Supporting Information

Electrochemically-mediated C-H functionalization of allenes and 1,3-carbonyl compounds to construct tetrasubstituted furans

Mu-Xue He^{a,b}, Yan Yao^a, Chun-Zhi Ai^{*a}, Zu-Yu Mo^c, Yu-Zheng Wu^a, Qi Zhou^d, Ying-Ming Pan^a, Hao-Tao Tang^{*a}

 ^a State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
 ^b School of Public Health, Guilin Medical University, Guilin 541004, China
 ^c Pharmacy School, Guilin Medical University, Guilin 541004, China
 ^d Adesis Inc. A Universal Display company, New Castle, Delaware 19720, United States

* E-mail: httang@gxnu.edu.cn

Table of Contents

1.	General Information	S2
2.	Procedures for the Electrolysis	S3
3.	Procedure for the Synthesis Allenes	S4
4.	Additional Optimization of Reaction Conditions	
5.	Control Experiments	S6
6.	The HRMS Spectra of Compounds 4-9	
7.	Cyclic Voltammetry Studies	
8.	X-ray Crystallography Data	S16
9.	Study on Antitumor Activity	S27
10.	. Characterization Data for the Electrolysis Products	S29
11.	. Copies of ¹ H NMR and ¹³ C NMR for the Products	

1. General Information

Without special instructions, all reagents and solvents were commercially available and were not further purified. Column chromatography was carried out using silica gel (300-400 mesh). NMR spectroscopy was performed on Bruker AV-400 or Bruker AV-600 instruments. Chemical shifts for ¹H NMR spectra are reported as δ in units of parts per million (ppm) downfield from TMS (δ 0.00) and relative to the signal of chloroform-d (δ 7.26, singlet). The abbreviations used to explain the multiplicities were as follows: s, singlet; d, doublet; t, triplet; m, multiplet; brs, broad singlet and J, coupling constant in Hz. ¹³C NMR spectra are reported as δ in units of parts per million (ppm) downfield from TMS (δ 0.00) and relative to the signal of chloroform-d (δ 77.00, triplet). The HRMS spectrum was measured by micromass QTOF2 Quadrupole/Time of Flight Tandem mass spectrometer with electron spray ionization. Cyclic voltammograms were recorded on a CHI 660E potentiostat.

2. Procedures for the Electrolysis

A 10 ml three-necked round-bottomed flask was charged with 1,3-carbonyl compounds (0.3 mmol, 1.0 equiv.), allenes (0.45 mmol, 1.5 equiv.), Cp_2Fe (0.03 mmol, 10 mol %), CH_3COONa (0.3 mmol, 1.0 equiv.), Et_4NOTs (0.6 mmol, 2.0 equiv.). The flask was equipped with a reticulated vitreous carbon RVC (100 PPI, 1 cm x 1 cm x 1.2 cm) anode and a platinum plate (1 cm x 1 cm) cathode. CH_3CN (6 mL) was added under air atmosphere. Electrolysis was carried out at 100 °C (oil bath temperature), which using a constant current of 10 mA until the substrate was completely consumed (monitored by TLC, about 2 hours). After the reaction was completed, the solvent was concentrated under reduced pressure. Purification with silica gel column chromatography using ethyl acetate/petroleum ether to afford the desired products. The pictures of reaction set-up were shown in **Figure S1**.

Figure S1. Electrolysis setup. (undivided cell)

Procedure for the synthesis intermediate 10:

A 10 ml three-necked round-bottomed flask was charged with ethyl (4methoxybenzoyl)acetate **1a** (0.3 mmol, 1.0 equiv.), (4-methoxyphenyl)allene **2a** (0.45 mmol, 1.5 equiv.), Cp₂Fe (0.03 mmol, 10 mol %), CH₃COONa (0.3 mmol, 1.0 equiv.), Et₄NOTs (0.6 mmol, 2.0 equiv.). The flask was equipped with a reticulated vitreous carbon RVC (100 PPI, 1 cm x 1 cm x 1.2 cm) anode and a platinum plate (1 cm x 1 cm) cathode. CH₃CN (6 mL) was added under air atmosphere. Electrolysis was carried out at 100 °C (oil bath temperature), which using a constant current of 10 mA until the generated intermediate **10** no longer increases (monitored by TLC, about 1 hour). The solvent was concentrated under reduced pressure. Purification with silica gel column chromatography using ethyl acetate/petroleum ether to afford the intermediate **10**.

3. Procedure for the Synthesis Allenes

$$R \longrightarrow + (CH_2O)_n + Cy_2NH \longrightarrow Cul (0.5 equiv.), Ar \rightarrow R \longrightarrow R$$

The terminal allenes were prepared according to literature procedure [1]. Solid paraformaldehyde (125 mmol, 2.5 equiv.) and cuprous iodide (25 mmol, 0.5 equiv.) were weighed and added to a 500 mL round-bottomed flask. Argon was filled, and the gas was pumped to remove the air from the flask. The terminal alkynes (50 mmol, 1.0 equiv.) and dicyclohexylamine (90 mmol, 1.8 equiv.) were then measured and added to the round-bottomed flask. The solvent 1, 4-dioxane (120 mL) was added and the solid was fully dissolved. Reaction mixture was stirred at 115 °C (oil bath temperature) for 3h and cooled to room temperature. Subsequently, 50 mL of water and 50 mL of diethyl ether were added for extraction. The aqueous phase was extracted three times with 50 mL of diethyl ether, and the organic phase was collected. The collected organic phase was extracted with 50 mL saturated NaCl solution once and dried with anhydrous Na₂SO₄. The filtered solution was concentrated under reduced pressure to obtain an oily liquid. Finally, the concentrate was purified by silica gel column chromatography using petroleum ether as eluent to afford the terminal allenes.

$$R^1 \longrightarrow + R^2 \cdot CHO + \begin{pmatrix} O \\ N \\ H \end{pmatrix} \xrightarrow{Znl_2 (0.8 \text{ equiv.}), Ar} \xrightarrow{R^1} \xrightarrow{R^1} \xrightarrow{R^2} \xrightarrow{R^2}$$

The 1,3-disubstituted allenes were prepared according to literature procedure [2]. Solid zinc iodide (40 mmol, 0.8 equiv.) was weighed and added to a 500 mL round-bottomed flask. Argon was filled, and the gas was pumped to remove the air from the flask. The terminal alkynes (50 mmol, 1.0 equiv.), aldehydes (90 mmol, 1.8 equiv.) and morpholine (70 mmol, 1.4 equiv.) were then measured and added to the round-bottomed flask. The solvent toluene (120 mL) was added and the solid was fully dissolved. Reaction mixture was stirred at 130°C (oil bath temperature) for 8h and cooled to room temperature. Subsequently, 50 mL of water and 50 mL of diethyl ether were added for extraction. The aqueous phase was extracted three times with 50 mL of diethyl ether, and the organic phase was collected. The collected organic phase was extracted with 50 mL saturated NaCl solution once and dried with anhydrous Na₂SO₄. The filtered solution was concentrated under reduced pressure to obtain an oily liquid. Ultimately, the concentrate was purified by silica gel column chromatography using petroleum ether as eluent to afford the 1,3-disubstituted allenes.

References:

- 1 J.-Q. Kuang and S.-M. Ma, J. Org. Chem., 2009, 74, 1763.
- 2 J.-Q. Kuang and S.-M. Ma, J. Am. Chem. Soc., 2010, 132, 1786.

4. Additional Optimization of Reaction Conditions

Table S1. Optimization of the reaction conditions^a

^{*a*} Reaction conditions: reticulated vitreous carbon (RVC) anode (100 PPI, 1 cm × 1 cm × 1.2 cm), Pt plate cathode (1 cm × 1 cm), undivided cell,**1a** (0.3 mmol, 1.0 equiv.), **2a** (0.45 mmol, 1.5 equiv.), catalyst (10 mol %), base (1.0 equiv.), electrolyte (2.0 equiv.), CH₃CN (6 mL), under air atmosphere, 10 mA, 100 °C, 2 h (2.5 F mol⁻¹). ^{*b*} Isolated yield.

5. Control Experiments

Scheme S1. Control experiments.

6. The HRMS Spectra of Compounds 4-9

Compound 4: HRMS(m/z) [ESI]: calculated for $C_{21}H_{32}NO_5^+[M+H]^+$: 378.2275, found 378.2277.

Compound **5:** HRMS(m/z) [ESI]: calculated for $C_{31}H_{42}NO_6^+[M+H]^+$: 524.3007, found 524.3009.

Compound 6: HRMS(m/z) [ESI]: calculated for $C_{31}H_{40}NO_6^+[M+H]^+$: 522.2850, found 522.2854.

Compound 7: HRMS(m/z) [ESI]: calculated for $C_{27}H_{36}O_5+Na^+$ [M+Na]⁺: 463.2455, found 463.2457.

Compound 8: HRMS(m/z) [ESI]: calculated for $C_{37}H_{44}O_6+Na^+$ [M+Na]⁺: 607.3030, found 607.3033.

Compound 9: HRMS(m/z) [ESI]: calculated for $C_{20}H_{20}O_5+Na^+$ [M+Na]⁺: 363.1203, found 363.1204.

7. Cyclic Voltammetry Studies

The cyclic voltammograms were recorded in an electrolyte solution of Et_4NOTs (0.1 M) in CH₃CN using a glassy carbon disk working electrode (diameter, 3 mm), a Pt wire auxiliary electrode and a Ag/AgCl reference electrode. The scan rate was 100 mV/s.

Figure S2-1. Cyclic voltammograms. (a) background; (b) **1a** (12 mM); (c) **1a** (12 mM) + CH₃COONa (12 mM); (d) Cp₂Fe; (e) Cp₂Fe + **1a** (12 mM); (f) Cp₂Fe + **1a** (12 mM) + CH₃COONa (12 mM).

We measured the cyclic voltammogram of the substrate1a, from which the oxidation potential of 1a was 1.44V vs. Ag/AgCl (Figure S2-1, Curve b). The cyclic voltammogram in the presence of both 1a and CH₃COONa was also studied (Figure S2-1, Curve c). At this point, substrate 1adeproton into the form of a carbon anion intermediate under the influence of CH₃COONa.Therefore, this curve shows that the oxidation potential of the conjugate base of 1a is 0.84 V vs. Ag/AgCl. According to the cyclic voltammogram of Cp₂Fe (Figure S2-1, Curve d), its oxidation potential is 0.54 V vs. Ag/AgCl. It can be seen from the above results that the oxidation potential of Cp₂Fe is closer to that of the conjugate base of 1a, so ferrocene is easier to oxidize the conjugate base of 1a. Moreover, the curve of Cp₂Fe (Figure S2-1, curve e) had almost no change in current compared to the curve of Cp₂Fe (Figure S2-1, curve d).However, the current of Cp₂Fe, 1a and CH₃COONa (Figure S2-1, curve f) showed a significant increase, indicating that electron transfer was performed. In summary, Cp₂Fe and 1a are difficult to react directly under electrochemical conditions, but Cp₂Fe catalyzed the conjugate base of 1a to promote the reaction. Adding another substrate 2a under the same conditions (Figure S2-2), the change of curve was similar and the same conclusion could be obtained.

Figure S2-2. Cyclic voltammograms. (a') **1a** (12 mM); (b') **2a** (12 mM); (c') **1a** (12 mM) + **2a** (12 mM); (d') Cp₂Fe; (e') Cp₂Fe + **1a** (12 mM) + **2a** (12 mM); (f') Cp₂Fe + **1a** (12 mM) + **2a** (12 mM) + CH₃COONa (12 mM).

Figure S2-3. Cyclic voltammograms. (g) $Cp_2Fe + CH_3COONa$ (12 mM); (h) $Cp_2Fe + 10$ (12 mM) + CH₃COONa (12 mM); (i) $Cp_2Fe + 10$ (12 mM) + 1a (12 mM) + CH₃COONa (12 mM).

We studied the cyclic voltammogram of reaction intermediate **10** (Figure S2-3). Compared with the cyclic voltammogram without adding any reaction substrate or intermediate (Figure S2-3, Curve g), the curve with adding intermediate **10** (Figure S2-3, Curve h) has an additional oxidation peak, whose oxidation potential is 1.08V vs. Ag/AgCl. The results show that there is an oxidation process of the intermediate **10** under the electrochemical conditions. We also measured the cyclic voltammogram (Figure S2-3, Curve i) in the presence of both the intermediate **10** and the substrate **1a**, and it showed no significant change compared with the curve in the presence of **10**. The above experimental results indicate that in the further reaction between intermediate **10** and substrate **1a**, only **10** is oxidized, while **1a** participates in the next reaction in the form of its conjugate base.

8. X-ray Crystallography Data

Figure S3. X-ray Structure of 3ga, CCDC number: 2036760.

Crystal structure determination of 3ga

Crystal Data for $C_{32}H_{28}Br_2O_7$ (M=684.36 g/mol): triclinic, space group P-1 (no. 2), a = 5.5321(2) Å, b = 12.1112(4) Å, c = 21.5318(6) Å, $a = 84.490(3)^\circ$, $\beta = 89.273(3)^\circ$, $\gamma = 81.405(3)^\circ$, V = 1419.84(8) Å³, Z = 2, T = 100.00(10) K, μ (Cu K α) = 4.032 mm⁻¹, *Dcalc* = 1.601 g/cm³, 9433 reflections measured ($4.122^\circ \le 2\Theta \le 147.484^\circ$), 5536 unique ($R_{int} = 0.0351$, $R_{sigma} = 0.0466$) which were used in all calculations. The final R_1 was 0.0421 (I >2 σ (I)) and wR_2 was 0.1231 (all data).

Empirical formula	$C_{32}H_{28}Br_2O_7$
Formula weight	684.36
Temperature/K	100.00(10)
Crystal system	triclinic
Space group	P-1
a/Å	5.5321(2)
b/Å	12.1112(4)
c/Å	21.5318(6)
α/°	84.490(3)
β/°	89.273(3)
$\gamma/^{\circ}$	81.405(3)
Volume/Å ³	1419.84(8)
Ζ	2
$ ho_{calc}g/cm^3$	1.601
µ/mm ⁻¹	4.032
F(000)	692.0
Crystal size/mm ³	$0.12 \times 0.1 \times 0.08$
Radiation	Cu Ka ($\lambda = 1.54184$)
2Θ range for data collection/°	4.122 to 147.484
Index ranges	$-6 \le h \le 4, -15 \le k \le 14, -26 \le l \le 26$
Reflections collected	9433
Independent reflections	5536 [$R_{int} = 0.0351$, $R_{sigma} = 0.0466$]
Data/restraints/parameters	5536/0/373
Goodness-of-fit on F ²	1.060
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0421, wR_2 = 0.1173$
Final R indexes [all data]	$R_1 = 0.0507, wR_2 = 0.1231$
Largest diff. peak/hole / e Å ⁻³	0.55/-1.25

Table S2 Crystal data and structure refinement for 3ga.

Atom	<i>x</i>	<u>y</u>	z	U(eq)
Br1	-4315.7(7)	11547.1(3)	9144.7(2)	22.75(12)
Br2	2892.3(8)	1622.1(3)	4755.7(2)	28.17(13)
01	11780(5)	3123(2)	9694.2(12)	25.7(6)
O2	4694(5)	7321(2)	8477.3(11)	18.8(5)
O3	2625(5)	9468(2)	6846.2(12)	26.6(6)
O4	2563(6)	7833(2)	6436.9(13)	29.7(6)
05	9043(5)	5486(2)	5913.1(12)	21.9(5)
O6	8466(5)	3779(2)	7217.5(12)	20.3(5)
07	4698(5)	4283(2)	7602.9(12)	24.2(6)
C1	4045(7)	7805(3)	7465.0(16)	18.2(7)
C2	6025(7)	6882(3)	7527.2(16)	18.0(7)
C3	3306(7)	8034(3)	8050.9(16)	18.0(7)
C4	6354(6)	6612(3)	8154.4(16)	17.7(7)
C5	7792(7)	5723(3)	8554.1(16)	17.3(7)
C6	10173(7)	5252(3)	8407.5(17)	20.0(7)
C7	11443(7)	4385(3)	8792.6(17)	21.5(8)
C8	10364(7)	3967(3)	9338.2(17)	20.3(7)
С9	7986(7)	4422(3)	9490.9(17)	20.5(7)
C10	6762(7)	5292(3)	9100.6(17)	20.1(7)
C11	10665(8)	2624(3)	10232.7(18)	26.1(8)
C12	1458(7)	8865(3)	8311.9(16)	17.7(7)
C13	-821(7)	9203(3)	8021.6(17)	20.6(7)
C14	-2548(7)	9998(3)	8265.8(17)	19.4(7)
C15	-1987(7)	10450(3)	8805.4(17)	19.5(7)
C16	238(7)	10120(3)	9102.6(17)	20.6(7)
C17	1948(7)	9322(3)	8857.5(16)	19.9(7)
C18	2981(7)	8343(3)	6862.4(17)	20.1(7)
C19	1586(9)	10081(4)	6270.8(19)	33.4(10)
C20	-1153(10)	10361(4)	6323(2)	42.8(12)
C21	7416(7)	6368(3)	6993.8(16)	17.4(7)
C22	6170(7)	5437(3)	6749.1(16)	17.7(7)
C23	7300(7)	5086(3)	6129.8(16)	18.9(7)
C24	6199(7)	4248(3)	5810.9(16)	18.1(7)
C25	7259(7)	3880(3)	5260.2(16)	19.1(7)
C26	6305(7)	3098(3)	4945.4(17)	22.1(8)
C27	4257(7)	2688(3)	5187.1(17)	22.8(8)

Table S3 Fractional Atomic Coordinates ($\times 10^4$) and Equivalent Isotropic DisplacementParameters (Å²×10³) for **3ga**. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

		eq	د	, 15
Atom	x	У	Z	U(eq)
C28	3115(7)	3034(3)	5726.0(17)	21.8(8)
C29	4099(7)	3815(3)	6037.4(17)	20.9(8)
C30	6298(7)	4448(3)	7235.6(16)	17.9(7)
C31	8765(8)	2799(3)	7675.3(18)	24.2(8)
C32	11295(7)	2176(3)	7592(2)	27.0(8)

Table S3 Fractional Atomic Coordinates (×104) and Equivalent Isotropic DisplacementParameters (Å2×103) for **3ga**. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

	<u>mponent</u> take	5 110 101111. 2/				
Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Br1	19.6(2)	20.5(2)	28.8(2)	-8.79(15)	4.59(15)	-0.95(15)
Br2	36.2(3)	25.6(2)	25.7(2)	-8.89(16)	0.36(17)	-10.24(18)
01	28.8(15)	25.4(14)	20.2(13)	-1.2(11)	3.7(11)	3.7(12)
02	19.8(13)	17.9(12)	18.5(12)	-5.5(10)	3.0(10)	0.0(10)
03	39.5(17)	16.5(13)	22.7(13)	-1.3(10)	1.0(12)	-1.4(12)
O4	41.4(17)	25.6(15)	22.1(14)	-7.7(11)	-4.0(12)	-1.1(13)
05	22.5(14)	22.1(13)	22.7(13)	-5.0(10)	6.5(10)	-7.2(11)
06	19.5(13)	19.1(13)	21.8(13)	0.3(10)	4.0(10)	-3.0(10)
O7	25.1(14)	24.2(14)	24.3(13)	-3.4(11)	10.2(11)	-7.6(11)
C1	22.2(18)	14.3(16)	19.5(17)	-4.0(13)	1.6(14)	-5.6(14)
C2	17.9(17)	17.7(17)	19.8(17)	-4.8(13)	2.8(13)	-5.8(14)
C3	18.8(17)	16.2(17)	19.9(17)	-3.9(13)	0.9(13)	-4.2(14)
C4	16.0(17)	18.2(17)	21.1(17)	-8.5(14)	5.3(13)	-5.8(14)
C5	16.7(17)	17.2(17)	20.5(17)	-7.0(13)	1.2(13)	-7.0(14)
C6	18.8(18)	22.5(18)	19.2(17)	-4.5(14)	7.3(14)	-3.6(15)
C7	17.9(18)	24.5(19)	22.8(18)	-8.3(15)	1.2(14)	-1.4(15)
C8	25.5(19)	16.2(17)	19.3(17)	-5.7(14)	0.4(14)	-0.6(15)
C9	19.0(18)	22.2(18)	21.6(18)	-4.6(14)	5.6(14)	-5.9(15)
C10	13.7(17)	23.3(18)	24.4(18)	-6.3(15)	3.2(13)	-4.5(14)
C11	29(2)	26(2)	23.1(19)	0.4(15)	-1.0(15)	-5.7(17)
C12	19.4(18)	16.2(17)	18.2(17)	-3.0(13)	4.3(13)	-4.2(14)
C13	25.4(19)	18.4(17)	18.1(17)	-3.8(14)	3.5(14)	-2.8(15)
C14	14.6(17)	20.3(18)	23.5(18)	-1.8(14)	0.4(13)	-3.8(14)
C15	21.3(18)	14.9(16)	23.2(18)	-4.1(14)	5.5(14)	-4.7(14)
C16	25.2(19)	19.2(18)	18.3(17)	-5.6(14)	2.2(14)	-4.1(15)
C17	21.5(18)	19.6(17)	18.1(17)	-2.6(14)	3.8(14)	-1.6(15)
C18	21.2(18)	17.8(17)	21.7(18)	-3.3(14)	5.7(14)	-3.5(14)
C19	48(3)	25(2)	24(2)	2.9(16)	-0.8(18)	1.0(19)
C20	50(3)	41(3)	34(2)	-3(2)	-9(2)	5(2)
C20	50(3)	41(3)	34(2)	-3(2)	-9(2)	5(2)
C21	17.1(17)	14.9(16)	22.1(17)	-5.8(13)	4.4(13)	-6.9(14)
C22	18.0(17)	19.2(17)	17.2(16)	-6.9(14)	1.6(13)	-3.8(14)
C23	20.9(18)	16.5(17)	18.2(17)	-0.8(13)	2.9(14)	-0.4(14)
C24	19.0(17)	17.5(17)	17.4(17)	-2.1(13)	-0.7(13)	-0.3(14)
C25	16.2(17)	21.0(18)	20.0(17)	-3.5(14)	1.5(13)	-2.3(14)
C26	25.6(19)	20.9(18)	19.2(17)	-4.7(14)	1.6(14)	0.3(15)
C27	27(2)	18.1(18)	22.9(18)	-3.9(14)	-2.9(15)	-1.2(15)

Table S4 Anisotropic Displacement Parameters ($Å^{2} \times 10^{3}$) for **3ga**. The Anisotropic displacement factor exponent takes the form: $-2\pi^{2}[h^{2}a^{*2}U_{11}+2hka^{*}b^{*}U_{12}+...]$.

2π [if $u = 0$], 2π [if $u = 0$], 2π [if $u = 0$].								
Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂		
C28	22.0(19)	20.8(18)	23.5(18)	-2.0(14)	0.6(14)	-5.8(15)		
C29	21.9(19)	22.1(18)	18.0(17)	-3.2(14)	4.0(14)	-0.8(15)		
C30	19.6(18)	16.5(17)	19.7(17)	-6.7(13)	0.0(14)	-6.5(14)		
C31	28(2)	18.5(18)	25.3(19)	2.8(15)	2.1(15)	-5.2(16)		
C32	22(2)	21.8(19)	38(2)	0.6(16)	-2.9(16)	-6.7(16)		

Table S4 Anisotropic Displacement Parameters ($Å^{2} \times 10^{3}$) for **3ga**. The Anisotropic displacement factor exponent takes the form: $-2\pi^{2}[h^{2}a^{*2}U_{11}+2hka^{*}b^{*}U_{12}+...]$.

Table S5 Bond Lengths for 3ga.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Br1	C15	1.900(4)	C6	C7	1.382(5)
Br2	C27	1.907(4)	C7	C8	1.397(5)
01	C8	1.368(4)	C8	C9	1.396(5)
01	C11	1.431(5)	C9	C10	1.380(5)
02	C3	1.359(4)	C12	C13	1.402(5)
02	C4	1.388(4)	C12	C17	1.392(5)
03	C18	1.344(4)	C13	C14	1.388(5)
03	C19	1.459(5)	C14	C15	1.388(5)
04	C18	1.196(5)	C15	C16	1.381(5)
05	C23	1.212(5)	C16	C17	1.386(5)
06	C30	1.346(4)	C19	C20	1.507(7)
06	C31	1.459(4)	C21	C22	1.543(5)
07	C30	1.205(4)	C22	C23	1.535(5)
C1	C2	1.441(5)	C22	C30	1.507(5)
C1	C3	1.362(5)	C23	C24	1.483(5)
C1	C18	1.482(5)	C24	C25	1.398(5)
C2	C4	1.366(5)	C24	C29	1.408(5)
C2	C21	1.507(5)	C25	C26	1.385(5)
C3	C12	1.469(5)	C26	C27	1.380(6)
C4	C5	1.455(5)	C27	C28	1.385(5)
C5	C6	1.400(5)	C28	C29	1.388(5)
C5	C10	1.392(5)	C31	C32	1.505(5)

Table S6 Bond Angles for 3ga.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C8	01	C11	117.2(3)	C14	C15	Br1	119.6(3)
C3	02	C4	107.8(3)	C16	C15	Br1	119.0(3)
C18	03	C19	116.2(3)	C16	C15	C14	121.4(3)
C30	06	C31	115.1(3)	C15	C16	C17	119.4(3)
C2	C1	C18	124.6(3)	C16	C17	C12	120.7(4)
C3	C1	C2	107.5(3)	03	C18	C1	111.8(3)
C3	C1	C18	127.8(3)	O4	C18	03	124.4(3)
C1	C2	C21	125.3(3)	O4	C18	C1	123.7(3)
C4	C2	C1	105.7(3)	03	C19	C20	110.7(4)
C4	C2	C21	129.0(3)	C2	C21	C22	112.0(3)
02	C3	C1	109.5(3)	C23	C22	C21	111.4(3)
02	C3	C12	115.4(3)	C30	C22	C21	110.1(3)
C1	C3	C12	135.2(3)	C30	C22	C23	111.3(3)
02	C4	C5	113.7(3)	05	C23	C22	120.3(3)
C2	C4	02	109.5(3)	05	C23	C24	121.5(3)
C2	C4	C5	136.4(3)	C24	C23	C22	118.1(3)
C6	C5	C4	123.0(3)	C25	C24	C23	119.1(3)
C10	C5	C4	119.4(3)	C25	C24	C29	118.3(3)
C10	C5	C6	117.7(3)	C29	C24	C23	122.5(3)
C7	C6	C5	120.9(3)	C26	C25	C24	121.4(4)
C6	C7	C8	120.2(3)	C27	C26	C25	118.3(3)
01	C8	C7	115.9(3)	C26	C27	Br2	119.0(3)
01	C8	С9	124.4(3)	C26	C27	C28	122.7(4)
С9	C8	C7	119.7(3)	C28	C27	Br2	118.3(3)
C10	С9	C8	118.9(3)	C27	C28	C29	118.3(4)
С9	C10	C5	122.5(3)	C28	C29	C24	121.0(3)
C13	C12	C3	120.9(3)	06	C30	C22	111.1(3)
C17	C12	C3	120.1(3)	07	C30	06	124.0(3)
C17	C12	C13	119.0(3)	07	C30	C22	124.9(3)
C14	C13	C12	120.7(3)	06	C31	C32	107.2(3)
C15	C14	C13	118.9(3)				

Table S7 Torsion Angles for 3ga.

	•		
A B C D	Angle/°	A B C D	Angle/°
Br1C15C16C17	-179.9(3)	C10 C5 C6 C7	0.2(5)
Br2C27C28C29	-179.6(3)	C11 O1 C8 C7	-175.7(3)
O1 C8 C9 C10	178.4(3)	C11 O1 C8 C9	4.9(5)
O2 C3 C12 C13	-144.4(3)	C12C13C14C15	-0.3(5)
O2 C3 C12 C17	35.1(5)	C13 C12 C17 C16	-1.6(5)
O2 C4 C5 C6	-150.2(3)	C13 C14 C15 Br1	179.6(3)
O2 C4 C5 C10	31.5(5)	C13 C14 C15 C16	-0.3(6)
O5 C23 C24 C25	2.6(5)	C14C15C16C17	0.0(6)
O5 C23 C24 C29	-176.7(3)	C15C16C17C12	1.0(6)
C1 C2 C4 O2	-0.3(4)	C17 C12 C13 C14	1.3(5)
C1 C2 C4 C5	172.1(4)	C18 O3 C19C20	94.6(4)
C1 C2 C21 C22	-87.2(4)	C18 C1 C2 C4	-177.2(3)
C1 C3 C12 C13	37.4(6)	C18 C1 C2 C21	3.9(6)
C1 C3 C12 C17	-143.0(4)	C18 C1 C3 O2	177.3(3)
C2 C1 C3 O2	0.3(4)	C18 C1 C3 C12	-4.4(7)
C2 C1 C3 C12	178.5(4)	C19 O3 C18 O4	2.0(6)
C2 C1 C18 O3	-135.6(4)	C19 O3 C18 C1	179.9(3)
C2 C1 C18 O4	42.3(6)	C21 C2 C4 O2	178.6(3)
C2 C4 C5 C6	37.6(7)	C21 C2 C4 C5	-9.0(7)
C2 C4 C5 C10	-140.6(4)	C21 C22 C23 O5	4.0(5)
C2 C21 C22 C23	168.7(3)	C21 C22 C23 C24	-176.1(3)
C2 C21 C22 C30	-67.3(4)	C21 C22 C30 O6	-82.7(3)
C3 O2 C4 C2	0.4(4)	C21 C22 C30 O7	95.8(4)
C3 O2 C4 C5	-173.8(3)	C22 C23 C24 C25	-177.3(3)
C3 C1 C2 C4	0.0(4)	C22 C23 C24 C29	3.5(5)
C3 C1 C2 C21	-179.0(3)	C23 C22 C30 O6	41.3(4)
C3 C1 C18 O3	47.8(5)	C23 C22 C30 O7	-140.1(4)
C3 C1 C18 O4	-134.3(4)	C23 C24 C25 C26	179.9(3)
C3 C12 C13 C14	-179.2(3)	C23 C24 C29 C28	179.8(3)
C3 C12 C17 C16	178.8(3)	C24C25C26C27	0.3(5)
C4 O2 C3 C1	-0.4(4)	C25 C24 C29 C28	0.6(5)
C4 O2 C3 C12	-179.1(3)	C25 C26 C27 Br2	179.3(3)
C4 C2 C21 C22	94.1(5)	C25 C26 C27 C28	0.6(6)
C4 C5 C6 C7	-178.0(3)	C26 C27 C28 C29	-0.8(6)
C4 C5 C10 C9	177.7(3)	C27 C28 C29 C24	0.2(6)
C5 C6 C7 C8	-0.2(6)	C29 C24 C25 C26	-0.9(5)
C6 C5 C10 C9	-0.7(5)	C30 O6 C31 C32	-178.8(3)
C6 C7 C8 O1	-178.9(3)	C30 C22 C23 O5	-119.3(4)

Table S7 Torsion Angles for 3ga.

				0 8					
Α	B	С	D	Angle/°	Α	B	С	D	Angle/°
C6	C7	C8	C9	0.5(6)	C30	C22	C23	C24	60.6(4)
C7	C8	C9	C10	-0.9(6)	C31	06	C30	07	1.1(5)
C8	C9	C10	C5	1.0(6)	C31	06	C30	C22	179.7(3)

Atom	x	У	Z	U(eq)
H6	10910.45	5525.22	8045.96	24
H7	13022.5	4079.5	8688.24	26
H9	7239.06	4144.63	9849.87	25
H10	5187.61	5601.21	9206.96	24
H11A	9254.8	2324.39	10107.61	39
H11B	10178.48	3181.81	10515.89	39
H11C	11814.68	2030.77	10435.69	39
H13	-1179.31	8892.14	7661.49	25
H14	-4056.21	10224.37	8071.35	23
H16	585.8	10431.43	9463.63	25
H17	3438.32	9088.62	9059.65	24
H19A	1989.6	9628.71	5925.23	40
H19B	2287.78	10767.41	6186.78	40
H20A	-1795.76	10789.49	5947.73	64
H20B	-1551.97	10791.13	6672.21	64
H20C	-1854.3	9679.67	6383.33	64
H21A	9060.32	6055.69	7131.32	21
H21B	7538.67	6948.4	6656.55	21
H22	4442.7	5735.98	6673.33	21
H25	8633.8	4167.05	5101.86	23
H26	7026.18	2855.42	4580.31	27
H28	1723.99	2750.03	5875.44	26
H29	3360.71	4055.29	6400.98	25
H31A	7548.76	2322.56	7608.96	29
H31B	8573.54	3029.87	8094.41	29
H32A	11496.24	1993.8	7168.04	40
H32B	11518.04	1497.58	7868.08	40
H32C	12483.09	2637.87	7685.51	40

Table S8 Hydrogen Atom Coordinates ($Å \times 10^4$) and Isotropic Displacement Parameters ($Å^2 \times 10^3$) for **3ga.**

9. Study on Antitumor Activity

MTT assay. The 180 μ L cell suspensions (4500-5000 cells/mL) was seeded in 96-well plates and incubated for 24 h. All compounds and 5-FU were dissolved in the Phosphate Buffered Saline (PBS) with 1% DMSO to give various concentrations (2.5, 5, 10, 20, and 40 μ M, respectively) to 96-well plates and control wells contained supplemented media with 1% DMSO. Continue incubating for 48 h at 37 °C in 5% CO₂ atmosphere and then the MTT solution (10 μ L, 5 mg/mL) was added into each well and the cultures were incubated further for 4-6 h. After removal of the supernatant, DMSO (100 μ L) was added to dissolve the formazan crystals. The absorbance was read by enzyme labeling instrument with 570/630 nm double wavelength measurement. The cytotoxicity was estimated based on the percentage cell survival in a dose dependent manner relative to the negative control. The final IC₅₀ (a drug concentration killing 50% cells) values were calculated by the Bliss method. All the tests were repeated in at least three independent experiments. Table S9 The $IC_{50}\,(\mu M)$ values of tested compounds on four tumor cell lines and one normal liver cell line.

Compounds	T-24	MGC-803	HeLa	HePG-2	WI-38
3aa	38.1 ± 1.2	>40	32.0 ± 1.3	>40	>40
3ba	30.7 ± 0.9	38.5 ± 2.0	29.3 ± 0.9	>40	>40
3da	>40	>40	>40	>40	>40
3ea	6.3 ± 0.7	12.6± 0.9	7.4 ± 0.5	20.2 ± 1.3	33.6 ± 0.4
3fa	27.1 ± 1.0	35.6 ± 1.6	30.9 ± 1.2	$>40\pm$	>40
3ga	25.8 ± 1.5	30.6 ± 1.4	31.6 ± 0.8	>40	>40
3ha	22.5 ± 0.4	30.5 ± 0.7	27.2 ± 1.6	35.8 ± 0.9	>40
3ia	28.9 ± 0.8	35.4 ± 0.9	33.0 ± 0.5	>40	>40
3ja	20.4 ± 1.1	31.6 ± 1.2	22.1 ± 1.0	36.2 ± 1.5	38.9 ± 0.7
3ka	32.5 ± 0.7	>40	34.3 ± 0.9	>40	>40
3ma	30.4 ± 1.3	>40	33.1 ± 0.5	>40	>40
3na	37.5 ± 1.5	>40	30.8 ± 1.3	>40	>40
30a	33.4 ± 0.8	39.6 ± 0.9	29.5 ± 2.1	>40	>40
3pa	>40	>40	36.2 ± 1.8	>40	>40
3qa	>40	>40	35.3 ± 0.8	>40	>40
3ra	30.1 ± 0.5	38.1 ± 1.0	29.6 ± 1.4	37.6 ± 1.6	>40
3sa	>40	>40	37.2 ± 0.9	>40	>40
3ta	28.0 ± 0.8	31.9 ± 0.8	25.4 ± 1.2	>40	>40
3ab	30.5 ± 0.9	>40	>40	>40	>40
3ad	27.3 ± 1.1	35.1 ± 1.4	30.7 ± 0.6	38.5 ± 0.5	>40
3ae	34.6 ± 0.4	38.9 ± 1.1	33.1 ± 1.2	>40	>40
3af	>40	>40	>40	>40	>40
3ag	38.6 ± 0.7	>40	35.1 ± 0.9	>40	>40
3ah	29.1	36.9 ± 0.9	25.4 ± 1.5	>40	>40
3ai	>40	>40	>40	>40	>40
3aj	33.1 ± 1.2	>40	35.7 ± 0.7	>40	>40
5-FU	30.5 ± 0.9	38.7 ± 0.8	>40	> 40	>40

10. Characterization Data for the Electrolysis Products

ethyl 2,5-bis(4-methoxyphenyl)-4-methylfuran-3-carboxylate (10). yellow liquid (69.2 mg, 63%). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.79 (d, *J* = 8.9 Hz, 2H), 7.58 (d, *J* = 8.8 Hz, 2H), 6.96 (dd, *J* = 17.5, 8.8 Hz, 4H), 4.32 (q, *J* = 7.1 Hz, 2H), 3.85 (d, *J* = 2.6 Hz, 6H), 2.39 (s, 3H), 1.32 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 164.84, 160.06, 158.97, 155.46, 148.48, 129.84, 127.81, 123.61, 123.05, 116.56, 114.97, 114.00, 113.38, 60.31, 55.31,55.30, 14.16, 11.06. IR (KBr) v: 3061, 2925, 1721, 1604, 1253, 1030 cm⁻¹. HRMS (m/z) [ESI]: calculated for C₂₂H₂₃O₅⁺ [M+H]⁺: 367.1540, found 367.1542.

ethyl 4-(3-ethoxy-2-(4-methoxybenzoyl)-3-oxopropyl)-2,5-bis(4-methoxyphenyl)furan-3carboxylate (3aa). yellow liquid (73.9 mg, 84%). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.87 (d, *J* = 6.0 Hz, 2H), 7.72 (d, *J* = 12.0 Hz, 2H), 7.55 (d, *J* = 6.0 Hz, 2H), 6.93 (d, *J* = 6.0 Hz, 4H), 6.85 (d, *J* = 6.0 Hz, 2H), 4.84-4.81 (m, 1H), 4.31-4.25 (m, 2H), 4.00-3.95 (m, 1H), 3.88-3.85 (m, 1H), 3.84 (s, 3H), 3.83 (s, 3H), 3.82 (s, 3H), 3.64 (dd, *J* = 18.0, 12.0 Hz, 1H), 3.52 (dd, *J* = 18.0, 12.0 Hz, 1H), 1.24 (t, *J* = 6.0 Hz, 3H), 0.98 (t, *J* = 6.0 Hz, 3H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 193.52, 169.77, 164.41, 163.65, 160.18, 159.32, 156.51, 149.77, 130.91, 130.07, 129.33, 128.39, 122.87, 122.78, 117.17, 113.95, 113.83, 113.62, 113.27, 61.17, 60.47, 55.38, 55.26, 55.23, 53.78, 24.13, 13.98, 13.72. IR (KBr) v: 3080, 2938, 1708, 1600, 1254, 1028 cm⁻¹. HRMS (m/z) [ESI]: calculated for C₃₄H₃₅O₉⁺ [M+H]⁺: 587.2276, found 587.2277.

ethyl 4-(3-ethoxy-2-(4-methylbenzoyl)-3-oxopropyl)-5-(4-methoxyphenyl)-2-(*p*-tolyl)furan-3carboxylate (3ba). yellow solid (68.1 mg, 82%). mp: 100-103 °C. ¹H NMR (600 MHz, Chloroform-*d*) δ 7.80 (d, *J* = 6.0 Hz, 2H), 7.65 (d, *J* = 6.0 Hz, 2H), 7.58 (d, *J* = 6.0 Hz, 2H), 7.23 -7.18 (m, 4H), 6.95 (d, *J* = 12.0 Hz, 2H), 4.88 (t, *J* = 6.0 Hz, 1H), 4.32-4.26 (m, 2H), 4.00-3.95 (m, 1H), 3.88-3.84 (m, 1H), 3.83 (s, 3H), 3.65 (dd, *J* = 14.5, 6.0 Hz, 1H), 3.55 (dd, *J* = 14.5, 6.0 Hz, 1H), 2.40 (s, 3H), 2.37 (s, 3H), 1.25 (t, *J* = 6.0 Hz, 3H), 0.99 (t, *J* = 6.0 Hz, 3H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 194.68, 169.65, 164.34, 159.34, 156.43, 149.99, 144.17, 139.09, 133.80, 129.13, 128.62, 128.54, 128.40, 128.35, 127.30, 122.80, 117.14, 114.42, 113.94, 61.16, 60.48, 55.19, 53.85, 24.00, 21.54, 21.34, 13.92, 13.68. IR (KBr) v: 3046, 2981, 1710, 1508, 1228, 1037 cm⁻¹. HRMS (m/z) [ESI]: calculated for C₃₄H₃₅O₇+ [M+H]⁺: 555.2377, found 555.2384.

ethyl 4-(2-(4-(*tert*-butyl)benzoyl)-3-ethoxy-3-oxopropyl)-2-(4-(*tert*-butyl)phenyl)-5-(4methoxyphenyl)furan-3-carboxylate (3ca). yellow liquid (67.0 mg, 70%). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.81 (d, *J* = 12.0 Hz, 2H), 7.69 (d, *J* = 12.0 Hz, 2H), 7.56 (d, *J* = 12.0 Hz, 2H), 7.43-7.38 (m, 4H), 6.95-6.93 (m, 2H), 4.87 (t, *J* = 6.0 Hz, 1H), 4.34-4.25 (m, 2H), 4.01-3.96 (m, 1H), 3.90-3.86 (m, 1H), 3.84 (s, 3H), 3.64 (dd, *J* = 14.5, 8.0 Hz, 1H), 3.54 (dd, *J* = 14.5, 7.0 Hz, 1H), 1.35 (s, 9H), 1.29 (s, 9H), 1.25 (t, *J* = 7.1 Hz, 3H), 1.00 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 194.81, 169.72, 164.42, 159.38, 157.06, 156.45, 152.25, 150.07, 133.78, 128.51, 128.40, 128.25, 127.32, 125.44, 124.85, 122.89, 117.14, 114.57, 114.01, 61.22, 60.56, 55.28, 53.82, 35.06, 34.75, 31.19, 30.97, 24.14, 14.00, 13.77. IR (KBr) v: 3061, 2903, 1732, 1508, 1253, 1038 cm⁻¹. HRMS (m/z) [ESI]: calculated for C₄₀H₄₇O₇⁺ [M+H]⁺: 639.3316, found 639.3317.

ethyl 4-(2-benzoyl-3-ethoxy-3-oxopropyl)-5-(4-methoxyphenyl)-2-phenylfuran-3-carboxylate (3da). yellow solid (63.9 mg, 81%). mp: 64-67 °C. ¹H NMR (600 MHz, Chloroform-*d*) δ 7.88 (d, J = 6.0 Hz, 2H), 7.73 (d, J = 12.0 Hz, 2H), 7.57 (d, J = 6.0 Hz, 2H), 7.52 (t, J = 6.0 Hz, 1H), 7.42-7.37 (m, 5H), 6.95 (d, J = 6.0 Hz, 2H), 4.90 (t, J = 6.0 Hz, 1H), 4.31-4.25 (m, 2H), 4.00-3.95 (m, 1H), 3.88-3.85 (m, 1H), 3.84 (s, 3H), 3.64 (dd, J = 12.0, 6.0 Hz, 1H), 3.55 (dd, J = 12.0, 6.0 Hz, 1H), 1.23 (t, J = 6.0 Hz, 3H), 0.98 (t, J = 6.0 Hz, 3H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 195.20, 169.56, 164.35, 159.48, 156.17, 150.40, 136.34, 133.33, 130.18, 129.05, 128.55, 128.54, 128.50, 128.44, 127.89, 122.75, 117.20, 114.96, 114.04, 61.29, 60.63, 55.29, 53.97, 24.00, 13.93, 13.72. IR (KBr) v: 3064, 2926, 1734, 1509, 1255, 1027 cm⁻¹. HRMS (m/z) [ESI]: calculated for C₃₂H₃₀O₇+Na⁺ [M+Na]⁺: 549.1884, found 549.1884.

ethyl 4-(3-ethoxy-2-(4-fluorobenzoyl)-3-oxopropyl)-2-(4-fluorophenyl)-5-(4methoxyphenyl)furan-3-carboxylate (3ea). yellow solid (63.3 mg, 75%). mp: 49-52 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.93-7.90 (m, 2H), 7.76-7.72 (m, 2H), 7.55 (d, *J* = 8.0 Hz, 2H), 7.12-7.04 (m, 4H), 6.94 (d, *J* = 8.0 Hz, 2H), 4.84 (t, *J* = 8.0 Hz, 1H), 4.30-4.24 (m, 2H), 4.01-3.94 (m, 1H), 3.88-3.84 (m, 1H), 3.83 (s, 3H), 3.64 (dd, *J* = 16.0, 8.0 Hz, 1H), 3.54 (dd, *J* = 16.0, 8.0 Hz, 1H), 1.23 (t, *J* = 8.0 Hz, 3H), 0.98 (t, *J* = 8.0 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 193.44, 169.34, 167.08, 164.42 (d, *J* = 24.0 Hz), 164.13, 161.82, 159.55, 152.91 (d, *J* = 494.0 Hz), 132.68 (d, *J* = 3.0 Hz), 131.20 (d, *J* = 10.0 Hz), 130.59 (d, *J* = 8.0 Hz), 128.43, 126.31 (d, *J* = 3.0 Hz), 122.51, 117.08, 115.61 (d, *J* = 22.0 Hz), 114.97 (d, *J* = 21.0 Hz), 114.71, 114.04, 61.35, 60.65, 55.22, 54.02, 23.93, 13.90, 13.67. ¹⁹F NMR (565 MHz, Chloroform-*d*) δ -104.45, -111.25. IR (KBr) v: 3080, 2925, 1732, 1599, 1234, 1033 cm⁻¹. HRMS (m/z) [ESI]: calculated for C₃₂H₂₉F₂O₇+ [M+H]⁺: 563.1876, found 563.1875.

ethyl 4-(2-(4-chlorobenzoyl)-3-ethoxy-3-oxopropyl)-2-(4-chlorophenyl)-5-(4-methoxyphenyl)furan-3-carboxylate (3fa). yellow solid (68.6 mg, 77%). mp: 96-100 °C. ¹H NMR (600 MHz, Chloroform-*d*) δ 7.81 (d, *J* = 12.0 Hz, 2H), 7.69 (d, *J* = 12.0 Hz, 2H), 7.54 (d, *J* = 12.0 Hz, 2H), 7.39-7.35 (m, 4H), 6.94 (d, *J* = 6.0 Hz, 2H), 4.82 (t, *J* = 6.0 Hz, 1H), 4.31-4.26 (m, 2H), 4.00-3.95 (m, 1H), 3.87-3.85 (m, 1H), 3.83 (s, 3H), 3.63 (dd, *J* = 14.5, 6.0 Hz, 1H), 3.54 (dd, *J* = 14.5, 6.0 Hz, 1H), 1.24 (t, *J* = 6.0 Hz, 3H), 0.98 (t, *J* = 6.0 Hz, 3H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 193.84, 169.23, 164.04, 159.59, 154.94, 150.66, 139.83, 135.01, 134.52, 129.87, 129.78, 128.79, 128.47, 128.43, 128.13, 122.38, 117.16, 115.16, 114.04, 61.41, 60.75, 55.24, 54.04, 23.86, 13.93, 13.68. IR (KBr) v: 3077, 2980, 1720, 1506, 1229, 1035 cm⁻¹. HRMS (m/z) [ESI]: calculated for C₃₂H₂₉Cl₂O₇⁺ [M+H]⁺: 595.1285, found 595.1283.

ethyl 4-(2-(4-bromobenzoyl)-3-ethoxy-3-oxopropyl)-2-(4-bromophenyl)-5-(4methoxyphenyl)furan-3-carboxylate (3ga). yellow solid (75.9 mg, 74%). mp: 61-64 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.72 (d, *J* = 8.0 Hz, 2H), 7.62 (d, *J* = 8.0 Hz, 2H), 7.53-7.51 (m, 6H), 6.94 (d, *J* = 8.0 Hz, 2H), 4.81 (t, *J* = 8.0 Hz, 1H), 4.32-4.25 (m, 2H), 4.02-3.94 (m, 1H), 3.89-3.86 (m, 1H), 3.84 (s, 3H), 3.62 (dd, *J* = 14.5, 8.0 Hz, 1H), 3.54 (dd, *J* = 14.5, 8.0 Hz, 1H), 1.25 (t, *J* = 8.0 Hz, 3H), 0.98 (t, *J* = 8.0 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 194.08, 169.20, 164.04, 159.62, 154.93, 150.72, 134.96, 131.79, 131.10, 130.00, 129.96, 128.92, 128.64, 128.44, 123.37, 122.38, 117.20, 115.25, 114.07, 61.43, 60.77, 55.26, 54.01, 23.86, 13.95, 13.70. IR (KBr) v: 3077, 2929, 1720, 1507, 1229, 1035 cm⁻¹. HRMS (m/z) [ESI]: calculated for C₃₂H₂₉⁷⁹Br₂O₇⁺ [M+H]⁺: 705.0094, found 705.0105; calculated for C₃₂H₂₉⁸¹Br₂O₇⁺ [M+H]⁺: 707.0074, found 707.0069.

ethyl 4-(3-ethoxy-2-(3-fluorobenzoyl)-3-oxopropyl)-2-(3-fluorophenyl)-5-(4methoxyphenyl)furan-3-carboxylate (3ha). yellow liquid (59.1 mg, 70%). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.71-7.68 (m, 1H), 7.56 (d, J = 6.0 Hz, 2H), 7.54-7.52 (m, 1H), 7.47-7.43 (m, 1H), 7.41-7.37 (m, 1H), 7.21 (t, J = 7.9 Hz, 1H), 7.16-7.11 (m, 2H), 7.05-7.02 (m, 1H), 6.94 (d, J = 6.0 Hz, 2H), 4.91 (t, J = 7.7 Hz, 1H), 4.25- 4.20 (m, 2H), 4.02-3.93 (m, 2H), 3.84 (s, 3H), 3.64-3.57 (m, 2H), 1.16 (t, J = 6.0 Hz, 3H), 1.03 (t, J = 6.0 Hz, 3H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 193.89 (d, J =3.1 Hz), 169.48, 163.80, 162.08, 160.49 (d, J = 30.0 Hz), 159.49, 158.92, 150.79 (d, J = 136.5 Hz), 134.54 (d, J = 9.0 Hz), 130.91 (d, J = 7.5 Hz), 130.82 (d, J = 3.0 Hz), 130.71 (d, J = 1.5 Hz), 128.30, 125.51 (d, J = 12.0 Hz), 124.32 (d, J = 3.0 Hz), 123.66 (d, J = 3.0 Hz), 122.64, 119.06 (d, J = 15.0 Hz), 117.59, 116.80, 116.45 (d, J = 24.0 Hz), 115.64 (d, J = 22.5 Hz), 114.04, 61.19, 60.47, 57.04, 57.00, 55.27, 23.55, 13.73. ¹⁹F NMR (565 MHz, Chloroform-*d*) δ -110.52, -111.83. IR (KBr) v: 3077, 2983, 1738, 1508, 1253, 1031 cm⁻¹. HRMS (m/z) [ESI]: calculated for C₃₂H₂₉F₂O₇⁺ [M+H]⁺: 563.1876, found 563.1883.

ethyl 4-(3-ethoxy-2-(2-fluorobenzoyl)-3-oxopropyl)-2-(2-fluorophenyl)-5-(4methoxyphenyl)furan-3-carboxylate (3ia). yellow liquid (53.9 mg, 64%). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.65 (d, *J* = 6.0 Hz, 1H), 7.56-7.53 (m, 4H), 7.49 (d, *J* = 6.0 Hz, 1H), 7.39-7.35 (m, 2H), 7.24-7.21 (m, 1H), 7.10-7.07 (m, 1H), 6.96 (d, *J* = 12.0 Hz, 2H), 4.84 (t, *J* = 6.0 Hz, 1H), 4.34-4.29 (m, 2H), 4.01-3.96 (m, 1H), 3.90- 3.86 (m, 1H), 3.85 (s, 3H), 3.63 (dd, *J* = 18.0, 6.0 Hz, 1H), 3.55 (dd, *J* = 18.0, 6.0 Hz, 1H), 1.26 (t, *J* = 6.0 Hz, 3H), 0.99 (t, *J* = 6.0 Hz, 3H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 193.92, 169.18, 164.07, 163.27 (d, *J* = 67.5 Hz), 161.63 (d, *J* = 64.5 Hz), 159.67, 154.37, 150.83, 138.32 (d, *J* = 6.0 Hz), 131.94 (d, *J* = 7.5 Hz), 130.17 (d, *J* = 7.5 Hz), 129.46 (d, *J* = 7.5 Hz), 128.48, 124.24 (d, *J* = 3.0 Hz), 124.12 (d, *J* = 3.0 Hz), 122.37, 120.41 (d, *J* = 22.5 Hz), 117.23, 115.92 (d, *J* = 21.0 Hz), 115.58 (d, *J* = 15.0 Hz), 115.34 (d, *J* = 9.0 Hz), 115.16, 114.11, 61.46, 60.87, 55.29, 54.08, 23.88, 13.87, 13.71. ¹⁹F NMR (565 MHz, Chloroform-*d*) δ -111.61, -113.28. IR (KBr) v: 3077, 2983, 1716, 1508, 1251, 1043 cm⁻¹. HRMS (m/z) [ESI]: calculated for $C_{32}H_{28}F_2O_7+Na^+$ [M+Na]⁺: 585.1695, found 585.1701.

ethyl 4-(3-ethoxy-3-oxo-2-(4-(trifluoromethyl)benzoyl)propyl)-5-(4-methoxyphenyl)-2-(4-(trifluoromethyl)phenyl)furan-3-carboxylate (3ja). yellow solid (59.6 mg, 60%). mp: 51-53 °C. ¹H NMR (600 MHz, Chloroform-*d*) δ 7.97 (d, J = 6.0 Hz, 2H), 7.85 (d, J = 12.0 Hz, 2H), 7.67-7.65 (m, 4H), 7.55 (d, J = 6.0 Hz, 2H), 6.96 (d, J = 12.0 Hz, 2H), 4.88 (t, J = 7.5 Hz, 1H), 4.33-4.28 (m, 2H), 4.01-3.96 (m, 1H), 3.89- 3.86 (m, 1H), 3.85 (s, 3H), 3.65 (dd, J = 14.6, 6.0 Hz, 1H), 3.59 (dd, J = 14.6, 6.0 Hz, 1H), 1.25 (t, J = 6.0 Hz, 3H), 0.99 (t, J = 6.0 Hz, 3H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 194.22, 169.04, 163.96, 159.81, 154.22, 151.35, 138.90, 134.53 (d, J = 31.5 Hz), 133.30, 130.67 (d, J = 33.0 Hz), 128.74 (d, J = 13.5 Hz), 128.52, 125.58 (d, J = 3.0 Hz), 124.88 (d, J = 3.0 Hz), 124.33, 123.02, 122.52, 122.21, 117.26, 116.20, 114.16, 61.60, 60.97, 55.29, 54.30, 23.79, 13.93, 13.69. ¹⁹F NMR (565 MHz, Chloroform-*d*) δ -62.75, -63.18. IR (KBr) v: 3077, 2985, 1735, 1504, 1254, 1068 cm⁻¹. HRMS (m/z) [ESI]: calculated for C₃₄H₂₈F₆O₇+Na⁺ [M+Na]⁺: 685.1631, found 685.1636.

ethyl 4-(2-(4-cyanobenzoyl)-3-ethoxy-3-oxopropyl)-2-(4-cyanophenyl)-5-(4-methoxyphenyl)furan-3-carboxylate (3ka). yellow solid (50.2 mg, 58%). mp: 61-64 °C. ¹H NMR (600 MHz, Chloroform-*d*) δ 7.94 (d, *J* = 12.0 Hz, 2H), 7.87 (d, *J* = 12.0 Hz, 2H), 7.70-7.68 (m, 4H), 7.54 (d, *J* = 6.0 Hz, 2H), 6.96 (d, *J* = 12.0 Hz, 2H), 4.82 (t, *J* = 6.0 Hz, 1H), 4.34-4.30 (m, 2H), 3.99-3.94 (m, 1H), 3.85 (s, 3H), 3.85-3.82 (m, 1H), 3.63 (dd, *J* = 14.6, 6.0 Hz, 1H), 3.57 (dd, *J* = 14.6, 6.0 Hz, 1H), 1.26 (t, *J* = 6.0 Hz, 3H), 0.96 (t, *J* = 6.0 Hz, 3H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 193.67, 168.74, 163.80, 159.95, 153.24, 151.80, 139.07, 133.95, 132.38, 131.75, 128.82, 128.69, 128.55, 121.95, 118.56, 117.71, 117.48, 116.94, 116.58, 114.21, 112.23, 61.72, 61.16, 55.34, 54.37, 23.65, 13.94, 13.68. IR (KBr) v: 3074,

2982, 2228, 1716, 1603, 1254, 1025 cm⁻¹. **HRMS** (m/z) [ESI]: calculated for $C_{34}H_{28}N_2O_7+Na^+$ [M+Na]⁺: 599.1789, found 599.1797.

ethyl 4-(2-(2-naphthoyl)-3-ethoxy-3-oxopropyl)-5-(4-methoxyphenyl)-2-(naphthalen-1-yl)furan-3carboxylate (3la). yellow liquid (63.9 mg, 68%). ¹H NMR (600 MHz, Chloroform-*d*) δ 8.41 (s, 1H), 8.13 (s, 1H), 7.94-7.89 (m, 2H), 7.85-7.81 (m, 5H), 7.73-7.71 (m, 1H), 7.60-7.56 (m, 3H), 7.53-7.50 (m, 3H), 6.94 (d, *J* = 12.0 Hz, 2H), 5.10 (t, *J* = 7.5 Hz, 1H), 4.35-4.29 (m, 2H), 4.05-3.99 (m, 1H), 3.95-3.89 (m, 1H), 3.83 (s, 3H), 3.72 (dd, *J* = 14.5, 7.9 Hz, 1H), 3.65 (dd, *J* = 14.4, 7.3 Hz, 1H), 1.23 (t, *J* = 7.1 Hz, 3H), 1.02 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 195.38, 169.76, 164.43, 159.52, 156.17, 150.68, 135.63, 133.76, 133.33, 132.70, 132.32, 130.66, 129.71, 128.65, 128.52, 128.38, 128.24, 127.70, 127.64, 127.48, 127.30, 126.78, 126.72, 126.32, 125.86, 124.05, 122.72, 117.47, 115.28, 114.06, 61.36, 60.70, 55.29, 53.97, 24.24, 14.04, 13.82. IR (KBr) v: 3068, 2925, 1734, 1571, 1250, 1090 cm⁻¹. HRMS (m/z) [ESI]: calculated for C₄₀H₃₄O₇+Na⁺ [M+Na]⁺: 649.2197, found 649.2197.

ethyl 4-(3-ethoxy-3-oxo-2-(thiophene-2-carbonyl)propyl)-5-(4-methoxyphenyl)-2-(thiophen-2yl)furan-3-carboxylate (3ma). red liquid (58.2 mg, 72%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.87 (d, *J* = 4.0 Hz, 1H), 7.67-7.56 (m, 4H), 7.41 (d, *J* = 4.0 Hz, 1H), 7.11-7.03 (m, 2H), 6.95 (d, *J* = 8.0 Hz, 2H), 4.66 (t, *J* = 8.0 Hz, 1H), 4.42-4.35 (m, 2H), 4.04-3.96 (m, 1H), 3.92-3.86 (m, 1H), 3.84 (s, 3H), 3.67 (dd, *J* = 14.4, 8.0 Hz, 1H), 3.55 (dd, *J* = 14.5, 8.0 Hz, 1H), 1.34 (t, *J* = 8.0 Hz, 3H), 1.01 (t, *J* = 8.0 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 187.40, 169.13, 163.88, 159.57, 151.71, 149.85, 143.45, 134.76, 132.96, 131.70, 128.62, 128.54, 128.12, 127.79, 127.10, 122.38, 117.02, 114.04, 113.33, 61.42, 60.73, 55.30, 55.25, 24.06, 14.14, 13.72. IR (KBr) v: 3103, 2980, 1735, 1506, 1250, 1027 cm⁻¹. HRMS (m/z) [ESI]: calculated for C₂₈H₂₇O₇S₂⁺ [M+H]⁺: 539.1193, found 539.1201.

ethyl 4-(2-(ethoxycarbonyl)-3-oxobutyl)-5-(4-methoxyphenyl)-2-methylfuran-3-carboxylate (3na). yellow liquid (48.3 mg, 80%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.49 (d, *J* = 8.0 Hz, 2H), 6.92 (d, *J* = 8.0 Hz, 2H), 4.29 (q, *J* = 8.0 Hz, 2H), 4.04-3.93 (m, 2H), 3.88-3.82 (m, 1H), 3.80 (s, 3H), 3.35 (d, *J* = 8.0 Hz, 2H), 2.56 (s, 3H), 2.10 (s, 3H), 1.34 (t, *J* = 6.0 Hz, 3H), 1.03 (t, *J* = 6.0 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 202.79, 169.41, 164.32, 159.23, 158.78, 149.04, 128.28, 122.90, 115.82, 113.92, 113.83, 61.10, 60.03, 59.51, 55.18, 28.91, 22.96, 14.57, 14.18, 13.71. IR (KBr) v: 3057, 2984, 1714, 1508, 1253, 1027 cm⁻¹. HRMS (m/z) [ESI]: calculated for C₂₂H₂₆O₇+Na⁺ [M+Na]⁺: 425.1571, found 425.1577.

ethyl 2-butyl-4-(2-(ethoxycarbonyl)-3-oxoheptyl)-5-(4-methoxyphenyl)furan-3-carboxylate (3oa). yellow liquid (51.8 mg, 71%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.49 (d, *J* = 8.9 Hz, 2H), 6.91 (d, *J* = 8.9 Hz, 2H), 4.28 (q, *J* = 7.1 Hz, 2H), 4.03-3.95 (m, 2H), 3.89-3.82 (m, 1H), 3.79 (s, 3H), 3.35 (d, *J* = 8.0 Hz, 2H), 2.98-2.94 (m, 2H), 2.45-2.27 (m, 2H), 1.69-1.61 (m, 2H), 1.45-1.31 (m, 7H), 1.21-1.12 (m, 2H), 1.03 (t, *J* = 7.1 Hz, 3H), 0.90 (t, *J* = 7.4 Hz, 3H), 0.80 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 205.11, 169.44, 164.22, 162.69, 159.14, 148.91, 128.12, 122.97, 115.70, 113.86, 113.39, 60.94, 59.94, 58.40, 55.10, 41.95, 30.15, 27.96, 25.25, 23.06, 22.27, 21.89, 14.10, 13.70, 13.65, 13.61. IR (KBr) v: 3068, 2951, 1713, 1508, 1252, 1030 cm⁻¹. HRMS (m/z) [ESI]: calculated for C₂₈H₃₉O₇⁺ [M+H]⁺: 487.2690, found 487.2685.

ethyl 2-(*tert*-butyl)-4-(2-(ethoxycarbonyl)-4,4-dimethyl-3-oxopentyl)-5-(4-methoxyphenyl)furan-3-carboxylate (3pa). yellow liquid (54.0 mg, 74%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.52 (d, J = 8.0 Hz, 2H), 6.92 (d, J = 8.0 Hz, 2H), 4.38-4.29 (m, 2H), 4.26 (t, J = 7.5 Hz, 1H), 4.04-3.90 (m, 2H), 3.79 (s, 3H), 3.34-3.32 (m, 2H), 1.39-1.35 (m, 12H), 1.09 (t, J = 8.0 Hz, 3H), 0.95 (s, 9H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 209.70, 169.10, 164.97, 164.23, 159.00, 147.06, 127.65, 123.12, 116.18, 114.21, 113.88, 61.00, 60.54, 55.06, 51.93, 45.03, 34.39, 28.45, 25.71, 24.64, 14.01, 13.74. IR (KBr) v: 3077, 2975, 1712, 1508, 1252, 1034 cm⁻¹. HRMS (m/z) [ESI]: calculated for C₂₈H₃₉O₇⁺ [M+H]⁺: 487.2690, found 487.2688.

ethyl 4-(2-(cyclopropanecarbonyl)-3-ethoxy-3-oxopropyl)-2-cyclopropyl-5-(4methoxyphenyl)furan-3-carboxylate (3qa). yellow solid (53.1 mg, 78%). mp: 82-86 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.42 (d, *J* = 8.8 Hz, 2H), 6.87 (d, *J* = 8.8 Hz, 2H), 4.29 (q, *J* = 7.1 Hz, 2H), 4.11 (t, *J* = 8.0 Hz, 1H), 4.04-3.96 (m, 1H), 3.87-3.79 (m, 1H), 3.75 (s, 3H), 3.37 (d, *J* = 8.0 Hz, 2H), 2.79-2.72 (m, 1H), 1.97- 1.91 (m, 1H), 1.32 (t, *J* = 4.0 Hz, 3H), 1.05-0.98 (m, 7H), 0.94-0.88 (m, 2H), 0.79-0.70 (m, 2H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 204.92, 169.39, 164.50, 162.49, 158.98, 147.59, 127.99, 122.90, 115.92, 113.72, 113.42, 60.82, 59.86, 59.50, 55.02, 22.99, 19.71, 14.07, 13.66, 11.54, 11.34, 9.41, 8.48, 8.39. IR (KBr) v: 3055, 2983, 1737, 1513, 1255, 1042 cm⁻¹. HRMS (m/z) [ESI]: calculated for C₂₆H₃₀O₇+Na⁺ [M+Na]⁺: 477.1884, found 477.1883.

diethyl 2-((5-ethoxy-4-(ethoxycarbonyl)-2-(4-methoxyphenyl)furan-3-yl)methyl)malonate (3ra). yellow solid (52.0 mg, 75%). mp: 40-42 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.43 (d, J = 8.7 Hz, 2H), 6.88 (d, J = 8.7 Hz, 2H), 4.41 (q, J = 8.0 Hz, 2H), 4.23 (q, J = 8.0 Hz, 2H), 4.06-3.97 (m, 2H), 3.95-3.87 (m, 3H), 3.76 (s, 3H), 3.37 (d, J = 8.0 Hz, 2H), 1.42 (t, J = 4.0 Hz, 3H), 1.28 (t, J = 8.0 Hz, 3H), 1.06 (t, J = 8.0 Hz, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 168.86, 163.29, 161.77, 158.83, 140.88, 127.79, 122.46, 115.84, 113.80, 92.47, 67.26, 60.96, 59.56, 55.05, 51.54, 23.96, 14.75, 14.05, 13.67. IR (KBr) v: 3045, 2984, 1733, 1597, 1254, 1030 cm⁻¹. HRMS (m/z) [ESI]: calculated for C₂₄H₃₀O₉+Na⁺ [M+Na]⁺: 485.1782, found 485.1789.

4-(2-benzoyl-3-oxo-3-(phenylamino)propyl)-5-(4-methoxyphenyl)-N,2-diphenylfuran-3-

carboxamide (3sa). red solid (53.1 mg, 57%). mp: 165-167 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 9.15 (s, 1H), 8.19 (s, 1H), 7.98 (d, J = 4.0 Hz, 2H), 7.70 (d, J = 8.0 Hz, 2H), 7.61-7.52 (m, 5H), 7.43-7.34 (m, 9H), 7.19 (q, J = 8.0 Hz, 3H), 7.01 (t, J = 8.0 Hz, 1H), 6.91 (d, J = 8.0 Hz, 2H), 5.09 (dd, J = 9.0, 7.1 Hz, 1H), 3.81 (s, 3H), 3.70 (dd, J = 14.8, 8.0 Hz, 1H), 3.41 (dd, J = 14.8, 8.0 Hz, 1H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 197.01, 166.92, 164.15, 159.59, 150.98, 150.33, 137.58, 137.51, 136.03, 133.73, 129.15, 129.12, 128.88, 128.87, 128.71, 128.67, 128.57, 126.55, 124.95, 124.13, 122.42, 120.10, 119.67, 116.44, 114.08, 55.21, 55.03, 25.30. IR (KBr) v: 3287, 3058, 2929, 1653, 1504, 1252, 1028 cm⁻¹. HRMS (m/z) [ESI]: calculated for C₄₀H₃₃N₂O₅⁺ [M+H]⁺: 621.2384, found 621.2392.

4-(2-cyano-3-oxo-3-phenylpropyl)-5-(4-methoxyphenyl)-2-phenylfuran-3-carbonitrile (3ta). red solid (31.1 mg, 48%). mp: 56-59 °C. ¹H NMR (600 MHz, Chloroform-*d*) δ 8.04-8.01 (m, 4H), 7.68-7.64 (m, 3H), 7.55-7.50 (m, 4H), 7.46 (t, *J* = 6.0 Hz, 1H), 7.03 (d, *J* = 6.0 Hz, 2H), 4.94 (dd, *J* = 12.0, 6.0 Hz, 1H), 3.88 (s, 3H), 3.51 (dd, *J* = 15.0, 10.3 Hz, 1H), 3.40 (dd, *J* = 15.0, 6.1 Hz, 1H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 189.44, 160.45, 158.51, 151.61, 134.91, 133.62, 130.37, 129.24, 129.14, 129.00, 128.55, 127.68, 125.34, 120.97, 116.27, 115.81, 114.88, 114.56, 93.85, 55.41, 38.64, 24.84. IR (KBr) v: 3064, 2926, 2227, 1757, 1598, 1260, 1026 cm⁻¹. HRMS (m/z) [ESI]: calculated for C₂₈H₂₁N₂O₃⁺ [M+H]⁺: 433.1547, found 433.1547.

ethyl 4-(3-ethoxy-2-(4-methoxybenzoyl)-3-oxopropyl)-2-(4-methoxyphenyl)-5-(*p*-tolyl)furan-3carboxylate (3ab). yellow liquid (69.3 mg, 81%). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.88 (d, *J* = 12.0 Hz, 2H), 7.73 (d, *J* = 12.0 Hz, 2H), 7.52 (d, *J* = 6.0 Hz, 2H), 7.21 (d, *J* = 6.0 Hz, 2H), 6.94 (d, *J* = 12.0 Hz, 2H), 6.86 (d, *J* = 6.0 Hz, 2H), 4.83-4.81 (m, 1H), 4.31-4.25 (m, 2H), 3.98-3.93 (m, 1H), 3.85 (s, 3H), 3.82 (s, 3H), 3.81-3.79 (m, 1H), 3.67 (dd, *J* = 14.5, 6.0 Hz, 1H), 3.55 (dd, *J* = 14.5, 6.0 Hz, 1H), 2.37 (s, 3H), 1.24 (t, *J* = 6.0 Hz, 3H), 0.97 (t, *J* = 6.0 Hz, 3H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 193.41, 169.73, 164.37, 163.63, 160.20, 156.68, 149.84, 137.87, 130.89, 130.07, 129.29, 129.21, 127.37, 126.80, 122.72, 117.86, 113.89, 113.60, 113.27, 61.16, 60.48, 55.37, 55.24, 53.83, 24.06, 21.22, 13.96, 13.66. IR (KBr) v: 3065, 2974, 1735, 1601, 1257, 1030 cm⁻¹. HRMS (m/z) [ESI]: calculated for C₃₄H₃₅O₈⁺ [M+H]⁺: 571.2326, found 527.2331.

ethyl 5-(4-(*tert*-butyl)phenyl)-4-(3-ethoxy-2-(4-methoxybenzoyl)-3-oxopropyl)-2-(4-methoxyphenyl)furan-3-carboxylate (3ac). yellow liquid (66.1 mg, 72%). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.91 (d, J = 6.0 Hz, 2H), 7.74 (d, J = 12.0 Hz, 2H), 7.58 (d, J = 12.0 Hz, 2H), 7.43 (d, J = 12.0 Hz, 2H), 6.94 (d, J = 12.0 Hz, 2H), 6.87 (d, J = 6.0 Hz, 2H), 4.83 (dd, J = 8.4, 6.4 Hz, 1H), 4.30-4.24 (m, 2H), 3.96-3.90 (m, 1H), 3.86 (s, 3H), 3.83 (s, 3H), 3.78-3.73 (m, 1H), 3.70 (dd, J = 14.6, 8.7 Hz, 1H), 3.54 (dd, J = 14.5, 6.3 Hz, 1H), 1.34 (s, 9H), 1.23 (t, J = 7.1 Hz, 3H), 0.92 (t, J = 7.1 Hz, 3H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 193.42, 169.74, 164.40, 163.67, 160.23, 156.80, 151.01, 149.86, 130.94, 130.12, 129.33, 127.42, 126.69, 125.49, 122.78, 118.00, 113.91, 113.66, 113.30, 61.14, 60.49, 55.40, 55.28, 54.07, 34.62, 31.19, 24.08, 14.00, 13.67. IR (KBr) v: 3079, 2923, 1706, 1601, 1256, 1031 cm⁻¹. HRMS (m/z) [ESI]: calculated for C₃₇H₄₀O₈+Na⁺ [M+Na]⁺: 635.2615, found 635.2622.

ethyl 4-(3-ethoxy-2-(4-methoxybenzoyl)-3-oxopropyl)-2-(4-methoxyphenyl)-5-phenylfuran-3carboxylate (3ad). yellow liquid (65.1 mg, 78%). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.89 (d, J = 12.0 Hz, 2H), 7.75 (d, J = 6.0 Hz, 2H), 7.65-7.64 (m, 2H), 7.41 (t, J = 6.0 Hz, 2H), 7.32 (t, J = 6.0 Hz, 1H), 6.95 (d, J = 6.0 Hz, 2H), 6.86 (d, J = 12.0 Hz, 2H), 4.85-4.82 (m, 1H), 4.31-4.25 (m, 2H), 3.98-3.92 (m, 1H), 3.85 (s, 3H), 3.81 (s, 3H), 3.81-3.76 (m, 1H), 3.70 (dd, J = 14.5, 6.0 Hz, 1H), 3.57 (dd, J = 14.5, 6.0 Hz, 1H), 1.24 (t, J = 6.0 Hz, 3H), 0.95 (t, J = 6.0 Hz, 3H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 193.33, 169.68, 164.31, 163.65, 160.27, 156.96, 149.61, 130.89, 130.20, 130.11, 129.26, 128.52, 127.94, 126.87, 122.63, 118.50, 113.95, 113.63, 113.29, 61.15, 60.51, 55.37, 55.24, 53.86, 24.03, 13.96, 13.66. IR (KBr) v: 3068, 2980, 1732, 1601, 1257, 1028 cm⁻¹. HRMS (m/z) [ESI]: calculated for C₃₃H₃₂O₈+Na⁺ [M+Na]⁺: 579.1989, found 579.1996.

ethyl 4-(3-ethoxy-2-(4-methoxybenzoyl)-3-oxopropyl)-5-(4-fluorophenyl)-2-(4-methoxyphenyl)furan-3-carboxylate (3ae). yellow liquid (63.7 mg, 74%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.88 (d, J = 8.9 Hz, 2H), 7.72 (d, J = 8.9 Hz, 2H), 7.63-7.60 (m, 2H), 7.10 (t, J = 8.0 Hz, 2H), 6.94 (d, J = 8.0 Hz, 2H), 6.86 (d, J = 8.0 Hz, 2H), 4.86 (t, J = 8.0 Hz, 1H), 4.32-4.24 (m, 2H), 4.02-3.94 (m, 1H), 3.89- 3.86 (m, 1H), 3.84 (s, 3H), 3.82 (s, 3H), 3.63 (dd, J = 16.0, 8.0 Hz, 1H), 1.24 (t, J = 8.0 Hz, 3H), 0.99 (t, J = 8.0 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 193.35, 169.65, 164.24, 163.71, 163.56, 161.09, 160.33, 157.00, 148.82, 130.90, 130.11, 129.24, 128.86 (d, J = 8.0 Hz), 126.41 (d, J = 3.0 Hz), 122.52, 118.27, 115.55 (d, J = 21.0 Hz), 113.86, 113.48 (d, J = 33.0 Hz), 61.19, 60.55, 55.38, 55.24, 53.62, 24.08, 13.95, 13.71. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -112.92. IR (KBr) v: 3080, 2980, 1735, 1600, 1257, 1030 cm⁻¹. HRMS (m/z) [ESI]: calculated for C₃₃H₃₀FO₈+Na⁺ [M+Na]⁺: 597.1895, found 597.1905.

ethyl 5-(3-chlorophenyl)-4-(3-ethoxy-2-(4-methoxybenzoyl)-3-oxopropyl)-2-(4-methoxyphenyl)furan-3-carboxylate (3af). yellow solid (51.4 mg, 58%). mp: 41-44 °C. ¹H NMR (600 MHz, Chloroform-*d*) δ 7.87 (d, J = 6.0 Hz, 2H), 7.72 (d, J = 6.0 Hz, 2H), 7.57-7.56 (m, 2H), 7.34 (t, J = 6.0 Hz, 1H), 7.29 (d, J = 7.9 Hz, 1H), 6.95 (d, J = 12.0 Hz, 2H), 6.86 (d, J = 12.0 Hz, 2H), 4.81 (t, J = 6.0 Hz, 1H), 4.31-4.25 (m, 2H), 4.02-3.96 (m, 1H), 3.89-3.87 (m, 1H), 3.86 (s, 3H), 3.84 (s, 3H), 3.65 (dd, J = 14.5, 6.0 Hz, 1H), 3.54 (dd, J = 14.5, 6.0 Hz, 1H), 1.24 (t, J = 6.0 Hz, 3H), 0.99 (t, J = 6.0 Hz, 3H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 193.30, 169.67, 164.17, 163.75, 160.48, 157.45, 148.13, 134.49, 131.90, 130.96, 130.23, 129.86, 129.21, 127.96, 126.82, 124.87, 122.39, 119.67, 114.07, 113.69, 113.39, 61.32, 60.68, 55.46, 55.34, 53.79, 24.07, 14.00, 13.75. IR (KBr) v: 3065, 2926, 1735, 1601, 1258, 1030 cm⁻¹. HRMS (m/z) [ESI]: calculated for C₃₃H₃₂ClO₈⁺ [M+H]⁺: 591.1780, found 591.1779.

ethyl 4-(3-ethoxy-2-(4-methoxybenzoyl)-3-oxopropyl)-2-(4-methoxyphenyl)-5-(thiophen-2yl)furan-3-carboxylate (3ag). yellow liquid (53.2 mg, 63%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.91 (d, *J* = 8.0 Hz, 2H), 7.73 (d, *J* = 8.0 Hz, 2H), 7.43 (dd, *J* = 3.7, 1.0 Hz, 1H), 7.30 (dd, *J* = 5.1, 1.0 Hz, 1H), 7.07 (dd, *J* = 5.0, 3.7 Hz, 1H), 6.94 (d, *J* = 8.9 Hz, 2H), 6.87 (d, *J* = 8.9 Hz, 2H), 4.90-4.86 (m, 1H), 4.32- 4.24 (m, 2H), 4.07-3.93 (m, 2H), 3.84 (s, 3H), 3.81 (s, 3H), 3.68 (dd, *J* = 16.0, 8.0 Hz, 1H), 3.55 (dd, *J* = 16.0, 8.0 Hz, 1H), 1.25 (t, *J* = 8.0 Hz, 3H), 1.03 (t, *J* = 8.0 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 193.29, 169.67, 163.99, 163.66, 160.33, 156.57, 145.27, 131.66, 130.87, 130.09, 129.25, 127.44, 125.26, 124.77, 122.29, 118.20, 114.06, 113.62, 113.29, 61.23, 60.55, 55.34, 55.21, 53.35, 24.27, 13.92, 13.72. IR (KBr) v: 3080, 2980, 1710, 1601, 1258, 1029 cm⁻¹. HRMS (m/z) [ESI]: calculated for C₃₁H₃₁O₈S⁺ [M+H]⁺: 563.1734, found 563.1738.

ethyl 4-(3-ethoxy-2-(4-methoxybenzoyl)-3-oxopropyl)-2-(4-methoxyphenyl)-5-(naphthalen-2yl)furan-3-carboxylate (3ah). yellow liquid (65.5 mg, 72%). ¹H NMR (600 MHz, Chloroform-*d*) δ 8.10 (s, 1H), 7.88-7.86 (m, 4H), 7.84-7.77 (m, 4H), 7.51-7.47 (m, 2H), 6.98 (d, J = 8.8 Hz, 2H), 6.81 (d, J = 8.9 Hz, 2H), 4.86 (t, J = 6.0 Hz, 1H), 4.36-4.29 (m, 2H), 3.97-3.92 (m, 1H), 3.86 (s, 3H), 3.84-3.80 (m, 2H), 3.78 (s, 3H), 3.71-3.67 (m, 1H), 1.28 (t, J = 6.0 Hz, 3H), 0.91 (t, J = 6.0 Hz, 3H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 193.35, 169.72, 164.28, 163.59, 160.29, 157.06, 149.59, 133.10, 132.62, 130.85, 130.12, 129.17, 128.30, 128.15, 127.54, 127.52, 126.32, 125.91, 124.43, 122.60, 119.02, 114.14, 113.56, 113.31, 61.16, 60.55, 55.31, 55.23, 53.96, 24.15, 13.96, 13.58. IR (KBr) v: 3058, 2980, 1731, 1600, 1257, 1030 cm⁻¹. HRMS (m/z) [ESI]: calculated for C₃₇H₃₅O₈⁺ [M+H]⁺: 607.2326, found 607.2322.

ethyl 4-(1-ethoxy-2-(4-methoxybenzoyl)-1-oxoundecan-3-yl)-2-(4-methoxyphenyl)-5-phenylfuran-3-carboxylate (3ai). yellow liquid (61.1 mg, 61%). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.94 (d, *J* = 6.0 Hz, 2H), 7.84 (s, 2H), 7.47 (t, *J* = 7.6 Hz, 2H), 7.41 (d, *J* = 12.0 Hz, 2H), 7.37 (t, *J* = 6.0 Hz, 1H), 6.86 (d, *J* = 12.0 Hz, 2H), 6.82 (d, *J* = 12.0 Hz, 2H), 4.27-4.22 (m, 1H), 4.18-4.12 (m, 4H), 3.89-3.84 (m, 1H), 3.82 (s, 3H), 3.79 (s, 3H), 1.92-1.87 (m, 1H), 1.66-1.61 (m, 1H), 1.23-1.17 (m, 9H), 1.14-1.04 (m, 9H), 0.83 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 193.86, 169.34, 165.54, 163.40, 159.98, 156.24, 150.92, 131.26, 130.65, 130.12, 129.57, 128.44, 128.07, 127.94, 122.98, 120.74, 113.92, 113.32, 113.20, 61.18, 60.67, 57.04, 55.34, 55.26, 36.16, 32.09, 31.75, 29.36, 29.34, 29.17, 27.43, 22.58, 14.06, 14.05, 13.80. IR (KBr) v: 3053, 2921, 1741, 1602, 1257, 1033 cm⁻¹. HRMS (m/z) [ESI]: calculated for C₄₁H₄₉O₈⁺ [M+H]⁺: 669.3422, found 669.3419.

ethyl 4-(3-ethoxy-2-(4-methoxybenzoyl)-3-oxo-1-phenylpropyl)-2-(4-methoxyphenyl)-5phenylfuran-3-carboxylate (3aj). yellow solid (43.6 mg, 46%). mp: 58-61 °C. ¹H NMR (600 MHz, Chloroform-*d*) δ 8.03 (d, *J* = 6.0 Hz, 2H), 7.80 (d, *J* = 6.0 Hz, 2H), 7.46 (t, *J* = 6.0 Hz, 2H), 7.42-7.39 (m, 3H), 7.34 (d, *J* = 6.0 Hz, 2H), 7.23 (t, *J* = 6.0 Hz, 2H), 7.15 (t, *J* = 6.0 Hz, 1H), 6.84 (t, *J* = 8.6 Hz, 4H), 6.09 (d, *J* = 12.0 Hz, 1H), 5.57 (d, *J* = 12.0 Hz, 1H), 4.12-4.07 (m, 1H), 4.05-4.02 (m, 1H), 4.02-3.98 (m, 2H), 3.81 (s, 3H), 3.80 (s, 3H), 1.04 (t, *J* = 6.0 Hz, 3H), 1.00 (t, *J* = 6.0 Hz, 3H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 192.71, 168.66, 165.49, 163.64, 159.97, 155.48, 149.84, 141.18, 131.52, 130.55, 129.71, 129.29, 128.56, 128.46, 128.26, 128.11, 128.04, 126.47, 122.74, 121.86, 113.92, 113.44, 113.28, 61.31, 60.70, 55.89, 55.41, 55.25, 40.73, 13.80, 13.69. IR (KBr) v: 3065, 2932, 1710, 1601, 1258, 1030 cm⁻¹. HRMS (m/z) [ESI]: calculated for C₃₉H₃₇O₈⁺ [M+H]⁺: 633.2483, found 633.2479.

ethyl 2,5-bis(4-methoxyphenyl)-4-methylfuran-3-carboxylate (10) 7.7.80 7.7.80 7.57 7.57 7.57 7.57 7.57 6.98 6.98 6.97 6.94 4.33 4.32 4.31 3.85 3.85 -2.39 ^{1.34} ^{1.32} ^{1.32} ^{1.31} 0 0 2.5 2.5 ±4.07 ± 2.02 - ₹ 2.07 -3.03-6.08-5.0 4.5 f1 (ppm) 5 9.0 0. 8.5 8.0 6.5 6.0 5.5 4.0 3.5 3.0 2.0 1.5 1.0 0.5 129.84 127.81 127.81 123.61 112.3.05 114.97 114.97 113.38 164.84 160.06 158.97 155.46 148.48 77.21 77.00 76.79 60.31 55.31 55.30 -14.16 -11.06 Ö \cap

11. Copies of ¹H NMR and ¹³C NMR for the Products

Ethyl4-(3-ethoxy-2-(4-methoxybenzoyl)-3-oxopropyl)-2,5-bis(4-methoxyphenyl)furan-3-carboxylate (3aa)

ethyl 4-(3-ethoxy-2-(4-methylbenzoyl)-3-oxopropyl)-5-(4-methoxyphenyl)-2-(*p*-tolyl)furan-3-carboxylate (3ba)

ethyl 4-(2-(4-(*tert*-butyl)benzoyl)-3-ethoxy-3-oxopropyl)-2-(4-(*tert*-butyl)phenyl)-5-(4-methoxyphenyl)furan-3-carboxylate (3ca)

ethyl 4-(2-benzoyl-3-ethoxy-3-oxopropyl)-5-(4-methoxyphenyl)-2-phenylfuran-3-carboxylate (3da)

Ethyl 4-(3-ethoxy-2-(4-fluorobenzoyl)-3-oxopropyl)-2-(4-fluorophenyl)-5-(4methoxyphenyl)furan-3-carboxylate (3ea)

WU-0044004	00000400	04000004-00	V040V040V00	00007000000770
0000000000	00000770	00000000000000	00000000000000	0000000000000000
NNNNNNNN	NNNNN00	444444444		,

ethyl 4-(2-(4-chlorobenzoyl)-3-ethoxy-3-oxopropyl)-2-(4-chlorophenyl)-5-(4methoxyphenyl)furan-3-carboxylate (3fa)

NO000000000000	40000000000	000000000000000	00-0040040000
000000000000000	0000000000000000	00000000000000000	0000000000000000
アファファファファク	044444444444	4.0.0.0.0.0.0.0.0.0.0.0	,
	V		

ethyl 4-(2-(4-bromobenzoyl)-3-ethoxy-3-oxopropyl)-2-(4-bromophenyl)-5-(4methoxyphenyl)furan-3-carboxylate (3ga)

ethyl 4-(3-ethoxy-2-(3-fluorobenzoyl)-3-oxopropyl)-2-(3-fluorophenyl)-5-(4methoxyphenyl)furan-3-carboxylate (3ha)

ethyl 4-(3-ethoxy-3-oxo-2-(4-(trifluoromethyl)benzoyl)propyl)-5-(4-methoxyphenyl)-2-(4-(trifluoromethyl)phenyl)furan-3-carboxylate (3ja)

) -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -1: f1 (ppm)

ethyl 4-(2-(4-cyanobenzoyl)-3-ethoxy-3-oxopropyl)-2-(4-cyanophenyl)-5-(4methoxyphenyl)furan-3-carboxylate (3ka)

000000000000000000000000000000000000000	000000000
, , , , , , , , , , , , , , , , , , ,	000000000
	000000
LINE WILL MARKEN CARACTER	

yl)furan-3-carboxylate (3la)

ethyl 4-(3-ethoxy-3-oxo-2-(thiophene-2-carbonyl)propyl)-5-(4-methoxyphenyl)-2-(thiophen-2-yl)furan-3-carboxylate (3ma)

N0N-000-0-0	00004004	004000004	0000000000000	-0400400400-0
000000044077	-0000000	000440000	0000000000000000	000000000000000000000000000000000000000
NNNNNNNNN		44444444	44000000000000	$\dot{\sigma}$

Ethyl4-(2-(ethoxycarbonyl)-3-oxobutyl)-5-(4-methoxyphenyl)-2-methylfuran-3-carboxylate (3na)

ethyl 2-butyl-4-(2-(ethoxycarbonyl)-3-oxoheptyl)-5-(4-methoxyphenyl)furan-3-carboxylate (30a)

f1 (ppm) (

ethyl 4-(2-(cyclopropanecarbonyl)-3-ethoxy-3-oxopropyl)-2-cyclopropyl-5-(4methoxyphenyl)furan-3-carboxylate (3qa)

0/0/00/00/00/00/00/00/00/00/00/00/00/00	1000000-0000000	~ 0 0 4 0 0 4 0 0 0 0 0 0 0 0	400040-00004
440000000000	1 / M M / / M M M M M M M M M M M M M M	~ < < < < < < < < < < < < < < < < < < <	000000000000000000000000000000000000000
VV00444444444	i က က က က က က က က က က က က က က	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	

diethyl 2-((5-ethoxy-4-(ethoxycarbonyl)-2-(4-methoxyphenyl)furan-3-yl)methyl)malonate (3ra)

44288	44688447284686888888888444688888
0.01	
\lor	

4-(2-benzoyl-3-oxo-3-(phenylamino)propyl)-5-(4-methoxyphenyl)-*N*,2-diphenylfuran-3-carboxamide (3sa)

9 15 8 29 9 15

0032655555555555555555555555555555555555	339
000000000000000000000000000000000000000	4444 0000000000
	V man

ethyl 4-(3-ethoxy-2-(4-methoxybenzoyl)-3-oxopropyl)-2-(4-methoxyphenyl)-5-(*p*-tolyl)furan-3-carboxylate (3ab)

ethyl

5-(4-(tert-butyl)phenyl)-4-(3-ethoxy-2-(4-methoxybenzoyl)-3-oxopropyl)-2-(4-

methoxyphenyl)furan-3-carboxylate (3ac)

-0000V40000	0 N O 4 0 0 7 0 0 0 0	0 N O O A D O O O O O A D O O O O O O O O O	004000000400	<u>74500440</u>
00110044000	<u>, , , , , , , , , , , , , , , , , , , </u>	100000000000000		0 0 0 N N N O O
	2.2.2 7 7 7 7 7 7 7 7			
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0004444444	1444400000000000	~~~~~~~~~~~~~~	n 0 0 C
			1	- <i>, , </i>



ethyl 4-(3-ethoxy-2-(4-methoxybenzoyl)-3-oxopropyl)-2-(4-methoxyphenyl)-5-phenylfuran-3-carboxylate (3ad)






10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)



N000NN00040	00000474	100-0-00N	4000100700	0410400040040000
000000000000	0 0 0 0 0 0 0 0 0	000000000000	N0000000000	0000000000000000000000
アファファファファ		044444444	4444000000	
				السرائي البرالي الرا المستشرك كما كما كما كما كما كما كما كما كما





yl)furan-3-carboxylate (3ag)









ethyl 4-(1-ethoxy-2-(4-methoxybenzoyl)-1-oxoundecan-3-yl)-2-(4-methoxyphenyl)-5phenylfuran-3-carboxylate (3ai)

0.082 0.082 0.082 0.082 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.





ethyl 4-(3-ethoxy-2-(4-methoxybenzoyl)-3-oxo-1-phenylpropyl)-2-(4-methoxyphenyl)-5phenylfuran-3-carboxylate (3aj)

8 8 8 2 7 2 2 2 8 3 3 4 4 4 4 4 4 6 0 0 3 8 8 8 2 7 2 3 3 3 4 4 4 4 4 4 6 0 0 3 8 8 8 1 2 3 3 3 4 6 0 4 7 4 5 8 8 8 1 2 3 3 3 4 6 0 4 7 4 5 8 8 8 1 2 3 3 3 4 6 0 4 7 4 5 8 8 8 1 2 3 3 3 4 6 0 4 7 4 5 8 8 1 2 3 3 3 3 4 6 0 4 7 4 5 8 8 1 2 3 3 3 3 4 6 0 4 7 4 5 8 1 2 3 3 3 3 4 6 0 4 7 4 5 8 1 2 3 3 3 3 4 6 0 4 7 4 5 8 1 2 3 3 3 3 4 6 0 4 7 4 5 8 1 2 3 3 3 3 4 6 0 4 7 4 5 8 1 2 3 3 3 3 4 6 0 4 7 4 5 8 1 2 3 3 3 3 4 6 0 4 7 4 5 8 1 2 3 3 3 3 3 4 6 0 4 7 4 5 8 1 2 3 3 3 3 4 6 0 4 7 4 5 8 1 2 3 3 3 3 3 4 6 0 4 7 4 5 8 1 2 3 3 3 3 3 3 4 6 0 4 7 4 5 8 1 2 3 3 3 3 3 3 3 3 3 4 6 0 4 7 4 5 8 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 6 0 4 7 4 5 8 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 4 6 0 4 7 4 5 8 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	8002 8002 8002 8002 8002 8002 8002 8002	90 03 05 05 05
000000000000000000000000000000000000000	00444444444440000	0



. 0 9.5 9.0

8.5





5.0 f1 (ppm)

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5 0.

6.5

