Table of Contents

S1. Materials, instrumentation, techniques and methods1
S1.1. Synthesis1
S1.2. Purification1
S1.3. Characterisation1
S1.4. Computational methods2
S2. Tables of data3
Table S2.1. Summary of characterised sugar-O-BODIPY conjugates.
Table S2.2. Selected atom distances (Å) between BODIPY- $_{\alpha}$ -protons and sugar protons for 3Ra X-ray crystal structure and DFT optimised geometries3
S3. UV-vis and Emission Spectroscopy5
For emission spectra of all the compounds: Excitation occurred at 480 nm5
S3.1. O-BODIPYs 3 and 4:5
S3.2. O-BODIPY 3 Glucose conjugate6
S3.3. O-BODIPY 4 Glucose conjugates6
S3.4. O-BODIPY 3 Xylose conjugates7
S3.5. O-BODIPY 4 Xylose conjugates7
S3.6. O-BODIPY 3 Ribose conjugates8
S3.7. O-BODIPY 4 Ribose conjugates8
S4. Synthetic procedures and characterisation data9
S4.1. Synthesis of F-BODIPYs 1 and 29
S4.2. Synthesis of O-BODIPYs 3 and 49
S4.3. General procedure for the synthesis of sugar-O-BODIPY conjugates $\dots 10$
S4.4. Synthesis of glucose-O-BODIPY conjugate 3Ga10
S4.5. Synthesis of glucose-O-BODIPY conjugates 4Ga-d11
S4.6. Synthesis of xylose-O-BODIPY conjugates 3Xa-d13
S4.7. Synthesis of xylose-O-BODIPY conjugates 4Xa-c15
S4.8. Synthesis of ribose-O-BODIPY conjugates 3Ra-d16
S4.9. Synthesis of ribose-O-BODIPY conjugates 4Ra-d18
S5. NMR spectra21
S5.1 O-BODIPY 3: meso-tolyl-O-BODIPY21
S5.2 O-BODIPY 4: meso-mestiyl-O-BODIPY24
S5.3 Conjugate 3Ga: α -Glucofuranose-(1,2)(3)(5,6)-O-BODIPY(OMe)27
S5.4 Conjugate 4Ga: α -Glucofuranose-(1,2)(3)(5,6)-O-BODIPY(OMe)30
S5.5 Conjugate 4Gb: α -Glucofuranose-(1,2)(3,5)-O-BODIPY34
S5.6 Conjugate 4Gc: α -Glucoseptanose-(1,2)(3,4)-O-BODIPY38
S5.7 Conjugate 4Gd: α -Glucofuranose-(1,2)-O-BODIPY42

	S5.8 Conjugate 3Xa: α-Xylofuranose-(1,2)(3,5)-O-BODIPY	45
	S5.9 Conjugate 3Xb: α -Xylofuranose-(1,2)(3)(4)-O-BODIPY(OMe)	48
	S5.10 Conjugate 3Xc: α -Xylopyranose-(1,2)-O-BODIPY	51
	S5.11 Conjugate 3Xd: α -Xylofuranose-(1,2)-O-BODIPY	54
	S5.12 Conjugate 4Xa: α -Xylofuranose-(1,2)(3,5)-O-BODIPY	57
	S5.13 Conjugate 4Xb: α -Xylopyranose-(1,2)-O-BODIPY	60
	S5.14 Conjugate 4Xc: α -Xylofuranose-(1,2)-O-BODIPY	63
	S5.15 Conjugate 3Ra: β -Ribofuranose-(1,5)(2,3)-O-BODIPY	66
	S5.16 Conjugate 3Rb: α -Ribopyranose-(1,2)(3,4)-O-BODIPY	69
	S5.17 Conjugate 3Rc: α -Ribopyranose-(1,2)-O-BODIPY	72
	S5.18 Conjugate 3Rd: β -Ribofuranose-(2,3)-O-BODIPY	75
	S5.19 Conjugate 4Ra: β -Ribofuranose-(1,5)(2,3)-O-BODIPY	78
	S5.20 Conjugate 4Rb: α -Ribopyranose-(1,2)-O-BODIPY	81
	S5.21 Conjugate 4Rc: β -Ribofuranose-(2,3)-O-BODIPY	84
	S5.22 Conjugate 4Rc': α -Ribopyranose-(2,3)-O-BODIPY	85
	S5.23 Conjugate 4Rd: α -Ribofuranose-(1,2)-O-BODIPY	89
S	6 XRD data tables for compounds 3, 3Ra, 3Rd, 4:	92

S1. MATERIALS, INSTRUMENTATION, TECHNIQUES AND METHODS

S1.1. Synthesis

All synthetic procedures were carried out at room temperature under a nitrogen atmosphere and all reagents and solvents were used as received from commercial suppliers, unless otherwise stated. Dried solvents were collected from an LC Technologies SP-1 solvent purifier. Glassware used for reactions was dried overnight in an oven at 110 °C and flushed with nitrogen before use. BF₃.OEt₂ and BCl₃ were added to Schlenk flasks using Hamilton gas-tight syringes.

S1.2. Purification

For column chromatography the silica used was either Chem-Supply brand, silica gel 60 Å 0.04-0.06 mm (230-400 mesh ASTM) or Davisil brand, LC60A 0.04 - 0.06 mm. Alumina used was activated basic and activated neutral, Brockmann Grade I, 58 Å (ECP). Reactions were monitored using TLC carried out on Kiesgel 60 silica and the spots were visualised using UV light. The deactivated silica gel used was 20% water deactivated silica gel. This was prepared by dropwise addition of water (20 mL) into 80 g of silica gel with continuous agitation. The mixture was then rotated on a rotavap for a couple of hours and left to stand overnight before using it. HPLC methods were established on a Thermo Scientific Dionex UltiMate 3000 UHPLC⁺ using a Thermo Fisher scientific Hypersil GOLD reversed-phase HPLC column (5 μ m, 250 x 4.6 mm) at a flow rate of 0.5 mL/min. For purification and collection, an Agilent Eclipse XDB-C18 (5 μ m, 9.4 x 250 mm) column was used at a flow rate of 2 mL/min with detection at 250 and 500 nm.

S1.3. Characterisation

NMR spectroscopy: carried out at 25 °C and the residual solvent peaks were used as internal standards. All 1D (¹H, ¹³C{¹H} and ¹¹B{¹H}) and 2D NMR (¹H-¹H COSY, ¹H-¹H NOESY, ¹H-¹H TOCSY, ¹H-¹³C HSQC, HSQC-DEPT, ¹H-¹³C HMBC, ¹H-¹¹B HMBC) spectra were obtained on a Bruker Avance III 400 MHz NMR spectrometers. ¹¹B{¹H} NMR spectrum was externally referenced to BF₃.Et₂O (δ = 0.00 ppm). Assignments of signals in NMR spectra were made on the basis of chemical shift position, the integral values in ¹H NMR spectra, and by the use of above-mentioned 2D spectra.

Mass spectrometry: HRMS analysis was performed on a Bruker Daltronics MicrOTOF-QII instrument using direct infusion (ESI).

X-ray crystallography: X-ray diffraction analysis of single crystals of **3**, **3Ra**, **3Rd**, **and 4** were performed on a Rigaku Oxford Diffraction XtaLAB-Synergy-S single-crystal diffractometer with a PILATUS 200K hybrid pixel array detector using Cu Kα radiation (Table S4.1). The data were processed with the SHELX2018/3⁹ and Olex2¹⁰ software packages. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were inserted at calculated positions and refined with a riding model or without restrictions. Mercury 2020.1.1¹¹ was used to visualize the molecular structures. CCDC 2040727, 2040728, 2040729, and 2040727 contain the supplementary crystallographic data for this paper. These data are provided free of charge by The Cambridge Crystallographic Data Centre.

UV-vis and fluorescence spectroscopy: UV-vis spectra were recorded on a Shimadzu UV-3600 Plus instrument using 1 cm quartz cuvettes and CH_2Cl_2 as the solvent. Fluorescence spectra were recorded in CH_2Cl_2 using a JASCO spectrofluorometer FP-8600. The absolute fluorescence quantum yield data was obtained using the Edinburgh FLS980 fluorescence spectrometer. All samples were excited at 480 nm.

FTIR spectroscopy: FTIR spectra were collected on a Bruker Vertex 70 Fourier Transform spectrometer between 4000 and 300 cm⁻¹.

S1.4. Computational methods

DFT optimised geometries of all sugar-O-BODIPY conjugates were calculated using the B3LYP functional^{1–3} and 6-31G(d) basis set using Gaussian,⁴ unless otherwise stated. The input structures for optimisations were generated using the Avogadro program.⁵ In some cases, TD-DFT calculations were also performed on the DFT optimised geometry using the CAM-B3LYP functional⁶ and 6-31G(d) basis set to find out the orbitals involved in the absorption and the spatial overlap in the electron densities of these orbitals.

S2. TABLES OF DATA

Conjugate number ^[a]	BODIPY binding site(s)	Anomeric ring form of sugar	Yield (%)
3Ga	(1,2)(3)(5,6)	α -D-glucofuranose	64
4Ga	(1,2)(3)(5,6)	α -D-glucofuranose	2
4Gb	(1,2)(3,5)	α -D-glucofuranose	23
4Gc	(1,2)(3,4)	α -D-glucoseptanose	34
4Gd	(1,2)	α -D-glucofuranose	3
3Xa	(1,2)(3,5)	α-D-xylofuranose	38
3Xb	(1,2)(3)	α -D-xylofuranose	6
3Xc	(1,2)	α -D-xylopyranose	17
3Xd	(1,2)	α -D-xylofuranose	9
4Xa	(1,2)(3,5)	α -D-xylofuranose	34
4Xb	(1,2)	α -D-xylopyranose	9
4Xc	(1,2)	α -D-xylofuranose	6
3Ra	(1,5)(2,3)	β-D-ribofuranose	17
3Rb	(1,2)(3,4)	α -D-ribopyranose	13
3Rc	(1,2)	α -D-ribopyranose	12
3Rd	(2,3)	β-D-ribofuranose	53
4Ra	(1,5)(2,3)	β-D-ribofuranose	9
4Rb	(1,2)	α -D-ribopyranose	4
4Rc	(2,3)	β-D-ribofuranose	51 ^[b]
4Rc'	(2,3)	α -D-ribopyranose	7 ^[b]
4Rd	(1,2)	α-D-ribofuranose	23

Table S2.1. Summary of characterised sugar-O-BODIPY conjugates.

[a] G = glucose, X = xylose, R = ribose; [b] Inseparable conjugates, proportions determined by integration ratios of BODIPY α -proton peaks in the ¹H NMR spectrum.

Table S2.2. Selected atom distances (Å) between BODIPY-α-protons and sugar protons for 3Ra X-ray crystal structure and DI	T optimised
deometries	

BODIPY proton	Sugar proton	XRD	6-31G	6-31G (d)	6-31G +(d,p)	6-311G ++(d,p)
α1	1	2.77725(4)	2.81446	2.79225	2.78862	2.80647
α1	4	2.88847(4)	2.80558	2.90288	2.95978	2.95969
α1'	2	3.74894(4)	3.39627	3.35001	3.35713	3.35863
α1'	3	3.41380(5)	3.33017	3.21077	3.18680	3.18638
α2	1	3.57908(6)	3.40848	3.45316	3.47444	3.46996
α2	4	3.59586(4)	3.70535	3.73745	3.79607	3.79070
α2'	2	2.78766(5)	2.63182	2.51562	2.50741	2.53394
α2'	3	4.19191(6)	4.13 607	4.16193	4.21391	4.22668

 Table S2.3.
 Selected atom distances (Å) between BODIPY- α -protons and sugar protons for 3Rd X-ray crystal structure and DFT optimised geometries

BODIPY proton	Sugar proton	XRD	6-31G	6-31G (d)	6-31G +(d,p)	6-311G ++(d,p)
α1	1	3.20990(6)	2.97483	2.99567	2.84518	2.84790
α1	4	2.75225(8)	2.52350	2.54103	2.75767	2.77552
α1'	2	3.29342(8)	3.16383	3.07241	3.21979	3.19846
α1'	3	3.41643(6)	3.67385	3.63978	3.39953	3.43072

Table S2.4. Comparison of 3Ra and 3Rd O-B-O bond angels (°) from the X-ray crystal structures and DFT optimised geometries using various DFT basis sets.

Conjugate number	XRD	6-31G	6-31G (d)	6-31G +(d,p)	6-311G ++(d,p)
3Ra-Bl	106.68	105.345	107.45	107.04	107.02
3Ra-BII	116.34	115.04	117.19	116.95	116.93
3Rd	107.10	105.02	107.12	106.83	106.82

 Table S2.5. Dihedral angle comparisons for 3Xc/3Xd, 4Xb/4Xc, 4Rb/4Rd.

Conjugate number	0-C-C-0
3Xc	30.453
3Xd	-23.880
4Xb	-15.095
4Xc	-24.132
4Rb	-29.506
4Rd	-24.892

S3. UV-VIS AND EMISSION SPECTROSCOPY

For emission spectra of all the compounds: Excitation occurred at 480 nm.

S3.1. O-BODIPYs 3 and 4:

S3.2. O-BODIPY 3 Glucose conjugate

S3.3. O-BODIPY 4 Glucose conjugates

S3.4. O-BODIPY 3 Xylose conjugates

S3.5. O-BODIPY 4 Xylose conjugates

S3.6. O-BODIPY 3 Ribose conjugates

S3.7. O-BODIPY 4 Ribose conjugates

S4. SYNTHETIC PROCEDURES AND CHARACTERISATION DATA

S4.1. Synthesis of F-BODIPYs 1 and 2

Prepared as described in the literature.^{7,8}

S4.2. Synthesis of O-BODIPYs 3 and 4

F-BODIPY (1 equiv) was dissolved in anhydrous CH_2CI_2 under a nitrogen atmosphere. BCI₃ (3 equiv) was added dropwise and the mixture allowed to stir for 60 minutes. Solvent was removed *in vacuo* leaving a dark red solid. NaOCH₃ (5 equiv) dissolved in anhydrous MeOH was added to the flask. Stirring continued for a further 60 minutes before the reaction was quenched with saturated aqueous NaHCO₃ solution. The organic layer was washed three times with water, then dried over anhydrous Na₂SO₄. Column chromatography (SiO₂, MeCN/CH₂Cl₂ 1:1 v/v) was used to isolate O-BODIPY from the crude mixture eluting as the main orange band.

3 orange oil (quantitative yield): **UV-vis** λ_{max} (CH₂Cl₂)/nm 499.5 (ϵ /M⁻¹ cm⁻¹ 44909), **Emission** λ_{em} CH₂Cl₂/nm 517 (λ_{ex} = 480 nm), **Φ** (CH₂Cl₂) = 0.045.; ¹H NMR (400 MHz, **CDCl₃)** δ 2.47 (s, 3H, p-CH₃), 3.09 (s, 6H,O-CH₃), 6.53 (dd, *J* = 4.5, 2.0 Hz, 2H, β), 6.93 (dd, *J* = 4.5, 1.5 Hz, 2H, γ), 7.34-7.32 (m, 2H, m), 7.52-7.49 (m, 2H, o), 7.87 (br t, *J* = 1.4 Hz, 2H, α); ¹³C NMR (100 MHz, CDCl₃) δ 21.59 (p-CH₃), 50.02 (O-CH3), 117.90 (C β), 129.14 (Cm), 130.35 (Co), 130.79, 137.73 (C γ), 135.96, 141.00, 144.11 (C α), 147.31; ¹¹B NMR (128 MHz, CDCl₃) δ 2.27 (br s); FT-IR (ATR) 1/ λ (cm⁻¹) 3093.52, 3027.94 (C-H aromatic), 2964.30, 2937.30, 2817.72, 2815.79 (Alkyl C-H), 1606.54 (C=N), 1567.97, 1540.33 (C=N, C-C in aromatic), 1253.60 (C-O), 1199.60 (C-N), HRMS (ESI) *m/z*: [M+Na]⁺ calcd. for C₁₈H₁₉BN₂O₂Na, 329.1435; found, 329.1429.

4 orange oil (88% yield): UV-vis λ_{max} (CH₂Cl₂)/nm 500.0 (ε/M⁻¹ cm⁻¹ 65272), Emission λ_{em} CH₂Cl₂/nm 521 (λ_{ex} = 480 nm), Φ (CH₂Cl₂) = 0.88.; ¹H NMR (400 MHz, CDCl₃) δ = 7.82 (bs, 1H, Hα), 6.92 (s, 2H, *m*-CH), 6.60 (bd, *J* = 4.0 Hz, 2H, Hγ), 6.42 (dd, *J* = 4.0, 2.0 Hz, 2H, Hβ), 3.02 (s, 6H, OCH₃), 2.33 (s, 3H, *p*-CH₃), 2.07 (s, 6H, *o*-CH₃); ¹³C NMR (100 MHz, CDCl₃) δ = 146.96, 144.34 (Cα), 138.50, 136.40, 136.10, 130.35, 128.71 (Cγ), 128.06 (*m*-CH), 118.02 (Cβ), 49.87 (OCH₃), 21.11 (*p*-CH₃), 19.75 (*o*-CH₃); ¹¹B NMR (128 MHz, CDCl₃) δ = 2.46 (bs); FT-IR (ATR) 1/λ (cm⁻¹) 3108.94 (C-H aromatic),

2948.87, 2918.01, 2810.01 (Alkyl C-H), 1567.97, 1539.04 (C=N, C-C in aromatic), 1253.60 (C-O), 1199.60 (C-N); **HRMS (ESI):** *m*/*z* [M+Na]⁺ calcd for C₂₀H₂₃BN₂NaO₂, 357.1748; found 357.1745;

S4.3. General procedure for the synthesis of sugar-O-BODIPY conjugates

Solid sugar (1 equiv) was added to a flask containing O-BODIPY (1 equiv) dissolved in anhydrous MeCN. A catalytic amount of PTSA dissolved in anhydrous MeCN was added dropwise to the solution. The reaction mixture was left to stir at RT until TLC showed no further change. The reaction was quenched with saturated aqueous NaHCO₃ solution and CH_2Cl_2 added to induce phase separation. The organic layer containing the products was washed with water three times and then dried over anhydrous Na_2SO_4 . The conjugates were isolated and purified by various chromatography techniques.

S4.4. Synthesis of glucose-O-BODIPY conjugate 3Ga

Glucose (28 mg, 0.156 mmol) was added to a flask containing **3** (49 mg, 0.156 mmol) dissolved in anhydrous MeCN (5 mL). PTSA (7 mol %) dissolved in anhydrous MeCN was then added to the reaction mixture changing the colour from orange to bright red. After 10 minutes of stirring, the reaction mixture was quenched by adding a saturated aqueous NaHCO₃ solution, which resulted in precipitation of the product. CH_2CI_2 was added to induce phase separation, dissolving the precipitates and forming an orange-pink organic layer. The organic layer containing the products was washed with water three times and then dried over anhydrous Na₂SO₄. Flash chromatography on basic alumina using $CH_2CI_2/MeCN$ (100:5) afforded **3Ga**.

3Ga orange-pink film (20.0 mg, 64%): **UV-vis** λ_{max} (CH₂Cl₂)/nm 501 (ϵ /M⁻¹ cm⁻¹ 81159), **Emission** λ_{em} CH₂Cl₂/nm 562 ($\lambda_{ex} = 480$ nm), **Φ** (CH₂Cl₂) = 0.15; ¹H NMR (400 **MHz, CDCl₃)** δ = 8.17 (br t, J = 1.4 Hz, 1H), 8.07 (br t, J = 1.4 Hz, 1H), 7.99 (br t, ^{3}J = 1.4 Hz, 1H), 7.95 (br t, J = 1.4 Hz, 2H), 7.85 (br t, J = 1.4 Hz, 1H), 7.49-7.46 (m, 6H), 7.32-7.30 (m, 6H), 6.89-6.86 (m, 3H), 6.85 (t, J = 1.4 Hz, 1H), 6.84 (t, J = 1.4 Hz, 1H), 6.79 (dd, J = 4.1 Hz, J = 1.4 Hz, 1H), 6.53 (dd, J = 4.1, 2.0 Hz, 1H), 6.47 (dd, J = 4.1, 2.0 Hz, 1H), 6.41 (dd, J = 4.1, 2.0 Hz, 1H), 6.18 (dd, J = 4.1, 2.0 Hz, 1H), 6.16 (dd, J = 4.1, 2.0 Hz, 1H), 6.06 (dd, J = 4.1, 2.0 Hz, 1H), 5.47 (d, J = 3.8 Hz, 1H, H1), 4.60-4.59 (m, 1H, H5), 4.59-4.58 (m, 1H, H3), 4.55 (d, J = 3.9 Hz, 1H, H2), 4.55-4.54 (m, 1H, H4), 4.41-4.37 (m, 1H, H6), 4.25-4.22 (m, 1H, H6), 3.45 (s, 3H, -OCH₃), 2.44 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ = 147.69, 147.61, 146.71, 146.54, 146.44, 145.65, 146.19, 143.77, 140.70, 140.63, 135.69, 135.55, 135.42, 135.29, 135.18, 131.73, 131.70, 131.16, 130.74, 130.67, 130.60, 130.55, 130.47, 130.40, 130.15, 129.00, 128.96, 118.75, 118.47, 118.41, 117.83, 117.63, 117.72, 105.34 (C1), 82.55 (C2), 81.36 (C3), 80.08 (C5), 78.65 (C4), 68.41 (C6), 55.18 (-OCH₃), 21.47; ¹¹B NMR (128

MHz, CDCI₃) δ 5.43 (br s), 5.03 (br s); **FT-IR (ATR)** 1/ λ (cm⁻¹) 3101.23 (C-H aromatic); 2887.15, 2860.15 (Alkyl C-H); 1606.54 (C=N); 1556.40, 1533.25 (C=N, C-C in aromatic); 1253.60 (C-O); 1141.75, 1103.17 (C-N, C-O); **HRMS (ESI)** *m/z*: [M+Na]⁺ calcd. for C₅₅H₄₉B₃N₆O₇Na, 961.3858; found, 961.3826.

S4.5. Synthesis of glucose-O-BODIPY conjugates 4Ga-d

Glucose (53.9 mg, 0.299 mmol) was added to a flask containing 4 (100 mg, 0.299 mmol) dissolved in anhydrous MeCN (5mL). PTSA (7 mol %) dissolved in anhydrous MeCN was then added to the solution changing the colour from orange to brick red. The reaction mixture was left to stir at RT for 90 minutes. The reaction was quenched with aqueous saturated aqueous NaHCO₃ solution and CH₂Cl₂ was added to induce phase separation. The organic layer containing the products was washed with water three times and then dried over anhydrous Na₂SO₄. The desired conjugates were isolated via column chromatography. Chromatography of the crude residue on basic alumina using CH₂Cl₂ eluted **4Ga** as the first orange band. Transitioning the eluent from CH₂Cl₂ to MeCN eluted **4Gb** and **4Gc** together as the second yellow band and **4Gd** eluted in the third yellow band when the H₂O/MeCN solvent ratio reached 1:4. Column chromatography of the second fraction with deactivated silica gel eluted 4Gb when the MeCN/CH₂Cl₂ gradient reached a ratio of 1:9 (v/v) and 4Gc eluted when the ratio reached 1:4. Column chromatography of the third fraction on neutral alumina using acetonitrile/H₂O (9:1) afforded 4Gd as the first band. 4Gb, 4Gc and 4Gd were further purified by HPLC for molar absorbance and fluorescence measurements. The samples were dissolved in AR MeCN and loaded onto the HPLC column that was preeluted with 70:30 MeCN:H₂O. A 70:30 to 90:10 MeCN:H₂O gradient was set with a 1% increase in MeCN per minute. The column continued at 90:10 MeCN:H₂O for 10minutes then a 90:10 to 70:30 MeCN:H₂O gradient was set with a 1% decrease in MeCN per minute. The **4Gd** peak was collected at $t_R = 7.09$ min, **4Gc** at $t_R = 19.07$ min and **4Gb** at $t_R = 21.56$ min. The solvent was removed and the samples dried under high vacuum before analysis.

4Ga orange-pink film (1.6 mg, 2%): **UV-vis** λ_{max} (CH₂Cl₂)/nm 503 (ϵ /M⁻¹ cm⁻¹ 203 300), **Emission** λ_{em} CH₂Cl₂/nm 565 (λ_{ex} = 480 nm), **Φ** (CH₂Cl₂) = 0.75; ¹H NMR (400 MHz, **CDCl₃**) δ = 8.25 (bs, 1H), 8.05 (bs, 1H), 8.01 (s, 1H), 7.94 (s, 2H), 7.82 (s, 1H), 6.96-6.91 (m, 6H), 6.64 (dd, *J* = 4.1, 1.0 Hz, 1H), 6.60-6.58 (m, 2H), 6.54 (dd, *J* = 4.0, 1.0 Hz, 1H), 6.49 (dd, *J* = 4.0, 1.0 Hz, 1H), 6.46 (dd, *J* = 4.0, 1.5 Hz, 1H), 6.42 (dd, *J* = 4.0, 1.0 Hz, 1H), 6.49 (dd, *J* = 4.0, 1.0 Hz, 1H), 6.06 (dd, *J* = 4.0, 1.5 Hz, 1H), 5.95 (dd, *J* = 4.0, 1.5 Hz, 1H), 5.89 (dd, *J* = 4.0, 1.5 Hz, 1H), 5.51 (d, *J* = 3.7 Hz, 1H, H1), 4.65 (dd, *J* = 8.0, 6.4 Hz, 1H, H4), 4.61 (ddd, *J* = 6.3, 6.0, 5.8 Hz, 1H, H5), 4.47 (dd, *J* = 8.0, 1.0 Hz, 1H, H3), 4.42 (dd, J = 3.7, 1.0 Hz, 1H, H2), 4.40-4.33 (m, 2H, H6), 2.35 (s, 9H), 2.21 (s, 3H), 2.18 (s, 3H), 2.12 (s, 3H), 2.10 (s, 3H), 2.08 (s, 3H), 2.07 (s, 3H); ¹³**C NMR (100 MHz, CDCI₃)** $\delta = 148.17$, 147.51, 147.13, 146.33, 146.02, 145.77, 144.12, 143.88, 143.42, 138.40, 138.35, 136.67, 136.59, 136.52, 136.48, 136.40, 136.29, 135.98, 135.83, 135.50, 135.42, 135.37, 130.49, 129.77, 129.29, 129.14, 129.05, 128.90, 128.68, 128.11, 128.03, 127.79, 127.48, 118.94, 118.51, 118.39, 117.96, 117.70, 117.66, 105.63 (C1), 82.67 (C2), 80.25 (C3), 78.86 (C5), 78.05 (C4), 66.98 (C6), 55.31 (OCH₃), 21.15, 20.10, 19.93; ¹¹**B NMR (128 MHz, CDCI₃)** $\delta = 5.43$ (bs); **FT-IR (ATR)** $1/\lambda$ (cm⁻¹) 2918.01, 2856.29 (Alkyl C-H); 1612.33 (C=N); 1554.47, 1540.97 (C=N, C-C in aromatic); 1253.60 (C-O); 1143.67, 1112.81, 1099.31 (C-N, C-O); **HRMS (ESI+)**: m/z: [*M*+Na]⁺ calcd for C₆₁H₆₁B₃N₆NaO₇:1045.4800; found 1045.4808.

4Gb red film (25.2 mg, 23%): **UV-vis** λ_{max} (CH₂Cl₂)/nm 502 (ϵ /M⁻¹ cm⁻¹ 286800), **Emission** λ_{em} CH₂Cl₂/nm 530 (λ_{ex} = 480 nm), **Φ** (CH₂Cl₂) = 0.91; ¹H NMR (400 MHz, **CDCI**₃) δ = 8.01 (s, 1H), 7.99 (s, 1H), 7.78 (s, 1H), 7.66 (s, 1H), 6.94 (s, 4H), 6.67 (dd, J = 4.0, 1.0 Hz, 1H), 6.66-6.63 (m, 2H), 6.61 (dd, J = 4.0, 1.0 Hz, 1H), 6.47 (dd, J = 4.0, 2.0 Hz, 1H), 6.44 (dd, J = 4.0, 2.0 Hz, 1H), 6.40-6.38 (m, 2H), 6.32 (d, J = 3.0 Hz, 1H, H1), 4.80 (d, J = 3.5 Hz, 1H, H2), 4.77 (dd, J = 6.0, 4.0 Hz, 1H, H4), 4.55 (d, J=4.0 Hz, 1H, H3), 4.10-4.04 (m, 1H, H5), 3.97 (dd, J = 11.0, 3.5 Hz, 1H, H6), 3.83 (dd, J = 11.0, 6.0 Hz, 1H, H6), 2.36 (s, 3H), 2.35 (s, 3H), 2.11 (s, 3H), 2.11 (s, 3H), 2.10 (s, 3H), 2.07 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ = 147.20, 147.16, 145.80, 144.92, 144.20, 143.94, 138.65, 138.58, 136.50, 136.45, 136.41, 135.90, 135.64, 135.55, 130.47, 130.22, 130.04, 129.93, 129.70, 129.65, 128.09, 118.65, 118.32, 118.11, 117.75, 106.13 (C1), 85.94 (C2), 80.15 (C4), 76.44 (C3), 72.32 (C5), 65.69 (C6), 21.16, 20.09, 20.04, 20.01; ¹¹B NMR (128 MHz, CDCI₃) δ = 5.7 (bs), 1.44 (bs); FT-IR (ATR) 1/λ (cm⁻¹) 3398.21 (O-H); 2921.87 (Alkyl C-H); 1612.40 (C=N); 1542.90 (C=N, C-C in aromatic); 1253.60 (C-O); 1149.46, 1137.89, 1097.38 (C-N, C-O); HRMS (ESI+): m/z: $[M+Na]^+$ calcd for $C_{42}H_{42}B_2N_4NaO_6$: 743.3205; found 743.3196.

4Gc red film (36.8 mg, 34%): **UV-vis** λ_{max} (CH₂Cl₂)/nm 503 (ε/M⁻¹ cm⁻¹ 117200), **Emission** λ_{em} CH₂Cl₂/nm 522 ($\lambda_{ex} = 480$ nm), **Φ** (CH₂Cl₂) = 0.75; ¹H NMR (400 MHz, **CDCl₃**) δ = 8.26 (s, 1H), 8.12 (s, 1H), 7.85 (s, 1H), 7.70 (s, 1H), 6.94-6.89 (m, 4H), 6.63-6.59 (m, 3H), 6.53 (dd, J = 4.0, 1.4 Hz, 1H), 6.45-6.41 (m, 3H, H2), 6.34 (dd, J =4.0, 2.0 Hz, 1H), 5.40 (d, J = 3.7 Hz, 1H, H1), 4.89 (dd, J = 9.5, 7.5 Hz, 1H), 4.55 (dd, J = 7.5, 3.7 Hz, 1H, H2), 4.43 (d, J = 14.0 Hz, 1H, H6), 4.26-4.21 (m, 2H, H4,5), 3.81 (dd, J = 14.0, 2.0 Hz, 1H, H6), 2.33 (s, 3H), 2.32 (s, 3H), 2.11 (s, 3H), 2.07 (s, 3H), 2.01 (s, 3H), 1.99 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ = 147.91, 146.94, 146.47, 145.84, 144.67, 144.12, 138.56, 138.44, 136.44, 136.29, 136.31, 135.88, 135.61, 135.26, 130.29, 130.18, 129.84, 129.57 128.93, 128.10, 128.02, 118.99, 118.55, 118.06, 117.51, 106.56 (C1), 83.54 (C2), 78.54 (C4), 77.18 (C3), 70.94 (C5,6), 21.14, 20.05, 19.93, 19.85; ¹¹B NMR (128 MHz, CDCl₃) δ = 5.74 (bs), 4.88 (bs); FT-IR (ATR) 1/λ (cm⁻¹) 3355.81 (O-H); 2952.73, 2931.51, 2844.72 (Alkyl C-H); 1608.47 (C=N); 1542.90 (C=N, C-C in aromatic); 1257.46 (C-O); 1149.46, 1118.60, 1099.31 (C-N, C-O); **HRMS (ESI+):** m/z: [*M*+Na]⁺ calcd for C₄₂H₄₂B₂N₄NaO₆: 743.3205; found 743.3196.

4Gd red film (4.2 mg, 3%): **UV-vis** λ_{max} (CH₂Cl₂)/nm 506 (ε/M⁻¹ cm⁻¹ 8184), **Emission** λ_{em} CH₂Cl₂/nm 530 (λ_{ex} = 480 nm), **Φ** (CH₂Cl₂) = 0.91; ¹H NMR (400 MHz, CDCl₃) δ = 7.85 (s, 1H), 7.68 (s, 1H), 6.93 (s, 2H), 6.66-6.61 (m, 2H), 6.44-6.40 (m, 2H), 6.20 (bs, 1H, H1), 4.67 (d, *J* = 3.5 Hz, 1H, H2), 4.49 (d, *J* = 3.0 Hz, 1H, H3), 4.43 (dd, *J* = 6.5, 3.0 Hz, 1H, H4), 4.22-4.16 (m, 1H, H5), 3.95 (dd, *J* = 11.5, 3.5 Hz, 1H, H6), 3.86 (dd, *J* = 11.5, 5.5 Hz, 1H, H6), 2.35 (s, 3H), 2.12 (s, 3H), 2.05 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ = 147.51, 144.93, 144.35, 138.76, 136.40, 135.94, 135.70, 130.62, 130.11, 129.90, 128.17, 128.13, 118.52, 118.46, 105.35 (C1), 85.38 (C2), 79.90 (C4), 76.44 (C3), 71.16 (C5), 63.98 (C6), 21.16, 20.12, 19.98; ¹¹B NMR (128 MHz, CDCl₃) δ = 5.62 (bs); HRMS (ESI+): *m/z*: [*M*+Na]⁺ calcd for C₂₄H₂₇BN₂NaO₆: 473.1859; found 473.1845; HRMS (ESI+): *m/z* [M+Na]⁺ 473.1845, calculated 473.1859 for C₂₄H₂₇BN₂NaO₆.

S4.6. Synthesis of xylose-O-BODIPY conjugates 3Xa-d

Xylose (28 mg, 0.189 mmol) was added to a flask containing **3** (55 mg, 0.177 mmol) dissolved in anhydrous MeCN (5 mL). PTSA (5 mol %) dissolved in anhydrous MeCN was then added to the reaction mixture changing the colour from orange to dark red. After 1h 45 min, the reaction mixture was quenched by adding a saturated aqueous NaHCO₃ solution and CH_2CI_2 was added to induce phase separation. The organic layer containing the products was washed with water (3x) and then dried over anhydrous Na₂SO₄. Flash chromatography on silica-gel column chromatography using a mixture of $CH_2CI_2/MeCN$ as the eluent was performed to isolate the conjugates. The most non-polar band corresponding to **3Xa** was eluted using $CH_2CI_2/MeCN$ (5:1). **3Xb** and **3Xc** were eluted together and further isolated on a deactivated silica-gel column using $CH_2CI_2/MeCN$ (5:3). **3Xd** was isolated by carefully eluting with $CH_2CI_2/MeCN$ (1:1).

3Xa orange film (19.5 mg, 38%): **UV-vis** λ_{max} (CH₂Cl₂)/nm 501.5 (ϵ /M⁻¹ cm⁻¹ 69688), **Emission** λ_{em} CH₂Cl₂/nm 522 (λ_{ex} = 480 nm); ¹H NMR (400 MHz, CDCl₃) δ = 8.07 (br t, *J* = 1.5 Hz, 1H), 8.03 (br t, *J* = 1.5 Hz, 1H), 7.81 (br t, *J* = 1.5 Hz, 1 H), 7.71 (br t, *J* = 1.5 Hz, 1H), 7.45 (d, *J* = 8.0 Hz, 4H), 7.30 (dd, *J* = 8.0, 4.7 Hz, 4H), 6.92-6.88 (m, 4H), 6.53-6.50 (m, 2H), 6.48-6.46 (m, 2H), 6.37 (d, *J* = 2.9 Hz, 1H, H1), 4.81-4.79 (m, 1H, H4), 4.71 (d, J = 3.2 Hz, 1H, H2), 4.63 (d, J = 3.1 Hz, 1H, H3), 4.35 (dd, J = 12.7, 4.2 Hz, 1H, H5), 4.24 (dd, J = 12.7, 2.7 Hz, 1H, H5), 2.46 (s, 3H), 2.45 (s, 3H). ¹³**C NMR (100 MHz, CDCI₃)** $\delta = 147.32$, 147.00, 145.22, 144.82, 143.83, 142.99, 141.03, 140.73, 135.54, 135.25, 135.02, 131.80, 131.62, 131.33, 131.23, 130.62, 130.57, 130.32, 129.08, 128.97, 118.20, 118.13, 118.06, 117.58, 106.14 (C1), 86.00 (C2), 76.36 (C3/4), 61.44 (C5), 21.45. ¹¹B NMR (128 MHz, CDCI₃) $\delta = 5.79$ (br s), 0.47 (br s). HRMS (ESI) *m/z*: [M+H]⁺ calcd. for C₃₇H₃₃B₂N₄O₅, 635.2644; found, 635.2644. [M+Na]⁺ calcd. for C₃₇H₃₂B₂N₄O₅Na, 657.2463; found, 657.2454.

3Xb red-pink film (3.2 mg, 6%): **UV-vis** λ_{max} (CH₂Cl₂)/nm 521 (ϵ /M⁻¹ cm⁻¹ 35954), **Emission** λ_{em} CH₂Cl₂/nm 561 (λ_{ex} = 480 nm); ¹H NMR (400 MHz, CDCl₃): δ = 8.12 (br t, *J* = 1.4 Hz, 1H), 8.03 (br t, *J* = 1.4 Hz, 1H), 7.96 (br t, *J* = 1.4 Hz, 1H), 7.95 (br t, *J* = 1.4 Hz, 1H), 7.45-7.43 (m, 4H), 7.32-7.28 (m, 4H), 6.89 (dd, *J* = 4.3, 0.9 Hz, 1H), 6.86 (dd, *J* = 4.3, 0.9 Hz, 1H), 6.84 (dd, *J* = 4.3, 0.9 Hz, 1H), 6.78 (dd, *J* = 4.3, 0.9 Hz, 1H), 6.51-6.48 (m, 2H), 6.16 (dd, *J* = 4.3, 1.8 Hz, 1H), 6.04 (dd, *J* = 4.3, 1.7 Hz, 1H), 5.45 (d, *J* = 3.3 Hz, 1H, H1), 4.47 - 4.42 (m, 2H, H3/H4), 4.20 (d, *J* = 3.5 Hz, 1 H, H2), 3.94 (dd, *J* = 11.7, 2.2 Hz, 1H, H5), 3.71 (dd, *J* = 11.7, 2.1 Hz,1H, H5), 3.51 (s, 3H, -OCH₃), 2.46 (s, 3H), 2.45 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ = 146.61, 146.25, 145.65, 145.33, 144.23, 142.60, 139.82, 139.68, 134.38, 134.30, 134.10, 130.58, 130.51, 129.92, 129.80, 129.52, 129.48, 128.02, 127.97, 117.70, 117.27, 117.05, 116.87, 104.39 (C1), 80.59 (C2), overlap with CDCl₃ (C3/4), 61.62 (C5), 54.15 (-OCH₃), 20.43. ¹¹B NMR (128 MHz, CDCl₃): δ = 5.55 (br s), 4.77 (br s). HRMS (ESI) *m/z*: [M+Na]⁺ calcd. for C₃₈H₃₆B₂N₄O₆Na, 689.2726; found, 689.2696.

3Xc red film (10.9 mg, 17%): **UV-vis** λ_{max} (CH₂Cl₂)/nm 504.5 (ϵ /M⁻¹ cm⁻¹ 30962), **Emission** λ_{em} CH₂Cl₂/nm 520 (λ_{ex} = 480 nm); ¹H NMR (400 MHz, CDCl₃) δ = 8.49 (s, 1H), 7.72 (s, 1H), 7.45 (d, *J* = 7.9 Hz, 2H), 7.30 (d, *J* = 7.9 Hz, 2H), 6.92 (ddd, *J* = 11.0, 4.3, 1.1 Hz, 2H), 6.46 (dd, *J* = 4.2, 1.9 Hz), 6.45 (dd, *J* = 4.2, 1.9 Hz, 1H), 5.46 (br s, 1H, H1), 4.24 (s, 1H, H3), 4.06 (s, 1H, H2), 4.03 (s, 1H, H5), 3.93-3.90 (m, 1H, H5), 3.58-3.50 (m, 2H, H4,-OH4), 2.45 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ = 147.52, 147.32, 143.46, 141.24, 135.76, 135.19, 132.43, 131.31, 131.27, 130.72, 129.23, 119.21, 117.99, 96.37 (C1), overlaps with CDCl₃ (C2), 69.06 (C4), 68.88 (C3), 64.24 (C5), 21.58. ¹¹B NMR (128 MHz, CDCl₃) δ = 4.91 (br s). FT-IR (ATR) 1/ λ (cm⁻¹) 3400-3300 broad (O-H); 3107.02 (C-H aromatic); 2962.37, 2914.15, 2858.22 (Alkyl C-H); 1608.47 (C=N); 1569.90, 1537.11 (C=N, C-C in aromatic); 1257.46 (C-O); 1107.03, 1068.46 (C-N, C-O); HRMS (ESI) *m/z*: [M+Na]⁺ calcd. for C₂₁H₂₁BN₂O₅Na, 415.1439; found, 415.1438.

3Xd red film (5.7 mg, 9%): **UV-vis** λ_{max} (CH₂Cl₂)/nm 505 (ϵ /M⁻¹ cm⁻¹ 10713), **Emission** λ_{em} CH₂Cl₂/nm 523 (λ_{ex} = 480 nm); ¹H NMR (400 MHz, CDCl₃) δ = 7.88 (s, 1H). 7.70

(s, 1H), 7.44 (d, J = 8.7 Hz, 2H), 7.30 - 7.28 (m, 2H), 6.93-6.90 (m, 2H), 6.47-6.50 (m, 2H), 6.23 (br s, 1H, H1), 4.61 (d, J = 3.3 Hz, 1H, H2), 4.52 (q, J = 3.1 Hz, 1H, H4), 4.41 (d, J = 3.1 Hz, 1H, H3), 4.19 (dd, J = 12.3, 3.9 Hz, 1H, H5), 4.08 (dd, J = 12.3, 2.8 Hz, 1H, H5), 2.46 (s, 3H). ¹³**C NMR (100 MHz, CDCI₃)** $\delta = 147.51$, 144.35, 143.84, 141.18, 135.52, 135.25, 131.93, 131.47, 131.20, 130.59, 129.12, 118.31, 118.14, 105.57 (C1), 85.64 (C2), 78.99 (C4), 78.58 (C3), 61.96 (C5), 21.47. ¹¹**B NMR (128 MHz, CDCI₃)** $\delta = 5.64$ (br s). **FT-IR (ATR)** $1/\lambda$ (cm⁻¹) 3400-3300 broad (O-H); 3101.23 (C-H aromatic); 2960.44, 2921.87, 2856.29 (Alkyl C-H); 1606.54 (C=N); 1558.33, 1539.04 (C=N, C-C in aromatic); 1255.53 (C-O); 1149.46, 1101.24, 1068.46, 1016.38 (C-N, C-O); **HRMS (ESI)** *m/z*: [M+Na]⁺ calcd. for C₂₁H₂₁BN₂O₅Na, 415.1439; found, 415.1438.

S4.7. Synthesis of xylose-O-BODIPY conjugates 4Xa-c

Xylose (24.8 mg, 0.160 mmol) was added to a flask containing 4 (53.6 mg, 0.160 mmol) dissolved in anhydrous MeCN. PTSA (5 mol %) dissolved in anhydrous MeCN was added dropwise to the solution. The reaction mixture was left to stir at RT for 35 minutes. The reaction was quenched with saturated aqueous NaHCO₃ solution and CH₂Cl₂ added to induce phase separation. The organic layer containing the products was washed with water three times and then dried over anhydrous Na₂SO₄. The desired conjugates were isolated via column chromatography. Chromatography of the crude residue on deactivated silica gel using MeCN/CH₂Cl₂ (1:19) eluted **4Xa** as the first fluorescent orange band. Transitioning the eluent MeCN/CH₂Cl₂ (1:4) afforded 4Xb as the second yellow band and MeCN afforded **4Xc** as the third yellow band. 4Xa, 4Xb and 4Xc were further purified by HPLC for molar absorbance and fluorescence measurements. The samples were dissolved in AR MeCN and loaded onto the HPLC column that was pre-eluted with 70:30 MeCN:H₂O. The column ran at 70:30 MeCN:H₂O for 15 minutes then a 70:30 to 90:10 MeCN:H₂O gradient was set with a 2% increase in MeCN per minute, followed by a 90:10 to 70:30 MeCN:H₂O gradient set to a 2% decrease in MeCN per minute. The column was then run at 70:30 MeCN:H₂O for 5 minutes. The **4Xa** peak was collected at $t_R = 27.7$ min, **4Xb** at $t_R =$ 8.3 min and **4Xc** at t_R = 7.6 min. The solvent was removed and the samples dried under high vacuum before analysis.

4Xa orange film (18.8 mg, 34%): **UV-vis** λ_{max} (CH₂Cl₂)/nm 503 (ε/M⁻¹ cm⁻¹ 107226), **Emission** λ_{em} CH₂Cl₂/nm 526 (λ_{ex} = 480 nm), **Φ** (CH₂Cl₂) = 0.79; ¹H NMR (400 MHz, **CDCl₃**) δ = 8.03 (s, 1H), 8.01 (s, 1H), 7.80 (s, 1H), 7.71 (s, 1H), 6.94 (s, 4H), 6.66-6.63 (m, 2H), 6.63-6.61 (m, 2H), 6.45 (dd, J = 4.8, 2.4 Hz, 2H), 6.40 (dd, J = 4.5, 1.9 Hz, 2H), 6.37 (bs, 1H, H1), 4.84 (m, 1H, H4), 4.79 (d, J = 3.5 Hz, 1H, H2), 4.68 (d, J = 3.5 Hz, 1H, H3), 4.33 (dd, J = 12.3, 5.0 Hz, 1H, H5), 4.18 (dd, J = 12.3, 3.5 Hz, 1H, H5), 2.35 (s, 3H), 2.14 (s, 3H), 2.11 (s, 3H), 2.10 (s, 3H), 2.07 (s, 3H); ¹³**C** NMR (100 MHz, **CDCI₃)** $\delta = 147.25$, 146.95, 145.34, 145.30, 144.35, 143.42, 138.63, 138.46, 136.62, 136.45, 136.41, 135.89, 135.65, 135.53, 135.42, 130.39, 130.36, 130.03, 129.82, 129.00, 128.13, 128.04, 118.36, 118.33, 118.11, 117.65, 106.09 (C1), 86.13 (C2), 77.06 (C4), 76.46 (C3), 61.41 (C5), 21.14, 20.15, 20.10, 20.01; ¹¹B NMR (128 MHz, **CDCI₃)** $\delta = 5.78$ (bs), 0.68 (bs); **HRMS (ESI+):** m/z: $[M+Na]^+$ calcd for C₄₁H₄₀B₂N₄NaO₅: 713.3090; found 713.3091.

4Xb orange film (6.1 mg, 9%): **UV-vis** λ_{max} (CH₂Cl₂)/nm 506 (ε/M⁻¹ cm⁻¹ 50481), **Emission** λ_{em} CH₂Cl₂/nm 527 (λ_{ex} = 480 nm); ¹**H NMR (400 MHz, CDCl₃)** δ = 8.46 (s, 1H), 7.70 (s, 1H), 6.93 (s, 2H), 6.65 (dd, *J* = 4.0, 1.0 Hz, 1H), 6.63 (dd, *J* = 4.1, 1.1 Hz, 1H), 6.44 (dd, *J* = 4.0, 2.0 Hz, 1H), 6.38 (dd, *J* = 3.9, 2.0 Hz, 1H), 5.45 (bs, 1H, H1), 4.26-4.21 (m, 1H, H3), 4.08 (dd, *J* = 2.8, 1.2 Hz, 1H, H2), 4.03 (dd, *J* = 12.3, 1.4 Hz, 1H, H5), 3.90 (dd, *J* = 12.3, 1.4 Hz, 1H, H5), 3.63 (bd, *J* = 9.9 Hz, 1H, OH4), 3.58 (d, *J* = 9.9 Hz, 1H, H4), 2.34 (s, 3H), 2.13 (s, 3H), 2.04 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ = 147.95, 147.09, 143.83, 138.69, 136.38, 136.04, 135.45, 130.89, 129.89, 129.69, 128.13, 128.09, 119.25, 118.05, 96.31 (C1), 77.64 (C2), 68.95 (C4), 68.73 (C3), 64.16 (C5), 21.13, 20.15, 19.95; ¹¹B NMR (128 MHz, CDCl₃) δ = 4.94 (bs); HRMS (ESI+): *m/z*: [*M*+Na]⁺ calcd for C₂₃H₂₅BN₂NaO₅: 443.1751; found 443.1753.

4Xc orange film (4.2 mg, 6%): **UV-vis** λ_{max} (CH₂Cl₂)/nm 506 (ε/M⁻¹ cm⁻¹ 29378), **Emission** λ_{em} CH₂Cl₂/nm 526 (λ_{ex} = 480 nm), **Φ** (CH₂Cl₂) = 0.82; ¹H NMR (400 MHz, **CDCl₃):** ¹H NMR (400 MHz, **CDCl₃) δ** = 7.85 (s, 1H), 7.69 (s, 1H), 6.93 (s, 2H), 6.65-6.62 (m, 2H), 6.43-6.40 (m, 2H), 6.23 (bs, 1H, H1), 4.66 (d, *J* = 3.5 Hz, 1H, H2), 4.52 (dd, *J* = 6.9, 3.3 Hz, 1H, H4), 4.46 (bd, *J* = 3.3 Hz, 1H, H3), 4.19 (dd, *J* = 12.2, 4.1 Hz, 1H, H5), 3.63 (dd, *J* = 12.2, 2.4 Hz, 1H, H5), 3.77 (bs, 1H, OH3), 2.35 (s, 3H), 2.12 (s, 3H), 2.05 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) **δ** = 147.51, 144.81, 144.41, 138.75, 136.40, 135.92, 135.73, 130.55, 130.13, 129.90, 128.17, 128.12, 118.54, 118.32, 105.49 (C1), 85.93 (C2), 79.04 (C4), 78.64 (C3), 61.96 (C5), 21.16, 20.14, 19.98; ¹³C NMR (100 MHz, CDCl₃) **δ** = 147.51, 144.81, 144.41, 138.75, 130.55, 130.13, 129.90, 128.17, 128.12, 118.54, 118.32, 105.49 (C1), 85.93 (C2), 79.04 (C4), 78.64 (C3), 61.96 (C5), 21.16, 20.14, 19.98; ¹³C NMR (100 MHz, CDCl₃) **δ** = 147.51, 144.81, 144.41, 138.75, 130.55, 130.13, 129.90, 128.17, 128.12, 118.54, 118.32, 105.49 (C1), 85.93 (C2), 79.04 (C4), 78.64 (C3), 61.96 (C5), 21.16, 20.14, 19.98; ¹³C NMR (128 MHz, CDCl₃) **δ** = 5.67 (bs); HRMS (ESI+): *m/z*: [*M*+Na]⁺ calcd for C₂₃H₂₅BN₂NaO₅: 443.1751; found 443.1758.

S4.8. Synthesis of ribose-O-BODIPY conjugates 3Ra-d

Ribose (28 mg, 0.189 mmol) was added to a flask containing 3 (55 mg, 0.177 mmol) dissolved in anhydrous MeCN (5 mL). PTSA (5 mol %) dissolved in anhydrous MeCN was then added to the reaction mixture changing the colour from orange to dark red. After 1h 45 min, the reaction mixture was guenched by adding a saturated agueous NaHCO₃ solution and CH₂Cl₂ was added to induce phase separation. The organic layer containing the products was washed with water (3x) and then dried over anhydrous Na₂SO₄. Flash chromatography on silica-gel column chromatography using a mixture of CH₂Cl₂/MeCN as the eluent was performed to isolate the conjugates. The most non-polar band corresponding to **3Ra** was eluted using CH₂Cl₂/MeCN (5:1) and further purified by column chromatography on basic alumina. 3Rb and 3Rc were eluted together and further isolated on a deactivated silica-gel column using CH₂Cl₂/MeCN (100:3). **3Rd** was isolated by carefully eluting with CH₂Cl₂/MeCN (1:1). The samples used for the quantum yield measurements were collected from HPLC using a semi-preparative C18 reverse-phase silica column. For conjugate 3Ra, an isocratic method with 95 % MeCN in water was used where the compound was eluted at $t_R = 13.0$ min. While, for conjugate **8**, 90 % MeCN in water was used to elute the conjugate at $t_R = 6.6$ min. The solvent was removed, and the samples dried under high vacuum before analysis

3Ra red solid (8.6 mg, 17 %): **UV-vis** λ_{max} (CH₂Cl₂)/nm 498.5 (ϵ /M⁻¹ cm⁻¹ 64578), **Emission** λ_{em} CH₂Cl₂/nm 524 (λ_{ex} = 480 nm), Φ (CH₂Cl₂) = 0.030; ¹H NMR (400 MHz, **CDCl₃**) δ = 8.36 (br t, J = 1.5 Hz, 2H), 7.99 (br t, J = 1.5 Hz, 1H), 7.81 (br t, J = 1.5 Hz, 1H), 7.48-7.45 (m, 4H), 7.32-7.29 (m, 4H), 6.96-6.95 (m, 1H), 6.93-6.90 (m, 2H), 6.88-6.87 (m, 1H), 6.54-6.52 (m, 1H), 6.51-6.48 (m, 3H), 5.71 (br s, 1H, H1), 5.17-5.14 (m, 2H, H2/3), 4.60-4.59 (m, 1H, H4), 3.67-3.64 (m, 1H, H5), 3.51 (dd, J = 12.6 Hz, 1.5 Hz, 1H, H5), 2.46 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ = 147.08, 146.89, 146.71, 146.05, 143.75, 143.68, 140.83, 140.68, 135.77, 135.23, 135.05, 130.98, 131.61, 131.55, 131.26, 130.65, 130.55, 129.03, 128.97, 118.56, 117.81, 117.53, 116.82, 107.99 (C1), 90.40 (C4), 88.66 (C2), 83.60 (C3), 64.18 (C5), 21.43. ¹¹B NMR (128 MHz, CDCl₃) δ = 5.90 (br s), 2.30 (br s). FT-IR (ATR) 1/ λ (cm⁻¹) 3107.02 (C-H aromatic); 2929.58, 2850.51 (Alkyl C-H); 1606.54 (C=N); 1567.97 (C=N, C-C in aromatic); 1255.53 (C-O); 1135.96 (C-N, C-O); HRMS (ESI) *m/z*: [M+Na]⁺ calcd. for C₃₇H₃₂B₂N₄O₅Na, 657.2463; found, 657.2458.

3Rb orange film (4.3 mg, 8%): **UV-vis** λ_{max} (CH₂Cl₂)/nm 512.5 (ϵ /M⁻¹ cm⁻¹ 16681), **Emission** λ_{em} CH₂Cl₂/nm 530 (λ_{ex} = 480 nm); ¹H NMR (400 MHz, CDCl₃) δ = 8.53 (br t, *J* = 1.5 Hz, 1H), 8.34 (br t, *J* = 1.5 Hz, 1H), 7.80 (br t, *J* = 1.5 Hz, 1H), 7.74 (br t, *J* = 1.5 Hz, 1H), 7.44 - 7.40 (m, 4H), 7.30-7.27 (m, 4H), 6.89-6.86 (m, 2H), 6.83-6.82 (m, 2H), 6.45-6.43 (m, 2H), 6.31-6.30 (m, 1H), 6.20-6.18 (m, 1H), 5.65 (d, *J* = 4.5 Hz, 1H, H1), 4.76-4.72 (m, 1H, H3), 4.60-4.56 (m, 2H, H2/4), 4.28 (dd, *J* = 12.4, 4.7 Hz, 1H, H5), 3.95 (dd, *J* = 12.4, 5.1 Hz, 1H, H5), 2.45 (s, 3H), 2.44 (s, 3H). ¹³C NMR (100 **MHz, CDCl₃)** δ = 147.68, 146.17, 145.85, 145.33, 142.76, 142.36, 139.81, 139.58, 134.73, 134.36, 134.15, 130.63, 130.50, 130.48, 130.43, 129.78, 129.54, 129.51, 129.02, 128.00, 127.91, 117.22, 117.12, 116.68, 116.37, 98.02 (C1), 72.95 (C3), 71.88 (C4), 69.89 (C2), 64.52 (C5), 20.41. ¹¹B NMR (128 MHz, CDCl₃) δ = 5.29 and 5.37 (br s). HRMS (ESI) *m/z*: [M+Na]⁺ calcd. for C₃₇H₃₂B₂N₄O₅Na, 657.2463; found, 657.2454.

3Rc orange film (7.9 mg, 13%): **UV-vis** λ_{max} (CH₂Cl₂)/nm 504.5 (ϵ /M⁻¹ cm⁻¹ 9062.7), **Emission** λ_{em} CH₂Cl₂/nm 521 (λ_{ex} = 480 nm); ¹H NMR (400 MHz, CDCl₃) δ = 8.49 (br s, 1H), 7.73 (br s, 1H), 7.46-7.44 (m, 2H), 7.32-7.30 (m, 2H), 6.94-6.92 (dd, *J* = 7.9, 1.2 Hz, 1H), 6.92-6.90 (dd, *J* = 7.9 Hz, 1.0 Hz, 1H), 6.53-6.51 (dd, *J* = 4.2,1.9 Hz, 1H), 6.48 - 6.46 (dd, *J* = 4.2, 1.9 Hz, 1H), 5.35 (d, *J* = 4.4 Hz, 1H, H1), 4.38-4.36 (m, 1H, H2), 4.15 (dd, *J* = 12.8, 2.4 Hz, 1H, OH5), 3.83-3.79 (m, 2H, H3/4), 3.58 (d, *J* = 12.8 Hz, 1H, H5), 3.36 (d, *J* = 9.9 Hz, -OH3/4), 2.91 (d, *J* = 10.2 Hz, 1H, OH3/4), 2.46 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ = 146.23, 142.58, 140.14, 134.62, 134.12, 131.24, 130.26, 130.13, 129.57, 128.09, 118.05, 116.93, 97.0 (C1), 76.52 (C2), 68.28 (C3/4), 67.32(C3/4), 65.03 (C5), 20.44. ¹¹B NMR (128 MHz, CDCl₃) δ = 5.12 (br s). HRMS (ESI) *m/z*: [M+Na]⁺ calcd. for C₂₁H₂₁BN₂O₅Na, 415.1439; found, 415.1441.

3Rd red-pink solid (33.3 mg, 53%): **UV-vis** λ_{max} (CH₂Cl₂)/nm 504.5 (ϵ /M⁻¹ cm⁻¹11268), **Emission** λ_{em} CH₂Cl₂/nm 521 (λ_{ex} = 480 nm), Φ (CH₂Cl₂) = 0.047; ¹H NMR (400 MHz, **CDCl₃):** δ = 8.07 (br t, *J* = 1.5 Hz, 1H), 7.70 (br t, *J* = 1.5 Hz, 1H), 7.44-7.42 (m, 2H), 7.30-7.28 (m, 2H), 6.90-6.86 (m, 2H), 6.47 - 6.46 (m, 2H), 5.49 (s, 1H, H1), 5.04 (d, *J* = 6.0 Hz, 1H, H3), 4.77 (d, *J* = 6.0 Hz, 1H, H2), 4.59 (br s, 1H, -OH1), 4.49-4.48 (m, 1H, H4), 3.77 (br s, 2H, H5), 3.55 (br s, 1H, OH5), 2.45 (s, 3H). ¹³C NMR (100 MHz, **CDCl₃):** δ = 147.15, 145.33, 143.77, 140.99, 135.63, 135.18, 131.66, 131.26, 130.99, 130.51, 129.04, 118.46, 118.00, 104.93 (C1), 90.46 (C4), 87.08 (C2), 81.20 (C3), 64.03 (C5), 21.43. ¹¹B NMR (128 MHz, CDCl₃): δ = 5.75 (br s). FT-IR (ATR) 1/ λ (cm⁻¹) 3400-3300 (O-H); 3114.73 (C-H aromatic); 2925.73 (Alkyl C-H); 1569.90, 1539.04 (C=N, C-C in aromatic); 1257.46 (C-O); 1147.53 (C-N, C-O); HRMS (ESI) *m/z*: [M+Na]⁺ calcd. for C₂₁H₂₁BN₂O₅Na, 415.1439; found, 415.1428.

S4.9. Synthesis of ribose-O-BODIPY conjugates 4Ra-d

Ribose (31.7 mg, 0.211 mmol) was added to a flask containing **4** (62.8 mg, 0.188 mmol) dissolved in anhydrous MeCN. PTSA (5 mol %) dissolved in anhydrous MeCN was added dropwise to the solution. The reaction mixture was left to stir at RT for 60 minutes. The reaction was quenched with saturated aqueous NaHCO₃ solution and

 CH_2CI_2 added to induce phase separation. The organic layer containing the products was washed with water three times and then dried over anhydrous Na₂SO₄. Chromatography of the crude residue on deactivated silica gel using CH_2CI_2 eluted **4Ra** as the first fluorescent orange band. Transitioning the eluent to $CH_2CI_2/MeCN$ (0.1:30) eluted **4Rb** as the second yellow band then **4Rc** and **4Rd** eluted together as the third yellow band with $CH_2CI_2/MeCN$ (1:20). Column chromatography of the third fraction with deactivated silica gel and EtOAc:*n*-hexane (1:1) eluted **4Rc** as the first yellow band and **4Rd** as the second yellow band.

4Ra: red-pink film (11.2 mg, 9%): **UV-vis** λ_{max} (CH₂Cl₂)/nm 500 (ε/M⁻¹ cm⁻¹ 76587), **Emission** λ_{em} CH₂Cl₂/nm 524 (λ_{ex} = 480 nm); ¹**H NMR (400 MHz, CDCl₃)** δ 8.32 (s, 1H), 8.32 (s, 1H), 7.98 (s, 1H), 7.77 (s, 1H), 6.94 (s, 4H), 6.68 (dd, *J* = 4.4, 1.1 Hz, 1H), 6.66-6.63 (m, 2H), 6.60 (dd, *J* = 4.4, 1.5 Hz, 1H), 6.47 (dd, *J* = 4.0, 2.0 Hz, 1H), 6.45-6.41 (m, 3H), 5.77 (bs, 1H, H1), 5.21-5.16 (m, 1H, H2,3), 4.61 (bs, 1H, H4), 3.66 (d, *J* = 12.6 Hz, 1H, H5), 3.46 (dd, *J* = 12.6, 1.5 Hz, 1H, H5), 2.36 (s, 6H), 2.14 (s, 3H), 2.13 (s, 3H), 2.10 (s, 3H), 2.03 (s, 3H); ¹³**C NMR (100 MHz, CDCl₃** δ 147.25, 146.79, 146.70, 146.50, 144.06, 143.98, 138.53, 138.47, 136.61, 136.50, 136.45, 136.31, 136.03, 135.56, 135.44, 135.27, 130.36, 130.26, 130.22, 130.01, 129.73, 129.28, 128.08, 128.01, 118.73, 118.07, 117.68, 116.85, 108.04 (C1), 90.38 (C4), 88.72 (C2), 83.62 (C3), 64.14 (C5), 21.17, 20.12, 20.04, 19.96, 19.88; ¹¹**B NMR (128 MHz, CDCl₃**) δ 5.92 (bs), 2.44 (bs); **HRMS (ESI+):** *m/z*: [*M*+Na]⁺ calcd for C₄₁H₄₀B₂N₄NaO₅: 713.3091; found 713.3101.

4Rb red film (2.8 mg, 4%): **UV-vis** λ_{max} (CH₂Cl₂)/nm 506 (ϵ /M⁻¹ cm⁻¹ 106314), **Emission** λ_{em} CH₂Cl₂/nm 524 (λ_{ex} = 480 nm); ¹H NMR (400 MHz, CDCl₃) δ 8.46 (s, 1H), 7.70 (s, 1H), 6.95 (s, 1H), 6.93 (s, 1H), 6.66 (dd, *J* = 4.5, 1.5 Hz, 1H), 6.63 (dd, *J* = 4.5, 1.5 Hz, 1H), 6.45 (dd, *J* = 4.5, 2.0 Hz, 1H), 6.40 (dd, *J* = 4.5, 2.0 Hz, 1H), 5.35 (s, 1H, H1), 4.40-4.36 (m, 1H, H2), 4.16 (dd, *J* = 12.9, 2.4 Hz, 1H, H5), 3.88-3.80 (m, 2H, H3,4), 3.59 (d, *J* = 12.9 Hz, 1H, H5), 2.35 (s, 3H), 2.16 (s, 3H), 2.05 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 147.78, 147.23, 144.09, 138.75, 136.48, 136.40, 135.59, 130.90, 128.16, 119.23, 118.14, 98.14 (C1), 77.60 (C2), 69.32 (C4), 68.42 (C3), 66.07 (C5), 21.16, 20.23, 19.99; ¹¹B NMR (128 MHz, CDCl₃) δ 5.16 (bs); HRMS (ESI+): *m/z*: [*M*+Na]⁺ calcd for C₂₃H₂₅BN₂NaO₅: 443.1753; found 443.1748.

4Rc red film (40.3 mg, 51%): **UV-vis** λ_{max} (CH₂Cl₂)/nm 506 (ϵ /M⁻¹ cm⁻¹ 50741), **Emission** λ_{em} CH₂Cl₂/nm 522 ($\lambda_{ex} = 480$ nm); ¹H NMR (400 MHz, CDCl₃) δ 8.07 (s, 1H), 7.70 (s, 1H), 6.92 (s, 2H), 6.63 (dd, J = 4.5, 1.5 Hz, 1H), 6.60 (dd, J = 4.5, 1.5 Hz, 1H), 6.43-6.39 (m, 2H), 5.54 (s, 1H, H1), 5.07 (d, J = 6.0 Hz, 1H, H2), 4.81 (d, J = 6.0Hz, 1H, H3), 4.54-5.50 (m, 1H, H4), 3.80 (d, J = 2.8 Hz, 2H, H5), 2.34 (s, 3H), 2.09 (s, 6H); ¹³C NMR (100 MHz, CDCl₃ δ 147.06, 145.84 144.28, 138.64, 136.41, 136.02, 135.60, 130.34, 130.07, 129.88, 129.68, 128.11, 118.81, 118.27, 104.97 (C1), 90.48 (C4), 87.20 (C3), 81.32 (C2), 64.14 (C1), 21.15, 20.05; ¹¹B NMR (128 MHz, CDCI₃): δ 5.80 (bs); FT-IR (ATR) 1/λ (cm⁻¹) 3400-3300 broad (O-H); 2916.08 (Alkyl C-H); 1610.40 (C=N); 1552.54 (C=N, C-C in aromatic); 1255.53 (C-O); 1166.82. 1141.74 (C-N, C-O); HRMS (ESI+): m/z: [M+Na]⁺ calcd for C₂₃H₂₅BN₂NaO₅: 443.1753; found 443.1748.

4Rc' (5.8 mg, 7%): ¹**H NMR (400 MHz, CDCI₃)** δ 8.18 (s, 1H), 7.75 (s, 1H), 6.94 (s, 2H), 6.67 (dd, J = 4.5, 1.4 Hz, 1H), 6.64 (dd, J = 4.5, 1.4 Hz, 1H), 6.44 (dd, J = 4.0, 2.0 Hz, 2H), 5.50 (dd, J = 9.2, 4.0 Hz, 1H, H1), 4.89 (dd, J = 6.5, 2.5 Hz, 1H, H3), 4.83-4.81 (m, 1H, H2), 4.30-4.26 (m, 1H, H4), 3.85-3.81 (m, 1H, H5), 3.74-3.70 (m, 1H, H5), 2.35 (s, 3H), 2.13 (s, 3H), 2.07 (s, 3H); ¹³C NMR (100 MHz, CDCI₃) δ 147.13, 145.96 144.38, 138.73, 136.50, 136.11, 135.69, 130.42, 130.16, 129.75, 128.20, 118.77, 118.35, 98.02 (C1), 84.40 (C4), 80.28 (C3), 79.51 (C2), 63.38 (C5), 21.25, 20.20; ¹¹B NMR (128 MHz, CDCI₃) δ 5.99 (bs); HRMS (ESI+): m/z: $[M+Na]^+$ calcd for C₂₃H₂₅BN₂NaO₅: 443.1753; found 443.1748.

4Rd red film (16.7 mg, 23%): **UV-vis** λ_{max} (CH₂Cl₂)/nm 506 (ε/M⁻¹ cm⁻¹ 52607), **Emission** λ_{em} CH₂Cl₂/nm 520 (λ_{ex} = 480 nm); ¹**H NMR (400 MHz, CDCl₃)**: δ = 87.98 (s, 1H), 7.68 (s, 1H), 6.94 (s, 2H), 6.68 (dd, *J* = 7.0, 1.0 Hz, 1H), 6.66 (dd, *J* = 7.0, 1.5 Hz, 1H), 6.46-6.42 (m, 2H), 6.06 (bs, 1H, H1), 4.75-4.71 (m, 1H, H2), 4.18-4.12 (m, 1H, H4), 4.12-4.05 (m, 1H, H3), 4.01 (d, *J* = 12.1 Hz, 1H, H5), 3.85-4.76 (m, 1H, H5), 2.35 (s, 3H), 2.14 (s, 3H), 2.09 (s, 3H); ¹³**C NMR (100 MHz, CDCl₃)**: δ = 147.69, 145.00 144.30, 138.83, 136.35, 136.05, 135.71, 130.78, 130.19, 129.82, 128.21, 128.16, 118.50, 104.59 (C1), 82.60 (C4), 78.89 (C2), 71.61 (C3), 62.44 (C5), 21.16, 20.11, 20.00; ¹¹**B NMR (128 MHz, CDCl₃)**: δ = 5.72 (bs); **FT-IR (ATR)** 1/λ (cm⁻¹) 2958.51, 2919.94, 2852.44 (Alkyl C-H); 1560.26 (C=N, C-C in aromatic); 1257.46 (C-O); 1066.53 (C-N, C-O); **HRMS (ESI+)**: *m/z*: [*M*+Na]⁺ calcd for C₂₃H₂₅BN₂NaO₅: 443.1753; found 443.1752. **S5. NMR SPECTRA**

S5.1 O-BODIPY 3: meso-tolyI-O-BODIPY

¹H NMR (400 MHz, CDCl₃) spectrum of 3

¹H-¹³C HSQC NMR (CDCI₃) spectrum of 3

¹H-¹³C HMBC NMR (CDCI₃) spectrum of 3

¹¹B NMR (128 MHz, CDCI₃) spectrum of 3

¹H-¹H COSY NMR (CDCl₃) spectrum of 3

¹H-¹H NOESY NMR (CDCI₃) spectrum of 3

S5.2 O-BODIPY 4: meso-mestiyI-O-BODIPY

¹H NMR (400 MHz, CDCl₃) spectrum of 4

¹³C NMR (100 MHz, CDCI₃) spectrum of 4

¹H-¹³C HMBC NMR (CDCI₃) spectrum of 4

¹H-¹³C HSQC NMR (CDCI₃) spectrum of 4

¹H-¹H COSY NMR (CDCl₃) spectrum of 4

¹H-¹H NOESY NMR (CDCI₃) spectrum of 4

S5.3 Conjugate 3Ga: α-Glucofuranose-(1,2)(3)(5,6)-O-BODIPY(OMe)

¹H NMR (400 MHz, CDCl₃) spectrum of 3Ga

¹³C NMR (100 MHz, CDCl₃) spectrum of 3Ga

¹H-¹¹B HMBC NMR (CDCI₃) spectrum of 3Ga

¹H-¹³C HSQC NMR (CDCl₃) spectrum of 3Ga

¹H-¹³C HMBC NMR (CDCl₃) spectrum of 3Ga

¹H-¹H COSY NMR (CDCl₃) spectrum of 3Ga

¹H-¹H NOESY NMR (CDCI₃) spectrum of 3Ga

S5.4 Conjugate 4Ga: α-Glucofuranose-(1,2)(3)(5,6)-O-BODIPY(OMe)

¹H NMR (400 MHz, CDCI₃) spectrum of 4Ga

¹³C NMR (100 MHz, CDCl₃) spectrum of 4Ga

¹¹B NMR (128 MHz, CDCI₃) spectrum of 4Ga

¹H-¹¹B HMBC NMR (CDCl₃) spectrum of 4Ga

¹H-¹³C HMBC NMR (CDCI₃) spectrum of 4Ga

¹H-¹³C HSQC NMR (CDCl₃) spectrum of 4Ga

¹H-¹H COSY NMR (CDCI₃) spectrum of 4Ga

¹H-¹H NOESY NMR (CDCI₃) spectrum of 4Ga

S5.5 Conjugate 4Gb: α-Glucofuranose-(1,2)(3,5)-O-BODIPY

¹H NMR (400 MHz, CDCI₃) spectrum of 4Gb

¹³C NMR (100 MHz, CDCl₃) spectrum of 4Gb

¹H-¹¹B HMBC NMR (CDCl₃) spectrum of 4Gb

¹H-¹³C HMBC NMR (CDCl₃) spectrum of 4Gb

¹H-¹³C HSQC NMR (CDCl₃) spectrum of 4Gb

¹H-¹H COSY NMR (CDCI₃) spectrum of 4Gb

¹H-¹H NOESY NMR (CDCl₃) spectrum of 4Gb

S5.6 Conjugate 4Gc: α-Glucoseptanose-(1,2)(3,4)-O-BODIPY

¹H NMR (400 MHz, CDCI₃) spectrum of 4Gc

¹³C NMR (100 MHz, CDCI₃) spectrum of 4Gc

¹H-¹¹B HMBC NMR (CDCI₃) spectrum of 4Gc

¹H-¹³C HMBC NMR (CDCl₃) spectrum of 4Gc

¹H-¹³C HSQC NMR (CDCl₃) spectrum of 4Gc

¹H-¹H COSY NMR (CDCI₃) spectrum of 4Gc

¹H-¹H NOESY NMR (CDCl₃) spectrum of 4Gc

¹H NMR (400 MHz, CDCI₃) spectrum of 4Gd

¹³C NMR (100 MHz, CDCl₃) spectrum of 4Gd

¹¹B NMR (128 MHz, CDCl₃) spectrum of 4Gd

¹H-¹³C HSQC NMR (CDCI₃) spectrum of 4Gd

¹H-¹³C HMBC NMR (CDCl₃) spectrum of 4Gd

¹H-¹H COSY NMR (CDCI₃) spectrum of 4Gd

¹H-¹H NOESY NMR (CDCl₃) spectrum of 4Gd

S5.8 Conjugate 3Xa: α-Xylofuranose-(1,2)(3,5)-O-BODIPY

¹H NMR (400 MHz, CDCI₃) spectrum of 3Xa

¹³C NMR (100 MHz, CDCI₃) spectrum of 3Xa

¹¹B NMR (128 MHz, CDCl₃) spectrum of 3Xa

¹H-¹¹B HMBC NMR (CDCI₃) spectrum of 3Xa

¹H-¹³C HSQC NMR (CDCl₃) spectrum of 3Xa

50

¹H-¹³C HMBC NMR (CDCI₃) spectrum of 3Xa

¹H-¹H COSY NMR (CDCI₃) spectrum of 3Xa

¹H-¹H NOESY NMR (CDCI₃) spectrum of 3Xa

¹H NMR (400 MHz, CDCl₃) spectrum of 3Xb

¹³C NMR (100 MHz, CDCl₃) spectrum of 3Xb

¹¹B NMR (128 MHz, CDCl₃) spectrum of 3Xb

F2 (ppm)

¹H-¹³C HMBC NMR (CDCl₃) spectrum of 3Xb

S5.10 Conjugate 3Xc: α-Xylopyranose-(1,2)-O-BODIPY

¹H NMR (400 MHz, CDCI₃) spectrum of 3Xc

¹³C NMR (100 MHz, CDCl₃) spectrum of 3Xc

¹H-¹¹B HMBC NMR (CDCI₃) spectrum of 3Xc

¹H-¹³C HSQC NMR (CDCl₃) spectrum of 3Xc

¹H-¹H COSY NMR (CDCI₃) spectrum of 3Xc

¹H-¹H NOESY NMR (CDCI₃) spectrum of 3Xc

S5.11 Conjugate 3Xd: α-Xylofuranose-(1,2)-O-BODIPY

¹H NMR (400 MHz, CDCl₃) spectrum of 3Xd

¹³C NMR (100 MHz, CDCl₃) spectrum of 3Xd

¹H-¹³C HSQC NMR (CDCl₃) spectrum of 3Xd

¹H-¹¹B HMBC NMR (CDCl₃) spectrum of 3Xd

-566

¹¹B NMR (128 MHz, CDCl₃) spectrum of 3Xd

¹H-¹³C HMBC NMR (CDCl₃) spectrum of 3Xd

¹H-¹H COSY NMR (CDCI₃) spectrum of 3Xd

¹H-¹H NOESY NMR (CDCI₃) spectrum of 3Xd

60

S5.12 Conjugate 4Xa: α-Xylofuranose-(1,2)(3,5)-O-BODIPY

¹H NMR (400 MHz, CDCI₃) spectrum of 4Xa

¹³C NMR (100 MHz, CDCl₃) spectrum of 4Xa

¹H-¹³C HMBC NMR (CDCI₃) spectrum of 4Xa

¹H-¹H COSY NMR (CDCI₃) spectrum of 4Xa

¹H-¹H NOESY NMR (CDCI₃) spectrum of 4Xa

¹H NMR (400 MHz, CDCl₃) spectrum of 4Xb

¹³C NMR (100 MHz, CDCl₃) spectrum of 4Xb

¹H-¹³C HMBC NMR (CDCl₃) spectrum of 4Xb

¹H-¹³C HSQC NMR (CDCl₃) spectrum of 4Xb

¹¹B NMR (128 MHz, CDCl₃) spectrum of 4Xb

¹H-¹H COSY NMR (CDCI₃) spectrum of 4Xb

¹H-¹H NOESY NMR (CDCI₃) spectrum of 4Xb

¹H NMR (400 MHz, CDCI₃) spectrum of 4Xc

¹³C NMR (100 MHz, CDCl₃) spectrum of 4Xc

¹¹B NMR (128 MHz, CDCl₃) spectrum of 4Xc

¹H-¹³C HSQC NMR (CDCl₃) spectrum of 4Xc

¹H-¹³C HMBC NMR (CDCI₃) spectrum of 4Xc

¹H-¹H COSY NMR (CDCI₃) spectrum of 4Xc

¹H-¹H NOESY NMR (CDCI₃) spectrum of 4Xc

S5.15 Conjugate 3Ra: β-Ribofuranose-(1,5)(2,3)-O-BODIPY

¹H NMR (400 MHz, CDCI₃) spectrum of 3Ra

¹³C NMR (100 MHz, CDCl₃) spectrum of 3Ra

¹¹B NMR (128 MHz, CDCl₃) spectrum of 3Ra

¹H-¹¹B HMBC NMR (CDCI₃) spectrum of 3Ra

¹H-¹³C HSQC NMR (CDCl₃) spectrum of 3Ra

71

¹H-¹³C HMBC NMR (CDCI₃) spectrum of 3Ra

¹H-¹H COSY NMR (CDCI₃) spectrum of 3Ra

¹H-¹H NOESY NMR (CDCI₃) spectrum of 3Ra

S5.16 Conjugate 3Rb: α-Ribopyranose-(1,2)(3,4)-O-BODIPY

¹H NMR (400 MHz, CDCl₃) spectrum of 3Rb

¹³C NMR (100 MHz, CDCl₃) spectrum of 3Rb

¹¹B NMR (128 MHz, CDCl₃) spectrum of 3Rb

¹H-¹¹B HMBC NMR (CDCI₃) spectrum of 3Rb

¹H-¹³C HSQC NMR (CDCl₃) spectrum of 3Rb

¹H-¹H COSY NMR (CDCl₃) spectrum of 3Rb

¹H-¹H NOESY NMR (CDCI₃) spectrum of 3Rb

S5.17 Conjugate 3Rc: α-Ribopyranose-(1,2)-O-BODIPY

¹H NMR (400 MHz, CDCI₃) spectrum of 3Rc

¹³C NMR (100 MHz, CDCl₃) spectrum of 3Rc

¹H-¹¹B HMBC NMR (CDCI₃) spectrum of 3Rc

¹H-¹³C HSQC NMR (CDCl₃) spectrum of 3Rc

¹H-¹³C HMBC NMR (CDCl₃) spectrum of 3Rc

¹H-¹H COSY NMR (CDCI₃) spectrum of 3Rc

¹H-¹H NOESY NMR (CDCI₃) spectrum of 3Rc

S5.18 Conjugate 3Rd: β-Ribofuranose-(2,3)-O-BODIPY

¹H NMR (400 MHz, CDCl₃) spectrum of 3Rd

¹H-¹³C HSQC NMR (CDCl₃) spectrum of 3Rd

0

5.5

O

0

6.0

C5

C3 C2 C4

C1-

0

4.5

80

4.0

3.5

0

0

5.0

60 F1 [ppm]

2

8

- 8

6

110

3.0 F2 [ppm]

¹H-¹H COSY NMR (CDCI₃) spectrum of 3Rd

¹H-¹H NOESY NMR (CDCI₃) spectrum of 3Rd

S5.19 Conjugate 4Ra: β-Ribofuranose-(1,5)(2,3)-O-BODIPY

¹H NMR (400 MHz, CDCl₃) spectrum of 4Ra

¹³C NMR (100 MHz, CDCl₃) spectrum of 4Ra

¹¹B NMR (128 MHz, CDCl₃) spectrum of 4Ra

¹H-¹³C HSQC NMR (CDCl₃) spectrum of 4Ra

¹H-¹³C HMBC NMR (CDCI₃) spectrum of 4Ra

¹H-¹H COSY NMR (CDCI₃) spectrum of 4Ra

¹H-¹H NOESY NMR (CDCI₃) spectrum of 4Ra

¹H NMR (400 MHz, CDCI₃) spectrum of 4Rb

¹³C NMR (100 MHz, CDCl₃) spectrum of 4Rb

¹H-¹³C HSQC NMR (CDCl₃) spectrum of 4Rb

¹H-¹³C HMBC NMR (CDCl₃) spectrum of 4Rb

¹H-¹H COSY NMR (CDCI₃) spectrum of 4Rb

¹H-¹H NOESY NMR (CDCI₃) spectrum of 4Rb

¹H NMR (400 MHz, CDCl₃) spectrum of 4Rc

¹H NMR (400 MHz, CDCI₃) spectrum of 4Rc'

¹³C NMR (100 MHz, CDCl₃) spectrum of 4Rc (red) and 4Rc' (green)

¹¹B NMR (128 MHz, CDCl₃) spectrum of 4Rc

¹H-¹³C HSQC NMR (CDCl₃) spectrum of 4Rc

¹H-¹³C HMBC NMR (CDCl₃) spectrum of 4Rc

¹H-¹H COSY NMR (CDCI₃) spectrum of 4Rc

¹H-¹H NOESY NMR (CDCI₃) spectrum of 4Rc

¹H NMR (400 MHz, CDCl₃) spectrum of 4Rd

¹³C NMR (100 MHz, CDCl₃) spectrum of 4Rd

¹H-¹³C HMBC NMR (CDCl₃) spectrum of 4Rd

¹H-¹³C HSQC NMR (CDCl₃) spectrum of 4Rd

¹H-¹H COSY NMR (CDCI₃) spectrum of 4Rd

¹H-¹H NOESY NMR (CDCI₃) spectrum of 4Rd

	3	3Ra	3Rd	4
CCDC	2040727	2040728	2040729	2040730
Formula	$C_{18}H_{19}BN_2O_2$	$\begin{array}{c} \hline C_{37}H_{32}B2N_4O5 \cdot 2/3 \ C_2H_3N \cdot \\ 0.2 \ CH_2Cl_2 \end{array}$	$C_{21}H_{21}BN_2O5$	C ₂₀ H ₂₃ BN ₂ O ₂
Formula weight (g mol ⁻¹)	306.16	679.30	392.21	334.21
Temperature/K	100.0(1)	100.0(9)	105(8)	100.0(1)
Crystal system	monoclinic	orthorhombic	orthorhombic	orthorhombic
Space group	C2/c	P212121	P2 ₁ 2 ₁ 2 ₁	Pbca
Unit cell dimensions	$a = 13.6344(2)\text{\AA}$ $b = 9.5665(1) \text{\AA}$ $c = 23.8456(3) \text{\AA}$ $\beta = 97.092(1)^{\circ}$	a = 11.0231(2) Å b = 11.6298(2) Å c = 26.1050(5) Å	a = 6.6897(2) Å b = 6.8564(2) Å c = 39.6011(11) Å	a = 11.8127(2) Å b = 8.2716(1) Å c = 38.1140(6) Å
Volume (Å ³)	3086.47(7)	3346.6(1)	1816.39(9)	3724.12(10)
Ζ	8	4	4	8
Density _{calcd} (g cm ⁻³)	1.318	1.348	1.434	1.192
μ (mm ⁻¹)	0.681	1.011	0.839	0.603
<i>F</i> (000)	1296.0	1421.0	824.0	1424.0
Crystal size/mm ³	0.15 x 0.12 x 0.1	0.083 x 0.072 x 0.041	0.2 x 0.16 x 0.1	0.15 x 0.12 x 0.11
20 range (deg)	11.328 to 136.496	11.568 to 136.472	13.104 to 135.474	11.934 to 136.498
h range	-16 to 16	-13 to 13	-7 to 8	-12 to 14
k range	-11 to 11	-14 to 14	-6 to 8	-9 to 9
<i>l</i> range	-28 to 28	-31 to 31	-47 to 41	-45 to 45
Reflections collected / Independent reflections	18118 / 2826	27509 / 6115	9362 / 3280	18535 / 3395
R _{int} /R _{sigma}	$R_{int} = 0.0289, R_{sigma} = 0.0181$	$R_{int} = 0.0543, R_{sigma} = 0.0400$	$R_{int} = 0.0335, R_{sigma} = 0.0376$	$R_{int} = 0.0302, R_{sigma} = 0.0240$
Restraints / parameters	0/212	1/487	0/272	0/232
Goodness-of-fit	1.063	1.036	1.039	1.038
Final R indexes $[I > 2\sigma(I)]$	$ \begin{array}{c} R_1 = 0.0320, \\ wR_2 = 0.0811 \end{array} $	$ \begin{array}{c} R_1 = 0.0381, \\ wR_2 = 0.0975 \end{array} $	$ \begin{array}{c} R_1 = 0.0322, \\ wR_2 = 0.0761 \end{array} $	$ \begin{array}{c} R_1 = 0.0365, \\ wR_2 = 0.0937 \end{array} $
R indices (all data)			$R_1 = 0.0358,$ $wR_2 = 0.0780$	$R_1 = 0.0406,$ $wR_2 = 0.0966$
Largest diff. peak/hole eÅ ⁻³	0.26/-0.19	0.28/-0.17	0.20/-0.17	0.27/-0.19
Flack parameter	-	-0.01(4)	0.04(10)	-

S6 XRD data tables for compounds 3, 3Ra, 3Rd, 4: 3: Crystals were grown by the slow evaporation of a CH₂Cl₂:n-hexane solution in the dark at room temperature, **3Ra** and **3Rd**: Crystals were grown by the slow evaporation of a CH₂Cl₂:n-hexane solution in the dark at room temperature, **3**Ra and **3**Rd: Crystals were grown by the slow evaporation of a CH₂Cl₂:n-hexane solution in the dark at room temperature, **3**Ra and **3**Rd: Crystals were grown by the slow evaporation of a CH₂Cl₂:n-hexane solution in the dark at room temperature, **3**Ra and **3**Rd: Crystals were grown by the slow evaporation of a CH₂Cl₂:MeCN solution in the dark at room temperature, **4**: Crystals were grown by the slow evaporation of a CH₂Cl₂.

- P. J. Stephens, F. J. Devlin, C. F. Chabalowski and M. J. Frisch, Ab Initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields, *J. Phys. Chem.*, 1994, 98, 11623–11627.
- 2 A. D. Becke, Density-functional thermochemistry. III. The role of exact exchange, *J. Chem. Phys.*, 1993, **98**, 5648–5652.
- 3 C. Lee, W. Yang and R. G. Parr, Local softness and chemical reactivity in the molecules CO, SCN- and H₂CO, *Phys. Rev. B*, 1988, **37**, 785– 789.
- M. J. Frisch, G. W. Trucks, H. Schlegel, G. E. Scuseria, M. A. Robb, J.
 R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A.
 Petersson and others, Gaussian 09, Revision D. 01, Gaussian, Inc.,
 Wallingford CT, 2013 Search PubMed; (b) AD Becke, *J. Chem. Phys*, 1993, **98**, 785–789.
- 5 M. D. Hanwell, D. Curtis, D. Lonie, T. Vandermeersch, E. Zurek and G. Hutchison, Avogadro: an open-source molecular builder and visualization tool, *J. Cheminfo.*, 2012, 4, 17.
- 6 T. Yanai, D. P. Tew and N. C. Handy, A new hybrid exchangecorrelation functional using the Coulomb-attenuating method (CAM-B3LYP), *Chem. Phys. Lett.*, 2004, **393**, 51–57.
- 7 T. Rohand, E. Dolusic, T. H. Ngo, W. Maes and W. Dehaen, Efficient synthesis of aryldipyrromethanes in water and their application in the synthesis of corroles and dipyrromethenes, *Arkivoc*, 2007, **10**, 307–

324.

- 8 B. R. Groves, S. M. Crawford, T. Lundrigan, C. F. Matta, S. Sowlati-Hashjin and A. Thompson, Synthesis and characterisation of the unsubstituted dipyrrin and 4,4-dichloro-4-bora-3a,4a-diaza-sindacene: Improved synthesis and functionalisation of the simplest BODIPY framework, *Chem. Commun.*, 2013, **49**, 816–818.
- 9 Sheldrick, G. Crystal structure refinement with SHELXL. *Acta Crystallogr., Sect. C: Cryst. Struct. Commun.* **2015,** *7*1, 3-8.
- 10 Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. *J. Appl. Crystallogr.* **2009**, *42*, 339-341.
- Macrae, C. F.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Shields, G.
 P.; Taylor, R.; Towler, M.; van de Streek, J. Mercury: visualization and analysis of crystal structures. *J. Appl. Crystallogr.* 2006, *39*, 453-457.