Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2021

Supporting Information

Transition-Metal-Free

Hydroamination/Defluorination/Cyclization of Perfluoroalkyl

Alkynes with Amidines

Li-Wen Sun,^a Zi-Lun Yu,^a Xin-Long Luo,^a Mengtao Ma,^b Zhi-Liang Shen,^{*a} and Xue-Qiang Chu^{*a}

 ^a Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
^b Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, Nanjing 210037, China.

Table of Contents

General information	page S2
General procedure for the synthesis of perfluoroalkylated pyrimidines 3	page S2
General procedure for the scale-up synthesis of product 3aa	page S2
Further transformation of products	page S2
Mechanistic studies	page S3
Optimization of the reaction conditions	page S7
Characterization data for products	page S8
¹ H, ¹⁹ F, and ¹³ C NMR spectra of products	page S28

General information

Unless otherwise stated, all reagents were purchased from commercial suppliers and used without further purification. All reactions were carried out under air atmosphere using undistilled solvent. Melting points were recorded on an Electrothermal digital melting point apparatus. IR spectra were recorded on a FT-IR spectrophotometer using KBr optics. ¹H, ¹⁹F, and ¹³C NMR spectra were recorded in CDCl₃ on Bruker Avance or Joel 400 MHz spectrometers. The chemical shifts (δ) are reported in ppm and coupling constants (*J*) in Hz. High resolution mass spectra (HRMS) were obtained using a commercial apparatus (ESI Source). Column chromatography was generally performed on silica gel (300-400 mesh) and reactions were monitored by thin layer chromatography (TLC) using UV light to visualize the course of the reactions.

General procedure for the synthesis of perfluoroalkylated pyrimidines 3

A solution of perfluoroalkylethyne **1** (0.3 mmol), amidine hydrochloride **2** (0.36-0.45 mmol), and Cs_2CO_3 (293.2 mg, 0.9 mmol) in DMA (1.5 mL) was stirred at 70 °C under air for 24 h. The reaction was then quenched by saturated NH₄Cl solution (20 mL) and extracted with EtOAc (20 mL x 3). The organic layer was washed with saturated brine twice, dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude product was purified by flash column chromatography (300-400 mesh) using petroleum ether/ethyl acetate (100/1 ~ 20/1) as eluent to afford the pure products **3**.

General procedure for the scale-up synthesis of product 3aa

A solution of (perfluorohex-1-yn-1-yl)benzene (1.60 g, 5 mmol, **1a**), benzamidine hydrochloride (0.94 g, 6 mmol, **2a**), and Cs_2CO_3 (4.89 g, 15 mmol) in DMA (30 mL) was stirred at 70 °C under air for 24 h. The reaction was then quenched by saturated NH₄Cl solution (100 mL) and extracted with EtOAc (100 mL x 3). The organic layer was washed with saturated brine twice, dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude product was purified by flash column chromatography (300-400 mesh) using petroleum ether/ethyl acetate (100/1 ~ 20/1) as eluent to afford the pure product **3aa** (1.60 g, 80% yield).

Further transformation of products

1) Cross-coupling reaction of product 3ag with thiophen-2-ylboronic acid 4

A solution of 2-(4-bromophenyl)-4-(perfluoropropyl)-6-phenylpyrimidine (95.8 mg, 0.2 mmol, **3ag**), thiophen-2-ylboronic acid (38.4 mg, 0.3 mmol, **4**), Pd(PPh₃)₄ (23.1 mg, 0.02 mmol), and K₂CO₃ (82.9 mg, 0.6 mmol) in toluene/EtOH (2 mL, 4/1) was stirred at 100 °C under N₂ for 12 h. The reaction was then quenched by saturated NH₄Cl solution (20 mL) and extracted with EtOAc (20 mL x 3). The organic layer was washed with saturated brine twice, dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude product was purified by flash column chromatography (300-400 mesh) using petroleum ether/ethyl acetate (100/1 ~ 20/1) as eluent to afford the pure product **5** (92.9 mg, 96% yield).

Mechanistic studies

1) Radical trapping experiment

A solution of (perfluorohex-1-yn-1-yl)benzene (96.1 mg, 0.3 mmol, **1a**), benzamidine hydrochloride (56.4 mg, 0.36 mmol, **2a**), Cs_2CO_3 (293.2 mg, 0.9 mmol), and 2,2,6,6-tetramethylpiperidinooxy (117.2 mg, 0.75 mmol, TEMPO) in DMA (1.5 mL) was stirred at 70 °C under air for 24 h. The reaction was then quenched by saturated NH₄Cl solution (20 mL) and extracted with EtOAc (20 mL x 3). The organic layer was washed with saturated brine twice, dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude product was purified by flash column chromatography (300-400 mesh) using petroleum ether/ethyl acetate (100/1 ~ 20/1) as eluent to afford the pure product **3aa** (92.6 mg, 77% yield). **This result suggested that radical intermediate was not involved in the reaction.**

2) D-labeling experiment

A solution of (perfluorohex-1-yn-1-yl)benzene (96.1 mg, 0.3 mmol, **1a**), benzamidine hydrochloride (56.4 mg, 0.36 mmol, **2a**), Cs_2CO_3 (293.2 mg, 0.9 mmol), and D_2O (108.0 mg, 6 mmol) in DMA (1.5 mL) was stirred at 70 °C under air for 24 h. The reaction was then quenched by saturated NH₄Cl solution (20 mL) and extracted with EtOAc (20 mL x 3). The organic layer was washed with saturated brine twice, dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude product was purified by flash column chromatography (300-400 mesh) using petroleum ether/ethyl acetate (100/1 ~ 20/1) as eluent to afford the pure products **3aa**

and **3aa-D** (84.4 mg, 70% yield, **3aa**/**3aa-D** = 1/4). This result suggested that water was the H atom source in the reaction.

3) Hydrolysis of substrate 1a

A solution of (perfluorohex-1-yn-1-yl)benzene (96.1 mg, 0.3 mmol, **1a**), and Cs_2CO_3 (293.2 mg, 0.9 mmol) in DMA (1.5 mL) was stirred at 70 °C under air for 24 h. No desired product **6** was observed. This result suggested that defluorination step occurred after the intermolecular interaction of 1a and 2a during the reaction.

4) Annulation of fluoroalkylated ynone 6 with amidine 2a

A solution of 4,4,5,5,6,6,6-heptafluoro-1-phenylhex-1-yn-3-one (89.4 mg, 0.3 mmol, 6), and Cs_2CO_3 (293.2 mg, 0.9 mmol) in DMA (1.5 mL) was stirred at 70 °C under air for 24 h. The reaction was then quenched by saturated NH₄Cl solution (20 mL) and extracted with EtOAc (20 mL x 3). The organic layer was washed with saturated brine twice, dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude product was purified by flash column chromatography (300-400 mesh) using petroleum ether/ethyl acetate (100/1 ~ 20/1) as eluent to afford the pure product **3aa** (92.6 mg, 77% yield). **This result suggested that fluoroalkylated ynone 6 was not the reaction intermediate.**

5) ¹H NMR and HRMS analysis of the reaction mixture

A solution of (perfluorohex-1-yn-1-yl)benzene (96.1 mg, 0.3 mmol, **1a**), benzamidine hydrochloride (56.4 mg, 0.36 mmol, **2a**), and Cs_2CO_3 (293.2 mg, 0.9 mmol) in DMF- d_7 (1.5 mL) was stirred at 70 °C under air for 5 min, 0.5 h, or 3 h. The reaction mixture was analyzed by *in situ* ¹H NMR spectra. The occurrence of ¹H NMR peak at 5.3 ppm indicated the involvement of hydroaminated intermediate B-1 (*Org. Lett.*, 2016, 18, 1422-1425).

Proposed intermediate B-1 could also be detected by High Resolution Mass Spectrometry (HRMS), suggesting that intermediate B-1 might be involved in the reaction.

6) The reaction of (perfluorohex-1-yn-1-yl)benzene (1a) with 4-methoxyaniline

A solution of (perfluorohex-1-yn-1-yl)benzene (96.1 mg, 0.3 mmol, **1a**), 4-methoxyaniline (44.3 mg, 0.36 mmol), and Cs_2CO_3 (293.2 mg, 0.9 mmol) in DMA (1.5 mL) was stirred at 70 °C under air for 24 h. No desired hydroaminated intermediate B-2 was obtained.

However, proposed intermediate B-2 could be detected by High Resolution Mass Spectrometry (HRMS), suggesting that intermediate B-2 might be involved in the reaction.

Optimization of reaction conditions

Table S1. Optimization of reaction conditions^a

	F	F NH·HCI	Catalyst (x mol%) Additive (y mol%) Base (z equiv.)	Ph	
	Ph	"C ₃ F ₇ H ₂ N Ph	Solvent, air, 60 °C, 24 h		
	1a	2a		3aa 3aa	
Entry	Catalyst (x mol%)	Additive (y mol%)	Base (z equiv.)	Solvent	Yield $(\%)^b$
1	Cu(OTf) ₂ (10)	$PMPNH_2(20)$		THF	0
2	$Cu(OTf)_2(10)$	$PMPNH_2(20)$	$K_2CO_3(3)$	THF	33
3	$Cu(OTf)_2(10)$	$PMPNH_2(20)$	$Cs_2CO_3(3)$	THF	61
4	$Cu(OTf)_2(10)$	$PMPNH_2(20)$	$K_{3}PO_{4}(3)$	THF	43
5	Cu(OTf) ₂ (10)	$PMPNH_2(20)$	$K_2CO_3(3)$	THF	42
6	Cu(OTf) ₂ (10)	$PMPNH_2(20)$	$KO^{t}Bu$ (3)	THF	43
7	Cu(OTf) ₂ (10)	$PMPNH_2(20)$	$NEt_3(3)$	THF	trace
8	$Cu(OTf)_2(10)$	$PMPNH_2(20)$	DBU (3)	THF	trace
9	$Cu(OTf)_2(10)$	$PMPNH_2(20)$	DABCO (3)	THF	6
10	$Cu(OTf)_2(10)$		$Cs_2CO_3(3)$	THF	53
11		$PMPNH_2(20)$	$Cs_2CO_3(3)$	THF	62
12			$Cs_2CO_3(3)$	THF	60
13			$Cs_2CO_3(4)$	THF	43
14			$Cs_2CO_3(3)$	THF	47^c
15			$Cs_2CO_3(3)$	THF	63^d
16			$Cs_2CO_3(3)$	MeCN	37^d
17			$Cs_2CO_3(3)$	DMF	67^d
18			$Cs_2CO_3(3)$	DMSO	50^d
19			$Cs_2CO_3(3)$	^t BuOH	37^{d}
20			$Cs_2CO_3(3)$	DCE	33^d
21			$Cs_2CO_3(3)$	H_2O	$0^{d,e}$
22			$Cs_2CO_3(3)$	toluene	58^d
23			$Cs_2CO_3(3)$	DMF	37 ^{<i>d</i>,<i>f</i>}
24			$Cs_2CO_3(3)$	DMF	54 ^{<i>d</i>,<i>g</i>}
25			$Cs_2CO_3(3)$	DMF	$74^{d,h}(73)^i$
26			$Cs_2CO_3(3)$	DMF	$70^{d,j}$
27			$Cs_2CO_3(3)$	DMF	63 ^{<i>d,k</i>}
28			$Cs_2CO_3(3)$	DMF	$65^{d,e}$
29			$Cs_2CO_3(3)$	NMP	$76^{d,h}$
30			$Cs_2CO_3(3)$	DMA	$79^{d,h}(77)^i$
31			$Cs_2CO_3(2)$	DMA	$74^{d,h,e}$
32			$Cs_2CO_3(3)$	DMA	$74^{d,h,l} (72)^i$

^{*a*} Reaction conditions: **1a** (0.3 mmol), **2a** (0.3 mmol), catalyst (0.03 mmol), additive (0.06 mmol), and base (0.9-1.2 mmol) in solvent (1.5 mL) at 60 °C under air for 24 h. ^{*b*} Yields were determined by NMR analysis with 1,4-dimethoxybenzene (0.25 mmol) as an internal standard. ^{*c*} **1a** (0.36 mmol). ^{*d*} **2a** (0.36 mmol). ^{*e*} At 100 °C. ^{*f*} At room temperature. ^{*g*} At 40 °C. ^{*h*} At 70 °C. ^{*i*} Isolated yield. ^{*j*} At 80 °C. ^{*k*} At 90 °C. ^{*l*} 6 h.

Characterization data for products

4-(Perfluoropropyl)-2,6-diphenylpyrimidine (3aa):

Yield = 77% (91.9 mg). White solid. M.p. 59.6–60.2 °C.

Purified by flash column chromatography through silica gel (petroleum ether).

¹**H** NMR (400 MHz, CDCl₃): $\delta = 8.73-8.68$ (m, 2H), 8.30-8.27 (m, 2H), 7.93 (s, 1H), 7.61-7.55 (m, 6H) ppm.

¹⁹**F** NMR (376 MHz, CDCl₃): δ = -79.95 (s, 3F), -116.53 (s, 2F), -126.05 (s, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 166.2, 165.1, 156.8 (t, J_{C-F} = 26.0 Hz), 136.5, 135.9, 131.9, 131.6, 129.1, 128.7, 128.7, 127.5, 111.6 (t, J_{C-F} = 4.6 Hz) ppm, carbons corresponding to the C₃F₇ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for C₁₉H₁₂F₇N₂ [M+H]⁺ 401.0883, found: 401.0889.

2-(4-Methoxyphenyl)-4-(perfluoropropyl)-6-phenylpyrimidine (3ab):

Yield = 72% (92.9 mg). White solid. M.p. 87.2–88.3 °C.

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate, 50/1).

¹**H NMR (400 MHz, CDCl₃):** δ = 8.63-8.58 (m, 2H), 8.30-8.23 (m, 2H), 7.84 (s, 1H), 7.59-7.54 (m, 3H), 7.07-7.02 (m, 2H), 3.90 (s, 3H) ppm.

¹⁹**F** NMR (376 MHz, CDCl₃): δ = -79.97 (s, 3F), -116.59 (s, 2F), -126.10 (s, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 166.0, 164.8, 162.5, 156.6 (t, J_{C-F} = 26.0 Hz), 136.0, 131.7, 130.0, 129.2, 129.0, 127.4, 113.9, 110.7 (t, J_{C-F} = 4.4 Hz), 55.3 ppm, carbons corresponding to the C₃F₇ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for C₂₀H₁₄F₇N₂O [M+H]⁺ 431.0989, found: 431.0994.

2-(2-Ethoxyphenyl)-4-(perfluoropropyl)-6-phenylpyrimidine (3ac):

Yield = 61% (81.2 mg). Yellow oil.

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate, 50/1). ¹H NMR (400 MHz, CDCl₃): δ = 8.30-8.23 (m, 2H), 8.01-7.96 (m, 1H), 7.94 (d, *J* = 1.5 Hz, 1H), 7.59-7.52 (m, 3H), 7.51-7.43 (m, 1H), 7.15-7.05 (m, 2H), 4.17 (q, *J* = 7.0 Hz, 2H), 1.44 (td, *J* = 6.9, 1.4 Hz, 3H) ppm.

¹⁹**F** NMR (**376** MHz, CDCl₃): δ = -80.00 (s, 3F), -116.47 (s, 2F), -125.86 (s, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 166.3, 165.9, 157.9, 156.2 (t, J_{C-F} = 26.0 Hz), 136.0, 132.2, 131.7, 131.7, 129.0, 127.5, 127.4, 120.6, 113.5, 111.2 (t, J_{C-F} = 5.0 Hz), 64.5, 14.7 ppm, carbons corresponding to the C₃F₇ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for C₂₁H₁₆F₇N₂O [M+H]⁺ 445.1145, found: 445.1151.

4-(Perfluoropropyl)-6-phenyl-2-(*p*-tolyl)pyrimidine (3ad):

Yield = 84% (104.2 mg). White solid. M.p. 101.2–101.9 °C.

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate, 100/1). ¹H NMR (400 MHz, CDCl₃): δ = 8.56 (d, *J* = 8.2 Hz, 2H), 8.30-8.26 (m, 2H), 7.89 (s, 1H), 7.60-7.57 (m, 3H), 7.36 (d, *J* = 8.1 Hz, 2H), 2.47 (s, 3H) ppm.

¹⁹F NMR (376 MHz, CDCl₃): δ = -79.95 (s, 3F), -116.53 (s, 2F), -126.07 (s, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 166.1, 165.1, 156.7 (t, J_{C-F} = 25.5 Hz), 142.0, 136.0, 133.9, 131.8, 129.4, 129.1, 128.7, 127.4, 111.2 (t, J_{C-F} = 4.4 Hz), 21.5 ppm, carbons corresponding to the C₃F₇ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for C₂₀H₁₄F₇N₂ [M+H]⁺ 415.1040, found: 415.1045.

4-(Perfluoropropyl)-6-phenyl-2-(*m*-tolyl)pyrimidine (3ae):

Yield = 74% (92.1 mg). Colourless oil.

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate, 100/1). ¹H NMR (400 MHz, CDCl₃): δ = 8.50-8.44 (m, 2H), 8.32-8.25 (m, 2H), 7.91 (s, 1H), 7.63-7.56 (m, 3H), 7.49-7.42 (m, 1H), 7.41-7.36 (m, 1H), 2.52 (s, 3H) ppm.

¹⁹**F NMR (376 MHz, CDCl₃):** δ = -79.95 (t, J = 9.1 Hz, 3F), -116.53 (q, J = 9.1 Hz, 2F), -126.03 (s, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): $\delta = 166.7$, 165.2, 156.7 (t, $J_{C-F} = 26.0$ Hz), 138.3, 136.5, 136.0, 132.4, 131.8, 129.2, 129.1, 128.6, 127.5, 126.0, 111.73 (t, $J_{C-F} = 4.3$ Hz), 21.5 ppm, carbons corresponding to the C₃F₇ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for C₂₀H₁₄F₇N₂ [M+H]⁺ 415.1040, found: 415.1037.

2-(4-Fluorophenyl)-4-(perfluoropropyl)-6-phenylpyrimidine (3af):

Yield = 84% (105.7 mg). White solid. M.p. 77.3–78.2 °C.

Purified by flash column chromatography through silica gel (petroleum ether).

¹**H NMR (400 MHz, CDCl₃):** δ = 8.66-8.59 (m, 2H), 8.28-8.21 (m, 2H), 7.89 (s, 1H), 7.61-7.53 (m, 3H), 7.24-7.17 (m, 2H) ppm.

¹⁹**F** NMR (376 MHz, CDCl₃): δ = -79.99 (s, 3F), -108.58 (s, 1F), -116.60 (s, 2F), -126.08 (s, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 166.4 (d, J_{C-F} = 17.3 Hz), 164.0 (d, J_{C-F} = 14.6 Hz), 156.8 (t, J_{C-F} = 24.8 Hz), 135.8, 132.7 (d, J_{C-F} = 3.2 Hz), 132.0, 131.0, 130.9, 129.2, 127.5, 115.8, 111.5 (m) ppm, carbons corresponding to the C₃F₇ group cannot be identified due to C-F coupling. HRMS (m/z): calcd for C₁₉H₁₁F₈N₂ [M+H]⁺ 419.0789, found: 419.0794.

2-(3-Fluorophenyl)-4-(perfluoropropyl)-6-phenylpyrimidine (3ag):

Yield = 66% (82.6 mg). White solid. M.p. 71.3–71.8 °C.

Purified by flash column chromatography through silica gel (petroleum ether).

¹**H NMR (400 MHz, CDCl₃):** δ = 8.46-8.40 (m, 1H), 8.35-8.29 (m, 1H), 8.29-8.24 (m, 2H), 7.94 (s, 1H), 7.63-7.55 (m, 3H), 7.54-7.46 (m, 1H), 7.29-7.21 (m, 1H) ppm.

¹⁹**F** NMR (376 MHz, CDCl₃): δ = -79.96 (t, J = 9.4 Hz, 3F), -112.67 (td, J = 9.0, 5.5 Hz, 1F), -116.54 (q, J = 9.0 Hz, 2F), -126.05 (s, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 166.4, 163.9 (d, J_{C-F} = 3.3 Hz), 163.2 (d, J_{C-F} = 243.5 Hz), 156.9 (t, J_{C-F} = 26.3 Hz), 138.8 (d, J_{C-F} = 7.7 Hz), 135.6, 132.0, 130.2 (d, J_{C-F} = 7.7 Hz), 129.2, 127.5, 124.4 (d, J_{C-F} = 2.9 Hz), 118.5 (d, J_{C-F} = 21.2 Hz), 115.5 (d, J_{C-F} = 23.6 Hz), 112.0 (t, J_{C-F} = 4.6 Hz) ppm, carbons corresponding to the C₃F₇ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for $C_{19}H_{11}F_8N_2$ [M+H]⁺ 419.0789, found: 419.0788.

2-(4-Chlorophenyl)-4-(perfluoropropyl)-6-phenylpyrimidine (3ah):

Yield = 69% (89.5 mg). White solid. M.p. 84.3–85.2 °C.

Purified by flash column chromatography through silica gel (petroleum ether).

¹**H NMR (400 MHz, CDCl₃):** δ = 8.58-8.52 (m, 2H), 8.24 (dd, *J* = 7.6, 2.0 Hz, 2H), 7.90 (s, 1H), 7.61-7.54 (m, 3H), 7.51-7.45 (m, 2H) ppm.

¹⁹F NMR (376 MHz, CDCl₃): δ = -79.96 (s, 3F), -116.54 (s, 2F), -126.06 (s, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 166.3, 164.1, 156.8 (t, J_{C-F} = 25.8 Hz), 137.9, 135.7, 135.0, 132.0, 130.0, 129.2, 128.9, 127.5, 111.8 (t, J_{C-F} = 4.5 Hz) ppm, carbons corresponding to the C₃F₇ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for C₁₉H₁₁ClF₇N₂ [M+H]⁺ 435.0493, found: 435.0499.

2-(4-Bromophenyl)-4-(perfluoropropyl)-6-phenylpyrimidine (3ai):

Yield = 71% (102.5 mg). White solid. M.p. 90.1–92.2 °C.

Purified by flash column chromatography through silica gel (petroleum ether).

¹**H NMR (400 MHz, CDCl₃):** δ = 8.50-8.45 (m, 2H), 8.27-8.21 (m, 2H), 7.91 (s, 1H), 7.66-7.62 (m, 2H), 7.60-7.56 (m, 3H) ppm.

¹⁹**F** NMR (**376** MHz, CDCl₃): δ = -79.95 (s, 3F), -116.53 (s, 2F), -126.03 (s, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 166.4, 164.2, 156.8 (t, J_{C-F} = 27.0 Hz), 135.7, 135.4, 132.0, 131.9, 130.2, 129.2, 127.5, 126.5, 111.8 (t, J_{C-F} = 4.5 Hz) ppm, carbons corresponding to the C₃F₇ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for C₁₉H₁₁BrF₇N₂ [M+H]⁺ 478.9988, found: 478.9994.

2-(4-Iodophenyl)-4-(perfluoropropyl)-6-phenylpyrimidine (3aj):

Yield = 71% (111.7 mg; using 0.45 mmol **2h**). White solid. M.p. 121.5–122.5 °C.

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate, 50/1).

¹**H NMR (400 MHz, CDCl₃):** δ = 8.33 (d, *J* = 8.5 Hz, 2H), 8.24 (d, *J* = 10.0 Hz, 2H), 7.92 (s, 1H), 7.87 (d, *J* = 8.5 Hz, 2H), 7.62-7.52 (m, 3H) ppm.

¹⁹**F NMR (376 MHz, CDCl₃):** δ = -79.93 (s, 3F), -116.55 (s, 2F), -126.05 (s, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 166.3, 164.3, 156.8 (t, J_{C-F} = 26.3 Hz), 137.9, 136.0, 135.6 132.0, 130.2, 129.2, 127.5, 111.9 (t, J_{C-F} = 3.8 Hz), 99.0 ppm, carbons corresponding to the C₃F₇ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for C₁₉H₁₁F₇IN₂ [M+H]⁺ 526.9850, found: 526.9855.

2-(4-Nitrophenyl)-4-(perfluoropropyl)-6-phenylpyrimidine (3ak):

Yield = 54% (72.0 mg). Yellow solid. M.p. 58.0–59.2 °C.

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate, $50/1 \sim 10/1$).

¹**H NMR (400 MHz, CDCl₃):** δ = 8.78 (d, *J* = 8.8 Hz, 2H), 8.35 (d, *J* = 8.9 Hz, 2H), 8.30-8.24 (m, 2H), 8.01 (s, 1H), 7.67-7.56 (m, 3H) ppm.

¹⁹**F** NMR (376 MHz, CDCl₃): δ = -80.04 (t, *J* = 9.2 Hz, 3F), -116.59 (q, *J* = 9.3 Hz, 2F), -126.07 (s, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 166.8, 163.0, 157.1 (t, J_{C-F} = 25.5 Hz), 149.8, 142.0, 135.3, 132.4, 129.6, 129.3, 127.5, 123.8, 112.8 (t, J_{C-F} = 4.7 Hz) ppm, carbons corresponding to the C₃F₇ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for C₁₉H₁₁F₇N₃O₂ [M+H]⁺ 446.0734, found: 446.0739.

3-(4-(Perfluoropropyl)-6-phenylpyrimidin-2-yl)benzonitrile (3al):

Yield = 65% (82.3 mg). White solid. M.p. 140.4–140.9 °C.

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate, $50/1 \sim 30/1$).

¹**H NMR (400 MHz, CDCl₃):** δ = 8.92-8.89 (m, 1H), 8.86-8.81 (m, 1H), 8.29-8.23 (m, 2H), 7.97 (s, 1H), 7.84-7.78 (m, 1H), 7.69-7.55 (m, 4H) ppm.

¹⁹**F** NMR (376 MHz, CDCl₃): δ = -79.94 (t, *J* = 9.4 Hz, 3F), -116.52 (q, *J* = 9.6 Hz, 2F), -125.98 (s, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 166.6, 162.8, 157.0 (t, J_{C-F} = 26.2 Hz), 137.6, 135.2, 134.5, 132.7, 132.3, 132.3, 129.6, 129.3, 127.5, 118.6, 113.0, 112.5 (t, J_{C-F} = 4.7 Hz) ppm, carbons corresponding to the C₃F₇ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for C₂₀H₁₁F₇N₃ [M+H]⁺ 426.0836, found: 426.0835.

4-(Perfluoropropyl)-6-phenyl-2-(pyridin-3-yl)pyrimidine (3am):

Yield = 67% (81.1 mg). White solid. M.p. 68.1–69.2 °C.

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate, $20/1 \sim 5/1$).

¹**H** NMR (400 MHz, CDCl₃): $\delta = 9.80$ (s, 1H), 8.86-8.81 (m, 1H), 8.76 (d, J = 4.9 Hz, 1H), 8.31-8.19 (m, 2H), 7.95 (s, 1H), 7.63-7.50 (m, 3H), 7.49-7.43 (m, 1H) ppm.

¹⁹F NMR (376 MHz, CDCl₃): δ = -79.98 (s, 3F), -116.55 (s, 2F), -126.04 (s, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 166.5, 163.3, 156.9 (t, J_{C-F} = 26.5 Hz), 152.1, 150.2, 135.9, 135.3, 132.2, 132.1, 129.2, 127.5, 123.5, 112.3 (t, J_{C-F} = 4.2 Hz) ppm, carbons corresponding to the C₃F₇ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for C₁₈H₁₁F₇N₃ [M+H]⁺ 402.0836, found: 402.0841.

4-(Perfluoropropyl)-6-phenyl-2,2'-bipyrimidine (3an):

Yield = 35% (42.2 mg; using 0.45 mmol **2k**). White solid. M.p. 134.6-135.5 °C.

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate, $10/1 \sim 1/1$).

¹**H NMR (400 MHz, CDCl₃):** δ = 9.07 (d, *J* = 4.9 Hz, 2H), 8.25 (d, *J* = 8.2 Hz, 2H), 8.12 (s, 1H), 7.60-7.52 (m, 3H), 7.50-7.44 (m, 1H) ppm.

¹⁹F NMR (376 MHz, CDCl₃): δ = -79.85 (s, 3F), -116.47 (s, 2F), -125.68 (s, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 167.6, 163.5, 162.2, 158.1, 157.2 (t, J_{C-F} = 25.2 Hz), 135.3, 132.2, 129.2, 127.9, 121.5, 114.5 (t, J_{C-F} = 4.5 Hz) ppm, carbons corresponding to the C₃F₇ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for C₁₇H₁₀F₇N₄ [M+H]⁺ 403.0788, found: 403.0794.

4-(Perfluoropropyl)-6-phenyl-2-(thiophen-2-yl)pyrimidine (3ao):

Yield = 83% (101.5 mg; using 0.45 mmol 2l). White solid. M.p. 63.3–64.5 °C.

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate, 100/1). ¹H NMR (400 MHz, CDCl₃): δ = 8.25-8.20 (m, 2H), 8.20-8.18 (m, 1H), 7.81 (s, 1H), 7.61-7.54 (m, 4H), 7.21-7.18 (m, 1H) ppm.

¹⁹**F** NMR (**376** MHz, CDCl₃): δ = -79.94 (s, 3F), -116.66 (s, 2F), -126.08 (s, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 166.2, 161.9, 156.6 (t, J_{C-F} = 25.9 Hz), 142.3, 135.4, 132.0, 131.1, 130.5, 129.1, 128.4, 127.4, 110.8 (t, J_{C-F} = 4.3 Hz) ppm, carbons corresponding to the C₃F₇ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for C₁₇H₁₀F₇N₂S [M+H]⁺ 407.0447, found: 407.0453.

2-Cyclopropyl-4-(perfluoropropyl)-6-phenylpyrimidine (3ap):

Yield = 76% (82.9 mg). White solid. M.p. 41.0–41.6 °C.

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate, 50/1). ¹H NMR (400 MHz, CDCl₃): δ = 8.16-8.10 (m, 2H), 7.76 (s, 1H), 7.56-7.49 (m, 3H), 2.47-2.39 (m, 1H), 1.32-1.27 (m, 2H), 1.20-1.14 (m, 2H) ppm.

¹⁹**F** NMR (**376** MHz, CDCl₃): δ = -80.08 (s, 3F), -116.84 (s, 2F), -126.21 (s, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 173.3, 165.7, 156.1 (t, J_{C-F} = 25.3 Hz), 135.9, 131.6, 129.1, 127.3, 110.7 (t, J_{C-F} = 4.7 Hz), 18.4, 11.7 ppm, carbons corresponding to the C₃F₇ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for C₁₆H₁₂F₇N₂ [M+H]⁺ 365.0883, found: 365.0889.

2-Methyl-4-(perfluoropropyl)-6-phenylpyrimidine (3aq):

Yield = 50% (51.0 mg). Colourless oil.

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate, 50/1). ¹H NMR (400 MHz, CDCl₃): $\delta = 8.17-8.10$ (m, 2H), 7.83 (s, 1H), 7.59-7.50 (m, 3H), 2.89 (s, 3H) ppm.

¹⁹**F NMR (376 MHz, CDCl₃):** δ = -80.05 (s, 3F), -116.88 (s, 2F), -126.11 (s, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 169.3, 166.2, 156.2 (t, J_{C-F} = 25.8 Hz), 135.8, 131.8, 129.2, 127.4, 111.4 (t, J_{C-F} = 4.5 Hz), 26.2 ppm, carbons corresponding to the C₃F₇ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for C₁₄H₁₀F₇N₂ [M+H]⁺ 339.0727, found: 339.0732.

4-(Perfluoropropyl)-6-phenylpyrimidin-2-amine (3ar):

Yield = 39% (39.6 mg; using 0.45 mmol **20**). White solid. M.p. 84.8-86.0 °C.

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate, 100/1).

¹**H NMR (400 MHz, CDCl₃):** δ = 8.07-8.00 (m, 2H), 7.56-7.48 (m, 3H), 7.33 (s, 1H), 5.93 (s, 2H) ppm.

¹⁹**F** NMR (376 MHz, CDCl₃): δ = -79.94 (s, 3F), -116.69 (s, 2F), -126.08 (s, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): $\delta = 167.8$, 163.3, 157.1 (t, $J_{C-F} = 25.4$ Hz), 136.1, 131.5, 129.0, 127.3, 104.8 ppm, carbons corresponding to the C₃F₇ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for C₁₃H₉F₇N₃ [M+H]⁺ 340.0679, found: 340.0685.

2-(4-Bromophenyl)-4-(4-methoxyphenyl)-6-(perfluoropropyl)pyrimidine (3bi):

Yield = 79% (120.1 mg). White solid. M.p. 89.1-90.3 °C.

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate, 50/1). ¹H NMR (400 MHz, CDCl₃): δ = 8.47-8.40 (m, 2H), 8.23-8.15 (m, 2H), 7.81 (s, 1H), 7.66-7.58 (m, 2H), 7.07-6.99 (m, 2H), 3.89 (s, 3H) ppm.

¹⁹**F** NMR (376 MHz, CDCl₃): δ = -79.96 (t, *J* = 9.0 Hz, 3F), -116.61 (q, *J* = 9.3 Hz, 2F), -126.06 (s, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 165.6, 163.9, 162.9, 156.4 (t, J_{C-F} = 24.8 Hz), 135.6, 131.8, 130.1, 129.1, 128.0, 126.3, 114.5, 110.8, 55.4 ppm, carbons corresponding to the C₃F₇ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for C₂₀H₁₃BrF₇N₂O [M+H]⁺ 509.0094, found: 509.0099.

4-(4-Methoxyphenyl)-6-(perfluoropropyl)-2,2'-bipyrimidine (3bn):

Yield = 28% (36.8 mg). White solid. M.p. 105.9–107.2 °C.

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate, $20/1 \sim 1/1$).

¹**H NMR (400 MHz, CDCl₃):** δ = 9.05 (d, *J* = 4.9 Hz, 2H), 8.28-8.23 (m, 2H), 8.04 (s, 1H), 7.46 (t, *J* = 4.9 Hz, 1H), 7.06-7.02 (m, 2H), 3.88 (s, 3H) ppm.

¹⁹**F** NMR (**376** MHz, CDCl₃): δ = -79.86 (s, 3F), -116.54 (s, 2F), -125.70 (s, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 166.8, 163.4, 163.1, 162.5, 158.0, 156.9, 129.6, 127.6, 121.4, 114.6, 113.5 (t, J_{C-F} = 4.5 Hz), 55.5 ppm, carbons corresponding to the C₃F₇ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for C₁₈H₁₂F₇N₄O [M+H]⁺ 433.0894, found: 433.0899.

2-(4-Bromophenyl)-4-(perfluoropropyl)-6-(p-tolyl)pyrimidine (3ci):

Yield = 67% (98.4 mg). White solid. M.p. 97.5–98.8 °C.

Purified by flash column chromatography through silica gel (petroleum ether).

¹**H NMR (400 MHz, CDCl₃):** δ = 8.50-8.44 (m, 2H), 8.15-8.10 (m, 2H), 7.87 (s, 1H), 7.66-7.62 (m, 2H), 7.35 (d, *J* = 7.7 Hz, 2H), 2.46 (s, 3H) ppm.

¹⁹**F** NMR (376 MHz, CDCl₃): δ = -79.96 (s, 3F), -116.57 (s, 2F), -126.05 (s, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 166.2, 164.1, 156.6 (t, J_{C-F} = 26.4 Hz), 142.7, 135.5, 132.9, 131.8, 130.2, 129.9, 127.4, 126.4, 111.5 (t, J_{C-F} = 4.2 Hz), 21.6 ppm, carbons corresponding to the C₃F₇ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for C₂₀H₁₃BrF₇N₂ [M+H]⁺ 493.0145, found: 493.0150.

2-(4-Bromophenyl)-4-(perfluoropropyl)-6-(*m*-tolyl)pyrimidine (3di):

Yield = 71% (104.4 mg). White solid. M.p. 47.8-48.2 °C.

Purified by flash column chromatography through silica gel (petroleum ether).

¹**H NMR (400 MHz, CDCl₃):** δ = 8.50-8.45 (m, 2H), 8.06-8.00 (m, 2H), 7.90 (s, 1H), 7.68-7.62 (m, 2H), 7.49-7.38 (m, 2H), 2.51 (s, 3H) ppm.

¹⁹**F** NMR (376 MHz, CDCl₃): δ = -79.95 (s, 3F), -116.57 (s, 2F), -126.03 (s, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 166.5, 164.1, 156.7 (t, J_{C-F} = 26.6 Hz), 139.0, 135.6, 135.5, 132.8, 131.9, 130.2, 129.1, 128.0, 126.5, 124.7, 111.9 (t, J_{C-F} = 3.9 Hz), 21.5 ppm, carbons corresponding to the C₃F₇ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for C₂₀H₁₃BrF₇N₂ [M+H]⁺ 493.0145, found: 493.0150.

2-(4-Bromophenyl)-4-(perfluoropropyl)-6-(o-tolyl)pyrimidine (3ei):

Yield = 29% (42.6 mg; using 0.45 mmol **2g**). Yellow oil.

Purified by flash column chromatography through silica gel (petroleum ether).

¹**H** NMR (400 MHz, CDCl₃): δ = 8.49-8.42 (m, 2H), 7.70 (s, 1H), 7.68-7.63 (m, 2H), 7.62-7.57 (m, 1H), 7.49-7.43 (m, 1H), 7.43-7.36 (m, 2H), 2.57 (s, 3H) ppm.

¹⁹**F** NMR (376 MHz, CDCl₃): δ = -79.94 (s, 3F), -116.63 (s, 2F), -126.12 (s, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): $\delta = 169.7$, 163.8, 156.2 (t, $J_{C-F} = 26.5$ Hz), 136.8, 136.7, 135.4, 131.9, 131.7, 130.4, 130.2, 129.9, 126.5, 126.5, 116.1 (t, $J_{C-F} = 4.3$ Hz), 20.7 ppm, carbons corresponding to the C₃F₇ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for C₂₀H₁₃BrF₇N₂ [M+H]⁺ 493.0145, found: 493.0150.

2-(4-Bromophenyl)-4-(4-(*tert*-butyl)phenyl)-6-(perfluoropropyl)pyrimidine (3fi):

Yield = 68% (109.0 mg). White solid. M.p. 110.9–111.9 °C.

Purified by flash column chromatography through silica gel (petroleum ether).

¹**H NMR (400 MHz, CDCl₃):** δ = 8.52-8.46 (m, 2H), 8.22-8.16 (m, 2H), 7.91 (s, 1H), 7.68-7.58 (m, 4H), 1.42 (s, 9H) ppm.

¹⁹**F** NMR (376 MHz, CDCl₃): δ = -79.94 (s, 3F), -116.61 (s, 2F), -126.11 (s, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 166.3, 164.1, 156.7 (t, J_{C-F} = 25.8 Hz), 155.8, 135.5, 132.9, 131.9, 130.2, 127.3, 126.4, 126.2, 111.6 (t, J_{C-F} = 3.9 Hz), 35.0, 31.1 ppm, carbons corresponding to the C₃F₇ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for C₂₃H₁₉BrF₇N₂ [M+H]⁺ 535.0614, found: 535.0620.

2-(4-Bromophenyl)-4-(4-fluorophenyl)-6-(perfluoropropyl)pyrimidine (3gi):

Yield = 80% (119.9 mg). White solid. M.p. 151.2–151.9 °C.

Purified by flash column chromatography through silica gel (petroleum ether).

¹**H NMR (400 MHz, CDCl₃):** δ = 8.49-8.42 (m, 2H), 8.30-8.22 (m, 2H), 7.86 (s, 1H), 7.68-7.61 (m, 2H), 7.31-7.20 (m, 2H) ppm.

¹⁹**F** NMR (376 MHz, CDCl₃): δ = -79.93 (s, 3H), -107.14 (s, 1H), -116.59 (s, 2H), -126.03 (s, 2H) ppm.

¹³C NMR (100 MHz, CDCl₃): $\delta = 165.3$ (d, $J_{C-F} = 251.9$ Hz), 164.7 (d, $J_{C-F} = 98.1$ Hz), 156.9 (t, $J_{C-F} = 25.8$ Hz), 135.2, 131.9, 131.8 (d, $J_{C-F} = 3.0$ Hz), 130.2, 129.7 (d, $J_{C-F} = 8.9$ Hz), 126.6, 116.4 (d, $J_{C-F} = 21.8$ Hz), 112.1 (t, $J_{C-F} = 30.9$ Hz), 111.4 (t, $J_{C-F} = 4.7$ Hz) ppm, carbons corresponding to the C₃F₇ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for C₁₉H₁₀BrF₈N₂ [M+H]⁺ 496.9894, found: 496.9900.

2-(4-Bromophenyl)-4-(4-chlorophenyl)-6-(perfluoropropyl)pyrimidine (3hi):

Yield = 78% (119.7 mg). White solid. M.p. 139.6–141.3 °C.

Purified by flash column chromatography through silica gel (petroleum ether).

¹**H NMR (400 MHz, CDCl₃):** δ = 8.46-8.39 (m, 2H), 8.20-8.14 (m, 2H), 7.86 (s, 1H), 7.66-7.59 (m, 2H), 7.56-7.49 (m, 2H) ppm.

¹⁹**F** NMR (376 MHz, CDCl₃): δ = -79.93 (t, *J* = 9.0 Hz, 3F), -116.53 (q, *J* = 9.4 Hz, 2F), -125.99 (s, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 165.2, 164.3, 157.1 (t, J_{C-F} = 25.1 Hz), 138.4, 135.2, 134.1, 131.9, 130.2, 129.5, 128.7, 126.7, 111.5 (t, J_{C-F} = 4.4 Hz) ppm, carbons corresponding to the C₃F₇ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for C₁₉H₁₀BrClF₇N₂ [M+H]⁺ 512.9599, found: 512.9604.

2,4-Bis(4-bromophenyl)-6-(perfluoropropyl)pyrimidine (3ii):

Yield = 76% (127.7 mg). White solid. M.p. 141.7–142.9 °C.

Purified by flash column chromatography through silica gel (petroleum ether).

¹**H NMR (400 MHz, CDCl₃):** δ = 8.47-8.35 (m, 2H), 8.14-8.04 (m, 2H), 7.85 (s, 1H), 7.73-7.66 (m, 2H), 7.65-7.55 (m, 2H) ppm.

¹⁹**F** NMR (376 MHz, CDCl₃): δ = -79.93 (t, *J* = 9.2 Hz, 3F), -116.48 (q, *J* = 9.3 Hz, 2F), -125.95 (s, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 165.2, 164.3, 157.1 (t, J_{C-F} = 25.2 Hz), 135.1, 134.5, 132.4, 131.9, 130.2, 128.9, 127.0, 126.7, 111.5 (t, J_{C-F} = 4.4 Hz) ppm, carbons corresponding to the C₃F₇ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for C₁₉H₁₀Br₂F₇N₂ [M+H]⁺ 556.9093, found: 556.9099.

2-(4-Bromophenyl)-4-(naphthalen-1-yl)-6-(perfluoropropyl)pyrimidine (3ji):

Yield = 33% (52.3 mg; using 0.45 mmol **2g**). Yellow solid. M.p. 79.0–80.5 °C. Purified by flash column chromatography through silica gel (petroleum ether). ¹**H NMR (400 MHz, CDCl₃):** δ = 8.52-8.47 (m, 2H), 8.32-8.26 (m, 1H), 8.06 (d, *J* = 8.4 Hz, 1H), 8.03-7.95 (m, 1H), 7.87 (s, 1H), 7.80 (dd, *J* = 7.1, 1.3 Hz, 1H), 7.69-7.63 (m, 3H), 7.63-7.57 (m,

2H) ppm.

¹⁹F NMR (376 MHz, CDCl₃): δ = -79.89 (s, 3F), -116.45 (s, 2F), -125.95 (s, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 169.2, 164.1, 156.5 (t, J_{C-F} = 27.2 Hz), 135.3, 134.9, 134.0, 132.0, 131.3, 130.4, 130.3, 128.8, 128.7, 127.5, 126.7, 126.6, 125.3, 124.6, 117.0 (t, J_{C-F} = 3.6 Hz) ppm, carbons corresponding to the C₃F₇ group cannot be identified due to C-F coupling. HRMS (m/z): calcd for C₂₃H₁₃BrF₇N₂ [M+H]⁺ 529.0145, found: 529.0150.

2-(4-Bromophenyl)-4-(perfluoropropyl)-6-(pyridin-3-yl)pyrimidine (3ki):

Yield = 81% (116.2 mg). White solid. M.p. 119.0-120.2 °C.

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate, 20/1~5/1).

¹**H NMR (400 MHz, CDCl₃):** δ = 9.42 (d, *J* = 2.2 Hz, 1H), 8.83-8.78 (m, 1H), 8.54-8.48 (m, 1H), 8.44-8.39 (m, 2H), 7.92 (s, 1H), 7.63-7.57 (m, 2H), 7.54-7.47 (m, 1H) ppm.

¹⁹**F** NMR (376 MHz, CDCl₃): δ = -79.95 (t, *J* = 9.1 Hz, 3F), -116.55 (q, *J* = 9.0 Hz, 2F), -125.99 (s, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 164.3, 164.1, 157.1 (t, J_{C-F} = 26.4 Hz), 152.6, 148.7, 134.8, 134.7, 131.9, 131.2, 130.1, 126.8, 123.8, 111.7 (t, J_{C-F} =4.0 Hz) ppm, carbons corresponding to the C₃F₇ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for C₁₈H₁₀BrF₇N₃ [M+H]⁺ 479.9941, found: 479.9946.

2-(4-Bromophenyl)-4-(perfluoropropyl)-6-(thiophen-2-yl)pyrimidine (3li):

Yield = 60% (87.9 mg). White solid. M.p. 85.8–87.0 °C.

Purified by flash column chromatography through silica gel (petroleum ether).

¹**H NMR (400 MHz, CDCl₃):** δ = 8.44-8.38 (m, 2H), 7.93-7.87 (m, 1H), 7.72 (s, 1H), 7.67-7.60 (m, 3H), 7.23-7.20 (m, 1H) ppm.

¹⁹**F** NMR (**376** MHz, CDCl₃): δ = -79.97 (s, 3F), -116.66 (s, 2F), -126.02 (s, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 164.2, 161.2, 156.5 (t, J_{C-F} = 25.8 Hz), 141.5, 135.0, 131.9, 131.8, 130.2, 128.9, 128.7, 126.6, 110.1 (t, J_{C-F} = 4.8 Hz) ppm, carbons corresponding to the C₃F₇ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for C₁₇H₉BrF₇N₂S [M+H]⁺ 484.9553, found: 484.9558.

(E)-2-(4-bromophenyl)-4-(perfluoropropyl)-6-styrylpyrimidine (3mi):

Yield = 60% (90.9 mg). White solid. M.p. 106.4–107.0 °C.

Purified by flash column chromatography through silica gel (petroleum ether).

¹**H NMR (400 MHz, CDCl₃):** δ = 8.47-8.39 (m, 2H), 8.07 (d, *J* = 15.9 Hz, 1H), 7.69-7.62 (m, 4H), 7.49 (s, 1H), 7.48-7.39 (m, 3H), 7.16 (d, *J* = 15.9 Hz, 1H) ppm.

¹⁹**F NMR (376 MHz, CDCl₃):** δ = -79.97 (s, 3F), -116.65 (s, 2F), -126.05 (s, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 164.8, 163.9, 156.5 (t, J_{C-F} = 26.5 Hz), 139.2, 135.5, 135.1, 131.8, 130.2, 130.0, 129.0, 128.0, 126.4, 125.0, 113.6 (t, J_{C-F} = 3.7 Hz) ppm, carbons corresponding to the C₃F₇ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for C₂₁H₁₃BrF₇N₂ [M+H]⁺ 505.0145, found: 505.0145.

2-(2-(4-Bromophenyl)-6-(perfluoropropyl)pyrimidin-4-yl)propan-2-ol (3ni):

Yield = 41% (57.3 mg). Yellow oil.

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate, 50/1~20/1).

¹**H NMR (400 MHz, CDCl₃):** δ = 8.43-8.35 (m, 2H), 7.74 (s, 1H), 7.67-7.61 (m, 2H), 3.64 (brs, 1H), 1.65 (s, 6H) ppm.

¹⁹**F** NMR (376 MHz, CDCl₃): δ = -80.00 (t, *J* = 9.5 Hz, 3F), -116.34 (q, *J* = 9.5 Hz, 2F), -126.03 (s, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 177.9, 163.3, 156.9 (t, J_{C-F} = 26.7 Hz), 134.8, 132.0, 130.1, 126.8, 111.5 (t, J_{C-F} = 4.6 Hz), 73.1, 30.0 ppm, carbons corresponding to the C₃F₇ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for C₁₆H₁₃BrF₇N₂O [M+H]⁺ 461.0094, found: 461.0099.

2-(4-Bromophenyl)-4-(perfluoroethyl)-6-phenylpyrimidine (3oi):

Yield = 79% (101.6 mg). White solid. M.p. 70.1–71.7 °C.

Purified by flash column chromatography through silica gel (petroleum ether).

¹**H NMR (400 MHz, CDCl₃):** δ = 8.51-8.45 (m, 2H), 8.27-8.21 (m, 2H), 7.93 (s, 1H), 7.67-7.62 (m, 2H), 7.61-7.54 (m, 3H) ppm.

¹⁹**F NMR (376 MHz, CDCl₃):** *δ* = -82.42 (s, 3F), -118.70 (s, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 166.4, 164.2, 156.8 (t, J_{C-F} = 26.3 Hz), 135.7, 135.4, 132.0, 131.9, 130.2, 129.2, 127.5, 126.5, 111.5 (t, J_{C-F} = 4.3 Hz) ppm, carbons corresponding to the C₂F₅ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for C₁₈H₁₁BrF₅N₂ [M+H]⁺ 429.0020, found: 429.0026.

2-(4-Bromophenyl)-4-(perfluoropentyl)-6-phenylpyrimidine (3pi):

Yield = 75% (129.9 mg). White solid. M.p. 88.5-90.0 °C.

Purified by flash column chromatography through silica gel (petroleum ether).

¹**H NMR (400 MHz, CDCl₃):** δ = 8.51-8.43 (m, 2H), 8.27-8.20 (m, 2H), 7.91 (s, 1H), 7.67-7.53 (m, 5H) ppm.

¹⁹**F** NMR (376 MHz, CDCl₃): δ = -80.73 (s, 3F), -115.62 (s, 2F), -121.62 (s, 2F), -122.11 (s, 2F), -126.07 (s, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 166.4, 164.2, 157.0 (t, J_{C-F} = 27.1 Hz), 135.7, 135.4, 132.0, 131.9, 130.2, 129.2, 127.5, 126.5, 111.9 (t, J_{C-F} = 4.5 Hz) ppm, carbons corresponding to the C₅F₁₁ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for C₂₁H₁₁BrF₁₁N₂ [M+H]⁺ 578.9924, found: 578.9930.

2-(4-Bromophenyl)-4-(perfluoroheptyl)-6-phenylpyrimidine (3qi):

Yield = 75% (153.8 mg). White solid. M.p. 74.4–76.0 °C.

Purified by flash column chromatography through silica gel (petroleum ether).

¹**H NMR (400 MHz, CDCl₃):** δ = 8.50-8.45 (m, 2H), 8.27-8.20 (m, 2H), 7.91 (s, 1H), 7.67-7.62 (m, 2H), 7.61-7.53 (m, 3H) ppm.

¹⁹**F** NMR (376 MHz, CDCl₃): δ = -80.76 (s, 3F), -115.55 (t, *J* = 5.1 Hz, 2F), -121.07 (s, 2F), -121.42 (s, 2F), -121.89 (s, 2F), -122.66 (s, 2F), -126.09 (t, *J* = 5.4 Hz, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 166.3, 164.2, 157.0 (t, J_{C-F} = 25.8 Hz), 135.6, 135.4, 132.0, 131.9, 130.2, 129.2, 127.4, 126.5, 111.8 (t, J_{C-F} = 4.3 Hz) ppm, carbons corresponding to the C₇F₁₅ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for C₂₃H₁₁BrF₁₅N₂ [M+H]⁺ 678.9861, found: 678.9866.

2-(4-Bromophenyl)-4-(perfluorononyl)-6-phenylpyrimidine (3ri):

Yield = 76% (177.7 mg). White solid. M.p. 92.7–94.0 °C.

Purified by flash column chromatography through silica gel (petroleum ether).

¹**H NMR (400 MHz, CDCl₃):** δ = 8.53-8.45 (m, 2H), 8.29-8.20 (m, 2H), 7.92 (s, 1H), 7.68-7.64 (m, 2H), 7.61-7.56 (m, 3H) ppm.

¹⁹**F** NMR (376 MHz, CDCl₃): δ = -80.67 (s, 3F), -115.53 (t, *J* = 4.7 Hz, 2F), -120.97 (s, 2F), -121.37 (s, 2F), -121.62 (s, 4F), -121.84 (s, 2F), -122.64 (s, 2F), -126.04 (s, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 166.4, 164.2, 157.1 (t, J_{C-F} = 26.7 Hz), 135.7, 135.5, 132.0, 131.9, 130.2, 129.2, 127.5, 126.5, 111.9 (t, J_{C-F} = 4.5 Hz) ppm, carbons corresponding to the C₉F₁₉ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for C₂₅H₁₁BrF₁₉N₂ [M+H]⁺ 778.9797, found: 778.9802.

(8*R*,9*S*,13*S*,14*S*)-13-Methyl-3-(6-(perfluoropropyl)-2-phenylpyrimidin-4-yl)-6,7,8,9,11,12,13,1 4,15,16-decahydro-17*H*-cyclopenta[*a*]phenanthren-17-one (3sa):

Yield = 38% (22.0 mg; using 0.1 mmol 1q). White solid. M.p. 202.4-203.7 °C.

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate, $50/1 \sim 30/1$).

¹**H** NMR (400 MHz, CDCl₃): $\delta = 8.67-8.59$ (m, 2H), 8.04 (dd, J = 8.2, 2.0 Hz, 1H), 7.99 (d, J = 1.9 Hz, 1H), 7.87 (s, 1H), 7.57-7.52 (m, 3H), 7.49 (d, J = 8.2 Hz, 1H), 3.13-3.02 (m, 2H), 2.60-2.45 (m, 2H), 2.45-2.33 (m, 1H), 2.22-1.98 (m, 4H), 1.68-1.51 (m, 6H), 0.95 (s, 3H) ppm.

¹⁹**F NMR (376 MHz, CDCl₃):** δ = -79.95 (t, *J* = 8.9 Hz, 3F), -116.56 (q, *J* = 9.0 Hz, 2F), -126.09 (s, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 220.7, 166.1, 165.0, 156.3 (t, J_{C-F} = 25.4 Hz), 144.2, 137.5, 136.6, 133.4, 131.5, 128.7, 128.0, 126.2, 124.0, 111.4 (t, J_{C-F} = 4.8 Hz), 50.5, 47.9, 44.6, 37.9, 35.8, 31.5, 29.5, 26.3, 25.6, 21.6, 13.8 ppm, carbons corresponding to the C₃F₇ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for C₃₁H₂₈F₇N₂O [M+H]⁺ 577.2084, found: 577.2090.

((3aR,5R,5aS,8aS,8bR)-2,2,7,7-tetramethyltetrahydro-5H-bis([1,3]dioxolo)[4,5-b:4',5'-d]pyra n-5-yl)methyl 4-(6-(perfluoropropyl)-2-phenylpyrimidin-4-yl)benzoate (3ta):

Yield = 72% (147.8 mg). White solid. M.p. 178.2-179.6 °C.

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate, $50/1 \sim 10/1$).

¹**H NMR (400 MHz, CDCl₃):** δ = 8.64-8.57 (m, 2H), 8.35-8.28 (m, 2H), 8.27-8.20 (m, 2H), 7.92 (s, 1H), 7.57-7.49 (m, 3H), 5.60 (d, *J* = 5.0 Hz, 1H), 4.68 (dd, *J* = 7.9, 2.5 Hz, 1H), 4.58 (dd, *J* = 11.5, 4.6 Hz, 1H), 4.51 (dd, *J* = 11.6, 7.7 Hz, 1H), 4.41-4.32 (m, 2H), 4.26-4.21 (m, 1H), 1.55 (s, 3H), 1.51 (s, 3H), 1.38 (s, 3H), 1.35 (s, 3H) ppm.

¹⁹**F** NMR (376 MHz, CDCl₃): δ = -79.96 (s, 3F), -116.44 (s, 2F), -125.99 (s, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): $\delta = 165.7$, 165.2, 165.1, 157.1 (t, $J_{C-F} = 25.4$ Hz), 139.8, 136.2, 132.8, 131.8, 130.4, 128.7, 127.4, 111.9, 109.7, 108.8, 96.3, 71.1, 70.7, 70.5, 66.1, 64.4, 26.0, 25.9, 24.9, 24.4 ppm, carbons corresponding to the C₃F₇ group cannot be identified due to C-F coupling. HRMS (m/z): calcd for C₃₂H₃₀F₇N₂O₇ [M+H]⁺ 687.1936, found: 687.1942.

4-(Perfluoropropyl)-6-phenyl-2-(4-(thiophen-2-yl)phenyl)pyrimidine (5):

Yield = 96% (92.2 mg; using 0.2 mmol **3ag**). White solid. M.p. 119.3-120.5 °C.

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate, 50/1).

¹**H** NMR (400 MHz, CDCl₃): δ = 8.67-8.61 (m, 2H), 8.32-8.23 (m, 2H), 7.90 (s, 1H), 7.81-7.75 (m, 2H), 7.62-7.55 (m, 3H), 7.46 (d, *J* = 3.7 Hz, 1H), 7.38-7.34 (m, 1H), 7.14 (dd, *J* = 5.1, 3.7 Hz, 1H) ppm.

¹⁹**F** NMR (**376** MHz, CDCl₃): δ = -79.91 (s, 3F), -116.43 (s, 2F), -125.97 (s, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 166.2, 164.6, 156.8 (t, J_{C-F} = 24.3 Hz), 143.6, 137.3, 135.9, 135.4, 131.9, 129.3, 129.2, 128.3, 127.5, 125.9, 125.8, 124.0, 111.5 ppm, carbons corresponding

to the C_3F_7 group cannot be identified due to C-F coupling. HRMS (m/z): calcd for $C_{23}H_{14}F_7N_2S$ [M+H]⁺ 483.0760, found: 483.0766.

12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5

12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5

S34

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

0 -10

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

20 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -2

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2:

20 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -2

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2:

