Solvent-Controlled Regioselective Arylation of Indoles and Mechanistic Explorations

Yuan Niu¹[‡], Chao-Xian Yan¹[‡], Xin-Xin Yang¹, Peng-Bo Bai¹, Pan-Pan

Zhou^{*1}, and Shang-Dong Yang^{*1,2}

¹State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China

²State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China

*E-mail: yangshd@lzu.edu.cn

*E-mail: zhoupp@lzu.edu.cn

Table of content

1. General information	2
2. Synthesis of P-sources	3
3. Synthesis of diaryliodonium salts	5
4. Screening of reaction conditions	6
5. General procedure for C2/C3 arylation of indole phosphorus sources	9
6. Investigated the effect of additional HOTf on the reaction	26
7. Deuterization experiment of indole H3 position	26
8 Proposed catalytic cycle	27
9. Synthesis of 2-aryl indole derivatives and potential fluorescent molecules	
10. Photophysical properties	31
11. Crystallographic data	32
12. References	
13. Copies of NMR spectra	
14. Computational details	120

1. General information

¹H and ¹³C NMR spectra were recorded on a Bruker advance III 400 spectrometer (400 MHz for ¹H and 101 MHz for ¹³C) in CDCl₃ with TMS as internal standard. Chemical shifts (δ) were measured in ppm relative to TMS $\delta = 0$ for ¹H, or to chloroform $\delta = 77.0$ for ¹³C as internal tandard.³¹P and ¹⁹F NMR were recorded on the same instrument. Data are reported as follows: Chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), Coupling constants are reported in Hertz (Hz). High resolution mass spectroscopic (HRMS) and general resolution mass spectra (GRMS) were measured using Bruker micro TOF-Q mass spectrometer and Thermo Scientific DS II mass spectrometer. Analytical thin layer chromatography (TLC) was carried out using commercial silica-gel plates, spots were detected with UV light (254 nm) and revealed with phosphomolybdic acid solutions. UV Vis absorption spectrum was obtained by Agilent UV-Cary 5000. Fluorescence spectrum and absolute quantum yields was obtained by Edinburgh Instrument FLS-920. All photophysical properties were tested in the form of solution [CH₂Cl₂ ($1 \times 10-5$ mol/L)]. The starting materials were purchased from Aldrich, Across Organics, J&K Chemicals or TCI and used without further purification. Solvents were dried and purified according to the procedure from "Purification of Laboratory Chemicals book". Column chromatography was carried out on silica gel (particle size 200-400 mesh ASTM).

2. Synthesis of P-sources

General procedure (GP):

To a distilled THF solution (50 mL) of 4-bromo-1-protective group-1H-indole (10 mmol) was added dropwise "BuLi (5 mL, 12 mmol, 2.4 M in hexane) at -78 °C under Ar atmosphere. The reaction mixture was stirred for 1 hour, then R₂PCl (11 mmol) was added at -78 °C, then the temperature was slowly raised to room temperature and stirred overnight. H₂O₂ (2.5 mL, 30% aq) was added dropwise under ice bath. Water (30 mL) was added and the organic phase was extracted with ethyl acetate (2 \times 40 mL), dried over anhydrous Na₂SO₄, filtered and the solvent was removed in vacuo, the residue was purified by preparative column chromatography (silica gel) and eluted with petroleum ether/ethyl acetate to afford the desire products.

4-bromo-1-methyl-1H-indole was prepared according to the reported literature¹. Then pass through GP and get **1a** (yield:63%) as a white solid from slica gel chromatography (petroleum ether : ethyl acetate = 3:1 to 1:1). ¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, *J* = 3.1 Hz, 1H), 7.43 (d, *J* = 7.8 Hz, 1H), 7.33 (dd, *J* = 9.8, 7.4 Hz, 1H), 7.20 (td, *J* = 7.7, 2.8 Hz, 1H), 7.10 (d, *J* = 3.1 Hz, 1H), 3.78 (s, 3H), 1.34 (s, 9H), 1.31 (s, 9H). ³¹P NMR (162 MHz, CDCl₃) δ 56.75 (s). ¹³C NMR (101 MHz, CDCl₃) δ 137.01 (d, *J* = 10.6 Hz), 132.96 (d, *J* = 5.7 Hz), 129.88 (s), 122.77 (d, *J* = 10.3 Hz), 122.21 (d, *J* = 81.4 Hz), 119.40 (d, *J* = 11.9 Hz), 111.74 (d, *J* = 2.8 Hz), 103.83 (d, *J* = 1.1 Hz), 36.85 (d, *J* = 59.5 Hz), 32.75 (s), 27.28 (s). GRMS calcd for C₁₇H₂₆NOP: [M+H]⁺ 292.1825, found 292.1451.

4-bromo-1-methyl-1H-indole was prepared according to the reported literature¹. Then pass through GP and get **1b** (yield:61%) as a white solid from slica gel chromatography (petroleum ether : ethyl acetate = 2:1 to 1:1). ¹H NMR (400 MHz, CDCl₃) δ 7.76 – 7.67 (m, 4H), 7.52 – 7.46 (m, 3H), 7.44 – 7.38 (m, 4H), 7.25 – 7.18 (m, 2H), 7.00 (d, *J* = 3.2 Hz, 1H), 6.41 (d, *J* = 3.0 Hz, 1H), 3.75 (s, 3H). ³¹P NMR (162 MHz, CDCl₃) δ 29.16 (s). ¹³C NMR (101 MHz, CDCl₃) δ 136.66 (d, *J* = 12.6 Hz), 133.21 (d, *J* = 103.8 Hz), 132.10 (d, *J* = 10.0 Hz), 131.66 (d, *J* = 2.7 Hz), 130.34 (s), 129.66 (d, *J* = 10.3 Hz), 128.39 (d, *J* = 12.1 Hz), 125.40 (d, *J* = 10.3 Hz), 123.08 (d, *J* = 106.0 Hz), 120.58 (d, *J* = 13.4 Hz), 113.43 (d, *J* = 2.8 Hz), 102.03 (d, *J* = 3.0 Hz), 32.96 (s). GRMS calcd for C₂₁H₁₈NOP: [M+H]⁺ 332.1199, found 332.0801.

1-allyl-4-bromo-1H-indole was prepared according to the reported literature². Then pass through GP and get **1c** (yield:58%) as a white solid from slica gel chromatography (petroleum ether : ethyl acetate = 3:1 to 1:1). ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, *J* = 2.4 Hz, 1H), 7.43 (d, *J* = 8.0 Hz, 1H), 7.36 – 7.30 (m, 1H), 7.22 – 7.14 (m, 2H), 5.99 (ddt, *J* = 15.7, 10.4, 5.3 Hz, 1H), 5.20 (d, *J* = 10.2 Hz, 1H), 5.07 (d, *J* = 17.1 Hz, 1H), 4.74 (d, *J* = 5.0 Hz, 2H), 1.33 (d, *J* = 13.4 Hz, 18H). ³¹P NMR (162 MHz, CDCl₃) δ 56.93 (s). ¹³C NMR (101 MHz, CDCl₃) δ 136.41 (d, *J* = 10.7 Hz), 133.31 (s), 133.14 (d, *J* = 5.6 Hz), 128.99 (s), 122.96 (d, *J* = 10.3 Hz), 122.22 (d, *J* = 81.4 Hz), 119.43 (d, *J* = 11.9 Hz), 117.43 (s), 112.12 (d, *J* = 2.7 Hz), 104.19 (s), 48.81 (s), 36.85 (d, *J* = 59.5 Hz), 27.31 (s). GRMS calcd for C₁₉H₂₈NOP: [M+H]⁺ 318.1981, found 318.2456.

1-benzyl-4-bromo-1H-indole was prepared according to the reported literature³. Then pass through GP and get **1d** (yield:55%) as a white solid from slica gel chromatography (petroleum ether : ethyl acetate = 3:1 to 1:1). ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, *J* = 3.1 Hz, 1H), 7.38 (d, *J* = 8.1 Hz, 1H), 7.36 – 7.24 (m, 4H), 7.19 (d, *J* = 3.2 Hz, 1H), 7.17 – 7.08 (m, 3H), 5.31 (s, 2H), 1.34 (d, *J* = 13.4 Hz, 18H). ³¹P NMR (162 MHz, CDCl₃) δ 57.08 (s). ¹³C NMR (101 MHz, CDCl₃) δ 137.24 (s), 136.64 (d, *J* = 10.6 Hz), 133.27 (d, *J* = 5.6 Hz), 129.45 (s), 128.77 (s), 127.68 (s), 126.85 (s), 123.06 (d, *J* = 10.3 Hz), 122.31 (d, *J* = 81.3 Hz), 119.61 (d, *J* = 11.9 Hz), 112.24 (d, *J* = 2.7 Hz), 104.49 (d, *J* = 1.1 Hz), 50.09 (s), 36.88 (d, *J* = 59.5 Hz), 27.33 (s). GRMS calcd for C₂₃H₃₀NOP: [M+H]⁺ 368.2138, found 368.1704.

4-bromo-1-phenyl-1H-indole was prepared according to the reported literature⁴. Then pass through GP and get **1e** (yield:50%) as a pale yellow colloid from slica gel chromatography (petroleum ether : ethyl acetate = 3:1 to 1:1). ¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, *J* = 3.2 Hz, 1H), 7.66 (d, *J* = 8.2 Hz, 1H), 7.53 – 7.44 (m, 4H), 7.42 – 7.33 (m, 3H), 7.19 (td, *J* = 7.8, 2.8 Hz, 1H), 1.36 (d, *J* = 13.4 Hz, 18H). ³¹P NMR (162 MHz, CDCl₃) δ 56.85 (s). ¹³C NMR (101 MHz, CDCl₃) δ 139.45 (s), 136.31 (d, *J* = 10.6 Hz), 133.81 (d, *J* = 5.6 Hz), 129.65 (s), 129.06 (s), 126.67 (s), 124.66 (s), 123.82 (d, *J* = 10.2 Hz), 122.54 (d, *J* = 80.9 Hz), 120.30 (d, *J* = 11.8 Hz), 113.05 (d, *J* = 2.6 Hz), 106.08 (d, *J* = 0.9 Hz), 36.90 (d, *J* = 59.5 Hz), 27.33 (s). GRMS calcd for C₂₂H₂₈NOP: [M+H]⁺ 354.1981, found 354.2474.

4-bromo-1-(phenylsulfonyl)-1H-indole was prepared according to the reported literature⁵. Then pass through GP and get **1f** (yield:40%) as a pale yellow solid from slica gel chromatography (petroleum ether : ethyl acetate = 2:1 to 1:1). ¹H NMR (400 MHz, CDCl₃) δ 8.53 (d, *J* = 8.7 Hz, 1H), 8.15 (d, *J* = 7.5 Hz, 2H), 7.63 (d, *J* = 7.8 Hz, 1H), 7.54 – 7.39 (m, 4H), 7.33 (t, *J* = 7.4 Hz, 1H), 7.10 (d, *J* = 3.7 Hz, 1H), 1.17 (d, *J* = 14.3 Hz, 18H). ³¹P NMR (162 MHz, CDCl₃) δ 52.15 (s). ¹³C NMR (101 MHz, CDCl₃) δ 140.32 (s), 139.89 (d, *J* = 3.8 Hz), 133.23 (s), 129.85 (d, *J* = 72.2 Hz), 128.30 (s), 127.96 (s), 127.43 (d, *J* = 10.3 Hz), 126.59 (s), 123.57 (s), 121.50 (s), 119.81 (d, *J* = 12.5 Hz), 116.02 (s), 38.34 (d, *J* = 62.4 Hz), 27.03 (s). GRMS calcd for C₂₂H₂₈NO₃PS: [M+H]⁺ 418.1600, found 418.0972.

A solution of NaOH (2.0 M, 4 mL) was added to a stirring solution **1f** (2 mmol) in methanol (10 mL) and the resulting mixture refluxed under nitrogen for overnight. The reaction mixture was concentrated under reduced pressure and extracted with ethyl acetate, and the organic layer washed successively with brine. The combined organic layer was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The crude solid was purified by slica gel chromatography (ethyl acetate) and get **1g** (yield:92%) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 10.98 (s, 1H), 7.69 (d, *J* = 8.0 Hz, 1H), 7.62 (d, *J* = 8.2 Hz, 1H), 7.27 (t, *J* = 7.4 Hz, 1H), 7.14 (t, *J* = 7.4 Hz, 1H), 6.80 (s, 1H), 1.32 (d, *J* = 14.3 Hz, 18H). ³¹P NMR (162 MHz, CDCl₃) δ 53.24 (s). ¹³C NMR (101 MHz, CDCl₃) δ 137.26 (d, *J* = 7.7 Hz), 128.45 (d, *J* = 10.1 Hz), 126.32 (d, *J* = 92.4 Hz), 123.05 (s), 121.04 (s), 120.02 (s), 112.33 (s), 108.04 (d, *J* = 11.4 Hz), 36.01 (d, *J* = 63.5 Hz), 26.45 (s). GRMS calcd for C₁₆H₂₄NOP: [M+H]⁺ 278.1668, found 278.2118.

4-bromo-benzo[*b*]thiophene was commercial available. Then pass through GP and get **1h** (yield:60%) as a white solid from slica gel chromatography (petroleum ether : ethyl acetate = 3:1 to 1:1). ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, *J* = 6.6 Hz, 1H), 7.94 – 7.85 (m, 2H), 7.46 – 7.37 (m, 2H), 1.34 (d, *J* = 14.3 Hz, 18H). ³¹P NMR (162 MHz, CDCl₃) δ 54.86 (s). ¹³C NMR (101 MHz, CDCl₃) δ 143.34 (d, *J* = 3.3 Hz), 138.87 (d, *J* = 11.7 Hz), 134.78 (d, *J* = 5.0 Hz), 131.89 (d, *J* = 73.5 Hz), 125.78 (s), 124.69 (s), 124.65 (s), 122.08 (d, *J* = 1.2 Hz), 36.03 (d, *J* = 63.1 Hz), 26.70 (s). GRMS calcd for C₁₆H₂₃OPS: [M+H]⁺ 295.1280, found 295.1746.

3. Synthesis of diaryliodonium salts

3.1 Synthesis of symmetric diaryliodonium salts

Symmetric diaryliodonium salts were synthesized according to corresponding literature⁶. Aryl boronic acid (10 mmol, 1.0 equiv) and CH_2Cl_2 (40 mL) were combined in a dried round-bottom flask. The mixture was cooled to 0 °C for 5 min, BF_3 •OEt₂ (1.36 mL, 1.10 equiv) was added, and the mixture was stirred for 10 min. A solution of 2-(diacetoxyiodo)arene (1.05 equiv) in CH_2Cl_2

(20 mL) was added slowly for 10-15 min and stirred for additional 10 min. The mixture was warmed to room temperature and stirred for 1 h. The reaction was cooled to 0 °C again and TfOH (1.0 mL, 1.1 equiv) was dropped into the mixture. Then, the mixture was stirred for 10 min at 0 °C and warmed to room temperature for additional 10 min. At this time, the solvent was removed under reduced pressure and the residual ran through a short silica gel column (about 5 cm) with 5% of MeOH in CH_2Cl_2 quickly. The mixture was concentrated under vacuum and Et_2O (100 mL) was added to the residual. Filtrated and obtained the symmetric diaryliodonium salts as solid.

3.2 Synthesis of asymmetric diaryliodonium salts

Asymmetric diaryliodonium salts were synthesized according to corresponding literature⁷.

4. Screening of reaction conditions

(^t Bu) ₂ P ^{>O}	+	OTT Air, Sol	$\begin{array}{c} ({}^{t}Bu)_{2}P=0 \\ \text{vent} \\ N \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	('Bu) ₂ p ^{>0} + ('Bu) ₂ p ^{>0} 3aa'
	Entry	Solvent	Yield of 3aa ^b	Yield of 3aa' ^b
	1	THF	88%	Trace
	2	Dioxane	43%	31%
	3	DCE	13%	65%
	4	DME	73%	10%
	5	Toluene	Trace	73%
	6	CH ₃ CN	N.R.	N.R.

Table S1.Solvent screening^a.

^aReaction conditions: **1a** (0.1 mmol, 1.0 equiv), **2a** (0.15 mmol, 1.5 equiv), CuI (10 mol%)

in solvent for 12 h at 100 °C under air. ^bIsolated yield.

Table S2. Screening of reaction time^a.

(^t f	Bu) ₂ P ^{>0}	+ OTF	C <u>ul, 100 °C, 0.5-24 h</u> Air, THF/Toluene	(^t Bu) ₂ P=0 +	
	1a	2a		3aa	3aa'
	Entry	Solvent	Time	Yield of 3aa ^b	Yield of 3aa'b
	1	THF	0.5 h	23%	N.D.
	2	THF	1 h	58%	Trace
	3	THF	2 h	71%	Trace
	4	THF	4 h	81%	<5%
	5	THF	6 h	85%	<5%
	6	THF	8 h	88%	<5%
	7	THF	12 h	88%	<5%
	8	THF	24 h	88%	<5%

9	Toluene	0.5 h	15%	N.D.
10	Toluene	1 h	34%	Trace
11	Toluene	2 h	39%	12%
12	Toluene	4 h	30%	28%
13	Toluene	6 h	23%	45%
14	Toluene	8 h	15%	58%
15	Toluene	12 h	Trace	73%
16	Toluene	16 h	Trace	73%
17	Toluene	24 h	Trace	73%

^aReaction conditions: 1a (0.1 mmol, 1.0 equiv), 2a (0.15 mmol, 1.5 equiv), CuI (10 mol%) in

THF/toluene for 0.5-24 h at 100 $^{\rm o}{\rm C}$ under air. <code>bIsolated</code> yield.

Table S3. Temperture screening of C_3 arylation^a.

('Bu) ₂ P ^{>0}	+	OTf Air, TH 2a	C, 8 h IF 3aa	(^t Bu) ₂ P ^{>0} + (^t Bu) ₂ P ^{>0} N	
	Entry	T/ °C	Yield of 3aa ^b	Yield of 3aa'b	
	1	40	36%	Trace	
	2	60	52%	Trace	
	3	80	72%	<5%	
	4	100	88%	<5%	
	5	120	68%	10%	

^aReaction conditions: 1a (0.1 mmol, 1.0 equiv), 2a (0.15 mmol, 1.5 equiv), CuI (10 mol%)

in THF for 8 h at T/ $^{\rm o}\!C$ under air. ^bIsolated yield.

Table S4. Catalyst screening of C₃ arylation^a.

(^t Bu) ₂ P ^{≠O}	+	OTF I [Cu], 100 °C Air, THI	C, 8 h = ('Bu)₂P = O N	(⁽ Bu) ₂ P ^{<0} +	<u> </u>
1a		2a	3aa	3aa'	
	Entry	[Cu]	Yield of 3aa ^b	Yield of 3aa' ^b	
	1	CuI	88%	<5%	
	2	CuCl	84%	<5%	
	3	CuOTf	84%	<5%	
	4	Cu(CH ₃ CN) ₄ PF ₆	42%	5%	
	5	Cu ₂ O	71%	5%	
	6	Cu(OTf) ₂	47%	Trace	
	7	Cu(acac) ₂	71%	5%	
	8	Cu(OAc) ₂	79%	5%	
	9	CuO	62%	Trace	

10	CuCl ₂	81%	7%
11 ^c	CuI	78%	5%

^aReaction conditions: **1a** (0.1 mmol, 1.0 equiv), **2a** (0.15 mmol, 1.5 equiv), [Cu] (10 mol%) in THF for 8 h at 100 °C under air. ^bIsolated yield. ^cCul (5 mol%, 0.005 mmol).

Table S5. Equivalents screening of ${\bf 2a}$ for ${\rm C}_3$ ary lationª.

('Bu) ₂ P ⁼⁰	+ 2a (OTf Air, T X equiv)	° <u>C, 8 h</u> HF N 3aa	('Bu) ₂ P ^{>0} + N 3aa'	\rightarrow
	Entry	X/ equiv	Yield of 3aa ^b	Yield of 3aa' ^b	
	1	1.0	76%	Trace	
	2	1.2	80%	Trace	
	3	1.5	88%	<5%	
	4	2.0	92%	<5%	
	5	3.0	90%	7%	

^aReaction conditions: **1a** (0.1 mmol, 1.0 equiv), **2a** (X equiv), CuI (10 mol%) in THF for 8 h at 100 °C under air. ^bIsolated yield.

Table S6. Equivalents screening of 2a for C_2 arylation^a.

^aReaction conditions: **1a** (0.1 mmol, 1.0 equiv), **2a** (X equiv), CuI (10 mol%) in toluene for 12 h at 100 °C under air. ^bIsolated yield.

Table S7. Temperture screening of C_2 arylation^a.

(^t Bu) ₂ P ^{>O}	+	OTf Cul, T/ Air, Tc	C, 12 h	+ ('Bu) ₂ P ^{>0}	\sim
1a		2a	3aa	3aa	ı'
	Entry	T/ °C	Yield of 3aa ^b	Yield of 3aa'b	
_	1	40	35%	Trace	
	2	60	35%	58%	
	3	80	Trace	92%	
	4	100	Trace	92%	

^aReaction conditions: **1a** (0.1 mmol, 1.0 equiv), **2a** (0.2 mmol, 2.0 equiv), CuI (10 mol%) in toluene for 12 h at T/ ^oC under air. ^bIsolated yield.

Table S8. Catalyst screening of C2 arylation^a.

(^t Bu) ₂ p ^{>0}	+	OTf [Cu], 80 °C, Air, Tolue	(^t Bu) ₂ P=0	('Bu) ₂ p ^{>0} +
1a		2a	3aa	3aa'
	Entry	[Cu]	Yield of 3aa ^b	Yield of 3aa' ^b
	1	CuI	Trace	92%
	2	CuCl	Trace	90%
	3	CuOTf	Trace	90%
	4	Cu(CH ₃ CN) ₄ PF ₆	Trace	82%
	5	Cu ₂ O	Trace	71%
	6	Cu(OTf) ₂	Trace	77%
	7	Cu(acac) ₂	Trace	74%
	8	Cu(OAc) ₂	Trace	77%
	9	CuO	Trace	80%
	10	CuCl ₂	Trace	82%
	11°	CuI	Trace	81%

^aReaction conditions: **1a** (0.1 mmol, 1.0 equiv), **2a** (0.2 mmol, 2.0 equiv), [Cu] (10 mol%) in toluene for 12 h at 80 °C under air. ^bIsolated yield. °Cul (5 mol%, 0.005 mmol).

5. General procedure for C2/C3 arylation of indole phosphorus

sources

5.1 General procedure for C3 arylation

A 15.00 mL test tube equipped with a rubber septum and magnetic stir bar was charged 1 (0.1 mmol, 1.0 equiv), 2 (0.2 mmol, 2.0 equiv), CuI (0.01 mmol, 10 mol%) and THF (1 mL) under air. The mixture was stirred at 100 °C for 8 h (monitored by TLC). After cooling to room temperature, the solvent was removed under vaccum directly. The crude product was purified via silica gel column chromatography with petroleum ether/ethyl acetate.

Di-tert-butyl(1-methyl-3-(*p*-tolyl)-1H-indol-4-yl)phosphine oxide (**3aa**)

Flash slica gel chromatography (petroleum ether : ethyl acetate = 4:1 to 3:1) to afford **3aa** (0.092 mmol) as a white solid in 92% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, *J* = 8.1 Hz, 1H), 7.43 (dd, *J* = 12.1, 7.4 Hz, 1H), 7.27 – 7.19 (m, 3H), 7.07 (d, *J* = 7.8 Hz, 2H), 6.95 (s, 1H), 3.79 (s, 3H), 2.37 (s, 3H), 1.20 (d, *J* = 13.1 Hz, 18H). ³¹P NMR (162 MHz, CDCl₃) δ 55.15 (s). ¹³C NMR (101 MHz, CDCl₃) δ 137.83 (d, *J* = 10.8 Hz), 136.31 (s), 134.69 (s), 132.10 (s), 130.53 (s), 129.24 (d, *J* = 5.3 Hz), 127.22 (s), 124.51 (d, *J* = 12.1 Hz), 124.16 (d, *J* = 81.2 Hz), 119.74 (d, *J* = 1.7 Hz), 118.85 (d, *J* = 12.9 Hz), 112.32 (d, *J* = 2.8 Hz), 37.52 (d, *J* = 58.6 Hz), 32.77 (s), 27.83 (s), 21.56 (s). HRMS calcd for C₂₄H₃₂NOP: [M+H]⁺ 382.2294, found 382.2299.

Di-tert-butyl(1-methyl-3-phenyl-1H-indol-4-yl)phosphine oxide (3ab)

Flash slica gel chromatography (petroleum ether : ethyl acetate = 4:1 to 2:1) to afford **3ab** (0.079 mmol) as a pale yellow solid in 79% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, *J* = 8.1 Hz, 1H), 7.43 (dd, *J* = 12.0, 6.8 Hz, 1H), 7.34 – 7.30 (m, 2H), 7.30 – 7.22 (m, 4H), 6.98 (s, 1H), 3.81 (s, 3H), 1.19 (d, *J* = 13.1 Hz, 18H). ³¹P NMR (162 MHz, CDCl₃) δ 55.11 (s). ¹³C NMR (101 MHz, CDCl₃) δ 139.33 (s), 137.76 (d, *J* = 10.7 Hz), 131.85 (s), 130.80 (s), 129.26 (d, *J* = 5.1 Hz), 126.27 (s), 125.82 (s), 124.50 (d, *J* = 12.0 Hz), 124.12 (d, *J* = 81.2 Hz), 119.77 (d, *J* = 1.9 Hz), 118.95 (d, *J* = 12.9 Hz), 112.33 (d, *J* = 2.8 Hz), 37.51 (d, *J* = 58.6 Hz), 32.79 (s), 27.76 (s). HRMS calcd for C₂₃H₃₀NOP: [M+H]⁺ 368.2138, found 368.2144.

(^tBu)₂P=0

Di-tert-butyl(1-methyl-3-(*m*-tolyl)-1H-indol-4-yl)phosphine oxide (**3ac**)

Flash slica gel chromatography (petroleum ether : ethyl acetate = 4:1 to 3:1) to afford **3ac** (0.084 mmol) as a white solid in 84% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, *J* = 8.1 Hz, 1H), 7.46 – 7.38 (m, 1H), 7.25 (td, *J* = 7.8, 2.2 Hz, 1H), 7.21 – 7.14 (m, 2H), 7.11 (s, 1H), 7.07 (d, *J* = 6.9 Hz, 1H), 6.98 (s, 1H), 3.80 (s, 3H), 2.34 (s, 3H), 1.20 (d, *J* = 13.2 Hz, 18H). ³¹P NMR (162 MHz, CDCl₃) δ 55.20 (s). ¹³C NMR (101 MHz, CDCl₃) δ 139.21 (s), 137.82 (d, *J* = 10.8 Hz), 135.27 (s), 131.77 (s), 131.51 (s), 129.24 (d, *J* = 5.2 Hz), 127.58 (s), 126.50 (s), 126.36 (s), 124.50 (d, *J* = 12.2 Hz), 124.04 (d, *J* = 81.5 Hz), 119.89 (d, *J* = 1.8 Hz), 118.95 (d, *J* = 12.9 Hz), 112.35 (d, *J* = 2.8 Hz), 37.57 (d, *J* = 58.6 Hz), 32.79 (s), 27.75 (s), 21.54 (s). HRMS calcd for C₂₄H₃₂NOP: [M+H]⁺ 382.2294, found 382.2300.

Di-tert-butyl(1-methyl-3-(*o*-tolyl)-1H-indol-4-yl)phosphine oxide (**3ad**)

Flash slica gel chromatography (petroleum ether : ethyl acetate = 4:1 to 3:1) to afford **3ad** (0.048 mmol) as a white solid in 48% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.54 – 7.49 (m, 1H), 7.40 (ddd, *J* = 12.0, 7.4, 0.9 Hz, 1H), 7.25 (td, *J* = 7.9, 2.3 Hz, 1H), 7.22 – 7.18 (m, 2H), 7.12 – 7.03 (m, 2H), 6.91 (s, 1H), 3.82 (s, 3H), 2.16 (s, 3H), 1.26 (d, *J* = 13.0 Hz, 9H), 1.11 (d, *J* = 13.3 Hz, 9H). ³¹P NMR (162 MHz, CDCl₃) δ 55.76 (s). ¹³C NMR (101 MHz, CDCl₃) δ 139.35 (s), 139.20 (s), 137.76 (d, *J* = 10.9 Hz), 131.28 (s), 131.08 (s), 129.96 (d, *J* = 5.4 Hz), 128.39 (s), 126.27 (s), 124.27 (d, *J* = 12.2 Hz), 123.73 (d, *J* = 82.4 Hz), 123.52 (s), 118.78 (d, *J* = 12.9 Hz), 118.20 (d, *J* = 1.8 Hz), 112.40 (d, *J* = 2.8 Hz), 37.78 (d, *J* = 58.3 Hz), 37.04 (d, *J* = 58.5 Hz), 32.80 (s), 28.41 (s), 27.20 (s), 21.17 (s). HRMS calcd for C₂₄H₃₂NOP: [M+H]⁺ 382.2294, found 382.2301.

Di-tert-butyl(3-(4-(tert-butyl)phenyl)-1-methyl-1H-indol-4-yl)phosphine oxide (3ae)

1.5

2.0

3

4

83%

78%

12%

19%

Flash slica gel chromatography (petroleum ether : ethyl acetate = 4:1 to 2:1) to afford **3ae** as a yellow colloid in 64% (0.064 mmol) to 83% (0.083 mmol) yield. ¹H NMR (400 MHz, CDCl₃) δ 7.48 (d, *J* = 8.1 Hz, 1H), 7.43 (dd, *J* = 12.1, 7.4 Hz, 1H), 7.29 (s, 4H), 7.24 (td, *J* = 7.5, 2.1 Hz, 1H), 6.95 (s, 1H), 3.77 (s, 3H), 1.36 (s, 9H), 1.20 (d, *J* = 13.2 Hz, 18H). ³¹P NMR (162 MHz, CDCl₃) δ 55.39 (s). ¹³C NMR (101 MHz, CDCl₃) δ 147.54 (s), 137.92 (d, *J* = 10.8 Hz), 136.51 (s), 132.58 (s), 130.42 (s), 129.11 (d, *J* = 5.2 Hz), 124.49 (d, *J* = 11.9 Hz), 124.05 (d, *J* = 82.1 Hz), 123.24 (s), 119.75 (d, *J* = 1.7 Hz), 118.88 (d, *J* = 12.9 Hz), 112.43 (d, *J* = 2.8 Hz), 37.54 (d, *J* = 58.5 Hz), 34.43 (s), 32.76 (s), 31.63 (s), 27.80 (s). HRMS calcd for C₂₇H₃₈NOP: [M+H]⁺ 424.2764, found 424.2769.

(^{*t*}Bu)₂P^{≤O} (^tBu)₂P^{⊆O} OTf (^tBu)₂P=0 Cul, 100 °C, 8 h THF, Air 2f (X equiv) 1a 3af 3af' Entry X/ equiv Yield of 3af Yield of 3af' 1 1.0 60% 5% 2 1.2 70% 8% 3 1.5 83% 8% 4 2.0 78% 15%

Di-tert-butyl(3-(3,5-dimethylphenyl)-1-methyl-1H-indol-4-yl)phosphine oxide (3af)

Flash slica gel chromatography (petroleum ether : ethyl acetate = 4:1 to 3:1) to afford **3af** as a pale yellow solid in 60% (0.060 mmol) to 83% (0.083 mmol) yield. ¹H NMR (400 MHz, CDCl₃) δ 7.48 (d, *J* = 8.0 Hz, 1H), 7.42 (dd, *J* = 11.9, 7.2 Hz, 1H), 7.28 – 7.21 (m, 1H), 6.98 (s, 1H), 6.96 (s, 2H), 6.88 (s, 1H), 3.79 (s, 3H), 2.31 (s, 6H), 1.20 (d, *J* = 13.1 Hz, 18H). ³¹P NMR (162 MHz, CDCl₃) δ 54.84 (s). ¹³C NMR (101 MHz, CDCl₃) δ 139.11 (s), 137.89 (d, *J* = 10.7 Hz), 135.27 (s), 131.72 (s), 129.19 (d, *J* = 5.2 Hz), 128.31 (s), 127.42 (s), 124.50 (d, *J* = 12.0 Hz), 124.15 (d, *J* = 82.2 Hz), 120.07 (d, *J* = 1.6 Hz), 118.92 (d, *J* = 12.9 Hz), 112.30 (d, *J* = 2.8 Hz), 37.63 (d, *J* = 58.6 Hz), 32.77 (s), 27.77 (s), 21.46 (s). HRMS calcd for C₂₅H₃₄NOP: [M+H]⁺ 396.2451, found 396.2457.

Di-tert-butyl(3-(4-methoxyphenyl)-1-methyl-1H-indol-4-yl)phosphine oxide (3ag)

Entry	X/ Equiv	Yield of 3ag	Yield of 3ag'
1	1.0	58%	17%
2	1.2	53%	21%
3	1.5	51%	21%

4	2.0	45%	29%

Flash slica gel chromatography (petroleum ether : ethyl acetate = 3:1 to 1:1) to afford **3ag** as a yellow colloid in 45% (0.045 mmol) to 58% (0.058 mmol) yield. ¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, *J* = 8.1 Hz, 1H), 7.42 (dd, *J* = 12.0, 7.4 Hz, 1H), 7.27 – 7.21 (m, 3H), 6.95 (s, 1H), 6.82 (d, *J* = 8.6 Hz, 2H), 3.82 (s, 3H), 3.79 (s, 3H), 1.20 (d, *J* = 13.2 Hz, 18H). ³¹P NMR (162 MHz, CDCl₃) δ 55.52 (s). ¹³C NMR (101 MHz, CDCl₃) δ 157.62 (s), 137.79 (d, *J* = 10.8 Hz), 132.07 (s), 131.78 (s), 131.68 (s), 129.44 (d, *J* = 5.3 Hz), 124.48 (d, *J* = 12.0 Hz), 124.02 (d, *J* = 81.2 Hz), 119.24 (d, *J* = 1.4 Hz), 118.84 (d, *J* = 12.9 Hz), 112.38 (d, *J* = 2.7 Hz), 111.77 (s), 54.96 (s), 37.52 (d, *J* = 58.5 Hz), 32.75 (s), 27.80 (s). HRMS calcd for C₂₄H₃₂NO₂P: [M+H]⁺ 398.2243, found 398.2248.

Di-tert-butyl(3-(4-fluorophenyl)-1-methyl-1H-indol-4-yl)phosphine oxide (**3ah**) Flash slica gel chromatography (petroleum ether : ethyl acetate = 4:1 to 2:1) to afford **3ah** (0.092 mmol) as a white solid in 92% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.51 (d, *J* = 8.1 Hz, 1H), 7.47 – 7.39 (m, 1H), 7.29 – 7.23 (m, 3H), 6.98 – 6.90 (m, 3H), 3.81 (s, 3H), 1.20 (d, *J* = 13.2 Hz, 18H). ³¹P NMR (162 MHz, CDCl₃) δ 55.47 (s). ¹⁹F NMR (376 MHz, CDCl₃) δ -117.38 (s). ¹³C NMR (101 MHz, CDCl₃) δ 161.40 (d, *J* = 242.4 Hz), 137.76 (d, *J* = 10.8 Hz), 135.07 (d, *J* = 3.3 Hz), 131.96 (d, *J* = 7.9 Hz), 131.94 (s), 129.28 (d, *J* = 5.2 Hz), 124.61 (d, *J* = 12.0 Hz), 124.03 (d, *J* = 8.11 Hz), 119.05 (d, *J* = 12.8 Hz), 118.62 (d, *J* = 1.8 Hz), 113.15 (d, *J* = 21.0 Hz), 112.41 (d, *J* = 2.8 Hz), 37.46 (d, *J* = 58.6 Hz), 32.79 (s), 27.77 (s). HRMS calcd for C₂₃H₂₉FNOP: [M+H]⁺ 386.2044, found 386.2049.

Di-tert-butyl(3-(4-chlorophenyl)-1-methyl-1H-indol-4-yl)phosphine oxide(3ai)

Flash slica gel chromatography (petroleum ether : ethyl acetate = 4:1 to 3:1) to afford **3ai** (0.092 mmol) as a pale yellow solid in 92% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, *J* = 8.1 Hz, 1H), 7.44 (dd, *J* = 12.0, 7.4 Hz, 1H), 7.30 – 7.19 (m, 5H), 6.94 (s, 1H), 3.81 (s, 3H), 1.20 (d, *J* = 13.2 Hz, 18H). ³¹P NMR (162 MHz, CDCl₃) δ 55.57 (s). ¹³C NMR (101 MHz, CDCl₃) δ 137.88 (s), 137.79 (s), 132.01 (s), 131.85 (s), 131.38 (s), 129.02 (d, *J* = 5.3 Hz), 126.50 (s), 124.66 (d, *J* = 12.0 Hz), 123.96 (d, *J* = 81.2 Hz), 119.18 (d, *J* = 12.8 Hz), 118.51 (d, *J* = 1.8 Hz), 112.48 (d, *J* = 2.8 Hz), 37.46 (d, *J* = 58.6 Hz), 32.83 (s), 27.75 (s). HRMS calcd for C₂₃H₂₉CINOP: [M+H]⁺ 402.1748, found 402.1754.

Di-tert-butyl(3-(3-chlorophenyl)-1-methyl-1H-indol-4-yl)phosphine oxide (**3aj**) Flash slica gel chromatography (petroleum ether : ethyl acetate = 4:1 to 3:1) to afford **3aj** (0.089

mmol) as a yellow colloid in 89% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, J = 8.1 Hz, 1H), 7.44 (dd, J = 11.8, 7.4 Hz, 1H), 7.31 – 7.17 (m, 5H), 6.98 (s, 1H), 3.81 (s, 3H), 1.20 (d, J = 13.2 Hz, 18H). ³¹P NMR (162 MHz, CDCl₃) δ 55.47 (s). ¹³C NMR (101 MHz, CDCl₃) δ 141.18 (s), 137.82 (d, J = 10.6 Hz), 131.81 (s), 131.79 (s), 130.57 (s), 129.02 (d, J = 5.1 Hz), 128.69 (s), 127.58 (s), 125.84 (s), 124.69 (d, J = 12.0 Hz), 123.96 (d, J = 80.9 Hz), 119.27 (d, J = 12.8 Hz), 118.41 (d, J = 1.7 Hz), 112.46 (d, J = 2.7 Hz), 37.52 (d, J = 58.6 Hz), 32.84 (s), 27.71 (s). HRMS calcd for C₂₃H₂₉CINOP: [M+H]⁺ 402.1748, found 402.1754.

(3-(4-bromophenyl)-1-methyl-1H-indol-4-yl)di-tert-butylphosphine oxide (3ak)

Flash slica gel chromatography (petroleum ether : ethyl acetate = 4:1 to 3:1) to afford **3ak** (0.091 mmol) as a pale yellow solid in 91% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.51 (d, *J* = 8.1 Hz, 1H), 7.44 (dd, *J* = 12.0, 7.3 Hz, 1H), 7.36 (d, *J* = 8.3 Hz, 2H), 7.30 – 7.23 (m, 1H), 7.19 (d, *J* = 8.3 Hz, 2H), 6.94 (s, 1H), 3.81 (s, 3H), 1.20 (d, *J* = 13.2 Hz, 18H). ³¹P NMR (162 MHz, CDCl₃) δ 55.72 (s). ¹³C NMR (101 MHz, CDCl₃) δ 138.45 (s), 137.85 (d, *J* = 10.7 Hz), 132.30 (s), 131.98 (s), 129.38 (s), 128.96 (d, *J* = 5.2 Hz), 124.65 (d, *J* = 12.0 Hz), 123.86 (d, *J* = 81.4 Hz), 119.71 (s), 119.21 (d, *J* = 12.8 Hz), 118.46 (d, *J* = 1.8 Hz), 112.52 (d, *J* = 2.8 Hz), 37.46 (d, *J* = 58.5 Hz), 32.85 (s), 27.73 (s). HRMS calcd for C₂₃H₂₉BrNOP: [M+H]⁺ 446.1243, found 446.1252.

(3-([1,1'-biphenyl]-4-yl)-1-methyl-1H-indol-4-yl)di-tert-butylphosphine oxide (**3al**)

Flash slica gel chromatography (petroleum ether : ethyl acetate = 4:1 to 2:1) to afford **3al** (0.088 mmol) as a yellow colloid in 88% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, *J* = 7.4 Hz, 2H), 7.54 (d, *J* = 8.1 Hz, 2H), 7.50 (d, *J* = 8.1 Hz, 1H), 7.48 – 7.38 (m, 5H), 7.31 – 7.22 (m, 2H), 7.00 (s, 1H), 3.79 (s, 3H), 1.21 (d, *J* = 13.2 Hz, 18H). ³¹P NMR (162 MHz, CDCl₃) δ 55.76 (s). ¹³C NMR (101 MHz, CDCl₃) δ 141.57 (s), 138.86 (s), 137.98 (s), 137.87 (s), 132.23 (s), 131.12 (s), 129.17 (d, *J* = 5.2 Hz), 128.60 (s), 127.07 (s), 126.65 (s), 125.03 (s), 124.57 (d, *J* = 12.1 Hz), 123.90 (d, *J* = 81.9 Hz), 119.33 (d, *J* = 1.5 Hz), 119.09 (d, *J* = 12.9 Hz), 112.53 (d, *J* = 2.7 Hz), 37.55 (d, *J* = 58.5 Hz), 32.83 (s), 27.76 (s). HRMS calcd for C₂₉H₃₄NOP: [M+H]⁺ 444.2451, found 444.2455.

Methyl 4-(4-(di-tert-butylphosphoryl)-1-methyl-1H-indol-3-yl)benzoate (**3am**)

Flash slica gel chromatography (petroleum ether : ethyl acetate = 4:1 to 2:1) to afford **3am** (0.085 mmol) as a yellow colloid in 85% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, *J* = 8.2 Hz, 2H), 7.51 (d, *J* = 8.0 Hz, 1H), 7.45 (dd, *J* = 11.8, 7.3 Hz, 1H), 7.39 (d, *J* = 8.2 Hz, 2H), 7.31 – 7.26 (m, 1H), 6.98 (s, 1H), 3.88 (s, 3H), 3.81 (s, 3H), 1.19 (d, *J* = 13.2 Hz, 18H). ³¹P NMR (162 MHz, CDCl₃) δ 55.35 (s). ¹³C NMR (101 MHz, CDCl₃) δ 167.75 (s), 144.70 (s), 137.93 (d, *J* = 10.7 Hz), 131.90 (s), 130.29 (s), 128.83 (d, *J* = 5.1 Hz), 127.85 (s), 127.21 (s), 124.74 (d, *J* = 11.9 Hz), 123.97 (d, *J* = 80.9 Hz), 119.36 (d, *J* = 12.7 Hz), 118.92 (d, *J* = 1.7 Hz), 112.51 (d, *J* = 2.7 Hz), 51.74 (s), 37.49 (d, *J* = 58.6 Hz), 32.87 (s), 27.70 (s). HRMS calcd for C₂₅H₃₂NO₃P: [M+H]⁺ 426.2193, found 426.2199.

Di-tert-butyl(1-methyl-3-(4-(trifluoromethyl)phenyl)-1H-indol-4-yl)phosphine oxide (**3an**) Flash slica gel chromatography (petroleum ether : ethyl acetate = 4:1 to 2:1) to afford **3an** (0.081 mmol) as a white solid in 81% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.56 – 7.48 (m, 3H), 7.49 – 7.40 (m, 3H), 7.30 (td, *J* = 7.9, 1.8 Hz, 1H), 6.96 (s, 1H), 3.82 (s, 3H), 1.20 (d, *J* = 13.2 Hz, 18H). ³¹P NMR (162 MHz, CDCl₃) δ 55.96 (s). ¹⁹F NMR (376 MHz, CDCl₃) δ -61.60 (s). ¹³C NMR (101 MHz, CDCl₃) δ 143.47 (s), 137.92 (d, *J* = 10.7 Hz), 132.19 (s), 130.67 (s), 128.78 (d, *J* = 5.2 Hz), 127.28 (d, *J* = 31.7 Hz), 126.27 (s), 124.73 (d, *J* = 11.9 Hz), 123.75 (d, *J* = 81.5 Hz), 123.23 (q, *J* = 3.7 Hz), 119.42 (d, *J* = 12.8 Hz), 118.50 (s), 112.60 (d, *J* = 2.8 Hz), 37.45 (d, *J* = 58.5 Hz), 32.86 (s), 27.64 (s). HRMS calcd for C₂₄H₂₉F₃NOP: [M+H]⁺ 436.2012, found 436.2018.

Di-tert-butyl(1-methyl-3-(4-nitrophenyl)-1H-indol-4-yl)phosphine oxide (3ao)

Flash slica gel chromatography (petroleum ether : ethyl acetate = 4:1 to 2:1) to afford **3ao** (0.043 mmol) as a yellow solid in 43% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.13 (d, *J* = 8.7 Hz, 2H), 7.54 (d, *J* = 8.1 Hz, 1H), 7.51 – 7.42 (m, 3H), 7.32 (td, *J* = 7.8, 2.1 Hz, 1H), 7.01 (s, 1H), 3.86 (s, 3H), 1.20 (d, *J* = 13.2 Hz, 18H). ³¹P NMR (121 MHz, CDCl₃) δ 56.66 (s). ¹³C NMR (101 MHz, CDCl₃) δ 147.01 (s), 145.92 (s), 138.03 (d, *J* = 10.5 Hz), 131.95 (s), 130.58 (s), 128.57 (d, *J* = 5.1 Hz), 125.02 (d, *J* = 11.7 Hz), 123.94 (d, *J* = 80.3 Hz), 121.95 (s), 119.76 (d, *J* = 12.6 Hz), 117.91 (d, *J* = 1.7 Hz), 112.65 (d, *J* = 2.8 Hz), 37.44 (d, *J* = 58.6 Hz), 32.99 (s), 27.66 (s). HRMS calcd for C₂₃H₂₉N₂O₃P: [M+H]⁺ 412.1916, found 412.1919.

Di-tert-butyl(1-methyl-3-(naphthalen-1-yl)-1H-indol-4-yl)phosphine oxide (**3ap**)

Flash slica gel chromatography (petroleum ether : ethyl acetate = 4:1 to 2:1) to afford **3ap** (0.068 mmol) as a white solid in 68% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.81 (t, *J* = 8.9 Hz, 2H), 7.55 (dd, *J* = 17.9, 8.3 Hz, 2H), 7.46 – 7.38 (m, 2H), 7.36 – 7.27 (m, 3H), 7.20 – 7.14 (m, 1H), 7.03 (s, 1H), 3.86 (s, 3H), 1.12 – 1.02 (m, 18H). ³¹P NMR (162 MHz, CDCl₃) δ 54.56 (s). ¹³C NMR (101 MHz, CDCl₃) δ 137.72 (d, *J* = 10.7 Hz), 137.51 (s), 135.55 (s), 132.87 (s), 132.17 (s), 130.81 (d, *J* = 5.2 Hz), 127.82 (s), 127.65 (s), 127.49 (s), 126.62 (s), 124.70 (s), 124.49 (s), 124.40 (d, *J* = 12.2 Hz), 124.26 (s), 124.11 (d, *J* = 81.0 Hz), 118.99 (d, *J* = 12.7 Hz), 116.76 (d, *J* = 1.8 Hz), 112.33 (d, *J* = 2.7 Hz), 37.74 (d, *J* = 22.4 Hz), 37.16 (d, *J* = 22.7 Hz), 32.87 (s), 28.02 (s), 27.32 (s). HRMS calcd for C₂₇H₃₂NOP: [M+H]⁺ 418.2294, found 418.2301.

Di-tert-butyl(1-methyl-3-(thiophen-3-yl)-1H-indol-4-yl)phosphine oxide (3aq)

Flash slica gel chromatography (petroleum ether : ethyl acetate = 4:1 to 2:1) to afford **3aq** (0.033 mmol) as a brown solid in 33% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, *J* = 8.0 Hz, 1H), 7.43 (dd, *J* = 11.7, 7.6 Hz, 1H), 7.29 – 7.22 (m, 1H), 7.21 – 7.14 (m, 2H), 7.05 (s, 1H), 7.00 (d, *J* = 1.4 Hz, 1H), 3.81 (s, 3H), 1.22 (d, *J* = 13.2 Hz, 18H). ³¹P NMR (162 MHz, CDCl₃) δ 55.76 (s). ¹³C NMR (101 MHz, CDCl₃) δ 138.87 (s), 137.89 (d, *J* = 10.7 Hz), 132.66 (s), 132.19 (s), 129.60 (d, *J* = 5.1 Hz), 124.57 (d, *J* = 12.1 Hz), 124.01 (d, *J* = 81.9 Hz), 121.58 (s), 121.36 (s), 118.97 (d, *J* = 13.0 Hz), 113.69 (s), 112.46 (d, *J* = 2.7 Hz), 37.50 (d, *J* = 58.6 Hz), 32.77 (s), 27.77 (s). HRMS calcd for C₂₁H₂₈NOPS: [M+H]⁺ 374.1702, found 374.1709.

(1-allyl-3-(p-tolyl)-1H-indol-4-yl)di-tert-butylphosphine oxide (3ca)

Flash slica gel chromatography (petroleum ether : ethyl acetate = 4:1 to 2:1) to afford **3ca** (0.087 mmol) as a yellow solid in 87% yield. ¹H NMR (400 MHz, CDCl3) δ 7.49 (d, J = 8.1 Hz, 1H), 7.43 (dd, J = 11.9, 7.5 Hz, 1H), 7.24 (d, J = 7.9 Hz, 3H), 7.08 (d, J = 7.7 Hz, 2H), 7.00 (s, 1H), 6.01 (ddt, J = 15.8, 10.7, 5.5 Hz, 1H), 5.23 (d, J = 10.2 Hz, 1H), 5.14 (d, J = 17.1 Hz, 1H), 4.73 (d, J = 5.3 Hz, 2H), 2.37 (s, 3H), 1.21 (d, J = 13.1 Hz, 18H). ³¹P NMR (162 MHz, CDCl₃) δ 54.95 (s). ¹³C NMR (101 MHz, CDCl₃) δ 137.24 (d, *J* = 10.8 Hz), 136.32 (s), 134.74 (s), 132.95 (s), 131.02 (s), 130.39 (s), 129.43 (d, *J* = 5.2 Hz), 127.27 (s), 124.66 (d, *J* = 12.1 Hz), 124.16 (d, *J* = 81.3 Hz), 120.05 (d, *J* = 1.6 Hz), 118.86 (d, *J* = 12.9 Hz), 118.02 (s), 112.64 (d, *J* = 2.6 Hz), 48.80 (s), 37.54 (d, *J* = 58.6 Hz), 27.84 (s), 21.61 (s). HRMS calcd for C₂₆H₃₄NOP: [M+H]⁺ 408.2451, found 408.2451.

(1-benzyl-3-(*p*-tolyl)-1H-indol-4-yl)di-tert-butylphosphine oxide (**3da**)

Flash slica gel chromatography (petroleum ether : ethyl acetate = 4:1 to 2:1) to afford **3da** (0.076 mmol) as a pale yellow solid in 76% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, *J* = 8.2 Hz, 1H), 7.45 – 7.39 (m, 1H), 7.34 – 7.26 (m, 3H), 7.26 – 7.23 (m, 2H), 7.21 – 7.15 (m, 3H), 7.08 (d, *J* = 7.8 Hz, 2H), 7.01 (s, 1H), 5.30 (s, 2H), 2.37 (s, 3H), 1.21 (d, *J* = 13.2 Hz, 18H). ³¹P NMR (162 MHz, CDCl₃) δ 55.86 (s). ¹³C NMR (101 MHz, CDCl₃) δ 137.47 (d, *J* = 10.8 Hz), 136.71 (s), 136.40 (s), 134.76 (s), 131.40 (s), 130.51 (s), 129.63 (d, *J* = 5.1 Hz), 128.88 (s), 127.86 (s), 127.22 (s), 127.17 (s), 124.71 (d, *J* = 12.2 Hz), 124.05 (d, *J* = 81.8 Hz), 120.21 (d, *J* = 1.8 Hz), 119.05 (d, *J* = 12.8 Hz), 112.82 (d, *J* = 2.8 Hz), 50.08 (s), 37.58 (d, *J* = 58.4 Hz), 27.79 (s), 21.48 (s). HRMS calcd for C₃₀H₃₆NOP: [M+H]⁺ 458.2607, found 458.2612.

Di-tert-butyl(1-phenyl-3-(p-tolyl)-1H-indol-4-yl)phosphine oxide (3ea)

Flash slica gel chromatography (petroleum ether : ethyl acetate = 4:1 to 2:1) to afford **3ea** (0.079 mmol) as a pale yellow colloid in 79% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, *J* = 8.3 Hz, 1H), 7.56 – 7.43 (m, 5H), 7.41 – 7.35 (m, 1H), 7.30 (d, *J* = 7.9 Hz, 2H), 7.26 – 7.19 (m, 2H), 7.11 (d, *J* = 7.8 Hz, 2H), 2.38 (s, 3H), 1.24 (d, *J* = 13.2 Hz, 18H). ³¹P NMR (162 MHz, CDCl₃) δ 55.17 (s). ¹³C NMR (101 MHz, CDCl₃) δ 138.96 (s), 137.28 (d, *J* = 10.7 Hz), 135.90 (s), 135.02 (s), 131.12 (s), 130.39 (s), 130.11 (d, *J* = 5.2 Hz), 129.68 (s), 127.33 (s), 127.00 (s), 125.47 (d, *J* = 11.9 Hz), 125.10 (s), 124.43 (d, *J* = 80.9 Hz), 121.75 (d, *J* = 1.8 Hz), 119.59 (d, *J* = 12.8 Hz), 113.58 (d, *J* = 2.7 Hz), 37.60 (d, *J* = 58.6 Hz), 27.89 (s), 21.65 (s). HRMS calcd for C₂₉H₃₄NOP: [M+H]⁺ 444.2451, found 444.2451.

5.2 General procedure for C2 arylation

A 15.00 mL test tube equipped with a rubber septum and magnetic stir bar was charged 1 (0.1 mmol, 1.0 equiv), 2 (0.2 mmol, 2.0 equiv), CuI (0.01 mmol, 10 mol%) and toluene (1 mL) under air. The mixture was stirred at 80 °C for 12 h (monitored by TLC). After cooling to room temperature, the solvent was removed under vaccum directly. The crude product was purified via silica gel column chromatography with petroleum ether/ethyl acetate.

Di-tert-butyl(1-methyl-2-(p-tolyl)-1H-indol-4-yl)phosphine oxide (3aa')

Flash slica gel chromatography (petroleum ether : ethyl acetate = 4:1 to 1:1) to afford **3aa'** (0.092 mmol) as a pale yellow solid in 92% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.68 (s, 1H), 7.45 (d, *J* = 7.9 Hz, 3H), 7.38 – 7.32 (m, 1H), 7.27 – 7.17 (m, 3H), 3.76 (s, 3H), 2.39 (s, 3H), 1.34 (d, *J* = 13.4 Hz, 18H). ³¹P NMR (162 MHz, CDCl₃) δ 56.78 (s). ¹³C NMR (101 MHz, CDCl₃) δ 142.67 (s), 138.90 (d, *J* = 10.6 Hz), 137.69 (s), 132.66 (d, *J* = 5.7 Hz), 129.65 (s), 129.34 (s), 129.09 (s), 123.21 (d, *J* = 10.4 Hz), 121.69 (d, *J* = 81.7 Hz), 119.34 (d, *J* = 12.0 Hz), 112.07 (d, *J* = 2.7 Hz), 104.28 (s), 36.89 (d, *J* = 59.5 Hz), 31.19 (s), 27.34 (s), 21.26 (s). HRMS calcd for C₂₄H₃₂NOP: [M +H]⁺ 382.2294, found 382.2299.

(^tBu)₂P^{⊊O}

Di-tert-butyl(1-methyl-2-phenyl-1H-indol-4-yl)phosphine oxide (3ab')

Flash slica gel chromatography (petroleum ether : ethyl acetate = 4:1 to 1:1) to afford **3ab**' (0.085 mmol) as a yellow colloid in 85% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.71 (s, 1H), 7.56 (d, *J* = 7.2 Hz, 2H), 7.50 – 7.40 (m, 3H), 7.36 (t, *J* = 8.1 Hz, 2H), 7.22 (td, *J* = 7.8, 2.8 Hz, 1H), 3.78 (s, 3H), 1.34 (d, *J* = 13.4 Hz, 18H). ³¹P NMR (162 MHz, CDCl₃) δ 56.85 (s). ¹³C NMR (101 MHz, CDCl₃) δ 142.57 (s), 138.96 (d, *J* = 10.5 Hz), 132.62 (s), 132.56 (s), 129.46 (s), 128.36 (s), 127.83 (s), 123.28 (d, *J* = 10.4 Hz), 121.87 (d, *J* = 81.6 Hz), 119.51 (d, *J* = 11.9 Hz), 112.14 (d, *J* = 2.6 Hz), 104.66 (s), 36.89 (d, *J* = 59.5 Hz), 31.23 (s), 27.33 (s). HRMS calcd for C₂₃H₃₀NOP: [M+H] ⁺ 368.2138, found 368.2143.

Di-tert-butyl(1-methyl-2-(*m*-tolyl)-1H-indol-4-yl)phosphine oxide (**3ac'**)

Flash slica gel chromatography (petroleum ether : ethyl acetate = 4:1 to 1:1) to afford **3ac'** (0.078 mmol) as a yellow colloid in 78% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.69 (s, 1H), 7.47 (d, *J* = 8.0 Hz, 1H), 7.42 (s, 1H), 7.38 – 7.31 (m, 3H), 7.25 – 7.16 (m, 2H), 3.78 (s, 3H), 2.40 (s, 3H), 1.34 (d, *J* = 13.4 Hz, 18H). ³¹P NMR (162 MHz, CDCl₃) δ 57.03 (s). ¹³C NMR (101 MHz, CDCl₃) δ 142.75 (s), 138.96 (d, *J* = 10.7 Hz), 138.14 (s), 132.60 (d, *J* = 5.8 Hz), 132.43 (s), 130.28 (s), 128.60 (s), 128.18 (s), 126.36 (s), 123.24 (d, *J* = 10.5 Hz), 121.70 (d, *J* = 81.7 Hz), 119.43 (d, *J* = 12.0 Hz), 112.13 (d, *J* = 2.6 Hz), 104.55 (d, *J* = 0.9 Hz), 36.89 (d, *J* = 59.5 Hz), 31.27 (s), 27.32 (s), 21.42 (s). HRMS calcd for C₂₄H₃₂NOP: [M+H]⁺ 382.2294, found 382.2299.

Di-tert-butyl(1-methyl-2-(o-tolyl)-1H-indol-4-yl)phosphine oxide (3ad')

Flash slica gel chromatography (petroleum ether : ethyl acetate = 4:1 to 1:1) to afford **3ad'** (0.034 mmol) as a yellow colloid in 34% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.52 (s, 1H), 7.47 (d, *J* = 8.0 Hz, 1H), 7.37 (dd, *J* = 9.6, 7.7 Hz, 1H), 7.33 – 7.27 (m, 3H), 7.26 – 7.19 (m, 2H), 3.54 (s, 3H), 2.20 (s, 3H), 1.35 (d, *J* = 13.4 Hz, 18H). ³¹P NMR (162 MHz, CDCl₃) δ 57.27 (s). ¹³C NMR (101

MHz, CDCl₃) δ 141.66 (s), 137.85 (s), 137.77 (d, J = 10.8 Hz), 132.58 (d, J = 5.7 Hz), 132.23 (s), 131.18 (s), 130.01 (s), 128.53 (s), 125.42 (s), 123.14 (d, J = 10.5 Hz), 121.52 (d, J = 81.9 Hz), 119.11 (d, J = 11.9 Hz), 111.93 (d, J = 2.7 Hz), 104.55 (s), 36.87 (d, J = 59.5 Hz), 30.35 (s), 27.36 (s), 20.10 (s). HRMS calcd for C₂₄H₃₂NOP: [M+H]⁺ 382.2294, found 382.2301.

Di-tert-butyl(2-(4-(tert-butyl)phenyl)-1-methyl-1H-indol-4-yl)phosphine oxide (**3ae'**) Flash slica gel chromatography (petroleum ether : ethyl acetate = 4:1 to 1:1) to afford **3ae'** (0.075 mmol) as a brown solid in 75% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.67 (s, 1H), 7.52 – 7.42 (m, 5H), 7.35 (dd, *J* = 9.3, 7.8 Hz, 1H), 7.21 (td, *J* = 7.9, 2.8 Hz, 1H), 3.79 (s, 3H), 1.36 (d, *J* = 3.3 Hz, 18H), 1.32 (s, 9H). ³¹P NMR (162 MHz, CDCl₃) δ 57.07 (s). ¹³C NMR (101 MHz, CDCl₃) δ 150.89 (s), 142.64 (s), 138.93 (d, *J* = 10.6 Hz), 132.63 (d, *J* = 5.4 Hz), 129.59 (s), 129.11 (s), 125.32 (s), 123.23 (d, *J* = 10.4 Hz), 121.57 (d, *J* = 82.0 Hz), 119.31 (d, *J* = 12.0 Hz), 112.10 (d, *J* = 2.5 Hz), 104.33 (s), 36.90 (d, *J* = 59.5 Hz), 34.67 (s), 31.34 (s), 31.29 (s), 27.34 (s). HRMS calcd for C₂₇H₃₈NOP: [M+H]⁺ 424.2764, found 424.2769.

Di-tert-butyl(2-(3,5-dimethylphenyl)-1-methyl-1H-indol-4-yl)phosphine oxide (**3af'**) Flash slica gel chromatography (petroleum ether : ethyl acetate = 4:1 to 1:1) to afford **3af'** (0.087 mmol) as a yellow colloid in 87% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.68 (s, 1H), 7.45 (d, *J* = 8.0 Hz, 1H), 7.35 (dd, *J* = 9.6, 7.5 Hz, 1H), 7.24 – 7.16 (m, 3H), 7.01 (s, 1H), 3.78 (s, 3H), 2.36 (s, 6H), 1.34 (d, *J* = 13.4 Hz, 18H). ³¹P NMR (162 MHz, CDCl₃) δ 56.88 (s). ¹³C NMR (101 MHz, CDCl₃) δ 142.87 (s), 138.97 (d, *J* = 10.6 Hz), 137.91 (s), 132.64 (d, *J* = 5.6 Hz), 132.36 (s), 129.51 (s), 127.22 (s), 123.19 (d, *J* = 10.5 Hz), 121.65 (d, *J* = 81.8 Hz), 119.37 (d, *J* = 11.9 Hz), 112.10 (d, *J* = 2.7 Hz), 104.51 (d, *J* = 0.9 Hz), 36.89 (d, *J* = 59.5 Hz), 31.29 (s), 27.33 (s), 21.33 (s). HRMS calcd for C₂₅H₃₄NOP: [M+H]⁺ 396.2451, found 396.2456.

Di-tert-butyl(2-(4-methoxyphenyl)-1-methyl-1H-indol-4-yl)phosphine oxide (**3ag'**)

Flash slica gel chromatography (petroleum ether : ethyl acetate = 2:1 to 1:2) to afford **3ag'** as a brown solid in 78% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.63 (s, 1H), 7.49 (d, *J* = 8.8 Hz, 2H), 7.45 (d, *J* = 10.0 Hz, 1H), 7.35 (dd, *J* = 9.8, 7.4 Hz, 1H), 7.20 (td, *J* = 7.8, 2.9 Hz, 1H), 6.97 (d, *J* = 8.8 Hz, 2H), 3.85 (s, 3H), 3.75 (s, 3H), 1.34 (d, *J* = 13.4 Hz, 18H). ³¹P NMR (162 MHz, CDCl₃) δ 57.16 (s). ¹³C NMR (101 MHz, CDCl₃) δ 159.44 (s), 142.49 (s), 138.78 (d, *J* = 10.6 Hz), 132.65 (d, *J* = 5.6 Hz), 130.72 (s), 125.01 (s), 123.21 (d, *J* = 10.5 Hz), 121.41 (d, *J* = 81.9 Hz), 119.22 (d, *J* = 12.0 Hz), 113.86 (s), 112.05 (d, *J* = 2.7 Hz), 103.89 (d, *J* = 1.0 Hz), 55.33 (s), 36.89 (d, *J* = 59.4 Hz), 31.15 (s), 27.33 (s). HRMS calcd for C₂₄H₃₂NO₂P: [M+H]⁺ 398.2243, found 398.2248.

Di-tert-butyl(2-(4-fluorophenyl)-1-methyl-1H-indol-4-yl)phosphine oxide (**3ah'**) Flash slica gel chromatography (petroleum ether : ethyl acetate = 4:1 to 1:1) to afford **3ah'** (0.077 mmol) as a white solid in 77% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.68 (s, 1H), 7.51 (dd, *J* = 8.5, 5.5 Hz, 2H), 7.47 (d, *J* = 8.0 Hz, 1H), 7.40 – 7.33 (m, 1H), 7.23 (td, *J* = 7.8, 2.7 Hz, 1H), 7.13 (t, *J* = 8.6 Hz, 2H), 3.74 (s, 3H), 1.34 (d, *J* = 13.4 Hz, 18H). ³¹P NMR (162 MHz, CDCl₃) δ 57.00 (s). ¹⁹F NMR (376 MHz, CDCl₃) δ -113.87 (s). ¹³C NMR (101 MHz, CDCl₃) δ 162.60 (d, *J* = 247.7 Hz), 141.47 (s), 138.86 (d, *J* = 10.6 Hz), 132.47 (d, *J* = 5.5 Hz), 131.15 (d, *J* = 8.1 Hz), 128.66 (d, *J* = 3.3 Hz), 123.37 (d, *J* = 10.4 Hz), 121.85 (d, *J* = 81.5 Hz), 119.67 (d, *J* = 11.9 Hz), 115.42 (d, *J* = 21.6 Hz), 112.19 (d, *J* = 2.7 Hz), 104.63 (s), 36.88 (d, *J* = 59.5 Hz), 31.12 (s), 27.30 (s). HRMS calcd for C₂₃H₂₉FNOP: [M+H]⁺ 386.2044, found 386.2050.

Di-tert-butyl(2-(4-chlorophenyl)-1-methyl-1H-indol-4-yl)phosphine oxide (**3ai'**) Flash slica gel chromatography (petroleum ether : ethyl acetate = 4:1 to 1:1) to afford **3ai'** (0.080 mmol) as a yellow solid in 80% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.71 (s, 1H), 7.52 – 7.45 (m, 3H), 7.43 – 7.40 (m, 2H), 7.37 (dd, *J* = 9.8, 7.4 Hz, 1H), 7.26 – 7.21 (m, 1H), 3.76 (s, 3H), 1.34 (d, *J* = 13.4 Hz, 18H). ³¹P NMR (162 MHz, CDCl₃) δ 57.13 (s). ¹³C NMR (101 MHz, CDCl₃) δ 141.25 (s), 139.05 (d, *J* = 10.6 Hz), 133.96 (s), 132.43 (d, *J* = 5.6 Hz), 131.02 (s), 130.62 (s), 128.65 (s), 123.44 (d, *J* = 10.3 Hz), 121.97 (d, *J* = 81.3 Hz), 119.85 (d, *J* = 11.9 Hz), 112.25 (d, *J* = 2.6 Hz), 104.93 (d, *J* = 1.0 Hz), 36.89 (d, *J* = 59.5 Hz), 31.23 (s), 27.29 (s). HRMS calcd for C₂₃H₂₉CINOP: [M+H]⁺ 402.1748, found 402.1756.

Di-tert-butyl(2-(3-chlorophenyl)-1-methyl-1H-indol-4-yl)phosphine oxide (3aj')

Condition A: **1a** (0.1 mmol, 1.0 equiv), **2j** (0.2 mmol, 2.0 equiv), CuI (0.01 mmol, 10 mol%) in toluene at 80 °C for 12 h under air. Condition B: Adding HOTf (1.0 equiv) directly to the final reaction system of condition A (two steps in one potion).

Entry	Condition	Yield of 3aj	Yield of 3aj'
1	А	63%	32%
2	В	Trace	92%

Flash slica gel chromatography (petroleum ether : ethyl acetate = 4:1 to 1:1) to afford **3aj'** as a yellow colloid in 32% (0.032 mmol) or 92% (0.092 mmol) yield. ¹H NMR (400 MHz, CDCl₃) δ 7.74 (s, 1H), 7.57 (s, 1H), 7.47 (dd, J = 14.3, 7.5 Hz, 2H), 7.40 – 7.34 (m, 3H), 7.28 – 7.22 (m, 1H), 3.78 (s, 3H), 1.34 (d, J = 13.4 Hz, 18H). ³¹P NMR (162 MHz, CDCl₃) δ 57.11 (s). ¹³C NMR (101 MHz, CDCl₃) δ 140.94 (s), 139.11 (d, J = 10.5 Hz), 134.34 (s), 134.33 (s), 132.36 (d, J = 5.4 Hz), 129.64 (s), 129.30 (s), 127.89 (s), 127.46 (s), 123.46 (d, J = 10.4 Hz), 122.13 (d, J = 81.3 Hz), 120.00 (d, J = 11.9 Hz), 112.30 (d, J = 2.7 Hz), 105.33 (s), 36.89 (d, J = 59.5 Hz), 31.29 (s), 27.28 (s). HRMS calcd for C₂₃H₂₉CINOP: [M+H]⁺ 402.1748, found 402.1756.

('Bu)₂P^{_O}

(2-(4-bromophenyl)-1-methyl-1H-indol-4-yl)di-tert-butylphosphine oxide (3ak')

Flash slica gel chromatography (petroleum ether : ethyl acetate = 4:1 to 1:1) to afford **3ak'** (0.072 mmol) as a pale yellow solid in 72% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.72 (s, 1H), 7.56 (d, *J* = 8.5 Hz, 2H), 7.47 (d, *J* = 8.1 Hz, 1H), 7.42 (d, *J* = 8.5 Hz, 2H), 7.37 (dd, *J* = 9.5, 7.6 Hz, 1H), 7.24 (td, *J* = 7.8, 2.9 Hz, 1H), 3.75 (s, 3H), 1.34 (d, *J* = 13.4 Hz, 18H). ³¹P NMR (162 MHz, CDCl₃) δ 57.00 (s). ¹³C NMR (101 MHz, CDCl₃) δ 141.23 (s), 139.08 (d, *J* = 10.6 Hz), 132.43 (d, *J* = 5.6 Hz), 131.59 (s), 131.48 (s), 130.89 (s), 123.45 (d, *J* = 10.3 Hz), 122.17 (s), 122.04 (d, *J* = 81.3 Hz), 119.89 (d, *J* = 11.9 Hz), 112.25 (d, *J* = 2.7 Hz), 104.95 (d, *J* = 1.0 Hz), 36.88 (d, *J* = 59.5 Hz), 31.24 (s), 27.29 (s). HRMS calcd for C₂₃H₂₉BrNOP: [M+H]⁺ 446.1243, found 446.1252.

(2-([1,1'-biphenyl]-4-yl)-1-methyl-1H-indol-4-yl)di-tert-butylphosphine oxide (**3al'**)

Flash slica gel chromatography (petroleum ether : ethyl acetate = 4:1 to 1:1) to afford **3al'** (0.089 mmol) as a white solid in 89% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.78 (s, 1H), 7.68 – 7.62 (m, 6H), 7.49 – 7.42 (m, 3H), 7.40 – 7.32 (m, 2H), 7.24 – 7.19 (m, 1H), 3.80 (s, 3H), 1.35 (d, *J* = 13.4 Hz, 18H). ³¹P NMR (162 MHz, CDCl₃) δ 56.90 (s). ¹³C NMR (101 MHz, CDCl₃) δ 142.21 (s), 140.56 (d, *J* = 1.5 Hz), 139.14 (d, *J* = 10.7 Hz), 132.63 (d, *J* = 5.6 Hz), 131.49 (s), 129.79 (s), 128.87 (s), 127.50 (s), 127.09 (s), 123.35 (d, *J* = 10.4 Hz), 121.87 (d, *J* = 81.5 Hz), 119.64 (d, *J* = 11.9 Hz), 112.21 (d, *J* = 2.7 Hz), 104.80 (s), 36.91 (d, *J* = 59.5 Hz), 31.38 (s), 27.35 (s). HRMS calcd for C₂₉H₃₄NOP: [M+H]⁺ 444.2451, found 444.2455.

('Bu)₂P^{2O} CO₂Me

Methyl 4-(4-(di-tert-butylphosphoryl)-1-methyl-1H-indol-2-yl)benzoate (3am')

Condition A: **1a** (0.1 mmol, 1.0 equiv), **2m** (0.2 mmol, 2.0 equiv), CuI (0.01 mmol, 10 mol%) in toluene at 80 °C for 12 h under air. Condition B: Adding HOTf (1.0 equiv) directly to the final reaction system of condition A (two steps in one potion).

Entry	Condition	Yield of 3am	Yield of 3am'
1	А	56%	10%
2	В	Trace	63%

Flash slica gel chromatography (petroleum ether : ethyl acetate = 4:1 to 1:1) to afford **3am'** as a pale yellow solid in 10% (0.010 mmol) or 63% (0.063 mmol) yield. ¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, *J* = 8.3 Hz, 2H), 7.81 (s, 1H), 7.65 (d, *J* = 8.3 Hz, 2H), 7.50 (d, *J* = 8.1 Hz, 1H), 7.42 – 7.35 (m, 1H), 7.29 – 7.23 (m, 1H), 3.95 (s, 3H), 3.80 (s, 3H), 1.34 (d, *J* = 13.4 Hz, 18H). ³¹P NMR (162 MHz, CDCl₃) δ 57.10 (s). ¹³C NMR (101 MHz, CDCl₃) δ 166.87 (s), 141.30 (s), 139.41 (d, *J* = 10.5 Hz), 137.02 (s), 132.36 (d, *J* = 5.5 Hz), 129.68 (s), 129.20 (s), 129.14 (s), 123.54 (d, *J* = 10.3 Hz), 122.26 (d, *J* = 81.1 Hz), 120.21 (d, *J* = 11.9 Hz), 112.36 (d, *J* = 2.7 Hz), 105.81 (s), 52.19 (s), 36.88 (d, *J* = 59.5 Hz), 31.47 (s), 27.27 (s). HRMS calcd for C₂₅H₃₂NO₃P: [M+H]⁺ 426.2193, found 426.2199.

Di-tert-butyl(1-methyl-2-(4-(trifluoromethyl)phenyl)-1H-indol-4-yl)phosphine oxide (3an')

Condition A: **1a** (0.1 mmol, 1.0 equiv), **2n** (0.2 mmol, 2.0 equiv), CuI (0.01 mmol, 10 mol%) in toluene at 80 °C for 12 h under air. Condition B: Adding HOTf (1.0 equiv) directly to the final reaction system of condition A (two steps in one potion).

Entry	Condition	Yield of 3an	Yield of 3an'
1	А	56%	15%
2	В	Trace	71%

Flash slica gel chromatography (petroleum ether : ethyl acetate = 4:1 to 1:1) to afford **3an'** as a yellow solid in 15% (0.015 mmol) or 71% (0.071 mmol) yield. ¹H NMR (400 MHz, CDCl₃) δ 7.80 (s, 1H), 7.73 – 7.66 (m, 4H), 7.50 (d, *J* = 8.1 Hz, 1H), 7.39 (dd, *J* = 9.7, 7.3 Hz, 1H), 7.30 – 7.24 (m, 1H), 3.79 (s, 3H), 1.34 (d, *J* = 13.5 Hz, 18H). ³¹P NMR (162 MHz, CDCl₃) δ 57.21 (s). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.50 (s). ¹³C NMR (101 MHz, CDCl₃) δ 140.83 (s), 139.32 (d, *J* = 10.5 Hz), 136.13 (s), 132.32 (d, *J* = 5.5 Hz), 129.53 (s), 125.37 (q, *J* = 3.7 Hz), 123.59 (d, *J* = 10.3 Hz), 122.32 (d, *J* = 80.9 Hz), 120.26 (d, *J* = 11.9 Hz), 112.39 (d, *J* = 2.7 Hz), 105.79 (s),

36.90 (d, J = 59.5 Hz), 31.37 (s), 27.27 (s). HRMS calcd for C₂₄H₂₉F₃NOP: $[M+H]^+$ 436.2012, found 436.2019.

Di-tert-butyl(1-methyl-2-(4-nitrophenyl)-1H-indol-4-yl)phosphine oxide (3ao')

Condition A: **1a** (0.1 mmol, 1.0 equiv), **2o** (0.2 mmol, 2.0 equiv), CuI (0.01 mmol, 10 mol%) in toluene at 80 °C for 12 h under air. Condition B: Adding HOTf (1.0 equiv) directly to the final reaction system of condition A (two steps in one potion).

Entry	Condition	Yield of 3ao	Yield of 3ao'
1	А	58%	Trace
2	В	55%	Trace

Di-tert-butyl(1-methyl-2-(naphthalen-1-yl)-1H-indol-4-yl)phosphine oxide (3ap')

Condition A: **1a** (0.1 mmol, 1.0 equiv), **2n** (0.2 mmol, 2.0 equiv), CuI (0.01 mmol, 10 mol%) in toluene at 80 °C for 12 h under air. Condition B: Adding HOTf (1.0 equiv) directly to the final reaction system of condition A (two steps in one potion).

Entry	Condition	Yield of 3ap	Yield of 3ap'
1	А	9%	37%
2	В	Trace	43%

Flash slica gel chromatography (petroleum ether : ethyl acetate = 4:1 to 1:1) to afford **3ap'** as a brown colloid in 37% (0.037 mmol) or 43% (0.043 mmol) yield. ¹H NMR (400 MHz, CDCl₃) δ 7.94 – 7.88 (m, 2H), 7.72 (s, 1H), 7.67 (d, J = 8.4 Hz, 1H), 7.59 (d, J = 5.8 Hz, 1H), 7.54 – 7.46 (m, 3H), 7.45 – 7.38 (m, 2H), 7.30 – 7.24 (m, 1H), 3.49 (s, 3H), 1.37 (d, J = 13.4 Hz, 18H). ³¹P NMR (162 MHz, CDCl₃) δ 57.24 (s). ¹³C NMR (101 MHz, CDCl₃) δ 140.76 (s), 138.18 (d, J = 10.7 Hz), 133.46 (s), 132.71 (s), 132.65 (d, J = 5.7 Hz), 130.29 (s), 129.28 (s), 128.96 (s), 128.25

(s), 126.56 (s), 126.16 (s), 125.94 (s), 125.17 (s), 123.28 (d, J = 10.5 Hz), 121.80 (d, J = 81.6 Hz), 119.41 (d, J = 12.0 Hz), 112.02 (d, J = 2.6 Hz), 105.91 (s), 36.91 (d, J = 59.4 Hz), 30.85 (s), 27.38 (s). HRMS calcd for C₂₇H₃₂NOP: [M+H]⁺ 418.2294, found 418.2303.

(1-allyl-2-(p-tolyl)-1H-indol-4-yl)di-tert-butylphosphine oxide (3ca')

Flash slica gel chromatography (petroleum ether : ethyl acetate = 4:1 to 1:1) to afford **3ca'** (0.064 mmol) as a brown colloid in 64% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.69 (s, 1H), 7.46 (d, *J* = 7.9 Hz, 2H), 7.41 (d, *J* = 8.0 Hz, 1H), 7.38 – 7.32 (m, 1H), 7.24 – 7.14 (m, 3H), 6.11 – 5.93 (m, 1H), 5.23 (d, *J* = 10.4 Hz, 1H), 4.99 (d, *J* = 17.3 Hz, 1H), 4.75 (s, 2H), 2.39 (s, 3H), 1.35 (d, *J* = 13.4 Hz, 18H). ³¹P NMR (162 MHz, CDCl₃) δ 56.97 (s). ¹³C NMR (101 MHz, CDCl₃) δ 142.67 (s), 138.44 (d, *J* = 10.7 Hz), 137.84 (s), 133.90 (s), 132.85 (d, *J* = 5.6 Hz), 129.54 (s), 129.12 (s), 129.05 (s), 123.41 (d, *J* = 10.3 Hz), 121.66 (d, *J* = 81.9 Hz), 119.41 (d, *J* = 11.9 Hz), 116.60 (s), 112.82 (d, *J* = 2.6 Hz), 104.49 (s), 46.57 (s), 36.87 (d, *J* = 59.4 Hz), 27.37 (s), 21.32 (s). HRMS calcd for C₂₆H₃₄NOP: [M+H]⁺ 408.2451, found 408.2451.

('Bu)2P^{2O}

(1-benzyl-2-(*p*-tolyl)-1H-indol-4-yl)di-tert-butylphosphine oxide (**3da'**)

Flash slica gel chromatography (petroleum ether : ethyl acetate = 4:1 to 1:1) to afford **3da'** (0.050 mmol) as a brown colloid in 50% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.74 (s, 1H), 7.38 (d, *J* = 8.0 Hz, 2H), 7.34 – 7.22 (m, 5H), 7.15 (d, *J* = 7.8 Hz, 2H), 7.09 (td, *J* = 8.0, 2.8 Hz, 1H), 7.04 (d, *J* = 7.0 Hz, 2H), 5.38 (s, 2H), 2.35 (s, 3H), 1.36 (d, *J* = 13.4 Hz, 18H). ³¹P NMR (162 MHz, CDCl₃) δ 57.45 (s). ¹³C NMR (101 MHz, CDCl₃) δ 143.05 (s), 138.58 (d, *J* = 10.6 Hz), 138.16 (s), 137.91 (s), 133.01 (d, *J* = 5.7 Hz), 129.45 (s), 129.18 (s), 129.12 (s), 128.78 (s), 127.19 (s), 125.93 (s), 123.54 (d, *J* = 10.4 Hz), 121.61 (d, *J* = 59.4 Hz), 27.38 (s), 21.26 (s). HRMS calcd for C₃₀H₃₆NOP: [M+H]⁺ 458.2607, found 458.2613.

5.3 Reaction results of 1b under different standard conditions.

A 15.00 mL test tube equipped with a rubber septum and magnetic stir bar was charged **1b** (0.1 mmol, 1.0 equiv), **2a** (0.2 mmol, 2.0 equiv), CuI (0.01 mmol, 10 mol%) and THF or toluene (1 mL) under air. The mixture was stirred at 100 °C or 80 °C for 8-12 h (monitored by TLC). After cooling to room temperature, the solvent was removed under vaccum directly. The crude product was purified via silica gel column chromatography with petroleum ether/ethyl acetate (3:1 to 2:1). Only **3ba** could be obtained no matter THF or Toluene as solvent. **3ba** is a pale yellow solid in 79% (0.079 mmol) or 76% (0.076 mmol) yield. ¹H NMR (400 MHz, CDCl₃) δ 7.53 (d, *J* = 8.2 Hz, 1H), 7.43 – 7.33 (m, 6H), 7.29 – 7.22 (m 4H), 7.15 – 7.06 (m, 1H), 6.95 – 6.85 (m, 4H), 6.78 (d, *J* = 7.7 Hz, 2H), 3.83 (s, 3H), 2.29 (s, 3H). ³¹P NMR (162 MHz, CDCl₃) δ 29.23 (s). ¹³C NMR (101 MHz, CDCl₃) δ 137.28 (d, *J* = 12.7 Hz), 135.25 (s), 134.31 (s), 133.27 (s), 132.05 (s), 131.62 (d, *J* = 9.5 Hz), 131.38 (s), 130.79 (d, *J* = 2.7 Hz), 130.56 (s), 127.93 (d, *J* = 12.2 Hz), 127.75 (s), 127.45 (d, *J* = 9.5 Hz), 123.97 (d, *J* = 104.3 Hz), 120.16 (d, *J* = 14.1 Hz), 119.15 (d, *J* = 2.2 Hz), 113.86 (d, *J* = 2.6 Hz), 32.93 (s), 21.16 (s). HRMS calcd for C₃₀H₃₆NOP: [M+H]⁺ 422.1668, found 422.1675.

A 15.00 mL test tube equipped with a rubber septum and magnetic stir bar was charged **N-methylindole** (0.1 mmol, 1.0 equiv), **2a** (0.2 mmol, 2.0 equiv), CuI (0.01 mmol, 10 mol%) and THF or toluene (1 mL) under air. The mixture was stirred at 100 °C or 80 °C for 8-12 h (monitored by TLC). After cooling to room temperature, the solvent was removed under vaccum directly. The crude product was purified via silica gel column chromatography with petroleum ether/ethyl acetate (20:1 to 10:1). We could only get 3-arylation product under both standard conditions, and the yield in toluene was only 25% (0.025 mmol).

6. Investigated the effect of additional HOTf on the reaction ^a

^{*a*} **1a** (0.1 mmol, 1.0 equiv), **2** (0.15 mmol, 1.5 equiv), CuI (0.01 mmol, 10 mol%) and HOTf (0.02 mmol, 20 mol%) in toluene at 80 °C for 12 h under air.

We had previously considered to increase the yield and selectivity of C2-arylation by reducing the proportion of diaryliodonium triflate salts and adding additional HOTf. But the reaction results were worse then before, especially for the diaryliodonium triflate salts containing electron-deficient aromatics (**3ab'**, **3ai'**). The poor reaction results of electron-deficient aromatics were due to the low electrophilicity of Cu (III) formed by its oxidative addition with Cu (I). And the initial acidic atmosphere inhibited the activation of H3 by it to a certain extent, which eventually made the reaction difficult to proceed smoothly.

7. Deuterization experiment of indole H3 position

A 15.00 mL test tube equipped with a rubber septum and magnetic stir bar was charged **3aa** (0.1 mmol, 1.0 equiv), DOTf (1.0 equiv) (following a reported procedure⁸) and toluene (1 mL) under air. The mixture was stirred at 80 °C for 12 h. After cooling to room temperature, the solvent was removed under vaccum directly and purified by flash silica gel chromatography with petroleum ether/ethyl acetate (2:1 to 1:1) to afford **3aa'**[3-D] (0.092 mmol) as a pale yellow solid in 92% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.68 (s, 0.85H), 7.46 (d, *J* = 7.7 Hz, 3H), 7.39 – 7.31 (m, 1H), 7.29 – 7.17 (m, 3H), 3.78 (s, 3H), 2.41 (s, 3H), 1.34 (d, *J* = 13.4 Hz, 18H).

8 Proposed catalytic cycle

9. Synthesis of 2-aryl indole derivatives and potential fluorescent

molecules

NIS(0.2 mmol, 2.0 equiv) was added in one pot to a solution of **3aa'** (0.1 mmol, 1.0 equiv) in THF (1 mL) at 0 °C. Then the reaction was stirred at room temperature for 2 h and monitored by TLC. After quenching with sodium thiosulfate aqueous solution, the reaction mixture was extracted with ethyl acetate (3×3 mL). The collected organic layers were dried with Na₂SO₄. The solvent was evaporated and purified by flash silica gel chromatography with petroleum ether/ethyl acetate (3:1 to 2:1) to afford **4** (0.052 mmol) as a brown oil in 52% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.53 – 7.43 (m, 2H), 7.33 – 7.28 (m, 4H), 7.28 – 7.23 (m, 1H), 3.60 (s, 3H), 2.44 (s, 3H), 1.39 (d, *J* = 13.3 Hz, 18H). ³¹P NMR (162 MHz, CDCl₃) δ 58.94 (s). ¹³C NMR (101 MHz, CDCl₃) δ 146.79 (s), 138.89 (d, *J* = 10.4 Hz), 138.88 (s), 132.48 (d, *J* = 4.9 Hz), 131.22 (s), 130.95 (s), 129.07 (s), 125.60 (d, *J* = 12.0 Hz), 122.57 (d, *J* = 81.1 Hz), 119.05 (d, *J* = 12.9 Hz), 113.10 (d, *J* = 2.7 Hz), 55.43 (s), 37.96 (d, *J* = 58.3 Hz), 32.37 (s), 28.20 (s), 21.50 (s). HRMS calcd for C₂₄H₃₁INOP: [M +H]⁺ 508.1261, found 508.1262.

A 15.00 mL test tube equipped with a rubber septum and magnetic stir bar was charged **3aa'** (0.1 mmol, 1.0 equiv), **2a** (0.15 mmol, 1.5 equiv), CuI (0.01 mmol, 10 mol%) and solvent (1 mL) under air. The mixture was stirred at 100 °C for 12 h (monitored by TLC). After cooling to room temperature, the solvent was removed under vaccum directly. The crude product was purified via silica gel column chromatography with petroleum ether/ethyl acetate (3:1) to afford **5** as a pale yellow solid in 51% (0.051 mmol) or 64% (0.064 mmol) yield. ¹H NMR (400 MHz, CDCl₃) δ 7.55 (d, *J* = 8.0 Hz, 1H), 7.44 (dd, *J* = 12.3, 7.4 Hz, 1H), 7.29 – 7.22 (m, 1H), 7.06 – 6.94 (m, 6H), 6.89 (d, *J* = 7.7 Hz, 2H), 3.62 (s, 3H), 2.29 (s, 3H), 2.28 (s, 3H), 1.21 (d, *J* = 13.1 Hz, 18H). ³¹P NMR (162 MHz, CDCl₃) δ 55.74 (s). ¹³C NMR (101 MHz, CDCl₃) δ 141.97 (s), 137.66 (d, *J* = 11.0 Hz), 137.21 (s), 135.71 (s), 134.04 (s), 132.19 (s), 130.86 (s), 129.77 (d, *J* = 5.1 Hz), 129.09 (s), 128.40 (s), 126.81 (s), 124.88 (d, *J* = 12.6 Hz), 123.42 (d, *J* = 82.5 Hz), 118.52 (d, *J* = 13.2 Hz), 117.78 (d, *J* = 1.6 Hz), 112.42 (d, *J* = 2.9 Hz), 37.59 (d, *J* = 58.4 Hz), 31.27 (s), 27.85 (s), 21.45 (s), 21.29 (s). HRMS calcd for C₃₁H₃₈NOP: [M+H]⁺ 472.2764, found 472.2769.

To a solution of substrate 3ak' (0.2 mmol, 1.0 equiv) in DME (2 mL) was added N-([1,1'-biphenyl]-4-yl)-N-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-[1,1'-biphenyl]-4-amine (0.3 mmol 1.5 equiv), (following the general procedure for borylation⁹) $Pd(PPh_3)_4$ (5 mol%) and 0.5 M sodium carbonate aqueous solution (1 mL) at rt. The mixtue was heated to 80 °C for overnight under Ar. After cooling to room temperature, the reaction mixture was diluted with water (5 mL) and extracted with ethyl acetate (2×5 mL). The combined organic layers were dried over Na₂SO₄, filtered and concentrated in vacuo. The crude product was purified via silica gel column chromatography with petroleum ether/ethyl acetate (2:1) to afford 7 (0.14 mmol) as a pale yellow solid with fluorescence in 70% yield. ¹H NMR (400 MHz, CDCl₃) & 7.78 (s, 1H), 7.64 (q, J = 8.6 Hz, 4H), 7.60 - 7.55 (m, 6H), 7.54 - 7.50 (m, 4H), 7.47 (d, J = 8.2 Hz, 1H), 7.44 - 7.35 (m, 5H), 7.34 - 7.28 (m, 2H), 7.27 - 7.21 (m, 5.7 Hz, 7H), 3.80 (s, 3H), 1.35 (d, J = 13.4 Hz, 18H). ³¹P NMR (162 MHz, CDCl₃) δ 57.02 (s). ¹³C NMR (101 MHz, CDCl₃) δ 147.08 (s), 146.81 (s), 142.33 (s), 140.60 (s), 139.94 (s), 139.16 (d, J = 10.5 Hz), 135.76 (s), 134.86 (s), 132.66 (d, J = 5.7 Hz), 131.07 (s), 129.83 (s), 128.82 (s), 127.97 (s), 127.88 (s), 126.96 (s), 126.74 (s), 126.59 (s), 124.55 (s), 124.40 (s), 123.35 (d, J = 10.8 Hz), 121.81 (d, J = 81.6 Hz), 119.61 (d, J = 12.3 Hz), 112.21 (d, J = 2.5 Hz), 104.73 (s), 36.94 (d, J = 59.5 Hz), 31.40 (s), 27.37 (s). HRMS calcd for $C_{53}H_{51}N_2OP$: $[M+H]^+$ 763.3812, found 763.3828.

8 and **9** were synthesized according to the general procedure for borylation⁹. And the synthesis method of **10-13** was as follows: to a solution of substrate **3ak/3ak'** (0.2 mmol, 1.0 equiv) in DME (2 mL) was added **8/9** (0.3 mmol 1.5 equiv), Pd(PPh₃)₄ (5 mol%) and 0.5 M sodium carbonate aqueous solution (1 mL) at r.t.. The mixtue was heated to 80 °C for overnight under Ar. After cooling to room temperature, the reaction mixture was diluted with water (5 mL) and extracted with ethyl acetate (2×5 mL). The combined organic layers were dried over Na₂SO₄,

filtered and concentrated in vacuo. The crude product was purified via silica gel column chromatography with petroleum ether/ethyl acetate.

10 (yield: 77%, 0.15 mmol) as a yellow solid with fluorescence from slica gel chromatography (petroleum ether : ethyl acetate = 2:1 to 1:1). ¹H NMR (400 MHz, CDCl₃) δ 8.14 (d, *J* = 7.7 Hz, 2H), 7.87 (d, *J* = 8.3 Hz, 2H), 7.62 (d, *J* = 8.0 Hz, 2H), 7.57 (d, *J* = 8.3 Hz, 2H), 7.51 – 7.35 (m, 8H), 7.31 – 7.24 (m, 3H), 7.01 (s, 1H), 3.77 (s, 3H), 1.23 (d, *J* = 13.1 Hz, 18H). ³¹P NMR (162 MHz, CDCl₃) δ 55.39 (s). ¹³C NMR (101 MHz, CDCl₃) δ 141.02 (s), 140.88 (s), 139.19 (s), 137.99 (d, *J* = 10.7 Hz), 136.86 (s), 136.06 (s), 132.35 (s), 131.18 (s), 129.09 (d, *J* = 5.3 Hz), 128.38 (s), 127.13 (s), 126.01 (s), 125.09 (s), 124.73 (d, *J* = 12.0 Hz), 124.12 (d, *J* = 81.3 Hz), 123.39 (s), 120.33 (s), 119.89 (s), 119.33 (d, *J* = 1.6 Hz), 119.17 (d, *J* = 12.8 Hz), 112.57 (d, *J* = 2.6 Hz), 110.05 (s), 37.61 (d, *J* = 58.6 Hz), 32.89 (s), 27.89 (s). HRMS calcd for C₄₁H₄₁N₂OP: [M +H]⁺ 609.3029, found 609.3029.

11 (yield: 84% 0.17 mmol) as a yellow solid with fluorescence from slica gel chromatography (petroleum ether : ethyl acetate = 1.5:1 to 1:1). ¹H NMR (400 MHz, CDCl₃) δ 8.15 (d, *J* = 7.7 Hz, 2H), 7.83 (d, *J* = 5.5 Hz, 3H), 7.74 (d, *J* = 8.1 Hz, 2H), 7.68 (d, *J* = 8.2 Hz, 2H), 7.62 (d, *J* = 8.2 Hz, 2H), 7.48 (d, *J* = 7.9 Hz, 3H), 7.45 – 7.34 (m, 3H), 7.29 (t, *J* = 7.3 Hz, 2H), 7.26 – 7.19 (m, 1H), 3.82 (s, 3H), 1.36 (d, *J* = 13.4 Hz, 18H). ³¹P NMR (162 MHz, CDCl₃) δ 56.87 (s). ¹³C NMR (101 MHz, CDCl₃) δ 142.06 (s), 140.83 (s), 139.56 (d, *J* = 5.5 Hz), 139.20 (d, *J* = 10.4 Hz), 137.04 (s), 132.62 (d, *J* = 5.5 Hz), 131.89 (s), 129.97 (s), 128.48 (s), 127.40 (s), 127.10 (s), 126.07 (s), 123.47 (s), 123.40 (s), 121.97 (d, *J* = 81.4 Hz), 120.41 (s), 120.08 (s), 119.79 (d, *J* = 11.8 Hz), 112.29 (d, *J* = 2.2 Hz), 109.91 (s), 104.96 (s), 36.94 (d, *J* = 59.5 Hz), 31.48 (s), 27.39 (s). HRMS calcd for C₄₁H₄₁N₂OP: [M+H]⁺ 609.3029, found 609.3029.

12 (yield: 60% 0.12 mmol) as a yellow solid with fluorescence from slica gel chromatography (petroleum ether : ethyl acetate = 2:1 to 1:1). ¹H NMR (400 MHz, CDCl₃) δ 8.64 (dd, *J* = 13.5, 7.3 Hz, 2H), 8.57 (d, *J* = 8.4 Hz, 1H), 7.87 (d, *J* = 7.5 Hz, 1H), 7.68 (t, *J* = 7.9 Hz, 1H), 7.60 – 7.38 (m, 6H), 7.31 (t, *J* = 7.0 Hz, 1H), 7.12 (s, 1H), 4.22 (t, *J* = 7.5 Hz, 2H), 3.87 (s, 3H), 1.82 – 1.68 (m, 2H), 1.54 – 1.42 (m, 2H), 1.24 (d, *J* = 13.1 Hz, 18H), 1.00 (t, *J* = 7.3 Hz, 3H). ³¹P NMR (162 MHz, CDCl₃) δ 55.12 (s). ¹³C NMR (101 MHz, CDCl₃) δ 164.62 (s), 164.41 (s), 148.02 (s), 139.92 (s), 137.94 (d, *J* = 10.7 Hz), 135.61 (s), 133.83 (s), 132.00 (s), 131.01 (d, *J* = 8.7 Hz), 130.80 (s), 130.37 (s), 129.16 (d, *J* = 5.2 Hz), 128.79 (s), 128.17 (s), 127.83 (s), 126.49 (s), 124.76 (d, *J* = 11.8 Hz), 124.15 (d, *J* = 81.0 Hz), 122.67 (s), 121.10 (s), 119.30 (d, *J* = 12.8 Hz), 119.06 (d, *J* = 1.4 Hz), 112.54 (d, *J* = 2.4 Hz), 40.25 (s), 37.56 (d, *J* = 58.6 Hz), 32.96 (s), 30.29 (s), 27.78 (s), 20.48 (s), 13.97 (s). HRMS calcd for C₃₉H₄₃N₂O₃P: [M+H]⁺ 619.3084, found 619.3084.

13 (yield: 92% 0.18 mmol) as a yellow solid with fluorescence from slica gel chromatography (petroleum ether : ethyl acetate = 1.5:1 to 1:1). ¹H NMR (400 MHz, CDCl₃) δ 8.68 – 8.63 (m, 2H), 8.34 (dd, *J* = 8.5, 0.7 Hz, 1H), 7.86 (s, 1H), 7.80 – 7.73 (m, 3H), 7.70 – 7.66 (m, 1H), 7.60 (d, *J* = 8.2 Hz, 2H), 7.54 (d, *J* = 7.5 Hz, 1H), 7.50 – 7.45 (m, 1H), 7.32 – 7.25 (m, 1H), 4.26 – 4.17 (m, 2H), 3.90 (s, 3H), 1.80 – 1.70 (m, 2H), 1.54 – 1.44 (m, 2H), 1.37 (d, *J* = 13.4 Hz, 18H), 1.00 (t, *J* = 7.3 Hz, 3H). ³¹P NMR (162 MHz, CDCl₃) δ 56.93 (s). ¹³C NMR (101 MHz, CDCl₃) δ 164.34 (s), 164.14 (s), 146.30 (s), 141.63 (s), 139.22 (d, *J* = 10.5 Hz), 138.16 (s), 132.69 (d, *J* = 25.4 Hz), 132.10 (d, *J* = 9.9 Hz), 131.99 (d, *J* = 2.8 Hz), 131.26 (s), 130.83 (s), 130.02 (s), 129.56 (s), 128.70 (s), 128.54 (d, *J* = 12.1 Hz), 127.90 (s), 127.01 (s), 123.53 (d, *J* = 10.3 Hz), 122.92 (s), 122.07 (d, *J* = 81.2 Hz), 121.86 (s), 119.99 (d, *J* = 11.9 Hz), 112.34 (d, *J* = 2.5 Hz), 105.34 (s),

40.32 (s), 36.89 (d, J = 59.5 Hz), 31.53 (s), 30.25 (s), 27.33 (s), 20.45 (s), 13.95 (s). HRMS calcd for C₃₉H₄₃N₂O₃P: [M+H]⁺ 619.3084, found 619.3084.

10. Photophysical properties

10.1 Photophysical data and spectra of 7

Absorption and emission spectra of 7 in CH₂Cl₂ (1.0×10^{-5} mol/L). Absolute quantum yield in CH₂Cl₂ (1.0×10^{-5} mol/L) determined with an integrating sphere system.

10.2 Photophysical data and spectra of 8, 9, 10, 11, 12 and 13

Compounds	λ_{ex} (nm)	λ_{em} (nm)	$\Phi_{\rm F}$
8	300	354	8.87%
9	310	388	1.11%
10	310	445	32.59%
11	340	400	81.53%
12	340	611	31.61%
13	340	600	22.23%

Emission spectra of 8, 9, 10, 11, 12 and 13 in CH₂Cl₂ (1.0×10^{-5} mol/L). Absolute quantum yields in CH₂Cl₂ (1.0×10^{-5} mol/L) determined with an integrating sphere system.

11. Crystallographic data

Identification code	la
Empirical formula	C ₁₇ H ₂₆ NOP
Formula weight	291.18

Temperature/K	292.65(10)
Crystal system	triclinic
Space group	P-1
a/Å	7.9412(2)
b/Å	13.9538(6)
c/Å	16.5476(8)
<u>α/°</u>	112.708(4)
β/°	90.345(3)
γ/°	96.480(3)
Volume/Å ³	1678.23(13)
Z	2
pcalcg/cm ³	1.153
μ/mm ⁻¹	1.407
F(000)	632.0
Crystal size/mm ³	$0.14 \times 0.09 \times 0.02$
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
2Θ range for data collection/°	7.092 to 133.198
Index ranges	$-5 \le h \le 9, -16 \le k \le 15, -19 \le l \le 19$
Reflections collected	10903
Independent reflections	5924 [$R_{int} = 0.0311$, $R_{sigma} = 0.0337$]
Data/restraints/parameters	5924/0/375
Goodness-of-fit on F ²	1.042
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0473, wR_2 = 0.1281$
Final R indexes [all data]	$R_1 = 0.0512, wR_2 = 0.1333$
Largest diff. peak/hole / e Å ⁻³	0.25/-0.38

Single crystals of $C_{17}H_{26}NOP$ (**1a**) was collected. A suitable crystal was selected and collected on a SuperNova, Dual, Cu at zero, Eos diffractometer. The crystal was kept at 292.65(10) K during data collection. Using Olex2, the structure was solved with the ShelXS structure solution program using Direct Methods and refined with the ShelXL refinement package using Least Squares minimisation. Refined structure and crystallographic parameters are summarized in Table S9. CCDC 2042999 contains the supplementary crystallographic data for **1a**. The crystallographic data of the compound can be obtained free of charge from The Cambridge Crystallographic Data Centre via <u>http://www.ccdc.cam.ac.uk/data_request/cif</u>.

Table S10. Crystal data and structure refinement for 1b.

Identification code	1b
Empirical formula	C21H18NOP
Formula weight	331.33

Temperature/K	292.19(10)
Crystal system	monoclinic
Space group	P21/c
a/Å	8.7400(3)
b/Å	11.2344(5)
c/Å	17.1171(5)
α/°	90
β/°	94.056(3)
γ/°	90
Volume/Å ³	1676.50(10)
Z	4
pcalcg/cm ³	1.313
μ/mm ⁻¹	1.493
F(000)	696.0
Crystal size/mm ³	0.08 imes 0.07 imes 0.05
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
2Θ range for data collection/°	9.424 to 133.162
Index ranges	$-10 \le h \le 9, -9 \le k \le 13, -20 \le l \le 19$
Reflections collected	6054
Independent reflections	2957 [$R_{int} = 0.0199$, $R_{sigma} = 0.0268$]
Data/restraints/parameters	2957/0/219
Goodness-of-fit on F ²	1.052
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0362, wR_2 = 0.0981$
Final R indexes [all data]	$R_1 = 0.0401, wR_2 = 0.1018$
Largest diff. peak/hole / e Å ⁻³	0.33/-0.29

Single crystals of C₂₁H₁₈NOP (1b) was collected. A suitable crystal was selected and collected on a SuperNova, Dual, Cu at zero, Eos diffractometer. The crystal was kept at 292.19(10) K during data collection. Using Olex2, the structure was solved with the ShelXS structure solution program using Direct Methods and refined with the ShelXL refinement package using Least Squares minimisation. Refined structure and crystallographic parameters are summarized in Table S10. CCDC 2043000 contains the supplementary crystallographic data for 1b. The crystallographic data of the compound can be obtained free of charge from The Cambridge Crystallographic Data Centre via http://www.ccdc.cam.ac.uk/data_request/cif.

CCDC: 2042997

Table S11. Crystal data and structure refinement for 3aa.

Ic	lentification code	Заа
Е	mpirical formula	C24H32NOP
	Formula weight	381.47

Temperature/K	293.37(10)
Crystal system	orthorhombic
Space group	Pbca
a/Å	14.5242(3)
b/Å	15.7499(3)
c/Å	19.4992(4)
α/°	90
β/°	90
γ/°	90
Volume/Å ³	4460.55(14)
Z	8
pcalcg/cm ³	1.136
μ/mm ⁻¹	1.172
F(000)	1648.0
Crystal size/mm ³	$0.18 \times 0.15 \times 0.12$
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
2Θ range for data collection/°	9.07 to 133.19
Index ranges	$-17 \le h \le 14, -18 \le k \le 18, -23 \le l \le 11$
Reflections collected	10855
Independent reflections	$3922 [R_{int} = 0.0275, R_{sigma} = 0.0316]$
Data/restraints/parameters	3922/0/252
Goodness-of-fit on F ²	1.042
Final R indexes [I>=2 σ (I)]	$R_1=0.0458, wR_2=0.1187$
Final R indexes [all data]	$R_1=0.0569,wR_2=0.1287$
Largest diff. peak/hole / e Å ⁻³	0.18/-0.32

Single crystals of $C_{24}H_{32}NOP$ (**3aa**) was collected. A suitable crystal was selected and collected on a SuperNova, Dual, Cu at zero, Eos diffractometer. The crystal was kept at 293.37(10) K during data collection. Using Olex2, the structure was solved with the ShelXS structure solution program using Direct Methods and refined with the ShelXL refinement package using Least Squares minimisation. Refined structure and crystallographic parameters are summarized in Table S11. CCDC 2042997 contains the supplementary crystallographic data for **3aa**. The crystallographic data of the compound can be obtained free of charge from The Cambridge Crystallographic Data Centre via http://www.ccdc.cam.ac.uk/data_request/cif.

(^tBu)₂P^{∠C}

CCDC: 2043003

Table S12. Crystal data and structure refinement for 3aa'.

3aa'

Identification code	3aa'
Empirical formula	C ₂₄ H ₃₂ NOP
Formula weight	381.47
Temperature/K	293.14(10)

Crystal system	monoclinic
Space group	C2/c
a/Å	32.4047(7)
b/Å	7.95437(17)
c/Å	17.7118(3)
α/°	90
β/°	92.0211(19)
γ/°	90
Volume/Å ³	4562.54(16)
Z	8
pcalcg/cm ³	1.111
µ/mm ⁻¹	1.146
F(000)	1648.0
Crystal size/mm ³	$0.15\times0.12\times0.09$
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
29 range for data collection/°	9.994 to 133.128
Index ranges	$-37 \le h \le 38, -9 \le k \le 9, -21 \le l \le 14$
Reflections collected	8667
Independent reflections	4041 [$R_{int} = 0.0209, R_{sigma} = 0.0259$]
Data/restraints/parameters	4041/0/252
Goodness-of-fit on F ²	1.073
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0430, wR_2 = 0.1192$
Final R indexes [all data]	$R_1 = 0.0509, wR_2 = 0.1273$
Largest diff. peak/hole / e Å ⁻³	0.20/-0.25

Single crystals of $C_{24}H_{32}NOP$ (**3aa'**) was collected. A suitable crystal was selected and collected on a SuperNova, Dual, Cu at zero, Eos diffractometer. The crystal was kept at 293.14(10) K during data collection. Using Olex2, the structure was solved with the ShelXS structure solution program using Direct Methods and refined with the ShelXL refinement package using Least Squares minimisation. Refined structure and crystallographic parameters are summarized in Table S12. CCDC 2043003 contains the supplementary crystallographic data for **3aa'**. The crystallographic data of the compound can be obtained free of charge from The Cambridge Crystallographic Data Centre via <u>http://www.ccdc.cam.ac.uk/data_request/cif</u>.

Table S13. Crystal data and structure refinement for 3ah

Identification code	3ai
Empirical formula	C ₂₃ H ₂₉ ClNOP
Formula weight	401.89
Temperature/K	230(17)
Crystal system	orthorhombic
---	--
Space group	Pbca
a/Å	14.3409(3)
b/Å	15.6455(3)
c/Å	19.8457(4)
α/°	90
β/°	90
γ/°	90
Volume/Å ³	4452.76(17)
Z	8
pcalcg/cm ³	1.199
μ/mm ⁻¹	2.279
F(000)	1712.0
Crystal size/mm ³	$0.19 \times 0.15 \times 0.12$
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
2Θ range for data collection/°	8.912 to 133.172
Index ranges	$-13 \le h \le 17, -17 \le k \le 18, -23 \le l \le 22$
Reflections collected	9938
Independent reflections	3936 [$R_{int} = 0.0314$, $R_{sigma} = 0.0337$]
Data/restraints/parameters	3936/0/251
Goodness-of-fit on F ²	1.044
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0531, wR_2 = 0.1400$
Final R indexes [all data]	$R_1 = 0.0620, wR_2 = 0.1512$
Largest diff. peak/hole / e Å ⁻³	0.35/-0.58

Single crystals of C₂₃H₂₉ClNOP (**3ai**) was collected. A suitable crystal was selected and collected on a SuperNova, Dual, Cu at zero, Eos diffractometer. The crystal was kept at 230(17) K during data collection. Using Olex2, the structure was solved with the ShelXS structure solution program using Direct Methods and refined with the ShelXL refinement package using Least Squares minimisation. Refined structure and crystallographic parameters are summarized in Table S13. CCDC 2043001 contains the supplementary crystallographic data for **3ai**. The crystallographic data of the compound can be obtained free of charge from The Cambridge Crystallographic Data Centre via http://www.ccdc.cam.ac.uk/data_request/cif.

(^tBu)₂P^{∽O} CCDC: 2043002 3ai'

Table S14. Crystal data and structure refinement for 3ah'

Identification code	3ai'
Empirical formula	C ₂₃ H ₂₉ ClNOP
Formula weight	401.89
Temperature/K	291.76(10)
Crystal system	monoclinic

Space group	C2/c
a/Å	31.5630(8)
b/Å	7.9513(2)
c/Å	17.9128(5)
α/°	90
β/°	96.877(2)
γ/°	90
Volume/Å ³	4463.2(2)
Z	8
ρcalcg/cm ³	1.196
μ/mm ⁻¹	2.273
F(000)	1712.0
Crystal size/mm ³	0.18 imes 0.15 imes 0.12
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
20 range for data collection/°	9.948 to 133.154
Index ranges	$-37 \le h \le 36, -9 \le k \le 8, -21 \le l \le 19$
Reflections collected	7520
Independent reflections	$3852 [R_{int} = 0.0216, R_{sigma} = 0.0254]$
Data/restraints/parameters	3825/0/251
Goodness-of-fit on F ²	1.065
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0459, wR_2 = 0.1209$
Final R indexes [all data]	$R_1 = 0.0509, wR_2 = 0.1274$
Largest diff. peak/hole / e Å-3	0.28/-0.49

Single crystals of $C_{23}H_{29}CINOP$ (**3ai'**) was collected. A suitable crystal was selected and collected on a SuperNova, Dual, Cu at zero, Eos diffractometer. The crystal was kept at 291.76(10) K during data collection. Using Olex2, the structure was solved with the ShelXS structure solution program using Direct Methods and refined with the ShelXL refinement package using Least Squares minimisation. Refined structure and crystallographic parameters are summarized in Table S14. CCDC 2043002 contains the supplementary crystallographic data for **3ai'**. The crystallographic data of the compound can be obtained free of charge from The Cambridge Crystallographic Data Centre via <u>http://www.ccdc.cam.ac.uk/data_request/cif</u>

12. References

1. H.-X. Zheng, X.-H. Shan, J.-P. Qu, Y.-B. Kang, Org. Lett. 2017, 19, 5114.

2. F. Turnu, A. Luridiana, A. Cocco, S. Porcu, A. Frongia, G. Sarais, F. Secci, *Org. Lett.* 2019, **21**, 7329.

3. G. L. Tolnai, A. Székely, Z. Makó, T. Gáti, J. Daru, T. Bihari, A. Stirling, Z. Novák, *Chem. Commun.* 2015, **51**, 4488.

4. Q.-B. Zhang, Y.-L. Ban, P.-F. Yuan, S.-J. Peng, J.-G. Fang, L.-Z. Wu, Q. Liu, *Green Chem.* 2017, **19**, 5559.

5. Q.-H. Wang, K. E. Arnst, Y.-X. Wang, G. Kumar, D.-J. Ma, H. Chen, Z.-Z. Wu, J.-L. Yang, S. W. White, D. D. Miller, W. Li, *J. Med. Chem.* 2018, **61**, 7877.

- 6. W.-M. Shi, X.-H. Li, C. Liang, D.-L. Mo, Adv. Synth. Catal. 2017, 359, 4129.
- 7. X. Li, P.-H. Chen, G.-S. Liu, Angew. Chem. Int. Ed. 2018, 57, 15871.
- 8. R. J. Smith, R. M. Pagni, J. Org. Chem. 1981, 46, 4307.
- 9. Y.-S. Cai, Z.-Q. Guo, J.-M. Chen, W.-L. Li, L.-B. Zhong, Y. Gao, L. Jiang, L.-F. Chin, H. Tian, W.-H. Zhu, *J. Am. Chem. Soc.* 2016, **138**, 2219.

13. Copies of NMR spectra

¹H NMR spectrum for **1b**

¹H NMR spectrum for **1c**

7.62	6.02
7.61	6.01
7.44	6.01
7.42	6.00
7.35	5.97
7.35	5.09
7.33	5.05
7.19	5.05
7.19	5.05
7.19	5.05
7.17	5.05

('Bu)2P^{2O}

-30 -50 f1 (ppm) 130 110 90 80 70 60 50 40 30 20 10 0 -10 -90 -110 -130 -150 -190 -230 -70 -170 -210

 1 H NMR spectrum for **1h**

55

(^tBu)₂P^{≠O}

3ac

-10 80 70 f1 (ppm)

³¹P NMR spectrum for **3ae**

¹H NMR spectrum for **3ag**

³¹P NMR spectrum for **3ag**

¹³C NMR spectrum for **3ag**

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

¹³C NMR spectrum for **3ah**

¹³C NMR spectrum for **3ai**

-10 f1 (ppm)

³¹P NMR spectrum for **3aj**

¹³C NMR spectrum for **3ak**

³¹P NMR spectrum for **3al**

³¹P NMR spectrum for **3am**

¹H NMR spectrum for **3an**

³¹P NMR spectrum for **3an**

¹³C NMR spectrum for **3an**

¹H NMR spectrum for **3ao**

130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 f1 (ppm)

¹³C NMR spectrum for **3ao**

80 70 f1 (ppm)

3aq

³¹P NMR spectrum for **3ad**'

(^tBu)₂F

- 57.27

3aď

f1 (ppm)

³¹P NMR spectrum for **3af**'

(^tBu)₂F

3af

³¹C NMR spectrum for **3ag'**

³¹P NMR spectrum for **3ah'**

¹⁹F NMR spectrum for **3ah'**

¹³C NMR spectrum for **3ah'**

163.83 161.37	141.47 138.91 131.19 131.19 131.11 123.64 123.42 123.42 123.53 119.61 119.61 115.53 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55 115.55	
17		

737.18-35.59 -31.12 -27.30

³¹P NMR spectrum for **3ai'**

-0. (9, 5 6.5 6.0 5.5 5.0 4.5 f1 (ppm) 2.5 2.0 1.5 0.5 0.0 9.0 8.5 8.0 7.0 4.0 3.5 3.0 1.0

³¹P NMR spectrum for **3ak'**

0.8 0.08 ⊭ 0.08 ⊭ 0.08 ⊭ 0.08 ⊭ 0.08 ⊬ 0.08 ⊬ 0.08 ⊬ 0.08 ⊬ 0.08 ⊬ 0.08 ⊬ 0.08 ⊬ 0.08 ⊬ 0.08 ⊬ 0.09 ⊬ 3.02 ≠ 18.091 -0.5 -1. 10.0 9.0 8.5 7.0 6.0 5.5 5.0 4.5 f1 (ppm) 4.0 3.0 2.5 2.0 1.0 0.0 9.5 6.5 3.5 1.5 0.5

¹³C NMR spectrum for **3al**'

¹H NMR spectrum for **3am**'

³¹P NMR spectrum for **3am'**

¹³C NMR spectrum for **3am'**

³¹P NMR spectrum for **3ca**

- 54.95

(^tBu)₂F

3ca

¹H NMR spectrum for **3ca**'

7.69 7.47 7.45 7.45 7.7.35 7.7.35 7.7.18 7.7.19 7.7.18 7.7.19 7.17 7.17 7.17 7.17 7.17 7.17 7.	2.39	1.37 1.33
	1	\leq

³¹P NMR spectrum for **3da**

³¹P NMR spectrum for **3ea**

-55.17

10.0

9.5

9.0

8.5 8.0 7.0 6.5

109

5.5

5.0 4.5 4.0 3.5

6.0

3.0

2.0 1.5 1.0

0.5

-0.5 -1.

0.0

³¹P NMR spectrum for **5**

³¹P NMR spectrum for **10**

30 20 f1 (ppm) -70 120 70 60 -20 -50 110 100 90 80 50 40 10 0 -10 -30 -40 -60

¹³C NMR spectrum for **11**

³¹P NMR spectrum for **12** $\frac{12}{\frac{9}{5}}$

¹³C NMR spectrum for 12

14. Computational details

14.1 General information

All geometry opimizations were carried out at B3LYP¹-D3²/BS1 level of theory (BS1: SDD³ for Cu and I, 6-31G(d) for other atoms). Vibrational frequencies were calculated at the same level of theory to verify that each transition state (**TS**) structure has only one imaginary frequency and other structures have no imaginary frequency, and temperature was set to 353 K to obtain Gibbs free energy correction (GFEC) values. Intrincis reaction coordinate (IRC)⁴ calculations were also carried out to verify each **TS** connected corresponding reactant and product. Single-point energies (E) were calculated at B3LYP-D3/BS2/SMD⁵ (solvent) level of theory (BS2: SDD for Cu and I, Def2-TZVP⁶ for other atoms; solvent=toluene or THF). The Gibbs free energy (G) of each structure was calculated as follows: G=GFEC+E. All calculations were performed using Gaussian 09 D.01 software package,⁷ the optimized structures were drawn using CYLview software.⁸

14.2 Proposed reaction pathways of 1a, 1b and N-methylindole under toluene at 80 °C. Some non-critical steps were omitted for clarity. Ar=*p*-MeC₆H₅. The Gibbs free energies of CuOTf, Ar₂IOTf and 1a, 1b or N-methylindole were set to 0.0 kcal/mol as references.

14.3 Optimized structures involved in reaction pathways of 1a, 1b and N-methylindole. Some hydrogen atoms and intermolecular interactions were omitted for clarity. Distances were in $\text{Å. Ar} = p\text{-MeC}_6\text{H}_5$

14.4 Optimized structures and relative Gibbs free energies of hydrogen bond complexes HOTf·THF, HOTf·TEMPO, and HOTf·BHT. Some hydrogen atoms and intermolecular interactions were omitted for clarity. Distances were in Å.

References

1. (a) A. D. Becke, J. Chem. Phys. 1993, **98**, 5648; (b) C. Lee, W.-T. Yang, R. G. Parr, Phys. Rev. B 1988, **37**, 785.

2. S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.

3. (a) M. Dolg, U. Wedig, H. Stoll, Preuss, H. J. Chem. Phys. 1987, **86**, 866; (b) D. Andrae, U. Häuβermann, M. Dolg, H. Stoll, H. Preuβ, *Theor. Chim. Acta*. 1990, **77**, 123.

4. (a) K. Fukui, Acc. Chem. Res. 1981, 14, 363; (b) C. Gonzalez, H. B. Schlegel, J. Chem. Phys. 1989, 90, 2154.

5. A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378.

6. F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297.

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, D.01, Gaussian, Inc., Wallingford, CT, 2013.

8. C. Y. Legault, CYLview, v 1.0b, Universite de Sherbrooke, 2009.

14.5 Calculated Gibbs free energy correction (GFEC) values, energies (E), Gibbs free energies (G) of all optimzied structures, and imaginary frequency (ν_i) of each TS structure.

Name	GFEC/a.u.	E/a.u.	G/a.u.	v_i/cm^{-1}
Ar ₂ IOTf	0.179009	-1515.288606	-1515.109597	
CuI	-0.032161	-208.833475	-208.865636	
ArI	0.071653	-282.497210	-282.425557	
CuOTf	-0.020396	-1159.141670	-1159.162066	
HOTf	-0.005629	-962.358586	-962.364215	
ArCu(OTf) ₂	0.096369	-2391.966713	-2391.870344	
1a	0.333387	-1135.245205	-1134.911818	
IM ₁ (1a)	0.470287	-3527.268754	-3526.798467	
TS ₁ (1a)	0.466084	-3527.243622	-3526.777538	-824.19
IM ₂ (1a)	0.470606	-3527.265186	-3526.794580	
TS ₂ (1a)	0.442821	-2564.871109	-2564.428288	-55.91
3aa	0.437153	-1405.720409	-1405.283256	
IM ₃ (1a)	0.465769	-2368.106705	-2367.640936	
TS ₃ (1a)	0.457461	-2368.067017	-2367.609556	-301.68
3aa'	0.435969	-1405.734935	-1405.298966	
1b	0.271459	-1282.892617	-1282.621158	
3ba	0.370496	-1553.379115	-1553.008619	

IM ₃ (1b)	0.394776	-2515.754527	-2515.359751	
TS ₃ (1b)	0.392047	-2515.713284	-2515.321237	-289.95
N-methylindole	0.116635	-403.303130	-403.186495	
31	0.213460	-673.792747	-673.579287	
IM ₃ (N-methylindole)	0.234464	-1636.163301	-1635.928837	
TS ₃ (N-methylindole)	0.236414	-1636.121901	-1635.885487	-341.64
THF	0.082335	-232.557046	-232.474711	
HOTf·THF	0.105350	-1194.946828	-1194.841478	
ТЕМРО	0.218922	-483.944245	-483.725323	
HOTf·TEMPO	0.240710	-1446.331882	-1446.091172	
BHT	0.303658	-661.587914	-661.284256	
HOTf·BHT	0.326573	-1623.967211	-1623.640638	

14.6 Cartesian Coordinates (Ar=p-MeC₆H₅)

Ar ₂ IOTf			
S	3.28237200	-0.65664900	-0.75321100
0	4.46555000	-0.30585900	-1.53874800
0	2.27091700	0.46765200	-0.61885200
0	2.62009600	-1.95341100	-1.01288100
С	3.87770900	-0.80618900	1.00105400
F	4.76195700	-1.80339900	1.11957500
F	2.83308700	-1.06759200	1.81602700
F	4.45286900	0.33119000	1.41242500
Ι	-0.13894400	-0.53389100	-0.34356700
С	-2.18533700	-1.18045600	-0.11418100
С	-3.05835300	-1.11327300	-1.20060300
С	-2.60800600	-1.68098500	1.11775100
С	-4.37271400	-1.55079100	-1.04136000
Н	-2.72640300	-0.72232100	-2.15727700
С	-3.92702200	-2.11619500	1.25695600
Н	-1.92698800	-1.73019600	1.96185300
С	-4.82653900	-2.06065400	0.18392900
Н	-5.05598800	-1.49614900	-1.88520200
Н	-4.25919300	-2.50393400	2.21670400
С	-0.66212600	1.58997200	-0.08522500
С	-1.84476000	1.91040400	0.56403600
С	0.21925800	2.54007500	-0.58407100
С	-2.16025300	3.26481200	0.70793900
Н	-2.51303800	1.15031600	0.95156100
С	-0.12815500	3.88292800	-0.41981800
Н	1.15211300	2.25352500	-1.05338100
С	-1.31490900	4.26743800	0.21894700
Н	-3.08181400	3.53560700	1.21711300
Н	0.54989900	4.64338300	-0.79907700

С	-1.67460000	5.72765200	0.35703800
Н	-0.79947800	6.32911500	0.62591000
Н	-2.06367100	6.12543300	-0.58914300
Н	-2.44218800	5.88356100	1.12154300
С	-6.24093700	-2.56659600	0.33314300
Н	-6.30278900	-3.62798000	0.05951000
Н	-6.59426000	-2.47412900	1.36514500
Н	-6.93338500	-2.02132800	-0.31641500
CuI			
Cu	0.00000000	0.00000000	-1.55303800
Ι	0.00000000	0.00000000	0.84977600
ArI			
С	2.26663500	-1.20027100	-0.01076900
С	0.87050000	-1.21272000	-0.00504900
С	0.18437100	0.00034500	-0.00129800
С	0.87004000	1.21328100	-0.00504100
С	2.26653800	1.20113300	-0.01077800
С	2.98727700	0.00067200	-0.01083300
Н	2.80176100	-2.14718600	-0.01704100
Н	0.33387000	-2.15525200	-0.00744000
Н	0.33335700	2.15578000	-0.00740800
Н	2.80131700	2.14819400	-0.01692600
С	4.49781400	-0.00062800	0.01697100
Н	4.90883000	0.90386300	-0.44377100
Н	4.87242600	-0.04140300	1.04841500
Н	4.90815100	-0.86734700	-0.51238800
Ι	-1.97393900	-0.00014200	0.00221400
CuOTf			
0	-0.61554600	0.41724900	-1.21908700
S	0.21836100	0.78676700	0.00013800
0	0.86688300	2.08859900	-0.00009300
0	-0.61540300	0.41725300	1.21912100
С	1.56576000	-0.50393100	-0.00004800
F	2.31988300	-0.36931700	-1.08943800
F	1.00363000	-1.72309500	-0.00035700
F	2.31967500	-0.36986300	1.08964800
Cu	-2.09532800	-0.37203500	-0.00000400
HOTf			
0	1.25041800	1.10654600	-0.89152900
S	0.85470400	-0.14869800	0.07573000

0	1.22428700	-1.36532100	-0.61592500
0	1.25712000	0.16557600	1.43939800
С	-1.00820300	0.00607400	-0.00201700
F	-1.42440600	-0.16677500	-1.25190500
F	-1.35710400	1.22191900	0.42639200
F	-1.54357000	-0.92032400	0.78830600
Н	1.44506400	1.87494800	-0.32026500
ArCu(OTf) ₂			
S	-0.46220700	2.29610200	0.36025500
0	-1.56498400	3.24444600	0.40637100
0	-0.18420000	1.39237500	1.48393400
0	-0.48323000	1.47073500	-0.98777300
С	1.10586900	3.26978500	0.07490300
F	0.99724700	3.99121100	-1.03925500
F	2.13246200	2.42354900	-0.03685400
F	1.30586100	4.07747900	1.11697300
С	-1.93310500	-0.64752800	-0.30308000
С	-2.12769300	-1.45758000	0.79852300
С	-2.92295200	-0.10739000	-1.09692600
С	-3.45562300	-1.80084400	1.07979900
Н	-1.30732000	-1.82753400	1.40116200
С	-4.23674100	-0.48925300	-0.78872600
Н	-2.70569500	0.59132500	-1.89505300
С	-4.51825200	-1.33119200	0.29400700
Н	-3.65371200	-2.45022600	1.92910000
Н	-5.04743500	-0.09373900	-1.39539400
Cu	-0.09338000	-0.30275100	-0.73806400
С	-5.93873600	-1.73955600	0.60755200
Н	-6.16911400	-2.71648100	0.16317000
Н	-6.10083200	-1.82502300	1.68707300
Н	-6.66039500	-1.01869700	0.21112300
0	0.43832000	-2.13430000	-0.52904500
S	1.94531700	-1.88076900	-0.79821400
0	2.63350200	-2.88888000	-1.57912700
0	1.97202800	-0.43895500	-1.23145600
С	2.66639600	-1.88869300	0.92695500
F	2.57068800	-3.11503900	1.43442200
F	1.97534500	-1.03313600	1.68439200
F	3.94020900	-1.51462500	0.86796000
1 a			
С	-1.60800500	0.11430300	-0.29903300
С	-2.84914600	-0.27494000	0.29471700

С	-2.92339400	-1.05497700	1.45007900
С	-1.72435100	-1.45570200	2.02958300
С	-0.48920600	-1.08377400	1.46911900
С	-0.40068900	-0.30352500	0.31080600
С	-1.93695600	0.89672900	-1.45880200
С	-3.30305100	0.95249300	-1.52280200
Н	-3.87964300	-1.33905900	1.88024900
Н	-1.73813900	-2.06429800	2.92935400
Н	0.41505700	-1.41622400	1.96563000
Н	-1.22681100	1.33661500	-2.14019100
Н	-3.94383900	1.44127800	-2.24472500
Ν	-3.86871600	0.25003400	-0.47029900
С	-5.28121700	0.07780900	-0.20768100
Н	-5.54841900	0.48045800	0.77682300
Н	-5.85409200	0.61151400	-0.96908100
Н	-5.56037500	-0.98244500	-0.23918500
Р	1.20062500	0.20824600	-0.43022600
0	1.02173300	0.85074000	-1.78608600
С	2.26204600	-1.35048100	-0.62895600
С	2.94236600	-1.88297800	0.64399400
С	1.33381600	-2.43773800	-1.21483500
С	3.34323900	-1.01757900	-1.68174500
Н	3.65177500	-1.16475700	1.06590700
Н	2.22755600	-2.16110600	1.42407600
Н	3.50913600	-2.78877900	0.39100700
Н	0.80845600	-2.07128700	-2.10312300
Н	1.93718900	-3.30554600	-1.51080700
Н	0.58692700	-2.77371300	-0.48980600
Н	3.88345100	-1.93740000	-1.94136800
Н	2.89239200	-0.60400400	-2.58672100
Н	4.07707600	-0.29720700	-1.30873400
С	1.91972700	1.47261200	0.77362800
С	1.00000100	2.70652100	0.62111100
С	1.93928300	1.04848800	2.25245100
С	3.34027400	1.85047700	0.30933800
Н	0.97520400	3.05337700	-0.41510700
Н	-0.02708900	2.48185200	0.92994400
Н	1.37545200	3.51800000	1.25798300
Н	2.55457200	0.16273700	2.43429900
Н	2.36151400	1.86752200	2.84949100
Н	0.93164200	0.85154800	2.62865500
Н	3.67891200	2.73748700	0.86027200
Н	4.06297300	1.05075400	0.50283300
Н	3.35845600	2.08641000	-0.75934100

IM ₁ (1a)			
S	3.28561600	0.39870100	0.74714700
0	2.52898700	1.39770200	1.53389100
0	3.60136100	-0.87133200	1.41074500
0	2.75816700	0.23704200	-0.67014100
С	4.91411400	1.22905200	0.40681800
F	4.70398400	2.39587400	-0.22631000
F	5.68566000	0.45490700	-0.36187000
F	5.54860200	1.47462000	1.55826600
С	0.34351100	2.29553400	-1.08411700
С	1.36533700	3.20184300	-0.80410500
С	-0.85287300	2.67284700	-1.69980100
С	1.22445100	4.50630800	-1.28352900
Н	2.24689600	2.90318000	-0.25480500
С	-0.96047700	3.98649900	-2.16614100
Н	-1.69137500	1.98992600	-1.79487300
С	0.07061300	4.91598600	-1.97001300
Н	2.02711700	5.21890500	-1.10678000
Н	-1.87918800	4.29056500	-2.66154200
Cu	0.72420100	0.44983900	-1.04485100
С	-0.05894300	6.32931800	-2.48468800
Н	-1.10295800	6.65909300	-2.49144000
Н	0.51997300	7.03363500	-1.87822000
Н	0.31356400	6.40147400	-3.51525000
0	-3.18189200	1.04295500	1.59682100
S	-4.00378600	1.29186400	0.37136900
0	-4.62275100	2.62065600	0.28457400
0	-3.34951900	0.80368800	-0.87998900
С	-5.41626700	0.10160600	0.58627600
F	-6.11160100	0.38541700	1.69507700
F	-4.95246600	-1.16155600	0.69392600
F	-6.24314400	0.15348900	-0.46596800
С	-0.06660100	-0.77174400	1.16112000
С	0.20980000	-0.25197700	2.43861500
С	0.76764600	-1.00266900	3.46005100
С	1.04609000	-2.34179900	3.17867500
С	0.80848300	-2.88103600	1.90960800
С	0.28723200	-2.10197100	0.86832800
С	-0.66502300	0.32472200	0.36895200
С	-0.73378100	1.43388900	1.30716200
Н	0.99160300	-0.57289200	4.42990900
Н	1.48539600	-2.96817000	3.94823500
Н	1.07739100	-3.91524000	1.73028000

Н	-1.53940300	0.18921900	-0.26849900
Н	-1.13883800	2.41525700	1.13234600
Ν	-0.18970900	1.10566100	2.45927300
С	0.06830800	2.00161200	3.57746300
Н	1.15033500	2.12149000	3.67773100
Н	-0.39853400	2.96528900	3.37187900
Н	-0.35995900	1.58069800	4.49078600
Р	0.17061800	-2.64722600	-0.87938600
0	0.26371500	-1.37326700	-1.74548200
С	-1.51923900	-3.44259800	-1.05857200
С	-1.75166100	-4.52671300	0.01332900
С	-2.55408200	-2.31460600	-0.85890200
С	-1.68424600	-4.03094600	-2.47378400
Н	-1.07446400	-5.37845700	-0.08355800
Н	-1.65957900	-4.12173000	1.02621500
Н	-2.77478500	-4.90522500	-0.09621100
Н	-2.43606200	-1.50180700	-1.57782400
Н	-3.55952100	-2.72988600	-0.98873000
Н	-2.52101300	-1.88968200	0.14731100
Н	-2.72657000	-4.34599700	-2.60230900
Н	-1.46280600	-3.28807400	-3.24685500
Н	-1.05365900	-4.90992600	-2.63812300
С	1.62550000	-3.75164200	-1.33739100
С	2.90577800	-3.12065000	-0.74799100
С	1.49170100	-5.21495300	-0.87803000
С	1.73911900	-3.70417500	-2.88080500
Н	3.01650100	-2.07568900	-1.04469600
Н	2.94229100	-3.15193400	0.34181300
Н	3.76875000	-3.67902300	-1.13180900
Н	0.66090800	-5.73167100	-1.36681100
Н	2.41201600	-5.74597600	-1.14935600
Н	1.36976000	-5.31674400	0.20462200
Н	2.63473600	-4.26538900	-3.17317800
Н	0.88326400	-4.15889200	-3.38572300
Н	1.84498200	-2.67668700	-3.23683900
TS ₁ (1a)			
S	3.00962700	0.30239800	1.01402200
Ο	2.30819400	1.41718900	1.68726100
0	3.11578100	-0.95784600	1.76198600
0	2.61795100	0.12823300	-0.43709900
С	4.75029900	0.92389600	0.81943300
F	4.74718500	2.07727600	0.12568300
F	5.49980600	0.03173100	0.15927000

F	5.30303500	1.15077600	2.01739800
С	0.39100200	2.35267200	-1.24964900
С	1.45357400	3.16645300	-0.85179700
С	-0.70382100	2.85678300	-1.95577000
С	1.45285000	4.49852000	-1.27028100
Н	2.25846000	2.77558200	-0.24500800
С	-0.67543100	4.19362300	-2.36259500
Н	-1.55998500	2.23385100	-2.18555900
С	0.39798900	5.03027800	-2.02834000
Н	2.28677600	5.13773700	-0.98861600
Н	-1.51325700	4.59042100	-2.93119000
Cu	0.60631200	0.50251000	-1.22718400
С	0.42427100	6.47080100	-2.48052200
Н	-0.58699000	6.86955000	-2.61201000
Н	0.95280800	7.10746100	-1.76308600
Н	0.94219300	6.56613300	-3.44423000
0	-3.27266200	2.43527300	1.00720800
S	-3.93618500	1.52117200	0.07338400
0	-5.10314600	1.94321100	-0.68506800
0	-2.90516300	0.81162000	-0.86345300
С	-4.46055100	0.06819200	1.11283400
F	-5.30491600	0.46541300	2.06536100
F	-3.37324400	-0.47593000	1.69478900
F	-5.04895300	-0.86279900	0.35797300
С	-0.27284100	-0.72310500	1.05235600
С	-0.29524500	-0.38415500	2.42966300
С	-0.14170200	-1.31141200	3.45247300
С	0.07087800	-2.63786800	3.08629700
С	0.12972500	-3.00537500	1.73702100
С	-0.02733100	-2.06971300	0.70594400
С	-0.54762000	0.52563300	0.31214300
С	-0.57219000	1.52543000	1.31300100
Н	-0.16901100	-1.01285900	4.49530200
Н	0.21425900	-3.39275300	3.85276900
Н	0.32547900	-4.04408800	1.49662200
Н	-1.87812000	0.66257900	-0.35656600
Н	-0.70155500	2.58667600	1.18098700
Ν	-0.49586700	0.99524800	2.53740000
С	-0.44961700	1.73749400	3.78609900
Н	0.56715300	1.69722600	4.18837800
Н	-0.72491700	2.77431500	3.58913200
Н	-1.15685100	1.31133600	4.50328000
Р	0.11638900	-2.56658600	-1.04698300
0	0.31340900	-1.29789600	-1.90776200

С	-1.53510600	-3.33392200	-1.50916900
С	-1.96483500	-4.47269600	-0.56314900
С	-2.56063900	-2.18801900	-1.39092300
С	-1.49175800	-3.82546700	-2.96952200
Н	-1.30216400	-5.34025200	-0.59967800
Н	-2.03389000	-4.13078900	0.47391900
Н	-2.96350000	-4.81142400	-0.86481700
Н	-2.31332900	-1.34640200	-2.03973700
Н	-3.55041300	-2.56253600	-1.67779100
Н	-2.63644100	-1.81844800	-0.36629300
Н	-2.50665700	-4.10415800	-3.27829300
Н	-1.13918500	-3.04052700	-3.64607200
Н	-0.85740800	-4.70828300	-3.09547600
С	1.60360900	-3.69214000	-1.32568800
С	2.77975600	-3.16454900	-0.47821400
С	1.34685300	-5.17539300	-0.99972800
С	1.98482600	-3.55524600	-2.81962500
Н	3.00891900	-2.12386900	-0.71139600
Н	2.59414800	-3.22011800	0.59566700
Н	3.66398600	-3.77329800	-0.70592500
Н	0.57659500	-5.61925200	-1.63635100
Н	2.27645600	-5.72956300	-1.17691200
Н	1.07188000	-5.34199900	0.04619200
Н	2.89206700	-4.14630400	-2.99370300
Н	1.21009400	-3.92894600	-3.49450500
Н	2.19671600	-2.51560700	-3.07885400
IM ₂ (1a)			
S	-3.55433700	1.23132300	-0.42780200
0	-3.42280600	1.14507700	1.04264500
0	-3.62532100	2.56222000	-1.03675100
0	-2.58340600	0.27865900	-1.13365600
С	-5.17009500	0.39315100	-0.82244200
F	-5.18917300	-0.83542900	-0.28951700
F	-5.33195600	0.29622800	-2.14509000
F	-6.18105600	1.10302900	-0.30700600
С	-1.75838600	-1.88218300	0.27944000
С	-2.71128900	-2.01818800	1.28144300
С	-1.43205700	-2.92431700	-0.57969800
С	-3.36564000	-3.24643900	1.41052400
Н	-2.96818400	-1.17898200	1.91799200
С	-2.10328900	-4.14408200	-0.43205600
Н	-0.67793300	-2.80468700	-1.35109800
С	-3.07365200	-4.32371400	0.56178300

Н	-4.12225300	-3.36204100	2.18385900
Н	-1.86125500	-4.96471500	-1.10397500
Cu	-1.03139500	-0.16456100	-0.01981900
С	-3.81421000	-5.63439100	0.69706600
Н	-3.23548900	-6.46825900	0.28573100
Н	-4.04020800	-5.86198000	1.74480800
Н	-4.77051500	-5.60238300	0.15845200
0	2.99065700	-3.16407400	-0.09910800
S	2.91363900	-2.54541500	-1.41858300
0	2.99587000	-3.31186600	-2.64595600
0	1.63412100	-1.58231600	-1.51264600
С	4.26470000	-1.26138700	-1.47897500
F	5.44471200	-1.87872000	-1.43114800
F	4.14874200	-0.44341600	-0.42723400
F	4.17245900	-0.55459100	-2.60428800
С	1.55376700	0.15603800	1.39937800
С	2.43645600	-0.60314400	2.22671700
С	3.63674200	-0.09586700	2.72677200
С	3.96415500	1.21814300	2.41350400
С	3.10700900	2.00223700	1.62421400
С	1.90755700	1.49524500	1.11387400
С	0.46180600	-0.73656700	1.02122600
С	0.73529300	-1.93364200	1.66780100
Н	4.29623300	-0.70954300	3.33260300
Н	4.89148700	1.64614800	2.78173200
Н	3.39476900	3.02627500	1.41304900
Н	1.26891600	-1.37489700	-0.59476400
Н	0.18001500	-2.85831600	1.64277100
Ν	1.89634900	-1.86321000	2.38710000
С	2.57397400	-2.98735100	3.00964800
Н	2.92748700	-2.70672500	4.00638900
Н	1.86765900	-3.81377900	3.10753800
Н	3.41572700	-3.31136200	2.39032200
Р	0.76585800	2.49705300	0.11897000
0	-0.33147700	1.57776100	-0.44495800
С	1.65832300	3.17885000	-1.38701200
С	2.51629000	4.42382400	-1.10429500
С	2.54719000	2.03404700	-1.92139500
С	0.58559100	3.51138500	-2.44994400
Н	1.90912800	5.27986500	-0.79556500
Н	3.28377600	4.24614700	-0.34407000
Н	3.03568300	4.70729400	-2.02796400
Н	1.97075600	1.11859400	-2.08718800
Н	2.97346500	2.33848500	-2.88481400

Н	3.37224400	1.80123300	-1.24443200
Н	1.09668500	3.81016200	-3.37348400
Н	-0.04625500	2.64636600	-2.66347700
Н	-0.06393400	4.33624500	-2.14688100
С	-0.03384100	3.74286100	1.26099400
С	-0.82873100	2.89612300	2.28364500
С	0.97787700	4.62399000	2.01880900
С	-1.01499400	4.61456600	0.44909400
Н	-1.60687800	2.29728000	1.80577700
Н	-0.17183300	2.23473500	2.86009700
Н	-1.31725300	3.57962800	2.98884300
Н	1.60100200	5.23228600	1.35761500
Н	0.41671100	5.31211100	2.66263400
Н	1.63039800	4.03035300	2.66607900
Н	-1.61236500	5.20998100	1.15009900
Н	-0.48871000	5.31496200	-0.20864700
Н	-1.70769500	4.01124000	-0.14607600
TS ₂ (1a)			
S	-2.33308100	-2.00226900	-1.22804100
Ο	-2.51803600	-0.79583400	-2.05834100
Ο	-2.03987600	-3.27063400	-1.89735500
Ο	-1.42276700	-1.75211100	-0.02496700
С	-3.96757400	-2.23555400	-0.37051200
F	-4.28713200	-1.12535800	0.31772200
F	-3.91177100	-3.26460300	0.48178100
F	-4.93087300	-2.46805000	-1.27124000
С	-1.62060100	1.48123000	0.67258800
С	-2.86506400	1.63146000	0.06377300
С	-1.32650900	2.05827900	1.90609200
С	-3.85431600	2.33941800	0.74923500
Н	-3.06566800	1.15926600	-0.89226900
С	-2.33565000	2.75874400	2.57320100
Н	-0.33725100	1.95389700	2.33938700
С	-3.60882400	2.90984600	2.00738800
Н	-4.84052200	2.43631000	0.30019900
Н	-2.12244000	3.20308600	3.54310100
Cu	-0.55565900	0.01719000	0.15306700
С	-4.70333300	3.64528200	2.74508300
Н	-4.29374400	4.37498200	3.45169500
Н	-5.36663200	4.17668300	2.05376100
Н	-5.32607300	2.94668500	3.31961500
С	1.69936200	1.51317500	-0.80339600
С	2.00256900	2.53866400	-1.75818300

С	3.29380500	2.80421700	-2.21672500
С	4.32751700	2.01365000	-1.73204300
С	4.06522600	0.97680900	-0.82157700
С	2.77762300	0.71438200	-0.33816200
С	0.24840900	1.51404500	-0.66421000
С	-0.21415100	2.50958600	-1.49531900
Н	3.47803600	3.58838400	-2.94522100
Н	5.34466300	2.18146200	-2.07290600
Н	4.89556900	0.35563700	-0.50937300
Н	-1.22923700	2.83324400	-1.66762300
Ν	0.82236100	3.13183400	-2.14998800
С	0.70393100	4.18677800	-3.13776600
Н	1.04877100	3.84260200	-4.11969100
Н	-0.34406100	4.48200100	-3.21695000
Н	1.29411200	5.06056300	-2.83999000
Р	2.45559000	-0.74935400	0.70440400
0	1.01111500	-0.73210400	1.21068100
С	3.53934500	-0.67127700	2.24009200
С	5.04875800	-0.47909600	2.00551100
С	2.99914000	0.54139100	3.03531500
С	3.29805500	-1.95899400	3.05588200
Н	5.48412300	-1.24851700	1.36188900
Н	5.27193700	0.50278400	1.58026000
Н	5.55940400	-0.53638900	2.97497100
Н	1.94160700	0.41536500	3.28093500
Н	3.56777400	0.63585900	3.96871600
Н	3.11652600	1.47450100	2.47236500
Н	3.73739700	-1.83471800	4.05354000
Н	2.23062300	-2.16507000	3.17777000
Н	3.77399600	-2.83028800	2.59453700
С	2.66137800	-2.26432500	-0.39666500
С	2.00218100	-1.92075700	-1.75368600
С	4.12801600	-2.66836100	-0.61912700
С	1.86287400	-3.42414300	0.23977100
Н	0.95367800	-1.63007200	-1.63292900
Н	2.53130700	-1.12365000	-2.28403500
Н	2.01308900	-2.81837400	-2.38304600
Н	4.61255000	-2.99103300	0.30813100
Н	4.16084600	-3.51472800	-1.31604000
Н	4.71959100	-1.85990100	-1.06250300
Н	1.90517500	-4.28482300	-0.43889000
Н	2.27564500	-3.73935300	1.20171300
Н	0.81369000	-3.15026000	0.37858500

3aa			
С	-0.11909600	1.69277000	-0.13014700
С	-0.38476800	3.10460200	-0.08684500
С	-1.66413100	3.66029600	-0.04607900
С	-2.73987700	2.78628400	-0.03092500
С	-2.52146400	1.40016900	-0.05675800
С	-1.24749800	0.82221600	-0.11444400
С	1.33098800	1.56636800	-0.13797800
С	1.82647400	2.84856200	-0.09595100
Н	-1.80669200	4.73669200	-0.01851600
Н	-3.75556000	3.16926700	0.00641100
Н	-3.39153500	0.75734800	-0.02281000
Н	2.86154100	3.16293600	-0.09198900
Ν	0.81454800	3.77995100	-0.07182300
С	0.96615400	5.21866500	-0.02748400
Н	0.51057400	5.63325900	0.87979700
Н	2.03021400	5.46401000	-0.02763100
Н	0.49805200	5.68870100	-0.90045600
Р	-1.13111700	-1.01725800	-0.07722200
0	0.19638700	-1.54853300	-0.54788800
С	-2.48025200	-1.72607600	-1.22747300
С	-3.91497900	-1.82204100	-0.67755100
С	-2.46524200	-0.87847500	-2.51865500
С	-2.00363200	-3.15298400	-1.59108800
Н	-3.97622200	-2.46934600	0.20209900
Н	-4.34917900	-0.85290900	-0.41702300
Н	-4.55957900	-2.26296100	-1.44952400
Н	-1.44758000	-0.77940200	-2.91161000
Н	-3.07551700	-1.37589200	-3.28361400
Н	-2.86961500	0.12533600	-2.36423000
Н	-2.67095300	-3.56325300	-2.36031200
Н	-0.98187200	-3.14002900	-1.97525000
Н	-2.03115300	-3.83059800	-0.73284400
С	-1.39371300	-1.45969400	1.74074700
С	-0.11939600	-0.94595300	2.44855300
С	-2.62771400	-0.82324700	2.40256200
С	-1.44414900	-2.99458200	1.87207000
Н	0.78150500	-1.38173100	2.00949700
Н	-0.03353500	0.14430000	2.38081200
Н	-0.16358900	-1.21579800	3.51197900
Н	-3.56762900	-1.14144800	1.94319100
Н	-2.66022300	-1.12495400	3.45773600
Н	-2.58494700	0.26927500	2.37092900
Н	-1.37920900	-3.27150500	2.93243300

Н	-2.37790800	-3.41331400	1.48270200
Н	-0.60584200	-3.46181300	1.34602900
С	2.26725500	0.41331700	-0.16484300
С	2.54962700	-0.27347900	-1.35341500
С	2.98448100	0.06739600	0.98478000
С	3.50222000	-1.28422500	-1.38122300
Н	2.00020300	-0.01889900	-2.25407600
С	3.93604100	-0.95487000	0.95662900
Н	2.78846600	0.60052200	1.91156600
С	4.20696200	-1.65024200	-0.22479800
Н	3.70056900	-1.80779000	-2.31432200
Н	4.47558500	-1.21094600	1.86630700
С	5.20954200	-2.77997600	-0.25960000
Н	4.70576500	-3.75584700	-0.26696600
Н	5.83484200	-2.73511600	-1.15932400
Н	5.87183800	-2.75940700	0.61269200
IM ₃ (1a)			
С	0.98847300	-1.32004200	0.03227500
С	0.33373700	-2.46369200	0.50574600
С	0.88343500	-3.34872900	1.41927000
С	2.17557600	-3.05642100	1.86485500
С	2.86858100	-1.94755500	1.37340300
С	2.30091000	-1.05881800	0.43757800
С	0.01984500	-0.58583600	-0.87796200
С	-1.14598300	-1.52417600	-0.90329700
Н	0.34299900	-4.21971700	1.77359900
Н	2.65315000	-3.70886500	2.58927500
Н	3.87845500	-1.78043100	1.72826000
Н	-2.10008700	-1.40156000	-1.41652800
Ν	-0.95007200	-2.54403800	-0.11911100
С	-1.92211600	-3.59988700	0.18092400
Н	-2.25589200	-3.46770900	1.21146900
Н	-2.77928900	-3.47703200	-0.47978100
Н	-1.43491700	-4.56837200	0.04095400
Р	3.24678800	0.30280800	-0.38727400
0	2.43224200	0.87826700	-1.52116100
С	-0.48926700	0.76777700	-0.36672200
С	-0.43167400	1.89564500	-1.18564600
С	-1.08725200	0.85839700	0.89376200
С	-0.98541300	3.09811900	-0.74972000
Н	0.07024500	1.83909500	-2.14515800
С	-1.63880500	2.06201100	1.31818500
Н	-1.17540300	-0.01803700	1.52540700

С	-1.61470000	3.19613500	0.49727300
Н	-0.94103100	3.97021200	-1.39778900
Н	-2.13488300	2.10675500	2.28385900
С	-2.31025200	4.46276200	0.93023700
Н	-2.01932400	5.31940300	0.31377700
Н	-3.39750200	4.33910900	0.84260600
Н	-2.09529600	4.70485900	1.97740700
Н	0.43979200	-0.43709700	-1.87831500
С	4.80004300	-0.51039900	-1.11142000
С	5.93775800	-0.81495300	-0.12287900
С	4.33915700	-1.81975300	-1.79124900
С	5.31684100	0.44506200	-2.21207400
Н	6.33916800	0.09040300	0.34111200
Н	5.63679600	-1.50673400	0.66915100
Н	6.76133100	-1.29267800	-0.66879500
Н	3.49370500	-1.64134100	-2.46399000
Н	5.16576600	-2.22272800	-2.38926500
Н	4.04920700	-2.58443400	-1.06443200
Н	6.12851500	-0.05174200	-2.75824400
Н	4.52194200	0.69791100	-2.91746400
Н	5.71677000	1.37605900	-1.80172600
С	3.60059200	1.58743100	0.94156800
С	2.24459500	2.27130800	1.22159200
С	4.14967200	1.01053400	2.25927500
С	4.57721200	2.63476300	0.36919700
Н	1.81740700	2.70814500	0.31670200
Н	1.50830300	1.57285500	1.62995900
Н	2.39613800	3.06847400	1.96018900
Н	5.09330300	0.47197400	2.13470400
Н	4.33761800	1.83983000	2.95242000
Н	3.42820600	0.34384000	2.74073400
Н	4.62919700	3.48766900	1.05715200
Н	5.59239200	2.24061500	0.26036100
Н	4.23970700	3.00758400	-0.60306500
0	-4.10191700	-1.79907200	-1.25427500
S	-4.45311000	-1.11556200	0.03140100
0	-5.78151200	-1.41193600	0.57934100
0	-3.32113400	-1.12955000	1.00133800
С	-4.53689900	0.67298500	-0.49735000
F	-5.60682800	0.89884400	-1.27035400
F	-3.43441200	0.99679900	-1.20755700
F	-4.60030000	1.49670900	0.56380800

TS₃(1a)

С	1.34469400	-1.14430000	0.43603100
С	0.71772600	-1.99394900	1.39193100
С	1.45230200	-2.61095900	2.41491500
С	2.82131100	-2.38082400	2.43570100
С	3.45494900	-1.55344600	1.48660500
С	2.73439300	-0.91199200	0.47598200
С	0.29096900	-0.65820300	-0.42583100
С	-0.94322400	-1.20673400	0.07151600
Н	0.97040700	-3.24489800	3.15144400
Н	3.42604900	-2.85131900	3.20596000
Н	4.52717500	-1.41839900	1.56231400
Н	-1.84010700	-1.40183900	-0.52177000
Ν	-0.63148100	-2.05132000	1.14698900
С	-1.63084500	-2.64296200	2.02873500
Н	-1.50409200	-2.25906700	3.04828000
Н	-2.62034000	-2.35418300	1.66758700
Н	-1.52893800	-3.73289800	2.03792300
Р	3.48398500	0.20824300	-0.79048200
0	2.48373800	0.51639200	-1.87993600
С	-0.93900500	0.41942800	0.43553900
С	-1.72062300	1.20759100	-0.42705400
С	-0.59360400	0.90078300	1.71094700
С	-2.16215900	2.45211100	-0.00160900
Н	-2.04587200	0.80353800	-1.37968400
С	-1.04188900	2.14621300	2.11569500
Н	0.01750800	0.30141400	2.37789100
С	-1.82838200	2.94649800	1.26638500
Н	-2.80661000	3.03252100	-0.65362300
Н	-0.78379000	2.51076000	3.10644200
С	-2.29206300	4.31129000	1.70399300
Н	-3.28455200	4.53948200	1.30258100
Н	-2.33333600	4.39374800	2.79457400
Н	-1.60609500	5.08788200	1.33939600
Н	0.45660900	-0.18522100	-1.38195100
С	4.96760600	-0.69716900	-1.53369900
С	6.24976400	-0.69902400	-0.68412000
С	4.51270800	-2.14938600	-1.80210600
С	5.25421800	-0.01866500	-2.89288700
Н	6.64320400	0.30950100	-0.52814800
Н	6.11510800	-1.17186300	0.29333700
Н	7.02224600	-1.27100100	-1.21340000
Н	3.57655900	-2.17423700	-2.36980500
Н	5.28018400	-2.66027900	-2.39632500
Н	4.37030400	-2.71646400	-0.87740600

Н	6.02522800	-0.59531900	-3.41901000
Н	4.35591200	0.01591500	-3.51344600
Н	5.62646100	1.00302000	-2.77659900
С	3.91827900	1.77932000	0.15540100
С	2.55190300	2.41518900	0.50167100
С	4.71243200	1.56610300	1.45609400
С	4.68402800	2.72348800	-0.79265200
Н	1.94643800	2.57740600	-0.39382900
Н	1.97610100	1.78901000	1.19102400
Н	2.72021400	3.38176000	0.99279000
Н	5.69237300	1.11146100	1.28933900
Н	4.88209000	2.54224400	1.92794700
Н	4.16209600	0.94829700	2.17175800
Н	4.75939700	3.71570100	-0.33049700
Н	5.70351400	2.37485500	-0.98597800
Н	4.16434900	2.83387000	-1.74952700
0	-3.39902300	-1.22140900	-1.62139800
S	-4.46414000	-1.18900500	-0.56936800
0	-5.42061000	-2.30355700	-0.59672400
0	-3.92977500	-0.81292600	0.76909300
С	-5.47434600	0.29936000	-1.06384900
F	-6.07885100	0.09769900	-2.24212000
F	-4.68812400	1.39616500	-1.18882000
F	-6.41085500	0.57254700	-0.14457800
3aa'			
С	-0.09061000	0.91540900	-0.07074500
С	0.57857100	2.17565800	-0.00123700
С	-0.11006500	3.38834300	0.06178700
С	-1.50064900	3.33789900	0.06970900
С	-2.18227300	2.10927500	0.01888100
С	-1.50622500	0.88668100	-0.05443300
С	0.93299300	-0.08132600	-0.13640000
С	2.15030100	0.56250700	-0.09939300
Н	0.41524900	4.33749600	0.11445100
Н	-2.07126400	4.26078100	0.12307300
Н	-3.26587400	2.12692400	0.03980700
Н	0.77325600	-1.14710700	-0.17125600
Ν	1.93954100	1.94454000	-0.01809700
С	2.92559100	2.99983200	-0.16542900
Н	3.12708700	3.50217000	0.78903700
Н	3.85754500	2.57972800	-0.54420200
Н	2.56363500	3.74408000	-0.88263100
Р	-2.36467500	-0.73723700	-0.09408700

0	-1.43395600	-1.86363700	-0.47956900
С	-3.75700900	-0.62814200	-1.37790500
С	-5.04335800	0.09066500	-0.93533200
С	-3.16107700	0.08114300	-2.61449700
С	-4.10245400	-2.08148800	-1.77485600
Η	-5.53436500	-0.41889000	-0.10085500
Η	-4.87421600	1.13266700	-0.64934000
Η	-5.75189900	0.09812600	-1.77417300
Η	-2.22445600	-0.39304500	-2.92641200
Η	-3.87177400	0.01049000	-3.44808300
Η	-2.96118700	1.13986200	-2.42681500
Η	-4.80018200	-2.06264600	-2.62221000
Η	-3.20475100	-2.63125000	-2.06622900
Η	-4.58582200	-2.62970000	-0.96091700
С	-2.98203200	-0.99893900	1.67122400
С	-1.69385500	-1.22664800	2.49585800
С	-3.75845400	0.18203300	2.27929300
С	-3.83446600	-2.28163500	1.71717900
Η	-1.11879700	-2.06888000	2.10242300
Η	-1.04903200	-0.34097000	2.48846400
Η	-1.96530100	-1.43950400	3.53795500
Η	-4.68986100	0.39841000	1.74880900
Η	-4.02347800	-0.06436800	3.31593600
Η	-3.15484900	1.09383400	2.30048700
Η	-4.02008400	-2.55890300	2.76297800
Η	-4.80966900	-2.14616400	1.23777200
Η	-3.31918900	-3.11571500	1.23054200
С	3.48077500	-0.05705900	-0.10057400
С	3.73015900	-1.16063000	-0.93578700
С	4.51530800	0.37659500	0.74527100
С	4.96657700	-1.79752100	-0.92497000
Η	2.94429600	-1.50407500	-1.60204900
С	5.75449900	-0.26170600	0.74302400
Η	4.34041800	1.20166500	1.42990400
С	6.00400800	-1.35930400	-0.08894100
Η	5.13521800	-2.64601900	-1.58458100
Η	6.53771200	0.09270800	1.40950300
С	7.33566700	-2.07150700	-0.07165500
Η	8.11873600	-1.45172700	0.37742600
Η	7.27901000	-3.00190100	0.50893800
Η	7.65734800	-2.34301400	-1.08363800
1b			
С	-2.02851100	-0.32574700	-0.37372600

С	-3.15850000	-0.78003100	0.36751000
С	-3.03534000	-1.56339900	1.51837800
С	-1.75133900	-1.90371600	1.93114400
С	-0.61688900	-1.46561800	1.22080100
С	-0.73405900	-0.67243800	0.07715200
С	-2.53506800	0.43076500	-1.48198000
С	-3.90085200	0.41477700	-1.37598400
Н	-3.90946800	-1.89997000	2.06884200
Н	-1.61832900	-2.52058700	2.81540200
Н	0.36629300	-1.76233700	1.57266400
Н	-1.94567000	0.88966600	-2.26120700
Н	-4.65178200	0.86031600	-2.01475600
Ν	-4.29220300	-0.31076200	-0.26234600
С	-5.65059000	-0.56439500	0.16818200
Н	-5.81970600	-0.17400600	1.17883700
Н	-6.34162800	-0.06858800	-0.51689700
Н	-5.86738300	-1.63938100	0.16720100
Р	0.69805200	0.00845200	-0.82009200
С	2.14320100	-1.00478200	-0.33867800
С	2.82615500	-0.85869700	0.87706700
С	2.56961400	-1.97099900	-1.26045400
С	3.90962700	-1.68580900	1.17558700
Н	2.52285900	-0.09166200	1.58411200
С	3.65558600	-2.79377000	-0.96049400
Н	2.05259600	-2.05496900	-2.21190000
С	4.32283200	-2.65541600	0.25869200
Н	4.43622500	-1.56773700	2.11894700
Н	3.98381700	-3.53963500	-1.67952400
Н	5.16945900	-3.29617000	0.49112300
С	0.97561300	1.65724000	-0.07766100
С	1.49756800	2.65410600	-0.91298800
С	0.70012400	1.95149200	1.26527900
С	1.75870300	3.92685900	-0.40491600
Н	1.67817800	2.42305900	-1.95886800
С	0.96608800	3.22457300	1.77115700
Н	0.26268300	1.19263700	1.90886300
С	1.49807400	4.21142200	0.93767300
Н	2.16115000	4.69778700	-1.05673000
Н	0.74943600	3.44893400	2.81233400
Н	1.70095200	5.20358500	1.33249200
0	0.52159200	0.07363800	-2.31294600
3ba			
С	0.29639800	2.00873600	-0.21839900

С	0.27485800	3.41182900	0.05929900
С	-0.89842600	4.16683200	0.12598200
С	-2.09935900	3.50367300	-0.07821000
С	-2.12095000	2.11815400	-0.31532700
С	-0.95449500	1.34806300	-0.37700700
С	1.69311600	1.61808200	-0.21175300
С	2.40739200	2.75844100	0.07848400
Н	-0.86844500	5.23317300	0.33099100
Н	-3.03564300	4.05292800	-0.04177400
Н	-3.08336500	1.63578800	-0.44419400
Н	3.47999400	2.87672200	0.15288100
Ν	1.57194000	3.84022200	0.24409900
С	1.97201200	5.20545500	0.51265700
Н	1.49791900	5.57575100	1.42907100
Н	3.05569700	5.24004500	0.64246500
Н	1.69582700	5.86680500	-0.31727300
Р	-1.11570900	-0.45149900	-0.68391100
0	-0.72868100	-0.92381100	-2.06015100
С	2.34582600	0.31585800	-0.46652400
С	2.19288600	-0.35799200	-1.68547500
С	3.18867100	-0.24826400	0.50392800
С	2.83994000	-1.57160800	-1.90930100
Н	1.53850800	0.04924600	-2.44645300
С	3.83979500	-1.45586500	0.26990100
Н	3.30508600	0.25562800	1.45954400
С	3.66783300	-2.14496400	-0.93763300
Н	2.68843900	-2.08481100	-2.85615700
Н	4.47463400	-1.88142800	1.04435600
С	4.31568600	-3.49138800	-1.15730100
Н	4.43009800	-3.71533700	-2.22326000
Н	5.30576700	-3.54487200	-0.69027400
Н	3.70772500	-4.29499500	-0.71863600
С	-2.87065200	-0.85977600	-0.34035900
С	-3.43497600	-0.83847300	0.94321500
С	-3.66167600	-1.22521700	-1.43702300
С	-4.77751100	-1.16796400	1.12378100
Н	-2.82598900	-0.57317600	1.80260300
С	-5.00612700	-1.55447200	-1.25359600
Н	-3.20648700	-1.25759300	-2.42241600
С	-5.56515100	-1.52393100	0.02502000
Н	-5.20893500	-1.15201900	2.12124100
Н	-5.61480600	-1.83819400	-2.10812100
Н	-6.61113500	-1.78250200	0.16846600
С	-0.19400600	-1.26396500	0.66767100

С	0.35984200	-2.52319900	0.40684200
С	-0.06341500	-0.69887500	1.94382400
С	1.02922000	-3.21435400	1.41586500
Н	0.28649100	-2.93442700	-0.59494700
С	0.60301200	-1.39517800	2.95225200
Н	-0.45929600	0.29351500	2.14217600
С	1.14740600	-2.65435000	2.68964900
Н	1.46750500	-4.18634000	1.20514700
Н	0.70635400	-0.95102900	3.93894100
Н	1.67267900	-3.19319000	3.47402800
IM ₃ (1b)			
С	0.15162600	-0.63750300	0.89907900
С	0.90272100	-1.13487200	1.96514300
С	1.09444300	-0.44978700	3.15277600
С	0.47795200	0.80141900	3.25544900
С	-0.26601600	1.32590500	2.19604100
С	-0.44099900	0.61606500	0.99512400
С	0.21237100	-1.63500800	-0.23844500
С	1.20212900	-2.62075900	0.30672900
Н	1.72286500	-0.83723600	3.94664600
Н	0.60869700	1.38692800	4.16020400
Η	-0.68341900	2.32356500	2.29234900
Н	1.53208400	-3.52432200	-0.18359200
Ν	1.47503000	-2.38530700	1.56329200
С	2.48364700	-3.08313600	2.35477600
Н	2.09978300	-3.24981400	3.36400300
Н	2.70823000	-4.03889400	1.88036800
Н	3.37595900	-2.44894300	2.36750800
Р	-1.35265600	1.29983300	-0.44547400
0	-1.07508100	0.53535600	-1.71010100
С	-1.11097100	-2.32673300	-0.56470800
С	-1.52939600	-2.45816000	-1.89144900
С	-1.92858400	-2.82220500	0.45648600
С	-2.74987000	-3.06380600	-2.18523200
Н	-0.92004300	-2.04241700	-2.68657500
С	-3.15089200	-3.42068400	0.15679000
Н	-1.62335600	-2.71337700	1.49460400
С	-3.58535200	-3.54637900	-1.16852800
Н	-3.06681900	-3.14627400	-3.22227700
Н	-3.78094100	-3.78570200	0.96457900
С	-4.93582700	-4.14242800	-1.48813700
Н	-4.94907200	-4.60057500	-2.48263700
Н	-5.22223000	-4.90612200	-0.75705100

Н	-5.71803900	-3.37108200	-1.47457700
Н	0.61968600	-1.16451200	-1.13641500
Ο	2.61875800	0.66593900	-0.40548700
S	3.53655200	-0.45699400	-0.12577300
Ο	3.98545300	-0.59005000	1.28068800
Ο	3.11240500	-1.76275700	-0.74168400
С	5.08377800	-0.05519200	-1.07993900
F	5.61548800	1.09023400	-0.62938600
F	4.80915800	0.08424100	-2.38336400
F	5.99070000	-1.03248400	-0.93541900
С	-0.87265600	3.05326700	-0.46534200
С	-1.80718900	4.08109900	-0.65451200
С	0.49922200	3.35711100	-0.39376700
С	-1.37890800	5.40581800	-0.75000000
Н	-2.86573700	3.84964000	-0.72667300
С	0.91762100	4.68309600	-0.49338700
Н	1.23434700	2.56462300	-0.27259600
С	-0.01817800	5.70677500	-0.66611300
Н	-2.10673600	6.20007700	-0.89253500
Н	1.97745100	4.91523600	-0.43825300
Н	0.31414900	6.73893800	-0.74092200
С	-3.10692700	1.17503300	0.05016900
С	-3.87167100	0.20576300	-0.61283900
С	-3.67853200	1.91457500	1.09651500
С	-5.19538000	-0.01931900	-0.23345800
Н	-3.41668500	-0.37027600	-1.41193600
С	-5.00429000	1.69206900	1.46704600
Н	-3.09450400	2.66979300	1.61546000
С	-5.76296400	0.72315100	0.80326000
Н	-5.78116700	-0.77599800	-0.74874100
Н	-5.44569400	2.27255600	2.27272300
Н	-6.79486500	0.54887100	1.09677600
TS ₃ (1b)			
С	1.02807800	-1.55728400	0.27930100
С	0.40016400	-2.31464600	1.30301100
С	1.15958300	-2.92252000	2.31746000
С	2.53814000	-2.76137400	2.26493700
С	3.17012500	-1.98508800	1.26741500
С	2.42018700	-1.35540700	0.27735900
С	-0.02020300	-1.06806900	-0.58013700
С	-1.26751900	-1.48739300	0.01017800
Н	0.68645000	-3.49749600	3.10627300
Н	3.15276400	-3.23617300	3.02475300

Н	4.24986100	-1.87445100	1.28523600
Н	-2.19936800	-1.66804500	-0.53126600
Ν	-0.95921100	-2.28636100	1.12576200
С	-1.95555000	-2.79614200	2.06106700
Н	-1.72709500	-2.44641600	3.07455200
Н	-2.93243100	-2.40652300	1.76502800
Н	-1.96234000	-3.89107900	2.04975200
Р	3.07087800	-0.13781400	-0.92579800
0	2.42505100	-0.25714900	-2.27899500
С	-1.13570700	0.15011900	0.24012500
С	-1.89365900	0.92495400	-0.65508300
С	-0.64695800	0.72381600	1.42990700
С	-2.16607200	2.25157900	-0.34943600
Н	-2.32396900	0.46235500	-1.53685800
С	-0.93030700	2.04489800	1.71554600
Н	-0.03856500	0.14010500	2.11210500
С	-1.68274200	2.83671900	0.82657700
Н	-2.78545600	2.83121900	-1.02604800
Н	-0.54671500	2.48741700	2.63019600
С	-1.93466100	4.28690200	1.14276100
Н	-2.62821500	4.74348300	0.43130500
Н	-2.34990100	4.40559700	2.15035900
Н	-0.99360700	4.85186900	1.11204300
Н	0.12984800	-0.69022000	-1.58099300
0	-3.81543000	-1.43658200	-1.54794300
S	-4.81043000	-1.26582600	-0.44194600
0	-5.84411200	-2.30529900	-0.34990500
0	-4.17146400	-0.85685700	0.83998400
С	-5.73711900	0.26545500	-0.96677200
F	-6.40809600	0.05190200	-2.10653200
F	-4.88252300	1.29486800	-1.18050500
F	-6.60886700	0.64835200	-0.02332400
С	4.87697400	-0.35599500	-0.96758300
С	5.74910900	0.15865500	0.00267800
С	5.38964800	-1.09903900	-2.04145100
С	7.11940800	-0.08562800	-0.09183400
Н	5.36749800	0.76414500	0.81902200
С	6.76072100	-1.33806800	-2.13212800
Н	4.70955700	-1.46776200	-2.80360900
С	7.62466900	-0.83638700	-1.15607300
Н	7.79278400	0.31747300	0.65951300
Н	7.15482300	-1.91102300	-2.96672400
Н	8.69276700	-1.02221400	-1.22891700
С	2.68869000	1.45158000	-0.10675500
С	2.15294100	2.46672900	-0.90996500
----------------	-------------	-------------	-------------
С	2.85871400	1.67072800	1.26919300
С	1.81051200	3.69629100	-0.34523000
Н	1.99516100	2.27524900	-1.96719900
С	2.53015600	2.90589500	1.82648000
Н	3.22453700	0.87170100	1.90883500
С	2.00752900	3.91959300	1.01879000
Н	1.38878100	4.47830300	-0.97036500
Н	2.66876900	3.07339400	2.89117500
Н	1.74616700	4.87982000	1.45570000
N-methylindole			
С	-0.38815300	0.98686400	0.00015100
С	0.15226200	-0.33071400	-0.00071600
С	-0.65677700	-1.47246300	-0.00060000
С	-2.03440400	-1.28178400	-0.00016000
С	-2.59238300	0.01385600	0.00034400
С	-1.78432500	1.14443000	0.00047800
С	0.72761700	1.89005000	0.00043100
С	1.86198900	1.12174900	-0.00057000
Н	-0.22667000	-2.47016200	-0.00064100
Н	-2.69256900	-2.14646600	-0.00012000
Н	-3.67327000	0.12586000	0.00075000
Н	0.69073300	2.97068300	0.00071200
Н	2.90299100	1.41669000	-0.00104800
Ν	1.52953500	-0.22256200	-0.00167200
С	2.45106900	-1.33781500	0.00153100
Н	2.30101500	-1.97079600	-0.88136400
Н	3.47507900	-0.95794600	-0.01194900
Н	2.31773400	-1.95402400	0.89901500
Н	-2.22315000	2.13905500	0.00101500
31			
С	1.28831100	0.49965500	-0.04985600
С	2.52367100	-0.20199000	0.02061200
С	3.76159400	0.44619500	-0.04511600
С	3.75403800	1.82854500	-0.19723500
С	2.54262900	2.54353800	-0.29162200
С	1.31569300	1.89373900	-0.22377200
С	0.23525000	-0.48829300	0.04013000
С	0.86875100	-1.70649300	0.15341600
Н	4.69357500	-0.10872100	0.01597900
Н	4.69745900	2.36500100	-0.25076500
Н	2.57130100	3.62162800	-0.42462000

Н	0.43645500	-2.69094300	0.27234500
Ν	2.24043500	-1.54882300	0.14320000
С	3.22802700	-2.59753200	0.28015800
Н	3.81902400	-2.46409500	1.19447600
Н	2.72125300	-3.56377600	0.32832000
Н	3.90983900	-2.60203800	-0.57849100
С	-1.21668000	-0.26948000	0.02127300
С	-2.08043500	-1.18213700	-0.60860500
С	-1.79599200	0.84591700	0.65087200
С	-3.45962600	-0.99024000	-0.60218200
Н	-1.65819100	-2.04231700	-1.12222100
С	-3.17567400	1.03857600	0.64338400
Н	-1.15887500	1.54980200	1.17795000
С	-4.03506100	0.12727100	0.01673700
Н	-4.10183400	-1.71551300	-1.09795800
Н	-3.59446300	1.90868800	1.14509500
С	-5.52766900	0.35731600	-0.01722300
Н	-6.07909100	-0.58818700	-0.06569600
Н	-5.87007500	0.90295500	0.86908300
Н	-5.81997300	0.94915800	-0.89536900
Н	0.38958600	2.45259400	-0.31636300

IM₃(N-methylindole)

1.11371400	-1.75387300	-0.44710900
0.26124300	-2.42828000	0.43184300
-0.05555300	-3.77330600	0.31264500
0.54828800	-4.46300200	-0.74265800
1.42072000	-3.81313800	-1.62562200
1.70683500	-2.44938000	-1.49191200
1.11812300	-0.29915400	-0.06073500
0.32736800	-0.32128400	1.20258000
-0.74104300	-4.26570400	0.99372400
0.33448800	-5.51855500	-0.87896800
1.87686700	-4.37720700	-2.43369400
0.05581500	0.53326900	1.80773500
-0.18537700	-1.49669000	1.41768800
-1.24369300	-1.80444400	2.38147300
-0.92991600	-2.64429800	3.00589500
-1.45126100	-0.91441000	2.97157200
-2.13496400	-2.04410600	1.79701400
2.39629300	0.51261700	-0.04058400
2.32429500	1.89377600	-0.26000100
3.63600400	-0.07386300	0.22749500
3.47973900	2.66997500	-0.20887500
	$\begin{array}{c} 1.11371400\\ 0.26124300\\ -0.05555300\\ 0.54828800\\ 1.42072000\\ 1.70683500\\ 1.12000\\ 1.70683500\\ 1.11812300\\ 0.32736800\\ -0.74104300\\ 0.32736800\\ -0.74104300\\ 0.33448800\\ 1.87686700\\ 0.05581500\\ -0.18537700\\ -1.24369300\\ -0.92991600\\ -1.45126100\\ -2.13496400\\ 2.39629300\\ 2.32429500\\ 3.63600400\\ 3.47973900\end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

Н	1.35891100	2.35085600	-0.46625300	
С	4.78850900	0.71110900	0.26884200	
Н	3.70251200	-1.14527400	0.39808000	
С	4.73115700	2.09325400	0.05092500	
Н	3.40986600	3.74161900	-0.37992800	
Н	5.74738900	0.24156500	0.47607100	
С	5.98348800	2.93761200	0.06411300	
Н	5.79155700	3.93114700	0.48356000	
Н	6.77950800	2.46846500	0.65172800	
Н	6.36960800	3.08431400	-0.95324300	
Н	0.38827000	0.21713600	-0.72665400	
0	-2.46472600	-0.72385000	-0.27664300	
S	-2.33108400	0.71963900	0.04357100	
0	-2.24024300	1.00849200	1.50235700	
0	-1.31520900	1.43881500	-0.77453300	
С	-3.95094500	1.47223200	-0.47514600	
F	-4.96285900	0.90459700	0.19907600	
F	-4.15468200	1.28363700	-1.78620700	
F	-3.95894800	2.78901300	-0.22589100	
Н	2.37368600	-1.94420100	-2.18347100	

TS₃(N-methylindole)

С	-3.25039400	-0.33911900	0.98561900	
С	-3.17465200	-1.03367100	-0.25416400	
С	-4.32668700	-1.30401200	-1.00714800	
С	-5.54403100	-0.89801300	-0.47351600	
С	-5.63382600	-0.22593900	0.76517800	
С	-4.49026800	0.06789900	1.49570100	
С	-1.89700300	-0.19207000	1.45563600	
С	-1.04171000	-0.79055000	0.46137300	
Н	-4.26764300	-1.81653200	-1.96133700	
Н	-6.45588700	-1.10409000	-1.02701500	
Н	-6.60830700	0.06819500	1.14186200	
Н	-0.06281800	-1.23585600	0.65174000	
Ν	-1.86156700	-1.32856000	-0.53550600	
С	-1.35597800	-1.83764000	-1.80498200	
Н	-1.68183400	-1.18705700	-2.62573700	
Н	-0.26455200	-1.83281700	-1.76663900	
Н	-1.72920100	-2.85194800	-1.97729300	
С	-0.82353900	0.86696800	0.38263500	
С	0.38143200	1.30019000	0.96394900	
С	-1.48463200	1.67553600	-0.56041100	
С	0.92928600	2.51367700	0.57215500	
Н	0.92256300	0.64562200	1.63924200	

С	-0.92209100	2.88308200	-0.93486200
Н	-2.42959700	1.35925700	-0.98982200
С	0.29503100	3.32283200	-0.37977900
Н	1.88525200	2.81658400	0.98646400
Н	-1.42969300	3.50359100	-1.66867500
С	0.92159700	4.61514500	-0.83296300
Н	1.53403800	5.06385000	-0.04469700
Н	1.57886000	4.43462100	-1.69397700
Н	0.16621500	5.34402000	-1.14455200
Н	-1.59227400	0.04614300	2.46475400
0	1.73814400	-1.57382600	1.22286300
S	2.42212300	-1.51316000	-0.10887700
0	3.06667400	-2.75615800	-0.55120400
0	1.61141900	-0.78978600	-1.12740600
С	3.84140400	-0.34692000	0.22050600
F	4.72504000	-0.89434500	1.06470300
F	3.39801400	0.80526700	0.78235800
F	4.47556400	-0.02743100	-0.91576300
Н	-4.54923500	0.59927300	2.44101800
THF			
С	-1.16678000	0.42639400	0.12987600
0	-0.00283700	1.25217400	0.00696700
С	1.16213300	0.43271300	-0.13872200
С	0.73590500	-0.99258100	0.23381300
С	-0.72803800	-0.99941700	-0.22980000
Н	-1.54074700	0.47417900	1.16465900
Н	-1.94944100	0.81675800	-0.53165100
Н	1.51611000	0.47671200	-1.18108800
Н	1.95481800	0.83070500	0.50572000
Н	1.35198900	-1.76054000	-0.24417700
Н	0.79121800	-1.13629300	1.31971500
Н	-0.78150300	-1.15407800	-1.31429700
Н	-1.33907100	-1.76748800	0.25438400
HOTf•THF			
С	2.76526300	1.04251400	-0.36202400
0	2.00765200	0.03185600	-1.08965200
С	2.15574700	-1.26248300	-0.43986100
С	3.35076300	-1.10369400	0.49750600
С	3.22135000	0.36593900	0.92976600
Н	3.60553000	1.34521200	-0.99744800
Н	2.10906600	1.90045100	-0.19526700
Н	1.23812700	-1.48088000	0.11407800

Н	2.29524900	-2.00879600	-1.22656400
Н	3.31214000	-1.80429700	1.33641200
Н	4.28892100	-1.26723700	-0.04551900
Н	2.44535600	0.46993600	1.69304000
Н	4.15547800	0.78760400	1.31167700
0	-0.39443400	0.87600600	-1.29581300
S	-1.05813100	0.86885100	0.14549800
0	-0.03549800	0.65810800	1.17116100
0	-2.03065800	1.94177300	0.23719100
С	-2.01420800	-0.73086200	0.04652700
F	-1.17080100	-1.73247500	-0.25154200
F	-2.95038100	-0.65463400	-0.89546500
F	-2.58263700	-0.97537000	1.22677600
Н	0.56461900	0.48825600	-1.25086200
TEMPO			
С	-1.32685400	-0.06911400	-0.03040400
С	-1.24638000	1.40089700	-0.48733300
С	-0.00009600	2.12908400	0.01963800
С	1.24602300	1.40089500	-0.48767300
С	1.32686300	-0.06895900	-0.03043000
Н	-0.00014600	3.16499600	-0.34009300
Н	-1.24398800	1.42963900	-1.58566000
Н	-2.16218900	1.90866700	-0.16102300
Н	1.24299200	1.42921000	-1.58601700
Н	2.16197600	1.90889800	-0.16210800
Н	-0.00000300	2.18264800	1.11530000
Ν	0.00003700	-0.74384900	-0.22101500
0	0.00008100	-2.01975100	-0.06384000
С	-2.34558300	-0.82464800	-0.89810500
Н	-2.43273500	-1.86332200	-0.57443500
Н	-3.32504300	-0.33989400	-0.81980800
Н	-2.03604900	-0.81687000	-1.94855900
С	-1.73739100	-0.18213100	1.45222500
Н	-2.77634400	0.14219400	1.57944800
Н	-1.65122200	-1.22418000	1.77233700
Н	-1.11063200	0.43280600	2.10388300
С	1.73764100	-0.18182000	1.45213700
Н	1.65178100	-1.22389300	1.77225700
Н	2.77659400	0.14263900	1.57907400
Н	1.11106600	0.43310000	2.10399800
С	2.34562000	-0.82451900	-0.89807100
Н	3.32494800	-0.33942600	-0.82021900
Н	2.43320400	-1.86303600	-0.57400000

Η

HOTf•TEMPO

0	1.55224000	-1.17675500	-1.10118900
S	2.14592200	-0.85641600	0.33786700
0	1.08456000	-0.43479400	1.25265000
0	3.09551000	-1.89507000	0.69418300
С	3.13821100	0.67647800	-0.05356500
F	2.33968300	1.59948300	-0.60344100
F	4.11927900	0.38151600	-0.90332300
F	3.65454200	1.15902300	1.07786600
Н	0.63738600	-0.73183800	-1.23080600
С	-1.93012500	1.42431000	-0.04302200
С	-2.61634500	1.36705500	1.33560700
С	-3.65766300	0.25391600	1.45598600
С	-2.97745100	-1.09341100	1.21067600
С	-2.31911100	-1.20899700	-0.17796000
Н	-4.10277800	0.26802500	2.45749700
Н	-1.84517100	1.21104300	2.10100900
Н	-3.06148900	2.35055600	1.52713500
Н	-2.20312100	-1.24120200	1.97448200
Н	-3.68858900	-1.92166700	1.31222700
Н	-4.48160300	0.41043800	0.74902900
Ν	-1.53426300	0.03923700	-0.46920500
0	-0.72297800	-0.01263400	-1.47262700
С	-0.64734900	2.26282800	0.05672000
Н	-0.16704600	2.36581700	-0.91737000
Н	-0.90520200	3.25889500	0.43201900
Н	0.06147800	1.79684900	0.74450700
С	-2.85456400	2.02171500	-1.12417800
Н	-3.01142000	3.08603900	-0.91923400
Н	-2.38558600	1.91978600	-2.10670500
Н	-3.83337400	1.53604700	-1.15265000
С	-3.36314300	-1.39030700	-1.30008500
Н	-2.86870700	-1.33829900	-2.27409300
Н	-3.83835600	-2.37179000	-1.19914000
Н	-4.14724500	-0.63001300	-1.26619100
С	-1.35232700	-2.40214000	-0.18384900
Н	-1.90904200	-3.30491300	0.08780000
Н	-0.90848400	-2.55619600	-1.16935400
Н	-0.55354400	-2.25443900	0.54635700
внт			

BHT

1	٦
L	~

-1.23132700 0.16866900 -0.00013200

С	-1.18781800	1.56985600	-0.00863000
С	0.00737500	2.28402500	-0.00959700
С	1.20415100	1.56411000	-0.00796900
С	1.24780900	0.16766400	0.00015800
С	0.00718400	-0.51402500	0.00583400
Н	-2.11331700	2.13335200	-0.01530900
Н	2.13081600	2.12628200	-0.01457400
С	2.59342400	-0.59106000	-0.00115600
С	2.71807900	-1.46330300	1.27193000
С	2.70984000	-1.47384500	-1.26774300
С	3.79704100	0.37465000	-0.00897000
Н	2.66913400	-0.83738500	2.17097500
Н	1.92548000	-2.21026400	1.32918000
Н	3.68406600	-1.98377200	1.27508200
Н	2.65547400	-0.85525300	-2.17153300
Н	3.67557300	-1.99477800	-1.27271500
Н	1.91659200	-2.22089700	-1.31380200
Н	4.72529200	-0.20755700	-0.00917300
Н	3.80801100	1.01151800	-0.90088800
Н	3.81320000	1.01940600	0.87717700
С	-2.58639000	-0.57912900	-0.00117300
С	-2.73181800	-1.44899600	-1.27862600
С	-2.74082400	-1.43508300	1.28456500
С	-3.78587300	0.39309900	-0.01045600
Н	-2.70605800	-0.81123900	-2.16856400
Н	-1.94113700	-2.19493800	-1.40967400
Н	-3.68858100	-1.98437700	-1.26735200
Н	-2.72207700	-0.78770900	2.16770800
Н	-3.69716500	-1.97117300	1.27194600
Н	-1.95085300	-2.17914600	1.42992500
Н	-4.71885800	-0.18167900	-0.01046700
Н	-3.79484700	1.03820200	0.87438000
Н	-3.78888200	1.02849300	-0.90233400
С	0.01694500	3.79553400	0.01175000
Н	-0.94869200	4.20823700	-0.30007200
Н	0.22816200	4.18243200	1.01794600
Н	0.78580200	4.20187600	-0.65600000
0	0.07942900	-1.89227300	0.01304300
Н	-0.80935600	-2.26444400	0.01508200
HOTf•BHT			
0	-1.92236400	-0.37179400	1.44999200
S	-2.97767900	-0.94582700	0.39190700
0	-2.26621000	-1.55340700	-0.73500600

0	-4.02717000	-1.64005400	1.10999500
С	-3.69119400	0.65754500	-0.25291300
F	-2.69904800	1.40957400	-0.74420900
F	-4.29865700	1.31321700	0.73141700
F	-4.56273400	0.38327500	-1.22148900
Н	-1.05541100	-0.18954000	0.96258000
С	1.98679600	1.35538800	0.02037800
С	3.36809400	1.46662300	0.21529200
С	4.21183100	0.35642100	0.26369800
С	3.65293800	-0.90975800	0.09992600
С	2.27707100	-1.11169300	-0.07631800
С	1.47303600	0.04708900	-0.09774500
Н	3.81723700	2.44672300	0.32115600
Н	4.32101900	-1.76161900	0.11987800
С	1.70345100	-2.54153400	-0.24392400
С	0.72399200	-2.87806900	0.90619300
С	1.00125800	-2.70612200	-1.61919700
С	2.81921200	-3.60810000	-0.20342900
Н	1.23065200	-2.79954300	1.87415200
Н	-0.14776800	-2.22544100	0.93052600
Н	0.35567300	-3.90457800	0.79574800
Н	1.65787400	-2.37933500	-2.43223400
Н	0.75129000	-3.76035800	-1.78252100
Н	0.04816600	-2.17316600	-1.71585300
Н	2.37130800	-4.60127400	-0.31363800
Н	3.54272600	-3.47953000	-1.01610200
Н	3.36024700	-3.59710100	0.74861700
С	1.09499100	2.61379700	-0.09603600
С	0.38661700	2.63813000	-1.47265200
С	0.04703800	2.66195600	1.04157000
С	1.92681500	3.90995100	0.00862400
Н	1.12412300	2.64382800	-2.28366100
Н	-0.27103000	1.77923400	-1.60806100
Н	-0.22072500	3.54716000	-1.56235100
Н	0.52934400	2.57005600	2.02135700
Н	-0.48466000	3.62085300	1.01632000
Н	-0.70398500	1.87908100	0.94991200
Н	1.26192500	4.77277100	-0.10605100
Н	2.42235400	4.00477700	0.98144200
Н	2.68742700	3.97503500	-0.77721500
С	5.69396000	0.52670300	0.50599200
Н	6.08099700	1.42433200	0.01071400
Н	5.91162400	0.62928000	1.57752000
Н	6.26372000	-0.33330200	0.13835900

0	0.08340500	-0.05806600	-0.22495700
Н	-0.16403500	-0.79310400	-0.80951600