Supplementary Information

Fissisternoids 2',5'-A and B, Pairs of two Quinodihydrochalcone-Based Meroterpenoid Enantiomers **Skeletons** *Fissistigma* with Unusual Carbon from bracteolatum

Gui-Min Xue*, Chen-Guang Zhao, Jin-Feng Xue, Hui Chen, Zhen-Zhu Zhao, Ying-Ying Si, Kun Du, Yan-Le Zhi, and Wei-Sheng Feng*

College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China

* Corresponding Authors. Tel/Fax: +86-25-83271405;

E-mail: xueguimin123@126.com (Gui-Min Xue); fwsh@hactcm.edu.cn (Wei-Sheng Feng).

Contents

X-Ray Crystallogra	phic analysis of 1			S4				
Table S1. Gibbs free	Table S1. Gibbs free energies $(\Delta G)^a$ and Boltzmann distribution (P%) ^b of low-energy conformers							
of 1				S7				
Table S2. Cartesian	1 coordinates for	the low-energy reopting	nized MMFF confo	ormers of 1 at				
B3LYP/6-31+G(d,p)	level of theory in	CH ₃ OH		S7				
Table S3. Gibbs free	e energies $(\Delta G)^a$ and	nd Boltzmann distributio	on (P%) ^b of low-energy	rgy conformers				
of 2				S17				
Table S4. Cartesian	n coordinates for	the low-energy reoptin	nized MMFF confo	ormers of 2 at				
B3LYP/6-31+G(d,p)	level of theory in	CH ₃ OH		S17				
Table S5. The NO p	product inhibitory	effects of compounds 1	and 2 in RAW 264.	7 macrophages				
			S20	5				
Figure S1. The ch	iral HPLC resolu	tion of 1 and 2 led t	o the separation of	two pairs of				
enantiomers (-)-1 ar	ud (+)-1, and (-)-2	and (+)-2, respectively.	The spectra were of	otained by Pre-				
HPLC with a LC-12	0 system (Separati	on, Beijing, China), equ	ipped with a Chiralp	ak [®] IC column				
(10 mm × 250 mm i	.d., 5 μ m, Daicel,	Tokyo, Japan) with flow	v rate at 3.0 ml/min	(v/v: n-hexane:				
isopropanol = 90:10	, 1; cyclohexane:	isopropanol = $80:20, 2$)	, detected by a bina	ry channel UV				
detector	at	210	and	300				
nm				S27				
Figure S1-1 UV spec	trum of compound	1 (MeOH)		S27				
Figure S1-2 HRESIN	AS of compound 1			S28				
Figure S1-3 IR spect	rum of compound	1 (MeOH)		S28				
Figure S1-4 ¹ H NMF	spectrum of com	pound 1 (CDCl ₃ , 500 MI	Hz)	S29				
Figure S1-5 ¹³ C NM	R spectrum of com	npound 1 (CDCl ₃ , 125 M	Hz)	S29				
Figure S1-6 ¹ H- ¹ H C	OSY spectrum of	compound 1		S30				
Figure S1-7 HSQC s	pectrum of compo	und 1 (CDCl ₃ , 500 MHz)	S30				
Figure S1-8 HMBC	spectrum of compo	ound 1 (CDCl ₃ , 500 MH:	z)	S31				
Figure S1-8-1 The ex	xpansion HMBC sp	pectrum of compound 1	(CDCl ₃ , 500 MHz)	S31				
Figure S1-8-2 The ex	kpansion HMBC sp	pectrum of compound 1	(CDCl ₃ , 500 MHz)					

Figure S1-8-3 The expansion HMBC spectrum of compound 1 (CDCl ₃ , 500 MHz)	S32
Figure S1-8-4 The expansion HMBC spectrum of compound 1 (CDCl ₃ , 500 MHz)	S33
Figure S1-9 ROESY spectrum of compound 1 (CDCl ₃)	
Figure S2-1 UV spectrum of compound 2 (MeOH)	S34
Figure S2-2 HRESIMS of compound 2	S34
Figure S2-3 IR spectrum of compound 2 (MeOH)	S35
Figure S2-4 ¹ H NMR spectrum of compound 2 (CDCl ₃ , 500 MHz)	S35
Figure S2-5 ¹³ C NMR spectrum of compound 2 (CDCl ₃ , 125 MHz)	S36
Figure S2-6 ¹ H- ¹ H COSY spectrum of compound 2	S36
Figure S2-7 HSQC spectrum of compound 2 (CDCl ₃)	S37
Figure S2-8 HMBC spectrum of compound 2 (CDCl ₃)	
Figure S2-8-1 The expansion HMBC spectrum of compound 2 (CDCl ₃ , 500 MHz)	S38
Figure S2-8-2 The expansion HMBC spectrum of compound 2 (CDCl ₃ , 500 MHz)	S38
Figure S2-8-3 The expansion HMBC spectrum of compound 2 (CDCl ₃ , 500 MHz)	S39
Figure S2-8-4 The expansion HMBC spectrum of compound 2 (CDCl ₃ , 500 MHz)	S39
Figure S2-9 ROESY spectrum of compound 2 (CDCl ₃)	S40
Figure S3-1 ¹ H NMR spectrum of compound 3 (CDCl ₃ , 500 MHz)	S40
Figure S3-2 ¹³ C NMR spectrum of compound 3 (CDCl ₃ , 125 MHz)	S41

X-Ray Crystallographic analysis of 1.

Crystal data of 1: $C_{27}H_{32}O_6$, M = 452.53, a = 8.6532(5) Å, b = 9.9783(5) Å, c = 14.7.50(7) Å, $a = 100.835(4)^\circ$, $\beta = 102.254(4)^\circ$, $\gamma = 95.682(4)^\circ$, Volume = 1205.81(11) Å³, T = 293, space group P-1, Z = 2, μ (MuK α) = 0.709 mm⁻¹, 3456 reflections measured, 4294 independent reflections ($R_{int} = 0.0247$). Final R indexes [all data] $R_1 = 0.0588$, w $R_2 = 0.1722$.Crytallographic data for 1 have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC 2107685.

X-ray crystallographic data of 1

Bond precision: C-C =	Wavelength=1.54184	
Cell: $a = 8.6532(5)$	b=9.9783(5)	c=14.7050(7)

alpha = 100.835(4) beta = 102.254(4) gamma = 95.682(4)

Temperature: 293 K

	Calculated	Reported
Volume	1205.81(11)	1205.82(11)
Space group	P -1	P -1
Hall group	-P 1	-P 1
Moiety formula	$C_{27}H_{32}O_6$	$C_{27}H_{32}O_6$
Sum formula	$C_{27}H_{32}O_6$	$C_{27} H_{32} O_6$
Mr	452.53	452.52
Dx,g cm ⁻³	1.246	1.246

Ζ	2		2		
Mu (mm ⁻¹)	0.709		0.709		
F000	484.0 484.0				
F000′	485.51				
h, k, l _{max}	10,11,17		10,11,17		
Nref	4299		4294		
T _{min} , T _{max}	0.918, 0.945		0.867, 1.000		
T _{min'} 0.899					
Correction method	d = # Reported T I	Limits: $T_{min} = 0.86$	7 $T_{max} = 1.000$		
AbsCorr = MULT	I-SCAN				
Data completeness = 0.999 Theta(max) = 67.073					
R(reflections) = 0.0588 (3456) $wR2(reflections) = 0.1722(4294)$					
S = 1.065	Npar= 302				

View of a molecule of **1** with the atom-labelling scheme (Displacement ellipsoids are drawn at the 30% probability level).

View of the pack drawing of 1 (Hydrogen-bonds are shown as dashed lines)

Conformation	In MeOH			
Conformers	ΔG	P(%)/100		
1-1	0.00	0.418		
1-2	1.36	0.242		
1-3	2.71	0.140		
1-4	3.68	0.094		
1-5	4.94	0.057		
1-6	7.61	0.019		

Table S1. Gibbs free energies (ΔG) ^a and Boltzmann distribution (P%)^b of low-energy conformers of **1**.

^{*a*} B3LYP/6-31g, in kcal/mol. ^{*b*} From Δ G values at 298.15 K.

1-2

Table S2. Cartesian coordinates for the low-energy reoptimized MMFF conformers of 1 at B3LYP/6-31+G(d,p) level of theory in CH_3OH .

1-1			Standard Orientation			
Center	Atomic	Atomic		(Ångstror	ns)	
Number	Number	Туре	Х	Y	Z	
1	6	0	-0.120577	-0.009525	-0.502004	
2	6	0	0.596612	1.096983	-1.309054	
3	6	0	0.519489	2.480464	-0.720491	
4	6	0	-0.011689	2.761079	0.472206	
5	6	0	-0.714530	1.676696	1.271825	
6	6	0	-0.057103	0.280270	1.035803	
7	6	0	-1.645817	-0.137903	-0.880806	
8	6	0	-2.216061	1.643428	0.900659	
9	6	0	-2.439983	1.187160	-0.551337	
10	6	0	-0.847403	-0.779540	1.806725	

11	6	0	-2.241665	-1.323326	-0.127500
12	6	0	-1.898504	-1.563653	1.161200
13	8	0	-0.629289	-0.995908	3.005292
14	8	0	-2.449459	-2.529010	1.959540
15	6	0	1.398272	0.293785	1.626837
16	8	0	1.886535	1.343386	1.998657
17	6	0	2.157259	-1.017184	1.809204
18	6	0	3.689810	-0.846733	1.773935
19	6	0	4.246138	-0.584129	0.388602
20	6	0	4.428518	0.723568	-0.084657
21	6	0	4.921783	0.957295	-1.370316
22	6	0	5.243787	-0.113203	-2.206773
23	6	0	5.071461	-1.420076	-1.746210
24	6	0	4.578245	-1.649288	-0.460815
25	1	0	-0.622583	1.902064	2.339407
26	6	0	0.017018	4.135186	1.083484
27	8	0	-1.710515	-0.370965	-2.285022
28	6	0	-3.914248	1.129912	-0.950099
29	6	0	-4.886714	0.737405	-0.118348
30	6	0	-4.232035	1.603090	-2.349531
31	8	0	0.533718	-1.267582	-0.677801
32	6	0	0.811707	-1.776145	-1.979586
33	8	0	-3.130793	-1.992282	-0.893349
34	6	0	-4.020383	-2.972995	-0.334223
35	1	0	0.215947	1.097067	-2.337324
36	1	0	1.656090	0.810703	-1.375716
37	1	0	0.996536	3.269468	-1.301070
38	1	0	-2.647475	2.643400	1.024770
39	1	0	-2.750854	0.994354	1.601541
40	1	0	-1.970696	1.935049	-1.199953
41	1	0	-1.993541	-2.393915	2.820256
42	1	0	1.856788	-1.385587	2.799098
43	1	0	1.817559	-1.752633	1.078693
44	1	0	3.965013	-0.030918	2.449286
45	1	0	4.137799	-1.764014	2.174916
46	1	0	4.175723	1.559608	0.561250
47	1	0	5.060859	1.978878	-1.715574
48	1	0	5.632810	0.068943	-3.205217
49	1	0	5.328542	-2.261766	-2.384698
50	1	0	4.456497	-2.671030	-0.105838
51	1	0	0.439567	4.874082	0.394996
52	1	0	-0.985785	4.477118	1.374538
53	1	0	0.629222	4.124781	1.994784
54	1	0	-2.441509	-0.997340	-2.427474

	55	1	0	-5.926585	0.727467	-0.436198	
	56	1	0	-4.696829	0.415946	0.901451	
	57	1	0	-3.972758	2.665131	-2.464406	
	58	1	0	-3.639001	1.060740	-3.093918	
	59	1	0	-5.294413	1.486866	-2.586746	
	60	1	0	1.214428	-1.011703	-2.651445	
	61	1	0	1.576244	-2.544056	-1.832237	
	62	1	0	-0.075003	-2.219762	-2.440834	
	63	1	0	-3.461478	-3.801771	0.102015	
	64	1	0	-4.658340	-2.516109	0.425491	
_	65	1	0	-4.624668	-3.317905	-1.174742	
-							

1-2			Standard Orientation			
Center	Atomic	Atomic		(Ångstro	oms)	
Number	Number	Туре	Х	Y	Ζ	
1	6	0	0.749130	0.368460	0.963926	
2	6	0	0.886137	1.633336	1.843558	
3	6	0	1.248473	2.896253	1.105345	
4	6	0	1.374986	2.983639	-0.221867	
5	6	0	1.259752	1.738346	-1.085415	
6	6	0	0.242254	0.731623	-0.466774	
7	6	0	2.119107	-0.390601	0.785912	
8	6	0	2.648033	1.082902	-1.263912	
9	6	0	3.190112	0.514333	0.057317	
10	6	0	0.173667	-0.526585	-1.331950	
11	6	0	1.873181	-1.675348	-0.001097	
12	6	0	1.001839	-1.695058	-1.039180	
13	8	0	-0.587588	-0.591294	-2.305100	
14	8	0	0.772658	-2.765253	-1.859942	
15	6	0	-1.193483	1.365654	-0.525832	
16	8	0	-1.337821	2.481151	-0.984966	
17	6	0	-2.401199	0.567202	-0.048823	
18	6	0	-3.673849	0.918426	-0.844257	
19	6	0	-4.887906	0.171982	-0.336175	
20	6	0	-5.197845	-1.107606	-0.817743	
21	6	0	-6.298924	-1.812245	-0.329715	
22	6	0	-7.113403	-1.246896	0.653371	
23	6	0	-6.817998	0.027272	1.141322	
24	6	0	-5.715760	0.727628	0.648994	
25	1	0	0.876126	2.022559	-2.070003	
26	6	0	1.654227	4.276765	-0.937659	
27	8	0	2.597957	-0.704311	2.090921	
28	6	0	4.559009	-0.150744	-0.080870	
29	6	0	4.930501	-0.853553	-1.157798	

30	6	0	5.518258	0.081731	1.063454	
31	8	0	-0.245029	-0.510583	1.494300	
32	6	0	-0.180330	-0.965017	2.842491	
33	8	0	2.644938	-2.684454	0.458933	
34	6	0	2.805808	-3.906475	-0.280757	
35	1	0	1.605155	1.440244	2.648908	
36	1	0	-0.084314	1.786451	2.338011	
37	1	0	1.355305	3.789514	1.720041	
38	1	0	3.358841	1.824367	-1.646385	
39	1	0	2.584838	0.301013	-2.027351	
40	1	0	3.322246	1.359506	0.741957	
41	1	0	0.096824	-2.425033	-2.488077	
42	1	0	-2.199091	-0.504249	-0.081613	
43	1	0	-2.544747	0.805353	1.014197	
44	1	0	-3.837045	1.999050	-0.791306	
45	1	0	-3.497049	0.677889	-1.899229	
46	1	0	-4.570484	-1.551512	-1.588097	
47	1	0	-6.523918	-2.801281	-0.721144	
48	1	0	-7.973842	-1.792396	1.032042	
49	1	0	-7.449509	0.479538	1.902060	
50	1	0	-5.496166	1.723568	1.028784	
51	1	0	1.826629	5.098537	-0.235223	
52	1	0	2.532880	4.200038	-1.592716	
53	1	0	0.800557	4.540794	-1.575045	
54	1	0	3.032690	-1.572388	2.022972	
55	1	0	5.921927	-1.295322	-1.223802	
56	1	0	4.279192	-1.015473	-2.011718	
57	1	0	5.762549	1.150116	1.148431	
58	1	0	5.070766	-0.207211	2.020484	
59	1	0	6.454656	-0.468654	0.927124	
60	1	0	0.061947	-0.161114	3.546306	
61	1	0	-1.182450	-1.341407	3.068642	
62	1	0	0.548910	-1.769759	2.969523	
63	1	0	1.850196	-4.418314	-0.398875	
64	1	0	3.239298	-3.700053	-1.261986	
65	1	0	3.493509	-4.508960	0.314719	

1-3			Standard Orientation		
Center	Atomic	Atomic	(Ångstroms)		
Number	Number	Туре	Х	Y	Z
1	6	0	0.643454	0.272792	0.869418
2	6	0	0.689058	1.437534	1.886350
3	6	0	1.116950	2.768886	1.328767
4	6	0	1.343574	3.001277	0.033467

5	6	0	1.308123	1.860187	-0.968789
6	6	0	0.263856	0.775837	-0.561147
7	6	0	2.032337	-0.459710	0.738490
8	6	0	2.714294	1.229123	-1.101239
9	6	0	3.148390	0.517302	0.191435
10	6	0	0.320584	-0.376423	-1.564843
11	6	0	1.866896	-1.666765	-0.181599
12	6	0	1.107701	-1.579264	-1.300935
13	8	0	-0.298529	-0.317983	-2.633803
14	8	0	0.978824	-2.555504	-2.250543
15	6	0	-1.179676	1.378625	-0.660395
16	8	0	-1.328482	2.574828	-0.813933
17	6	0	-2.399365	0.461828	-0.619747
18	6	0	-3.469813	0.990462	0.360597
19	6	0	-4.758788	0.201344	0.288379
20	6	0	-5.760967	0.549335	-0.628083
21	6	0	-6.939495	-0.191803	-0.719279
22	6	0	-7.137948	-1.298248	0.108992
23	6	0	-6.149496	-1.655372	1.027542
24	6	0	-4.972388	-0.910478	1.113813
25	1	0	1.005465	2.250976	-1.945886
26	6	0	1.670460	4.364747	-0.511262
27	8	0	2.410147	-0.890055	2.043379
28	6	0	4.527835	-0.133558	0.093719
29	6	0	4.972049	-0.753143	-1.006246
30	6	0	5.404757	0.008236	1.315947
31	8	0	-0.391116	-0.650486	1.222461
32	6	0	-0.409524	-1.271519	2.504140
33	8	0	2.592319	-2.718910	0.256803
34	6	0	2.774769	-3.895592	-0.548423
35	1	0	1.325984	1.152461	2.732273
36	1	0	-0.326541	1.543669	2.295165
37	1	0	1.172889	3.587741	2.045182
38	1	0	2.724976	0.537925	-1.949869
39	1	0	3.449105	2.007850	-1.335645
40	1	0	3.220459	1.284645	0.969896
41	1	0	0.384719	-2.143436	-2.917039
42	1	0	-2.808513	0.456428	-1.637800
43	1	0	-2.122280	-0.562102	-0.370098
44	1	0	-3.065303	0.948100	1.379585
45	1	0	-3.654753	2.044833	0.130829
46	1	0	-5.615675	1.413734	-1.272841
47	1	0	-7.705598	0.098179	-1.434003
48	1	0	-8.056863	-1.874661	0.041580

49	1	0	-6.296168	-2.512097	1.680598	
50	1	0	-4.207925	-1.191295	1.835837	
51	1	0	1.788406	5.101637	0.289645	
52	1	0	2.593775	4.359161	-1.106657	
53	1	0	0.863266	4.703690	-1.173658	
54	1	0	2.859707	-1.745836	1.930807	
55	1	0	5.967089	-1.190405	-1.040434	
56	1	0	4.377623	-0.849254	-1.910080	
57	1	0	5.635403	1.066590	1.503148	
58	1	0	4.893265	-0.357269	2.213107	
59	1	0	6.351918	-0.528703	1.202105	
60	1	0	-0.214472	-0.563839	3.317057	
61	1	0	-1.422365	-1.670113	2.617327	
62	1	0	0.312139	-2.090095	2.574128	
63	1	0	1.816086	-4.366585	-0.769649	
64	1	0	3.286162	-3.643276	-1.479778	
65	1	0	3.396958	-4.557609	0.055846	

	1-4		Standard Orientation			
Center	Atomic	Atomic		(Ångsti	roms)	
Number	Number	Туре	Х	Y	Z	
1	6	0	-0.129195	-0.046295	-0.524447	
2	6	0	0.638489	1.003370	-1.359822	
3	6	0	0.600742	2.410224	-0.824142	
4	6	0	0.063286	2.754595	0.349046	
5	6	0	-0.687530	1.725881	1.178841	
6	6	0	-0.069602	0.300906	1.001519	
7	6	0	-1.656761	-0.133016	-0.912156	
8	6	0	-2.185624	1.737403	0.789612	
9	6	0	-2.400024	1.236903	-0.647700	
10	6	0	-0.892307	-0.707139	1.806993	
11	6	0	-2.300021	-1.267704	-0.114582	
12	6	0	-1.972988	-1.465891	1.187494	
13	8	0	-0.686088	-0.882925	3.015050	
14	8	0	-2.600601	-2.343830	2.031214	
15	6	0	1.379516	0.302582	1.609249	
16	8	0	1.876040	1.350106	1.976084	
17	6	0	2.118894	-1.015285	1.816407	
18	6	0	3.653352	-0.861337	1.816641	
19	6	0	4.241570	-0.605917	0.443011	
20	6	0	4.464995	0.698895	-0.020340	
21	6	0	4.985887	0.926185	-1.296194	
22	6	0	5.294539	-0.148139	-2.132719	
23	6	0	5.080599	-1.452434	-1.682168	

24	6	0	4.560315	-1.675143	-0.406474	
25	1	0	-0.599573	1.986877	2.238343	
26	6	0	0.132093	4.149449	0.908008	
27	8	0	-1.706664	-0.413817	-2.299488	
28	6	0	-3.862960	1.197554	-1.080839	
29	6	0	-4.192156	1.509589	-2.343262	
30	6	0	-4.926818	0.822714	-0.074837	
31	8	0	0.473669	-1.336038	-0.648804	
32	6	0	0.764982	-1.883575	-1.933723	
33	8	0	-3.247530	-1.905859	-0.831160	
34	6	0	-3.809215	-3.145732	-0.370261	
35	1	0	0.274428	0.975229	-2.393345	
36	1	0	1.688870	0.680285	-1.395376	
37	1	0	1.113426	3.159880	-1.426033	
38	1	0	-2.571198	2.761108	0.872496	
39	1	0	-2.757329	1.136407	1.504457	
40	1	0	-1.892784	1.936350	-1.317999	
41	1	0	-2.125440	-2.213359	2.882113	
42	1	0	1.789458	-1.376271	2.799927	
43	1	0	1.788148	-1.749225	1.080466	
44	1	0	3.922937	-0.048074	2.497183	
45	1	0	4.082229	-1.783346	2.227688	
46	1	0	4.221853	1.537981	0.625219	
47	1	0	5.156342	1.945559	-1.633806	
48	1	0	5.704786	0.028727	-3.123597	
49	1	0	5.325954	-2.297329	-2.321010	
50	1	0	4.405353	-2.695111	-0.059495	
51	1	0	0.590262	4.846064	0.198525	
52	1	0	-0.861963	4.537624	1.169835	
53	1	0	0.730291	4.152602	1.828530	
54	1	0	-2.649220	-0.480999	-2.533782	
55	1	0	-5.223082	1.478531	-2.688161	
56	1	0	-3.447370	1.830472	-3.067361	
57	1	0	-4.708094	-0.125512	0.427275	
58	1	0	-5.010126	1.584425	0.711112	
59	1	0	-5.905173	0.735083	-0.557143	
60	1	0	1.353327	-1.197521	-2.553186	
61	1	0	1.371387	-2.771156	-1.733873	
62	1	0	-0.143969	-2.162803	-2.471167	
63	1	0	-3.015381	-3.864452	-0.151341	
64	1	0	-4.421036	-2.997992	0.520932	
65	1	0	-4.422264	-3.503016	-1.199514	

Standard Orientation

Center	Atomic	Atomic	(Ångstroms)		
Number	Number	Туре	Х	Y	Z
1	6	0	0.757642	0.373322	0.989029
2	6	0	0.884928	1.631128	1.880308
3	6	0	1.247874	2.901695	1.155753
4	6	0	1.384388	3.001780	-0.169606
5	6	0	1.280372	1.763236	-1.044872
6	6	0	0.259769	0.748870	-0.440698
7	6	0	2.130978	-0.381184	0.810152
8	6	0	2.675729	1.118840	-1.219690
9	6	0	3.204197	0.541299	0.102510
10	6	0	0.192541	-0.500327	-1.318940
11	6	0	1.890300	-1.659812	0.005751
12	6	0	1.024271	-1.665636	-1.039336
13	8	0	-0.557516	-0.547662	-2.302725
14	8	0	0.838130	-2.710655	-1.904635
15	6	0	-1.175322	1.384146	-0.502168
16	8	0	-1.317732	2.503166	-0.953372
17	6	0	-2.385439	0.580066	-0.041039
18	6	0	-3.651991	0.935875	-0.844206
19	6	0	-4.867540	0.177705	-0.357652
20	6	0	-5.165570	-1.097725	-0.857514
21	6	0	-6.268303	-1.813598	-0.390058
22	6	0	-7.096478	-1.263928	0.590477
23	6	0	-6.813024	0.005866	1.096546
24	6	0	-5.709038	0.717543	0.624740
25	1	0	0.903018	2.054100	-2.029833
26	6	0	1.662174	4.302693	-0.871754
27	8	0	2.592080	-0.696228	2.111909
28	6	0	4.566991	-0.135943	-0.013507
29	6	0	5.447278	-0.037001	0.993669
30	6	0	4.915443	-0.894968	-1.273109
31	8	0	-0.237435	-0.512539	1.505363
32	6	0	-0.169421	-0.979957	2.850408
33	8	0	2.697959	-2.659841	0.414056
34	6	0	2.508206	-4.003530	-0.059908
35	1	0	1.599374	1.431530	2.687590
36	1	0	-0.089740	1.776863	2.368528
37	1	0	1.345923	3.790126	1.778923
38	1	0	3.379617	1.876154	-1.586405
39	1	0	2.628034	0.344868	-1.992859
40	1	0	3.326000	1.374418	0.800579
41	1	0	0.148449	-2.372135	-2.518374
42	1	0	-2.181153	-0.490691	-0.081678

43	1	0	-2.537930	0.808453	1.022858	
44	1	0	-3.820651	2.015021	-0.779465	
45	1	0	-3.463766	0.709191	-1.900255	
46	1	0	-4.527470	-1.529364	-1.626026	
47	1	0	-6.483899	-2.799067	-0.795542	
48	1	0	-7.958224	-1.818131	0.953221	
49	1	0	-7.455213	0.445947	1.855493	
50	1	0	-5.498889	1.710036	1.018647	
51	1	0	1.826052	5.118688	-0.160631	
52	1	0	2.545473	4.236781	-1.521824	
53	1	0	0.811241	4.568460	-1.512051	
54	1	0	3.427488	-1.183176	1.999434	
55	1	0	6.421947	-0.517279	0.948700	
56	1	0	5.233961	0.546648	1.885661	
57	1	0	4.157192	-1.641599	-1.531327	
58	1	0	4.994888	-0.215871	-2.131796	
59	1	0	5.876120	-1.407691	-1.165385	
60	1	0	-0.011115	-0.165737	3.567459	
61	1	0	-1.145225	-1.433905	3.045335	
62	1	0	0.620692	-1.722549	2.984803	
63	1	0	1.483710	-4.333473	0.129535	
64	1	0	2.723561	-4.081974	-1.126670	
65	1	0	3.210909	-4.607294	0.516880	

	1-6			Standard (Orientation
Center	Atomic	Atomic		(Ångstr	roms)
Number	Number	Туре	Х	Y	Z
1	6	0	1.014150	0.543556	1.146879
2	6	0	1.335704	1.963890	1.670098
3	6	0	1.214589	3.067324	0.650887
4	6	0	0.794550	2.890812	-0.605269
5	6	0	0.498520	1.493999	-1.125696
6	6	0	-0.061707	0.589358	0.015758
7	6	0	2.283322	-0.174763	0.547010
8	6	0	1.768318	0.874622	-1.750433
9	6	0	2.857022	0.609734	-0.699061
10	6	0	-0.308555	-0.819407	-0.526701
11	6	0	1.905991	-1.601888	0.160050
12	6	0	0.702119	-1.870639	-0.399624
13	8	0	-1.368073	-1.108426	-1.091657
14	8	0	0.297855	-3.092597	-0.860875
15	6	0	-1.471228	1.142729	0.442640
16	8	0	-1.917197	2.125119	-0.117003
17	6	0	-2.264052	0.445700	1.542274

18	6	0	-3.766032	0.796343	1.544394
19	6	0	-4.578686	0.080126	0.483430
20	6	0	-4.775881	0.639438	-0.786566
21	6	0	-5.519627	-0.034306	-1.755945
22	6	0	-6.080865	-1.280836	-1.473683
23	6	0	-5.893151	-1.848585	-0.212503
24	6	0	-5.149942	-1.170800	0.754560
25	1	0	-0.275150	1.558180	-1.896527
26	6	0	0.609026	4.024934	-1.575931
27	8	0	3.276376	-0.195096	1.569174
28	6	0	4.128414	-0.008730	-1.278220
29	6	0	4.124756	-0.897218	-2.279265
30	6	0	5.426340	0.492489	-0.688472
31	8	0	0.431147	-0.254543	2.179901
32	6	0	1.100441	-0.450255	3.421564
33	8	0	2.918515	-2.460957	0.417115
34	6	0	2.929400	-3.791620	-0.125876
35	1	0	2.335818	1.967496	2.120160
36	1	0	0.636014	2.170396	2.493297
37	1	0	1.445993	4.070039	1.008986
38	1	0	2.171126	1.551354	-2.512794
39	1	0	1.500151	-0.047961	-2.274793
40	1	0	3.146183	1.581388	-0.282832
41	1	0	-0.604678	-2.914108	-1.209343
42	1	0	-2.107423	-0.634664	1.494233
43	1	0	-1.809165	0.761167	2.490324
44	1	0	-4.163936	0.535978	2.532857
45	1	0	-3.871289	1.879721	1.430675
46	1	0	-4.335401	1.605896	-1.012733
47	1	0	-5.662337	0.417597	-2.734494
48	1	0	-6.662687	-1.803700	-2.228503
49	1	0	-6.330211	-2.816339	0.021432
50	1	0	-5.015536	-1.616401	1.738719
51	1	0	0.939613	4.978444	-1.151623
52	1	0	1.163488	3.858320	-2.509641
53	1	0	-0.451437	4.115593	-1.844138
54	1	0	3.747207	-1.041946	1.476847
55	1	0	5.054495	-1.298877	-2.675168
56	1	0	3.213244	-1.256028	-2.747994
57	1	0	5.550187	1.565973	-0.890395
58	1	0	5.433757	0.383120	0.401285
59	1	0	6.292137	-0.031603	-1.105699
60	1	0	1.553126	0.469897	3.806061
61	1	0	0.325902	-0.782546	4.119828

62	1	0	1.877646	-1.216415	3.351130	
63	1	0	2.082844	-4.370664	0.244790	
64	1	0	2.903041	-3.755710	-1.217505	
65	1	0	3.870685	-4.227634	0.212538	

Table S3. Gibbs free energies $(\Delta G)^a$ and Boltzmann distribution $(P\%)^b$ of low-energy conformers of **2**.

Conformana	In MeOH				
Conformers	ΔG	P(%)/100			
2-1	0.00	0.488			
2-2	1.66	0.250			
2-3	3.85	0.103			
2-4	5.64	0.050			
2-5	6.67	0.033			

 a B3LYP/6-31g, in kcal/mol. b From ΔG values at 298.15 K.

Table S4. Cartesian coordinates for the low-energy reoptimized MMFF conformers of 2 at B3LYP/6-31+G(d,p) level of theory in CH₃OH. _

2-1			Standard Orientation		
Center	Atomic	Atomic		(Ångstr	oms)
Number	Number	Туре	Х	Y	Z
1	6	0	1.365417	-0.666802	1.301644
2	6	0	0.309864	-0.079190	0.316762
3	6	0	1.064026	0.909415	-0.625342
4	6	0	1.993893	0.165991	-1.511182

5	6	0	2.778239	-0.778464	-0.968920
6	6	0	2.680199	-1.049713	0.517664
7	8	0	3.634113	-1.580434	1.094897
8	8	0	2.000440	0.456555	-2.859702
9	8	0	1.769869	2.000402	0.068654
10	6	0	-0.822584	0.786195	0.915427
11	6	0	-1.217290	1.713797	-0.264407
12	6	0	0.029618	1.925861	-1.136158
13	6	0	1.066623	3.007105	-0.713991
14	6	0	1.952829	3.563029	-1.831655
15	6	0	0.608045	4.156843	0.177442
16	6	0	1.779116	0.374711	2.385338
17	6	0	0.665372	1.261193	2.872352
18	6	0	-0.501946	1.452891	2.234830
19	6	0	-1.595402	2.278761	2.862038
20	1	0	-1.708772	0.183002	1.140556
21	1	0	-0.194622	1.908829	-2.207737
22	6	0	-0.420757	-1.219742	-0.484242
23	8	0	-0.331253	-1.297878	-1.714098
24	6	0	-1.248759	-2.273700	0.251534
25	6	0	-2.482077	-2.718313	-0.536949
26	6	0	-3.549830	-1.653984	-0.613844
27	6	0	-3.751031	-0.937341	-1.800561
28	6	0	-4.726730	0.058150	-1.869300
29	6	0	-5.508438	0.347780	-0.752768
30	6	0	-5.317511	-0.359709	0.432514
31	6	0	-4.344189	-1.357456	0.502231
32	8	0	3.668214	-1.450520	-1.800123
33	6	0	3.888831	-2.816014	-1.458227
34	8	0	0.734272	-1.756689	2.001792
35	6	0	1.570902	-2.715883	2.634684
36	1	0	2.645122	-0.153823	-3.268906
37	1	0	-1.971182	1.201398	-0.872208
38	1	0	-1.673050	2.657317	0.045594
39	1	0	2.401444	2.788311	-2.452912
40	1	0	2.777991	4.153624	-1.417875
41	1	0	1.370790	4.215500	-2.491738
42	1	0	0.117605	3.815253	1.087552
43	1	0	-0.092358	4.806111	-0.358607
44	1	0	1.458614	4.770493	0.495288
45	1	0	2.607309	1.008340	2.048522
46	1	0	2.167394	-0.143018	3.269816
47	1	0	0.850659	1.761281	3.821346
48	1	0	-1.319460	2.634323	3.860642

49	1	0	-1.827769	3.157642	2.255059	
50	1	0	-2.506417	1.680407	2.967754	
51	1	0	-0.597876	-3.144165	0.393583	
52	1	0	-1.554476	-1.917385	1.238044	
53	1	0	-2.200947	-3.042158	-1.546728	
54	1	0	-2.916184	-3.603315	-0.053844	
55	1	0	-3.139188	-1.144198	-2.677208	
56	1	0	-4.873441	0.608881	-2.794754	
57	1	0	-6.268219	1.122813	-0.807721	
58	1	0	-5.929715	-0.136798	1.302430	
59	1	0	-4.209653	-1.902983	1.433638	
60	1	0	4.657179	-2.900233	-0.684935	
61	1	0	2.963593	-3.315907	-1.151140	
62	1	0	4.264159	-3.325252	-2.351133	
63	1	0	0.935034	-3.347319	3.262117	
64	1	0	2.326327	-2.257567	3.276246	
65	1	0	2.036289	-3.363355	1.886405	

_

	2-2			Standard (Drientation	
Center	Atomic	Atomic		(Ångstr	roms)	
Number	Number	Туре	Х	Y	Z	
1	6	0	1.268789	-0.892279	1.225084	
2	6	0	0.258546	-0.161995	0.290282	
3	6	0	1.069956	0.874861	-0.542945	
4	6	0	1.977239	0.175430	-1.485006	
5	6	0	2.736384	-0.827226	-1.016912	
6	6	0	2.579736	-1.266295	0.426102	
7	8	0	3.478480	-1.922738	0.960910	
8	8	0	1.999643	0.575436	-2.804872	
9	8	0	1.816742	1.860796	0.257720	
10	6	0	-0.841251	0.693318	0.960595	
11	6	0	-1.177079	1.748214	-0.127175	
12	6	0	0.090208	1.982764	-0.963811	
13	6	0	1.171027	2.968566	-0.432980	
14	6	0	2.096331	3.581932	-1.487185	
15	6	0	0.755621	4.050682	0.558402	
16	6	0	1.719227	0.021977	2.405458	
17	6	0	0.643033	0.911640	2.965648	
18	6	0	-0.506464	1.217003	2.340042	
19	6	0	-1.568787	2.029739	3.034225	
20	1	0	-1.755860	0.110929	1.119072	
21	1	0	-0.120864	2.077418	-2.034041	
22	6	0	-0.516642	-1.174568	-0.631382	
23	8	0	-0.444991	-1.100617	-1.862793	

24	6	0	-1.379975	-2.275653	-0.016522	
25	6	0	-2.622075	-2.594167	-0.851258	
26	6	0	-3.657957	-1.496394	-0.808167	
27	6	0	-3.828436	-0.640069	-1.903544	
28	6	0	-4.772851	0.386472	-1.859143	
29	6	0	-5.553907	0.567687	-0.719537	
30	6	0	-5.393390	-0.279001	0.375570	
31	6	0	-4.451142	-1.307598	0.331925	
32	8	0	3.597241	-1.467546	-1.902014	
33	6	0	4.911143	-1.682848	-1.393356	
34	8	0	0.568532	-2.001004	1.821406	
35	6	0	1.339797	-3.066395	2.359817	
36	1	0	2.559585	-0.070929	-3.278557	
37	1	0	-1.946929	1.333755	-0.787718	
38	1	0	-1.591390	2.678554	0.268852	
39	1	0	2.512655	2.846949	-2.175873	
40	1	0	2.944912	4.088696	-1.013930	
41	1	0	1.554821	4.321943	-2.086635	
42	1	0	0.237855	3.649345	1.428207	
43	1	0	0.093470	4.780033	0.079806	
44	1	0	1.629964	4.590397	0.939548	
45	1	0	2.581173	0.642954	2.136675	
46	1	0	2.071400	-0.595966	3.239522	
47	1	0	0.839208	1.310062	3.959461	
48	1	0	-1.290159	2.274120	4.064968	
49	1	0	-1.751789	2.972969	2.513002	
50	1	0	-2.507940	1.467959	3.073471	
51	1	0	-0.756732	-3.175704	0.034920	
52	1	0	-1.684201	-2.013612	0.999652	
53	1	0	-2.347021	-2.811232	-1.890834	
54	1	0	-3.083616	-3.514306	-0.469972	
55	1	0	-3.216177	-0.762089	-2.795715	
56	1	0	-4.895660	1.045745	-2.714420	
57	1	0	-6.289445	1.366925	-0.686435	
58	1	0	-6.004916	-0.140434	1.263271	
59	1	0	-4.339567	-1.961845	1.193738	
60	1	0	4.955365	-2.622208	-0.835223	
61	1	0	5.586162	-1.778449	-2.249413	
62	1	0	5.260022	-0.841690	-0.784329	
63	1	0	1.770558	-3.666540	1.553680	
64	1	0	0.661621	-3.714833	2.922274	
65	1	0	2.115837	-2.718320	3.044766	

Standard Orientation

Center	Atomic	Atomic	(Ångstroms)		roms)
Number	Number	Туре	Х	Y	Z
1	6	0	-0.095924	-0.318916	1.199393
2	6	0	-0.723030	-0.505123	-0.210057
3	6	0	-1.791265	0.616610	-0.393840
4	6	0	-1.148184	1.951220	-0.454864
5	6	0	-0.202125	2.251660	0.449168
6	6	0	0.189203	1.210392	1.477176
7	8	0	0.722181	1.576406	2.529725
8	8	0	-1.522074	2.821638	-1.458341
9	8	0	-2.868461	0.607958	0.613064
10	6	0	-1.525133	-1.804457	-0.463262
11	6	0	-2.485606	-1.390305	-1.609379
12	6	0	-2.794877	0.106973	-1.442884
13	6	0	-3.890347	0.540195	-0.423051
14	6	0	-4.537678	1.907221	-0.660827
15	6	0	-4.976849	-0.461033	-0.043482
16	6	0	-1.065924	-0.782824	2.329308
17	6	0	-1.917618	-1.977589	1.999641
18	6	0	-2.134404	-2.449921	0.761003
19	6	0	-2.912538	-3.723252	0.549523
20	1	0	-0.893187	-2.604276	-0.860739
21	1	0	-2.829279	0.641494	-2.397749
22	6	0	0.412927	-0.444436	-1.305103
23	8	0	0.633547	0.587841	-1.946129
24	6	0	1.221328	-1.700509	-1.646230
25	6	0	2.571712	-1.400051	-2.300957
26	6	0	3.617257	-0.899574	-1.334843
27	6	0	4.354612	-1.801048	-0.555350
28	6	0	5.330607	-1.338555	0.329125
29	6	0	5.575725	0.028186	0.445838
30	6	0	4.845259	0.933227	-0.321551
31	6	0	3.869332	0.472215	-1.206558
32	8	0	0.367689	3.520466	0.403791
33	6	0	1.735337	3.575646	0.798484
34	8	0	1.049041	-1.189643	1.247059
35	6	0	2.048830	-0.903127	2.216008
36	1	0	-0.957089	3.613049	-1.353110
37	1	0	-1.963393	-1.527305	-2.565597
38	1	0	-3.392479	-1.997020	-1.669277
39	1	0	-3.816428	2.705168	-0.832536
40	1	0	-5.140311	2.208907	0.203383
41	1	0	-5.198321	1.869901	-1.533974
42	1	0	-4.573250	-1.406784	0.312417

43	1	0	-5.624318	-0.672714	-0.901051	
44	1	0	-5.606378	-0.070448	0.764146	
45	1	0	-1.727670	0.029176	2.653052	
46	1	0	-0.490798	-1.051730	3.222900	
47	1	0	-2.367359	-2.477346	2.855788	
48	1	0	-3.240397	-4.166084	1.496207	
49	1	0	-3.805667	-3.549900	-0.056050	
50	1	0	-2.288979	-4.464893	0.039398	
51	1	0	1.362175	-2.333504	-0.768139	
52	1	0	0.622902	-2.264132	-2.372075	
53	1	0	2.950482	-2.320496	-2.764930	
54	1	0	2.458500	-0.687111	-3.127251	
55	1	0	4.175045	-2.870716	-0.635269	
56	1	0	5.900188	-2.045640	0.926380	
57	1	0	6.336930	0.387767	1.132987	
58	1	0	5.037442	1.999138	-0.234170	
59	1	0	3.306940	1.189769	-1.801603	
60	1	0	2.304612	2.719760	0.422851	
61	1	0	2.169575	4.482013	0.365623	
62	1	0	1.819002	3.658447	1.885509	
63	1	0	1.635053	-0.796584	3.221177	
64	1	0	2.608984	-0.008704	1.932194	
65	1	0	2.748332	-1.743481	2.231594	

2-4Standard of CenterCenterAtomic(ÅngstaNumberNumberTypeXY160-0.902695-1.490673	Orientation roms)
CenterAtomicAtomic(ÅngstrNumberNumberTypeXY160-0.902695-1.490673	0.642674
Number Number Type X Y 1 6 0 -0.902695 -1.490673	0.642674
1 6 0 -0.902695 -1.490673	0.642674
	0.0.207.
2 6 0 -1.009259 -0.444915	-0.505312
3 6 0 -1.109779 0.954787	0.148660
4 6 0 0.205243 1.288258	0.748044
5 6 0 0.792781 0.379480	1.546086
6 6 0 0.118064 -0.972916	1.734110
7 8 0 0.387629 -1.663232	2.720811
8 8 0 0.779677 2.505515	0.453507
9 8 0 -2.189677 1.112535	1.131287
10 6 0 -2.274480 -0.541731	-1.396319
11 6 0 -2.512027 0.919741	-1.872583
12 6 0 -1.881954 1.859680	-0.827788
13 6 0 -2.726632 2.260778	0.416099
14 6 0 -2.323413 3.573140	1.092728
15 6 0 -4.247334 2.173012	0.338088
16 6 0 -2.262117 -1.687228	1.383480
17 6 0 -3.464154 -1.695382	0.484165

18	6	0	-3.483585	-1.201826	-0.764576
19	6	0	-4.708992	-1.352139	-1.628501
20	1	0	-2.051808	-1.153246	-2.283225
21	1	0	-1.324362	2.685463	-1.281775
22	6	0	0.204729	-0.444362	-1.520963
23	8	0	0.280362	0.445223	-2.378843
24	6	0	1.267543	-1.534416	-1.503204
25	6	0	2.525262	-1.177365	-2.304106
26	6	0	3.477026	-0.297061	-1.526257
27	6	0	4.478205	-0.867487	-0.727943
28	6	0	5.353319	-0.057036	-0.002478
29	6	0	5.232176	1.329899	-0.061701
30	6	0	4.239376	1.907283	-0.850075
31	6	0	3.366734	1.098243	-1.579367
32	8	0	1.996912	0.734754	2.142823
33	6	0	2.785812	-0.317751	2.683878
34	8	0	-0.603636	-2.756377	0.019504
35	6	0	-0.066091	-3.783174	0.845270
36	1	0	1.644544	2.518624	0.912411
37	1	0	-2.010611	1.069908	-2.836268
38	1	0	-3.561165	1.161523	-2.059092
39	1	0	-1.247869	3.658846	1.252979
40	1	0	-2.801794	3.669601	2.073781
41	1	0	-2.632114	4.428703	0.482111
42	1	0	-4.595986	1.188615	0.024127
43	1	0	-4.641920	2.911572	-0.367729
44	1	0	-4.701907	2.366951	1.316211
45	1	0	-2.415993	-0.946908	2.175770
46	1	0	-2.266426	-2.648788	1.908443
47	1	0	-4.358707	-2.155160	0.899941
48	1	0	-5.474677	-1.971884	-1.149273
49	1	0	-5.163060	-0.381289	-1.844102
50	1	0	-4.447127	-1.833255	-2.576545
51	1	0	1.564255	-1.756362	-0.476905
52	1	0	0.815666	-2.421867	-1.959242
53	1	0	3.051395	-2.105782	-2.562691
54	1	0	2.280450	-0.704801	-3.262973
55	1	0	4.587985	-1.948187	-0.672266
56	1	0	6.132516	-0.508015	0.606419
57	1	0	5.915798	1.960854	0.500050
58	1	0	4.146811	2.988834	-0.906419
59	1	0	2.599807	1.566866	-2.194477
60	1	0	2.876994	-1.157671	1.987941
61	1	0	3.789890	0.078143	2.863651

62	1	0	2.386030	-0.640095	3.649472
63	1	0	-0.046629	-4.704826	0.256381
64	1	0	-0.668410	-3.967338	1.736729
65	1	0	0.965731	-3.549426	1.121201

	2-5			Standard (Orientation
Center	Atomic	Atomic		(Ångst	roms)
Number	Number	Туре	Х	Y	Z
1	6	0	-0.902695	-1.490673	0.642674
2	6	0	-1.009259	-0.444915	-0.505312
3	6	0	-1.109779	0.954787	0.148660
4	6	0	0.205243	1.288258	0.748044
5	6	0	0.792781	0.379480	1.546086
6	6	0	0.118064	-0.972916	1.734110
7	8	0	0.387629	-1.663232	2.720811
8	8	0	0.779677	2.505515	0.453507
9	8	0	-2.189677	1.112535	1.131287
10	6	0	-2.274480	-0.541731	-1.396319
11	6	0	-2.512027	0.919741	-1.872583
12	6	0	-1.881954	1.859680	-0.827788
13	6	0	-2.726632	2.260778	0.416099
14	6	0	-2.323413	3.573140	1.092728
15	6	0	-4.247334	2.173012	0.338088
16	6	0	-2.262117	-1.687228	1.383480
17	6	0	-3.464154	-1.695382	0.484165
18	6	0	-3.483585	-1.201826	-0.764576
19	6	0	-4.708992	-1.352139	-1.628501
20	1	0	-2.051808	-1.153246	-2.283225
21	1	0	-1.324362	2.685463	-1.281775
22	6	0	0.204729	-0.444362	-1.520963
23	8	0	0.280362	0.445223	-2.378843
24	6	0	1.267543	-1.534416	-1.503204
25	6	0	2.525262	-1.177365	-2.304106
26	6	0	3.477026	-0.297061	-1.526257
27	6	0	4.478205	-0.867487	-0.727943
28	6	0	5.353319	-0.057036	-0.002478
29	6	0	5.232176	1.329899	-0.061701
30	6	0	4.239376	1.907283	-0.850075
31	6	0	3.366734	1.098243	-1.579367
32	8	0	1.996912	0.734754	2.142823
33	6	0	2.785812	-0.317751	2.683878
34	8	0	-0.603636	-2.756377	0.019504
35	6	0	-0.066091	-3.783174	0.845270
36	1	0	1.644544	2.518624	0.912411

37	1	0	-2.010611	1.069908	-2.836268
38	1	0	-3.561165	1.161523	-2.059092
39	1	0	-1.247869	3.658846	1.252979
40	1	0	-2.801794	3.669601	2.073781
41	1	0	-2.632114	4.428703	0.482111
42	1	0	-4.595986	1.188615	0.024127
43	1	0	-4.641920	2.911572	-0.367729
44	1	0	-4.701907	2.366951	1.316211
45	1	0	-2.415993	-0.946908	2.175770
46	1	0	-2.266426	-2.648788	1.908443
47	1	0	-4.358707	-2.155160	0.899941
48	1	0	-5.474677	-1.971884	-1.149273
49	1	0	-5.163060	-0.381289	-1.844102
50	1	0	-4.447127	-1.833255	-2.576545
51	1	0	1.564255	-1.756362	-0.476905
52	1	0	0.815666	-2.421867	-1.959242
53	1	0	3.051395	-2.105782	-2.562691
54	1	0	2.280450	-0.704801	-3.262973
55	1	0	4.587985	-1.948187	-0.672266
56	1	0	6.132516	-0.508015	0.606419
57	1	0	5.915798	1.960854	0.500050
58	1	0	4.146811	2.988834	-0.906419
59	1	0	2.599807	1.566866	-2.194477
60	1	0	2.876994	-1.157671	1.987941
61	1	0	3.789890	0.078143	2.863651
62	1	0	2.386030	-0.640095	3.649472
63	1	0	-0.046629	-4.704826	0.256381
64	1	0	-0.668410	-3.967338	1.736729
65	1	0	0.965731	-3.549426	1.121201

Compd.	Call viability a 0/	NO Production inhibitory effect ^{b)}		
	Cen viability ⁴⁹ 76	$(IC_{50}\mu M)$		
1	0.94	13.2 ± 0.78		
2	0.98	9.8 ± 0.63		
L-NMMA c)		26.8 ± 1.98		

Table S5. The NO product inhibitory effects of compounds 1 and 2 in RAW 264.7 macrophages.

^{*a*)} the cell viability at the concentration of 30 μ M; ^{*b*)} the NO Production inhibitory effect of compounds **1** and **2** at the concentrations from 1.875 to 30 μ M; ^{*c*)} the positive control group.

Figure S1. The chiral HPLC resolution of **1** and **2** led to the separation of two pairs of enantiomers (–)-**1** and (+)-**1**, and (–)-**2** and (+)-**2**, respectively. The spectra were obtained by Pre-HPLC with a LC-120 system (Separation, Beijing, China), equipped with a Chiralpak[®] IC column (10 mm × 250 mm i.d., 5 μ m, Daicel, Tokyo, Japan) with flow rate at 3.0 ml/min (v/v: n-hexane: isopropanol = 90:10, **1**; cyclohexane: isopropanol = 80:20, **2**), detected by a binary channel UV detector at 210 and 300 nm.

Figure S1-1 UV spectrum of compound 1

Figure S1-2 HRESIMS of compound 1

Figure S1-3 IR spectrum of compound 1 (MeOH)

Figure S1-4 ¹H NMR spectrum of compound 1 (CDCl₃, 500 MHz)

Figure S1-5 ¹³C NMR spectrum of compound 1 (CDCl₃, 125 MHz)

Figure S1-7 HSQC spectrum of compound 1 (CDCl₃, 500 MHz)

Figure S1-8-1 The expansion HMBC spectrum of compound 1 (CDCl₃, 500 MHz)

Figure S1-8-3 The expansion HMBC spectrum of compound 1 (CDCl₃, 500 MHz)

Figure S1-8-3 The expansion HMBC spectrum of compound 1 (CDCl₃, 500 MHz)

Figure S1-8-4 The expansion HMBC spectrum of compound 1 (CDCl₃, 500 MHz)

Figure S1-9 ROESY spectrum of compound 1 (CDCl₃, 500 MHz)

Figure S2-1 UV spectrum of compound 2

Figure S2-2 HRESIMS of compound 2

Figure S2-3 IR spectrum of compound 2 (MeOH)

Figure S2-4 ¹H NMR spectrum of compound 2 (CDCl₃, 500 MHz)

Figure S2-5 ¹³C NMR spectrum of compound 2 (CDCl₃, 125 MHz)

Figure S2-6 ¹H-¹H COSY spectrum of compound 2 (CDCl₃, 500 MHz)

Figure S2-7 HSQC spectrum of compound 2 (CDCl₃, 500 MHz)

Figure S2-8 HMBC spectrum of compound 2 (CDCl₃, 500 MHz)

Figure S2-8-1 The expansion HMBC spectrum of compound $\mathbf{2}$ (CDCl₃, 500 MHz)

Figure S2-8-2 The expansion HMBC spectrum of compound $\mathbf{2}$ (CDCl₃, 500 MHz)

Figure S2-8-3 The expansion HMBC spectrum of compound 2 (CDCl₃, 500 MHz)

Figure S2-8-4 The expansion HMBC spectrum of compound $\mathbf{2}$ (CDCl₃, 500 MHz)

Figure S2-9 ROESY spectrum of compound 2 (CDCl₃, 500 MHz)

Figure S3-1 ¹H NMR spectrum of compound 3 (CDCl₃, 500 MHz)

Figure S3-2 ^{13}C NMR spectrum of compound **3** (CDCl₃, 125 MHz)