# Silver-CatalyzedDecarboxylativeRadicalRelayDifluoroalkylation-Carbocyclization:ConvenientAccess to CF2-Containing Quinolinones

Feng Zhao,<sup>a†</sup> Sa Guo,<sup>b†</sup> Yan Zhang,<sup>b</sup> Ting Sun,<sup>a</sup> Bin Yang,<sup>\*b</sup> Yong Ye<sup>c</sup>

and Kai Sun\*b

<sup>a</sup> School of Chemistry and Materials Science, Guizhou Education University, Guiyang 550018, P. R. China.

<sup>b</sup> College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, Shandong, P. R. China. E-mail: wangx933@nenu.edu.cn; sunk468@nenu.edu.cn

<sup>c</sup> College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China.

<sup>†</sup> These two authors contributed equally to this work.

# **Supporting Information**

| I. General Conditions               | 2  |
|-------------------------------------|----|
| II. Typical Experimental Procedures | 2  |
| III. Application Experiments        | 2  |
| IV. Control Experiments             | 3  |
| V. Products Characterization        | 4  |
| VI. NMR Spectra of products         | 12 |

## **I. General Conditions**

All reagents were purchased from commercial sources and used without further purification. <sup>1</sup>H NMR, <sup>13</sup>C NMR, <sup>19</sup>F NMR spectra were recorded on a Bruker Ascend<sup>™</sup> 400 or Bruker Ascend<sup>™</sup> 500 or a Bruker Ascend<sup>™</sup> 600 spectrometer or a Ascend 400 in deuterated solvents containing TMS as an internal reference standard. All high-resolution mass spectra (HRMS) were measured on a mass spectrometer by using electrospray ionization orthogonal acceleration time-of-flight (ESI-OA-TOF), and the purity of all samples used for HRMS (>95%) was confirmed by <sup>1</sup>H NMR and <sup>13</sup>C NMR spectroscopic analysis. Melting points were measured on a melting point apparatus equipped with a thermometer and were uncorrected. All the reactions were monitored by thin-layer chromatography (TLC) using GF254 silica gel-coated TLC plates. Purification by flash column chromatography was performed over SiO<sub>2</sub> (silica gel 200–300 mesh).

## **II. Typical Experimental Procedures**

In the reaction tube, acrylamides 1 (0.2 mmol),  $\alpha, \alpha$ -difluoroarylacetic acids 2 (3.0 equiv., 0.6 mmol), AgNO<sub>3</sub> (20 mol%, 0.04 mmol), K<sub>2</sub>S<sub>2</sub>O<sub>8</sub> (2.0 equiv., 0.4 mmol,) and DBU (2.0 equiv., 0.4 mmol) were mixed in DMSO/H<sub>2</sub>O (2:1, 3 mL). The mixture was heated in an oil bath at 60 °C until complete consumption of starting material as monitored by TLC analysis. Upon completion of the reaction, the mixture was diluted with water (20 mL) and extracted with ethyl acetate (3 × 10 mL). The combined organic layers were washed with brine (20 mL), dried over Na<sub>2</sub>SO<sub>4</sub>, and filtered. Then the organic solvent was concentrated in vacuo. The residue was purified by flash column chromatography with Ethyl acetate and Petroleum ether as eluent to give **3**.

# **III. Application Experiments**

#### 3.1 Procedure for the Gram-Scale Synthesis of 3a

To a reaction tube, acrylamide **1a** (5 mmol), 2,2-difluoro-2-phenylacetic acid **2a** (3.0 equiv., 15 mmol), AgNO<sub>3</sub> (20 mol%, 1 mmol), K<sub>2</sub>S<sub>2</sub>O<sub>8</sub> (2.0 equiv., 10 mmol) and DBU (2.0 equiv., 10 mmol) were mixed in DMSO/H<sub>2</sub>O (2:1, 30 mL). The mixture was heated in an oil bath at 60 °C for 6 h. Upon completion of the reaction, the mixture was diluted with water (150 mL) and extracted with ethyl acetate ( $3 \times 50$  mL). The combined organic layers were washed with brine (50 mL), dried over Na<sub>2</sub>SO<sub>4</sub>, and filtered. Then the organic solvent was concentrated in vacuo. The residue was purified by flash column chromatography with Ethyl acetate and Petroleum ether as eluent to product **3a** in 80% yield (1.317g).

## 3.2 Procedure for the Gram-Scale Synthesis of 3v

To a reaction tube, acrylamide **1a** (5 mmol), 2,2-difluoropropanoic acid (3.0 equiv., 15 mmol), AgNO<sub>3</sub> (20 mol%, 1 mmol),  $K_2S_2O_8$  (2.0 equiv., 10 mmol) and DBU (2.0 equiv., 10 mmol) were mixed in DMSO/H<sub>2</sub>O (2:1, 30 mL). The mixture was heated in an oil bath at 60 °C for 10 h. Upon completion of the reaction, the mixture was diluted with water (150 mL) and extracted with ethyl acetate (3 × 50 mL). The combined organic layers were washed with brine (50 mL), dried over Na<sub>2</sub>SO<sub>4</sub>, and filtered. Then the organic solvent was concentrated in vacuo. The residue was

purified by flash column chromatography with Ethyl acetate and Petroleum ether as eluent to product 3v in 54 % yield (0.721g).

#### **IV. Control Experiments**

4.1 Control experiment in the presence of BHT



To a reaction tube, acrylamides **1a** (0.2 mmol), 2,2-difluoro-2-phenylacetic acid **2a** (3.0 equiv., 0.6 mmol, 103 mg), AgNO<sub>3</sub> (20 mol%, 0.04 mmol, 7 mg), K<sub>2</sub>S<sub>2</sub>O<sub>8</sub> (2.0 equiv., 0.4 mmol, 108 mg), DBU (2.0 equiv., 0.4 mmol, 60  $\mu$ L) and the radical scavenger BHT (2.0 equiv., 88 mg) were mixed in DMSO/H<sub>2</sub>O (2:1, 3 mL). Then the mixture was stirred at 60 °C for 5 h and monitored by TLC. No desired product **3a** was obtained.

#### 4.2 Control experiment in the presence of TEMPO



To a reaction tube, acrylamides **1a** (0.2 mmol), 2,2-difluoro-2-phenylacetic acid **2a** (3.0 equiv., 0.6 mmol, 103 mg), AgNO<sub>3</sub> (20 mol%, 0.04 mmol, 7 mg), K<sub>2</sub>S<sub>2</sub>O<sub>8</sub> (2.0 equiv., 0.4 mmol, 108 mg), DBU (2.0 equiv., 0.4 mmol, 60  $\mu$ L) and the radical scavenger TEMPO (2.0 equiv., 62.5 mg) were mixed in DMSO/H<sub>2</sub>O (2:1, 3 mL). Then the mixture was stirred at 60 °C for 5 h and monitored by TLC. Upon completion of the reaction, the mixture was diluted with water (20 mL) and extracted with ethyl acetate (3 × 10 mL). The combined organic layers were washed with brine (20 mL), dried over Na<sub>2</sub>SO<sub>4</sub>, and filtered. Then the organic solvent was concentrated in vacuo. The residue was purified by flash column chromatography with Ethyl acetate and Petroleum ether as eluent to product **3a** in 21% yield.

#### 4.3 Mechanistic experiments



To a reaction tube, acrylamides **1a** (0.2 mmol), 2,2-difluoro-2-phenylacetic acid **2a** (3.0 equiv., 0.6 mmol, 103 mg), AgNO<sub>3</sub> (20 mol%, 0.04 mmol, 7 mg),  $K_2S_2O_8$  (2.0 equiv., 0.4 mmol, 108 mg) and DBU (2.0 equiv., 0.4 mmol, 60 µL) were mixed in DMSO/H<sub>2</sub><sup>18</sup>O (2:1, 1.5 mL). The mixture

was heated in an oil bath at 60 °C for 5 h, we successfully detected the desired **3a'** by HRMS analysis.



HRMS (ESI) calcd for C<sub>19</sub>H<sub>17</sub>F<sub>2</sub>N<sup>18</sup>OO [M+Na]<sup>+</sup>: 354.1162, found: 354.1156.

# **V. Products Characterization**





White soild (54 mg, 82% yield).  $R_f$  (Petroleum ether: Ethyl acetate=10:1): 0.15. mp 74-75 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.11-8.09 (m, 1H), 7.68-7.63 (m, 1H), 7.38-7.32 (m, 5H), 7.22-7.16 (m, 2H), 3.45 (s, 3H), 3.12-3.02 (m, 2H), 1.50 (s, 3H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>)  $\delta$  195.62, 172.65, 143.35, 136.71 (t, J = 26.3 Hz), 136.34, 129.88, 128.51, 128.28, 128.14, 124.89 (t, J = 6.5 Hz), 123.09, 119.53, 114.88, 52.18, 47.81 (t, J = 26.4 Hz), 29.79, 27.12. <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>)  $\delta$  -88.89 (d, J = 244.8 Hz), -92.88 (d, J = 244.2 Hz). HRMS (ESI) calcd for C<sub>19</sub>H<sub>17</sub>F<sub>2</sub>NO<sub>2</sub> [M+Na]<sup>+</sup>: 352.1120, found: 352.1112.

3-(2,2-difluoro-2-phenylethyl)-5-fluoro-1,3-dimethylquinoline-2,4(1*H*,3*H*)-dione (3b)



Yellow liquid (35 mg, 50% yield).  $R_f$  (Petroleum ether: Ethyl acetate=10:1): 0.08. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.60-7.55(m,1H), 7.42-7.31 (m, 5H), 6.98 (d, J = 8.5 Hz, 1H), 6.91-6.87 (m, 1H), 3.46 (s, 3H), 3.07-3.98 (m, 2H), 1.51 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  193.08, 172.42, 162.73 (d, J = 267.5 Hz), 144.54, 136.83 (d, J = 26.0 Hz), 136.42 (d, J = 12.0 Hz), 129.93, 128.34, 124.87 (t, J = 6.3 Hz), 121.61 (t, J = 245.0 Hz), 111.35 (d, J = 21.7 Hz), 110.64 (d, J = 3.7 Hz), 53.02, 47.76 (t, J = 26.3 Hz), 30.70, 26.58. <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -89.23 (d, J = 244.2 Hz), -109.34. HRMS (ESI) calcd for C<sub>19</sub>H<sub>16</sub>F<sub>3</sub>NO<sub>2</sub> [M+Na]<sup>+</sup>: 370.1025, found: 370.1029.

5-chloro-3-(2,2-difluoro-2-phenylethyl)-1,3-dimethylquinoline-2,4(1*H*,3*H*)-dione (3c)



Yellow liquid (38 mg, 52% yield). R<sub>f</sub> (Petroleum ether: Ethyl acetate=10:1): 0.13. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.48 (t, *J* = 8.2 Hz, 1H), 7.42-7.33 (m, 5H), 7.25-7.23 (m, 1H), 7.11 (d, *J* = 8.5 Hz, 1H), 3.44 (s, 3H), 3.04-2.93 (m, 2H), 1.52 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  193.58, 172.09, 144.99, 136.79 (t, *J* = 26.1 Hz), 136.21, 134.52, 129.93, 128.36, 126.74, 124.86 (t, *J* = 6.3 Hz), 121.53 (t, *J* = 245.1 Hz), 117.76, 113.71, 53.56, 47.46 (t, *J* = 26.6 Hz), 30.84, 25.29. <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -87.46 (d, *J* = 248.2 Hz), -93.53 (d, *J* = 248.2 Hz). HRMS (ESI) calcd for C<sub>19</sub>H<sub>16</sub>ClF<sub>2</sub>NO<sub>2</sub> [M+Na]<sup>+</sup>: 386.0730, found: 386.0737.

5-bromo-3-(2,2-difluoro-2-phenylethyl)-1,3-dimethylquinoline-2,4(1H,3H)-dione (3d)



Yellow liquid (51 mg, 63 % yield).  $R_f$  (Petroleum ether: Ethyl acetate=10:1): 0.13. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.49-7.47 (m, 1H), 7.41-7.35 (m, 6H), 7.16-7.14 (m, 1H), 3.43 (s, 3H), 3.03-2.93 (m, 2H), 1.52 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  193.71, 171.99, 145.10, 136.79 (t, J = 26.0 Hz), 134.67, 130.42, 129.93, 128.36, 124.86 (t, J = 6.3 Hz), 123.77, 121.51, 118.81, 114.40, 53.34, 47.42 (t, J = 26.7 Hz), 30.77, 25.11. <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -89.41 (d, J = 244.4 Hz), -92.33 (d, J = 244.4 Hz). HRMS (ESI) calcd for C<sub>19</sub>H<sub>16</sub>BrF<sub>2</sub>NO<sub>2</sub> [M+Na]<sup>+</sup>: 430.0025, found: 430.0021.

3-(2,2-difluoro-2-phenylethyl)-6-fluoro-1,3-dimethylquinoline-2,4(1H,3H)-dione (3e)



Colourless liquid (43 mg, 62% yield).  $R_f$  (Petroleum ether: Ethyl acetate=10:1): 0.18. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.77-7.74(m, 1H), 7.42-7.29 (m, 6H), 7.17-7.14 (m, 1H), 3.45 (s, 3H), 3.15-2.97 (m, 2H), 1.50 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  193.07, 172.41, 162.73 (d, J = 267.4 Hz), 144.54, 136.74 (t, J = 20.1 Hz), 136.41 (d, J = 11.9 Hz), 129.93, 128.34, 124.87 (t, J = 6.3

Hz), 121.61, 111.35 (d, J = 21.6 Hz), 110.64 (d, J = 3.6 Hz), 109.49, 53.02, 47.76 (t, J = 26.1 Hz), 30.70, 26.58. <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -88.95 (d, J = 244.1 Hz), -92.90 (d, J = 244.1 Hz), -119.72. HRMS (ESI) calcd for C<sub>19</sub>H<sub>16</sub>F<sub>3</sub>NO<sub>2</sub> [M+Na]<sup>+</sup>: 370.1025, found: 370.1031. **6-chloro-3-(2,2-difluoro-2-phenylethyl)-1,3-dimethylquinoline-2,4(1***H***,3***H***)-dione (3f)** 



White soild (40 mg, 55% yield).  $R_f$  (Petroleum ether: Ethyl acetate=10:1): 0.23. mp 83-84 °C <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.03 (d, J = 2.6 Hz, 1H), 7.60-7.58 (m, 1H), 7.42-7.30 (m, 5H), 7.13 (d, J = 8.9 Hz, 1H), 3.44 (s, 3H), 3.15-2.97 (m, 2H), 1.50 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  194.67, 172.33, 141.86, 136.49 (t, J = 26.0 Hz), 135.92, 129.97, 128.97, 128.33, 127.90, 124.85 (t, J = 6.3 Hz), 121.57, 120.54, 116.53, 52.19, 48.04 (t, J = 26.4 Hz), 29.97, 26.97. <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -88.98 (d, J = 244.2 Hz), -92.73 (d, J = 244.2 Hz). HRMS (ESI) calcd for C<sub>19</sub>H<sub>16</sub>ClF<sub>2</sub>NO<sub>2</sub> [M+Na]<sup>+</sup>: 386.0730, found: 386.0736.

# 6-bromo-3-(2,2-difluoro-2-phenylethyl)-1,3-dimethylquinoline-2,4(1H,3H)-dione (3g)



White soild (50 mg, 61% yield).  $R_f$  (Petroleum ether: Ethyl acetate=10:1): 0.23. mp 98-99 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.18 (d, J = 2.5 Hz, 1H), 7.74-7.72 (m, 1H), 7.38-7.34 (m, 5H), 7.07 (d, J = 8.9 Hz, 1H), 3.43 (s, 3H), 3.15-2.98 (m, 2H), 1.50 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  194.57, 172.33, 142.31, 138.80, 136.47 (t, J = 25.8 Hz), 130.93, 129.98, 128.34, 124.85 (t, J = 6.4 Hz), 121.57, 120.81, 116.83, 116.21, 52.21, 48.03 (t, J = 26.4 Hz), 29.95, 26.98. <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -88.99 (d, J = 244.3 Hz), -92.67 (d, J = 244.5 Hz). HRMS (ESI) calcd for C<sub>19</sub>H<sub>16</sub>BrF<sub>2</sub>NO<sub>2</sub> [M+Na]<sup>+</sup>: 430.0025, found: 430.0028.

3-(2,2-difluoro-2-phenylethyl)-1,3,6-trimethylquinoline-2,4(1*H*,3*H*)-dione (3h)



White soild (51 mg, 74 % yield).  $R_f$  (Petroleum ether: Ethyl acetate=10:1): 0.23. mp 96-97 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.90 (d, J = 1.9 Hz, 1H), 7.47-7.45 (m, 1H), 7.38-7.32 (m, 5H), 7.07 (d, J = 8.5 Hz, 2H), 3.42 (s, 3H), 3.11-3.00 (m, 2H), 2.38 (s, 3H), 1.49 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  195.85, 172.50, 141.22, 137.16, 136.78 (t, J = 26.1 Hz), 132.82, 129.82, 128.39, 128.26, 128.07, 124.89 (t, J = 6.4 Hz), 121.37 (t, J = 205.0 Hz), 114.87, 52.09, (t, J = 26.3 Hz), 29.75, 27.13, 20.34. <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>)  $\delta$  -88.98 (d, J = 244.1 Hz), -93.15 (d, J = 244.0 Hz). HRMS (ESI) calcd for C<sub>20</sub>H<sub>19</sub>F<sub>2</sub>NO<sub>2</sub> [M+Na]<sup>+</sup>: 366.1276, found: 366.1282.

3-(2,2-difluoro-2-phenylethyl)-7-fluoro-1,3-dimethylquinoline-2,4(1H,3H)-dione (3i)



Colourless liquid (32 mg, 46 % yield).  $R_f$  (Petroleum ether: Ethyl acetate=10:1): 0.28. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.14-8.10 (m, 1H), 7.39-7.32 (m, 5H), 6.91-6.85 (m, 2H), 3.42 (s, 3H), 3.11-3.00 (m, 2H), 1.50 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  194.12, 172.80, 167.77 (d, J = 256.1 Hz), 145.62 (d, J = 11.7 Hz), 1136.56 (t, J = 26.0 Hz), 131.50 (d, J = 11.1 Hz), 129.96, 128.31, 124.85 (t, J = 6.3 Hz), 121.59 (t, J = 244.7 Hz), 116.20, 110.53 (d, J = 22.3 Hz), 102.49 (d, J = 27.6 Hz), 52.06, 47.91 (t, J = 26.3 Hz), 29.96, 27.09. <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>)  $\delta$  -89.18 (d, J = 244.0 Hz), -92.92 (d, J = 243.9 Hz), -98.87. HRMS (ESI) calcd for C<sub>19</sub>H<sub>16</sub>F<sub>3</sub>NO<sub>2</sub> [M+Na]<sup>+</sup>: 370.1025, found: 370.1020.

7-chloro-3-(2,2-difluoro-2-phenylethyl)-1,3-dimethylquinoline-2,4(1H,3H)-dione (3j)



White soild (48 mg, 66% yield).  $R_f$  (Petroleum ether: Ethyl acetate=10:1): 0.33. mp 79-80 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.02 (d, J = 8.2 Hz, 1H), 7.37-7.34 (m, 5H), 7.21-7.16 (m, 2H), 3.42 (s, 3H), 3.11-2.98 (m, 2H), 1.49 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  194.55, 172.66, 144.26, 142.68, 136.53 (t, J = 24.0 Hz), 133.52, 129.89, 128.33, 124.84 (t, J = 6.3 Hz), 123.86, 123.38, 117.87 (t, J = 131.7 Hz), 115.24, 52.19, 47.96 (t, J = 26.3 Hz), 29.91, 27.03. <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>)  $\delta$  -88.98 (d, J = 244.1 Hz), -92.87 (d, J = 244.1 Hz). HRMS (ESI) calcd for C<sub>19</sub>H<sub>16</sub>ClF<sub>2</sub>NO<sub>2</sub> [M+Na]<sup>+</sup>: 386.0730, found: 386.0738.

7-bromo-3-(2,2-difluoro-2-phenylethyl)-1,3-dimethylquinoline-2,4(1*H*,3*H*)-dione (3k)



White soild (51 mg, 63% yield).  $R_f$  (Petroleum ether: Ethyl acetate=10:1): 0.33. mp 92-93 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.94 (d, J = 8.3 Hz, 1H), 7.36-7.33 (m, 6H), 7.23-7.17 (m, 1H), 3.42 (s, 3H), 3.11-2.98 (m, 2H), 1.49 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  194.77, 172.62, 144.14, 1136.52 (t, J = 26.0 Hz), 133.43, 131.48, 129.81, 128.34, 126.98, 126.35, 124.84 (t, J = 6.3 Hz), 121.58 (t, J = 244.9 Hz), 118.17, 52.23, 47.97 (t, J = 26.3 Hz), 29.93, 27.02. <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>)  $\delta$  -88.98 (d, J = 244.0 Hz), -92.89 (d, J = 244.0 Hz). HRMS (ESI) calcd for C<sub>19</sub>H<sub>16</sub>BrF<sub>2</sub>NO<sub>2</sub> [M+Na]<sup>+</sup>: 430.0025, found: 430.0019.

3-(2,2-difluoro-2-phenylethyl)-7-methoxy-1,3-dimethylquinoline-2,4(1*H*,3*H*)-dione (3l)



White soild (39.5 mg, 55% yield).  $R_f$  (Petroleum ether: Ethyl acetate=10:1): 0.11. mp 101-102 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.07 (d, J = 8.7 Hz, 1H), 7.35 (d, J = 6.7 Hz, 5H), 6.74-6.71 (m, 2.2 Hz, 1H), 6.61 (d, J = 2.2 Hz, 1H), 3.93 (s, 3H), 3.41 (s, 3H), 3.12-2.98 (m, 2H), 1.48 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  193.98, 173.15, 166.16, 145.26, 136.79 (t, J = 26.0 Hz), 131.02, 129.83, 128.24, 124.89 (t, J = 6.3 Hz), 121.65 (t, J = 244.9 Hz), 113.53, 108.34, 100.86, 55.78, 51.71, 47.70 (t, J = 26.3 Hz), 29.74, 27.28. <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -89.58 (d, J = 244.0 Hz), -93.23 (d, J = 244.1 Hz). HRMS (ESI) calcd for C<sub>20</sub>H<sub>19</sub>F<sub>2</sub>NO<sub>3</sub> [M+Na]<sup>+</sup>: 382.1225, found: 382.1230.

6,8-dichloro-3-(2,2-difluoro-2-phenylethyl)-1,3-dimethylquinoline-2,4(1H,3H)-dione (2m)



Colourless liquid (22 mg, 28% yield).  $R_f$  (Petroleum ether: Ethyl acetate=10:1): 0.40. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.84 (d, J = 2.6 Hz, 1H), 7.63 (d, J = 2.6 Hz, 1H), 7.40-7.36 (m, 5H), 3.60 (s, 3H), 3.08-2.91 (m, 2H), 1.48 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  194.41, 173.35, 140.49, 137.79, 136.69 (t, J = 26.2 Hz), 130.04, 129.80, 128.44, 126.69, 124.83 (t, J = 6.4 Hz), 123.04 (t, J = 163.3 Hz), 118.96, 53.26, 47.26 (t, J = 26.9 Hz), 37.89, 24.85. <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>)  $\delta$  - 88.67 (d, J = 246.6 Hz), -90.98 (d, J = 246.4 Hz). HRMS (ESI) calcd for C<sub>19</sub>H<sub>15</sub>Cl<sub>2</sub>F<sub>2</sub>NO<sub>2</sub> [M+Na]<sup>+</sup>: 420.0340, found: 420.0344.

1-benzyl-3-(2,2-difluoro-2-phenylethyl)-3-methylquinoline-2,4(1H,3H)-dione (3n)



Colourless liquid (38 mg, 47% yield).  $R_f$  (Petroleum ether: Ethyl acetate=10:1): 0.37. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.13-8.11 (m, 1H), 7.51-7.44 (m, 3H), 7.39-7.26 (m, 8H), 7.15 (t, J = 7.5 Hz, 1H), 7.06 (d, J = 8.4 Hz, 1H), 5.32 (q, J = 16.0 Hz, 2H), 3.26-3.10 (m, 2H), 1.59 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  195.39, 173.14, 142.61, 137.06 (t, J = 26.0 Hz), 136.25, 136.00, 129.91, 128.95, 128.64, 128.38, 127.38, 126.32, 124.86 (t, J = 6.3 Hz), 121.77 (t, J = 245.1 Hz), 123.20, 119.63, 116.01, 52.56, 47.28 (t, J = 26.1 Hz), 46.31, 27.64. <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>)  $\delta$  -89.48 (d, J = 243.4 Hz), -91.49 (d, J = 243.3 Hz). HRMS (ESI) calcd for C<sub>25</sub>H<sub>21</sub>F<sub>2</sub>NO<sub>2</sub> [M+Na]<sup>+</sup>: 428.1433, found: 428.1439.

3-(2,2-difluoro-2-(2-methoxyphenyl)ethyl)-1,3-dimethylquinoline-2,4(1H,3H)-dione (30)



White soild (33.7 mg, 47% yield).  $R_f$  (Petroleum ether: Ethyl acetate=10:1): 0.11. mp 107-108 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.01-7.99 (m, 1H), 7.64-7.59 (m, 1H), 7.29 (t, *J* = 7.9 Hz, 1H), 7.17-7.08 (m, 3H), 6.89 (d, *J* = 8.3 Hz, 1H), 6.73 (t, *J* = 7.6 Hz, 1H), 3.89 (s, 3H), 3.32 (s, 3H), 3.30-3.12 (m, 2H), 1.49 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  195.73, 172.60, 157.04, 143.28, 136.06, 131.55, 128.37, 126.07 (t, *J* = 18.1 Hz), 124.08 (t, *J* = 25.2 Hz), 123.34, 122.88, 120.91, 119.79, 114.71, 111.62, 55.78, 46.23 (t, *J* = 26.0 Hz), 29.71, 29.64, 26.77. <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -88.00 (d, *J* = 249.8 Hz), -91.23 (d, *J* = 249.7 Hz). HRMS (ESI) calcd for C<sub>20</sub>H<sub>19</sub>F<sub>2</sub>NO<sub>3</sub> [M+Na]<sup>+</sup>: 382.1225, found: 382.1229.

3-(2-(3-bromophenyl)-2,2-difluoroethyl)-1,3-dimethylquinoline-2,4(1*H*,3*H*)-dione (3p)



Colourless liquid (58.6 mg, 72 % yield).  $R_f$  (Petroleum ether: Ethyl acetate=10:1): 0.23. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.10-8.08 (m, 1H), 7.70-7.64 (m, 1H), 7.49 (d, J = 1.8 Hz, 2H), 7.32 (d, J = 7.9 Hz, 1H), 7.25-7.17 (m, 3H), 3.45 (s, 3H), 3.10-3.00 (m, 2H), 1.50 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  195.45, 172.50, 143.30, 138.80 (t, J = 26.5 Hz), 136.55, 133.12 (t, J = 1.6 Hz), 130.05, 128.58, 128.34, 128.18 (t, J = 6.7 Hz), 123.91 (t, J = 6.2 Hz), 123.28, 122.43, 119.55 (t, J = 123.0 Hz), 115.05, 52.27, 47.39 (t, J = 26.2 Hz), 29.87, 27.32. <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>)  $\delta$  -89.24 (d, J = 245.7 Hz), -92.82 (d, J = 245.7 Hz). HRMS (ESI) calcd for C<sub>19</sub>H<sub>16</sub>BrF<sub>2</sub>NO<sub>2</sub> [M+Na]<sup>+</sup>: 430.0025, found: 430.0031.

3-(2-(4-chlorophenyl)-2,2-difluoroethyl)-1,3-dimethylquinoline-2,4(1H,3H)-dione (3q)



White soild (54.4 mg, 75% yield).  $R_f$  (Petroleum ether: Ethyl acetate=10:1): 0.23. mp 89-90 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.09-8.07 (m, 1H), 7.70-7.63 (m, 1H), 7.30 (s, 4H), 7.22-7.17 (m, 2H), 3.44 (s, 3H), 3.10-3.01 (m, 2H), 1.49 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  195.52, 172.57, 143.34, 136.51, 136.14 (t, J = 2.2 Hz), 135.28 (t, J = 26.7 Hz), 128.60, 126.58 (t, J = 6.3 Hz), 123.73, 123.24, 121.29 (t, J = 245.3 Hz), 119.51, 114.96, 52.31, 47.49 (t, J = 26.4 Hz), 29.86, 27.26. <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>)  $\delta$  -88.91 (d, J = 245.8 Hz), -92.31 (d, J = 245.9 Hz). HRMS (ESI) calcd for C<sub>19</sub>H<sub>16</sub>ClF<sub>2</sub>NO<sub>2</sub> [M+Na]<sup>+</sup>: 386.0730, found:386.0723.

3-(2-(4-bromophenyl)-2,2-difluoroethyl)-1,3-dimethylquinoline-2,4(1H,3H)-dione (3r)



White soild (57 mg, 70% yield).  $R_f$  (Petroleum ether: Ethyl acetate=10:1): 0.22. mp 94-95 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.07-8.05 (m, 1H), 7.67-7.63 (m, 1H), 7.44 (d, J = 8.4 Hz, 2H), 7.25-7.15 (m, 4H), 3.43 (s, 3H), 3.09-3.00 (m, 2H), 1.48 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  195.51, 172.56, 143.33, 136.53, 135.76 (t, J = 26.7 Hz), 131.56, 128.57, 126.83 (t, J = 6.3 Hz), 124.43 (t, J = 2.3 Hz), 123.76, 123.25, 119.90 (t, J = 122.6 Hz), 114.96, 52.30, 47.44 (t, J = 26.4 Hz), 29.86, 27.27. <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  -89.08 (d, J = 245.9 Hz), -92.43 (d, J = 246.2 Hz). HRMS

(ESI) calcd for C<sub>19</sub>H<sub>16</sub>BrF<sub>2</sub>NO<sub>2</sub> [M+Na]<sup>+</sup>: 430.0025, found: 430.0017. **3-(2,2-difluoro-2-(4-methoxyphenyl)ethyl)-1,3-dimethylquinoline-2,4(1***H***,3***H***)-dione (3s)** 



Yellow liquid (51 mg, 71% yield). R<sub>f</sub> (Petroleum ether: Ethyl acetate=10:1): 0.11. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.09-8.06 (m, 1H), 7.67-7.62 (m, 1H), 7.30-7.26 (m, 2H), 7.21-7.15 (m, 2H), 6.81 (d, *J* = 8.8 Hz, 2H), 3.78 (s, 3H), 3.44 (s, 3H), 3.11-3.02 (m, 2H), 1.50 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  195.69, 172.70, 160.65, 143.34, 136.29, 129.11, 128.85 (t, *J* = 26.6 Hz), 126.50 (t, *J* = 6.3 Hz), 123.03, 121.74 (t, *J* = 244.4 Hz), 114.84, 113.99, 113.52, 55.31, 52.17, 48.05 (t, *J* = 27.1 Hz), 29.77, 27.06.<sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>)  $\delta$  -87.33 (d, *J* = 243.9 Hz), -90.92 (d, *J* = 243.9 Hz). HRMS (ESI) calcd for C<sub>20</sub>H<sub>19</sub>F<sub>2</sub>NO<sub>3</sub> [M+Na]<sup>+</sup>: 382.1225, found: 382.1219.

3-(2-(3,5-dimethylphenyl)-2,2-difluoroethyl)-1,3-dimethylquinoline-2,4(1H,3H)-dione (3t)



Colourless liquid (45.7 mg, 64 % yield). R<sub>f</sub> (Petroleum ether: Ethyl acetate=10:1): 0.15. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.09-8.07 (m, 1H), 7.66-7.61 (m, 1H), 7.20-7.14 (m, 2H), 6.95 (s, 3H), 3.43 (s, 3H), 3.08-2.96 (m, 2H), 2.24 (s, 6H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  195.72, 172.79, 143.42, 138.08, 136.49 (t, J = 25.5 Hz), 136.33, 131.46 (t, J = 1.6 Hz), 128.52, 124.26, 123.10, 122.71 (t, J = 6.3 Hz), 121.82, 119.66, 114.91, 52.15, 48.21 (t, J = 26.6 Hz), 29.82, 27.22, 21.29. <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  -89.27 (d, J = 241.8 Hz), -92.83 (d, J = 242.5 Hz). HRMS (ESI) calcd for C<sub>21</sub>H<sub>21</sub>F<sub>2</sub>NO<sub>2</sub> [M+Na]<sup>+</sup>: 380.1433, found: 380.1437.

3-(2,2-difluoro-2-(pyridin-2-yl)ethyl)-1,3-dimethylquinoline-2,4(1*H*,3*H*)-dione (3u)



Colourless liquid (23 mg, 35% yield).  $R_f$  (Petroleum ether: Ethyl acetate=5:1): 0.09. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.52 (d, J = 4.7 Hz, 1H), 8.07-8.05 (m, 1H), 7.73-7.63 (m, 2H), 7.44 (d, J = 7.9 Hz, 1H), 7.32-7.27 (m, 1H), 7.19 (t, J = 7.4 Hz, 2H), 3.46 (s, 3H), 3.35-3.25 (m, 2H), 1.53 (s, 2H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  195.54, 172.80, 149.17, 143.36, 136.98, 136.24, 128.58, 124.77, 123.09, 120.08, 119.64 (t, J = 4.8 Hz), 114.87, 77.41, 77.09, 76.78, 52.40, 44.45 (t, J = 24.4 Hz), 29.88, 27.08. <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  -92.22 (d, J = 254.8 Hz), -93.91 (d, J = 254.9 Hz). HRMS (ESI) calcd for C<sub>18</sub>H<sub>16</sub>F<sub>2</sub>N<sub>2</sub>O<sub>2</sub> [M+Na]<sup>+</sup>: 353.1072, found: 353.1077.

3-(2,2-difluoropropyl)-1,3-dimethylquinoline-2,4(1*H*,3*H*)-dione (3v)



White soild (31 mg, 56% yield).  $R_f$  (Petroleum ether: Ethyl acetate=10:1): 0.13. mp 118-119 °C. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.09-8.07 (m, 1H), 7.66-7.61 (m, 1H), 7.21-7.17 (m, 2H), 3.49 (s, 3H), 2.88-2.81 (m, 2H), 1.55 (t, J = 18.7 Hz, 3H), 1.46 (s, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  195.78, 172.91, 143.28, 136.31, 128.48, 123.11, 122.91, 119.41, 114.91, 52.30, 45.85 (t, J = 24.0 Hz), 29.81, 26.88, 25.07 (t, J = 27.5 Hz). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  -84.09 (d, J = 241.3 Hz), -86.61 (d, J = 241.1 Hz). HRMS (ESI) calcd for C<sub>14</sub>H<sub>15</sub>F<sub>2</sub>NO<sub>2</sub> [M+Na]<sup>+</sup>: 290.0963, found: 290.0957.

3-(2,2-difluoroethyl)-1,3-dimethylquinoline-2,4(1*H*,3*H*)-dione (3w)



Yellow liquid (14.6 mg, 29% yield).  $R_f$  (Petroleum ether: Ethyl acetate=10:1): 0.18. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.07-8.05 (m, 1H), 7.69 -7.64 (m, 1H), 7.23-7.18 (m, 2H), 5.91 (tt, *J* = 56.9, 5.1 Hz, 1H), 3.49 (s, 3H), 2.78-2.68 (m, 2H), 1.49 (s, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  195.54, 172.49, 143.06, 136.47, 128.56, 123.38, 119.35, 115.33 (t, *J* = 239.9 Hz), 114.96, 53.15, 39.54 (t, *J* = 22.4 Hz), 26.85, 19.19. <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  -115.17 (d, *J* = 18.8 Hz). HRMS (ESI) calcd for C<sub>13</sub>H<sub>13</sub>F<sub>2</sub>NO<sub>2</sub> [M+Na]<sup>+</sup>: 276.0807, found: 276.0812.

3-(2,2-difluoro-2-phenoxyethyl)-1,3-dimethylquinoline-2,4(1*H*,3*H*)-dione (3x)



Colourless liquid (31 mg, 45% yield).  $R_f$  (Petroleum ether: Ethyl acetate=10:1): 0.15. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.13-8.11 (m, 1H), 7.68-7.60 (m, 1H), 7.22-7.15 (m, 4H), 7.12-7.07 (m, 1H), 6.77 (d, J = 7.7 Hz, 2H), 3.49 (s, 3H), 3.17-3.11 (m, 2H), 1.54 (s, 3H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>)  $\delta$  195.22, 172.52, 149.71, 143.30, 136.38, 129.15, 128.53, 125.53, 123.22, 121.58, 119.71, 114.90, 52.26, 44.22 (t, J = 29.7 Hz)., 29.84, 26.42. <sup>19</sup>F NMR (565 MHz, CDCl<sub>3</sub>)  $\delta$  -64.08 (d, J = 108.1 Hz). HRMS (ESI) calcd for C<sub>19</sub>H<sub>17</sub>F<sub>2</sub>NO<sub>3</sub> [M+Na]<sup>+</sup>: 368.1069, found: 368.1075.

# **VI. NMR Spectra of Products**

<sup>1</sup>H NMR spectrum of **3a** (400 MHz, CDCl<sub>3</sub>)



<sup>13</sup>C NMR spectrum of **3a** (150 MHz, CDCl<sub>3</sub>)





<sup>1</sup>H NMR spectrum of **3b** (400 MHz, CDCl<sub>3</sub>)



<sup>13</sup>C NMR spectrum of **3b** (100 MHz, CDCl<sub>3</sub>)



<sup>19</sup>F NMR spectrum of **3b** (376 MHz, CDCl<sub>3</sub>)





<sup>13</sup>C NMRpectrum of **3c** (100 MHz, CDCl<sub>3</sub>)





<sup>1</sup>H NMR spectrum of **3d** (400 MHz, CDCl<sub>3</sub>)



<sup>13</sup>C NMR spectrum of **3d** (100 MHz, CDCl<sub>3</sub>)



<sup>19</sup>F NMR spectrum of **3d** (376 MHz, CDCl<sub>3</sub>)







<sup>13</sup>C NMR spectrum of **3e** (100 MHz, CDCl<sub>3</sub>)





<sup>1</sup>H NMR spectrum of **3f** (400 MHz, CDCl<sub>3</sub>)







<sup>19</sup>F NMR spectrum of **3f** (376 MHz, CDCl<sub>3</sub>)











<sup>1</sup>H NMR spectrum of **3h** (400 MHz, CDCl<sub>3</sub>)







<sup>19</sup>F NMR spectrum of **3h** (377 MHz, CDCl<sub>3</sub>)





<sup>13</sup>C NMR spectrum of **3i** (100 MHz, CDCl<sub>3</sub>)





<sup>1</sup>H NMR spectrum of **3**j (400 MHz, CDCl<sub>3</sub>)



<sup>13</sup>C NMR spectrum of **3j** (100 MHz, CDCl<sub>3</sub>)







<sup>1</sup>H NMR spectrum of **3k** (400 MHz, CDCl<sub>3</sub>)



<sup>&</sup>lt;sup>13</sup>C NMR spectrum of **3k** (100 MHz, CDCl<sub>3</sub>)



<sup>19</sup>F NMR spectrum of **3k** (377 MHz, CDCl<sub>3</sub>)



<sup>1</sup>H NMR spectrum of **3l** (400 MHz, CDCl<sub>3</sub>)







<sup>1</sup>H NMR spectrum of **3m** (400 MHz, CDCl<sub>3</sub>)









<sup>1</sup>H NMR spectrum of **3n** (400 MHz, CDCl<sub>3</sub>)



<sup>13</sup>C NMR spectrum of **3n** (100 MHz, CDCl<sub>3</sub>)









<sup>13</sup>C NMR spectrum of **3o** (100 MHz, CDCl<sub>3</sub>)





<sup>1</sup>H NMR spectrum of **3p** (400 MHz, CDCl<sub>3</sub>)



<sup>13</sup>C NMR spectrum of **3p** (100 MHz, CDCl<sub>3</sub>)





35



<sup>13</sup>C NMR spectrum of **3q** (100 MHz, CDCl<sub>3</sub>)





<sup>1</sup>H NMR spectrum of **3r** (400 MHz, CDCl<sub>3</sub>)



<sup>13</sup>C NMR spectrum of **3r** (100 MHz, CDCl<sub>3</sub>)



<sup>19</sup>F NMR spectrum of 3r (471 MHz, CDCl<sub>3</sub>)





<sup>13</sup>C NMR spectrum of **3s** (100 MHz, CDCl<sub>3</sub>)







<sup>1</sup>H NMR spectrum of **3t** (400 MHz, CDCl<sub>3</sub>)









<sup>19</sup>F NMR spectrum of **3t** (471 MHz, CDCl<sub>3</sub>)



<sup>13</sup>C NMR spectrum of **3u** (100 MHz, CDCl<sub>3</sub>)





<sup>1</sup>H NMR spectrum of **3v** (500 MHz, CDCl<sub>3</sub>)





<sup>19</sup>F NMR spectrum of **3v** (471 MHz, CDCl<sub>3</sub>)





<sup>13</sup>C NMR spectrum of **3w** (125 MHz, CDCl<sub>3</sub>)





<sup>1</sup>H NMR spectrum of **3x** (400 MHz, CDCl<sub>3</sub>)







<sup>19</sup>F NMR spectrum of 3x (565 MHz, CDCl<sub>3</sub>)

