Supporting Information

The Access to Azonanes via Pd-Catalyzed Decarboxylative [5 + 4] Cycloaddition with Exclusive Regioselectivity

Yin Liu,^{a,b,&} Yicheng He,^{b,&} Yang Liu,^b Kun Wei,^a and Wusheng Guo^{b,c,*}

 ^a School of biology and Biological Engineering, South China University of Technology, Guangzhou 510640, China.
^b Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an 710045, China
^c School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material
Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China.

E-mail: wusheng.guo@mail.xjtu.edu.cn

[&] These authors contributed equally to the present work

Contents

S 3	General comments
S4	Optimized procedure for the formation of 3aa
S4	Gram-scale reactions and synthetic transformation of 3aa
S 5	Control experiment
S 5	Characterization data of all the products
S20	X-ray molecular structures of 3aa
S41	References
S42	Characterization spectra of all products

General comments

Commercially available reagents were purchased from Energy, J&K, Strem, Alfa Aesar or TCI, and used without further purification unless otherwise stated. The catalyst were purchased from Strem and were stored in fridge (<-20 °C). Solvents were purchased from Energy and used directly without further purification.

¹H NMR, ¹³C NMR, ¹⁹F NMR spectra were measured on Bruker Avance 400MHz instrument and chemical shifts (δ) are reported in parts per million (ppm). Chemical shifts were reported in ppm on the δ scale relative to CHCl₃ (δ = 7.26 for ¹H NMR, δ = 77.16 for ¹³C NMR). Coupling constants were reported in Hz with multiplicities denoted as s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet). Infrared spectra was collected on a bruker ALPHA II spectrometer. Absorption maxima (v max) was reported in wavenumbers (cm⁻¹). High-resolution ESI mass spectra (HRMS) were determined on WATERS I-Class VION IMS Q Tof LC/MS. Single crystal X-ray diffraction analyses were collected at 100 K on a Rigaku Oxford Diffraction Supernova Dual Source, Cu at Zero equipped with an AtlasS2 CCD using Cu K α radiation.

All reactions were monitored by thin layer chromatography (TLC) and visualized by UV irradiation or stained with potassium permanganate or 20-30% ethanolic phosphomolybdicacid (PMA) followed by brief heating with a heating gun. Column chromatography was performed on silica gel (200-300 mesh) using a mixture of petroleum ether/ethyl acetate or petroleum ether/dichloromethane as the eluent. The substituted carbonates **1** and 1-azadiene **2** were prepared according to reported procedures.^[1-2]

Typical reaction procedure for the formation of 3aa

A screw-capped vial was charged with carbonate **1a** (20.2 mg, 0.1 mmol, 1.0 equiv), 1azadiene **2a** (39.3 mg, 0.11 mmol, 1.1 equiv), and Pd(PPh₃)₄ (2.3 mg, 0.002 mmol, 2 mol%) in THF (0.2 mL). The reaction mixture was stirred at room temperature for 3 h. Upon the reaction was finished, the mixture was purified directly by flash chromatography on silica gel to afford the pure product **3aa** (PE:EA = 5:1, $R_f = 0.31$).

Gram-scale reaction and selective reduction of 3aa

Gram-scale synthesis of 3aa:

A 25 mL of round-bottom flask was charged with carbonate **1a** (606 mg, 3 mmol, 1.0 equiv), azadiene (1.17 mg, 3.3 mmol, 1.1 equiv), and Pd(PPh₃)₄ (70 mg, 0.06 mmol, 2 mol%) in THF (6 mL). The reaction mixture was stirred at room temperature. After full conversion was noted, the mixture was purified directly by flash chromatography (PE/EA = 5:1, $R_f = 0.34$) on silica gel to afford the product **3aa** (1.26 g, 82%) as a white solid.

Selective reduction of 3aa:

A screw-capped vial was charged with nine-membered *N*-heterocycle **3aa** (51.5 mg, 0.1 mmol, 1.0 equiv), TsNHNH₂ (27.9 mg, 0.15 mmol, 1.5 equiv) and 4 Å Molecular sieves (100 mg) in MeOH (2.0 mL). The reaction mixture was stirred at 70 °C for 10 h. Upon full conversion was noted, the mixture was purified directly by flash

chromatography (PE/EA = 5:1, $R_f = 0.43$) on silica gel to afford the product **4** as a yellow oil.

A 1 mL screw-capped vial was charged with nine-membered azonane **3aa** (51.5 mg, 0.1 mmol, 1.0 equiv), SiMeOTf (1.8 mg, 8 mol%) and NBS (19.6 mg, 0.11 mmol, 1.1 equiv) in MeCN (2.0 mL). The reaction mixture was stirred at 60 °C for 28 h. After full conversion was noted, the mixture was purified by flash chromatography (PE/EA) on silica gel to afford the product **5** (PE : EA = 5 : 1, $R_f = 0.47$) as a white solid.

Control experiment:

Characterization data of all the new products

Ethyl(2*E*,7*Z*)-6-oxo-2,7-diphenyl-1-tosyl-4,5,6,9-tetrahydro-1*H*-azonine-3-carboxylate (3aa)

The title compound was prepared according to the standard procedure and isolated as a white solid (48.0 mg, 92%), m.p. = 161.9-163.5 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.35 (d, *J* = 7.6 Hz, 2H), 7.31-7.09 (m, 12H), 6.01 (t, *J* = 8.0 Hz, 1H), 4.25 (dd, *J* = 13.7, 7.2 Hz, 1H), 3.96 (dd, *J* = 13.3, 9.5 Hz, 1H), 3.77-3.58 (m, 2H), 2.76-2.64 (m, 1H), 2.56 (t, *J* = 13.7 Hz, 1H), 2.51-2.42 (m, 1H), 2.35 (s, 3H), 2.33-2.24 (m, 1H), 0.59 (t, *J* = 6.9 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃, one carbon signal was overlapped) δ 208.4, 169.1, 149.7, 144.1, 138.4, 135.8, 134.0, 133.0, 129.7, 129.2, 129.1, 129.0, 128.7, 128.2, 127.6, 126.5, 120.6, 61.1, 48.8, 41.0, 27.6, 21.7, 13.4. HRMS (ESI) m/z:

 $(M+H)^+$ calcd. for $C_{30}H_{30}NO_5S$ 516.1845, found: 516.1847. IR v_{max}/cm^{-1} 3058, 3029, 2980, 2931, 1701, 1597, 1350, 1297, 1161, 1091, 799, 766.

Ethyl(2*E*,7*Z*)-6-oxo-2-phenyl-7-(*p*-tolyl)-1-tosyl-4,5,6,9-tetrahydro-1*H*-azonine-3-carboxylate (3ba)

The title compound was prepared according to the standard procedure and isolated as a white solid (39.7 mg, 75%), m.p. = 166.9-168.5 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, *J* = 8.2 Hz, 2H), 7.35 – 7.30 (m, 1H), 7.28 – 7.23 (m, 2H), 7.22 – 7.16 (m, 4H), 7.16 – 7.07 (m, 4H), 6.04 (t, *J* = 8.2 Hz, 1H), 4.31 (dd, *J* = 13.8, 7.4 Hz, 1H), 4.03 (dd, *J* = 13.8, 9.2 Hz, 1H), 3.82 – 3.67 (m, 2H), 2.82 – 2.71 (m, 1H), 2.68 – 2.48 (m, 2H), 2.41 (s, 3H), 2.39 – 2.33 (m, 1H), 2.33 (d, *J* = 7.1 Hz, 3H), 0.66 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 208.6, 169.1, 149.6, 144.2, 144.1, 139.3, 138.4, 135.8, 133.0, 131.1, 129.7, 129.7, 129.1, 128.7, 128.2, 127.6, 126.4, 119.7, 61.0, 48.9, 41.0, 27.6, 21.7, 21.4, 13.4. HRMS (ESI) m/z: (M+H)⁺ calcd. for C₃₁H₃₂NO₅S 530.2001, found: 530.2001. IR v_{max}/cm⁻¹ 3055, 3028, 2980, 2924, 1701, 1598, 1350, 1239, 1161, 1091, 1040, 815, 767.

Ethyl(2*E*,7*Z*)-7-(4-methoxyphenyl)-6-oxo-2-phenyl-1-tosyl-4,5,6,9-tetrahydro-1*H*-azonine-3-carboxylate (3ca)

The title compound was prepared according to the standard procedure and isolated as a white solid (42.0 mg, 77%), m.p. = 135.8-137.6 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, *J* = 8.2 Hz, 2H), 7.35 – 7.31 (m, 1H), 7.29 – 7.24 (m, 2H), 7.24 – 7.13 (m, 6H), 6.82 (d, *J* = 8.7 Hz, 2H), 5.98 (t, *J* = 8.3 Hz, 1H), 4.32 (dd, *J* = 13.7, 7.3 Hz, 1H), 4.01 (dd, *J* = 13.7, 9.4 Hz, 1H), 3.78 (s, 3H), 3.77 – 3.69 (m, 2H), 2.83 – 2.71 (m, 1H), 2.64 – 2.50 (m, 2H), 2.41 (s, 3H), 2.40 – 2.30 (m, 1H), 0.66 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 208.6, 169.0, 160.5, 149.3, 144.0, 138.5, 135.9, 132.9, 129.7, 129.0, 128.7, 128.2, 127.9, 127.6, 126.8, 126.4, 118.6, 114.3, 61.0, 55.4, 48.9, 41.0, 27.6, 21.7, 13.4. HRMS (ESI) m/z: (M+H)⁺ calcd. for C₃₁H₃₂NO₆S 546.1950, found:

546.1948. IR v_{max} /cm⁻¹ 3059, 3030, 2979, 2959, 2934, 2839, 1699, 1603, 1494, 1349, 1251, 1160, 1090, 1033, 852, 766.

Ethyl(2*E*,7*Z*)-7-(4-(tert-butyl)phenyl)-6-oxo-2-phenyl-1-tosyl-4,5,6,9-tetrahydro-1*H*-azonine-3-carboxylate (3da)

The title compound was prepared according to the standard procedure and isolated as a white solid (46.3 mg, 81%), m.p. = 173.5-176.8 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.43 (d, *J* = 8.2 Hz, 2H), 7.36-7.29 (m, 3H), 7.28-7.15 (m, 8H), 6.05 (t, 1H), 4.31 (dd, *J* = 13.8, 7.3 Hz, 1H), 4.03 (dd, *J* = 13.8, 9.2 Hz, 1H), 3.84-3.59 (m, 2H), 2.80-2.71 (m, 1H), 2.67-2.51 (m, 2H), 2.47-2.32 (m, 4H), 1.28 (s, 9H), 0.65 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃, one carbon signal was overlapped) δ 208.5, 169.1, 152.4, 149.6, 144.1, 138.4, 135.9, 133.1, 131.0, 129.7, 129.1, 128.7, 128.2, 127.6, 126.2, 125.9, 119.5, 61.0, 48.9, 41.0, 34.8, 31.3, 27.6, 21.7, 13.3. HRMS (ESI) m/z: (M+H)⁺ calcd. for C₃₄H₃₈NO₅S 572.2471, found: 572.2474. IR v_{max}/cm⁻¹ 3059, 3031, 2962, 2905, 2869, 1698, 1598, 1350, 1298, 1160, 1090, 1040, 853, 765.

Ethyl(2*E*,7*Z*)-7-(4-fluorophenyl)-6-oxo-2-phenyl-1-tosyl-4,5,6,9-tetrahydro-1*H*-azonine-3-carboxylate (3ea)

The title compound was prepared according to the standard procedure and isolated as a white solid (45.4 mg, 85%), m.p. = 145.2-148.8 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.40 (d, *J* = 7.9 Hz, 2H), 7.33 (t, *J* = 7.2 Hz, 1H), 7.29-7.16 (m, 8H), 7.00 (t, *J* = 8.5 Hz, 2H), 6.02 (t, *J* = 8.2 Hz, 1H), 4.32 (dd, *J* = 13.8, 7.3 Hz, 1H), 4.01 (dd, *J* = 13.7, 9.3 Hz, 1H), 3.86-3.65 (m, 2H), 2.84-2.72 (m, 1H), 2.66-2.50 (m, 2H), 2.41 (s, 3H), 2.40-2.32 (m, 1H), 0.68 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 208.0, 169.0, 163.4 (d, *J* = 249.5 Hz), 148.7, 144.1, 144.0, 138.3, 135.8, 132.8, 130.1 (d, *J* = 3.3 Hz), 129.7, 129.2, 128.7, 128.4 (d, *J* = 8.3 Hz), 128.2, 127.6, 120.6, 116.0 (d, *J* = 21.8 Hz), 61.1, 48.7, 40.9, 27.5, 21.7, 13.4. ¹⁹F NMR (376 MHz, CDCl₃) δ -111.91. HRMS (ESI) m/z: (M+H)⁺ calcd. for C₃₀H₂₉FNO₅S 534.1750, found: 534.1751. IR v_{max}/cm⁻¹ 3060, 3029, 2981, 2928, 1699, 1599, 1509, 1349, 1298, 1160, 1041, 961, 834, 766, 681.

Ethyl(2*E*,7*Z*)-7-(4-bromophenyl)-6-oxo-2-phenyl-1-tosyl-4,5,6,9-tetrahydro-1*H*-azonine-3-carboxylate (3fa)

The title compound was prepared according to the standard procedure and isolated as a white solid (54.7 mg, 92%), m.p. = 168.1-170.8 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.45-7.39 (m, 4H), 7.34-7.29 (m, 1H), 7.28-7.24 (m, 2H), 7.21-7.15 (m, 4H), 7.14-7.09 (m, 2H), 6.08 (dd, *J* = 9.0, 7.5 Hz, 1H), 4.30 (dd, *J* = 13.9, 7.3 Hz, 1H), 4.01 (dd, *J* = 13.8, 9.2 Hz, 1H), 3.83-3.68 (m, 2H), 2.84-2.73 (m, 1H), 2.69-2.58 (m, 1H), 2.58-2.49 (m, 1H), 2.41 (s, 3H), 2.39-2.32 (m, 1H), 0.68 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 207.8, 168.9, 148.5, 144.1, 144.1, 138.1, 135.6, 132.9, 132.8, 132.1, 129.7, 129.1, 128.6, 128.2, 128.1, 127.5, 123.5, 121.4, 61.1, 48.6, 40.9, 27.4, 21.7, 13.4. HRMS (ESI) m/z: (M+H)⁺ calcd. for C₃₀H₂₉BrNO₅S 594.0950, found: 594.0939. IR v_{max}/cm⁻¹ 3062, 3025, 2981, 2928, 2871, 1719, 1595, 1490, 1446, 1351, 1160, 1091, 1009, 814, 753.

Ethyl(2*E*,7*Z*)-6-oxo-2-phenyl-1-tosyl-7-(4-(trifluoromethoxy)phenyl)-4,5,6,9-tetrahydro-1*H*-azonine-3-carboxylate (3ga)

The title compound was prepared according to the standard procedure and isolated as a white solid (56.4 mg, 94%), m.p. = 163.4-166.7 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.43 (d, *J* = 7.9 Hz, 2H), 7.40 – 7.27 (m, 5H), 7.25 – 7.14 (m, 6H), 6.09 (t, *J* = 8.2 Hz, 1H), 4.35 (dd, *J* = 13.8, 7.2 Hz, 1H), 4.03 (dd, *J* = 13.8, 9.3 Hz, 1H), 3.87 – 3.69 (m, 2H), 2.86 – 2.74 (m, 1H), 2.70 – 2.53 (m, 2H), 2.44 (s, 3H), 2.42 – 2.34 (m, 1H), 0.70 (t, *J* = 7.1 Hz, 3H).¹³C NMR (101 MHz, CDCl₃) δ 207.8, 169.0, 149.9, 148.4, 144.2, 144.0, 138.2, 135.7, 132.8, 132.7, 129.8, 129.2, 128.7, 128.3, 128.1, 127.6, 121.8 (q, *J* = 257 Hz), 121.6, 121.4, 61.1, 48.6, 40.9, 27.5, 21.7, 13.4. ¹⁹F NMR (376 MHz, CDCl₃) δ - 57.87. HRMS (ESI) m/z: (M+H)⁺ calcd. for C₃₁H₂₉F₃NO₆S 600.1668, found: 600.1663. IR v_{max}/cm⁻¹ 3065, 3030, 2982, 2929, 1703, 1598, 1352, 1255, 1211, 1160, 1091, 920, 852, 755.

Ethyl(2*E*,7*Z*)-7-(4-cyanophenyl)-6-oxo-2-phenyl-1-tosyl-4,5,6,9-tetrahydro-1*H*-azonine-3-carboxylate (3ha)

The title compound was prepared according to the standard procedure and isolated as a white solid (36.8 mg, 68%), m.p. = 170.3-173.6 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, *J* = 8.3 Hz, 2H), 7.43-7.32 (m, 5H), 7.29-7.25 (m, 2H), 7.18 (dd, *J* = 13.8, 7.8 Hz, 4H), 6.19 (t, 1H), 4.31 (dd, *J* = 14.0, 7.3 Hz, 1H), 4.04 (dd, *J* = 14.0, 9.0 Hz, 1H), 3.85-3.66 (m, 2H), 2.89-2.76 (m, 1H), 2.69 (t, *J* = 13.0 Hz, 1H), 2.61-2.52 (m, 1H), 2.42 (s, 3H), 2.40-2.32 (m, 1H), 0.70 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 207.2, 168.8, 147.8, 144.3, 144.2, 138.5, 137.9, 135.5, 132.8, 132.8, 129.8, 129.3, 128.7, 128.3, 127.6, 127.2, 124.2, 118.4, 112.9, 61.2, 48.4, 41.2, 27.5, 21.7, 13.5. HRMS (ESI) m/z: (M+H)⁺ calcd. for C₃₁H₂₉N₂O₅S 541.1797, found: 547.1790. IR v_{max}/cm⁻¹ 3063, 3025, 2981, 2927, 2856, 2229, 1724, 1599, 1447, 1339, 1160, 1090, 1017, 912, 834.

Ethyl(2*E*,7*Z*)-7-([1,1'-biphenyl]-4-yl)-6-oxo-2-phenyl-1-tosyl-4,5,6,9-tetrahydro-1*H*-azonine-3-carboxylate (3ia)

The title compound was prepared according to the standard procedure and isolated as a white solid (53.8 mg, 91%), m.p. = 164.9-166.2 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.62-7.49 (m, 4H), 7.48-7.38 (m, 4H), 7.38-7.29 (m, 4H), 7.27-7.24 (m, 2H), 7.24-7.15 (m, 4H), 6.14 (dd, *J* = 8.9, 7.6 Hz, 1H), 4.34 (dd, *J* = 13.8, 7.4 Hz, 1H), 4.06 (dd, *J* = 13.8, 9.2 Hz, 1H), 3.87-3.65 (m, 2H), 2.88-2.74 (m, 1H), 2.73-2.53 (m, 2H), 2.42 (s, 4H), 0.67 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃, one carbon signal was overlapped) δ 208.4, 169.0, 149.3, 144.2, 144.1, 142.0, 140.2, 138.3, 135.8, 133.0, 132.8, 129.7, 129.1, 129.0, 128.7, 128.2, 127.9, 127.6, 127.1, 126.9, 120.5, 61.1, 48.8, 41.1, 27.6, 21.7, 13.4. HRMS (ESI) m/z: (M+H)⁺ calcd. for C₃₆H₃₄NO₅S 592.2158, found: 592.2160. IR v_{max}/cm⁻¹ 3059, 3030, 2980, 2927, 1699, 1598, 1488, 1446, 1349, 1158, 1089, 1038, 909, 835.

Ethyl(2*E*,7*Z*)-7-(2-fluorophenyl)-6-oxo-2-phenyl-1-tosyl-4,5,6,9-tetrahydro-1*H*-azonine-3-carboxylate (3ja)

The title compound was prepared according to the standard procedure and isolated as a white solid (48.0 mg, 90%), m.p. = 148.3-152.2 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, *J* = 7.8 Hz, 2H), 7.30 (t, *J* = 7.1 Hz, 3H), 7.24-7.11 (m, 7H), 7.07-7.01 (m, 1H), 6.28 (t, *J* = 8.0 Hz, 1H), 4.27 (dd, *J* = 14.1, 7.6 Hz, 1H), 4.07 (dd, *J* = 14.1, 8.5 Hz, 1H), 3.83-3.69 (m, 2H), 2.86-2.70 (m, 2H), 2.64-2.56 (m, 1H), 2.55-2.46 (m, 1H), 2.41 (s, 3H), 0.68 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 207.1, 169.1, 160.1 (d, *J* = 250.7 Hz), 144.6, 144.1, 143.9, 137.8, 135.7, 133.5, 130.9 (d, *J* = 8.5 Hz), 129.7, 129.5 (d, *J* = 3.1 Hz), 129.1, 128.8, 128.1, 127.7, 125.3 (d, *J* = 4.0 Hz), 124.8 (d, *J* = 3.5 Hz), 122.8 (d, *J* = 13.0 Hz), 116.4 (d, *J* = 22.2 Hz), 61.0, 48.4, 40.7, 27.9, 21.7, 13.4. ¹⁹F NMR (376 MHz, CDCl₃) δ -111.49. HRMS (ESI) m/z: (M+H)⁺ calcd. for C₃₀H₂₉NO₅FS 534.1750, found: 534.1746. IR v_{max}/cm⁻¹ 3062, 3032, 2980, 2927, 1704, 1598, 1489, 1448, 1349, 1293, 1159, 1091, 1034, 1019, 913, 913, 764.

Ethyl(2*E*,7*Z*)-7-(2-fluorophenyl)-6-oxo-2-phenyl-1-tosyl-4,5,6,9-tetrahydro-1*H*-azonine-3-carboxylate (3ka)

The title compound was prepared according to the standard procedure and isolated as a white solid (33.3 mg, 63%), m.p. = 142.3-145.1 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.31 (t, *J* = 7.5 Hz, 4H), 7.25-7.15 (m, 5H), 7.12 (t, *J* = 8.1 Hz, 4H), 6.00 (t, *J* = 8.0 Hz, 1H), 4.25 (dd, *J* = 14.3, 8.0 Hz, 1H), 4.10 (dd, *J* = 14.3, 8.1 Hz, 1H), 3.97-3.78 (m, 2H), 3.03 (t, *J* = 13.1 Hz, 1H), 2.94-2.80 (m, 1H), 2.57-2.47 (m, 1H), 2.39 (s, 3H), 2.38-2.35 (m, 1H), 2.33 (s, 3H), 0.79 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 207.7, 169.0, 150.2, 145.5, 143.8, 137.8, 136.9, 135.9, 135.0, 134.0, 131.0, 129.6, 129.4, 129.0, 128.9, 128.8, 128.1, 127.7, 126.3, 125.7, 61.2, 48.7, 40.8, 28.2, 21.7, 20.6, 13.5. HRMS (ESI) m/z: (M+H)⁺ calcd. for C₃₁H₃₂NO₅S 530.2001, found: 530.1998. IR v_{max}/cm⁻¹ 3060, 2980, 2926, 2871, 1698, 1597, 1445, 1348, 1291, 1202, 1090, 1033, 889, 763.

Ethyl(2*E*,7*Z*)-6-oxo-2-phenyl-7-(m-tolyl)-1-tosyl-4,5,6,9-tetrahydro-1*H*-azonine-3-carboxylate (3la)

The title compound was prepared according to the standard procedure and isolated as a white solid (50.8 mg, 96%), m.p. = 144.9-149.1 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, *J* = 7.8 Hz, 2H), 7.32 (t, *J* = 6.8 Hz, 1H), 7.28-7.23 (m, 2H), 7.23-7.15 (m, 5H), 7.15-7.03 (m, 3H), 6.09 (t, *J* = 8.1 Hz, 1H), 4.30 (dd, *J* = 13.8, 7.4 Hz, 1H), 4.05 (dd, *J* = 13.7, 9.1 Hz, 1H), 3.85-3.65 (m, 2H), 2.84-2.73 (m, 1H), 2.67 (t, *J* = 13.7 Hz, 1H), 2.59-2.52 (m, 1H), 2.41 (s, 3H), 2.40-2.34 (m, 1H), 2.30 (s, 3H), 0.66 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 208.5, 169.0, 149.7, 144.3, 144.0, 138.6, 138.3, 135.8, 133.9, 133.1, 130.0, 129.7, 129.1, 128.9, 128.7, 128.1, 127.6, 127.0, 123.7, 120.5, 61.0, 48.9, 41.1, 27.7, 21.7, 21.5, 13.3. HRMS (ESI) m/z: (M+H)⁺ calcd. for C₃₁H₃₂NO₅S 530.2001, found: 530.2000. IR v_{max}/cm⁻¹ 3057, 3027, 2980, 2925, 2871, 1699, 1599, 1491, 1445, 1350, 1298, 1160, 1091, 1041, 917, 754, 682.

Ethyl(2*E*,7*Z*)-7-(3-bromophenyl)-6-oxo-2-phenyl-1-tosyl-4,5,6,9-tetrahydro-1*H*-azonine-3-carboxylate (3ma)

The title compound was prepared according to the standard procedure and isolated as a white solid (53.5 mg, 90%), m.p. = 175.1-178.6 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.46-7.31 (m, 5H), 7.27 (t, *J* = 7.5 Hz, 2H), 7.23-7.14 (m, 6H), 6.07 (t, 1H), 4.31 (dd, *J* = 13.9, 7.3 Hz, 1H), 4.02 (dd, *J* = 13.9, 9.2 Hz, 1H), 3.77 (q, *J* = 7.1 Hz, 2H), 2.85-2.74 (m, 1H), 2.67-2.51 (m, 2H), 2.41 (s, 3H), 2.41-2.33 (m, 1H), 0.68 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 207.6, 169.0, 148.3, 144.2, 144.1, 138.2, 136.0, 135.7, 132.8, 132.2, 130.5, 129.8, 129.4, 129.2, 128.7, 128.2, 127.6, 125.2, 123.1, 122.1, 61.2, 48.6, 41.0, 27.5, 21.7, 13.4. HRMS (ESI) m/z: (M+H)⁺ calcd. for C₃₀H₂₉BrNO₅S 594.0950, found: 594.0942. IR v_{max}/cm⁻¹ 3061, 3030, 2981, 2957, 2927, 1701, 1595, 1492, 1445, 1351, 1298, 1161, 1091, 1042, 915, 767.

Ethyl(2*E*,7*Z*)-6-oxo-2-phenyl-1-tosyl-7-(3-(trifluoromethyl)phenyl)-4,5,6,9-tetrahydro-1*H*-azonine-3-carboxylate (3na)

The title compound was prepared according to the standard procedure and isolated as a white solid (43.2 mg, 74%), m.p. = 165.6-169.2 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, *J* = 6.2 Hz, 1H), 7.53-7.40 (m, 5H), 7.35 (t, *J* = 14.5 Hz, 1H), 7.30-7.18 (m, 6H), 6.13 (t, *J* = 8.2 Hz, 1H), 4.33 (dd, *J* = 13.9, 7.3 Hz, 1H), 4.05 (dd, *J* = 13.9, 9.2 Hz, 1H), 3.85-3.71 (m, 2H), 2.86-2.74 (m, 1H), 2.64 (t, *J* = 13.7 Hz, 1H), 2.60-2.53 (m, 1H), 2.42 (s, 3H), 2.42-2.33 (m, 1H), 0.65 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 207.5, 169.0, 148.3, 144.3, 144.0, 138.1, 135.6, 134.8, 132.7, 131.5 (q, *J* = 32.5 Hz), 129.8, 129.8, 129.6, 129.3, 128.6, 128.3, 127.6, 125.9 (q, *J* = 3.6 Hz), 123.8 (q, *J* = 270.9 Hz), 123.1 (q, *J* = 3.8 Hz), 122.6, 61.1, 48.5, 41.0, 27.4, 21.7, 13.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.80. HRMS (ESI) m/z: (M+H)⁺ calcd. for C₃₁H₂₉NO₅F₃S 584.1719, found: 584.1717. IR v_{max}/cm⁻¹ 3063, 3030, 2982, 2929, 1699, 1598, 1491, 1445, 1329, 1298, 1159, 1125, 1076, 1042, 914, 803, 698.

Ethyl(2*E*,7*Z*)-7-(naphthalen-2-yl)-6-oxo-2-phenyl-1-tosyl-4,5,6,9-tetrahydro-1*H*-azonine-3-carboxylate (30a)

The title compound was prepared according to the standard procedure and isolated as a white solid (47.0 mg, 83%), m.p. = 166.2-169.8 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.84-7.73 (m, 3H), 7.63 (s, 1H), 7.52-7.41 (m, 5H), 7.37-7.32 (m, 1H), 7.27 (t, *J* = 14.5 Hz, 2H), 7.21 (t, *J* = 15.0 Hz, 4H), 6.24 (t, *J* = 8.1 Hz, 1H), 4.38 (dd, *J* = 13.7, 7.3 Hz, 1H), 4.10 (dd, *J* = 13.6, 9.3 Hz, 1H), 3.71 (q, *J* = 7.1 Hz, 2H), 2.86-2.76 (m, 1H), 2.75-2.57 (m, 2H), 2.48-2.43 (m, 1H), 2.42 (s, 3H), 0.63 (t, *J* = 6.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 208.4, 169.0, 149.5, 144.2, 144.1, 138.3, 135.8, 133.4, 133.2, 133.0, 131.1, 129.7, 129.1, 128.9, 128.7, 128.4, 128.2, 127.8, 127.6, 127.0, 126.8, 126.0, 123.9, 121.0, 61.0, 48.9, 41.2, 27.7, 21.7, 13.4. HRMS (ESI) m/z: (M+H)⁺ calcd. for C₃₄H₃₂NO₅S 566.2001, found: 566.1996. IR v_{max}/cm⁻¹ 3058, 3028, 2980, 2928, 1700, 1597, 1445, 1349, 1297, 1160, 1090, 1041, 913, 816, 766.

Methyl(2*E*,7*Z*)-6-oxo-2,7-diphenyl-1-tosyl-4,5,6,9-tetrahydro-1*H*-azonine-3-carboxylate (3ab)

The title compound was prepared according to the standard procedure and isolated as a white solid (42.6 mg, 85%), m.p. = 142.4-145.8 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, *J* = 8.3 Hz, 2H), 7.35-7.29 (m, 4H), 7.28-7.22 (m, 4H), 7.18 (t, *J* = 8.6 Hz, 4H), 6.10 (t, *J* = 8.1 Hz, 1H), 4.26 (dd, *J* = 14.0, 7.5 Hz, 1H), 4.07 (dd, *J* = 14.0, 8.7 Hz, 1H), 3.29 (s, 3H), 2.85-2.71 (m, 2H), 2.60-2.52 (m, 1H), 2.41 (s, 3H), 2.41-2.32 (m, 1H). ¹³C NMR (101 MHz, CDCl₃, one carbon signal was overlapped) δ 208.4, 169.5, 149.5, 144.6, 144.1, 137.8, 135.8, 134.0, 133.0, 129.7, 129.2, 129.0, 128.5, 128.3, 127.6, 126.5, 121.0, 51.9, 48.8, 41.1, 27.8, 21.7. HRMS (ESI) m/z: (M + H)⁺ calcd. for C₂₉H₂₈NO₅S 502.1688, found: 502.1679. IR v_{max}/cm⁻¹ 3060, 3027, 2951, 2926, 2854, 1715, 1597, 1494, 1446, 1302, 1158, 1090, 1041, 915, 832, 752.

Methyl(2*E*,7*Z*)-2-(4-fluorophenyl)-6-oxo-7-phenyl-1-tosyl-4,5,6,9-tetrahydro-1*H*-azonine-3-carboxylate (3ac)

The title compound was prepared according to the standard procedure and isolated as a white solid (47.3 mg, 91%), m.p. = 139.2-140.4 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.44 (d, *J* = 8.1 Hz, 2H), 7.35 – 7.29 (m, 3H), 7.26 – 7.19 (m, 4H), 7.19 – 7.11 (m, 2H), 6.95 (t, *J* = 8.5 Hz, 2H), 6.07 (t, *J* = 8.1 Hz, 1H), 4.27 (dd, *J* = 13.9, 7.4 Hz, 1H), 4.04 (dd, *J* = 13.9, 8.9 Hz, 1H), 3.32 (s, 3H), 2.78 – 2.62 (m, 2H), 2.58 – 2.51 (m, 1H), 2.42 (s, 3H), 2.40 – 2.32 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 208.2, 169.3, 163.2 (d, *J* = 249.7 Hz), 149.6, 144.3, 143.5, 135.7, 134.1 (d, *J* = 3.3 Hz), 133.8, 132.8, 130.4 (d, *J* = 8.4 Hz), 129.8, 129.3, 129.0, 127.5, 126.4, 120.6, 115.3 (d, *J* = 21.8 Hz), 52.0, 48.7, 41.0, 27.7, 21.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -111.38. HRMS (ESI) m/z: (M+H)⁺ calcd. for C₂₉H₂₇FNO₅S 520.1594, found: 520.1591. IR v_{max}/cm⁻¹ 3062, 3032, 2951, 2926, 2855, 1700, 1599, 1506, 1434, 1348, 1230, 1158, 1040, 910, 813, 729.

Methyl(2*E*,7*Z*)-2-(4-chlorophenyl)-6-oxo-7-phenyl-1-tosyl-4,5,6,9-tetrahydro-1*H*-azonine-3-carboxylate (3ad)

The title compound was prepared according to the standard procedure and isolated as a white solid (38.1 mg, 71%), m.p. = 128.0-135.2 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, *J* = 8.2 Hz, 2H), 7.36-7.29 (m, 3H), 7.28-7.18 (m, 6H), 7.11 (d, *J* = 8.4 Hz, 2H), 6.06 (t, *J* = 8.1 Hz, 1H), 4.28 (dd, *J* = 13.9, 7.4 Hz, 1H), 4.04 (dd, *J* = 13.8, 9.0 Hz, 1H), 3.33 (s, 3H), 2.80-2.70 (m, 1H), 2.64 (t, *J* = 13.2 Hz, 1H), 2.59-2.51 (m, 1H), 2.44 (s, 3H), 2.36 (t, *J* = 14.6 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 208.1, 169.2, 149.7, 144.4, 143.3, 136.6, 135.7, 135.3, 133.8, 133.3, 129.8, 129.8, 129.3, 129.0, 128.5, 127.5, 126.5, 120.5, 52.1, 48.9, 41.0, 27.7, 21.7. HRMS (ESI) m/z: (M+H)⁺ calcd. for C₂₉H₂₇NO₅SCl 536.1298, found: 536.1293. IR v_{max}/cm⁻¹ 3062, 2952, 2924, 2853, 1725, 1595, 1490, 1436, 1300, 1161, 1088, 1040, 838, 813, 720.

Methyl(2*E*,7*Z*)-2-(4-bromophenyl)-6-oxo-7-phenyl-1-tosyl-4,5,6,9-tetrahydro-1*H*-azonine-3-carboxylate (3ae)

The title compound was prepared according to the standard procedure and isolated as a white solid (53.4 mg, 92%), m.p. = 145.5-147.8 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.44 (d, *J* = 8.2 Hz, 2H), 7.37 (d, *J* = 8.4 Hz, 2H), 7.35-7.29 (m, 3H), 7.25-7.18 (m, 4H), 7.03 (d, *J* = 8.4 Hz, 2H), 6.07 (t, *J* = 8.2 Hz, 1H), 4.28 (dd, *J* = 13.9, 7.4 Hz, 1H), 4.04 (dd, *J* = 13.9, 9.0 Hz, 1H), 3.34 (s, 3H), 2.79-2.60 (m, 2H), 2.59-2.50 (m, 1H), 2.44 (s, 3H), 2.36 (td, *J* = 13.1, 3.3 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 208.1, 169.1, 149.7, 144.4, 143.4, 137.0, 135.7, 133.8, 133.3, 131.5, 130.0, 129.8, 129.3, 129.0, 127.5, 126.5, 123.6, 120.5, 52.1, 48.9, 41.0, 27.8, 21.8. HRMS (ESI) m/z: (M+H)⁺ calcd. for C₂₉H₂₇BrNO₅S 580.0793, found: 580.0802. IR v_{max}/cm⁻¹ 3059, 3029, 2950, 2925, 1713, 1596, 1487, 1434, 1351, 1296, 1160, 1090, 910, 936, 762.

Methyl(2*E*,7*Z*)-6-oxo-7-phenyl-2-(p-tolyl)-1-tosyl-4,5,6,9-tetrahydro-1*H*-azonine-3-carboxylate (3af)

The title compound was prepared according to the standard procedure and isolated as a white solid (40.2 mg, 78%), m.p. = 121.4-127.2 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, *J* = 8.1 Hz, 2H), 7.35 – 7.29 (m, 3H), 7.26 – 7.18 (m, 4H), 7.06 (s, 4H), 6.07 (t, *J* = 8.1 Hz, 1H), 4.26 (dd, *J* = 13.9, 7.4 Hz, 1H), 4.05 (dd, *J* = 13.9, 8.8 Hz, 1H), 3.32 (s, 3H), 2.79 – 2.62 (m, 2H), 2.57 – 2.50 (m, 1H), 2.42 (s, 3H), 2.41 – 2.37 (m, 1H), 2.36 (s, 3H). ¹³C NMR (101 MHz, CDCl₃, one carbon stacked at aromatic chemical shift) δ 208.4, 169.7, 149.5, 144.6, 144.0, 139.3, 135.9, 135.0, 134.0, 132.1, 129.7, 129.1, 129.0, 128.4, 127.6, 126.5, 120.9, 51.9, 48.7, 41.1, 27.8, 21.7, 21.5. HRMS (ESI) m/z: (M+H)⁺ calcd. for C₃₀H₃₀NO₅S 516.1845, found: 516.1840. IR v_{max}/cm⁻¹ 3027, 2951, 2924, 1701, 1599, 1494, 1446, 1348, 1158, 1090, 1040, 909, 815, 729.

Methyl(2*E*,7*Z*)-2-(4-methoxyphenyl)-6-oxo-7-phenyl-1-tosyl-4,5,6,9-tetrahydro-1*H*-azonine-3-carboxylate (3ag)

The title compound was prepared according to the standard procedure and isolated as a yellow oil (41.4 mg, 78%), m.p. = 130.6-132.4 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, *J* = 8.2 Hz, 2H), 7.34-7.29 (m, 3H), 7.25-7.19 (m, 4H), 7.09 (d, *J* = 8.7 Hz, 2H), 6.76 (d, *J* = 8.7 Hz, 2H), 6.06 (t, *J* = 8.1 Hz, 1H), 4.25 (dd, *J* = 13.9, 7.5 Hz, 1H), 4.05 (dd, *J* = 13.9, 8.8 Hz, 1H), 3.81 (s, 3H), 3.33 (s, 3H), 2.77-2.63 (m, 2H), 2.56-2.49 (m, 1H), 2.42 (s, 3H), 2.40-2.29 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 208.5, 169.8, 160.4, 149.4, 144.4, 144.0, 135.9, 134.0, 131.3, 130.3, 130.0, 129.7, 129.1, 129.0, 127.6, 126.4, 120.9, 113.6, 55.4, 51.9, 48.6, 41.1, 27.8, 21.7. HRMS (ESI) m/z: (M+H)⁺ calcd. for C₃₀H₃₀NO₆S 532.1794, found: 532.1793. IR v_{max}/cm⁻¹ 3059, 3030, 3003, 2951, 2839, 1701, 1604, 1510, 1444, 1348, 1300, 1251, 1159, 1090, 1034, 912, 838.

Methyl(2*E*,7*Z*)-2-(3-fluorophenyl)-6-oxo-7-phenyl-1-tosyl-4,5,6,9-tetrahydro-1*H*-azonine-3-carboxylate (3ah)

The title compound was prepared according to the standard procedure and isolated as a white solid (35.3 mg, 68%), m.p. = 135.7-137.8 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, *J* = 8.1 Hz, 2H), 7.37-7.30 (m, 3H), 7.30-7.18 (m, 5H), 7.08-6.98 (m, 2H), 6.83 (d,

J = 9.4 Hz, 1H), 6.08 (t, J = 8.1 Hz, 1H), 4.29 (dd, J = 13.9, 7.4 Hz, 1H), 4.05 (dd, J = 13.8, 9.0 Hz, 1H), 3.33 (s, 3H), 2.80-2.72 (m, 1H), 2.71-2.62 (m, 1H), 2.59-2.52 (m, 1H), 2.41 (s, 3H), 2.40-2.28 (m, 1H). ¹³C NMR (101 MHz, CDCl₃, one carbon signal was overlapped) δ 208.0, 169.1, 162.5 (d, J = 246.8 Hz), 149.7, 144.4, 142.9 (d, J = 2.2 Hz), 140.2 (d, J = 7.5 Hz), 135.6, 133.8 (d, J = 1.5 Hz), 129.8, 129.7, 129.3, 129.0, 127.5, 126.5, 124.5 (d, J = 2.8 Hz), 120.5, 116.2 (d, J = 21.2 Hz), 115.3 (d, J = 22.4 Hz), 52.1, 48.8, 40.9, 27.7, 21.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -112.96. HRMS (ESI) m/z: (M+H)⁺ calcd. for C₂₉H₂₇FNO₅S 520.1594, found: 520.1594. IR v_{max}/cm⁻¹ 3063, 3030, 2951, 2926, 2891, 1702, 1584, 1486, 1435, 1349, 1201, 1160, 1090, 1040, 909, 789, 678.

Methyl(2*E*,7*Z*)-6-oxo-7-phenyl-2-(m-tolyl)-1-tosyl-4,5,6,9-tetrahydro-1*H*-azonine-3-carboxylate (3ai)

The title compound was prepared according to the standard procedure and isolated as a white solid (48.0 mg, 93%), m.p. = 124.3-129.6 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.39 (d, *J* = 8.2 Hz, 2H), 7.35-7.29 (m, 3H), 7.29-7.24 (m, 2H), 7.20-7.08 (m, 4H), 6.97 (d, *J* = 7.2 Hz, 1H), 6.81 (s, 1H), 6.14 (t, *J* = 8.1 Hz, 1H), 4.23 (d, *J* = 21.8 Hz, 1H), 4.12 (d, *J* = 22.5 Hz, 1H), 3.32 (s, 3H), 2.93-2.75 (m, 2H), 2.63-2.56 (m, 1H), 2.46-2.41 (m, 1H), 2.40 (s, 3H), 2.21 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 208.4, 169.6, 149.1, 145.0, 143.9, 137.7, 137.3, 135.9, 134.1, 132.9, 130.0, 129.5, 129.1, 129.0, 128.9, 128.1, 127.6, 126.4, 126.0, 121.4, 51.9, 48.9, 41.3, 28.0, 21.6, 21.3. HRMS (ESI) m/z: (M+H)⁺ calcd. for C₃₀H₃₀NO₅S 516.1845, found: 516.1840. IR v_{max}/cm⁻¹ 3063, 3030, 2951,2926, 1702, 1584, 1486, 1435, 1350, 1301, 1160, 1090, 1040, 982, 833.

Methyl(2*E*,7*Z*)-2-(naphthalen-2-yl)-6-oxo-7-phenyl-1-tosyl-4,5,6,9-tetrahydro-1*H*-azonine-3-carboxylate (3aj)

The title compound was prepared according to the standard procedure and isolated as a white solid (49.7 mg, 90%), m.p. = 146.9-149.2 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, *J* = 7.8 Hz, 1H), 7.63-7.56 (m, 2H), 7.46-7.39 (m, 3H), 7.30-7.16 (m, 9H), 6.90 (d, *J* = 8.0 Hz, 2H), 6.10 (t, *J* = 8.1 Hz, 1H), 4.26 (dd, *J* = 14.0, 7.6 Hz, 1H), 4.11 (dd, *J* =

13.9, 8.7 Hz, 1H), 3.16 (s, 3H), 2.87-2.74 (m, 2H), 2.58-2.49 (m, 1H), 2.36-2.32 (m, 1H), 2.20 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 208.4, 169.5, 149.4, 144.9, 144.0, 135.9, 134.8, 134.0, 133.4, 133.2, 132.9, 129.5, 129.2, 129.0, 128.5, 128.3, 127.8, 127.7, 127.4, 126.9, 126.4, 126.4, 126.0, 121.2, 51.9, 49.1, 41.2, 28.1, 21.5. HRMS (ESI) m/z: (M+H)⁺ calcd. for C₃₃H₃₀NO₅S 552.1845, found: 552.1844. IR v_{max}/cm⁻¹ 3059, 2951, 2925, 1718, 1678, 1597, 1495, 1434, 1348, 1324, 1155, 1088, 731.

Methyl(2*E*,7*Z*)-6-oxo-7-phenyl-2-(thiophen-2-yl)-1-tosyl-4,5,6,9-tetrahydro-1*H*-azonine-3-carboxylate (3ak)

The title compound was prepared according to the standard procedure and isolated as a white solid (36.0 mg, 71%), m.p. = 151.1-153.8 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, *J* = 8.3 Hz, 2H), 7.35-7.30 (m, 4H), 7.29-7.22 (m, 4H), 7.01-6.96 (m, 1H), 6.96-6.90 (m, 1H), 6.04 (dd, *J* = 8.2, 7.4 Hz, 1H), 4.17 (dd, *J* = 13.8, 7.1 Hz, 1H), 4.01 (dd, *J* = 13.8, 8.5 Hz, 1H), 3.42 (s, 3H), 2.77-2.66 (m, 1H), 2.64-2.51 (m, 2H), 2.50-2.44 (m, 1H), 2.44 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 208.2, 169.4, 149.9, 144.3, 140.4, 135.9, 135.6, 134.1, 134.1, 129.8, 129.2, 129.0, 128.9, 128.2, 127.7, 127.1, 126.5, 120.8, 52.2, 47.7, 40.8, 27.7, 21.8. HRMS (ESI) m/z: (M+H)⁺ calcd. for C₂₇H₂₆NO₅S₂ 508.1252, found: 508.1247. IR v_{max}/cm⁻¹ 3062, 3028, 2950, 2926, 1716, 1700, 1597, 1494, 1433, 1352, 1293, 1161, 1091, 1039, 911, 939.

Benzyl(2*E*,7*Z*)-6-oxo-2,7-diphenyl-1-tosyl-4,5,6,9-tetrahydro-1*H*-azonine-3-carboxylate (3al)

The title compound was prepared according to the standard procedure and isolated as a white solid (48.5 mg, 84%), m.p. = 160.4-162.3 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.43 (d, *J* = 8.1 Hz, 2H), 7.33-7.30 (m, 1H), 7.27-7.10 (m, 12H), 7.09-7.00 (m, 2H), 6.63 (d, *J* = 7.3 Hz, 2H), 5.97 (dd, *J* = 9.4, 7.2 Hz, 1H), 4.71 (q, *J* = 12.3 Hz, 2H), 4.36 (dd, *J* = 13.6, 7.0 Hz, 1H), 3.98 (dd, *J* = 13.5, 9.7 Hz, 1H), 2.85-2.72 (m, 1H), 2.57-2.47 (m, 2H), 2.41 (s, 3H), 2.38-2.28 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 208.0, 168.9, 150.1, 144.1, 143.9, 138.4, 135.7, 134.8, 133.6, 132.2, 129.7, 129.2, 129.0, 128.8, 128.7, 128.3, 128.3, 128.2, 128.1, 127.5, 126.5, 120.0, 67.2, 48.6, 40.6, 27.5, 21.7. HRMS (ESI) m/z: (M+H)⁺ calcd. for C₃₅H₃₂NO₅S 578.2001, found: 578.1997. IR v_{max}/cm⁻¹

3061, 3031, 2954, 2925, 2887, 1698, 1597, 1494, 1446, 1348, 1294, 1237, 1157, 1089, 1041, 912, 813.

Phenyl(2*E*,7*Z*)-6-oxo-2,7-diphenyl-1-tosyl-4,5,6,9-tetrahydro-1*H*-azonine-3-carboxylate (3am)

The title compound was prepared according to the standard procedure and isolated as a white solid (50.7 mg, 90%), m.p. = 173.4-177.3 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.44 (d, *J* = 8.2 Hz, 2H), 7.40-7.37 (m, 1H), 7.35-7.32 (m, 3H), 7.32-7.24 (m, 6H), 7.22 (d, *J* = 8.1 Hz, 2H), 7.14 (t, *J* = 8.0 Hz, 2H), 7.12-7.04 (m, 1H), 6.34 (d, *J* = 7.8 Hz, 2H), 6.13 (t, 1H), 4.40 (dd, *J* = 13.8, 7.1 Hz, 1H), 4.09 (dd, *J* = 13.7, 9.4 Hz, 1H), 2.95-2.85 (m, 1H), 2.81-2.68 (m, 1H), 2.66-2.60 (m, 1H), 2.57-2.49 (m, 1H), 2.44 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 208.2, 167.7, 150.2, 149.9, 145.4, 144.3, 138.2, 135.7, 133.6, 131.8, 129.8, 129.7, 129.3, 129.2, 129.1, 129.1, 128.6, 127.6, 126.5, 126.0, 121.0, 120.1, 48.9, 40.9, 28.0, 21.8. HRMS (ESI) m/z: (M+H)⁺ calcd. for C₃₄H₃₀NO₅S 564.1845, found: 564.1852. IR v_{max}/cm⁻¹ 3060, 3030, 2957, 2922, 1727, 1698, 1595, 1492, 1446, 1351, 1161, 1091, 1040, 913.

Phenyl(2*E*,7*Z*)-7-(4-chlorophenyl)-6-oxo-2-phenyl-1-tosyl-4,5,6,9-tetrahydro-1*H*-azonine-3-carboxylate (3an)

The title compound was prepared according to the standard procedure and isolated as a white solid (34.7 mg, 58%), m.p. = 170.9-173.8 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.48 (d, *J* = 8.1 Hz, 2H), 7.31-7.23 (m, 11H), 7.19 (t, *J* = 7.7 Hz, 2H), 7.11 (t, *J* = 7.2 Hz, 1H), 6.38 (d, *J* = 8.0 Hz, 2H), 6.10 (dd, *J* = 9.2, 7.4 Hz, 1H), 4.42 (dd, *J* = 13.7, 7.1 Hz, 1H), 4.06 (dd, *J* = 13.7, 9.6 Hz, 1H), 2.93-2.81 (m, 1H), 2.70-2.57 (m, 2H), 2.57-2.48 (m, 1H), 2.45 (s, 3H). ¹³C NMR (101 MHz, CDCl₃, one carbon signal was overlapped) δ 207.9, 167.3, 150.1, 144.6, 144.2, 136.9, 135.8, 135.7, 133.5, 132.1, 130.3, 129.9, 129.4, 129.4, 129.2, 128.8, 127.5, 126.4, 126.1, 120.8, 119.7, 49.0, 40.8, 27.9, 21.8. HRMS (ESI) m/z: (M+H)⁺ calcd. for C₃₄H₂₉NO₅SCl 598.1455, found: 598.1452. IR v_{max}/cm⁻¹ 3062, 3031, 2956, 2925, 2855, 1726, 1698, 1593, 1490, 1446, 1351, 1294, 1160, 1090, 1040, 910, 815.

Ethyl(*E*)-6-oxo-2,7-diphenyl-1-tosyl-4,5,6,7,8,9-hexahydro-1*H*-azonine-3-carboxylate (4)

The title compound was isolated as a white solid (22.3 mg, 43%), m.p. = 155.1-159.8 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.43 (d, *J* = 8.0 Hz, 2H), 7.37-7.28 (m, 5H), 7.24-7.20 (m, 1H), 7.18-7.10 (m, 4H), 7.00 (d, *J* = 7.6 Hz, 2H), 4.76 (dd, *J* = 11.0, 4.6 Hz, 1H), 3.99-3.82 (m, 3H), 3.53-3.41 (m, 1H), 3.35-3.22 (m, 1H), 2.92 (dt, *J* = 14.0, 4.2 Hz, 1H), 2.77 (dt, 1H), 2.51-2.40 (m, 2H), 2.39 (s, 3H), 2.35-2.28 (m, 1H), 0.76 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 213.1, 169.0, 147.3, 144.0, 138.1, 136.7, 136.4, 135.3, 129.5, 129.1, 129.0, 128.9, 128.5, 128.2, 128.1, 127.6, 61.0, 51.2, 49.3, 42.1, 34.8, 28.3, 21.7, 13.4. HRMS (ESI) m/z: (M+H)⁺ calcd. for C₃₀H₃₂NO₅S 518.2001, found: 518.2003. IR v_{max}/cm⁻¹ 3060, 3028, 2979, 2923, 2853, 1705, 1597, 1493, 1446, 1345, 1286, 1159, 1088, 1022, 904, 698, 682.

The title compound was isolated as a brown oil (25.5 mg, 0.1 mmol, 58%). ¹H NMR (400 MHz, CDCl₃) δ 7.47 – 7.42 (m, 2H), 7.41 – 7.32 (m, 6H), 7.06 (s, 2H), 5.28 (dd, J = 10.8, 5.4 Hz, 1H), 4.71 (dd, J = 19.1, 5.4 Hz, 1H), 4.24 – 4.04 (m, 3H), 2.63 – 2.46 (m, 2H), 2.35 – 2.25 (m, 1H), 2.22 – 2.15 (m, 1H), 1.17 (t, J = 7.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 214.8, 169.6, 164.8, 137.8, 136.1, 130.0, 128.76, 128.65, 128.60, 127.5, 127.1, 65.1, 62.6, 61.0, 55.8, 45.6, 37.2, 26.3, 13.9. HRMS (ESI+, MeOH) m/z: (M + H)⁺ calcd. for C₂₃H₂₃NO₃Br 440.0861, found: 440.0865. IR v_{max}/cm⁻¹ 3060, 2979, 2929, 2856, 1747, 1737, 1715, 1636, 1496, 1444, 1260, 1001, 744, 697.

X-ray molecular structure of 3aa

Table 1 Crystal data and structure refinement for 3aa

Identification code	3aa
Empirical formula	C ₃₀ H ₂₉ NO ₅ S
Formula weight	515.60
Temperature/K	149.99(10)
Crystal system	triclinic
Space group	P-1
a/Å	9.2628(8)
b/Å	14.1029(13)
c/Å	21.1489(16)

α/°	99.246(7)
β/°	100.027(7)
$\gamma/^{\circ}$	102.719(8)
Volume/Å ³	2596.2(4)
Z	4
$\rho_{calc}g/cm^3$	1.319
µ/mm ⁻¹	1.445
F(000)	1088.0
Crystal size/mm ³	$0.14 \times 0.13 \times 0.11$
Radiation	Cu Ka (λ = 1.54184)
2θ range for data collection/	4.336 to 149.022
Index ranges	$-11 \le h \le 7, -17 \le k \le 17, -25 \le l \le 26$
Reflections collected	17164
Independent reflections	10161 [$R_{int} = 0.0435$, $R_{sigma} = 0.0669$]
Data/restraints/parameters	10161/16/671
Goodness-of-fit on F ²	1.067
Final R indexes $[I \ge 2\sigma(I)]$	$R_1=0.0703,wR_2=0.1625$
Final R indexes [all data]	$R_1 = 0.1098, wR_2 = 0.1842$
Largest diff. peak/hole / e Å-	³ 0.69/-0.62

Crystal structure determination of 3aa

Crystal Data for C₃₀H₂₉NO₅S (*M* =515.60 g/mol): triclinic, space group P-1 (no. 2), a = 9.2628(8) Å, b = 14.1029(13) Å, c = 21.1489(16) Å, a = 99.246(7), $\beta = 100.027(7)$, $\gamma = 102.719(8)$, V = 2596.2(4) Å³, Z = 4, T = 149.99(10) K, μ (Cu K α) = 1.445 mm⁻¹, *Dcalc* = 1.319 g/cm³, 17164 reflections measured (4.336° $\leq 2\theta \leq 149.022^{\circ}$),

10161 unique ($R_{int} = 0.0435$, $R_{sigma} = 0.0669$) which were used in all calculations. The final R_1 was 0.0703 (I > 2 σ (I)) and wR_2 was 0.1842 (all data).

Table 2 Fractional Atomic Coordinates (×10 ⁴) and Equivalent Isotropic
Displacement Parameters (Å $^2 \times 10^3$) for 3aa. Ueq is defined as 1/3 of the trace of
the orthogonalised U _{IJ} tensor.

Atom	x	у	Z	U(eq)
S 1	2258.7(10)	7575.7(7)	-576.8(4)	30.7(2)
01	3124(3)	6910(2)	-794.9(13)	36.6(6)
O2	2925(3)	8620(2)	-367.3(14)	37.5(6)
O3	-37(3)	8349(2)	1662.1(13)	34.8(6)
O4	2056(3)	9617(2)	1938.4(14)	40.5(7)
O5	1458(3)	5925(2)	1580.6(15)	44.4(7)
N1	1704(3)	7200(2)	59.6(14)	29.1(6)
C31	4915(4)	5742(3)	1248.9(18)	33.0(8)
C32	5128(5)	5383(3)	1828(2)	41.2(9)
C33	6535(5)	5277(3)	2109(2)	46.5(11)
C34	7748(5)	5515(3)	1815(2)	48.2(11)
C35	7548(5)	5854(4)	1238(2)	46.7(11)
C36	6137(5)	5963(3)	953(2)	39.2(9)
C37	3419(4)	5919(3)	983.8(19)	32.7(8)
C38	2854(4)	5835(3)	342.9(19)	33.4(8)
C39	1425(4)	6134(3)	80.0(19)	31.8(8)
C40	2653(4)	6360(3)	1488.9(18)	33.4(8)
C41	3469(4)	7404(3)	1849.9(18)	35.1(9)

Table 2 Fractional Atomic Coordinates (×10 ⁴) and Equivalent Isotropic
Displacement Parameters (Å $^2 \times 10^3$) for 3aa. U_{eq} is defined as 1/3 of the trace of
the orthogonalised U1J tensor.

Atom	x	У	Z	U(eq)
C42	3501(4)	8129(3)	1371.9(18)	33.2(8)
C43	1930(4)	8225(3)	1105.4(18)	28.5(7)
C44	1113(4)	7836(3)	491.0(18)	28.8(7)
C45	1335(4)	8815(3)	1606.1(18)	30.0(8)
C46	-723(5)	8919(3)	2105(2)	41.4(10)
C47	-2354(5)	8361(3)	1994(2)	45.5(10)
C48	-387(4)	8015(3)	231.1(17)	28.6(7)
C49	-1577(4)	7217(3)	-143.2(18)	32.1(8)
C50	-2997(4)	7377(3)	-358.8(19)	38.2(9)
C51	-3244(4)	8307(3)	-214(2)	39.8(9)
C52	-2052(4)	9107(3)	135(2)	39.1(9)
C53	-632(4)	8949(3)	352.5(19)	34.0(8)
C54	639(4)	7403(3)	-1203.0(18)	30.8(8)
C55	-32(4)	6454(3)	-1574.9(19)	36.8(9)
C56	-1339(5)	6303(3)	-2049(2)	41.5(10)
C57	-1980(4)	7084(3)	-2157.8(18)	36.4(9)
C58	-1276(4)	8023(3)	-1791(2)	40.5(9)
C59	30(4)	8179(3)	-1310(2)	39.6(9)
C60	-3425(5)	6896(4)	-2675(2)	52.7(12)
S2	9016.1(10)	7379.5(7)	6020.7(5)	33.1(2)

Atom	x	у	Z.	U(eq)
06	9240(4)	5397(2)	3408.1(15)	60.6(10)
07	11375(4)	6613(3)	3798.2(15)	62.9(10)
08	9456(3)	8984(2)	3733.1(14)	45.2(7)
09	8480(3)	6323(2)	5877.2(14)	42.0(7)
O10	8048(3)	8002(2)	6182.2(14)	39.1(6)
N2	9525(3)	7683(2)	5357.9(15)	31.8(7)
C1	6122(4)	9089(3)	4149.5(18)	32.5(8)
C2	5926(5)	9509(3)	3600(2)	38.7(9)
C3	4549(5)	9703(3)	3357(2)	47.0(11)
C4	3347(5)	9458(4)	3654(2)	49.3(11)
C5	3522(5)	9034(4)	4196(2)	51.2(12)
C6	4908(5)	8852(3)	4444(2)	45.1(10)
C7	8224(4)	8978(3)	5031.6(19)	35.2(8)
C8	7618(4)	8895(3)	4397.0(19)	32.4(8)
C9	8367(4)	8486(3)	3875.8(18)	34.1(8)
C10	7669(5)	7410(3)	3551.1(19)	37.4(9)
C11	7734(4)	6729(3)	4047.7(19)	35.5(9)
C12	9701(4)	8730(3)	5283.7(18)	33.6(8)
C13	9333(4)	6663(3)	4309.6(19)	32.8(8)
C14	10118(4)	7030(3)	4932.1(18)	30.2(8)

Table 2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for 3aa. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{IJ} tensor.

Table 2 Fractional Atomic Coordinates (×10 ⁴) and Equivalent Isotropic
Displacement Parameters (Å $^2 \times 10^3$) for 3aa. U _{eq} is defined as 1/3 of the trace of
the orthogonalised U1J tensor.

Atom	x	У	Z	U(eq)
C15	11599(4)	6841(3)	5202.2(17)	30.5(8)
C16	11844(4)	5904(3)	5061.7(18)	33.2(8)
C17	13251(4)	5734(3)	5283(2)	39.7(9)
C18	14441(4)	6522(3)	5648.5(19)	39.8(9)
C19	14197(4)	7458(3)	5798.2(19)	38.5(9)
C20	12793(4)	7626(3)	5586.7(18)	34.1(8)
C21	10626(4)	7713(3)	6672.1(18)	31.1(8)
C22	11337(4)	7004(3)	6847(2)	39.1(9)
C23	12610(4)	7283(3)	7360(2)	41.6(10)
C24	13191(4)	8258(3)	7688.9(19)	37.2(9)
C25	12431(5)	8949(3)	7505.6(19)	41.0(9)
C26	11150(4)	8699(3)	7004.8(19)	35.7(9)
C27	14584(5)	8565(4)	8236(2)	47.6(11)
C28	9970(5)	6143(3)	3801(2)	40.7(10)
C29	12042(7)	6102(8)	3334(3)	128(3)
C30	13568(7)	6168(7)	3551(3)	128(3)

Table 3 Anisotropic Displacement Parameters (Å2×103) for 3aa. The Anisotropicdisplacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U 11	U_{22}	U33	U23	U13	U12
S 1	24.6(4)	36.5(5)	31.0(5)	6.6(4)	7.2(3)	7.4(4)
O1	30.9(13)	43.2(16)	38.1(15)	5.9(12)	10.5(11)	14.1(12)
O2	29.8(13)	39.0(15)	42.2(16)	7.1(12)	8.6(12)	6.1(11)
03	30.9(13)	41.3(15)	31.9(14)	1.4(11)	9.3(11)	11.2(11)
O4	35.9(14)	37.6(16)	40.8(16)	-3.4(12)	3.0(12)	7.2(12)
O5	39.2(15)	52.8(19)	45.3(17)	14.2(14)	16.8(13)	11.4(13)
N1	27.5(15)	32.5(17)	27.9(15)	5.1(12)	5.1(12)	10.7(12)
C31	36.4(19)	35(2)	28.4(19)	3.4(15)	7.0(15)	12.4(16)
C32	45(2)	44(2)	35(2)	9.3(18)	6.5(18)	11.7(19)
C33	58(3)	45(3)	36(2)	6.4(19)	-2(2)	22(2)
C34	45(2)	51(3)	46(3)	-4(2)	-2(2)	25(2)
C35	38(2)	58(3)	44(2)	-2(2)	12.2(19)	18(2)
C36	40(2)	48(2)	31(2)	3.0(17)	9.4(17)	15.7(18)
C37	32.4(19)	36(2)	32.1(19)	7.9(16)	8.0(15)	11.0(16)
C38	36.1(19)	34(2)	31.0(19)	5.3(15)	6.6(15)	12.6(16)
C39	31.6(18)	34(2)	30.9(19)	6.3(15)	5.8(15)	10.2(15)
C40	29.7(18)	45(2)	30.4(19)	13.7(17)	6.7(15)	16.0(17)
C41	30.4(18)	48(2)	26.7(18)	6.4(16)	3.2(15)	13.3(17)
C42	27.1(18)	37(2)	30.7(19)	-0.8(16)	3.8(15)	5.8(15)
C43	23.3(16)	30.2(19)	31.3(18)	5.3(15)	4.0(14)	7.6(14)
C44	27.6(17)	29.5(19)	30.6(19)	7.2(15)	8.1(14)	8.3(14)

Atom U11 U22 U33 U23 U13 U12 C45 28.0(17) 34(2) 29.9(18) 7.6(15) 5.2(14) 11.8(15) C46 39(2) 50(3) 36(2) 0.2(18)13.9(17) 14.9(19) C47 40(2) 55(3) 42(2) 4(2) 14.8(19) 16(2) C48 25.8(17) 35(2) 25.9(18) 6.5(15) 7.2(14) 8.0(15) C49 31.0(18) 7.6(15) 38(2) 28.0(18) 7.0(15) 8.5(16) C50 28.4(18) 51(3) 10.8(18) 4.9(16) 32(2) 5.3(17) C51 26.0(18) 57(3) 39(2) 15.4(19) 4.4(16) 13.8(18) C52 38(2) 12.7(18) 36(2) 47(2)5.0(17) 17.4(18) C53 28.6(18) 34(2) 6.7(16) 2.9(15) 8.5(16) 38(2) C54 28.7(18) 37(2) 29.8(19) 7.9(15) 11.0(15) 9.2(15) C55 38(2) 39(2) 35(2) 4.9(17) 9.3(17) 14.5(17) C56 38(2) 47(2) 32(2) -0.4(18)3.9(17) 4.2(18) C57 31.0(19) 56(3) 26.2(19) 15.9(18) 7.3(15) 12.5(18) C58 36(2) 50(3) 41(2) 18.6(19) 10.1(17) 14.8(19) C59 35(2) 47(2) 39(2) 13.1(18) 8.3(17) 10.6(18) C60 41(2) 77(4) 37(2) 15(2)-0.1(19) 14(2)**S**2 27.8(4) 40.4(5)30.0(5) 6.6(4) 6.7(4)6.3(4) 06 94(3) 47.3(19) 33.7(17) -6.0(14)-9.3(17) 32.3(18) **O**7 52.9(19) 114(3) 26.3(15) 3.7(17) 12.1(14) 35(2) 08 43.6(16) 54.6(19) 36.5(16) 6.4(13) 15.0(13) 7.9(14) 09 43.4(17) 40.8(16) 7.7(13) 8.9(12) 2.1(12) 37.7(15)

Table 3 Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for 3aa. The Anisotropicdisplacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Table 3 Anisotropic Displacement Parameters (Å2×103) for 3aa. The Anisotropicdisplacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U 11	U22	U33	U23	U 13	U12
O10	31.3(13)	53.7(18)	37.4(15)	9.7(13)	11.5(11)	17.5(12)
N2	33.2(16)	34.0(17)	27.1(16)	3.6(13)	4.0(13)	10.0(13)
C1	38(2)	31(2)	30.9(19)	4.6(15)	8.3(16)	14.3(16)
C2	40(2)	45(2)	32(2)	7.6(17)	8.6(17)	12.6(18)
C3	51(3)	55(3)	35(2)	7.8(19)	-0.3(19)	22(2)
C4	39(2)	59(3)	46(3)	0(2)	-2.0(19)	22(2)
C5	38(2)	64(3)	53(3)	6(2)	16(2)	15(2)
C6	49(2)	51(3)	40(2)	13.6(19)	13.5(19)	15(2)
C7	41(2)	37(2)	32(2)	8.0(16)	10.8(16)	15.6(17)
C8	36.1(19)	28.7(19)	33(2)	7.5(15)	9.9(16)	7.7(15)
C9	34.2(19)	42(2)	27.5(19)	9.5(16)	4.7(15)	13.4(17)
C10	39(2)	44(2)	26.8(19)	1.1(16)	2.4(16)	12.9(18)
C11	33.0(19)	39(2)	31(2)	2.7(16)	0.8(15)	11.0(16)
C12	37(2)	35(2)	27.5(18)	3.6(15)	5.3(15)	9.6(16)
C13	32.2(19)	34(2)	30.0(19)	5.4(15)	2.6(15)	9.3(16)
C14	31.0(18)	30.4(19)	28.6(18)	4.6(15)	6.8(14)	7.4(15)
C15	27.3(17)	40(2)	23.1(17)	6.6(15)	5.9(14)	6.1(15)
C16	26.2(17)	41(2)	30.9(19)	7.0(16)	3.9(15)	8.3(16)
C17	36(2)	45(2)	38(2)	8.9(18)	7.1(17)	10.2(18)
C18	28.2(19)	57(3)	32(2)	9.3(18)	1.1(16)	10.8(18)
C19	31.4(19)	49(2)	28.7(19)	4.8(17)	3.7(15)	0.2(17)

Table 3 Anisotropic Displacement Parameters (Å2×103) for 3aa. The Anisotropicdisplacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U 11	U22	U33	U23	U13	U12
C20	32.3(19)	40(2)	26.5(18)	3.1(16)	6.5(15)	5.6(16)
C21	32.4(18)	37(2)	25.1(18)	8.0(15)	10.4(15)	7.8(16)
C22	38(2)	37(2)	41(2)	10.0(17)	7.2(17)	6.7(17)
C23	36(2)	49(3)	43(2)	21(2)	4.7(18)	12.9(19)
C24	32.3(19)	51(2)	29.3(19)	13.0(17)	10.8(16)	6.2(17)
C25	44(2)	44(2)	30(2)	3.3(17)	5.0(17)	7.3(19)
C26	40(2)	39(2)	31(2)	6.9(16)	8.0(16)	16.1(17)
C27	37(2)	69(3)	35(2)	15(2)	4.4(18)	10(2)
C28	46(2)	50(3)	31(2)	5.9(18)	1.4(17)	29(2)
C29	78(3)	256(7)	47(3)	-31(4)	9(2)	87(4)
C30	76(3)	249(7)	53(3)	-39(4)	7(3)	83(4)

Table 4 Bond Lengths for 3aa.

Atom Atom		Length/Å	Aton	n Atom	Length/Å		
S 1	01	1.434(3)	S2	O9	1.427(3)		
S 1	O2	1.428(3)	S2	O10	1.431(3)		
S 1	N1	1.645(3)	S2	N2	1.644(3)		
S 1	C54	1.763(4)	S2	C21	1.764(4)		
03	C45	1.331(4)	06	C28	1.210(5)		
O3	C46	1.454(4)	07	C28	1.326(6)		

Table 4 Bond Lengths for 3aa.

Atom Atom		Length/Å	Atom	n Atom	Length/Å		
04	C45	1.211(5)	07	C29	1.429(6)		
05	C40	1.206(5)	08	C9	1.209(5)		
N1	C39	1.476(5)	N2	C12	1.487(5)		
N1	C44	1.437(5)	N2	C14	1.445(5)		
C31	C32	1.397(5)	C1	C2	1.389(5)		
C31	C36	1.387(5)	C1	C6	1.381(6)		
C31	C37	1.491(5)	C1	C8	1.494(5)		
C32	C33	1.386(6)	C2	C3	1.391(6)		
C33	C34	1.380(7)	C3	C4	1.378(7)		
C34	C35	1.376(7)	C4	C5	1.376(7)		
C35	C36	1.394(6)	C5	C6	1.394(6)		
C37	C38	1.341(5)	C7	C8	1.337(5)		
C37	C40	1.509(5)	C7	C12	1.515(5)		
C38	C39	1.518(5)	C8	C9	1.506(5)		
C40	C41	1.506(6)	C9	C10	1.507(5)		
C41	C42	1.548(5)	C10	C11	1.536(5)		
C42	C43	1.510(5)	C11	C13	1.517(5)		
C43	C44	1.345(5)	C13	C14	1.346(5)		
C43	C45	1.497(5)	C13	C28	1.483(5)		
C44	C48	1.494(5)	C14	C15	1.488(5)		
C46	C47	1.500(6)	C15	C16	1.385(5)		

Table 4 Bond Lengths for 3aa.

Atom Atom		Length/Å	Atom	n Atom	Length/Å
C48	C49	1.404(5)	C15	C20	1.403(5)
C48	C53	1.376(5)	C16	C17	1.391(5)
C49	C50	1.395(5)	C17	C18	1.391(6)
C50	C51	1.376(6)	C18	C19	1.384(6)
C51	C52	1.392(6)	C19	C20	1.384(5)
C52	C53	1.394(5)	C21	C22	1.376(5)
C54	C55	1.386(5)	C21	C26	1.391(5)
C54	C59	1.369(6)	C22	C23	1.392(6)
C55	C56	1.384(5)	C23	C24	1.379(6)
C56	C57	1.392(6)	C24	C25	1.386(6)
C57	C58	1.376(6)	C24	C27	1.505(5)
C57	C60	1.516(5)	C25	C26	1.383(5)
C58	C59	1.389(6)	C29	C30	1.386(6)

Table 5 Bond Angles for 3aa

Atom Atom Atom			Angle/°	Aton	1 Ato	m Atom	Angle/°		
01	S 1	N1	105.05(16	5) 09	S2	O10	121.21(18)		
01	S 1	C54	108.05(17	7) 09	S2	N2	106.23(17)		
02	S 1	01	121.16(16	5) 09	S2	C21	107.78(18)		
O2	S 1	N1	106.03(16	6) O10	S 2	N2	104.89(17)		
02	S 1	C54	107.65(17	7) O10	S 2	C21	107.11(18)		

Table 5 Bond Angles for 3aa

Atom Atom Atom		n Atom	Angle/°	Atom Atom Atom			Angle/°		
N1	S 1	C54	108.33(16)	N2	S2	C21	109.21(17)		
C45	O3	C46	115.2(3)	C28	07	C29	114.2(5)		
C39	N1	S 1	119.1(2)	C12	N2	S2	118.2(2)		
C44	N1	S 1	119.5(2)	C14	N2	S2	121.3(3)		
C44	N1	C39	119.3(3)	C14	N2	C12	119.0(3)		
C32	C31	C37	119.7(4)	C2	C1	C8	119.4(4)		
C36	C31	C32	118.4(4)	C6	C1	C2	118.4(4)		
C36	C31	C37	121.9(4)	C6	C1	C8	122.2(4)		
C33	C32	C31	120.8(4)	C1	C2	C3	120.9(4)		
C34	C33	C32	120.2(4)	C4	C3	C2	119.9(4)		
C35	C34	C33	119.6(4)	C5	C4	C3	119.7(4)		
C34	C35	C36	120.5(4)	C4	C5	C6	120.3(4)		
C31	C36	C35	120.5(4)	C1	C6	C5	120.7(4)		
C31	C37	C40	115.6(3)	C8	C7	C12	124.4(4)		
C38	C37	C31	123.8(4)	C1	C8	C9	115.4(3)		
C38	C37	C40	120.0(3)	C7	C8	C1	124.1(4)		
C37	C38	C39	123.7(4)	C7	C8	C9	120.2(3)		
N1	C39	C38	113.2(3)	08	C9	C8	122.4(4)		
05	C40	C37	122.7(4)	08	C9	C10	122.6(4)		
05	C40	C41	122.7(4)	C8	C9	C10	115.0(3)		
C41	C40	C37	114.6(3)	C9	C10	C11	111.7(3)		

Table 5 Bond Angles for 3aa

Atom Atom Atom		n Atom	Angle/°	Atom Atom Atom			Angle/°		
C40	C41	C42	110.5(3)	C13	C11	C10	-	112.7(3)	
C43	C42	C41	111.4(3)	N2	C12	C7	-	114.2(3)	
C44	C43	C42	125.6(3)	C14	C13	C11		124.9(4)	
C44	C43	C45	121.8(3)	C14	C13	C28	-	122.4(3)	
C45	C43	C42	112.6(3)	C28	C13	C11	-	112.7(3)	
N1	C44	C48	117.8(3)	N2	C14	C15	-	117.7(3)	
C43	C44	N1	118.3(3)	C13	C14	N2	-	118.2(3)	
C43	C44	C48	123.9(3)	C13	C14	C15	-	124.0(3)	
03	C45	C43	112.8(3)	C16	C15	C14	-	121.1(3)	
O4	C45	O3	124.0(3)	C16	C15	C20	-	118.8(3)	
04	C45	C43	123.1(3)	C20	C15	C14	-	120.1(4)	
03	C46	C47	106.9(3)	C15	C16	C17	-	121.3(4)	
C49	C48	C44	119.6(3)	C18	C17	C16	-	119.5(4)	
C53	C48	C44	121.3(3)	C19	C18	C17	-	119.4(4)	
C53	C48	C49	119.1(3)	C18	C19	C20	-	121.2(4)	
C50	C49	C48	119.5(4)	C19	C20	C15	-	119.7(4)	
C51	C50	C49	120.9(4)	C22	C21	S2	-	120.2(3)	
C50	C51	C52	119.7(4)	C22	C21	C26	-	121.1(4)	
C51	C52	C53	119.5(4)	C26	C21	S2	-	118.8(3)	
C48	C53	C52	121.2(4)	C21	C22	C23	-	119.3(4)	
C55	C54	S 1	118.3(3)	C24	C23	C22		121.3(4)	

33

Table 5 Bond Angles for 3aa

Atom Atom Atom			Angle/°	Atom	n Aton	n Atom	Angle/°		
C59	C54	S 1	121.1(3)	C23	C24	C25	117.7(4)		
C59	C54	C55	120.5(4)	C23	C24	C27	121.5(4)		
C56	C55	C54	118.8(4)	C25	C24	C27	120.9(4)		
C55	C56	C57	121.2(4)	C26	C25	C24	122.7(4)		
C56	C57	C60	120.1(4)	C25	C26	C21	117.8(4)		
C58	C57	C56	118.9(4)	O6	C28	07	124.0(4)		
C58	C57	C60	121.0(4)	O6	C28	C13	122.8(4)		
C57	C58	C59	120.2(4)	O7	C28	C13	113.1(4)		
C54	C59	C58	120.3(4)	C30	C29	07	114.7(5)		

Table 6 Torsion Angles for 3aa.

A	B	С	D	Angle/°	A	B	С	D	Angle/°
S 1	N1	C39	C38	84.2(3)	S 2	N2	C12	C7	-81.0(4)
S 1	N1	C44	C43	-112.0(3)	S2	N2	C14	C13	117.3(4)
S 1	N1	C44	C48	68.8(4)	S2	N2	C14	C15	-65.4(4)
S 1	C54	-C55	C56	177.4(3)	S2	C21	C22	C23	179.8(3)
S 1	C54	C59	C58	-177.8(3)	S 2	C21	C26	C25	-178.8(3)
01	S 1	N1	C39	-31.0(3)	08	C9	C10	C11	118.9(4)
01	S 1	N1	C44	165.5(3)	09	S 2	N2	C12	162.3(3)
01	S 1	C54	C55	35.0(3)	09	S 2	N2	C14	-31.6(3)
01	S 1	C54	C59	-146.8(3)	09	S 2	C21	C22	14.4(4)

Table 6 Torsion Angles for 3aa.

A	B	С	D	Angle	l°	A	B	С	D	Angle/°	
02	S 1	N1	C39	-160	.5(3)	09	S 2	C21	C26	-165.2(3)
02	S 1	N1	C44	36	.1(3)	010)S2	N2	C12	32.8(3)
02	S 1	C54	4C55	167	.4(3)	010)S2	N2	C14	-161.1(3)
02	S 1	C54	4C59	-14	.3(4)	010)S2	C21	C22	146.3(3)
05	C4()C41	C42	-113	.1(4)	010)S2	C21	C26	-33.3(3)
N1	S 1	C54	4C55	-78	.3(3)	N2	S 2	C21	C22	-100.6(3)
N1	S 1	C54	4C59	99	.9(3)	N2	S 2	C21	C26	79.8(3)
N1	C44	4C48	3C49	43	.1(5)	N2	C14	C15	C16	140.1(4	4)
N1	C44	4C48	3C53	-137	.1(4)	N2	C14	C15	C20	-42.2(5)
C31	C32	2C33	3C34	-0	.7(7)	C1	C2	C3	C4	-1.4(7)
C31	C37	7 C38	3C39	-172	.4(4)	C1	C8	C9	08	106.4(4	4)
C31	C37	7 C40	005	-116	.2(4)	C1	C8	C9	C10	-74.2(4	4)
C31	C37	7 C40)C41	66	.2(4)	C2	C1	C6	C5	-0.2(7)
C32	2C31	l C36	5C35	-1	.6(6)	C2	C1	C8	C7	145.1(4	4)
C32	2C31	l C37	7 C38	-149	.7(4)	C2	C1	C8	C9	-41.0(5)
C32	2C31	l C37	7 C40	39	.5(5)	C2	C3	C4	C5	0.8(7)
C32	2C33	3C34	4C35	-0	.4(7)	C3	C4	C5	C6	0.1(7)
C33	8 C34	4C35	5C36	0	.5(7)	C4	C5	C6	C1	-0.4(7)
C34	C35	5C36	5C31	0	.6(7)	C6	C1	C2	C3	1.1(6)
C36	5C31	l C32	2C33	1	.7(6)	C6	C1	C8	C7	-35.8(6)
C36	5C31	l C37	7 C38	33	.1(6)	C6	C1	C8	C9	138.1(4	4)

Table 6 Torsion Angles for 3aa.

A	B	С	D	Angle/°	1	A	B	С	D	Angle/°
C36	C31	C37	C40	-137.7(4	4) C	7	C8	C9	08	-79.5(5)
C37	C31	C32	C33	-175.5(4	4) C	7	C8	C9	C10	99.9(4)
C37	C31	C36	C35	175.5(4	4) C	8	C1	C2	C3	-179.8(4)
C37	C38	C39	N1	85.3(5	5) C	8	C1	C6	C5	-179.3(4)
C37	C40	C41	C42	64.5(4	4) C	8	C7	C12	2N2	-90.4(5)
C38	C37	C40	O5	72.7(5	5) C	8	C9	C10)C11	-60.5(4)
C38	C37	C40	C41	-105.0(4	4) C	9	C10	C11	C13	-69.7(4)
C39	N1	C44	C43	84.7(4	4) C	10	C11	C13	8C14	112.1(4)
C39	N1	C44	C48	-94.6(4	4) C	10	C11	C13	3C28	-67.9(4)
C40	C37	C38	C39	-2.0(0	5) C	11	C13	C14	N2	-11.4(6)
C40	C41	C42	C43	66.6(4	4) C	11	C13	C14	C15	171.4(4)
C41	C42	C43	C44	-107.0(4	4) C	11	C13	C28	806	-41.9(6)
C41	C42	C43	C45	73.0(4	4) C	11	C13	C28	807	134.0(4)
C42	C43	C44	N1	5.9(6	5) C	12	N2	C14	C13	-76.7(4)
C42	C43	C44	C48	-175.0(3	3) C	12	N2	C14	C15	100.7(4)
C42	C43	C45	O3	-128.5(3	3) C	12	C7	C8	C1	176.6(4)
C42	C43	C45	O4	49.1(5) C	12	C7	C8	C9	3.0(6)
C43	C44	C48	C49	-136.1(4	4) C	13	C14	C15	5C16	-42.8(6)
C43	C44	C48	C53	43.7(5	5) C	13	C14	C15	5C20	134.9(4)
C44	N1	C39	C38	-112.3(4	4) C	14	N2	C12	2C7	112.5(4)
C44	C43	C45	O3	51.5(5	5) C	14	C13	C28	306	138.1(4)
Table 6 Torsion Angles for 3aa.

A	B	С	D	Angle/°	Α	B	С	D	Angle/°
C44	C43	C45	O4	-130.9(4)	C14	C13	8 C28	807	-46.0(6)
C44	C48	C49	C50	176.9(3)	C14	C15	5C16	5C1′	7 176.4(4)
C44	C48	C53	C52	-177.0(4)	C14	C15	5 C20)C19	9 -175.6(3)
C45	03	C46	C47	168.5(3)	C15	C16	5C17	7C18	8 -0.4(6)
C45	C43	C44	N1	-174.1(3)	C16	C15	5 C20)C19	9 2.2(6)
C45	C43	C44	C48	5.1(6)	C16	6C17	C18	3C19	9 1.3(6)
C46	03	C45	O4	7.0(5)	C17	C18	8C19)C2(-0.4(6)
C46	03	C45	C43	-175.4(3)	C18	C19	C20)C1:	5 -1.4(6)
C48	C49	C50	C51	0.5(6)	C20	C15	5C16	5C1′	7 -1.3(6)
C49	C48	C53	C52	2.8(6)	C21	S2	N2	C12	2 -81.7(3)
C49	C50	C51	C52	1.9(6)	C21	S2	N2	C14	4 84.4(3)
C50	C51	C52	C53	-2.0(6)	C21	C22	2 C23	8C24	4 -1.4(6)
C51	C52	C53	C48	-0.4(6)	C22	C21	C26	5C2	5 1.6(6)
C53	C48	C49	C50	-2.9(5)	C22	C23	8 C24	C2	5 2.3(6)
C54	S 1	N1	C39	84.2(3)	C22	C23	8 C24	C2	7 -178.9(4)
C54	S 1	N1	C44	-79.2(3)	C23	C24	C25	5C20	-1.3(6)
C54	C55	C56	C57	0.2(6)	C24	- C25	5 C26	5C2	-0.6(6)
C55	C54	C59	C58	0.4(6)	C26	5C21	C22	2C23	3 -0.6(6)
C55	C56	C57	C58	1.1(6)	C27	C24	C25	5C20	6 179.9(4)
C55	C56	C57	C60	-179.2(4)	C28	07	C29)C3(0 -142.0(8)
C56	C57	C58	C59	-1.5(6)	C28	C13	8C14	N2	168.6(4)

Table 6 Torsion Angles for 3aa.

A B C D	Angle/°	A B	С	D	Angle/°
C57C58C59C54	0.8(6)	C28 C13	3C14	C15	-8.6(6)
C59C54C55C56	-0.9(6)	C29 O7	C28	06	-7.0(7)
C60C57C58C59	178.7(4)	C29 O7	C28	C13	177.1(5)

Table 7 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for 3aa.

Atom	x	у	Z.	U(eq)
H32	4314.93	5213.69	2027.22	49
H33	6663.69	5043.8	2496.52	56
H34	8693.7	5447.74	2004.65	58
H35	8362.09	6010.2	1037.63	56
H36	6012.73	6186.36	561.54	47
H38	3366.77	5579.49	42.89	40
H39A	972.64	5744.6	-359.65	38
H39B	704.22	5979.33	353.97	38
H41A	4498.1	7422.9	2056.34	42
H41B	2959.48	7610.1	2191.72	42
H42A	4143.13	8776.88	1599.38	40
H42B	3932.61	7889.38	1010.47	40
H46A	-648.46	9577.51	2011.85	50
H46B	-211.02	8986.36	2556.59	50

Atom	x	у	z	U(eq)
H47A	-2859.03	8330.78	1551.44	68
H47B	-2834.91	8696.79	2294.35	68
H47C	-2410.81	7699.82	2064.49	68
H49	-1418.85	6587.34	-246.7	39
H50	-3788.64	6848.33	-603.71	46
H51	-4203.95	8400.93	-349.12	48
H52	-2201.76	9741.16	223.52	47
H53	165.58	9484.08	583.7	41
H55	389.33	5928.09	-1506.61	44
H56	-1799.09	5668.48	-2300.63	50
H58	-1677.38	8554.29	-1864.82	49
H59	493.01	8813.64	-1059.82	47
H60A	-3424.23	6393.42	-3039.78	79
H60B	-3480.73	7498.58	-2822.14	79
H60C	-4284.93	6675.49	-2490.38	79
H2	6726.52	9662.38	3391.54	46
H3	4440.86	9998.04	2994.76	56
H4	2421.3	9579	3489.83	59
H5	2712.07	8867.13	4396.72	61
H6	5017.38	8568.81	4811.18	54
H7	7704.7	9203.78	5338.75	42

Table 7 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for 3aa.

Atom	x	У	Z	U(eq)
H10A	8202.93	7217.19	3215.94	45
H10B	6620.04	7328.03	3338.42	45
H11A	7317.16	6976.37	4411.99	43
H11B	7107.06	6067.81	3838.94	43
H12A	10366.45	8864.23	4983.93	40
H12B	10188.19	9165.78	5706.21	40
H16	11052.36	5376.82	4814.69	40
H17	13394.76	5099.08	5186.71	48
H18	15391.82	6420.25	5791.38	48
H19	14991.28	7983.35	6045.19	46
H20	12641.11	8256.44	5699.06	41
H22	10970.85	6345.61	6623.5	47
H23	13077.37	6801.34	7484.74	50
H25	12798.69	9606.97	7728.82	49
H26	10655.33	9175.47	6894.03	43
H27A	15421.38	8927.09	8088.94	71
H27B	14819	7983.67	8364.74	71
H27C	14399.29	8978.47	8605.05	71
H29A	11493.21	5406.31	3218.88	153
H29B	11915.18	6367.84	2938.38	153
H30A	13892.85	5734.9	3237.55	193

Table 7 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for 3aa.

Table 7 Hydrogen Atom Coordinates (Å×10 ⁴) and Isotropic Displacement
Parameters (Å ² ×10 ³) for 3aa.

Atom	x	у	Z	U(eq)
H30B	13724.27	5973.45	3966.98	193
H30C	14144.33	6839.48	3597.37	193

References:

[1]: Yan, B.; Zuo, L.; Chang, X.; Liu, T.; Cui, M.; Liu, Y.; Sun, H.; Chen, W.; Guo, W. Kinetically Controllable Pd-Catalyzed Decarboxylation Enabled [5 + 2] and [3 + 2] Cycloaddition toward Carbocycles Featuring Quaternary Carbons. *Org. Lett.* **2021**, *23*, 351-357.

[2]: (a) Liu, H. M.; Zhang, Q. M.; Wang, L.; Tong, X. PPh3-Catalyzed Reactions of Alkyl Propiolates with N-Tosylimines: A Facile Synthesis of Alkyl 2-[aryl(tosylimino)methyl]acrylate and an Insight into the Reaction Mechanism. *Chem. Eur. J.* **2010**, *16*, 1968-1972. (b) Cheng, B.-Y.; Wang, Y.-N.; Li, T.-R.; Lu, L.-Q. Xiao, W.-J. Synthesis of Polysubstituted Pyrroles through a Formal [4+1] Cycloaddition/E1cb Elimination/Aromatization Sequence of Sulfur Ylides and α,β -Unsaturated Imines. *J. Org. Chem.* **2017**, *82*, 12134-12140. (c) Jiang, X.; Liu, L.; Zhang, P.; Zhong, Y.; Wang, R. Catalytic Asymmetric β,γ Activation of α,β -Unsaturated γ -Butyrolactams: Direct Approach to β,γ -Functionalized Dihydropyranopyrrolidin-2ones. *Angew. Chem. Int. Ed.* **2013**, *52*, 11329-11333. (d) Ge, Y.; Qin, C.; Bai, L.; Hao, J.; Liu, J.; Luan, X. A Dearomatization/Debromination Strategy for the [4+1] Spiroannulation of Bromophenols with α,β -Unsaturated Imines. *Angew. Chem. Int. Ed.* **2020**, *59*, 18985-18989.

Characterization spectra of all the new products

¹H NMR (400 MHz, CDCl₃) of **3aa**

¹³C NMR (100 MHz, CDCl₃) of **3ba**

HRMS of 3ba

¹H NMR (400 MHz, CDCl₃) of **3ca**

HRMS of 3ca

¹³C NMR (100 MHz, CDCl₃) of **3da**

¹H NMR (400 MHz, CDCl₃) of 3ea

0.0533 0.0533

 $^{13}\mathrm{C}$ NMR (100 MHz, CDCl₃) of **3ea**

⊤ m/z

<u>482.4027</u> 500

¹H NMR (400 MHz, CDCl₃) of **3fa**

¹³C NMR (100 MHz, CDCl₃) of 3fa

HRMS of 3fa

^{-30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170} f1 (ppm)

¹³C NMR (100 MHz, CDCl₃) of **3ha**

¹H NMR (400 MHz, CDCl₃) of **3ia**

¹³C NMR (100 MHz, CDCl₃) of **3ja**

¹H NMR (400 MHz, CDCl₃) of 3ka

HRMS of 3ka

¹H NMR (400 MHz, CDCl₃) of **3la**

¹³C NMR (100 MHz, CDCl₃) of **3la**

HRMS of 3ma

¹H NMR (400 MHz, CDCl₃) of **3na**

¹³C NMR (100 MHz, CDCl₃) of **3na**

¹⁹F NMR (376 MHz, CDCl₃) of **3na**

-30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 f1 (ppm)

¹H NMR (400 MHz, CDCl₃) of **30a**

¹³C NMR (100 MHz, CDCl₃) of **3ab**

¹H NMR (400 MHz, CDCl₃) of **3ac**

¹H NMR (400 MHz, CDCl₃) of **3ad**

¹³C NMR (100 MHz, CDCl₃) of 3ad

¹³C NMR (100 MHz, CDCl₃) of 3ae

¹³C NMR (100 MHz, CDCl₃) of 3ag

825.7234^{907.3182}941.3245961.2941 800 850 900 950 1000 395.1645 494.067 ---- m/z

¹H NMR (400 MHz, CDCl₃) of **3ah**

120

150

140 130

210 200 190 180 170 160

110 100 f1 (ppm) 90 80 70 60 50 40 30 20

10 0

915.2736 565.2150 659.1063 712.2878 807.6930 901.2864 937.2552 600 650 700 750 800 850 900 950 10 400 450 500 --- m/z

¹H NMR (400 MHz, CDCl₃) of 3ai

516.1840

5-1-18 101 (0.579) Cm (101:110)

100-

1: TOF MS ES+ 9.39e7

¹H NMR (400 MHz, CDCl₃) of **3ak**

120 110 f1 (ppm)

HRMS of 3ak

¹³C NMR (100 MHz, CDCl₃) of 3al

¹H NMR (400 MHz, CDCl₃) of **3am**

A

¹³C NMR (100 MHz, CDCl₃) of **3am**

¹³C NMR (100 MHz, CDCl₃) of **3an**

¹H NMR (400 MHz, CDCl₃) of 4

 1 H NMR (400 MHz, CDCl₃) of **5**

¹³C NMR (100 MHz, CDCl₃) of **5**

-9

