Supporting Information

Nickel-catalyzed direct cross-coupling of heterocyclic phosphonium salt with aryl bromide

Yan-Ying Cui, ${ }^{\text {a }}$ Wen-Xin Li, ${ }^{\text {a }} \mathrm{Na}-\mathrm{Na}$ Ma, ${ }^{\text {a }}$ Chuanji Shen, ${ }^{\mathrm{b}}$ Xiaocong Zhou, ${ }^{*}{ }^{\text {b }}$ Xue-Qiang Chu, ${ }^{\text {a }}$ Weidong Rao, ${ }^{\text {c }}$ Zhi-Liang Shen*,a
${ }^{\text {a }}$ Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China. E-mail: ias_zlshen@njtech.edu.cn.
${ }^{\mathrm{b}}$ College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, China. E-mail: xczhou@zjxu.edu.cn.
${ }^{c}$ Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.

Table of Contents

General information page S2
Optimization of reaction conditions. page S2
Experimental procedure page S4
Control Experiments page S5
Characterization data of products page S7
References page S18
${ }^{1} \mathrm{H},{ }^{19} \mathrm{~F}$, and ${ }^{13} \mathrm{C}$ NMR spectra of products page S19

General Information

Commercially available aryl halides were used without further purification. Starting materials 1a-I were prepared according to reported methods. ${ }^{[1-5]}$ Analytical thin layer chromatography (TLC) was performed using silica gel plate (0.2 mm thickness). Subsequent to elution, plates were visualized using UV radiation (254 nm). Flash chromatography was performed using Merck silica gel (200-300 mesh) for column chromatography with freshly distilled solvents. Columns were typically packed as slurry and equilibrated with the appropriate solvent system prior to use. IR spectra were recorded on a FT-IR spectrophotometer using KBr optics. ${ }^{1} \mathrm{H},{ }^{19} \mathrm{~F}$, and ${ }^{13} \mathrm{C}$ NMR spectra were recorded in CDCl_{3} on Jeol 400 MHz spectrometers. Tetramethylsilane (TMS) served as internal standard for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR analysis.

Optimization of Reaction Conditions

Table S1. Optimization of reaction conditions by using different solvents ${ }^{a}$

 1a		
Entry	Solvent	Yield ${ }^{\text {b }}$
1	THF	50\%
2	DME	38\%
3	1,4-dioxane	$<5 \%$
4	2-MeTHF	$<5 \%$
5	CpOMe	$<5 \%$
6	${ }^{t} \mathrm{BuOMe}$	$<5 \%$
7	THP	$<5 \%$
8	DMF	$<5 \%$

[^0]Table S2. Optimization of reaction conditions by using different catalyst loadings at different temperatures ${ }^{a}$

Entry	$\begin{gathered} \mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2} \\ (\mathrm{x} \mathrm{~mol} \%) \\ \hline \end{gathered}$	Temp.	Yield ${ }^{\text {b }}$
1	5	$0{ }^{\circ} \mathrm{C}$	16\%
2	5	r.t.	50\%
3	5	$60{ }^{\circ} \mathrm{C}$	48\%
4	10	r.t.	55\%
5	20	r.t.	63\%
6	20	r.t.	$55 \%{ }^{\text {c }}$

${ }^{a}$ Unless otherwise noted, the reactions were performed at different temperatures for 12 h under nitrogen atmosphere by using 1a (0.5 mmol), 2a (1.5 mmol), $\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ (x mol\%), magnesium turnings (1.5 $\mathrm{mmol})$, and $\mathrm{LiCl}(2 \mathrm{mmol})$ in THF $(2 \mathrm{~mL}) .{ }^{b}$ Yields were determined by NMR analysis of crude reaction mixture after work-up by using 1,4-dimethoxybenzene as an internal standard. ${ }^{c}$ Using 2 equiv. of LiCl.

Table S3. Optimization of reaction conditions by using different ligands ${ }^{a, b}$

L11, 55\% L12, 63\%
L13, 62\%
L14, 51\%
L15, 46\%
${ }^{a}$ Unless otherwise noted, the reactions were performed at room temperature for 12 h under nitrogen atmosphere by using $\mathbf{1 a}(0.5 \mathrm{mmol}), \mathbf{2 a}(1.5 \mathrm{mmol})$, $\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(20 \mathrm{~mol} \%, 0.1 \mathrm{mmol})$, ligand ($20 \mathrm{~mol} \%, 0.1 \mathrm{mmol}$), magnesium turnings (1.5 mmol), and $\mathrm{LiCl}(2 \mathrm{mmol})$ in THF $(2 \mathrm{~mL}) .{ }^{b}$ Yields were determined by NMR analysis of crude reaction mixture after work-up by using 1,4-dimethoxybenzene as an internal standard.

Table S4. Optimization of reaction conditions by using $\mathrm{NiCl}_{2} \cdot$ glyme and different ligands ${ }^{a, b}$

${ }^{a}$ Unless otherwise noted, the reactions were performed at room temperature for 12 h under nitrogen atmosphere by using $\mathbf{1 a}(0.5 \mathrm{mmol})$, 2a (1.5 mmol), NiCl_{2}-glyme ($20 \mathrm{~mol} \%, 0.1 \mathrm{mmol}$), ligand ($20 \mathrm{~mol} \%, 0.1 \mathrm{mmol}$), magnesium turnings $(1.5 \mathrm{mmol})$, and $\mathrm{LiCl}(2 \mathrm{mmol})$ in THF $(2 \mathrm{~mL}) .{ }^{b}$ Yields were determined by NMR analysis of crude reaction mixture after work-up by using 1,4-dimethoxybenzene as an internal standard.

Experimental Procedure

Typical procedures for the cross-coupling reaction of phosphonium salts with aryl bromides (Tables 2-3)

To an oven-dried seal tube equipped with a magnetic stir bar was added magnesium turnings (36.5 $\mathrm{mg}, 1.5 \mathrm{mmol})$ and $\mathrm{LiCl}(84.7 \mathrm{mg}, 2 \mathrm{mmol})$. Then the mixture was dried under reduced pressure with a heat gun $\left(320^{\circ} \mathrm{C}\right)$ for 3 min . After cooling to room temperature, dry THF (2 mL) was added and the seal tube was backfilled with nitrogen (x 3). Then phosphonium salt ($1,0.5 \mathrm{mmol}$), $\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(65.4 \mathrm{mg}, 0.1 \mathrm{mmol})$, and 1,10-phenanthroline-5,6-dione ($\mathbf{L 1 0}, 21.0 \mathrm{mg}, 0.1 \mathrm{mmol}$) were weighed into the seal tube, followed by the addition of aryl bromide ($2,1.5 \mathrm{mmol}$) by syringe. The reaction mixture was stirred at room temperature for 12 h followed by quenching with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (10 mL) and extracting with EtOAc ($20 \mathrm{~mL} \times 3$). The combined
organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure to afford the crude product, which was further purified through silica gel column chromatography (using EtOAc/petroleum ether as eluents) to yield the product 3-4 as a white solid.

Control Experiments

3 mmol scale reaction

To an oven-dried seal tube equipped with a magnetic stir bar was added magnesium turnings $(0.219 \mathrm{~g}, 9 \mathrm{mmol})$ and $\mathrm{LiCl}(0.508 \mathrm{~g}, 12 \mathrm{mmol})$. Then the mixture was dried under reduced pressure with a heat gun $\left(320{ }^{\circ} \mathrm{C}\right)$ for 3 min . After cooling to room temperature, dry THF (12 mL) was added and the seal tube was backfilled with nitrogen (x 3). Then phosphonium salt (1a, 1.468 $\mathrm{g}, 3 \mathrm{mmol}), \mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(0.392 \mathrm{~g}, 0.6 \mathrm{mmol})$, and 1,10-phenanthroline-5,6-dione ($\mathbf{L 1 0}, 0.126 \mathrm{~g}$, 0.6 mmol) were weighed into the seal tube, followed by the addition of bromobenzene ($\mathbf{2 a}, 1.413$ $\mathrm{g}, 9 \mathrm{mmol}$) by syringe. The reaction mixture was stirred at room temperature for 12 h followed by quenching with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(30 \mathrm{~mL})$ and extracting with EtOAc $(70 \mathrm{~mL} \times 3)$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure to afford the crude product, which was further purified through silica gel column chromatography (using EtOAc/petroleum ether as eluents) to yield the product 3a as a white solid ($0.297 \mathrm{~g}, 64 \%$).

Direct cross-coupling of phosphonium salt 1a with phenylmagnesium bromide 5

To an oven-dried seal tube equipped with a magnetic stir bar was added $\mathrm{LiCl}(84.7 \mathrm{mg}, 2 \mathrm{mmol})$, then it was dried under reduced pressure with a heat gun $\left(320^{\circ} \mathrm{C}\right)$ for 3 min . After cooling to room temperature, the seal tube was backfilled with nitrogen (x 3). Then phosphonium salt (1a, 244.7 $\mathrm{mg}, 0.5 \mathrm{mmol}), \mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(65.4 \mathrm{mg}, 0.1 \mathrm{mmol})$, and 1,10-phenanthroline-5,6-dione ($\mathbf{L 1 0}, 21.0$ $\mathrm{mg}, 0.1 \mathrm{mmol}$) were weighed into the seal tube, followed by the addition of Grignard Reagent (5, $1.5 \mathrm{~mL}, 1.5 \mathrm{mmol}, 1 \mathrm{M}$ in THF) by syringe. The reaction mixture was stirred at room temperature for 12 h followed by quenching with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (10 mL) and extracting with EtOAc ($20 \mathrm{~mL} \times 3$). The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure to afford the crude product, which was further purified
through silica gel column chromatography (using EtOAc/petroleum ether as eluents) to yield the product 3a as a white solid ($0.0321 \mathrm{~g}, 41 \%$ yield $)$.

Treatment of phosphonium salt 1a with magnesium followed by quenching with iodine

To an oven-dried seal tube equipped with a magnetic stir bar was added magnesium turnings (36.5 $\mathrm{mg}, 1.5 \mathrm{mmol})$ and $\mathrm{LiCl}(84.7 \mathrm{mg}, 2 \mathrm{mmol})$. Then the mixture was dried under reduced pressure with a heat gun $\left(320^{\circ} \mathrm{C}\right)$ for 3 min . After cooling to room temperature, dry THF (2 mL) was added and the seal tube was backfilled with nitrogen (x 3). Then phosphonium salt (1a, $244.7 \mathrm{mg}, 0.5$ $\mathrm{mmol}), \mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(65.4 \mathrm{mg}, 0.1 \mathrm{mmol})$, and 1,10-phenanthroline-5,6-dione (L10, $21.0 \mathrm{mg}, 0.1$ mmol) were weighed into the seal tube. The reaction mixture was stirred at room temperature for 12 h followed by the addition of $\mathrm{I}_{2}(0.3807 \mathrm{~g}, 1.5 \mathrm{mmol})$ and further stirring at room temperature for 2 h before quenching with saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}$ solution $(10 \mathrm{~mL})$ and extracting with EtOAc (20 $\mathrm{mL} x$ 3). The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. TLC analysis against authentic sample showed that no any iodinated product $\mathbf{6}$ was obtained.

Preparation of arylnickel compound 7 and its cross-coupling with phosphonium salt 1a

The reaction was performed in an argon-filled glove box. ${ }^{6}$ To a flame-dried round-bottomed flask was added bpy ($156 \mathrm{mg}, 1.0 \mathrm{mmol}), \mathrm{Ni}(\mathrm{cod})_{2}(275 \mathrm{mg}, 1.0 \mathrm{mmol})$ and THF $(10 \mathrm{~mL})$. After the reaction mixture was stirred at room temperature for overnight, 1-bromo-2-methylbenzene (205 $\mathrm{mg}, 1.2 \mathrm{mmol}$) was added and the color changed from dark purple to red. After stirring at room temperature for 4 h , the mixture solution was concentrated under reduced pressure. The solid was washed with dry n-pentane for several times and then dried under vacuum for 2 h to give arylnickel compound 7 as a red solid.

To an oven-dried seal tube equipped with a magnetic stir bar was added magnesium turnings (21.9 $\mathrm{mg}, 0.9 \mathrm{mmol})$ and $\mathrm{LiCl}(50.8 \mathrm{mg}, 1.2 \mathrm{mmol})$. Then the mixture was dried under reduced pressure by a heat gun $\left(320{ }^{\circ} \mathrm{C}\right)$ for 3 min . After cooling down to room temperature, dry THF (1.5 mL) was added and the seal tube was backfilled with nitrogen (x 3). Then phosphonium salt (1a, 0.3 mmol)
was added, followed by the addition of arylnickel compound $7(23.2 \mathrm{mg}, 0.6 \mathrm{mmol})$. The reaction mixture was stirred at room temperature for 12 h before quenching with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(10 \mathrm{~mL})$ and extracting with EtOAc ($20 \mathrm{~mL} x \mathrm{3}$). The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. Crude NMR and TLC analysis showed that no desired product $\mathbf{8}$ was formed.

Characterization data of products

4-Phenylpyridine (3a): 57.4 mg . Yield $=74 \% .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 8.66$ $(\mathrm{d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.74-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.41(\mathrm{~m}, 5 \mathrm{H}) \mathrm{ppm} .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}$, $\mathbf{C D C l}_{3}$): $\delta 150.1,148.4,138.0,129.1,129.1,127.0,121.6 \mathrm{ppm}$. HRMS (ESI, m/z): $[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}^{+}: 156.0808$, found: 156.0809. FTIR (KBr, neat): $v 3058$, $2923,1588,1483,1410,830,761,730,688,608 \mathrm{~cm}^{-1}$. The residue obtained was purified by silica gel column chromatography using petroleum ether/ethyl acetate as eluent (petroleum ether/EtOAc $=5: 1$).

4-(4-(Trifluoromethoxy)phenyl)pyridine (3b): 50.2 mg . Yield $=42 \%$. ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, $\mathbf{C D C l}_{3}$): $\delta 8.67$ (dd, $\left.J=4.5,1.6 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.68-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.47(\mathrm{dt}, J=$ 4.5, $1.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.36-7.29 (m, 2H) ppm. ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$): $\delta 150.4$, 149.9, $146.9,136.8,128.5,121.5,121.5,120.4(\mathrm{q}, J=257.0 \mathrm{~Hz}) \mathrm{ppm} .{ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta-57.86(\mathrm{~s}, 3 \mathrm{~F}) \mathrm{ppm}$. HRMS (ESI, m/z): $[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{NO}^{+}: 240.0631$, found: 240.0636. FTIR (KBr, neat): v 3420, 1599, 1489, $1265,1212,1167,807 \mathrm{~cm}^{-1}$. The residue obtained was purified by silica gel column chromatography using petroleum ether/ethyl acetate as eluent (petroleum ether/EtOAc $=5: 1$).

4-(4-Fluorophenyl)pyridine (3c): 46.6 mg . Yield $=54 \%$. ${ }^{1} \mathbf{H}$ NMR (400 MHz, $\left.\mathbf{C D C l}_{3}\right): \delta 8.64(\mathrm{dt}, J=4.5,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.63-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.42(\mathrm{~m}, 2 \mathrm{H})$, 7.19-7.12 (m, 2H) ppm. ${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 163.4(\mathrm{~d}, J=247.3 \mathrm{~Hz}$), $150.2,147.2,134.1,128.7(\mathrm{~d}, J=8.3 \mathrm{~Hz}), 121.4,116.1(\mathrm{~d}, J=21.7 \mathrm{~Hz}) \mathrm{ppm} .{ }^{19} \mathbf{F}$

NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta-112.45(\mathrm{~s}, 1 \mathrm{~F}) \mathrm{ppm}$. HRMS (ESI, m/z): $[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{FN}^{+}: 174.0714$, found:174.0719. FTIR (KBr, neat): v 3039, 1607, 1516, $1488,1220,1162,812,555 \mathrm{~cm}^{-1}$. The residue obtained was purified by silica gel column chromatography using petroleum ether/ethyl acetate as eluent (petroleum ether $/ \mathrm{EtOAc}=5: 1$).

4-(3-Fluoro-4-methoxyphenyl)pyridine (3d): 57.7 mg . Yield $=57 \%$. ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 $\mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta 8.64(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.50-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.05$ $(\mathrm{t}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 152.5(\mathrm{~d}, J=$ $245.0 \mathrm{~Hz}), 149.9,148.6(\mathrm{~d}, J=10.7 \mathrm{~Hz}), 147.1(\mathrm{~d}, J=2.3 \mathrm{~Hz}), 130.4(\mathrm{~d}, J=6.3 \mathrm{~Hz})$, $122.8(\mathrm{~d}, J=3.6 \mathrm{~Hz}), 121.1,114.5(\mathrm{~d}, J=19.2 \mathrm{~Hz}), 113.6(\mathrm{~d}, J=2.5 \mathrm{~Hz}), 56.2 \mathrm{ppm}$. ${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta-134.02$ ($\mathrm{s}, 1 \mathrm{~F}$) ppm. HRMS (ESI, m/z): $[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{FNO}^{+}: 204.0819$, found: 204.0825. FTIR (KBr, neat): v 3031, 2948, 2848, 1546, 1528, 1495, 1300, 1276, 1138, $805 \mathrm{~cm}^{-1}$. The residue obtained was purified by silica gel column chromatography using petroleum ether/ethyl acetate as eluent (petroleum ether/EtOAc = 5:1).

4-([1,1'-Biphenyl]-4-yl)pyridine (3e): 72.8 mg . Yield $=63 \%$. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(\mathbf{4 0 0} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right): \delta 8.68(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{~s}, 4 \mathrm{H}), 7.65(\mathrm{dd}, J=8.3,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.56$ $(\mathrm{d}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.42-7.36(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0}$ $\mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta 150.2,147.8,141.9,140.2,136.8,128.9,127.8,127.7,127.3,127.0$, 121.4 ppm. HRMS (ESI, m/z): $[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}^{+}$: 232.1121, found: 232.1126. FTIR (KBr, neat): $v 3024,2924,2853,1603,1588,1481,1404,816,765$, $700,690 \mathrm{~cm}^{-1}$. The residue obtained was purified by silica gel column chromatography using petroleum ether/ethyl acetate as eluent (petroleum ether/EtOAc $=5: 1$).

4-(4-(tert-Butyl)phenyl)pyridine (3f): 69.7 mg . Yield $=66 \%$. ${ }^{1} \mathbf{H}$ NMR (400 MHz , $\left.\mathbf{C D C l}_{3}\right): \delta 8.66-8.61(\mathrm{~m}, 2 \mathrm{H}), 7.61-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.48(\mathrm{~m}, 4 \mathrm{H}), 1.37(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$. ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 152.3,150.1,148.0,135.1,126.6,126.0,121.4,34.6$, 31.2 ppm . HRMS (ESI, m/z): $[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}^{+}$: 212.1434, found:
212.1439. FTIR (KBr, neat): v 3037, 2968, 2869, 1594, 1536, 1475, 1397, 1118, 1032, $811 \mathrm{~cm}^{-1}$. The residue obtained was purified by silica gel column chromatography using petroleum ether/ethyl acetate as eluent (petroleum ether/EtOAc $=5: 1$).

4-(p-Tolyl)pyridine (3g): 43.4 mg . Yield $=51 \%$. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta$ $8.67-8.60(\mathrm{~m}, 2 \mathrm{H}), 7.54(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.51-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, $2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 150.1,148.2,139.2,135.1$, 129.8, 126.8, 121.3, 21.2 ppm . HRMS (ESI, m/z): $[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}^{+}$: 170.0964, found: 170.0966. FTIR (KBr, neat): v 3030, 1597, 1541, 1488, 1404, $1235,1213,1029,801,710 \mathrm{~cm}^{-1}$. The residue obtained was purified by silica gel column chromatography using petroleum ether/ethyl acetate as eluent (petroleum ether $/ \mathrm{EtOAc}=5: 1$).

4-(3,5-Dimethylphenyl)pyridine (3h): 48.4 mg . Yield $=53 \%$. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(\mathbf{4 0 0} \mathbf{~ M H z}$, $\mathbf{C D C l}_{3}$): $\delta 8.63(\mathrm{dd}, J=4.7,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.50-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.24(\mathrm{~s}, 2 \mathrm{H}), 7.08(\mathrm{~s}, 1 \mathrm{H})$, $2.39(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$): $\delta 150.0,148.5,138.6,138.0,130.6$, 124.8, 121.6, 21.3 ppm . HRMS (ESI, m/z): $[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}^{+}$: 184.1121, found: 184.1122. FTIR (KBr, neat): v 3025, 2914, 1617, 1595, 1548, 1402, 1221, 1028, $822,697,646 \mathrm{~cm}^{-1}$. The residue obtained was purified by silica gel column chromatography using petroleum ether/ethyl acetate as eluent (petroleum ether/EtOAc $=5: 1$).

4-(4-Methoxy-3-methylphenyl)pyridine (3i): 44.0 mg . Yield $=44 \%$. ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, $\mathbf{C D C l}_{3}$): $\delta 8.61-8.58(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.44(\mathrm{~m}, 4 \mathrm{H}), 6.91(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.88$ $(\mathrm{s}, 3 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 158.7,150.0,148.0,129.8$, 129.1, 127.4, 125.4, 121.0, 110.2, 55.4, 16.4 ppm. HRMS (ESI, m/z): $[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{NO}^{+}: 200.1070$, found: 200.1071. FTIR (KBr, neat): $v 2966,2840,1596$, $1488,1293,1255,1226,1143,1021,806 \mathrm{~cm}^{-1}$. The residue obtained was purified by
silica gel column chromatography using petroleum ether/ethyl acetate as eluent (petroleum ether/EtOAc = 5:1).

4-(4-Methoxyphenyl)pyridine (3j): 47.7 mg . Yield $=52 \%$. ${ }^{1} \mathbf{H}$ NMR (400 MHz , $\left.\mathbf{C D C l}_{3}\right): \delta 8.60(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.62-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.03-6.95$ (m, 2H), $3.85(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 160.5,150.1,147.7$, 130.3, 128.1, 121.0, 114.5, 55.4 ppm . HRMS (ESI, m/z): $[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{NO}^{+}$: 186.0913, found: 186.0916. FTIR (KBr, neat): v 2967, 2938, 2842, $1607,1488,1287,1257,1228,1035,809 \mathrm{~cm}^{-1}$. The residue obtained was purified by silica gel column chromatography using petroleum ether/ethyl acetate as eluent (petroleum ether/EtOAc =5:1).

4-(3-Methoxyphenyl)pyridine (3k): 54.8 mg . Yield $=59 \% .{ }^{1} \mathbf{H}$ NMR (400 MHz , $\mathbf{C D C l}_{3}$): $\delta 8.67-8.62(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.21$ (ddd, J $=7.7,1.6,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.13(\mathrm{~m}, 1 \mathrm{H}), 6.97(\mathrm{ddd}, J=8.3,2.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}$, 3H) ppm. ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 160.1,150.1,148.2,139.5,130.1,121.7$, 119.3, 114.3, 112.7, 55.3 ppm . HRMS (ESI, \mathbf{m} / \mathbf{z}): $[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{NO}^{+}$: 186.0913, found: 186.0917. FTIR (KBr, neat): v 2959, 2935, 2837, 1596, 1583, $1546,1477,1302,1216,1032,796 \mathrm{~cm}^{-1}$. The residue obtained was purified by silica gel column chromatography using petroleum ether/ethyl acetate as eluent (petroleum ether/EtOAc = 5:1).

4-(2-Methoxyphenyl)pyridine (31): 57.0 mg . Yield $=61 \%$. ${ }^{1} \mathbf{H}$ NMR (400 MHz , $\mathbf{C D C l}_{3}$): $\delta 8.63-8.60(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.39$ (ddd, $\left.J=8.3,7.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}\right)$, 7.33 (dd, $J=7.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{td}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.83(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 156.4,149.4,146.2,130.4,130.1$, 127.5, 124.2, 121.0, 111.3, 55.4 ppm . HRMS (ESI, m/z): $[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{NO}^{+}$: 186.0913, found: 186.0917. FTIR (KBr, neat): $v 3015,2965,2836$, $1590,1483,1270,1233,1024,760,609 \mathrm{~cm}^{-1}$. The residue obtained was purified by silica gel column chromatography using petroleum ether/ethyl acetate as eluent (petroleum ether/EtOAc $=5: 1$).

4-(2,5-Dimethoxyphenyl)pyridine (3m): 53.8 mg . Yield $=50 \%$. ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 $\mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta 8.62(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.50-7.42(\mathrm{~m}, 2 \mathrm{H}), 6.93-6.89(\mathrm{~m}, 3 \mathrm{H}), 3.80$ $(\mathrm{s}, 3 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 153.8,150.7,149.4,146.1$, 128.4, 124.2, 116.2, 114.5, 112.7, 56.1, 55.8 ppm . HRMS (ESI, m/z): $[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{NO}_{2}{ }^{+}: 216.1019$, found: 216.1023. FTIR (KBr, neat): $v 3010,2948$, 2831, $1596,1488,1405,1232,1022,827,711 \mathrm{~cm}^{-1}$. The residue obtained was purified by silica gel column chromatography using petroleum ether/ethyl acetate as eluent (petroleum ether/EtOAc =5:1).

4-(Benzo[d][1,3]dioxol-5-yl)pyridine (3n): 49.7 mg . Yield $=50 \%{ }^{1}{ }^{1}$ H NMR (400 $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right): \delta 8.60(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{dt}, J=4.5,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.15-7.12(\mathrm{~m}$, $1 \mathrm{H}), 7.12-7.09(\mathrm{~m}, 1 \mathrm{H}), 6.93-6.89(\mathrm{~m}, 1 \mathrm{H}), 6.02(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 150.1,148.5,148.5,147.9,132.2,121.2,120.9,108.8,107.2$, 101.4 ppm. HRMS (ESI, m/z): $[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{NO}_{2}{ }^{+}:$200.0706, found: 200.0709. FTIR (KBr, neat): $v 3034,2891,1599,1514,1418,1415,1239,1015,924$, $802 \mathrm{~cm}^{-1}$. The residue obtained was purified by silica gel column chromatography using petroleum ether/ethyl acetate as eluent (petroleum ether/EtOAc $=5: 1$).

\mathbf{N}, N-Diphenyl-4-(pyridin-4-yl)aniline (30): 99.2 mg . Yield $=62 \%$. ${ }^{1} \mathbf{H}$ NMR (400 $\mathbf{M H z}, \mathbf{C D C l}_{3}$): δ 8.76-8.59 (m, 2H), 7.56-7.48 (m, 4H), 7.32-7.28 (m, 4H), 7.18-7.12 (m, 6H), 7.11-7.06 (m, 2H) ppm. ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): 149.7, 149.2, 148.5, 147.0, 130.1, 129.4, 127.7, 125.0, 123.7, 122.5, 121.1 ppm. HRMS (ESI, m/z): $[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{~N}_{2}{ }^{+}: 323.1543$, found: 323.1548. FTIR (KBr, neat): $v 3033$, 2923, 2853, 1590, 1485, 1331, 1279, 809, 753, $696 \mathrm{~cm}^{-1}$. The residue obtained was purified by silica gel column chromatography using petroleum ether/ethyl acetate as eluent (petroleum ether/EtOAc = 5:1).

\mathbf{N}, \mathbf{N}-Dimethyl-3-(pyridin-4-yl)aniline (3p): 57.3 mg . Yield $=58 \%{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right): \delta 8.65(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{t}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.00-6.94(\mathrm{~m}, 1 \mathrm{H}), 6.94-6.90(\mathrm{~m}, 1 \mathrm{H}), 6.84-6.79(\mathrm{~m}, 1 \mathrm{H}), 3.01(\mathrm{~s}, 3 \mathrm{H}), 3.01(\mathrm{~s}$, $3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$): $\delta 150.9,149.9,149.6,138.9,129.7,121.9$, 115.1, 113.1, 110.7, 40.5 ppm . HRMS (ESI, \mathbf{m} / \mathbf{z}): $[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{2}{ }^{+}$: 199.1230, found: 199.1235. FTIR (KBr, neat): v 3024, 2892, 2809, 1594, 1546, $1400,1235,989,776,698 \mathrm{~cm}^{-1}$. The residue obtained was purified by silica gel column chromatography using petroleum ether/ethyl acetate as eluent (petroleum ether $/ \mathrm{EtOAc}=5: 1$).

2-(4-(Pyridin-4-yl)phenyl)pyridine (3q): 81.5 mg . Yield $=70 \%$. ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, $\mathbf{C D C l}_{3}$): $\delta 8.65(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.63-8.58(\mathrm{~m}, 2 \mathrm{H}), 8.11-7.99(\mathrm{~m}, 2 \mathrm{H})$, 7.77-7.63 (m, 4H), 7.54-7.43 (m, 2H), $7.20(\mathrm{q}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR (100 $\mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta 156.4,150.3,149.8,147.7,140.0,138.4,136.8,127.6,127.3,122.5$, 121.5, 120.6 ppm. HRMS (ESI, m/z): $[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~N}_{2}{ }^{+}$: 233.1073, found: 233.1078. FTIR (KBr, neat): v 3036, 1591, 1563, 1540, 1464, 1434, 1405, $819,719,713 \mathrm{~cm}^{-1}$. The residue obtained was purified by silica gel column chromatography using petroleum ether/ethyl acetate as eluent (petroleum ether/EtOAc $=5: 1$).

4-(Thiophen-2-yl)pyridine (3r): 51.0 mg . Yield $=64 \% .{ }^{1} \mathbf{H} \mathbf{~ N M R ~ (4 0 0 ~ M H z , ~}$ $\left.\mathbf{C D C l}_{3}\right): \delta 8.57(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.53-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.42-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.11$ (ddd, $J=5.0,3.7,0.6 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 150.3,141.3,141.0$, 128.4, 127.1, $125.3,119.8 \mathrm{ppm}$. HRMS (ESI, \mathbf{m} / \mathbf{z}): $[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{NS}^{+}$: 162.0372, found: 162.0373. FTIR (KBr, neat): v 3050, 1597, 1546, 1422, 1221, 990, $812,729,710,695 \mathrm{~cm}^{-1}$. The residue obtained was purified by silica gel column chromatography using petroleum ether/ethyl acetate as eluent (petroleum ether/EtOAc $=5: 1$).

4-(Benzo[b]thiophen-4-yl)pyridine (3s): 55.6 mg . Yield $=53 \%$. ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 $\mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta 8.83(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 8.00(\mathrm{dt}, J=7.9,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.80-7.76(\mathrm{~m}$, $2 \mathrm{H}), 7.59(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{dd}, J=4.9,1.0 \mathrm{~Hz}, 2 \mathrm{H})$ ppm. ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 149.8,148.7$, 140.7, 137.2, 134.7, 129.1, 127.4, 126.9, 124.6, 124.3, 123.8, 122.9, 122.3 ppm . HRMS (ESI, m/z): $[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{NS}^{+}: 212.0528$, found: 212.0534. FTIR (KBr, neat): $v 3446,1597,1541,1400$, 1204, $824,786,760,699,647 \mathrm{~cm}^{-1}$. The residue obtained was purified by silica gel column chromatography using petroleum ether/ethyl acetate as eluent (petroleum ether $/ \mathrm{EtOAc}=5: 1$).

1-Methyl-4-(pyridin-4-yl)- $\mathbf{1 H}$-indole (3t): 35.1 mg . Yield $=36 \%{ }^{\mathbf{1}}{ }^{\mathbf{H}}$ NMR (400 $\mathbf{M H z}, \mathbf{C D C l}_{3}$): $8.65-8.59(\mathrm{~m}, 2 \mathrm{H}), 7.94(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.53$ (dd, $J=8.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.42 (d, J = $8.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.13 (d, $J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.58$ (dd, $J=3.1,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 150.5,149.0$, 137.2, 130.1, 129.0, 128.9, 121.8, 120.6, 119.8, 109.9, 101.7, 33.0 ppm. HRMS (ESI, \mathbf{m} / \mathbf{z}): $[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{2}{ }^{+}: 209.1073$, found: 209.1069. FTIR (KBr, neat): $v 3551,3415,1636,1615,1593,1250,1024,796,618 \mathrm{~cm}^{-1}$. The residue obtained was purified by silica gel column chromatography using petroleum ether/ethyl acetate as eluent (petroleum ether/EtOAc $=5: 1$).

4-(6-Methoxynaphthalen-2-yl)pyridine (3u): 75.8 mg . Yield $=64 \%$. ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 $\mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta 8.68(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.06(\mathrm{~s}, 1 \mathrm{H}), 7.84(\mathrm{t}, J=9.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.72$ (dd, $J=8.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.16(\mathrm{~m}, 2 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H})$ ppm. ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 158.4,150.2,148.3,134.7,133.0,130.0,128.9$, 127.7, 126.2, 125.0, 121.6, 119.6, 105.5, 55.4 ppm . HRMS (ESI, m/z): $[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{NO}^{+}: 236.1070$, found: 236.1073. FTIR (KBr, neat): $v 2924,2853$, $1625,1590,1495,1257,1208,1023,834,801 \mathrm{~cm}^{-1}$. The residue obtained was
purified by silica gel column chromatography using petroleum ether/ethyl acetate as eluent (petroleum ether/EtOAc = 5:1).

3-Methoxy-4-phenylpyridine (4b): 62.5 mg . Yield $=67 \%$. ${ }^{1} \mathbf{H}$ NMR (400 MHz , $\mathbf{C D C l}_{3}$): $\delta 8.37(\mathrm{~s}, 1 \mathrm{H}), 8.31(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{dd}, J=8.2,1.3 \mathrm{~Hz}, 2 \mathrm{H})$, $7.48-7.36(\mathrm{~m}, 3 \mathrm{H}), 7.25(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C} \mathbf{~ N M R ~ (1 0 0 ~ M H z}$, $\mathbf{C D C l}_{3}$): $\delta 152.5,142.9,137.5,135.6,134.3,129.1,128.2,128.2,124.4,56.2 \mathrm{ppm}$. HRMS (ESI, m/z): $[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{NO}^{+}$: 186.0913, found: 186.0916 . FTIR (KBr, neat): $v 3058,2925,2841,1505,1479,1410,1280,1015,747,698 \mathrm{~cm}^{-1}$. The residue obtained was purified by silica gel column chromatography using petroleum ether/ethyl acetate as eluent (petroleum ether/EtOAc $=20: 1$).

3-Methyl-4-phenylpyridine (4c): 32.6 mg . Yield $=39 \%{ }^{1}{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(\mathbf{4 0 0} \mathbf{~ M H z}$, $\mathbf{C D C l}_{3}$): $\delta 8.55(\mathrm{~s}, 1 \mathrm{H}), 8.51(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.39(\mathrm{~m}, 3 \mathrm{H}), 7.35-7.29(\mathrm{~m}$, $2 \mathrm{H}), 7.21(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathbf{C D C l}_{3}\right): \delta$ 150.9, 149.7, 147.1, 138.8, 130.0, 128.5, 128.4, 128.1, 124.2, 17.2 ppm. HRMS (ESI, \mathbf{m} / \mathbf{z}): $[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}^{+}: 170.0964$, found: 170.0968. FTIR (KBr, neat): v $3398,3028,2925,1591,1478,1443,1404,743,770,702 \mathrm{~cm}^{-1}$. The residue obtained was purified by silica gel column chromatography using petroleum ether/ethyl acetate as eluent (petroleum ether/EtOAc = 5:1).

2,4-Diphenylpyridine (4d): 82.0 mg . Yield $=71 \%$. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta$ 8.80-8.72 (m, 1H), 8.13-8.04 (m, 2H), 7.98-7.91 (m, 1H), 7.74-7.66 (m, 2H), $7.57-7.41(\mathrm{~m}, 7 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 158.0,150.0,149.2,139.4$, 138.4, 129.0, 129.0, 128.7, 127.0, 127.0, 120.2, 118.7 ppm. HRMS (ESI, m/z): $[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}^{+}: 232.1121$, found: 232.1126. FTIR (KBr, neat): $v 3056$,

1593, 1578, 1541, 1470, 1443, 1387, 762, 733, $694 \mathrm{~cm}^{-1}$. The residue obtained was purified by silica gel column chromatography using petroleum ether/ethyl acetate as eluent (petroleum ether/EtOAc $=5: 1$).

3,4-Diphenylpyridine (4e): 95.6 mg . Yield $=83 \%$. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathbf{M H z}, \mathbf{C D C l}_{3}\right): \delta$ $8.65-8.63(\mathrm{~m}, 1 \mathrm{H}), 8.61(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{dd}, J=5.1,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.21$ $(\mathrm{m}, 6 \mathrm{H}), 7.17-7.11(\mathrm{~m}, 4 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 150.9,148.6,147.6$, 138.5, 137.6, 135.6, 129.7, 129.2, 128.1, 127.7, 127.2, 124.5 ppm . HRMS (ESI, m/z): $[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}^{+}: 232.1121$, found: 232.1126. FTIR (KBr, neat): $v 3056$, $3021,1584,1472,1443,1399,832,762,749,700 \mathrm{~cm}^{-1}$. The residue obtained was purified by silica gel column chromatography using petroleum ether/ethyl acetate as eluent (petroleum ether/EtOAc = 5:1).

4-Phenyl-2-(p-tolyl)pyridine (4f): 77.8 mg . Yield $=63 \%$. ${ }^{1} \mathbf{H}$ NMR (400 MHz , $\mathbf{C D C l}_{3}$): $\delta 8.73(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.93-7.90(\mathrm{~m}, 1 \mathrm{H})$, $7.72-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.40(\mathrm{~m}, 4 \mathrm{H}), 7.32(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl $\mathbf{C D}_{3}$: $\delta 158.0,149.9,149.1,139.0,138.6,136.6,129.4,129.4$, 129.0, 127.0, 126.8, 119.9, 118.4, 21.2 ppm. HRMS (ESI, m/z): $[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}^{+}: 246.1277$, found: 246.1283. FTIR (KBr, neat): $v 3028,2920,1594,1541$, $1468,1384,1183,820,760,695 \mathrm{~cm}^{-1}$. The residue obtained was purified by silica gel column chromatography using petroleum ether/ethyl acetate as eluent (petroleum ether/EtOAc $=5: 1$).

4-Phenyl-5,6,7,8-tetrahydroquinoline (4g): 84.3 mg . Yield $=81 \%$. ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 $\mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta 8.39(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.28(\mathrm{dt}, J=6.9,1.2 \mathrm{~Hz}$,

2H), $6.96(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.63(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H})$, 1.94-1.87 (m, 2H), 1.75-1.69 (m, 2H) ppm. ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 157.5$, $149.5,146.4,139.3,129.8,128.4,128.2$, 127.7, 121.9, 32.9, 27.3, 22.9, 22.9 ppm. HRMS (ESI, \mathbf{m} / \mathbf{z}): $[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}^{+}: 210.1277$, found: 210.1283. FTIR (KBr, neat): v 3054, 2929, 2854, 1579, 1546, 1437, 1402, 865, 764, $702 \mathrm{~cm}^{-1}$. The residue obtained was purified by silica gel column chromatography using petroleum ether/ethyl acetate as eluent (petroleum ether/EtOAc $=5: 1$).

4-Methyl-2-phenylquinoline (4h): 92.7 mg . Yield $=84 \%$. ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , $\mathbf{C D C l}_{3}$): $\delta 8.25-8.21(\mathrm{~m}, 1 \mathrm{H}), 8.20-8.16(\mathrm{~m}, 2 \mathrm{H}), 7.97(\mathrm{dd}, J=8.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.73$ (ddd, $J=8.4,6.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.71-7.69(\mathrm{~m}, 1 \mathrm{H}), 7.57-7.52(\mathrm{~m}, 3 \mathrm{H}), 7.50-7.45(\mathrm{~m}$, $1 \mathrm{H}), 2.73(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 156.9,148.0$, 144.7, 139.7, 130.2, 129.2, 129.1, 128.7, 127.4, 127.1, 125.9, 123.5, 119.6, 18.9 ppm . HRMS (ESI, m/z): $[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}^{+}: 220.1121$, found: 220.1126. FTIR (KBr, neat): $v 3059,2920,1597,1550,1495,1450,1348,769,755,693 \mathrm{~cm}^{-1}$. The residue obtained was purified by silica gel column chromatography using petroleum ether/ethyl acetate as eluent (petroleum ether/EtOAc $=20: 1$).

4-Phenylquinoline (4i): 58.6 mg . Yield $=57 \% .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 8.94$ (d, $J=4.4 \mathrm{~Hz}, 1 \mathrm{H}$), 8.21-8.17 (m, 1H), 7.92 (dd, $J=8.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.72$ (ddd, $J=$ $8.4,6.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.45(\mathrm{~m}, 6 \mathrm{H}), 7.32(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 149.9,148.6,148.4,137.9,129.8,129.5,129.2,128.5,128.3$, 126.7, 126.5, 125.8, 121.3 ppm . HRMS (ESI, m/z): $[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}^{+}$: 206.0964, found: 206.0964. FTIR (KBr, neat): v 3058, 2923, 1583, 1574, 1507, $1490,1444,1390,769,695 \mathrm{~cm}^{-1}$. The residue obtained was purified by silica gel column chromatography using petroleum ether/ethyl acetate as eluent (petroleum ether/EtOAc $=5: 1$).

2-Phenylpyrazine (4j): 33.2 mg . Yield $=\mathbf{4 3 \%}{ }^{\mathbf{1}}{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$): $\delta 9.03$ $(\mathrm{d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.67-8.58(\mathrm{~m}, 1 \mathrm{H}), 8.50(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.06-7.97(\mathrm{~m}, 2 \mathrm{H})$, 7.56-7.42 (m, 3H) ppm. ${ }^{13} \mathbf{C}$ NMR ($100 \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 152.8,144.1,142.9,142.2$, 136.3, 129.9, 129.0, 126.9 ppm . HRMS (ESI, m/z): $[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~N}_{2}{ }^{+}$: 157.0760, found: 157.0766. FTIR (KBr, neat): v 3050, 1474, 1447, 1405, 1148, 1082, 1019, 772, 744, $692 \mathrm{~cm}^{-1}$. The residue obtained was purified by silica gel column chromatography using petroleum ether/ethyl acetate as eluent (petroleum ether $/ \mathrm{EtOAc}=5: 1$).

2,3-Dimethyl-5-phenylpyrazine (4k): 73.2 mg . Yield $=79 \%$. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~}$ $\mathbf{C D C l}_{3}$): $\delta 8.69(\mathrm{~s}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.51-7.37(\mathrm{~m}, 3 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H}), 2.55$ (s, 3H) ppm. ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 151.6,150.4,149.3,138.1,136.7$, 129.1, 128.8, 126.5, 22.2, 21.7 ppm . HRMS (ESI, m/z): $[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{2}{ }^{+}: 185.1073$, found:185.1079. FTIR (KBr, neat): v 3050, 2982, 1462, 1446, $1386,1178,1167,776,743,689 \mathrm{~cm}^{-1}$. The residue obtained was purified by silica gel column chromatography using petroleum ether/ethyl acetate as eluent (petroleum ether $/ \mathrm{EtOAc}=10: 1$).

2-Phenylquinoxaline (4I): 48.0 mg . Yield $=47 \% .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$): δ $9.33(\mathrm{~s}, 1 \mathrm{H}), 8.23-8.09(\mathrm{~m}, 4 \mathrm{H}), 7.82-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.61-7.48(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 151.8,143.3,142.3,141.5,136.7,130.3,130.2,129.6,129.5$, 129.1, 129.1, 127.5 ppm . HRMS (ESI, m/z): $[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~N}_{2}{ }^{+}$: 207.0917, found: 207.0922. FTIR (KBr, neat): v 3059, 2923, 2853, 1548, 1488, 1316, $957,772,761,689 \mathrm{~cm}^{-1}$. The residue obtained was purified by silica gel column chromatography using petroleum ether/ethyl acetate as eluent (petroleum ether $/ \mathrm{EtOAc}=10: 1$).

References

[1] Hilton, M. C.; Dolewski, R. D.; McNally, A. Selective Functionalization of Pyridines via Heterocyclic Phosphonium Salts. J. Am. Chem. Soc. 2016, 138, 13806-13809.
[2] Zhang, X.; McNally, A. Phosphonium Salts as Pseudohalides: Regioselective Nickel-Catalyzed Cross-Coupling of Complex Pyridines and Diazines. Angew. Chem. Int. Ed. 2017, 56, 9833-9836.
[3] Zhang, X.; McNally, A. Cobalt-Catalyzed Alkylation of Drug-Like Molecules and Pharmaceuticals Using Heterocyclic Phosphonium Salts. ACS Catal. 2019, 9, 4862-4866
[4] Koniarczyk, J. L.; Hesk, D.; Overgard, A.; Davies, I. W.; McNally, A. A General Strategy for Site-Selective Incorporation of Deuterium and Tritium into Pyridines, Diazines, and Pharmaceuticals. J. Am. Chem. Soc. 2018, 140, 1990-1993.
[5] Anderson, R. G.; Jett, B. M.; McNally, A. A Unified Approach to Couple Aromatic Heteronucleophiles to Azines and Pharmaceuticals. Angew. Chem. Int. Ed. 2018, 57, 12514-12518.
[6] (a) Jia, X.-G.; Guo, P.; Duan, J.-C.; Shu, X.-Z. Dual Nickel and Lewis Acid Catalysis for Cross-Electrophile Coupling: Allylation of Aryl Halides with Allylic Alcohols. Chem. Sci. 2018, 9, 640-645. (b) Lin, Q.; Diao, T. Mechanism of Ni-Catalyzed Reductive 1,2-Dicarbofunctionalization of Alkenes. J. Am. Chem. Soc. 2019, 141, 17937-17948. (c) Wang, K.; Ding, Z.; Zhou, Z.; Kong, W. Ni-Catalyzed Enantioselective Reductive Diarylation of Activated Alkenes by Domino Cyclization/Cross-Coupling. J. Am. Chem. Soc. 2018, 140, 12364-12368.

${ }^{1} \mathrm{H},{ }^{19} \mathrm{~F}$, and ${ }^{13} \mathrm{C}$ NMR spectra of products

${ }^{1} \mathbf{H}$ NMR spectrum of $\mathbf{3 a}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}$ NMR spectrum of $\mathbf{3 a}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3a

${ }^{1} \mathbf{H}$ NMR spectrum of $\mathbf{3 b}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}$ NMR spectrum of $\mathbf{3 b}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
(1)

3b

${ }^{19}$ F NMR spectrum of $\mathbf{3 b}\left(\mathbf{3 7 6} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

| |
| :--- | :--- |

${ }^{1} \mathbf{H}$ NMR spectrum of $\mathbf{3 c}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}$ NMR spectrum of $\mathbf{3 c}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^1]
${ }^{19}$ F NMR spectrum of $\mathbf{3 c}\left(\mathbf{3 7 6} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathbf{H}$ NMR spectrum of $\mathbf{3 d}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}$ NMR spectrum of $\mathbf{3 d}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19}$ F NMR spectrum of $\mathbf{3 d}\left(\mathbf{3 7 6} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathbf{H}$ NMR spectrum of $\mathbf{3 e}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}$ NMR spectrum of $\mathbf{3 e}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{\mathbf{1}} \mathbf{H}$ NMR spectrum of $\mathbf{3 f}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}$ NMR spectrum of $\mathbf{3 f}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
\qquad

${ }^{1} \mathbf{H}$ NMR spectrum of $\mathbf{3 g}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}$ NMR spectrum of $\mathbf{3 g}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathbf{H}$ NMR spectrum of $\mathbf{3 h}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}$ NMR spectrum of $\mathbf{3} \mathbf{h}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathbf{H}$ NMR spectrum of $\mathbf{3 i}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13}$ C NMR spectrum of $\mathbf{3 i}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathbf{H}$ NMR spectrum of $\mathbf{3 j}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\stackrel{8}{i}$
$\int \| \mid$

${ }^{13} \mathbf{C}$ NMR spectrum of $\mathbf{3 j}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{\mathbf{1}} \mathbf{H}$ NMR spectrum of $\mathbf{3 k}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}$ NMR spectrum of $\mathbf{3 k}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
$$
\overline{\bar{n}}
$$

${ }^{\mathbf{1}} \mathbf{H}$ NMR spectrum of $\mathbf{3 1}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13}$ C NMR spectrum of $\mathbf{3 1}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Cosers)

${ }^{\mathbf{1}} \mathbf{H}$ NMR spectrum of $\mathbf{3 m}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}$ NMR spectrum of $\mathbf{3 m}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathbf{H}$ NMR spectrum of $\mathbf{3 n}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}$ NMR spectrum of $\mathbf{3 n}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
(

${ }^{1} \mathbf{H}$ NMR spectrum of $\mathbf{3 o}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}$ NMR spectrum of $\mathbf{3 o}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\begin{array}{llllllllllllll}160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30\end{array}$
${ }^{1} \mathbf{H}$ NMR spectrum of $\mathbf{3 p}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}$ NMR spectrum of $\mathbf{3 p}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathbf{H}$ NMR spectrum of $\mathbf{3 q}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}$ NMR spectrum of $\mathbf{3 q}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3q

${ }^{1} \mathbf{H}$ NMR spectrum of $\mathbf{3 r}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}$ NMR spectrum of $\mathbf{3 r}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
(

$3 r$

${ }^{\mathbf{1}} \mathbf{H}$ NMR spectrum of $\mathbf{3 s}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3s

${ }^{13} \mathbf{C}$ NMR spectrum of $3 \mathbf{s}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3s

${ }^{\mathbf{1}} \mathbf{H}$ NMR spectrum of $\mathbf{3 t}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13}$ C NMR spectrum of $3 \mathbf{t}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathbf{H}$ NMR spectrum of $\mathbf{3 u}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}$ NMR spectrum of $\mathbf{3 u}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathbf{H}$ NMR spectrum of $\mathbf{4 b}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}$ NMR spectrum of $\mathbf{4 b}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathbf{H}$ NMR spectrum of $\mathbf{4 c}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}$ NMR spectrum of $\mathbf{4 c}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathbf{H}$ NMR spectrum of $\mathbf{4 d}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}$ NMR spectrum of $\mathbf{4 d}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
CYY-2001-3
sinsle

${ }^{1} \mathbf{H}$ NMR spectrum of $\mathbf{4 e}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}$ NMR spectrum of $\mathbf{4 e}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathbf{H}$ NMR spectrum of $\mathbf{4 f}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}$ NMR spectrum of $\mathbf{4 f}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathbf{H}$ NMR spectrum of $\mathbf{4 g}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}$ NMR spectrum of $\mathbf{4 g}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

49
${ }^{1} \mathbf{H}$ NMR spectrum of $\mathbf{4 h}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}$ NMR spectrum of $\mathbf{4 h}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
CYY-2001-12
single pulse

$\stackrel{\infty}{\infty}$

4h

${ }^{1} \mathbf{H}$ NMR spectrum of $\mathbf{4 i}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}$ NMR spectrum of $\mathbf{4 i}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{\mathbf{1}} \mathbf{H}$ NMR spectrum of $\mathbf{4} \mathbf{j}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}$ NMR spectrum of $\mathbf{4 j}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{\mathbf{1}} \mathbf{H}$ NMR spectrum of $\mathbf{4 k}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}$ NMR spectrum of $\mathbf{4 k}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{\mathbf{1}} \mathbf{H}$ NMR spectrum of $\mathbf{4 l}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}$ NMR spectrum of $\mathbf{4 I}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^0]: ${ }^{a}$ Unless otherwise noted, the reactions were performed at room temperature for 12 h under nitrogen atmosphere by using 1a (0.5 mmol), 2a (1.5 mmol), $\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(5 \mathrm{~mol} \%, 0.025$ $\mathrm{mmol})$, magnesium turnings (1.5 mmol), and $\mathrm{LiCl}(2 \mathrm{mmol})$ in solvent (2 mL). ${ }^{b}$ Yields were determined by NMR analysis of crude reaction mixture after work-up by using 1,4-dimethoxybenzene as an internal standard.

[^1]:

