q}$, $\left.J_{\mathrm{C}-\mathrm{F}}=4 \mathrm{~Hz}\right), 124.6,123.4\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=272 \mathrm{~Hz}\right), 118.3,34.5$; HRMS [(ESI), $\left.(\mathrm{M}+\mathrm{Na})^{+}\right]: 402.1076$ (cal. for $\mathrm{C}_{23} \mathrm{H}_{16} \mathrm{NOF}_{3} \mathrm{Na} 402.1082$); Registry Number: [1315257-17-0].

2,6-Dimethyl-3,4-diphenylisoquinolin-1(2H)-one (3e):

Work-up and purification by column chromatography, white solid ($99 \mathrm{mg}, 61 \%$), mp: $230-231{ }^{\circ} \mathrm{C}$; IR (KBr): 2980, 1665, 1278, 1107, 1039, 816, $721 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.45(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.26-7.14(\mathrm{~m}, 6 \mathrm{H}), 7.12(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.93$ (s, 1H), 3.34 (s, 3H), 2.34 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 162.8,142.5$, $141.3,137.2,136.6,135.2,131.6,129.9,128.2,128.1,128.1,127.9,126.7,125.0,122.8,118.7,34.2$, 21.0; HRMS [(ESI), $\left.(\mathrm{M}+\mathrm{Na})^{+}\right]: 348.1358$ (cal. for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{NONa} 348.1364$); Registry Number: [1989524-19-7].

6-Chloro-2-methyl-3,4-diphenylisoquinolin-1(2H)-one (3f):

Work-up and purification by column chromatography, colorless solid (119 mg , 69\%), mp: 266-267 ${ }^{\circ} \mathrm{C}$; IR (KBr): 1649, 1597, 1443, 1416, 1360, 1190, 1070, 936, $869,834,784 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.48(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.41(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.00(\mathrm{~m}, 10 \mathrm{H}), 6.91(\mathrm{~s}, 1 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 152.1,142.7,138.7,138.5,135.7,131.4,129.8$, $128.4,128.3,128.2,128.1,127.2,127.1,124.7,123.3,118.0,34.4$; HRMS [(EI), (M $\left.\left.{ }^{+}\right)\right]: 345.0926$ (cal. for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{ClNO} 345.0920$); Registry Number: [1315257-11-4].

6,7-Dimethoxy-2-methyl-3,4-diphenylisoquinolin-1(2H)-one (3g):

Work-up and purification by column chromatography, white solid (113 mg , 61\%), mp: 240-242 ${ }^{\circ} \mathrm{C}$; IR (KBr): 2954, 1645, 1604, 1483, 1415, 1230, 1143, 1072, 1001, 856, $781 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.93(\mathrm{~s}, 1 \mathrm{H})$, $7.26-7.04(\mathrm{~m}, 10 \mathrm{H}), 6.50(\mathrm{~s}, 1 \mathrm{H}), 4.03(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 162.0,153.1,149.1,140.0,136.4,135.2,132.6$, $131.1,130.1,128.2,128.1,128.0,126.8,119.0,118.6,107.7,105.7,56.3,55.7,34.5$; HRMS [(EI), $\left(\mathrm{M}^{+}\right)$]: 371.1520 (cal. for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{NO}_{3} 371.1521$); Registry Number: [2101507-74-6].

2,5-Dimethyl-3,4-diphenylisoquinolin-1(2H)-one (3h):

Work-up and purification by column chromatography, white solid ($63 \mathrm{mg}, 39 \%$), mp: $200-201{ }^{\circ} \mathrm{C}$; IR (KBr): 1644, 1495, 1337, 1142, 949, 834, 769, $733 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.55(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.36$ (d, J = 7.2 Hz, 1H), 7.21-7.15 (m, 3H), 7.08-7.03 (m, 7H), $3.29(\mathrm{~s}, 3 \mathrm{H}), 1.74(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 162.9,141.9,139.9,136.3,135.5,135.0$, $134.9,132.0,130.0,128.0,127.8,127.3,126.7,126.5,126.5,126.3,118.6,34.3,23.7$; HRMS [(ESI), $(\mathrm{M}+\mathrm{Na})^{+}$]: 348.1361 (cal. for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{NONa} 348.1364$); New compound.

2-Methyl-3,4-diphenyl-2,7-naphthyridin-1(2H)-one (3i):

Work-up and purification by column chromatography, brown solid ($83 \mathrm{mg}, 53 \%$), $\mathrm{mp}: 185-186{ }^{\circ} \mathrm{C}$; IR (KBr): $1667,1495,1337,1142,1010,940,834,769,743 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.71-8.65(\mathrm{~m}, 2 \mathrm{H}), 8.34(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.29-7.21(\mathrm{~m}, 6 \mathrm{H}), 7.16-7.09(\mathrm{~m}, 4 \mathrm{H}), 3.39(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 161.5,148.9,145.6,143.3,134.5,134.2,131.6,131.3,129.8,129.6,128.7,128.4$, $128.2,127.4,120.0,117.2,34.7$; HRMS [(ESI), $\left.(\mathrm{M}+\mathrm{H})^{+}\right]: 313.1335$ (cal. for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O} 313.1341$); New compound.

6-Methyl-4,5-diphenylthieno[2,3-c]pyridin-7(6H)-one (3j):

Work-up and purification by column chromatography, colorless oil ($95 \mathrm{mg}, 60 \%$); IR (KBr): $3058,1640,1567,1488,1441,789,713 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $7.59(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.05(\mathrm{~m}, 10 \mathrm{H}), 6.92(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{~s}, 3 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 158.8,145.6,142.4,136.8,134.6,132.7,130.6$, $130.1,128.8,128.4,128.3,127.9,126.8,124.7,117.7,34.2 ; \operatorname{HRMS}\left[(\mathrm{ESI}),(\mathrm{M}+\mathrm{Na})^{+}\right]:$ 340.0766 (cal. for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{NOSNa} 340.0772$); Registry Number: [1235479-02-3].

3,4-Bis(4-methoxyphenyl)-2-methylisoquinolin-1(2H)-one (3k):

Work-up and purification by column chromatography, white solid $(102 \mathrm{mg}$, 55%); mp: $224-225{ }^{\circ} \mathrm{C}$; IR (KBr): 3502, $1698,1329,782 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.54(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{td}, J=7.2,0.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.47(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H})$, $6.97(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.77(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.75(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $3.76(\mathrm{~s}, 6 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 162.8,159.1$, $158.2,141.3,137.5,132.5,131.9,131.1,128.9,127.8,127.6,126.4,125.3,124.9,118.7,113.6,113.4$,
55.1, 55.0, 34.3; HRMS [(ESI), $\left.(\mathrm{M}+\mathrm{Na})^{+}\right]: 394.1414$ (cal. for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{Na}$ 394.1419); Registry Number: [161730-00-3].

3,4-Diethyl-2-methylisoquinolin-1(2H)-one (3I):

Work-up and purification by column chromatography, yellow oil ($57 \mathrm{mg}, 53 \%$); IR (KBr): 1646, 1587, 1557, 1457, 1372, 1173, 1057, 898, $740 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 8.45(\mathrm{dd}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.41(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.65(\mathrm{~s}, 3 \mathrm{H}), 2.80-2.72(\mathrm{~m}, 4 \mathrm{H}), 1.25-1.17(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $162.9,140.7,136.2,132.0,128.3,125.6,124.8,122.4,114.9,31.1,22.7,20.5,14.8$, 13.5; HRMS [(ESI), $\left(\mathrm{M}^{2}+\mathrm{Na}\right)^{+}$]: 238.1204 (cal. for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NONa} 238.1208$); New compound.

2-Methyl-3,4-dipropylisoquinolin-1(2H)-one (3m):

Work-up and purification by column chromatography, colorless solid ($66 \mathrm{mg}, 54 \%$), $\mathrm{mp}: 72{ }^{\circ} \mathrm{C}$; IR (KBr): 3274, 1644, 1587, 1591, 1555, 1448, 1333, 1173, 1057, 892, $776,703 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.45(\mathrm{dd}, J=8.0,1.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.62-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.38(\mathrm{~m}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 2.73-2.67(\mathrm{~m}, 4 \mathrm{H}), 1.66-1.54$ $(\mathrm{m}, 4 \mathrm{H}), 1.06(\mathrm{q}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 162.9,139.8$, $136.5,131.9,128.3,125.5,124.8,122.6,113.8,31.8,31.3,29.8,23.6,22.6,14.4,14.2$; HRMS [(ESI), $\left.(\mathrm{M}+\mathrm{Na})^{+}\right]: 266.1515$ (cal. for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NONa} 266.1521$); Registry Number: [1315257-19-2].

3,4-Diethyl-6,7-dimethoxy-2-methylisoquinolin-1(2H)-one (3n):

Work-up and purification by column chromatography, yellow oil ($66 \mathrm{mg}, 48 \%$); IR (KBr): 2994, 1635, 1611, 1483, 1425, 1229, 1155, 1069, 1011, 876, 787 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.80(\mathrm{~s}, 1 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 3.98(\mathrm{~s}, 6 \mathrm{H})$, $3.66(\mathrm{~s}, 3 \mathrm{H}), 2.77(\mathrm{q}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 1.26-1.20(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 162.1,153.1,148.3,139.4,131.7,118.8,114.5,108.2,102.9,56.1$, 56.0, 31.2, 22.7, 20.9, 14.7, 13.6; HRMS [(EI), $\left.\left(\mathrm{M}^{+}\right)\right]: 275.1521$ (cal. for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{3} 275.1521$); New compound.

6,7-Dimethoxy-2-methyl-3,4-dipropylisoquinolin-1(2H)-one (30):

Work-up and purification by column chromatography, white solid (65 mg , 43%), mp: $93{ }^{\circ} \mathrm{C}$; IR (KBr): 2974, 1645, 1617, 1411, 1217, 1143, 1072, 1001, $967,856,781 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.82(\mathrm{~s}, 1 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H})$, 3.97 (s, 6H), $3.63(\mathrm{~s}, 3 \mathrm{H}), 2.70-2.63(\mathrm{~m}, 4 \mathrm{H}), 1.59$ (sext, $J=7.2 \mathrm{~Hz}, 4 \mathrm{H})$, 1.07-1.02 (m, 6H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 162.1,153.1,148.3$, 138.6, 132.0, 118.8, 113.4, 108.1, 103.2, 56.1, 55.8, 31.8, 31.4, 30.1, 23.6, 22.7, 14.5, 14.3; HRMS $\left[(\mathrm{EI}),\left(\mathrm{M}^{+}\right)\right]: 303.1829$ (cal. for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NO}_{3} 303.1834$); New compound.

6-Chloro-2-methyl-3,4-dipropylisoquinolin-1(2H)-one (3p):

Work-up and purification by column chromatography, white solid (82 mg , 59%), mp: $88^{\circ} \mathrm{C}$; IR (KBr): 3283, 1653, 1547, 1451, 1257, 1340, 1197, 1075, $939,868 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.37(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}$, $J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{dd}, J=8.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 2.73-2.62(\mathrm{~m}, 4 \mathrm{H})$, $1.67-1.53(\mathrm{~m}, 4 \mathrm{H}), 1.08(\mathrm{q}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $162.4,141.5,138.6,137.9,130.2,126.1,123.1,122.2,113.1,31.9,31.4,29.8,23.6,22.5,14.4,14.3$; HRMS [(ESI), $(\mathrm{M}+\mathrm{Na})^{+}$]: 300.1132 (cal. for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{ClNONa} 300.1131$); New compound.

3,4-Diethyl-2-methyl-7-(trifluoromethyl)isoquinolin-1(2H)-one (3q):

Work-up and purification by column chromatography, white solid ($89 \mathrm{mg}, 63 \%$), $\mathrm{mp}: 82-83{ }^{\circ} \mathrm{C}$; IR (KBr): 2953, 1648, 1604, 1483, 1315, 1230, 1110, 1072, 1001, $855,777 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.73(\mathrm{~s}, 1 \mathrm{H}), 7.81-7.73(\mathrm{~m}$, $2 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 2.85-2.75(\mathrm{~m}, 4 \mathrm{H}), 1.29-1.20(\mathrm{~m}, 6 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 162.3,143.5,138.7,127.9\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=3 \mathrm{~Hz}\right), 127.4\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=33 \mathrm{~Hz}\right)$,
$126.1\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=4 \mathrm{~Hz}\right), 124.5,124.1\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=270 \mathrm{~Hz}\right), 123.4,114.5,31.3,22.9,20.6,14.7,13.4$; HRMS [(ESI), $\left.(\mathrm{M}+\mathrm{H})^{+}\right]: 284.1264$ (cal. for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{NO} 284.1262$); New compound.

2,3,4-Triphenylisoquinolin-1(2H)-one (3r):

Work-up and purification by column chromatography, white solid ($86 \mathrm{mg}, 46 \%$), mp: $202-203{ }^{\circ} \mathrm{C}$; IR (KBr): 3013, 1951, 1652, 1613, 1588, 1489, 1422, 1327, 1257, 1120, $1029,922,803,767 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.58(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.60(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.11(\mathrm{~m}, 11 \mathrm{H}), 6.90(\mathrm{br}, 5 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 162.7,141.1,139.5,137.7,136.4,134.8,132.6$, $131.6,131.1,129.5,128.6,128.3,128.0,127.6,127.3,127.1,126.9,126.8,125.6,125.5,118.9$; HRMS [(ESI), $\left.(\mathrm{M}+\mathrm{Na})^{+}\right]: 396.1358$ (cal. for $\left.\mathrm{C}_{27} \mathrm{H}_{19} \mathrm{NONa} 396.1364\right)$; Registry Number: [14959-72-9].

2-(4-Fluorophenyl)-3,4-diphenylisoquinolin-1(2H)-one (3s):

Work-up and purification by column chromatography, white solid (123 mg , 63%), mp: 238-239 ${ }^{\circ} \mathrm{C}$; IR (KBr): 1899, 1661, 1587, 1554, 1442, 1328, 1227, $1090,1012,923,854,784,747 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.58(\mathrm{~d}$, $J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.08(\mathrm{~m}, 8 \mathrm{H}), 6.95-6.90(\mathrm{~m}, 7 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 162.7,139.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=234 \mathrm{~Hz}\right), 137.6,136.2$, $134.6,132.6,131.5,131.2,131.1,131.0,130.9,128.2,128.0,127.4,127.3$, $127.0,126.9,125.7,125.4,119.0,115.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=30 \mathrm{~Hz}\right) ;$ HRMS [(ESI), $\left.(\mathrm{M}+\mathrm{Na})^{+}\right]: 414.1263$ (cal. for $\mathrm{C}_{27} \mathrm{H}_{18} \mathrm{FNONa} 414.1270$); Registry Number: [1253388-48-5].

2-(Furan-2-ylmethyl)-3,4-diphenylisoquinolin-1(2H)-one (3t):

Work-up and purification by column chromatography, brown solid (108 mg, 57%), mp: $152-153{ }^{\circ} \mathrm{C}$; IR (KBr): 1950, 1656, 1606, 1557, 1486, 1422, 1324, 1008, $748 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.59(\mathrm{~s}, 1 \mathrm{H}), 7.56-7.48(\mathrm{~m}$, $2 \mathrm{H}), 7.25-7.06(\mathrm{~m}, 12 \mathrm{H}), 6.25-6.23(\mathrm{~m}, 1 \mathrm{H}), 6.06(\mathrm{dd}, J=3.2,0.6 \mathrm{~Hz}, 1 \mathrm{H})$, 5.13 (s, 2H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 162.3,150.5,141.5,140.9,137.3$, 136.4, 134.2, 132.3, 131.5, 130.5, 128.3, 128.1, 127.9, 127.8, 126.8, 126.7, 125.4, 125.1, 119.4, 110.3, 108.2, 42.6; HRMS [(EI), (M^{+})]: 377.1412 (cal. for $\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{NO}_{2} 377.1416$); New compound.

2,4-Dimethyl-3-phenylisoquinolin-1(2H)-one (3u):

Work-up and purification by column chromatography, yellow solid ($54 \mathrm{mg}, 43 \%$), mp: 104-105 ${ }^{\circ} \mathrm{C}$; IR (KBr): 2978, 1644, 1641, 1283, 1085, 762, $709 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.54(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.69(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.46(\mathrm{~m}, 4 \mathrm{H})$ $7.28-7.26(\mathrm{~m}, 2 \mathrm{H}), 3.26(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 162.6$, $140.2,137.1,135.8,132.1,129.4,129.0,128.7,128.1,126.4,125.2,123.2,110.4$, 34.2, 14.8; HRMS [(EI), $\left.\left(\mathrm{M}^{+}\right)\right]$: 249.1142 (cal. for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}$ 249.1154); Registry Number: [51089-64-6]. For this stereoisomer, spectral data matches the reported literature. ${ }^{2}$ NOE data was not collected.

4-Ethyl-2-methyl-3-phenylisoquinolin-1(2H)-one (3v):

Work-up and purification by column chromatography, pale yellow solid (53 mg , 40%), mp: $144{ }^{\circ} \mathrm{C}$; IR (KBr): 2968, 1648, 1613, 1487, 1333, 1055, 762, $703 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.56(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.72-7.70(\mathrm{~m}, 2 \mathrm{H})$, $7.53-7.48(\mathrm{~m}, 4 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 2 \mathrm{H}), 3.23(\mathrm{~s}, 3 \mathrm{H}), 2.44(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.05(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 162.4,140.1,136.0,135.6,132.0$,
$129.1,129.0,128.7,128.4,126.3,125.7,123.1,116.6,34.0,21.6,14.8 ; \operatorname{HRMS}\left[(\mathrm{ESI}),(\mathrm{M}+\mathrm{Na})^{+}\right]:$ 286.1206 (cal. for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NONa} 286.1208$); Registry Number: [1235479-12-5]. For this stereoisomer, spectral data matches the reported literature. ${ }^{2}$ NOE data was not collected.

2-Methyl-3-phenyl-4-(trimethylsilyl)isoquinolin-1(2H)-one (3w):

Work-up and purification by column chromatography, white solid ($80 \mathrm{mg}, 52 \%$), mp: $174-175{ }^{\circ} \mathrm{C}$; IR (KBr): 3275, 1645, 1328, 928, $524 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 8.53(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.49-7.47 (m, 4H), 7.30-7.30 (m, 2H), $3.19(\mathrm{~s}, 3 \mathrm{H}),-0.04(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 163.1,148.7,139.6,137.7,131.1,130.2,129.2,128.6,128.2,127.2$, $125.9,125.6,111.7,34.0,2.0$; HRMS [(ESI), $(\mathrm{M}+\mathrm{H})^{+}$]: 308.1473 (cal. for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NOSi} 308.1471$); New compound.

2,6-Dimethyl-3-phenyl-4-(trimethylsily)isoquinolin-1(2H)-one (3x):

Work-up and purification by column chromatography, white solid ($74 \mathrm{mg}, 46 \%$), mp: 134-135 ${ }^{\circ} \mathrm{C}$; IR (KBr): 3726, 2958, 1650, $885 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 8.41(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~s}, 1 \mathrm{H}), 7.47-7.46(\mathrm{~m}, 3 \mathrm{H}), 7.31-7.28$ $(\mathrm{m}, 3 \mathrm{H}), 3.17(\mathrm{~s}, 3 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}),-0.04(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $163.1,148.8,141.4,139.7,137.8,130.2,129.1,128.6,128.2,127.5,127.2,123.3$, 111.4, 33.9, 22.1, 2.1; HRMS [(ESI), $\left.(\mathrm{M}+\mathrm{H})^{+}\right]: 322.1631$ (cal. for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{NOSi} 322.1627$); New compound.
NOE data:

(E)-2-(1,2-Diphenylvinyl)- N -methylbenzamide (4a):

Work-up and purification by column chromatography, yellow solid ($118 \mathrm{mg}, 75 \%$), $\mathrm{mp}: 132-133{ }^{\circ} \mathrm{C}$; IR (KBr): $3449,1625,1312,764,517 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.51(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.36(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.22-7.10 (m, 10H), $6.79(\mathrm{~s}, 1 \mathrm{H}), 2.61(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz , CDCl_{3}): $\delta 170.0,142.2,141.9,139.4,137.1,136.5,130.9,130.6,130.4,129.9$, $129.4,128.3,128.1,128.0,127.8,127.6,127.1,26.6$; HRMS [(EI), $\left.\left(\mathrm{M}^{+}\right)\right]: 313.1462$ (cal. for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{NO} 313.1467$); Registry Number: [1315257-10-3].

(E)-2-(1,2-Diphenylvinyl)-5-methoxy- N -methylbenzamide (4b):

Work-up and purification by column chromatography, white solid (113 mg, 66%), mp: 214-215 ${ }^{\circ} \mathrm{C}$; IR (KBr): $3280,1645,1612,1589,1526,1350,1261$, $1134,1052,961,866,728 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.31(\mathrm{~d}, \mathrm{~J}=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.08(\mathrm{~m}, 11 \mathrm{H}), 6.95(\mathrm{dd}, J=8.4,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~s}, 1 \mathrm{H})$, $3.83(\mathrm{~s}, 3 \mathrm{H}), 2.6(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.6$, $159.2,141.5,139.6,137.5,137.2,134.5,132.3,130.3,130.0,129.4,128.1,128.0,127.6,127.0,116.0$, 113.2, 55.5, 26.6; HRMS [(ESI), (M+H) ${ }^{+}$]: 344.1650 (cal. for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{NO}_{2} 344.1651$); New compound.

(E)-2-(1,2-Diphenylvinyl)-4,5-dimethoxy- N-methylbenzamide (4c):

Work-up and purification by column chromatography, yellow solid (121 mg , 65%), mp: $228-230^{\circ} \mathrm{C}$; IR (KBr): $3262,1633,1316,761,565 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.21-7.09(\mathrm{~m}, 11 \mathrm{H}), 6.85(\mathrm{~s}, 1 \mathrm{H}), 6.79(\mathrm{~s}, 1 \mathrm{H}), 3.92(\mathrm{~s}$, $3 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 2.62(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 169.3, 149.9, 148.4, 142.0, 139.2, 136.9, 135.2, 130.3, 130.1, 129.3, 128.5, $128.1,127.8,127.2,113.8,111.8,56.1,56.0,26.7$; HRMS [(ESI), $\left.(\mathrm{M}+\mathrm{H})^{+}\right]: 374.1757$ (cal. for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{NO}_{3} 374.1756$); New compound.
(E)-2-(1,2-Diphenylvinyl)-N,4-dimethylbenzamide (4d):

Work-up and purification by column chromatography, white solid ($105 \mathrm{mg}, 64 \%$), $\mathrm{mp}: 154-155^{\circ} \mathrm{C}$; IR (KBr): 3283, 1622, 1309, 831, $696 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.44(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.12(\mathrm{~m}, 12 \mathrm{H}), 6.78(\mathrm{~s}, 1 \mathrm{H}), 2.61(\mathrm{~d}, J=$ $4.8 \mathrm{~Hz}, 3 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.9,142.1,142.1$, 139.9, 139.4, 137.1, 133.6, 131.5, 130.3, 129.4, 128.5, 128.4, 128.1, 127.5, 127.1, 26.6, 21.3; HRMS [(ESI), $(\mathrm{M}+\mathrm{H})^{+}$]: 328.1703 (cal. for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{NO}$ 328.1701); Registry Number: [1427042-11-2].
(E)-2-(1,2-Diphenylvinyl)-N,3-dimethylbenzamide (4e):

Work-up and purification by column chromatography, white solid ($93 \mathrm{mg}, 57 \%$), $\mathrm{mp}: 157-158{ }^{\circ} \mathrm{C}$; IR (KBr): 1702, 1516, 1328, 1122, 936, 836, 762, $730 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.43$ (d, $\left.J=7.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.31-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.21$ (br, $5 \mathrm{H}), 7.18(\mathrm{br}, 5 \mathrm{H}), 6.63(\mathrm{~s}, 1 \mathrm{H}), 2.76(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 3 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.4,140.9,140.1,138.8,137.3,137.1,131.9,130.8,130.0$, $129.2,128.2,128.1,127.4,127.3,127.1,125.5,26.7,20.5$; HRMS [(ESI), $\left.(\mathrm{M}+\mathrm{H})^{+}\right]: 328.1702$ (cal. for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{NO} 328.1701$); New compound.
(E)-4-Chloro-2-(1,2-diphenylvinyl)- N -methylbenzamide (4f):

Work-up and purification by column chromatography, pale yellow solid (117 $\mathrm{mg}, 67 \%$), mp: $177-178{ }^{\circ} \mathrm{C}$; IR (KBr): 3302, 1626, 1307, 952, 712, $564 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.46(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~s}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J$ $=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.10(\mathrm{~m}, 10 \mathrm{H}), 6.79(\mathrm{~s}, 1 \mathrm{H}), 2.60(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.0$, 144.0, 140.7, 138.7, 136.6, 135.7, 134.9, $131.4,130.7,130.3,129.8,129.4,128.2,128.1,127.9,127.8,127.4,26.6 ; \operatorname{HRMS}\left[(\mathrm{ESI}),(\mathrm{M}+\mathrm{H})^{+}\right]$: 348.1158 (cal. for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{NOCl} 348.1155$); New compound.
(E)-2-(1,2-diphenylvinyl)- N-methyl-5-(trifluoromethyl)benzamide (4g):

Work-up and purification by column chromatography, white solid (130 mg , 68%), mp: $158-159{ }^{\circ} \mathrm{C}$; IR (KBr): $3279,1648,1341,774 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 7.57(\mathrm{~s}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.10(\mathrm{~m}, 4 \mathrm{H}), 7.04$ (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.99-6.92(\mathrm{~m}, 6 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H}), 4.74(\mathrm{br}, 1 \mathrm{H}), 2.20(\mathrm{~d}, J=$ $4.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.5,140.5,145.7,138.7,137.1$, $136.4,131.7,131.3,131.3,130.3,129.8\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=33 \mathrm{~Hz}\right), 129.4,128.2,128.1,127.9,127.5,126.4(\mathrm{q}$, $\left.J_{\mathrm{C}-\mathrm{F}}=4 \mathrm{~Hz}\right), 125.3\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=4 \mathrm{~Hz}\right), 120\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=271 \mathrm{~Hz}\right), 26.6 ;$ HRMS [(ESI), $\left.(\mathrm{M}+\mathrm{Na})^{+}\right]: 404.1238$ (cal. for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{NONa} 404.1238$); New compound.
(E)-3-(1,2-Diphenylvinyl)- N-methylthiophene-2-carboxamide (4h):

Work-up and purification by column chromatography, white solid ($107 \mathrm{mg}, 67 \%$), mp: $170-171{ }^{\circ} \mathrm{C}$; IR (KBr): $3445,1698,1339,749 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.35(\mathrm{dd}, J=4.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.20-7.19(\mathrm{~m}, 4 \mathrm{H}), 7.16-7.15(\mathrm{~m}$, $2 \mathrm{H}), 6.88-6.87(\mathrm{~m}, 2 \mathrm{H}), 6.44(\mathrm{~s}, 1 \mathrm{H}), 2.76(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz , CDCl_{3}): $\delta 162.9,143.7,138.6,136.5,136.0,135.6,132.2,130.8,129.5,129.3,128.6$, $128.3,128.1,128.0,127.7,26.5$; HRMS [(ESI), $\left.(\mathrm{M}+\mathrm{Na})^{+}\right]: 342.0925$ (cal. for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{NOSNa}$ 342.0928); Registry Number: [1315257-18-1].
(E)-2-(But-2-en-2-yl)- N-methylbenzamide (4i):

Work-up and purification by column chromatography, colorless liquid, ($47 \mathrm{mg}, 50 \%$); IR (KBr): 3446, 1698, 1540, $740 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.61(\mathrm{~d}, \mathrm{~J}=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.11(\mathrm{~s}, 1 \mathrm{H}), 5.60(\mathrm{q}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}), 1.77(\mathrm{~d}, J$ $=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.1,143.5,137.3,134.1,130.1$,
$129.2,128.5,126.9,125.1,26.8,17.7,14.1 ;$ HRMS [(ESI), $\left.(\mathrm{M}+\mathrm{Na})^{+}\right]: 212.1052$ (cal. for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NONa}$ 212.1051); New compound.

(E)-2-(Hex-3-en-3-yl)- N-methylbenzamide (4j):

Work-up and purification by column chromatography, colorless liquid, ($59 \mathrm{mg}, 54 \%$); IR (KBr): 3421, 1646, 1540, $750 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.70$ (dd, $J=$ $7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{td}, J=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{t}, J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}$, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{~s}, 1 \mathrm{H}), 5.47(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 3 \mathrm{H}), 2.34$ $(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.20$ (quint, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.05(\mathrm{t}, J=7.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.84(\mathrm{t}, J=$ $7.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.8,142.8,141.8,134.0,132.1,130.1,130.0,128.8$, $127.1,26.6,25.0,21.4,14.4,13.0$; HRMS [(ESI), $\left.(\mathrm{M}+\mathrm{Na})^{+}\right]: 240.1373$ (cal. for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NONa}$ 240.1364); New compound.
(E)-N-Methyl-2-(oct-4-en-4-yl)benzamide (4k):

Work-up and purification by column chromatography, colorless liquid, (65 mg , 53%); IR (KBr): 3420, 1646, 1540, $750 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.69$ (dd, $J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{td}, J=7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{td}, J=7.8,1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.11(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\mathrm{~s}, 1 \mathrm{H}), 5.51(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{~d}, J=1.2$ $\mathrm{Hz}, 3 \mathrm{H}), 2.29(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.18(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.46(\mathrm{sext}, J=7.2 \mathrm{~Hz}$, 2 H), 1.22 (sext, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$), $0.97(\mathrm{t}, J=7.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.81(\mathrm{t}, J=7.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.7,142.3,142.1,133.9,131.3,130.1,130.0,128.8,127.0,34.0,30.3,26.6,22.9$, $21.5,13.9,13.8$; HRMS [(ESI), $\left.(\mathrm{M}+\mathrm{Na})^{+}\right]: 268.1678$ (cal. for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NONa}$ 268.1677); Registry Number: [1427042-15-6].

(E)-2-(1,2-Bis(4-fluorophenyl)vinyl)- N -methylbenzamide (41):

Work-up and purification by column chromatography, white solid (112 mg , 64%), mp: 139-140 ${ }^{\circ} \mathrm{C}$; IR (KBr): 3446, 1683, 1457, 1262, $746 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.46(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.39-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.09-7.05(\mathrm{~m}, 4 \mathrm{H}), 6.91(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{t}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 6.73(\mathrm{~s}, 1 \mathrm{H}), 5.59(\mathrm{~s}, 1 \mathrm{H}), 2.63(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 169.9,162.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=247 \mathrm{~Hz}\right), 161.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=246 \mathrm{~Hz}\right)$, $141.9,140.8,136.6,135.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=3 \mathrm{~Hz}\right), 133.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=3 \mathrm{~Hz}\right), 132.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=8 \mathrm{~Hz}\right), 131\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}\right.$ $=8 \mathrm{~Hz}), 130.7,129.9,129.2,128\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=9 \mathrm{~Hz}\right), 115.1\left(J_{\mathrm{C}-\mathrm{F}}=21 \mathrm{~Hz}\right), 115.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=21 \mathrm{~Hz}\right), 26.5$; HRMS [(ESI), $\left.(\mathrm{M}+\mathrm{Na})^{+}\right]: 372.1172$ (cal. for $\left.\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{~F}_{2} \mathrm{NONa} 372.1175\right)$; New compound.

(E)-2-(1,2-Bis(4-(trifluoromethyl)phenyl)vinyl)- N-methylbenzamide (4m):

Work-up and purification by column chromatography, colorless liquid, (153 $\mathrm{mg}, 68 \%$); IR (KBr): 3445, 1698, 1324, $749 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (600 MHz , CDCl_{3}): $\delta 7.47-7.36(\mathrm{~m}, 8 \mathrm{H}), 7.26-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.17(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $6.86(\mathrm{~s}, 1 \mathrm{H}), 5.55(\mathrm{~s}, 1 \mathrm{H}), 2.58(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(150 \mathrm{MHz}$, CDCl_{3}): $\delta 169.7,142.9,142.7,141.3,140.1,136.8,130.9,130.8,130.1$, $129.8,129.6,129.1\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=32 \mathrm{~Hz}\right.$), 128.3, 127.6, 125.2, 125.1, 125.0, $125.0,124.0\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=270 \mathrm{~Hz}\right), 123.9\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=270 \mathrm{~Hz}\right), 26.4 ;$ HRMS [(ESI), $\left.(\mathrm{M}+\mathrm{Na})^{+}\right]: 472.1110$ (cal. for $\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{~F}_{6} \mathrm{NONa} 472.1112$); New compound.
(E)-2-(1,2-Bis(4-methoxyphenyl)vinyl)- N-methylbenzamide (4n):

Work-up and purification by column chromatography, white solid (117 mg , 63%), mp: 231-232 ${ }^{\circ} \mathrm{C}$; IR (KBr): 3310, 1645, 1540, $757 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.52(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.08(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.74(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.71(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H}), 5.82(\mathrm{~s}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 6 \mathrm{H}), 2.62(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 169.9,158.8,158.5,142.6,139.7,136.3$, $131.9,131.5,130.8,130.5,129.8,129.7,129.3,128.4,127.5,113.5,113.4,55.1,55.0,26.6 ;$ HRMS
(E)-2-(1,2-Di-m-tolylvinyl)- N -methylbenzamide (40):

Work-up and purification by column chromatography, yellow solid (107 mg , 63%), mp: 118-119 ${ }^{\circ} \mathrm{C}$; IR (KBr): $3445,1646,1540,744 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.55(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.37-7.34(\mathrm{~m}, 2 \mathrm{H})$, $7.10(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, 6.93-6.89 (m, 3H), $6.72(\mathrm{~s}, 1 \mathrm{H}), 5.74(\mathrm{~s}, 1 \mathrm{H}), 2.65(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 3 \mathrm{H}), 2.22(\mathrm{~d}$, $J=3.6 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.9,142.3,141.7,139.4$, 137.6, 137.5, 136.9, 136.3, 130.8, 130.7, 130.6, 130.3, 129.8, 128.4, 128.3, 127.9, 127.9, 127.8, 127.7, $127.4,126.3,26.6,21.3$; HRMS [(ESI), $\left.(\mathrm{M}+\mathrm{Na})^{+}\right]: 364.1671$ (cal. for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{NONa} 364.1677$); New compound.

((Z)-2-(1,2-Di(thiophen-2-yl)vinyl)- N-methylbenzamide (4p):

Work-up and purification by column chromatography, white solid ($96 \mathrm{mg}, 59 \%$), mp: 227-228 ${ }^{\circ} \mathrm{C}$; IR (KBr): 3556, 1652, 1540, $744 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.51(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.35-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.17(\mathrm{~d}$, $J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.04-7.03(\mathrm{~m}$, $1 \mathrm{H}), 6.95(\mathrm{~s}, 1 \mathrm{H}), 6.93(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.77(\mathrm{~s}, 1 \mathrm{H}), 2.78(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.1,140.9,140.3,139.6,136.3,132.2,129.9$, $129.8,129.3,128.3,127.9,127.5,127.1,126.6,126.5,126.1,26.8 ; \operatorname{HRMS}\left[(\mathrm{ESI}),(\mathrm{M}+\mathrm{Na})^{+}\right]:$ 348.0491 (cal. for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{NOS}_{2} \mathrm{Na} 348.0492$); New compound.

(E)-4-Chloro-2-(hex-3-en-3-yl)-N-methylbenzamide (4q):

Work-up and purification by column chromatography, white solid ($70 \mathrm{mg}, 56 \%$), $\mathrm{mp}: 181-182{ }^{\circ} \mathrm{C}$; IR (KBr): 3283, 1653, 1547, 1451, 1257, 1340, 1197, 1075, $939,868 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.65(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.36$ (dd, $J=8.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.50(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{~d}, J$ $=4.8 \mathrm{~Hz}, 3 \mathrm{H}), 2.32(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.20$ (quint, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.05(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.7,143.5,141.8,135.8$, 133.0, 132.3, 130.4, 130.0, 127.2, 26.7, 24.8, 21.4, 14.3, 13.0; HRMS [(EI), (${ }^{+}$)]: 251.1075 (cal. for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NOCl} 251.1077$); New compound.
(E)-2-(1,2-Bis(4-methoxyphenyl)vinyl)- N -methyl-5-(trifluoromethyl)benzamide (4r):

Work-up and purification by column chromatography, brown liquid ($128 \mathrm{mg}, 58 \%$); IR (KBr): $3446,1652,1508,744 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (600 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.79(\mathrm{~s}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.77(\mathrm{~d}, J=$ $9 \mathrm{~Hz}, 2 \mathrm{H}), 6.73(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 5.74(\mathrm{~s}, 1 \mathrm{H}), 3.79(\mathrm{~s}$, $3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.65(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz , CDCl_{3}): $\delta 168.6,159.1,158.9,146.3,138.3,136.9,131.6,131.3,130.7,130.6,130.4,129.7\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=\right.$ $33 \mathrm{~Hz}), 129.3,126.4,125.6,123.7\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=270 \mathrm{~Hz}\right), 114\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=14 \mathrm{~Hz}\right), 113.7,113.6,55.1,26.7$; HRMS [(ESI), $\left.(\mathrm{M}+\mathrm{Na})^{+}\right]: 464.1453$ (cal. for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{Na} 464.1449$); New compound.
(E)-N-Methyl-2-(1-phenylprop-1-en-1-yl)benzamide (4s):

Work-up and purification by column chromatography, colorless viscous oil (42 mg , 34%); IR (KBr): $3445,1635,1507,741 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.48(\mathrm{~d}$, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.22(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.12(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.98(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.63(\mathrm{~s}, 1 \mathrm{H}), 2.63(\mathrm{~d}, J=4.8 \mathrm{~Hz}$, $3 \mathrm{H}), 1.92(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.1,141.9,141.7$, $139.1,136.1,130.8,129.8,129.7,128.2,127.8,127.3,127.2,127.0,26.5,15.8$; HRMS [(ESI), $(\mathrm{M}+\mathrm{Na})^{+}$]: 274.1205 (cal. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NONa} 274.1207$); New compound.

(E)-N-Methyl-2-(1-phenylprop-1-en-2-yl)benzamide (4s'):

Work-up and purification by column chromatography, white solid ($19 \mathrm{mg}, 15 \%$), mp: $149-150{ }^{\circ} \mathrm{C}$; IR (KBr): $3501,1635,1456,748 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $7.68(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.26(\mathrm{~m}, 8 \mathrm{H}), 6.59(\mathrm{~s}, 1 \mathrm{H}), 6.10(\mathrm{~s}, 1 \mathrm{H}), 2.95(\mathrm{~d}, J=$ $4.8 \mathrm{~Hz}, 3 \mathrm{H}), 2.21(\mathrm{~d}, \mathrm{~J}=1.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.9$, 143.6, $139.0,137.4,134.4,130.3,130.1,128.9,128.9,128.7,128.4,127.4,126.9,26.9$, 20.0; HRMS [(ESI), (M+Na) ${ }^{+}$: 274.1208 (cal. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NONa} 274.1207$); New compound.

(E)-N-Methyl-2-(1-phenylbut-1-en-1-yl)benzamide (4t):

Work-up and purification by column chromatography, white solid ($38 \mathrm{mg}, 28 \%$), $\mathrm{mp}: 128-129{ }^{\circ} \mathrm{C}$; IR (KBr): 3520, 1646, 1540, $759 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.50(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.22(\mathrm{t}, J$ $=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.85(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.68(\mathrm{~s}, 1 \mathrm{H}), 2.66$ $(\mathrm{d}, J=5.4 \mathrm{~Hz}, 3 \mathrm{H}), 2.32$ (quint, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.07(\mathrm{t}, J=7.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.0,141.8,140.2,139.4,136.1,134.9,130.8,129.7,129.6,128.2,127.8$, 127.3, 127.1, 26.5, 23.0, 14.5; HRMS [(ESI), (M+Na) ${ }^{+}$]: 288.1364 (cal. for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{1} \mathrm{O}_{1} \mathrm{Na} 288.1363$); New compound.
(E)-N-Methyl-2-(1-phenylbut-1-en-2-yl)benzamide (4t'):

Work-up and purification by column chromatography, white solid ($24 \mathrm{mg}, 18 \%$), mp: 93-94 ${ }^{\circ} \mathrm{C}$; IR (KBr): $3419,1646,1521,760 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.73 (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.35(\mathrm{~m}, 4 \mathrm{H}), 7.33(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.54(\mathrm{~s}, 1 \mathrm{H}), 6.19(\mathrm{~s}, 1 \mathrm{H}), 2.93(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 3 \mathrm{H}), 2.62(\mathrm{q}, J=7.8 \mathrm{~Hz}$, 2H), $0.93(\mathrm{t}, J=7.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.8,145.7$, 141.5, 137.2, 134.5, 130.1, 129.9, 129.6, 128.9, 128.6, 128.4, 127.5, 126.9, 26.9, 25.6, 12.9; HRMS [(ESI), $(\mathrm{M}+\mathrm{Na})^{+}$]: 288.1364 (cal. for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{1} \mathrm{O}_{1} \mathrm{Na} 288.1363$); Registry Number: [1427042-14-5].
(E)-N-Methyl-2-(1-phenylpent-1-en-1-yl)benzamide (4u):

Work-up and purification by column chromatography, white solid ($43 \mathrm{mg}, 31 \%$), mp : $78-79{ }^{\circ} \mathrm{C}$; IR (KBr): $3565,1698,1540,1264,748 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.49(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.22$ (t, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.87(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{~s}, 1 \mathrm{H})$, $2.66(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 3 \mathrm{H}), 2.29(\mathrm{q}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.49(\mathrm{sext}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 0.94$ $(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.0,141.9,140.8,139.5,136.1,133.3,130.8$, 129.7, 129.7, 128.3, 127.8, 127.2, 127.0, 31.7, 26.5, 23.2, 13.8; HRMS [(ESI), (M+Na) ${ }^{+}$]: 302.1512 (cal. for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NONa} 302.1520$); New compound.
(E)-N-Methyl-2-(1-phenylpent-1-en-2-yl)benzamide (4u'):

Work-up and purification by column chromatography, white solid ($28 \mathrm{mg}, 20 \%$), mp: $92-93{ }^{\circ} \mathrm{C}$; IR (KBr): 3446, 1683, 1558, 1265, $743 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 7.73(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.35(\mathrm{~m}, 4 \mathrm{H}), 7.33-7.27(\mathrm{~m}, 4 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 6.19$ $(\mathrm{s}, 1 \mathrm{H}), 2.95(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 3 \mathrm{H}), 2.56-2.53(\mathrm{~m}, 2 \mathrm{H}), 1.31$ (sext, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $0.82(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.8,144.6,141.9,137.2$, $134.3,130.1,130.1,129.7,128.8,128.6,128.4,127.5,126.9,34.5,26.9,21.7,14.0$; HRMS [(ESI), $\left.(\mathrm{M}+\mathrm{Na})^{+}\right]: 302.1518$ (cal. for $\left.\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NONa} 302.1520\right)$; New compound.
(E)-N-Methyl-2-(1-phenyl-2-(trimethylsilyl)vinyl)benzamide (4v):

Work-up and purification by column chromatography, white solid ($12 \mathrm{mg}, 8 \%$), mp: 95-96 ${ }^{\circ} \mathrm{C}$; IR (KBr): 3445, 1698, 1558, $749 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (600 MHz , CDCl_{3}): $\delta 7.47(\mathrm{dd}, J=7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{td}, J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.26$ $(\mathrm{m}, 5 \mathrm{H}), 7.18-7.17(\mathrm{~m}, 2 \mathrm{H}), 6.01(\mathrm{~s}, 1 \mathrm{H}), 5.68(\mathrm{~s}, 1 \mathrm{H}), 2.70(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 3 \mathrm{H})$, $-0.03(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 170.0,157.5,143.5,142.1,135.7$,
$134.3,130.2,129.6,129.3,128.0,127.8,127.7,127.6,26.5,0.1 ;$ HRMS [(ESI), (M+Na) $\left.{ }^{+}\right]: 332.1444$ (cal. for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NOSiNa} 332.1446$); New compound.

(Z)-N-Methyl-2-(2-phenyl-1-(trimethylsilyl)vinyl)benzamide (4v’):

Work-up and purification by column chromatography, white solid ($85 \mathrm{mg}, 55 \%$), mp: $101-102{ }^{\circ} \mathrm{C}$; IR (KBr): $3419,1683,1540,749 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $7.84(\mathrm{dd}, J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 5 \mathrm{H}), 7.09(\mathrm{dd}, J=$ $7.2,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{~s}, 1 \mathrm{H}), 2.98(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 3 \mathrm{H}),-0.10(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR
($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.3,148.9,145.1,144.6,139.0,133.2,130.3,129.0,128.9$,
$128.3,128.2,127.8,126.4,26.7,0.3$; HRMS [(ESI), $\left.(\mathrm{M}+\mathrm{Na})^{+}\right]: 332.1444$ (cal. for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NOSiNa}$ 332.1446); New compound.

2-Methyl-3,4,5,6-tetraphenylpyridine (5):

Work-up and purification by column chromatography, white solid ($119 \mathrm{mg}, 60 \%$),
 $\mathrm{mp}: 157-158{ }^{\circ} \mathrm{C}$; IR (KBr): 2957, 1537, 1398, 1028, $698 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (600 MHz , CDCl_{3}): $\delta 7.34-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.18(\mathrm{~m}, 5 \mathrm{H}), 7.16-7.15(\mathrm{~m}, 1 \mathrm{H}), 7.06-7.05$ $(\mathrm{m}, 2 \mathrm{H}), 6.97-6.95(\mathrm{~m}, 3 \mathrm{H}), 6.90-6.88(\mathrm{~m}, 3 \mathrm{H}), 6.85-6.83(\mathrm{~m}, 2 \mathrm{H}), 6.74-6.72(\mathrm{~m}$, $2 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 156.1,155.3,149.3,140.9$, $138.8,138.4,138.1,134.7,132.6131 .4,130.2,130.0,129.9,127.8,127.6,127.3,127.2,126.9,126.6$, 126.1, 24.3; HRMS [(ESI), $\left.(\mathrm{M}+\mathrm{H})^{+}\right]: 398.1906$ (cal. for $\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{~N}$ 398.1909); Registry Number: [41728-97-6].

References

(1) Abe T.; Takahashi Y.; Matsubara Y.; Yamada K. Org. Chem. Front. 2017, 4, 2124
(2) Shu, Z.; Guo, Y.; Li, W.; Wang, B. Catal. Today 2017, 297, 292.

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra for Products $\left(\mathrm{CDCl}_{3}\right)$

2-Methyl-3,4-diphenylisoquinolin-1(2H)-one (3a) (600 MHz)

7-Methoxy-2-methyl-3,4-diphenylisoquinolin-1 (2H)-one (3b) (600 MHz)

[^1]
2,7-Dimethyl-3,4-diphenylisoquinolin-1(2H)-one (3c) (400 MHz)

2,6-Dimethyl-3,4-diphenylisoquinolin-1(2H)-one (3e) (600 MHz)

6-Chloro-2-methyl-3,4-diphenylisoquinolin-1(2H)-one (3f) (600 MHz for ${ }^{1} \mathrm{H}, 100 \mathrm{MHz}^{13} \mathrm{C}$)

6,7-Dimethoxy-2-methyl-3,4-diphenylisoquinolin-1(2H)-one (3g) (400 MHz)

2,5-Dimethyl-3,4-diphenylisoquinolin-1(2H)-one (3h) (600 MHz)

190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20

2-Methyl-3,4-diphenyl-2,7-naphthyridin-1(2H)-one (3i) (400 MHz)

6-Methyl-4,5-diphenylthieno[2,3-c]pyridin-7(6H)-one (3j) (400 MHz)

3,4-Bis(4-methoxyphenyl)-2-methylisoquinolin-1(2H)-one (3k) ($\mathbf{6 0 0} \mathbf{~ M H z)}$

190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20

3,4-Diethyl-2-methylisoquinolin-1(2H)-one (31) (400 MHz)

-162.95
-140.79
-136.27
-131.99
-125.60
$=124.84$
-114.98
-1141

2-Methyl-3,4-dipropylisoquinolin-1(2H)-one (3m) (400 MHz)

3,4-Diethyl-6,7-dimethoxy-2-methylisoquinolin-1 (2H)-one (3n) (400 MHz)

190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	$p p m$

6,7-Dimethoxy-2-methyl-3,4-dipropylisoquinolin-1(2H)-one (30) (400 MHz)

Vi

190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	ppm

6-Chloro-2-methyl-3,4-dipropylisoquinolin-1(2H)-one (3p) (400 MHz)

3,4-Diethyl-2-methyl-7-(trifluoromethyl)isoquinolin-1(2H)-one (3q) (400 MHz)

2,3,4-Triphenylisoquinolin-1(2H)-one (3r) (400 MHz)

2-(4-Fluorophenyl)-3,4-diphenylisoquinolin-1(2H)-one (3s) (400 MHz)

2-(Furan-2-ylmethyl)-3,4-diphenylisoquinolin-1(2H)-one (3t) (400 MHz)

\bullet
$\dot{\text { ®̈ }}$
$\dot{\text { İ }}$

2,4-Dimethyl-3-phenylisoquinolin-1 (2H)-one (3u) (400 MHz)

4-Ethyl-2-methyl-3-phenylisoquinolin-1(2H)-one (3v) (400 MHz)

2-Methyl-3-phenyl-4-(trimethylsilyl)isoquinolin-1(2H)-one (3w) (600 MHz)

$\left.\right|^{\circ}$

2,6-Dimethyl-3-phenyl-4-(trimethylsilyl)isoquinolin-1(2H)-one (3x) (600 MHz)

泡

180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

(E)-2-(1,2-Diphenylvinyl)- N-methylbenzamide (4a) (600 MHz)

见

(E)-2-(1,2-Diphenylvinyl)-5-methoxy- N-methylbenzamide (4b) (600 MHz)

|

(E)-2-(1,2-Diphenylvinyl)-4,5-dimethoxy- N-methylbenzamide (4 c) (600 MHz)

(E)-2-(1,2-Diphenylvinyl)-N,4-dimethylbenzamide ($\mathbf{4 d}$) (600 MHz)

(E)-2-(1,2-Diphenylvinyl)-N,3-dimethylbenzamide (4e) (600 MHz)

(E)-4-Chloro-2-(1,2-diphenylvinyl)- N -methylbenzamide (4f) (600 MHz)

(E)-3-(1,2-Diphenylvinyl)- N -methylthiophene-2-carboxamide ($\mathbf{4 h}$) (600 MHz)

(\boldsymbol{E})-2-(But-2-en-2-yl)-N-methylbenzamide (4i) (600 MHz)

|

(E)-2-(Hex-3-en-3-yl)-N-methylbenzamide ($\mathbf{4 j}$) ($\mathbf{6 0 0} \mathbf{~ M H z) ~}$

(E)-N-Methyl-2-(oct-4-en-4-yl)benzamide (4k) (600 MHz)

|

(E)-2-(1,2-Bis(4-fluorophenyl)vinyl)-N-methylbenzamide (4I) ($\mathbf{6 0 0} \mathbf{~ M H z}$)

(E)-2-(1,2-Bis(4-(trifluoromethyl)phenyl)vinyl)-N-methylbenzamide ($\mathbf{4 m}$) ($\mathbf{6 0 0} \mathbf{~ M H z}$)

190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20

(E)-2-(1,2-Bis(4-methoxyphenyl)vinyl)-N-methylbenzamide (4n) (600 MHz)

(E)-2-(1,2-Di-m-tolylvinyl)-N-methylbenzamide (40) (600 MHz)

$\left.\right|^{\stackrel{\circ}{\bullet}} \stackrel{0}{\infty}$

((Z)-2-(1,2-Di(thiophen-2-yl)vinyl)- N -methylbenzamide ($\mathbf{(4 p)}$) $\mathbf{(6 0 0 ~ M H z)}$

(E)-4-Chloro-2-(hex-3-en-3-yl)-N-methylbenzamide (4q) (400 MHz)

(E)-2-(1,2-Bis(4-methoxyphenyl)vinyl)-N-methyl-5-(trifluoromethyl)benzamide (4r) (600 MHz)

(E)-N-Methyl-2-(1-phenylprop-1-en-1-yl)benzamide (4s) (600 MHz)

(E)-N-Methyl-2-(1-phenylprop-1-en-2-yl)benzamide (4s') (600 MHz)

[^2](E)-N-Methyl-2-(1-phenylbut-1-en-1-yl)benzamide (4t) (600 MHz)

$\underbrace{\text { nor }}$

(E)-N-Methyl-2-(1-phenylbut-1-en-2-yl)benzamide (4t') $(600 \mathrm{MHz})$

(\boldsymbol{E})-N-Methyl-2-(1-phenylpent-1-en-1-yl)benzamide (4u) (600 MHz)

(E)-N-Methyl-2-(1-phenylpent-1-en-2-yl)benzamide (4u') (600 MHz)

(E)-N-Methyl-2-(1-phenyl-2-(trimethylsilyl)vinyl)benzamide (4v) ($\mathbf{6 0 0} \mathbf{~ M H z)}$

$\begin{array}{llllllllllllllllllllll}220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10\end{array}$

(Z)-N-Methyl-2-(2-phenyl-1-(trimethylsilyl)vinyl)benzamide (4v') (600 MHz)

2-Methyl-3,4,5,6-tetraphenylpyridine (5) (600 MHz)

(Z)- N -(3,4-Diphenyl-1 H -isochromen-1-ylidene)methanamine (6) (600 MHz)

(Z)-N-(3-Benzyl-3-phenylisobenzofuran-1(3H)-ylidene)methanamine (7) (600 MHz)

3-(Benzo[d][1,3]dioxol-5-yl)-4-(2-hydroxyethyl)-6,7-dimethoxy-2-methylisoquinolin-1(2H)-one (3y) (600 MHz)

2-(3-(Benzo[d][1,3]dioxol-5-yl)-6,7-dimethoxy-2-methyl-1-oxo-1,2-dihydroisoquinolin-4-yl)acetaldehyde (3y') (600 MHz)

Oxynitidine（ 600 MHz ）

のかの心が心の	$\stackrel{-}{+}$	
	$\stackrel{\bullet}{\square}$	

Nitidine Chloride (DMSO- d_{6} for ${ }^{1} \mathrm{H}$ NMR and CDCl_{3} for ${ }^{13} \mathrm{C} \mathrm{NMR}$,600 MHz)

2-(Methylcarbamoyl)phenyltrifluoromethanesulfonate (1a-f) (600 MHz)

Deuterated product 4a-D (600 MHz)

NOE spectrum of $3 x(600 ~ M H z)$

Single-Crystal X-Ray Diffraction Analysis:

X-Ray Structure of Compound 3a:

(CCDC 2087800 (3a) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.)

Figure S1. X-ray crystal structure of 3a. Ellipsoids are drawn at the 50\% probability level.
Table S4. Crystal data and structure refinement for 3a.

Identification code	1_a
Empirical formula	C22H17NO
Formula weight	311.36
Temperature	296(2) K
Wavelength	0.71073 A
Crystal system	Triclinic
Space group	P-1
Unit cell dimensions	$a=9.3912(2) \AA \quad a=69.3430(10)^{\circ}$.
	$\mathrm{b}=9.6810(3) \AA \quad \mathrm{b}=66.3600(10)^{\circ}$.
	$\mathrm{c}=10.9201(3) \AA \quad \mathrm{g}=67.4890(10)^{\circ}$.
Volume	816.58(4) \AA^{3}
Z	2
Density (calculated)	$1.266 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.077 \mathrm{~mm}^{-1}$
F(000)	328
Crystal size	? x ? x ? mm ${ }^{3}$
Theta range for data collection	2.343 to 28.052°.
Index ranges	$-12<=\mathrm{h}<=12,-12<=\mathrm{k}<=12,-14<=\mathrm{l}<=14$
Reflections collected	32840
Independent reflections	3957 [R(int) = 0.0656]
Completeness to theta $=25.242^{\circ}$	99.9 \%
Refinement method	Full-matrix least-squares on F^{2}
Data/restraints/parameters	3957/0/218
Goodness-of-fit on F^{2}	1.051
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0565, \mathrm{wR} 2=0.1232$
R indices (all data)	$\mathrm{R} 1=0.1061, \mathrm{wR} 2=0.1513$
Extinction coefficient	n/a
Largest diff. peak and hole	0.193 and -0.209 e. \AA^{-3}

X-Ray Structure of Compound 4a:

(CCDC 2087801 (4a) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.)

Figure S2. X-ray crystal structure of 4a. Ellipsoids are drawn at the 50\% probability level.
Table S5. Crystal data and structure refinement for $\mathbf{4 a}$.

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=25.242^{\circ}$
Refinement method
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indices [I>2sigma(I)]
R indices (all data)
Extinction coefficient
Largest diff. peak and hole

GP_75P
C22H19NO
313.38

296(2) K
$0.71073 \AA$
Monoclinic
P2 $1 / n$
$a=13.0738(5) \AA \quad=90^{\circ}$.
$\mathrm{b}=8.9358(4) \AA \quad=92.019(2)^{\circ}$.
$\mathrm{c}=14.7988(7) \AA \quad=90^{\circ}$.
1727.79(13) \AA^{3}

4
$1.205 \mathrm{Mg} / \mathrm{m}^{3}$
$0.073 \mathrm{~mm}^{-1}$
664
? x ? x ? mm^{3}
2.663 to 28.318°.
$-17<=\mathrm{h}<=16,-11<=\mathrm{k}<=11,-19<=\mathrm{l}<=19$
40164
$4266[\mathrm{R}(\mathrm{int})=0.1175]$
99.6 \%

Full-matrix least-squares on F^{2}
4266/0/218
1.099
$\mathrm{R} 1=0.0828, \mathrm{wR} 2=0.1294$
$\mathrm{R} 1=0.1618, \mathrm{wR} 2=0.1556$
n/a
0.140 and -0.171 e. \AA^{-3}

X-Ray Structure of Compound 3w:

(CCDC 2087803 (3w) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.)

Figure S3. X-ray crystal structure of 3w. Ellipsoids are drawn at the 50\% probability level.
Table S6. Crystal data and structure refinement for 3w.

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=25.09^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indices [I>2sigma(I)]
R indices (all data)
Largest diff. peak and hole

> d23248
> C19H21NOSi
> 307.46
> 200(2) K
> $0.71073 \AA$
> Triclinic
> P-1
> $\mathrm{a}=8.9558(3) \AA \quad=102.940(2)^{\circ}$.
> $b=9.7312(4) \AA \quad=96.5450(10)^{\circ}$.
> $\mathrm{c}=10.0870(4) \AA \quad=103.5060(10)^{\circ}$.
> 820.15(5) \AA^{3}
> 2
> $1.245 \mathrm{Mg} / \mathrm{m}^{3}$
> $0.145 \mathrm{~mm}^{-1}$
> 328
> $0.68 \times 0.47 \times 0.40 \mathrm{~mm}^{3}$
> 2.23 to 25.09°.
> $-10<=\mathrm{h}<=10,-11<=\mathrm{k}<=11,-12<=\mathrm{l}<=12$
> 11110
> 2884 [R(int) $=0.0364]$
> 99.0 \%
> multi-scan
> 0.9444 and 0.9080
> Full-matrix least-squares on F^{2}
> 2884/0/203
> 1.047
> $\mathrm{R} 1=0.0450, \mathrm{wR} 2=0.1275$
> $\mathrm{R} 1=0.0493, \mathrm{wR} 2=0.1306$
> 0.320 and -0.285 e. \AA^{-3}

X-Ray Structure of Compound $\mathbf{4 v}$ ':

(CCDC 2109230 ($\mathbf{4} \mathbf{v}^{\prime}$) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.)

Figure S4. X-ray crystal structure of $\mathbf{4} \mathbf{v}$ '. Ellipsoids are drawn at the 50% probability level.
Table S7. Crystal data and structure refinement for $\mathbf{4 v}$ ’.

Identification code	d23470
Empirical formula	C19 H23NOSi
Formula weight	309.47
Temperature	200(2) K
Wavelength	0.71073 Å
Crystal system	Triclinic
Space group	P-1
Unit cell dimensions	$\begin{array}{ll} \mathrm{a}=10.156(3) \AA & =101.448(7)^{\circ} . \\ \mathrm{b}=13.973(3) \AA & =95.499(8)^{\circ} . \\ \mathrm{c}=21.035(5) \AA & =110.186(6)^{\circ} . \end{array}$
Volume	2702.1(11) \AA^{3}
Z	4
Density (calculated)	$0.761 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient F(000)	$\begin{aligned} & 0.088 \mathrm{~mm}^{-1} \\ & 664 \end{aligned}$
Crystal size	$0.79 \times 0.03 \times 0.01 \mathrm{~mm}^{3}$
Theta range for data collection	2.01 to 25.11°.
Index ranges	$-12<=\mathrm{h}<=12,-16<=\mathrm{k}<=16,-25<=\mathrm{l}<=25$
Reflections collected	56021
Independent reflections	9592 [R(int) $=0.2132]$
Completeness to theta $=25.11^{\circ}$	99.6 \% Absorption correction multi-scan
Max. and min. transmission	0.9991 and 0.9337
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	9592/12/201
Goodness-of-fit on F^{2}	1.686
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.2415, \mathrm{wR} 2=0.5306$
R indices (all data)	$\mathrm{R} 1=0.3061, \mathrm{wR} 2=0.5518$
Largest diff. peak and hole	0.640 and -1.702 e. \AA^{-3}

X-Ray Structure of Compound 5:

(CCDC 2087805 (5) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.)

Figure S5. X-ray crystal structure of 5. Ellipsoids are drawn at the 50\% probability level.
Table S8. Crystal data and structure refinement for 5.

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=25.242^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indices [I>2sigma(I)]
R indices (all data)
Extinction coefficient
Largest diff. peak and hole

19AP04_1
C30H23N
397.2

296(2) K
$0.71073 \AA$
Triclinic
P-1
$\mathrm{a}=6.5913(10) \AA \quad=69.396(4)^{\circ}$.
$\mathrm{b}=11.309(2) \AA \quad=84.651(7)^{\circ}$.
$\mathrm{c}=16.066(4) \AA \quad=88.169(4)^{\circ}$.
1116.1(4) \AA^{3}

4
$1.183 \mathrm{Mg} / \mathrm{m}^{3}$
$0.068 \mathrm{~mm}^{-1}$
420
$0.391 \times 0.069 \times 0.060 \mathrm{~mm}^{3}$
2.718 to 28.355°.
$-8<=\mathrm{h}<=8,-15<=\mathrm{k}<=15,-21<=\mathrm{l}<=21$
91333
$5569[\mathrm{R}(\mathrm{int})=0.0462]$
99.8 \%

Numerical Mu Calculated
0.7457 and 0.7106

Full-matrix least-squares on F^{2}
5569/0/281
1.030
$\mathrm{R} 1=0.0453, \mathrm{wR} 2=0.1143$
$\mathrm{R} 1=0.0651, \mathrm{wR} 2=0.1292$
n/a
0.178 and -0.146 e. \AA^{-3}

X-Ray Structure of Compound 6:

(CCDC 2089397 (6) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.)

Figure S6. X-ray crystal structure of 6. Ellipsoids are drawn at the 50% probability level.
Table S9. Crystal data and structure refinement for 6.

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=25.242^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [I>2sigma(I)]
R indices (all data)
Extinction coefficient
Largest diff. peak and hole

02_a
C22H17NO
311.36

296(2) K
0.71073 Å

Monoclinic
$P 2_{1} / n$
$a=8.8118(4) \AA \quad=90^{\circ}$.
$\mathrm{b}=18.3413(8) \AA \quad=102.612(2)^{\circ}$.
$\mathrm{c}=10.4793(5) \AA \quad=90^{\circ}$.
1652.80(13) \AA^{3}

4
$1.251 \mathrm{Mg} / \mathrm{m}^{3}$
$0.076 \mathrm{~mm}^{-1}$
656
$0.468 \times 0.272 \times 0.214 \mathrm{~mm}^{3}$
2.221 to 28.343°.
$-11<=\mathrm{h}<=11,-24<=\mathrm{k}<=24,-13<=\mathrm{l}<=13$
25049
$4104[\mathrm{R}(\mathrm{int})=0.0452]$
99.4 \%

Numerical Mu Calculated
0.7379 and 0.7199

Full-matrix least-squares on F^{2}
4104 / 0 / 218
1.068
$R_{1}=0.0570, w R_{2}=0.1543$
$R_{1}=0.0745, w R_{2}=0.1695$
n/a
0.354 and -0.193 e. \AA^{-3}

X-Ray Structure of Compound 7:

(CCDC 2087808 (7) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.)

Figure S7. X-ray crystal structure of 7. Ellipsoids are drawn at the 50\% probability level.
Table S10. Crystal data and structure refinement for 7.

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=25.242^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indices [I>2sigma(I)]
R indices (all data)
Extinction coefficient
Largest diff. peak and hole

19JUN01
C22H19NO
313.38

296(2) K
0.71073 Å

Monoclinic
P2 $1 / \mathrm{c}$
$a=12.0230(3) \AA \quad=90^{\circ}$.
$\mathrm{b}=7.74160(10) \AA \quad=103.8500(10)^{\circ}$.
$\mathrm{c}=19.2617(4) \AA \quad=90^{\circ}$.
1740.70(6) \AA^{3}

4
$1.196 \mathrm{Mg} / \mathrm{m}^{3}$
$0.073 \mathrm{~mm}^{-1}$
664
$0.510 \times 0.270 \times 0.152 \mathrm{~mm}^{3}$
2.848 to 28.316°.
$-16<=\mathrm{h}<=15,-10<=\mathrm{k}<=10,-25<=\mathrm{l}<=25$
28519
4302 [$\mathrm{R}(\mathrm{int})=0.0433]$
99.6 \%

Numerical Mu Calculated
0.7457 and 0.7231

Full-matrix least-squares on F^{2}
4302/0/218
1.045
$\mathrm{R} 1=0.0488, \mathrm{wR} 2=0.1079$
$\mathrm{R} 1=0.0787, \mathrm{wR} 2=0.1268$
n/a
0.159 and -0.155 e. \AA^{-3}

[^0]: ${ }^{a}$ Reaction conditions: 1a ($0.2 \mathrm{mmol}, 1.0$ equiv), $\mathbf{2 a}$ ($0.3 \mathrm{mmol}, 1.5$ equiv), $\mathrm{Co}(\mathrm{dppe}) \mathrm{Br}_{2}(0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathrm{Et}_{3} \mathrm{~N}$ (0.4 mmol , 2 equiv) in 0.6 mL solvent at $t^{\circ} \mathrm{C}$ for $16 \mathrm{~h} .{ }^{b}$ Yields were measured from the crude products by ${ }^{1} \mathrm{H}$ NMR integration method using mesitylene as an internal standard.

[^1]:

[^2]:

