Supporting Information

Facile Construction of Peptidomimetics by Sequential C-S/C-N Bond Activation of Ugi-Adducts

Chao Liu,^a Liangliang Song,^{*,b} Vsevolod A. Peshkov,^{c,d} and Erik V. Van der Eycken^{*,a,e}

^aLaboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001, Leuven, Belgium

^bJiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University

°College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Dushu Lake Campus,

Suzhou 215123, P. R. China

^dDepartment of Chemistry, School of Sciences and Humanities, Nazarbayev University, 53 Kabanbay Batyr Ave, Nur-Sultan 010000, Republic of Kazakhstan

Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya Street 6, Moscow, 117198, Russia

Contents

1. General information	2
2. General procedure for the synthesis of Ugi adducts	2
3. Characterization of Ugi adducts	3
4. Copper-catalyzed reaction	13
5. Characterization of products	13
6. References	23
7. NMR Spectra	24

1. General information

Commercially available reagents were used without additional purification. Column chromatography was performed with silica gel (70-230 mesh). ¹H and ¹³C NMR spectra were recorded on a Bruker AM (300 or 400 MHz) spectrometer at ambient temperature using CDCl₃ or DMSO- d_6 or MeOH- d_4 as solvent. HRMS (ESI) spectrometry data were acquired on a quadrupole orthogonal acceleration time-of-flight mass spectrometer [Synapt G2 high definition mass spectrometer (HDMS), Waters, Milford, MA]. Samples were infused at 3 µL min⁻¹, and spectra were obtained in the positive ionization mode with a resolution of 15000 [full width at half maximum (FWHM)] with leucine encephalin as lock mass. Melting points were recorded on a Reichert Thermovar apparatus and were uncorrected.

2. General procedure for the synthesis of Ugi adducts

To a solution of aldehyde (For the HCHO: formaldehyde solution 37 wt. % in H₂O was used) (1.0 mmol, 1.0 equiv) in MeOH (1.0 mL) were added successively amine (1.2 mmol, 1.2 equiv), acid (1.2mmol, 1.2 equiv) and isonitrile (1.2 mmol, 1.2 equiv) in a screw capped vial equipped with a magnetic stir bar. The reaction mixture was stirred in an oil bath at 60 °C for 12 h in a closed vial. After completion of the reaction, the mixture was evaporated under reduced pressure to obtain residue which was purified by a silica gel column chromatography (eluent: *n*-heptane/ethyl acetate = 1:4 v/v) to afford the desired Ugi products **1** (when ammonia solution (7 N in methanol: 2.0 equiv) was used, TFE would be the solvent instead of MeOH).

3. Characterization of Ugi adducts

1a was obtained as a white solid. Yield 70% (243 mg). Melting point 171 – 173 °C. ¹H NMR (300 MHz, DMSO-*d*₆) δ 8.99 – 8.91 (m, 1H), 8.77 – 8.70 (m, 1H), 7.90 – 7.83 (m, 2H), 7.72 (d, *J* = 8.2 Hz, 2H), 7.58 – 7.52 (m, 1H), 7.51 – 7.44 (m, 2H), 7.39 (d, *J* = 8.0 Hz, 2H), 4.67 (d, *J* = 6.4 Hz, 2H), 3.83 (d, *J* = 5.9 Hz, 2H), 2.37 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 170.0, 167.1, 145.1, 135.4, 134.5, 132.0, 130.4, 129.1, 128.9,

128.0, 60.9, 43.0, 21.8.

HRMS (ESI, m/z) calcd for C₁₇H₁₈N₂O₄S ([M+Na]⁺): 369.0879, found 369.0861.

1b was obtained as a white solid. Yield 65% (275 mg). Melting point 265 – 267 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.39 – 9.32 (m, 1H), 8.74 (d, *J* = 8.1 Hz, 1H), 7.89 (d, *J* = 7.3 Hz, 2H), 7.57 – 7.51 (m, 1H), 7.50 – 7.40 (m, 6H), 7.39 – 7.33 (m, 3H), 7.20 (d, *J* = 8.0 Hz, 2H), 5.74 (d, *J* = 8.2 Hz, 1H), 4.83 – 4.76 (m, 1H), 4.67 – 4.59 (m, 1H), 2.28 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 170.7, 166.7, 144.9, 138.1, 135.0, 134.3, 132.1, 130.2 129.0, 128.9, 128.8, 128.4, 128.4, 60.7, 57.2, 21.7.

HRMS (ESI, m/z) calcd for $C_{23}H_{22}N_2O_4S$ ([M+Na]⁺): 445.1192, found 445.1186.

1c was obtained as a yellow solid according to literature [1]

1d was obtained as a white solid. Yield 75% (357 mg). Melting point 175 – 177 °C. ¹H NMR (300 MHz, DMSO-*d*₆) δ 8.98 – 8.89 (m, 1H), 8.72 – 8.63 (m, 1H), 7.88 (d, *J* = 7.9 Hz, 1H), 7.81 (d, *J* = 7.9 Hz, 1H), 7.71 (d, *J* = 8.0 Hz, 2H), 7.47 – 7.42 (m, 1H), 7.39 (d, *J* = 8.0 Hz, 2H), 7.32 (d, *J* = 8.1 Hz, 2H), 4.67 (d, *J* = 6.4 Hz, 2H), 4.17 (d, *J* = 5.1 Hz, 2H), 3.82 (d, *J* = 5.6 Hz, 2H), [2.37 (s), 2.28 (s), 3H], [1.39 (s), 1.30 (s), 9H]. Mixture of rotamers (~6.5:1). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 171.8, 168.7, 168.5, 145.3, 136.5, 136.1, 135.2, 130.3, 129.1, 129.0, 127.1, 60.6, 53.1, 51.2, 48.5, 47.5, 21.7. Major rotamer. HRMS (ESI, m/z) calcd for $C_{23}H_{29}N_3O_6S$ ([M+Na]⁺): 498.1669, found 498.1680.

1e was obtained as a white solid. Yield 60% (331 mg). Melting point 226 – 228 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.34 – 9.29 (m, 1H), 8.63 (d, *J* = 8.1 Hz, 1H), 7.83 (d, *J* = 8.0 Hz, 2H), 7.51 – 7.46 (m, 2H), 7.43 – 7.38 (m, 3H), 7.37 – 7.33 (m, 3H), 7.31 (d, *J* = 8.1 Hz, 2H), 7.20 (d, *J* = 8.2 Hz, 2H), 5.72 (d, *J* = 8.1 Hz, 1H), 4.82 – 4.75 (m, 1H), 4.67 – 4.57 (m, 1H), 4.17 (d, *J* = 6.2 Hz, 2H), 2.29 (s, 3H), 1.39 (s, 9H).

¹³C NMR (101 MHz, DMSO-*d*₆) δ 170.7, 166.5, 156.4, 144.9, 144.4, 138.1, 135.0, 132.7, 130.1,
128.9, 128.8, 128.3, 127.1, 78.5, 60.7, 57.1, 43.8, 28.8, 21.6.
HRMS (ESI, m/z) calcd for C₂₉H₃₃N₃O₆S ([M+Na]⁺): 574.1982, found 574.1962.

1f was obtained as a white solid. Yield 72% (268 mg). Melting point 134 – 136 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.00 – 8.93 (m, 1H), 8.33 – 8.27 (m, 1H), 7.74 (d, *J* = 8.1 Hz, 2H), 7.46 – 7.40 (m, 4H), 7.35 (d, *J* = 7.5 Hz, 2H), 5.77 (s, 1H), 5.68 (s, 1H), 4.72 (d, *J* = 6.3 Hz, 2H), 3.82 – 3.75 (m, 2H), 2.38 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 169.8, 169.1, 145.4, 145.2, 137.2, 135.4, 130.5, 129.1, 128.9,

128.8, 127.9, 118.9, 60.9, 42.6, 21.8.

HRMS (ESI, m/z) calcd for $C_{19}H_{20}N_2O_4S$ ([M+Na]⁺): 395.1036, found 395.1029.

1g was obtained as a yellow solid. Yield 20% (119 mg). Melting point 164 – 166 °C.

¹H NMR (400 MHz, DMSO- d_6) δ 9.07 – 9.02 (m, 1H), 8.44 – 8.39 (m, 1H), 8.24 – 8.12 (m, 2H), 7.78 – 7.64 (m, 2H), 7.41 (d, J = 8.1 Hz, 1H), 7.38 – 7.31 (m, 2H), 4.70 (d, J = 6.5 Hz, 2H), [3.98 (d, J = 6.3 Hz), 3.83 (d, J = 5.8 Hz), 4H], [2.64 (s), 2.59 (s), 3H], [2.38 (s,), 2.29 (s), 3H] 2.12 – 2.05 (m, 1H), 1.02 (s, 3H), 1.00 (s, 3H). Mixture of rotamers (~1.5:1). ¹³C NMR (101 MHz, DMSO- d_6) δ 169.6, 164.6, 162.5, 161.8, 155.9, 145.2, 135.3, 133.5, 131.8, 130.4, 129.1, 126.8, 126.1, 116.1, 114.6, 102.2, 75.7, 60.9, 43.0, 28.2, 21.8, 19.4, 17.7. Major rotamer.

HRMS (ESI, m/z) calcd for C₂₆H₂₈N₄O₅S₂ ([M+Na]⁺): 563.1393, found 563.1397.

1h was obtained as a yellow solid. Yield 76% (387 mg). Melting point 109 – 111 °C.

¹H NMR (400 MHz, CDCl₃) δ [8.13 (d, J = 8.1 Hz), 7.92 (d, J = 8.5 Hz), 2H], 7.98 – 7.93 (m, 1H), [7.86 (d, J = 8.4 Hz), 7.80 (d, J = 8.3 Hz), 2H], 7.72 (d, J = 8.2 Hz, 2H), 7.67 – 7.63 (m, 1H), [7.32 (d, J = 8.0 Hz), 7.25 (d, J = 8.3 Hz), 2H], 4.68 (d, J = 6.7 Hz, 2H), 4.14 (d, J = 5.4 Hz, 2H), [3.12 – 3.08 (m), 3.07 – 3.03 (m), 4H], [2.41 (s), 2.34 (s), 3H], [1.59 – 1.54 (m), 1.53 – 1.46 (m), 4H], [0.88 – 0.85 (m), 0.84 – 0.80 (m), 6H]. Mixture of rotamers (~6.5:1). ¹³C NMR (101 MHz, CDCl₃) δ 166.7, 145.7, 143.4, 136.6, 133.8, 130.2, 128.8, 128.2, 127.3,

60.6, 50.1, 43.7, 22.0, 21.8, 11.2. Major rotamer.

HRMS (ESI, m/z) calcd for $C_{23}H_{31}N_3O_6S_2$ ([M+Na]⁺): 532.1546, found 532.1560.

1i was obtained as a brown solid. Yield 85% (371 mg). Melting point 144 – 146 °C. ¹H NMR (400 MHz, CDCl₃) δ [8.02 (d, J = 7.5 Hz), 7.76 (d, J = 7.7 Hz), 2H], 7.95 – 7.83 (m, 1H), 7.46 (d, J = 6.8 Hz, 1H), 7.43 – 7.37 (m, 2H), 7.35 (d, J = 7.0 Hz, 2H), 7.32 (d, J = 7.2 Hz, 2H), 7.27 (d, J = 8.0 Hz, 4H), 7.11 (d, J = 6.2 Hz, 1H), 4.64 (d, J = 6.5 Hz, 2H), [4.55 (s), 4.47 (s), 2H], [4.00 (s), 3.69 (s), 2H], 2.39 (s, 3H). Mixture of rotamers (~5.7:1). ¹³C NMR (101 MHz, CDCl₃) δ 173.2, 168.6, 145.3, 135.6, 134.7, 134.3, 130.5, 130.0, 129.1, 128.9, 128.7, 128.1, 127.1, 60.4, 54.0, 48.4, 21.8. Major rotamer. HRMS (ESI, m/z) calcd for C₂₄H₂₄N₂O₄S ([M+Na]⁺): 459.1349, found 459.1353.

1j was obtained as a white solid. Yield 76% (355 mg). Melting point 74 –76 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.86 – 7.73 (m, 3H), 7.51 – 7.45 (m, 2H), 7.44 – 7.36 (m, 4H), 7.30 (d, *J* = 8.1 Hz, 2H), 7.10 – 7.00 (m, 1H), 6.89 – 6.86 (m, 2H), 4.66 (d, *J* = 6.7 Hz, 2H), 4.43 (s, 2H), 4.02 (s, 2H), 3.79 (s, 3H), 2.42 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 173.0, 168.6, 159.4, 145.2, 135.0, 134.3, 133.2, 130.3, 130.0,
128.9, 128.6, 128.5, 127.0, 114.4, 60.4, 55.3, 53.4, 48.0, 21.7.

HRMS (ESI, m/z) calcd for $C_{25}H_{26}N_2O_5S$ ([M+Na]⁺): 467.1635, found 467.1654.

1k was obtained as a white solid. Yield 68% (320 mg). Melting point 172 – 174 °C.

¹H NMR (400 MHz, DMSO- d_6) δ 9.01 (s, 1H), 7.71 (d, J = 6.7 Hz, 2H), 7.42 (s, 7H), 7.36 – 7.28 (m, 3H), 7.21 – 7.12 (m, 1H), 4.72 (s, 2H), [4.40 (s), 4.31 (s), 2H], [3.90 (s), 3.72 (s), 2H], 2.41 (s, 3H). Mixture of rotamers (~1.5:1).

¹³C NMR (101 MHz, DMSO-*d*₆) δ 171.8, 168.7, 145.3, 136.5, 136.1, 135.2, 132.5, 130.3, 130.3, 129.2, 129.1, 129.0, 127.1, 60.7, 53.1, 51.2, 48.5, 47.5, 21.7. Mixture of rotamers HRMS (ESI, m/z) calcd for C₂₄H₂₃ClN₂O₄S ([M+Na]⁺): 493.0959, found 493.0936.

1I was obtained as a white solid. Yield 68% (290 mg). Melting point 152 – 154 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, *J* = 7.9 Hz, 2H), 7.64 – 7.54 (m, 3H), 7.48 – 7.38 (m, 5H), 7.29 (d, *J* = 8.0 Hz, 2H), 6.34 – 6.32 (m, 1H), 6.21 (s, 1H), 4.65 (d, *J* = 6.7 Hz, 2H), 4.37 (s, 1H), 4.03 (s, 1H), 2.40 (s, 3H).

³C NMR (101 MHz, CDCl₃) δ 172.9, 168.5, 149.0, 145.4, 143.3, 134.2, 130.6, 130.1, 128.9, 128.7, 127.5, 110.6, 109.7, 60.4, 48.4, 47.3, 21.8.

HRMS (ESI, m/z) calcd for $C_{22}H_{22}N_2O_5S$ ([M+Na]⁺): 449.1142, found 449.1139.

1m was obtained as a brown solid. Yield 45% (199 mg). Melting point 136 – 138 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.11 (t, J = 6.5 Hz, 1H), [8.04 – 7.92 (m), 7.79 – 7.58 (m), 3H], 7.53 – 7.38 (m, 7H), 7.29 (d, J = 7.4 Hz, 1H), 7.05 – 6.99 (m, 1H), 4.75 (d, J = 6.5 Hz, 2H), [4.53 (s), 4.44 (s), 2H], [3.93 (s), 3.73 (s), 2H], [2.41 (s), 2.39 (s), 3H]. Mixture of rotamers (~6:1).

¹³C NMR (101 MHz, DMSO-*d*₆) *δ* 171.3, 168.7, 145.3, 139.5, 135.9, 135.2, 133.4, 130.4, 129.8, 129.1, 127.9, 127.1, 60.7, 50.6, 44.0, 21.7. Major rotamer.

HRMS (ESI, m/z) calcd for C₂₂H₂₂N₂O₄S₂ ([M+Na]⁺): 465.0913, found 465.0919.

1n was obtained as a white solid. Yield 78% (292 mg). Melting point 120 – 122 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.90 – 7.85 (m, 1H), 7.82 – 7.73 (m, 2H), 7.44 (s, 5H), 7.34 – 7.27 (m, 2H), 4.67 (d, *J* = 6.9 Hz, 2H), 4.07 (s, 2H), 3.33 – 3.18 (m, 2H), 2.39 (s, 3H), 1.07 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 173.1, 169.1, 160.5, 145.4, 135.3, 134.4, 130.0, 128.9, 128.7, 126.8, 60.4, 49.1, 45.6, 21.8, 13.7.

HRMS (ESI, m/z) calcd for $C_{19}H_{22}N_2O_4S$ ([M+Na]⁺): 397.1192, found 397.1183.

1o was obtained as a yellow solid. Yield 40% (195 mg). Melting point 74 – 76 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, *J* = 6.9 Hz, 1H), 7.78 (d, *J* = 7.5 Hz, 2H), 7.42 – 7.37 (m, 5H), 7.29 – 7.25 (m, 2H), 4.67 (d, *J* = 6.1 Hz, 2H), 4.26 – 3.61 (m, 2H), 3.38 – 3.08 (m, 2H), 2.37 (s, 3H), 1.49 – 1.41 (m, 2H), 1.28 – 1.24 (m, 4H), 1.23 – 1.14 (m, 8H), 1.09 – 1.02 (m, 2H), 0.86 (t, *J* = 6.9 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 172.9, 168.9, 145.1, 135.3, 134.3, 129.8, 128.8, 128.5, 126.7,
67.0, 60.4, 50.7, 49.0, 31.8, 29.4, 29.2, 28.9, 28.1, 26.4, 22.6, 21.7, 14.1.

HRMS (ESI, m/z) calcd for C₂₇H₃₈N₂O₄S ([M+Na]⁺): 509.2444, found 509.2447.

1p was obtained as a brown solid. Yield 45% (180 mg). Melting point 136 – 138 °C.). Mixture of rotamers (~6:1).

¹H NMR (400 MHz, CDCl₃) δ 8.04 – 7.85 (m, 1H), 7.80 – 7.75 (m, 2H), 7.43 – 7.38 (m, 5H), 7.28 (d, *J* = 8.0 Hz, 2H), 5.54 – 5.44 (m, 1H), 5.11 – 4.90 (m, 2H), 4.67 (d, *J* = 6.5 Hz, 2H), 4.25 – 3.68 (m, 2H), 3.29 – 3.19 (m, 2H), [2.41 (s), 2.38 (s), 3H], 2.23 – 2.16 (m, 2H). Major rotamer. ¹³C NMR (101 MHz, CDCl₃) δ 173.2, 168.9, 145.3, 135.2, 134.2, 133.8, 130.0, 128.9, 128.7, 126.8, 117.8, 60.4, 50.2, 49.4, 32.7, 21.8. Major rotamer.

HRMS (ESI, m/z) calcd for C₂₁H₂₄N₂O₄S ([M+Na]⁺): 423.1349, found 423.1335.

1q was obtained as a yellow oil. Yield 52% (225 mg).

1H NMR (400 MHz, CDCl₃) δ 7.80 – 7.74 (m, 3H), 7.44 – 7.35 (m, 5H), 7.32 – 7.28 (m, 2H), 4.72 – 4.61 (m, 2H), 4.05 (s, 2H), [3.73 – 3.70 (m), 3.57 – 3.51 (m), 2H], 3.62 (s, 3H), 2.66 – 2.66 – 2.44 (m, 2H), [2.42 (s), 2.41 (s), 3H]. Mixture of rotamers (~9:1). 13C NMR (101 MHz, CDCl₃) δ 173.0, 172.6, 171.2, 168.7, 160.4, 145.7, 145.5, 145.4, 135.1,

134.3, 133.7, 130.3, 130.1, 130.0, 128.9, 128.9, 128.8, 126.8, 60.5, 60.3, 58.8, 58.6, 55.1, 52.2, 52.0, 50.6, 32.6, 21.8. Mixture of rotamers.

HRMS (ESI, m/z) calcd for $C_{21}H_{24}N_2O_6S$ ([M+Na]+): 455.1247, found 455.1248.

1r was obtained as a brown solid. Yield 70% (292 mg). Melting point 103 – 105 °C.

¹H NMR (400 MHz, DMSO- d_6) δ 9.07 – 9.00 (m, 1H), 7.99 – 7.57 (m, 2H), 7.53 – 7.35 (m, 5H), 7.33 – 7.22 (m, 2H), 4.75 – 4.69 (m, 2H), [4.00 (s), 3.78 (s), 2H], [3.20 – 3.14 (m), 3.05 – 2.97 (m), 2H], 2.39 (d, J = 12.2 Hz, 3H), 1.62 – 1.44 (m, 1H), [1.41 – 1.35 (m), 1.30 – 1.25 (m), 2H], [0.91 (d, J = 6.3 Hz), 0.64 (d, J = 4.7 Hz), 6H]. Mixture of rotamers (~1:1). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 171.4, 171.4, 169.1, 168.9, 145.3, 145.1, 137.0, 136.8, 135.2, 130.4, 129.9, 129.9, 129.2, 129.2, 129.0, 129.0, 128.9, 127.0, 60.8, 60.6, 51.5, 48.6, 47.8, 44.5, 37.1, 35.7, 26.2, 25.7, 23.1, 22.7, 21.8. Mixture of rotamers.

HRMS (ESI, m/z) calcd for $C_{22}H_{28}N_2O_4S$ ([M+Na]⁺): 439.1662, found 439.1660.

1s was obtained as a white solid. Yield 77% (373 mg). Melting point 52 – 54 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.88 – 7.82 (m, 1H), 7.78 (d, *J* = 7.9 Hz, 2H), 7.46 – 7.39 (m, 5H), 7.28 (d, *J* = 8.1 Hz, 2H), 4.67 (d, *J* = 6.6 Hz, 2H), 4.06 (s, 2H), 3.20 – 3.11 (m, 2H), 2.39 (s, 3H), 1.57 – 1.46 (m, 5H), 1.45 – 1.36 (m, 6H), 1.34 – 1.22 (m, 4H), 1.16 – 1.04 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 173.2, 169.1, 145.3, 135.2, 134.4, 130.0, 128.9, 128.6, 126.8, 60.4, 49.7, 49.5, 36.4, 35.1, 32.0, 27.2, 26.1, 25.3, 21.8.

HRMS (ESI, m/z) calcd for $C_{27}H_{36}N_2O_4S$ ([M+Na]⁺): 507.2288, found 507.2303.

1t was obtained as a yellow solid. Yield 62% (248 mg). Melting point 99 – 101 °C.

1H NMR (400 MHz, CDCl₃) δ 8.39 – 7.90 (m, 2H), 7.85 – 7.61 (m, 2H), [7.57 – 7.33 (m), 7.25 – 7.19 (m), 6H], 4.69 (s, 2H), [4.27 (s), 3.93 (s), 2H], 3.36 – 2.96 (m, 2H), 2.34 (s, 3H), [1.38 – 1.14 (m), 1.01 – 0.59 (m), 1H], 0.49 – 0.39 (m, 2H), 0.21 – -0.04 (m, 2H). Mixture of rotamers (~3:1).

¹³C NMR (101 MHz, CDCl₃) δ 172.6, 169.3, 168.9, 145.3, 145.1, 135.1, 134.0, 132.9, 130.2, 129.8, 128.7, 128.7, 128.6, 128.4, 128.2, 126.8, 60.3, 58.8, 54.9, 48.3, 45.4, 21.5, 9.4, 8.4, 3.6.
Mixture of rotamers (~3:1).

HRMS (ESI, m/z) calcd for C₂₁H₂₄N₂O₄S ([M+Na]⁺): 423.1349, found 423.1335.

1u was obtained as a brown solid. Yield 56% (232 mg). Melting point 165 – 167 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.04 – 7.87 (m, 1H), 7.78 – 7.70 (m, 2H), 7.41 – 7.33 (m, 5H), 7.28 – 7.23 (m, 2H), [4.66 (d, J = 6.7 Hz), 4.60 (d, J = 6.9 Hz), 2H], [4.01 (s), 3.92 (s), 2H], [2.38 (s), 2.35 (s), 3H], 2.36 (s, 1H), 1.75 – 1.52 (m, 4H), 1.46 – 1.15 (m, 4H). Mixture of rotamers (~9:1).

¹³C NMR (101 MHz, CDCl₃) δ 173.0, 169.7, 145.2, 134.3, 129.9, 129.9, 128.9, 128.8, 128.6, 126.6, 60.5, 58.9, 46.0, 29.8, 24.0, 21.7. Major rotamer.

HRMS (ESI, m/z) calcd for $C_{22}H_{26}N_2O_4S$ ([M+Na]⁺): 437.1505, found 437.1499.

1v was obtained as a yellow solid. Yield 50% (254 mg). Melting point 115 – 117 °C.

¹H NMR (400 MHz, MeOH- d_4) δ [8.05 – 7.99 (m), 7.74 – 7.70 (m), 2H], 7.48 – 7.32 (m, 6H), 7.28 – 7.25 (m, 2H), [4.64 (s), 4.53 (s), 2H], [4.00 (s), 3.96 (s), 2H], [3.22 (s), 2.45 (s), 3H], 2.18 – 2.14 (m, 1H), 1.99 (d, J = 11.6 Hz, 4H), 1.86 (d, J = 11.4 Hz, 2H), 1.41 (d, J = 11.8 Hz, 2H), 1.31 (d, J = 12.2 Hz, 2H), 1.22 – 1.12 (m, 2H), 0.87 (s, 6H). Mixture of rotamers (~6:1). ¹³C NMR (101 MHz, DMSO-*d*) δ 173.0, 172.9, 171.5, 170.7, 145.1, 140.2, 140.1, 135.6, 130.4, 129.9, 129.1, 129.1, 128.9, 128.9, 128.8, 126.2, 79.8, 71.0, 60.4, 55.6, 50.8, 50.6, 49.8, 49.6, 45.3, 45.1, 42.9, 42.8, 37.8, 33.0, 33.0, 31.0, 30.9, 30.7, 21.8. Mixture of rotamers (~6:1). HRMS (ESI, m/z) calcd for $C_{29}H_{36}N_2O_4S$ ([M+Na]⁺): 531.2288, found 531.2285.

4. Copper-catalyzed reaction

1 (0.1 mmol, 1.0 equiv), CsOAc (0.2 mmol, 2.0 equiv) and $Cu(OAc)_2$ (0.2 mmol, 2.0 equiv) were placed to the screw cap vial followed by addition of 1,4-dioxane (1.0 mL) The resulting mixture was sealed and stirred in an oil bath at 120 °C for 8 h. After completion of the reaction, the mixture was evaporated under reduced pressure to obtain residue which was purified by a silica gel column chromatography (eluent: DCM/MeOH = 20:1 v/v) to afford the desired products **2**.

5. Characterization of products

2a was obtained as a white solid. Yield 80% (14.3 mg). Melting point 210 – 212 °C.

¹H NMR (400 MHz, DMSO- d_6) δ 8.68 – 8.62 (m, 1H), 7.90 – 7.87 (m, 2H), 7.56 – 7.51 (m, 1H),

7.49 – 7.44 (m, 2H), 7.38 (s, 1H), 7.04 (s, 1H), 3.82 (d, J = 5.9 Hz, 2H).

¹³C NMR (101 MHz, DMSO-*d*₆) δ 171.7, 167.0, 134.7, 131.9, 128.9, 128.0, 43.1.

HRMS (ESI, m/z) calcd for C₉H₁₀N₂O₂ ([M+Na]⁺): 201.0634, found 201.0630.

2b was obtained as a white solid. Yield 50% (12.7 mg). Melting point 180 – 182 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.69 (d, J = 7.9 Hz, 1H), 7.97 – 7.86 (m, 2H), 7.74 – 7.63 (m, 1H), 7.59 – 7.49 (m, 3H), 7.49 – 7.41 (m, 2H), 7.41 – 7.26 (m, 3H), 7.25 – 7.17 (m, 1H), 5.63 (d, J = 8.0 Hz, 1H).

¹³C NMR (101 MHz, DMSO-*d*₆) δ 172.3, 166.6, 139.4, 134.6, 132.0, 128.9, 128.8, 128.2, 128.1, 128.1, 57.4.

HRMS (ESI, m/z) calcd for C₁₅H₁₄N₂O₂ ([M+Na]⁺): 277.0947, found 277.0944.

2c was obtained as a yellow solid. Yield 58% (20.6 mg). Melting point 145 – 147 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.86 (d, *J* = 7.3 Hz, 3H), 7.63 – 7.59 (m, 3H), 7.54 – 7.46 (m, 2H), 7.42 (d, *J* = 7.7 Hz, 2H), 7.40 – 7.36 (m, 4H), 7.34 – 7.29 (m, 1H), 6.24 (s, 1H), 6.18 (d, *J* = 6.0 Hz, 1H), 5.63 (s, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 171.6, 166.4, 139.9, 133.8, 133.2, 131.9, 131.8, 129.5, 129.2,
128.7, 128.7, 128.4, 127.3, 127.0, 122.4, 121.9, 95.8, 87.3, 55.9.

HRMS (ESI, m/z) calcd for C₂₃H₁₈N₂O₂ ([M+Na]⁺): 377.1260, found 377.1269.

2d was obtained as a white solid. Yield 62% (19 mg). Melting point 134 – 136 °C.

1H NMR (400 MHz, DMSO-*d*₆) δ 8.60 (t, J = 5.9 Hz, 1H), 7.86 – 7.80 (m, 2H), 7.44 (t, J = 6.2 Hz, 1H), 7.39 – 7.24 (m, 3H), 7.02 (s, 1H), 4.17 (d, J = 6.2 Hz, 2H), 3.80 (d, J = 5.9 Hz, 2H), 1.39 (s, 9H).

¹³C NMR (101 MHz, DMSO-*d*₆) δ 171.7, 166.8, 156.5, 144.2, 133.2, 128.0, 127.2, 78.6, 43.8, 43.0, 28.9.

HRMS (ESI, m/z) calcd for C₁₅H₂₁N₃O₄ ([M+H]⁺): 308.1605, found 308.1590.

2e was obtained as a white solid. Yield 50% (19.2 mg). Melting point 95 – 97 °C.

¹H NMR (300 MHz, CDCl₃) δ 7.79 – 7.74 (m, 2H), 7.61 (d, *J* = 6.5 Hz, 1H), 7.50 – 7.45 (m, 2H), 7.39 – 7.33 (m, 3H), 7.33 – 7.30 (m, 2H), 6.06 (s, 1H), 5.76 – 5.72 (m, 1H), 5.69 (d, *J* = 6.5 Hz, 1H), 4.99 (s, 1H), 4.33 (d, *J* = 6.1 Hz, 2H), 1.45 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) *δ* 172.4, 169.4, 166.6, 156.1, 143.3, 138.0, 132.8, 129.3, 127.9, 127.7, 127.6, 79.9, 57.3, 44.4, 28.5.

HRMS (ESI, m/z) calcd for C₂₁H₂₅N₃O₄ ([M+Na]⁺): 406.1737, found 406.1735.

2f was obtained as a white solid. Yield 52% (10.6 mg). Melting point 79 – 81 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.35 (m, 5H), 6.67 (s, 1H), 6.55 (s, 1H), 6.12 (s, 1H), 5.88

(s, 1H), 5.66 (s, 1H), 4.03 (d, *J* = 4.9 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 171.3, 168.1, 144.2, 136.7, 128.9, 128.2, 43.3.

HRMS (ESI, m/z) calcd for C₁₁H₁₂N₂O₂ ([M+Na]⁺): 227.0791, found 227.0813.

2g was obtained as a yellow solid. Yield 53% (20 mg). Melting point 168 – 170 °C. 1H NMR (400 MHz, DMSO-*d*₆) δ 8.32 – 8.28 (m, 1H), 8.24 (d, J = 2.3 Hz, 1H), 8.20 – 8.16 (m, 1H), 7.44 – 7.35 (m, 2H), 7.07 (s, 1H), 4.00 (d, J = 6.5 Hz, 2H), 3.80 (d, J = 5.8 Hz, 2H), 2.63 (s, 3H), 2.13 – 2.06 (m, 1H), 1.03 (s, 3H), 1.01 (s, 3H).

¹³C NMR (101 MHz, DMSO-*d*₆) δ 171.1, 164.5, 162.5, 161.7, 155.6, 133.5, 131.9, 127.1, 126.2,
116.1, 114.6, 102.2, 75.7, 43.1, 28.2, 19.4, 17.7.

HRMS (ESI, m/z) calcd for $C_{18}H_{20}N_4O_3S$ ([M+H]⁺): 373.1329, found 373.1330.

2h was obtained as a white solid. Yield 66% (22.6 mg). Melting point 120 – 122 °C.
¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, J = 7.1 Hz, 2H), 7.83 (d, J = 6.6 Hz, 2H), 7.57 (s, 1H),
6.53 (s, 1H), 6.10 (s, 1H), 4.13 (s, 2H), 3.12 – 3.03 (m, 4H), 1.56 – 1.50 (m, 4H), 0.85 (t, J = 6.1 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 171.5, 166.6, 143.4, 137.0, 128.1, 127.4, 50.1, 43.4, 22.1, 11.3. HRMS (ESI, m/z) calcd for $C_{15}H_{23}N_3O_4S$ ([M+H]⁺): 342.1482, found 342.1470.

2i was obtained as a yellow solid. Yield 55% (14.8 mg). Melting point 109 – 111 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, J = 7.3 Hz, 2H), 7.46 – 7.28 (m, 7H), 7.23 – 7.15 (m, 1H), [6.36 (s), 5.85 (s), 1H], [5.64 (s), 5.54 (s), 1H], [4.83 (s), 4.66 (s), 2H], [4.09 (s), 3.81 (s), 2H] Mixture of rotamers (~7:3).

¹³C NMR (101 MHz, CDCl₃) δ 173.0, 171.0, 130.4, 129.1, 128.8, 128.1, 127.2, 127.0, 54.2,
48.7. Major rotamer.

HRMS (ESI, m/z) calcd for $C_{16}H_{16}N_2O_2$ ([M+H]⁺): 269.1285, found 269.1275.

2j was obtained as a yellow solid. Yield 85% (25.4 mg). Melting point 158 - 160 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, J = 6.9 Hz, 2H), 7.43 - 7.36 (m, 4H), 7.10 - 7.07 (m, 1H), 6.88 - 6.85 (m, 2H), [6.46 (s), 6.20 (s), 1H], [5.98 (s), 5.83 (s), 1H], 4.72 (d, J = 6.4 Hz, 1H), 4.57 (s, 2H), 4.05 (s, 1H), 3.79 (s, 3H). Mixture of rotamers (~7:3). ¹³C NMR (101 MHz, CDCl₃) δ 172.9, 171.3, 159.4, 130.3, 128.7, 128.7, 127.0, 114.4, 55.4, 53.7, 48.4. Major rotamer.

2k was obtained as a white solid. Yield 84% (25.5 mg). Melting point 161 – 163 °C.
¹H NMR (400 MHz, DMSO-*d*₆) δ 7.54 – 7.30 (m, 8H), [7.25 (s), 7.23 (s), 1H], [7.13 (s), 7.09 (s),
1H], [4.61 (s), 4.48 (s), 2H], [3.89 (s), 3.68 (s), 2H]. Mixture of rotamers (~3:1).

¹³C NMR (101 MHz, DMSO-*d*₆) δ 172.1, 171.9, 170.2, 170.0, 136.9, 136.7, 136.5, 132.5, 130.4,
130.2, 129.4, 129.3, 129.1, 129.0, 127.2, 53.2, 51.3, 48.8, 47.7. Mixture of rotamers (~3:1).
HRMS (ESI, m/z) calcd for C₁₆H₁₅CIN₂O₂ ([M+Na]⁺): 325.0714, found 325.0710.

2I was obtained as a white solid. Yield 48% (12.4 mg). Melting point 161 – 163 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.66 – 7.54 (m, 2H), 7.50 – 7.36 (m, 5H), 6.38 – 6.32 (m, 1H), 6.28 (s, 1H), 5.65 (s, 1H), 4.55 (s, 2H), 4.11 (s, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 172.9, 171.1, 143.2, 130.5, 128.7, 127.5, 110.7, 109.9, 48.7,
47.5.

HRMS (ESI, m/z) calcd for C₁₄H₁₄N₂O₃ ([M+Na]⁺): 281.0897, found 281.0902.

$$Ph$$
 NH_2
 S $2m$ NH_2

2m was obtained as a yellow solid. Yield 78% (21.4 mg). Melting point 162 – 164 °C. ¹H NMR (400 MHz, CDCl₃) *δ* [8.11 – 7.99 (m), 7.50 – 7.16 (m), 5H], 7.65 – 7.51 (m, 1H), 7.05 – 6.84 (m, 2H), [6.46 (s), 6.38 (s), 1H], [6.10 (s), 5.92 (s), 1H], [4.89 (s), 4.75 (s), 2H], [4.11 (s), 3.84 (s), 2H]. Mixture of rotamers (~3:1).

¹³C NMR (101 MHz, CDCl₃) δ 172.7, 171.2, 138.8, 135.0, 130.4, 128.8, 127.2, 127.0, 125.9,
49.5, 48.0. Major rotamer.

HRMS (ESI, m/z) calcd for $C_{14}H_{14}N_2O_2S$ ([M+Na]⁺): 297.0668, found 297.0662.

2n was obtained as a white solid. Yield 98% (20.1 mg). Melting point 76 – 78 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.37 (m, 5H), 6.71 (s, 1H), 5.87 (s, 1H), 4.12 (s, 2H), 3.39 (s, 2H), 1.16 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 172.8, 172.0, 135.6, 130.1, 128.7, 126.7, 49.5, 45.8, 29.8, 13.9. HRMS (ESI, m/z) calcd for C₁₁H₁₄N₂O₂ ([M+Na]⁺): 229.0947, found 229.0946.

2o was obtained as a white solid. Yield 93% (30 mg). Melting point 148 – 150 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.51 – 7.32 (m, 5H), [6.77 (s), 6.64 (s), 1H], [6.25 (s), 6.02 (s), 1H], [4.11 (s), 3.86 (s), 2H], [3.50 – 3.25 (m), 3.23 – 3.08 (m), 2H], 1.67 – 1.43 (m, 2H), 1.34 – 1.20 (m, 6H), 1.20 – 0.97 (m, 8H), 0.86 (t, *J* = 6.9 Hz, 3H). Mixture of rotamers (~9:1). ¹³C NMR (101 MHz, CDCl₃) δ 172.8, 172.0, 135.6, 129.9, 128.6, 126.7, 51.1, 49.8, 31.9, 29.5, 29.5, 29.3, 29.1, 28.4, 26.5, 22.7, 14.2. Major rotamer.

HRMS (ESI, m/z) calcd for $C_{19}H_{30}N_2O_2$ ([M+Na]⁺): 341.2199, found 341.2193.

2p was obtained as a yellow solid. Yield 90% (21 mg). Melting point 210 – 212 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.51 – 7.36 (m, 5H), 6.64 (s, 1H), 5.56 (s, 2H), 5.03 (d, *J* = 9.6 Hz, 2H), 4.14 (s, 2H), 3.45 (s, 2H), 2.36 (s, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 173.1, 171.7, 135.5, 133.9, 130.2, 128.7, 126.9, 118.0, 50.7, 33.0, 29.8.

HRMS (ESI, m/z) calcd for $C_{13}H_{16}N_2O_2$ ([M+Na]⁺): 255.1104, found 255.1106.

2q was obtained as a white solid. Yield 77% (20.4 mg). Melting point 90 – 92 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.41 (s, 5H), 6.50 (s, 1H), 5.78 (s, 1H), 4.08 (s, 2H), 3.75 – 3.71 (m, 2H), 3.65 (s, 3H), 2.68 (s, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 173.0, 171.3, 171.3, 135.4, 130.2, 128.8, 126.8, 52.0, 32.9, 22.8,
14.2.

HRMS (ESI, m/z) calcd for $C_{13}H_{16}N_2O_4$ ([M+Na]⁺): 287.1002, found 287.1006.

2r was obtained as a white solid. Yield 98% (24.3 mg). Melting point 64 – 66 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.52 – 7.34 (m, 5H), 6.72 (s, 1H), 5.75 (s, 1H), 4.13 (s, 2H), 3.36 – 3.30 (m, 2H), 1.49 – 1.45 (m, 2H), 1.42 – 1.32 (m, 1H), 0.78 – 0.66 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 172.9, 172.1, 135.6, 130.1, 128.6, 126.8, 50.1, 49.8, 37.4, 25.8, 22.3.

HRMS (ESI, m/z) calcd for $C_{14}H_{20}N_2O_2$ ([M+Na]⁺): 271.1417, found 271.1423.

2s was obtained as a yellow solid. Yield 74% (23.4 mg).

¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.38 (m, 5H), 6.71 (s, 1H), 5.82 (s, 1H), 4.12 (s, 2H), 3.33 (s, 2H), 1.63 – 1.43 (m, 9H), 1.41 – 1.26 (m, 6H), 1.16 – 1.06 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 172.9, 172.0, 135.6, 130.1, 128.6, 126.8, 50.3, 49.9, 36.6, 35.0, 32.0, 27.2, 26.2, 25.3.

HRMS (ESI, m/z) calcd for $C_{19}H_{28}N_2O_2$ ([M+H]⁺): 317.2224, found 317.2224.

2t was obtained as a yellow oil. Yield 62% (14.4 mg).

¹H NMR (400 MHz, CDCl₃) δ 7.51 – 7.36 (m, 5H), 6.67 (s, 1H), 5.78 (s, 1H), 4.31 (s, 2H), 3.27 (s, 2H), 1.00 – 0.93 (m, 1H), 0.64 – 0.47 (m, 2H), 0.16 – 0.07 (m, 2H) ¹³C NMR (101 MHz, CDCl₃) δ 172.7, 172.1, 135.6, 130.1, 128.7, 127.0, 55.5, 49.6, 9.9, 4.0. HRMS (ESI, m/z) calcd for $C_{13}H_{16}N_2O_2$ ([M+Na]⁺): 255.1104, found 255.1111.

2u was obtained as a yellow oil. Yield 92% (23 mg).

¹H NMR (400 MHz, CDCl₃) δ 7.48 – 7.34 (m, 5H), 6.85 (s, 1H), 5.92 (s, 1H), 4.13 – 4.07 (m, 1H), 4.03 (s, 2H), 1.79 – 1.75 (m, 2H), 1.71 – 1.51 (m, 4H), 1.44 – 1.41 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 173.0, 171.1, 136.0, 129.9, 128.7, 126.6, 60.9, 46.3, 29.9, 24.0. HRMS (ESI, m/z) calcd for C₁₄H₁₈N₂O₂ ([M+Na]⁺): 269.1260, found 269.1274.

2v was obtained as a white solid. Yield 53% (18 mg). Melting point 168 – 170 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.33 (m, 5H), 5.85 (s, 1H), 5.58 (s, 1H), 3.95 (s, 2H), 2.22 – 2.17 (m, 1H), 2.12 (d, *J* = 2.5 Hz, 2H), 1.95 – 1.91 (m, 3H), 1.65 (s, 1H), 1.47 – 1.37 (m, 2H), 1.34 – 1.30 (m, 1H), 1.30 – 1.26 (m, 1H), 1.25 – 1.19 (m, 1H), 1.18 – 1.11 (m, 1H), 0.87 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 174.0, 172.8, 139.1, 129.4, 128.8, 126.1, 61.6, 50.6, 50.2, 45.8,
42.7, 38.4, 33.1, 30.8, 30.5.

HRMS (ESI, m/z) calcd for C₂₁H₂₈N₂O₂ ([M+Na]⁺): 363.2043, found 363.2031.

3 was obtained as a white solid^[2]

¹H NMR (300 MHz, CDCl₃) δ 7.81 (d, *J* = 8.0 Hz, 4H), 7.28 (d, *J* = 8.1 Hz, 4H), 2.39 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 144.0, 139.2, 130.0, 127.7, 21.7.

4 was obtained according to literature^[3].

6. References

[1] Song, L., Tian, G., Blanpain, A., Van Meervelt, L. and Van der Eycken, E.V. *Adv. Synth. Catal.* **2019**, *361*, 4442 – 4447.

[2] Yang, Y., Chen, Z., Rao, Y. Chem. Commun., **2014**, *50*, 15037 – 15040.

[3] Pick, R., Bauer, M., Kazmaier, U., Hebach, C. 2005. Synlett, 05, 0757-0760.

7. NMR Spectra

00

190 180 170 160 150

140 130 120 110

¹H spectra of compound **1a** (300 MHz, DMSO-*d*₆)

100 90 fl (ppm) 70 60 <mark>5</mark>0 40 30

80

-1

20 10 0

¹³C NMR spectra of compound **1b** (101 MHz, DMSO-*d*₆)

¹³C NMR spectra of compound **1e** (101 MHz, DMSO-*d*₆)

¹H spectra of compound **1f** (400 MHz, DMSO-*d*₆)

¹H spectra of compound **1g** (400 MHz, DMSO-*d*₆)

¹H spectra of compound **1h** (400 MHz, CDCl₃)

8,12 8,12 1

¹H spectra of compound **1i** (400 MHz, CDCl₃)

Mixture of rotamers (~5.7:1)

¹³C NMR spectra of compound **1i** (101 MHz, CDCl₃)

¹H spectra of compound **1**j (400 MHz, CDCl₃)

S32

¹H spectra of compound **1k** (400 MHz, DMSO-*d*₆)

100 90 fl (ppm) ò

¹H spectra of compound **1I** (400 MHz, CDCl₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl(ppm)

¹H spectra of compound **1m** (400 MHz, DMSO-*d*₆)

¹³C NMR spectra of compound **1m** (101 MHz, DMSO-*d*₆)

¹H spectra of compound **1n** (400 MHz, CDCl₃)

¹³C NMR spectra of compound **1n** (101 MHz, CDCl₃)

8.01 7.79 7.77 7.79 7.71 7.40 7.73 7.73 7.28 7.28 7.28 7.28

¹³C NMR spectra of compound **1o** (101 MHz, CDCl₃)

-67.02 -60.35 -60.35 -60.35 -60.35 -60.35 -60.35 -29.20 -28.35 -26.35 -14.09

¹H spectra of compound **1p** (400 MHz, CDCl₃)

¹³C NMR spectra of compound **1p** (101 MHz, CDCl₃)

¹³C NMR spectra of compound **1q** (101 MHz, CDCl₃)

¹H spectra of compound **1r** (400 MHz, DMSO-*d*₆)

¹³C NMR spectra of compound **1r** (101 MHz, DMSO-*d*₆)

¹H spectra of compound **1s** (400 MHz, CDCl₃)

¹³C NMR spectra of compound **1s** (101 MHz, CDCl₃)

¹H spectra of compound **1t** (400 MHz, CDCl₃)

 $^{\rm 13}C$ NMR spectra of compound 1t (101 MHz, CDCl_3)

¹H spectra of compound **1u** (400 MHz, CDCl₃)

¹³C NMR spectra of compound **1u** (101 MHz, CDCl₃)

¹H spectra of compound 1v (400 MHz, MeOH- d_4)

 0.11
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 <td

¹H spectra of compound **2a** (400 MHz, DMSO-*d*₆)

¹³C NMR spectra of compound **2a** (101 MHz, DMSO-*d*₆)

¹³C NMR spectra of compound **2b** (101 MHz, DMSO-*d*₆)

¹H spectra of compound **2c** (300 MHz, CDCl₃)

¹³C NMR spectra of compound **2c** (101 MHz, CDCl₃)

¹H spectra of compound **2d** (400 MHz, DMSO-*d*₆)

¹H spectra of compound **2e** (300 MHz, CDCl₃)

¹³C NMR spectra of compound **2e** (101 MHz, CDCl₃)

¹H spectra of compound **2f** (400 MHz, CDCl₃)

¹³C NMR spectra of compound **2f** (101 MHz, CDCl₃)

¹H spectra of compound **2g** (400 MHz, DMSO-*d*₆)

¹³C NMR spectra of compound **2h** (101 MHz, CDCl₃)

¹³C NMR spectra of compound **2i** (101 MHz, CDCl₃)

¹H spectra of compound **2j** (400 MHz, CDCl₃)

¹³C NMR spectra of compound **2j** (101 MHz, CDCl₃)

¹H spectra of compound **2k** (400 MHz, DMSO-*d*₆)

¹³C NMR spectra of compound **2k** (101 MHz, DMSO-*d*₆)

¹H spectra of compound **2m** (400 MHz, CDCl₃)

¹³C NMR spectra of compound **2m** (101 MHz, CDCl₃)

¹H spectra of compound **2n** (400 MHz, CDCl₃)

¹H spectra of compound **2o** (400 MHz, CDCl₃)

¹³C NMR spectra of compound **20** (101 MHz, CDCl₃)

S60

¹H spectra of compound **2q** (400 MHz, CDCl₃)

¹H spectra of compound **2r** (400 MHz, CDCl₃)

¹³C NMR spectra of compound **2r** (101 MHz, CDCl₃)

-10 100 90 fl (ppm)

¹H spectra of compound **2t** (400 MHz, CDCl₃)

¹³C NMR spectra of compound **2t** (101 MHz, CDCl₃)

¹³C NMR spectra of compound **2u** (101 MHz, CDCl₃)

¹H spectra of compound **2v** (400 MHz, CDCl₃)

¹³C NMR spectra of compound **2v** (101 MHz, CDCl₃)

¹H spectra of compound **3** (300 MHz, CDCl₃)

