Supporting information

Synthesis of 2-trifluoromethylquinolines through rhodium-catalysed redox-neutral [3+3] annulation between anilines and CF₃-ynones using traceless directing group

Haichao Huang, Hailong Wang, Chao Gong, Zhenjing Zhuang, Wenmin Feng, Si-Hai Wu* and Lianhui Wang*

School of Medicine, Huaqiao University, Quanzhou, 362021, P. R. China

E-mail: wusihai@hqu.edu.cn; *E-mail:* lianhui.wang@hqu.edu.cn

Table of Contents

1. General information	
2. Optimization of reaction conditions	S2
3. General catalytic procedure	
4. Characterization of compounds 3, 5 and 10	S4
5. Experiments with scale-up reaction	
6. Intermolecular competition experiments	
7. Deuterium-labeling experiments	
8. NMR spectra of compounds 3, 5 and 10	
9. X-ray crystallographic analysis	
10. Photophysical data of compounds 3oa and 3pa	
11. References	

1. General information

All reactions were performed using flame-dried glassware under an atmosphere of dry Nitrogen, and all commercial materials and solvents were used directly without further purification, unless otherwise noted. Column chromatography was performed on silica gel (70-230 mesh ASTM) using the reported eluents. Analytical thin layer chromatography was performed on 0.25 mm silica gel 60-F254. Visualization was carried out with UV light. Melting points were determined in open glass capillaries and were uncorrected. ¹H NMR spectra were recorded on a Bruker Avance III instrument (500 MHz). ¹³C NMR spectra were recorded on a Bruker Avance III instrument (126 MHz) and were fully decoupled by broad band proton decoupling. ¹⁹F NMR spectra were recorded on a Bruker Avance III instrument (471 MHz). NMR spectra were recorded in CDCl₃. All NMR spectra were referenced to the solvent peaks (^{1}H NMR: residual CDCl₃ = 7.26 ppm, ¹³C NMR: CDCl₃ = 77.16 ppm). Chemical shifts (δ) are reported in ppm, and coupling constants (J) are reported in hertz (Hz). Multiplicities are reported using the following abbreviations: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet. High-resolution mass spectra (HRMS) were recorded on an Agilent 1290 mass spectrometer using ESI-TOF (electrospray ionization time-of-flight). Crystal structure and data were recorded on an Agilent Gemini E diffractometer. Fluorescence spectra were recorded with a F-7000 fluorescence spectrometer (Hitachi, Japan). Acetanilides,¹ N-phenylpivalamide,² t-Butyl phenylcarbamate,³ and trifluoromethyl ynones⁴ were synthesized according to the previously reported procedure.

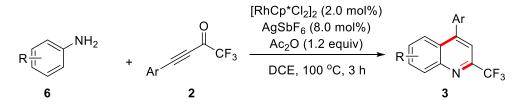
2. Optimization of reaction conditions

	H N Me O + Ph	CF ₃ addi	lyst (x mol% ctive (y mol% olvent, <i>T</i> , t	•	Ph	CF ₃
	1a 2a				3aa	-
Entry	Catalyst (x)	Additive (y)	Solvent	<i>T</i> (°C)	t (h)	3aa (%) ^b
1	[IrCp*Cl ₂] ₂ (2.0)	AgSbF ₆ (8.0)	DCE	100	3	trace
2	[Cp*Co(CO)I ₂] (4.0)	$AgSbF_{6}(8.0)$	DCE	100	3	52
3	$[RuCl_2p$ -cymene] ₂ (2.0)	$AgSbF_{6}(8.0)$	DCE	100	3	17
4	$Pd(OAc)_2(4.0)$		DCE	100	3	0
5	[RhCp*Cl ₂] ₂ (2.0)	$AgSbF_{6}(8.0)$	DCE	100	3	94
6	[RhCp*Cl ₂] ₂ (1.0)	$AgSbF_{6}$ (4.0)	DCE	100	3	45

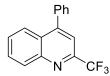
Table S1. Optimization of reaction conditions^a

7	[RhCp*Cl ₂] ₂ (3.0)	AgSbF ₆ (12)	DCE	100	3	96	
8	[RhCp*Cl ₂] ₂ (2.0)	AgOAc (8.0)	DCE	100	3	27	
9	[RhCp*Cl ₂] ₂ (2.0)	AgOTf (8.0)	DCE	100	3	86	
10	[RhCp*Cl ₂] ₂ (2.0)	$AgNTf_2(8.0)$	DCE	100	3	86	
11	[RhCp*Cl ₂] ₂ (2.0)	AgSbF ₆ (8.0)	DMF	100	3	0	
12	[RhCp*Cl ₂] ₂ (2.0)	AgSbF ₆ (8.0)	MeCN	100	3	0	
13	[RhCp*Cl ₂] ₂ (2.0)	AgSbF ₆ (8.0)	PhMe	100	3	0	
14	[RhCp*Cl ₂] ₂ (3.0)	$AgSbF_6(12)$	t-AmOH	100	3	12	
15	[RhCp*Cl ₂] ₂ (2.0)	AgSbF ₆ (8.0)	DCE	60	3	86	
16	[RhCp*Cl ₂] ₂ (2.0)	AgSbF ₆ (8.0)	DCE	80	3	86	
17	[RhCp*Cl ₂] ₂ (2.0)	AgSbF ₆ (8.0)	DCE	120	3	89	
18	[RhCp*Cl ₂] ₂ (2.0)	AgSbF ₆ (8.0)	DCE	100	1	93	
19	[RhCp*Cl ₂] ₂ (2.0)	AgSbF ₆ (8.0)	DCE	100	5	94	
20	[RhCp*Cl ₂] ₂ (2.0)	AgSbF ₆ (8.0)	DCE	100	12	96	
21	Cp*Rh(MeCN) ₃ (SbF ₆) ₂ (4.0)		DCE	100	3	93	
^{<i>a</i>} Reaction conditions: 1a (0.30 mmol), 2a (0.33 mmol), catalyst (1.0-3.0 mol%), additives (4.0-12							

mol%) and solvent (1.0 mL) at 60-120 °C under N₂ atmosphere for 1-12 h. ^{*b*}Isolated yields.


3. General catalytic procedure

General procedure A: rhodium-catalysed [3+3] annulation between acetanilines 1 and CF₃-ynones 2


The mixture of acetanilides (1, 0.30 mmol, 1.0 equiv), CF₃-ynones (2, 0.33 mmol, 1.1 equiv), $[RhCp^*Cl_2]_2$ (3.7 mg, 0.006 mmol) and AgSbF₆ (8.2 mg, 0.024 mmol) in DCE (1.0 mL) was stirred at 100 °C under N₂ for 3 h. After reaction completion, the solvent was removed under reduced pressure and the resulting residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (v/v) afforded the corresponding 2-trifluoromethylquinoline products **3**.

General procedure B: rhodium-catalysed one-pot [3+3] annulation between anilides 4 and CF₃-ynones 2

The mixture of anilides (**4**, 0.30 mmol, 1.0 equiv), Ac₂O (36.8 mg, 0.36 mmol, 1.2 equiv), CF₃-ynones (**2**, 0.33 mmol, 1.1 equiv), [RhCp*Cl₂]₂ (3.7 mg, 0.006 mmol) and AgSbF₆ (8.2 mg, 0.024 mmol) in DCE (1.0 mL) was stirred at 100 °C under N₂ for 3 h. After reaction completion, the solvent was removed under reduced pressure and the resulting residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (v/v) afforded the corresponding 2-trifluoromethylquinoline products **3**.

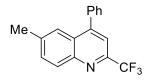
4. Characterization of compounds 3, 5 and 10

4-Phenyl-2-(trifluoromethyl)quinoline (3aa).

The compound (77.3 mg, 94%) was prepared from the general procedure **A** (petroleum ether : ethyl acetate = $100:1 \rightarrow 50:1$, v/v) as yellow solid; the compound (77.2 mg, 94%) was prepared from the general procedure **B** (petroleum ether : ethyl acetate = $100:1 \rightarrow 50:1$, v/v) as a yellow solid.

M. p. 59-62 °C.

¹H NMR (500 MHz, CDCl₃) δ 8.27 (d, J = 8.5 Hz, 1H), 7.96 (d, J = 7.9 Hz, 1H), 7.77 (ddd, J = 8.4, 6.8, 1.4 Hz, 1H), 7.68 (s, 1H), 7.59-7.45 (m, 6H).


¹³C NMR (126 MHz, CDCl₃) δ 150.9, 147.8, 147.5 (q, ²*J*_{C-F} = 34 Hz), 137.1, 130.5, 130.4, 129.5,

129.0, 128.8, 128.6, 127.4, 125.8, 121.8 (q, ${}^{1}J_{C-F} = 276 \text{ Hz}$), 117.0 (q, ${}^{3}J_{C-F} = 2 \text{ Hz}$).

¹⁹F NMR (471 MHz, CDCl₃) δ –67.3.

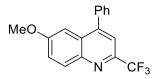
HRMS (ESI) m/z calcd for C₁₆H₁₁F₃N⁺ [M+H]⁺: 274.0838, Found 274.0840.

The spectral data were in accordance with those reported in the literature.⁵

6-Methyl-4-phenyl-2-(trifluoromethyl)quinoline (**3ba**).

The compound (72.9 mg, 84%) was prepared from the general procedure **A** (petroleum ether : ethyl acetate = $100:1 \rightarrow 50:1$, v/v) as a yellow oil; the compound (71.7 mg, 83%) was prepared from the general procedure **B** (petroleum ether : ethyl acetate = $100:1 \rightarrow 50:1$, v/v) as a yellow oil.

¹H NMR (500 MHz, CDCl₃) δ 8.17 (d, J = 8.7 Hz, 1H), 7.75 (s, 1H), 7.65 (s, 1H), 7.62 (dd, J = 8.7, 2.1 Hz, 1H), 7.59-7.49 (m, 5H), 2.49 (s, 3H).


¹³C NMR (126 MHz, CDCl₃) δ 150.1, 146.7 (q, ²*J*_{C-F} = 34 Hz), 146.5, 139.0, 137.4, 132.9, 130.2,

129.5, 129.0, 128.8, 127.5, 124.6, 122.0 (q, ${}^{1}J_{C-F} = 276$ Hz), 117.1 (q, ${}^{3}J_{C-F} = 2$ Hz), 22.0.

¹⁹F NMR (471 MHz, CDCl₃) δ =67.2.

HRMS (ESI) m/z calcd for C₁₇H₁₃F₃N⁺ [M+H]⁺:288.0995, Found 288.0998.

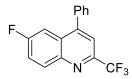
The spectral data were in accordance with those reported in the literature.⁵

6-Methoxy-4-phenyl-2-(trifluoromethyl)quinoline (3ca).

The compound (88.4 mg, 97%) was prepared from the general procedure **A** (petroleum ether : ethyl acetate = $100:1\rightarrow 50:1$, v/v) as a yellow solid; the compound (77.0 mg, 84%) was prepared from the general procedure **B** (petroleum ether : ethyl acetate = $100:1\rightarrow 50:1$, v/v) as a yellow solid.

M. p. 69-71 °C.

¹H NMR (500 MHz, CDCl₃) δ 8.18 (d, J = 9.2 Hz, 1H), 7.65 (s, 1H), 7.61-7.53 (m, 5H), 7.47 (dd, J = 9.3, 2.8 Hz, 1H), 7.24 (d, J = 2.8 Hz, 1H), 3.82 (s, 3H).


 $^{13}\mathrm{C}$ NMR (126 MHz, CDCl₃) δ 159.5, 149.1, 145.2 ($^{2}J_{\mathrm{C}\text{-F}}$ = 35 Hz), 143.9, 137.5, 131.9, 129.3,

129.0, 129.0, 128.8, 123.4, 122.0 (${}^{1}J_{C-F} = 276 \text{ Hz}$), 117.4 (${}^{3}J_{C-F} = 2 \text{ Hz}$), 103.4, 55.5.

¹⁹F NMR (471 MHz, CDCl₃) δ –67.0.

HRMS (ESI) m/z calcd for C₁₇H₁₃F₃NO⁺ [M+H]⁺: 304.0944, Found 304.0948.

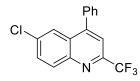
The spectral data were in accordance with those reported in the literature.⁵

6-Fluoro-4-phenyl-2-(trifluoromethyl)quinoline (3da).

The compound (79.4 mg, 90%) was prepared from the general procedure **A** (petroleum ether : ethyl acetate = $100:1\rightarrow 50:1$, v/v) as a pale yellow solid; the compound (77.5 mg, 88%) was

prepared from the general procedure **B** (petroleum ether : ethyl acetate = $100:1 \rightarrow 50:1$, v/v) as a pale yellow solid.

M. p. 94-95 °C.


¹H NMR (500 MHz, CDCl₃) δ 8.29 (dd, J = 8.6, 5.7 Hz, 1H), 7.70 (s, 1H), 7.64-7.54 (m, 5H), 7.51 (dd, J = 7.6, 1.7 Hz, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 161.5 (d, ¹*J*_{C-F} = 249 Hz), 150.6, 150.5, 147.2 (q, ²*J*_{C-F} = 35 Hz), 145.0, 136.8, 133.3 (d, ³*J*_{C-F} = 10 Hz), 129.4, 129.1, 128.7 (d, ³*J*_{C-F} = 10 Hz), 121.7 (q, ¹*J*_{C-F} = 275 Hz), 121.2 (d, ²*J*_{C-F} = 27 Hz), 117.7 (q, ³*J*_{C-F} = 2), 109.5 (d, ²*J*_{C-F} = 24 Hz).

¹⁹F NMR (471 MHz, CDCl₃) δ -67.4, -108.9

HRMS (ESI) m/z calcd for C₁₆H₁₀F₄N⁺ [M+H]⁺: 292.0744, Found 292.0746.

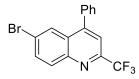
The spectral data were in accordance with those reported in the literature.⁵

6-Chloro-4-phenyl-2-(trifluoromethyl)quinoline (3ea).

The compound (66.0 mg, 71%) was prepared from the general procedure **A** (petroleum ether : ethyl acetate = $100:1 \rightarrow 50:1$, v/v) as a pale yellow solid.

M. p. 88-90 °C.

¹H NMR (500 MHz, CDCl₃) δ 8.19 (d, J = 9.0 Hz, 1H), 7.95 (d, J = 2.2 Hz, 1H), 7.74-7.69 (dd, 9.0, 2.3 Hz, 2H), 7.60-7.48 (m, 5H).


¹³C NMR (126 MHz, CDCl₃) δ 150.2, 147.8 (q, ²*J*_{C-F} = 35 Hz), 146.2, 136.5, 135.0, 132.1, 131.6,

129.5, 129.4, 129.1, 128.1, 124.8, 121.6 (q. ${}^{1}J_{C-F} = 275 \text{ Hz}$), 117.9 (q. ${}^{3}J_{C-F} = 2 \text{ Hz}$).

¹⁹F NMR (471 MHz, CDCl₃) δ –67.5.

HRMS (ESI) m/z calcd for C₁₆H₁₀ClF₃N⁺ [M+H]⁺: 308.0448, Found 308.0451.

The spectral data were in accordance with those reported in the literature.⁶

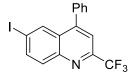
6-Bromo-4-phenyl-2-(trifluoromethyl)quinoline (3fa).

The compound (91.5 mg, 86%) was prepared from the general procedure **A** (petroleum ether : ethyl acetate = $100:1\rightarrow 50:1$, v/v) as a yellow solid.

M. p. 83-83 °C.

¹H NMR (500 MHz, CDCl₃) δ 8.14 (d, J = 9.1 Hz, 2H), 7.87 (dd, J = 8.9, 2.2 Hz, 1H), 7.70 (s,

1H), 7.61-7.55 (m, 3H), 7.53-7.47 (m, 2H).


¹³C NMR (126 MHz, CDCl₃) δ 150.2, 148.0 (q, ²*J*_{C-F} = 35 Hz), 146.5, 136.5, 134.3, 132.2, 129.5,

129.5, 129.1, 128.6, 128.2, 123.4, 121.6 (q, ${}^{1}J_{C-F} = 274 \text{ Hz}$), 117.9 (q, ${}^{3}J_{C-F} = 2 \text{ Hz}$).

¹⁹F NMR (471 MHz, CDCl₃) δ –67.5.

HRMS (ESI) m/z calcd for $C_{16}H_{10}BrF_3N^+$ [M+H]⁺: 351.9943, Found 351.9944.

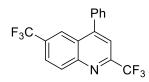
The spectral data were in accordance with those reported in the literature.⁵

6-Iodo-4-phenyl-2-(trifluoromethyl)quinoline (3ga).

The compound (104.3 mg, 87%) was prepared from the general procedure A (petroleum ether :

ethyl acetate = $100:1 \rightarrow 50:1$, v/v) as a yellow solid.

M. p. 100-102 °C.


¹H NMR (500 MHz, CDCl₃) δ 8.35 (d, J = 1.8 Hz, 1H), 8.04 (dd, J = 8.9, 1.9 Hz, 1H), 7.98 (d, J = 8.9 Hz, 1H), 7.68 (s, 1H), 7.61-7.55 (m, 3H), 7.54-7.48 (m, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 149.9, 148.0 (q, ²*J*_{C-F} = 35 Hz), 146.8, 139.5, 136.5, 134.8, 132.0,

129.5, 129.4, 129.1, 129.0, 121.6 (q, ${}^{1}J_{C-F} = 275 \text{ Hz}$), 117.8 (q, ${}^{3}J_{C-F} = 2 \text{ Hz}$), 95.4.

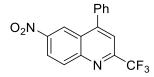
¹⁹F NMR (471 MHz, CDCl₃) δ –67.5.

HRMS (ESI) m/z calcd for C₁₆H₁₀F₃IN⁺ [M+H]⁺: 399.9805, Found 399.9807.

4-Phenyl-2,6-bis(trifluoromethyl)quinoline (3ha).

The compound (82.7 mg, 80%) was prepared from the general procedure **A** (petroleum ether : ethyl acetate = $100:1 \rightarrow 50:1$, v/v) as a white solid. The compound (70.0 mg, 68%) was prepared from the general procedure **B** (petroleum ether : ethyl acetate = $100:1 \rightarrow 50:1$, v/v) as a white solid.

M. p. 99-101 °C.


¹H NMR (500 MHz, CDCl₃) δ 8.41 (d, J = 8.9 Hz, 1H), 8.33 (s, 1H), 8.00 (dd, J = 8.9, 1.9 Hz, 1H), 7.80 (s, 1H), 7.65-7.59 (m, 3H), 7.58-7.49 (m, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 152.4, 149.7 (q, ²*J*_{C-F} = 34Hz), 148.9, 136.3, 132.0, 130.5 (q, ²*J*_{C-F} = 33 Hz), 129.8, 129.6, 129.3, 126.7, 126.4, 124.1 (q, ³*J*_{C-F} = 5 Hz), 123.9 (q, ¹*J*_{C-F} = 274 Hz), 123.7 (q, ¹*J*_{C-F} = 276 Hz), 118.3.

¹⁹F NMR (471 MHz, CDCl₃) δ –62.7, –67.8.

HRMS (ESI) m/z calcd for $C_{17}H_{10}F_6N^+$ [M+H]⁺: 342.0712, Found 342.0713.

The spectral data were in accordance with those reported in the literature.⁷

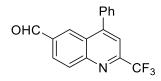
6-Nitro-4-phenyl-2-(trifluoromethyl)quinoline (3ia).

The compound (90.7 mg, 94%) was prepared from the general procedure **A** (petroleum ether : ethyl acetate = $100:1 \rightarrow 30:1$, v/v) as a light yellow solid.

M. p. 173-175 °C.

¹H NMR (500 MHz, CDCl₃) δ 8.93 (d, J = 2.5 Hz, 1H), 8.56 (dd, J = 9.3, 2.5 Hz, 1H), 8.43 (d, J =

9.3 Hz, 1H), 7.84 (s, 1H), 7.66-7.61 (m, 3H), 7.58-7.53 (m, 2H).

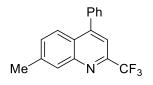

¹³C NMR (126 MHz, CDCl₃) δ 153.6, 150.8 (q, ²*J*_{C-F} = 35 Hz), 149.8, 147.1, 135.7, 132.6, 130.1,

129.6, 129.5, 126.7, 124.1, 123.0, 121.2 (q, ${}^{1}J_{C-F} = 275 \text{ Hz}$), 118.7 (q, ${}^{3}J_{C-F} = 2 \text{ Hz}$).

¹⁹F NMR (471 MHz, CDCl₃) δ –67.9.

HRMS (ESI) m/z calcd for $C_{16}H_{10}F_3N_2O_2^+$ [M+H]⁺: 319.06689, Found 319.0691.

The spectral data were in accordance with those reported in the literature.⁵


4-Phenyl-2-(trifluoromethyl)quinoline-6-carbaldehyde (3ja).

The compound (75.0 mg, 82%) was prepared from the general procedure **A** (petroleum ether : ethyl acetate = $100:1\rightarrow 50:1$, v/v) as a yellow solid.

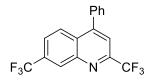
M. p. 127-128 °C.

¹H NMR (500 MHz, CDCl₃) δ 10.11 (s, 1H), 8.49 (d, J = 1.6 Hz, 1H), 8.37 (d, J = 8.8 Hz, 1H), 8.27 (dd, J = 8.8, 1.7 Hz, 1H), 7.78 (s, 1H), 7.67-7.58 (m, 3H), 7.58-7.52 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 191.3, 152.8, 150.5, 150.0 (q, ² $J_{C-F} = 35$ Hz), 136.3, 135.8, 131.9 131.9, 129.8, 129.6, 129.3, 127.6, 127.2, 121.3 (q, ¹ $J_{C-F} = 275$ Hz), 118.1 (q, ³ $J_{C-F} = 2$ Hz). ¹⁹F NMR (471 MHz, CDCl₃) δ –67.8.

HRMS (ESI) m/z calcd for $C_{17}H_{11}F_3NO^+$ [M+H]⁺: 302.0787, Found 302.0788.

7-Methyl-4-phenyl-2-(trifluoromethyl)quinoline (3ka).

The compound (76.9 mg, 89%) was prepared from the general procedure **A** (petroleum ether : ethyl acetate = $100:1 \rightarrow 50:1$, v/v) as a yellow oil; the compound (79.5 mg, 92%) was prepared from the general procedure **B** (petroleum ether : ethyl acetate = $100:1 \rightarrow 50:1$, v/v) as a yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 8.07 (s, 1H), 7.87 (d, *J* = 8.6 Hz, 1H), 7.62 (s, 1H), 7.57-7.52 (m, 3H), 7.52-7.49 (m, 2H), 7.43 (dd, *J* = 8.7, 1.7 Hz, 1H), 2.58 (s, 3H).


¹³C NMR (126 MHz, CDCl₃) δ 150.7, 148.2, 147.6 (q, ²*J*_{C-F} = 35 Hz), 141.2, 137.4, 131.0, 129.6,

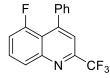
129.5, 129.0, 128.9, 125.6, 125.6, 121.9 (q, ${}^{1}J_{C-F} = 276$ Hz), 116.3 (q, ${}^{3}J_{C-F} = 2$ Hz), 21.8.

¹⁹F NMR (471 MHz, CDCl₃) δ –67.4.

HRMS (ESI) m/z calcd for $C_{17}H_{13}F_3N^+$ [M+H]⁺: 288.0995, Found 288.0998.

The spectral data were in accordance with those reported in the literature.⁸

4-Phenyl-2,7-bis(trifluoromethyl)quinoline (**3la**).


The compound (85.7mg, 83%) was prepared from the general procedure **A** (petroleum ether : ethyl acetate = $100:1 \rightarrow 50:1$, v/v) as a yellow oil.

¹H NMR (500 MHz, CDCl₃) δ 8.62 (s, 1H), 8.15 (d, *J* = 8.9 Hz, 1H), 7.79 (dd, *J* = 8.5, 1.8 Hz, 2H), 7.63-7.58 (m, 3H), 7.55-7.47 (m, 2H).

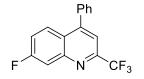
¹³C NMR (126 MHz, CDCl₃) δ 151.4, 149.1 (q, ²*J*_{C-F}= 35 Hz), 147.0, 136.5, 132.6 (q, ²*J*_{C-F} = 33 Hz), 129.6, 129.6, 129.2, 129.0, 128.5 (q, ³*J*_{C-F} = 5 Hz), 127.6, 124.3 (q, ³*J*_{C-F} = 3 Hz), 123.6 (q, ¹*J*_{C-F} = 273 Hz), 121.6 (q, ¹*J*_{C-F} = 275 Hz), 118.9 (q, ³*J*_{C-F} = 2 Hz).

¹⁹F NMR (471 MHz, CDCl₃) δ -63.1, -67.8.

HRMS (ESI) m/z calcd for $C_{17}H_{10}F_6N^+$ [M+H]⁺: 342.0712, Found 342.0715.

5-Fluoro-4-phenyl-2-(trifluoromethyl)quinoline (3ma).

The compound **3ma** (55.2 mg, 63%) and **3m'a** (16.7 mg, 19%) was prepared from the general procedure **A** (petroleum ether : ethyl acetate = $100:1\rightarrow 50:1$, v/v) as a yellow solid and a white solid, respectively.

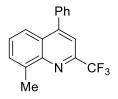

M. p. 87-88 °C.

¹H NMR (500 MHz, CDCl₃) δ 8.14 (d, J = 8.6 Hz, 1H), 7.78 (ddd, J = 8.0, 8.0, 5.2 Hz, 1H), 7.63 (s, 1H), 7.52-7.47 (m, 3H), 7.46-7.41 (m, 2H), 7.29 (ddd, J = 11.7, 7.8, 0.9 Hz, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 158.1 (d, ¹*J*_{C-F} = 258 Hz), 149.0 (q, ³*J*_{C-F} = 2 Hz), 148.0 (q, ²*J*_{C-F} = 35 Hz), 139.4 (d, ⁴*J*_{C-F} = 4 Hz), 130.4 (d, ³*J*_{C-F} = 10 Hz), 128.6, 128.4 (d, ⁴*J*_{C-F} = 4 Hz), 128.0, 126.9 (d, ⁴*J*_{C-F} = 4.0 Hz), 121.5 (q, ¹*J*_{C-F} = 275 Hz), 119.2, 118.2 (d, ³*J*_{C-F} = 10 Hz), 118.1 (d, ²*J*_{C-F} = 24 Hz), 113.7 (d, ²*J*_{C-F} = 22 Hz).

¹⁹F NMR (471 MHz, CDCl₃) δ -67.7, -104.9.

HRMS (ESI) m/z calcd for $C_{16}H_{10}F_4N^+$ [M+H]⁺: 292.0744, Found 292.0747.


7-Fluoro-4-phenyl-2-(trifluoromethyl)quinoline (**3m'a**).

M. p. 100-102 °C.

¹H NMR (500 MHz, CDCl₃) δ 8.00 (dd, J = 9.3, 6.0 Hz, 1H), 7.91 (dd, J = 9.7, 2.6 Hz, 1H), 7.65 (s, 1H), 7.60-7.54 (m, 3H), 7.53-7.48 (m, 2H), 7.41 (ddd, J = 9.4, 8.0, 2.6 Hz, 1H).

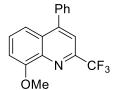
¹³C NMR (126 MHz, CDCl₃) δ 163.6 (d, ¹*J*_{C-F} = 252 Hz), 153.3, 149.2 (d, ³*J*_{C-F} = 12 Hz), 148.8 (q, ²*J*_{C-F} = 35 Hz), 137.0, 129.6, 129.4, 129.1, 128.5 (d, ³*J*_{C-F} = 10 Hz), 124.7, 121.6 (q, ¹*J*_{C-F} = 274 Hz), 119.3 (d, ²*J*_{C-F} = 25 Hz), 116.6 (q, ³*J*_{C-F} = 2 Hz), 114.1 (d, ²*J*_{C-F} = 21 Hz). ¹⁹F NMR (471 MHz, CDCl₃) δ -67.7, -107.7.

HRMS (ESI) m/z calcd for $C_{16}H_{10}F_4N^+$ [M+H]⁺: 292.0744 , Found 292.0748.

8-Methyl-4-phenyl-2-(trifluoromethyl)quinoline (**3na**).

The compound (72.4 mg, 84%) was prepared from the general procedure **A** (petroleum ether : ethyl acetate = $100:1\rightarrow50:1$, v/v) as a pale yellow oil. The compound (68.8 mg, 79%) was prepared from the general procedure **B** (petroleum ether : ethyl acetate = $100:1\rightarrow50:1$, v/v) as a pale yellow oil.

¹H NMR (500 MHz, CDCl₃) δ 7.85 (d, J = 8.5 Hz, 1H), 7.73 (s, 1H), 7.67 (d, J = 6.9 Hz, 1H), 7.61-7.48 (m, 6H), 2.94 (s, 3H).

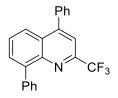

¹³C NMR (126 MHz, CDCl₃) δ 150.9, 147.0, 146.3 (q, ²*J*_{C-F} = 35 Hz), 138.9, 137.8, 130.6, 129.7,

128.9, 128.8, 128.3, 127.6, 123.9, 122.1 (q, ${}^{1}J_{C-F}=275$ Hz), 116.9 (q, ${}^{3}J_{C-F}=2$ Hz), 18.3.

¹⁹F NMR (471 MHz, CDCl₃) δ –67.3.

HRMS (ESI) m/z calcd for C₁₇H₁₃F₃N⁺ [M+H]⁺: 288.0995, Found 288.0999.

The spectral data were in accordance with those reported in the literature.⁶


8-Methoxy-4-phenyl-2-(trifluoromethyl)quinoline (30a).

The compound (73.3 mg, 80%) was prepared from the general procedure **A** (petroleum ether : ethyl acetate = $100:1 \rightarrow 30:1$, v/v) as a white solid; the compound (74.6 mg, 81%) was prepared from the general procedure **B** (petroleum ether : ethyl acetate = $100:1 \rightarrow 30:1$, v/v) as a white solid. M. p. 70-72 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.70 (s, 1H), 7.57-7.47 (m, 7H), 7.16 (dd, J = 4.9, 3.9 Hz, 1H), 4.12 (s, 3H).

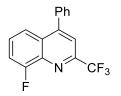
¹³C NMR (126 MHz, CDCl₃) δ 156.2, 150.8, 146.3 (q, ${}^{2}J_{C-F}$ = 35 Hz), 139.9, 137.6, 129.6, 129.0, 128.9, 128.8, 121.8 (q, ${}^{1}J_{C-F}$ = 276 Hz), 117.9, 117.6, 108.8, 56.5. (One carbon is invisible) ¹⁹F NMR (471 MHz, CDCl₃) δ -66.9.

HRMS (ESI) m/z calcd for C₁₇H₁₃F₃NO⁺ [M+H]⁺: 304.0944, Found 304.0946.

The spectral data were in accordance with those reported in the literature.⁵

4,8-Diphenyl-2-(trifluoromethyl)quinoline (3pa).

The compound (96.2 mg, 91%) was prepared from the general procedure **A** (petroleum ether : ethyl acetate = $100:1\rightarrow 50:1$, v/v) as a yellow solid.


M. p. 112-113 °C.

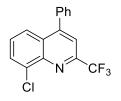
¹H NMR (500 MHz, CDCl₃) δ 8.02 (dd, J = 8.5, 1.4 Hz, 1H), 7.92 (dd, J = 7.1, 1.4 Hz, 1H), 7.88 (dd, J = 8.2, 1.3 Hz, 2H), 7.76 (s, 1H), 7.70 (dd, J = 8.5, 7.2 Hz, 1H), 7.63-7.55 (m, 7H), 7.52-7.47 (m, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 151.1, 147.0 (q, ${}^{2}J_{C-F}$ = 35 Hz), 145.4, 141.8, 138.8, 137.7, 131.4, 131.2, 129.6, 129.0, 128.9, 128.4, 128.0, 127.9, 127.7, 125.5, 121.9 (q, ${}^{1}J_{C-F}$ = 275 Hz), 117.1 (q, ${}^{3}J_{C-F}$ = 2 Hz).

¹⁹F NMR (471 MHz, CDCl₃) δ –67.3.

HRMS (ESI) m/z calcd for C₂₂H₁₅F₃N⁺ [M+H]⁺: 350.1151, Found 350.1153.

8-Fluoro-4-phenyl-2-(trifluoromethyl)quinoline (3qa).


The compound (74.5 mg, 85%) was prepared from the general procedure 3 (petroleum ether : ethyl acetate = $100:1 \rightarrow 50:1$, v/v) as a yellow oil; The compound (70.0 mg, 80%) was prepared from the general procedure **B** (petroleum ether : ethyl acetate = $100:1 \rightarrow 50:1$, v/v) as a yellow oil.

¹H NMR (500 MHz, CDCl₃) δ 7.78 (d, J = 8.6 Hz, 1H), 7.73 (s, 1H), 7.59-7.46 (m, 7H).

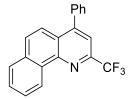
¹³C NMR (126 MHz, CDCl₃) δ 158.3 (d, ¹*J*_{C-F} = 255 Hz), 151.1 (d, ⁴*J*_{C-F} = 3 Hz), 147.7 (q, ²*J*_{C-F} = 36 Hz), 138.4 (d, ³*J*_{C-F} = 12 Hz), 136.8, 129.5, 129.4, 129.1, 129.0 (d, ²*J*_{C-F} = 17 Hz), 128.5 (d, ³*J*_{C-F} = 8 Hz), 121.8 (d, ⁴*J*_{C-F} = 5 Hz), 121.5 (q, ¹*J*_{C-F} = 274 Hz), 118.1 (q, ³*J*_{C-F} = 2 Hz), 114.6 (d, ²*J*_{C-F} = 19 Hz).

¹⁹F NMR (471 MHz, CDCl₃) δ -67.4, -122.0.

HRMS (ESI) m/z calcd for $C_{16}H_{10}F_4N^+$ [M+H]⁺: 292.0744 , Found 292.0749.

8-Chloro-4-phenyl-2-(trifluoromethyl)quinoline (3ra).

The compound (83.5 mg, 90%) was prepared from the general procedure **A** (petroleum ether : ethyl acetate = $100:1 \rightarrow 50:1$, v/v) as a red oil.


¹H NMR (500 MHz, CDCl₃) δ 7.90 (dd, J = 7.9, 1.2 Hz, 2H), 7.74 (d, J = 1.7 Hz, 1H), 7.63-7.46 (m, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 151.7, 147.8 (q, ²J_{C-F} = 35 Hz), 144.2, 136.8, 134.9, 130.7, 129.5,

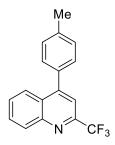
129.3, 128.9, 128.9, 128.3, 125.0, 121.5 (q, ${}^{1}J_{C-F} = 275 \text{ Hz}$), 118.0 (q, ${}^{3}J_{C-F} = 2 \text{ Hz}$).

¹⁹F NMR (471 MHz, CDCl₃) δ –67.3.

HRMS (ESI) m/z calcd for $C_{16}H_{10}ClF_3N^+$ [M+H]⁺: 308.0488, Found 308.0450.

4-Phenyl-2-(trifluoromethyl)benzo[*h*]quinoline (**3sa**).

The compound (67.5 mg, 69%) was prepared from the general procedure **A** (petroleum ether : ethyl acetate = $100:1\rightarrow 50:1$, v/v) as a white solid.


M. p. 87-89 °C.

¹H NMR (500 MHz, CDCl₃) δ 9.44 (dd, J = 8.0, 1.4 Hz, 1H), 7.91 (dd, J = 7.8, 1.4 Hz, 1H), 7.8 -7.74 (m, 5H), 7.61-7.53 (m, 5H). ¹³C NMR (126 MHz, CDCl₃) δ 150.2, 146.6, 145.9 (q, ²*J*_{C-F} = 35 Hz), 137.6, 133.5, 131.4, 129.8, 129.6, 129.1, 128.9, 128.8, 127.7, 127.7, 125.7, 125.4, 122.4, 121.9 (q, ¹*J*_{C-F} = 274 Hz), 118.2 (q, ³*J*_{C-F} = 2 Hz).

¹⁹F NMR (471 MHz, CDCl₃) δ –67.0.

HRMS (ESI) m/z calcd for $C_{20}H_{13}F_3N^+$ [M+H]⁺: 324.0955, Found 324.0998.

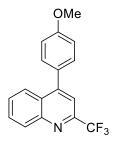
The spectral data were in accordance with those reported in the literature.⁵

4-(*p*-Tolyl)-2-(trifluoromethyl)quinoline (**3ab**).

The compound (84.5 mg, 98%) was prepared from the general procedure **A** (petroleum ether : ethyl acetate = $100:1 \rightarrow 50:1$, v/v) as a yellow oil.

¹H NMR (500 MHz, CDCl₃) δ 8.29 (d, J = 8.5 Hz, 1H), 8.02 (d, J = 8.5 Hz, 1H), 7.83-7.79 (ddd, J

= 8.8, 6.7, 1.4 Hz, 1H), 7.68 (s, 1H), 7.63-7.58 (ddd, *J* = 8.5, 6.8, 1.2 Hz, 1H), 7.42 (d, *J* = 8.1 Hz,

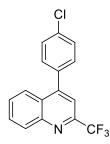

2H), 7.37 (d, *J* = 7.9 Hz, 2H), 2.48 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 151.1, 147.9, 147.6 (q, ²*J*_{C-F} = 35 Hz), 139.2, 134.3, 130.6, 130.6, 129.6, 129.5, 128.6, 127.6, 126.1, 121.8 (q, ¹*J*_{C-F} = 276 Hz), 117.0 (q, ³*J*_{C-F} = 2 Hz), 21.4.

¹⁹F NMR (471 MHz, CDCl₃) δ –67.4.

HRMS (ESI) m/z calcd for C₁₇H₁₃F₃N⁺ [M+H]⁺: 288.0995, Found 288.0999.

The spectral data were in accordance with those reported in the literature.⁸


4-(4-Methoxyphenyl)-2-(trifluoromethyl)quinoline (**3ac**).

The compound (79.9 mg, 87%) was prepared from the general procedure **A** (petroleum ether : ethyl acetate = $100:1\rightarrow 50:1$, v/v) as a yellow oil; the compound (78.4 mg, 86%) was prepared from the general procedure **B** (petroleum ether : ethyl acetate = $100:1\rightarrow 50:1$, v/v) as a yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 8.27 (d, J = 8.4 Hz, 1H), 8.04 (d, J = 8.0 Hz, 1H), 7.81 (ddd, J = 8.3, 6.7, 1.4 Hz, 1H), 7.66 (s, 1H), 7.61 (ddd, J = 7.8, 7.8, 1.1 Hz, 1H), 7.47 (ddd, J = 8.2, 6.9, 1.3 Hz, 2H), 7.13-7.06 (m, 2H), 3.91 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 160.5, 150.8, 148.0, 147.7 (q, ${}^{2}J_{C-F} = 35$ Hz), 131.0, 130.6, 130.6, 129.5, 128.6, 127.7, 126.1, 121.8 (q, ${}^{1}J_{C-F} = 273$ Hz), 117.0 (q, ${}^{3}J_{C-F} = 2$ Hz), 114.4, 55.6. ¹⁹F NMR (471 MHz, CDCl₃) δ -67.5.

HRMS (ESI) m/z calcd for $C_{17}H_{13}F_3NO^+$ [M+H]⁺:304.0944, Found 304.0947.

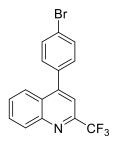
The spectral data were in accordance with those reported in the literature.⁵

4-(4-Chlorophenyl)-2-(trifluoromethyl)quinoline (3ad).

The compound (81.5 mg, 88%) was prepared from the general procedure **A** (petroleum ether : ethyl acetate = $100:1 \rightarrow 50:1$, v/v) as a white solid.

M. p. 93-94 °C.

¹H NMR (500 MHz, CDCl₃) δ 8.28 (d, J = 8.4 Hz, 1H), 7.93 (d, J = 8.5 Hz, 1H), 7.82 (ddd, J = 8.3, 6.0, 1.4 Hz, 1H), 7.67-7.60 (m, 2H), 7.56-7.51 (m, 2H), 7.50-7.44 (m, 2H).


¹³C NMR (126 MHz, CDCl₃) δ 149.6, 147.8, 147.6 (q, ²*J*_{C-F} = 34 Hz), 135.5, 135.4, 130.8, 130.7,

130.6, 129.1, 128.9, 127.2, 125.5, 121.6 (q, ${}^{1}J_{C-F} = 275 \text{ Hz}$), 116.9 (q, ${}^{3}J_{C-F} = 2 \text{ Hz}$).

¹⁹F NMR (471 MHz, CDCl₃) δ –67.4.

HRMS (ESI) m/z calcd for C₁₆H₁₀ClF₃N⁺ [M+H]⁺: 308.0448, Found 308.0452.

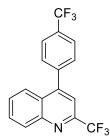
The spectral data were in accordance with those reported in the literature.⁵

4-(4-Bromophenyl)-2-(trifluoromethyl)quinoline (3ae).

The compound (85.5 mg, 80%) was prepared from the general procedure **A** (petroleum ether : ethyl acetate = $100:1 \rightarrow 50:1$, v/v) as a pale yellow solid.

M. p. 94-97 °C.

¹H NMR (500 MHz, CDCl₃) δ 8.29 (d, J = 8.5 Hz, 1H), 8.02-7.90 (dd, J = 31.6, 8.2 Hz, 1H), 7.84 (dd, J = 7.6, 5.3 Hz, 1H), 7.77-7.59 (m, 4H), 7.40 (d, J = 8.2 Hz, 2H).


¹³C NMR (126 MHz, CDCl₃) δ 149.6, 147.8, 147.6 (q, ¹*J*_{C-F} = 35 Hz), 136.0, 132.1, 131.1, 130.7,

130.6, 128.9, 127.1, 125.5, 123.6, 121.6 (q, ${}^{1}J_{C-F} = 275 \text{ Hz}$), 116.9 (q, ${}^{3}J_{C-F} = 2 \text{ Hz}$).

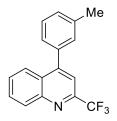
¹⁹F NMR (471 MHz, CDCl₃) δ –67.5.

HRMS (ESI) m/z calcd for $C_{16}H_{10}BrF_3N^+$ [M+H]⁺: 351.9943, Found 351.9948.

The spectral data were in accordance with those reported in the literature.⁸

2-(Trifluoromethyl)-4-(4-(trifluoromethyl)phenyl)quinoline (3af).

The compound (85.0 mg, 83%) was prepared from the general procedure **A** (petroleum ether : ethyl acetate = $100:1 \rightarrow 50:1$, v/v) as a white solid.


M. p. 119-121 °C.

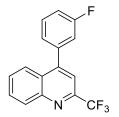
¹H NMR (500 MHz, CDCl₃) δ 8.30 (d, J = 8.5 Hz, 1H), 7.90 (d, J = 8.5 Hz, 1H), 7.88-7.81 (m, 3H), 7.73-7.63 (m, 4H).

¹³C NMR (126 MHz, CDCl₃) δ 149.4, 147.9, 147.7 (q, ²*J*_{C-F} = 35 Hz), 140.9, 131.4 (q, ²*J*_{C-F} = 35 Hz), 131.0, 130.8, 130.1, 129.2, 127.1, 126.0 (q, ³*J*_{C-F} = 2 Hz), 125.5, 124.0 (q, ¹*J*_{C-F} = 275 Hz), 121.6 (q, ¹*J*_{C-F} = 276 Hz), 117.1 (q, ³*J*_{C-F} = 2 Hz).

¹⁹F NMR (471 MHz, CDCl₃) δ -67.2, -67.5.

HRMS (ESI) m/z calcd for $C_{17}H_{10}F_6N^+$ [M+H]⁺: 342.0712, Found 342.0716.

4-(*m*-Tolyl)-2-(trifluoromethyl)quinoline (**3ag**).


The compound (83.9 mg, 97%) was prepared from the general procedure **A** (petroleum ether : ethyl acetate = $100:1\rightarrow 50:1$, v/v) as a yellow oil; The compound (74.3 mg, 86%) was prepared from the general procedure **B** (petroleum ether : ethyl acetate = $100:1\rightarrow 50:1$, v/v) as a yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 8.30 (d, J = 8.4 Hz, 1H), 8.04 (dd, J = 8.5, 1.0 Hz, 1H), 7.82 (ddd, J = 8.4, 6.8, 1.3 Hz, 1H), 7.69 (s, 1H), 7.61 (ddd, J = 8.2, 6.9, 1.1 Hz, 1H), 7.44 (dd, J = 7.7, 7.7 Hz, 1H), 7.37-7.29 (m, 3H), 2.48 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 151.3, 147.9, 147.6 (q, ²*J*_{C-F} = 36 Hz), 138.8, 137.2, 130.6, 130.6, 130.2, 129.9, 128.8, 128.6, 127.6, 126.7, 126.1, 121.8 (q, ¹*J*_{C-F} = 275 Hz), 117.1 (q, ³*J*_{C-F} = 2 Hz), 21.4.

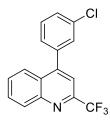
¹⁹F NMR (471 MHz, CDCl₃) δ –67.4.

HRMS (ESI) m/z calcd for $C_{17}H_{13}F_3N^+$ [M+H]⁺: 288.0995, Found 288.0999.

The spectral data were in accordance with those reported in the literature.⁸

4-(3-Fluorophenyl)-2-(trifluoromethyl)quinoline (3ah).

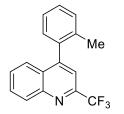
The compound (82.3 mg, 94%) was prepared from the general procedure **A** (petroleum ether : ethyl acetate = $100:1 \rightarrow 50:1$, v/v) as a white solid.


M. p. 92-93 °C.

¹H NMR (500 MHz, CDCl₃) δ 8.30 (d, J = 8.6 Hz, 1H), 7.97 (d, J = 8.5 Hz, 1H), 7.84 (ddd, J = 7.5, 7.5, 1.0 Hz, 1H), 7.69 (s, 1H), 7.66 (dd, J = 7.7, 7.7 Hz, 1H), 7.57-7.51 (m, 2H), 7.32-7.26 (m, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 163.3 (d, ¹*J*_{C-F} = 249 Hz), 149.9, 147.9, 147.6 (q, ²*J*_{C-F} = 35 Hz), 133.2 (d, ⁴*J*_{C-F} = 2 Hz), 131.4, 131.4, 130.7 (d, ³*J*_{C-F} = 10 Hz), 130.7 (d, ³*J*_{C-F} = 10 Hz), 128.9, 127.4, 125.7, 121.7 (q, ¹*J*_{C-F} = 275 Hz), 117.1 (q, ³*J*_{C-F} = 2 Hz), 116.1 (d, ²*J*_{C-F} = 22 Hz), 116.1 (d, ²*J*_{C-F} = 22 Hz).

¹⁹F NMR (471 MHz, CDCl₃) δ -67.4, -112.1.

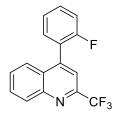

HRMS (ESI) m/z calcd for C₁₆H₁₀F₄N⁺ [M+H]⁺: 292.0744, Found 292.0746.

4-(3-Chlorophenyl)-2-(trifluoromethyl)quinoline (3ai).

The compound (91.5 mg, 99%) was prepared from the general procedure **A** (petroleum ether : ethyl acetate = $100:1 \rightarrow 50:1$, v/v) as a yellow oil; The compound (65.5 mg, 70%) was prepared from the general procedure **B** (petroleum ether : ethyl acetate = $100:1 \rightarrow 50:1$, v/v) as a yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 8.29 (d, J = 8.5 Hz, 1H), 7.92 (d, J = 8.5 Hz, 1H), 7.83 (ddd, J = 8.4, 6.8, 1.4 Hz, 1H), 7.68-7.61 (m, 2H), 7.54-7.47 (m, 3H), 7.40 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 149.4, 147.9, 147.6 (q, ² $_{JC-F} = 35$ Hz), 138.9, 135.0, 130.9, 130.7, 130.2, 129.6, 129.3, 129.1, 127.8, 127.2, 125.6, 121.6 (q, ¹ $_{JC-F} = 275$ Hz), 117.1 (q, ³ $_{JC-F} = 2$ Hz). ¹⁹F NMR (471 MHz, CDCl₃) δ -67.4.

HRMS (ESI) m/z calcd for $C_{16}H_{10}ClF_3N^+$ [M+H]⁺: 308.0448, Found 308.0449.

4-(o-Tolyl)-2-(trifluoromethyl)quinoline (**3aj**).

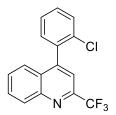

The compound (60.5 mg, 70%) was prepared from the general procedure **A** (petroleum ether : ethyl acetate = $100:1 \rightarrow 50:1$, v/v) as a yellow oil.

¹H NMR (500 MHz, CDCl₃) δ 8.35 (d, J = 8.5 Hz, 1H), 7.89-7.83 (m, 1H), 7.68 (s, 1H), 7.64-7.59 (m, 2H), 7.27 (dd, J = 7.5, 1.2 Hz, 1H), 2.09 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 151.2, 147.7 (q, ²*J*_{C-F} = 35 Hz), 147.6, 136.7, 136.0, 130.8, 130.6, 130.5, 129.6, 129.1, 128.7, 128.1, 126.1, 126.1, 121.8 (q, ¹*J*_{C-F} = 275 Hz), 117.3 (q, ³*J*_{C-F} = 2 Hz), 20.0.

¹⁹F NMR (471 MHz, CDCl₃) δ –67.4.

HRMS (ESI) m/z calcd for $C_{17}H_{13}F_3N^+$ [M+H]⁺: 288.0995, Found 288.0997.


4-(2-Fluorophenyl)-2-(trifluoromethyl)quinoline (3ak).

The compound (76.2 mg, 87%) was prepared from the general procedure **A** (petroleum ether : ethyl acetate = $100:1\rightarrow 50:1$, v/v) as a pale yellow oil; The compound (74.3 mg, 85%) was prepared from the general procedure **B** (petroleum ether : ethyl acetate = $100:1\rightarrow 50:1$, v/v) as a pale yellow oil.

¹H NMR (500 MHz, CDCl₃) δ 8.31 (d, *J* = 8.5 Hz, 1H), 7.83 (ddd, *J* = 8.8, 7.8, 1.5 Hz, 1H), 7.78 (d, *J* = 8.6 Hz, 1H), 7.73 (s, 1H), 7.63 (ddd, *J* = 7.4, 7.4, 0.9 Hz, 1H), 7.57-7.50 (m, 1H), 7.42 (ddd, *J* = 7.5, 7.5, 1.8 Hz, 1H), 7.34 (ddd, *J* = 7.5, 7.5, 1.0 Hz, 1H), 7.28 (ddd, *J* = 8.7, 8.7, 0.9 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 159.6 (d, ¹*J*_{C-F} = 249 Hz), 147.6, 147.6 (q, ²*J*_{C-F} = 35 Hz), 145.2, 131.6 (d, ³*J*_{C-F} = 3 Hz), 131.3 (d, ³*J*_{C-F} = 8 Hz), 130.8, 130.6, 128.9, 127.7, 125.9 (d, ⁴*J*_{C-F} = 2 Hz), 124.7 (d, ³*J*_{C-F} = 4 Hz), 124.7 (d, ²*J*_{C-F} = 16 Hz), 121.6 (q, ¹*J*_{C-F} = 276 Hz), 118.0 (q, ³*J*_{C-F} = 2 Hz), 116.3 (d, ²*J*_{C-F} = 22 Hz).

¹⁹F NMR (471 MHz, CDCl₃) *δ* –67.4, –113.5.

HRMS (ESI) m/z calcd for $C_{16}H_{10}F_4N^+$ [M+H]⁺: 292.0744, Found 292.0747.

4-(2-Chlorophenyl)-2-(trifluoromethyl)quinoline (3al).

The compound (83.4 mg, 90%) was prepared from the general procedure **A** (petroleum ether : ethyl acetate = $100:1 \rightarrow 50:1$, v/v) as a yellow oil.

¹H NMR (500 MHz, CDCl₃) δ 8.31 (d, J = 8.5 Hz, 1H), 7.86-7.80 (m, 1H), 7.67 (s, 1H), 7.64-7.56 (m, 3H), 7.49 (ddd, J = 7.6, 7.6, 1.8 Hz, 1H), 7.44 (ddd, J = 7.6, 7.6, 1.8 Hz, 1H), 7.36 (dd, J = 7.5, 1.8 Hz, 1H).

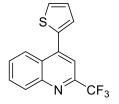
¹³C NMR (126 MHz, CDCl₃) δ 148.4, 147.6, 147.6 (q, ${}^{2}J_{C-F} = 36$ Hz), 135.9, 133.3, 131.3, 130.9, 130.6, 130.5, 130.2, 128.9, 127.7, 127.1, 126.0, 121.8 (q, ${}^{1}J_{C-F} = 275$ Hz), 117.7 (q, ${}^{3}J_{C-F} = 2$ Hz). ¹⁹F NMR (471 MHz, CDCl₃) δ -67.4.

HRMS (ESI) m/z calcd for $C_{16}H_{10}ClF_3N^+$ [M+H]⁺:308.0448, Found 308.0453.

4-(1-Naphthalenyl)-2-(trifluoromethyl)quinoline (3am).

The compound (92.4 mg, 95%) was prepared from the general procedure **A** (petroleum ether : ethyl acetate = $100:1\rightarrow 50:1$, v/v) as a pale yellow solid; the compound (93.8 mg, 96%) was prepared from the general procedure **B** (petroleum ether : ethyl acetate = $100:1\rightarrow 50:1$, v/v) as a pale yellow solid.

M. p. 96-98 °C.


¹H NMR (500 MHz, CDCl₃) δ 8.35 (d, J = 8.5 Hz, 1H), 8.07-8.00 (m, 3H), 7.98-7.91 (m, 2H), 7.84 (ddd, J = 8.4, 6.8, 1.4 Hz, 1H), 7.79 (s, 1H), 7.65-7.58 (m, 4H).

¹³C NMR (126 MHz, CDCl₃) δ 151.0, 147.9, 147.7 (q, ²*J*_{C-F} = 35 Hz), 134.6, 133.3, 133.3, 130.7, 130.6, 129.1, 128.8, 128.6, 128.4, 128.0, 127.7, 127.2, 127.0, 127.0, 126.1, 121.8 (q, ¹*J*_{C-F} = 276 Hz), 117.3 (q, ³*J*_{C-F} = 2 Hz).

¹⁹F NMR (471 MHz, CDCl₃) δ –67.3.

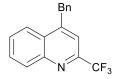
HRMS (ESI) m/z calcd for C₂₀H₁₃F₃N⁺ [M+H]⁺: 324.0995, Found 324.0998.

The spectral data were in accordance with those reported in the literature.⁵

4-(Thiophen-2-yl)-2-(trifluoromethyl)quinoline (3an).

The compound (42.0 mg, 50%) was prepared from the general procedure **A** for 6 h (petroleum ether : ethyl acetate = $100:1 \rightarrow 50:1$, v/v) as a yellow oil.

¹H NMR (500 MHz, CDCl₃) δ 8.37 (d, J = 8.5 Hz, 1H), 8.29 (d, J = 8.5 Hz, 1H), 7.85 (ddd, J = 8.4, 6.8, 1.4 Hz, 1H), 7.78 (s, 1H), 7.69 (ddd, J = 8.3, 6.7, 1.3 Hz, 1H), 7.59 (d, J = 5.1 Hz, 1H), 7.45 (dd, J = 3.6, 1.1 Hz, 1H), 7.29-7.26 (m, 1H).


¹³C NMR (126 MHz, CDCl₃) δ 148.1, 147.6 (q, ²*J*_{C-F} = 35 Hz), 143.4, 137.9, 130.8, 130.7, 129.5,

129.1, 128.3, 128.2, 127.1, 125.7, 121.6 (q, ${}^{1}J_{C-F} = 276 \text{ Hz}$), 117.3(q, ${}^{3}J_{C-F} = 2 \text{ Hz}$).

¹⁹F NMR (471 MHz, CDCl₃) δ –67.5.

HRMS (ESI) m/z calcd for $C_{14}H_9F_3NS^+$ [M+H]⁺: 280.0402 , Found 280.0403 .

The spectral data were in accordance with those reported in the literature.⁵

4-Benzyl-2-(trifluoromethyl)quinoline (3ao).

The compound (62.4 mg, 72%) was prepared from the general procedure **A** (petroleum ether : ethyl acetate = $100:1 \rightarrow 50:1$, v/v) as a pale yellow solid.

M. p. 86-88 °C.

¹H NMR (500 MHz, CDCl₃) δ 8.26 (d, J = 8.4 Hz, 1H), 8.10 (d, J = 8.5 Hz, 1H), 7.80 (ddd, J = 8.4, 6.9, 1.2 Hz, 1H), 7.67-7.62 (ddd, J = 8.4, 7.5, 1.0 Hz, 1H), 7.50 (s, 1H), 7.36-7.31 (m, 2H), 7.31-7.26 (m, 1H), 7.21 (d, J = 7.4 Hz, 2H), 4.51 (s, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 149.7, 148.2 (q, ²*J*_{C-F} = 34 Hz), 147.8, 138.2, 131.3, 130.8, 129.3,

129.2, 128.9, 128.6, 127.3, 124.3, 122.0 (q, ${}^{1}J_{C-F} = 274 \text{ Hz}$), 117.7 (q, ${}^{3}J_{C-F} = 2 \text{ Hz}$), 38.8.

¹⁹F NMR (471 MHz, CDCl₃) δ –67.5.

HRMS (ESI) m/z calcd for C₁₇H₁₃F₃NO⁺ [M+H]⁺: 288.0995, Found 288.0996.

n-Hex

4-Hexyl-2-(trifluoromethyl)quinoline (3ap).

The compound (65.4 mg, 77%) was prepared from the general procedure **A** (petroleum ether : ethyl acetate = $100:1 \rightarrow 50:1$, v/v) as a brown solid.

M. p. 52-54 °C.

¹H NMR (500 MHz, CDCl₃) δ 8.21 (d, J = 8.5 Hz, 1H), 8.06 (d, J = 8.5 Hz, 1H), 7.76 (ddd, J = 8.6, 7.6, 1.4 Hz, 1H), 7.64 (ddd, J = 8.6, 8.2, 1.2 Hz, 1H), 7.55 (s, 1H), 3.15-3.04 (t, J = 7.9 Hz, 2H), 1.76 (m, 2H), 1.45 (m, 2H), 1.38-1.28 (m, 4H), 0.90 (t, J = 7.0 Hz, 3H).

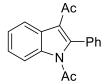
¹³C NMR (126 MHz, CDCl₃) δ 151.7, 147.7 (q, ${}^{2}J_{C-F} = 34$ Hz), 147.4, 131.0, 130.3, 128.3, 128.3, 123.6, 121.9 (q, ${}^{1}J_{C-F} = 276$ Hz), 116.3 (q, ${}^{3}J_{C-F} = 2$ Hz), 32.5, 31.7, 30.1, 29.4, 22.6, 14.1.

¹⁹F NMR (471 MHz, CDCl₃) δ –67.6.

HRMS (ESI) m/z calcd for C₁₆H₁₉F₃NO⁺ [M+H]⁺: 282.1464, Found 282.1466.

(*Z*)-1,1,1-trifluoro-4-phenyl-4-(phenylamino)but-3-en-2-one (**5**).

The compound (70.8 mg, 81%) was prepared from the general procedure **A** (petroleum ether : ethyl acetate = $100:1\rightarrow 30:1$, v/v) as a yellow oil.


¹H NMR (500 MHz, CDCl₃) *δ* 12.55 (br s, 1H), 7.42 (m, 1H), 7.37-7.30 (m, 4H), 7.18 (dd, *J* = 7.7, 7.7 Hz, 2H), 7.11 (dd, *J* = 7.4, 7.7 Hz, 1H), 6.84 (d, *J* = 7.7 Hz, 2H), 5.73 (s, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 177.6 (q, ²*J*_{C-F} = 34 Hz), 166.6, 138.0, 134.0, 130.8, 129.1, 128.8,

128.4, 126.1, 124.1, 117.6 (q, ${}^{1}J_{C-F} = 288 \text{ Hz}$), 92.8 (q, ${}^{3}J_{C-F} = 1.0 \text{ Hz}$).

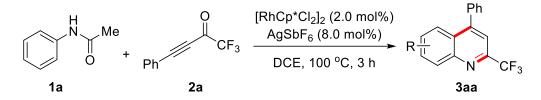
¹⁹F NMR (471 MHz, CDCl₃) δ –76.6.

HRMS (ESI) m/z calcd for C₁₆H₁₃F₃NO⁺ [M+H]⁺: 292.0944, Found 292.0946.

1,1'-(2-Phenyl-1*H*-indole-1,3-diyl)bis(1-ethanone) (**10**).

The compound (14.0 mg, 16%) was prepared from the general procedure **A** (petroleum ether : ethyl acetate = $100:1\rightarrow 30:1$, v/v) as a pale yellow solid.

M. p. 126-130 °C.

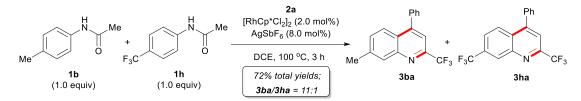

¹H NMR (500 MHz, CDCl₃) δ 8.37-8.22 (m, 2H), 7.61-7.54 (m, 3H), 7.64-7.50 (m, 2H), 7.44-7.36 (m, 2H), 1.94 (s, 3H), 1.93 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 196.5, 171.7, 142.3, 136.2, 133.0, 130.8, 130.5, 129.2, 127.1, 126.1, 125.0, 122.2, 121.9, 115.6, 30.9, 27.9.

HRMS (ESI) m/z calcd for $C_{18}H_{16}NO_2^+$ [M+H]⁺: 278.1176, Found 278.1179.

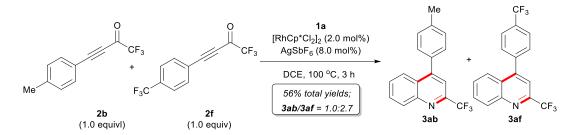
5. Experiments with scale-up reaction

(A) Rhodium-catalysed [3+3] annulation between aniline 1a and CF₃-ynone 2a


The mixture of acetanilide (**1a**, 0.54 g, 4.0 mmol, 1.0 equiv), CF₃-ynone **2a** (0.87 g, 4.4 mmol, 1.1 equiv), [RhCp*Cl₂]₂ (49.4 mg, 0.08 mmol) and AgSbF₆ (55.0 mg, 0.16 mmol) in DCE (13.0 mL) was stirred at 100 °C under N₂ for 3 h. After reaction completion, the solvent was removed under reduced pressure and the resulting residue was purified by column chromatography on silica gel (petroleum ether : ethyl acetate = $100:1\rightarrow 50:1$, v/v) afforded the corresponding 2-trifluoromethylquinoline product **3aa** (1.002 g, 91%) as a yellow solid.

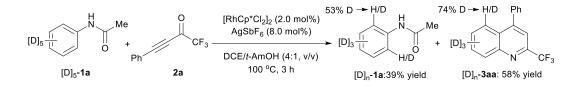
(B) Rhodium-catalysed one-pot [3+3] annulation between anilide 4a and trifluoromethyl ynone 2a

The mixture of anilide (**4a**, 0.54 g, 4.0 mmol, 1.0 equiv), Ac₂O (0.49 g, 4.8 mmol, 1.2 equiv), CF₃-ynone **2a** (0.87 g, 4.4 mmol, 1.1 equiv), [RhCp*Cl₂]₂ (49.4 mg, 0.08 mmol) and AgSbF₆(55.0 mg, 0.16 mmol) in DCE (13.0 mL) was stirred at 100 °C under N₂ for 3 h. After reaction completion, the solvent was removed under reduced pressure and the resulting residue was purified by column chromatography on silica gel (petroleum ether : ethyl acetate = $100:1\rightarrow50:1$, v/v) afforded the corresponding 2-trifluoromethylquinoline product **3aa** (0.934 g, 85%) as a yellow solid.

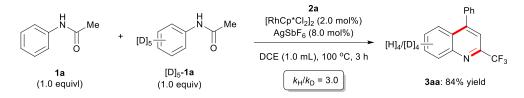

6. Intermolecular competition experiments

(A) Intermolecular competition experiment with anilides 1b and 1h

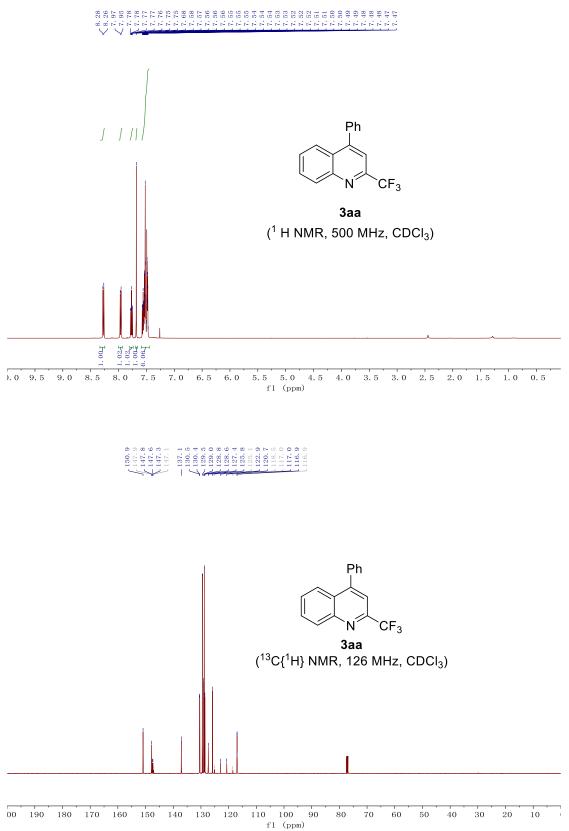
N-(p-tolyl)acetamide The mixture of (**1b**, 44.7 mg, 0.30 mmol, 1.0 equiv), *N*-{4-(trifluoromethyl)phenyl}acetamide (1h, 60.9 0.30 1.0 mg, mmol, equiv), 1,1,1-trifluoro-4-phenylbut-3-yn-2-one (**2a**, 59.4 mg, 0.30 mmol, 1.0 equiv), [RhCp*Cl₂]₂ (3.7 mg, 0.006 mmol) and AgSbF₆ (8.2 mg, 0.024 mmol) in DCE (1.0 mL) was stirred at 100 °C under N₂ for 3 h. After reaction completion, the solvent was removed under reduced pressure. The resulting residue was purified by column chromatography on silica gel on silica gel (petroleum ether : ethyl acetate = $100:1 \rightarrow 50:1$, v/v) to afford **3ba** (56.8 mg, 66%) as a yellow oil and **3ha** (6.9 mg, 6%) as a white solid.


(B) Intermolecular competition experiment with CF₃-ynones 2b and 2f

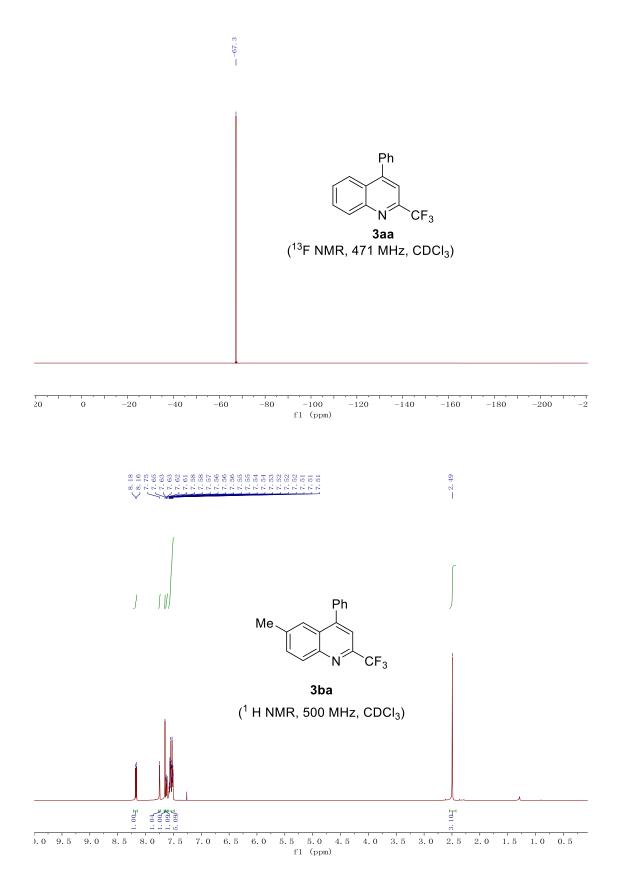
N-phenylacetamide 1.0 The mixture of (1a,40.5 mg, 0.30 mmol, equiv), 1,1,1-trifluoro-4-(*p*-tolyl)but-3-yn-2-one (**2b**, 63.7 0.30 1.0 mg, mmol, equiv), 1,1,1-trifluoro-4-{4-(trifluoromethyl)phenyl}but-3-yn-2-one (2f, 79.8 mg, 0.30 mmol, 1.0 equiv), [RhCp*Cl₂]₂ (3.7 mg, 0.006 mmol) and AgSbF₆ (8.2 mg, 0.024 mmol) in DCE (1.0 mL) was stirred at 100 $^{\circ}\!C$ under N_2 for 3 h. After reaction completion, the solvent was removed under reduced pressure. The resulting residue was purified by column chromatography on silica gel on silica gel (petroleum ether : ethyl acetate = $100:1 \rightarrow 50:1$, v/v) to afford **3ab** (13.2 mg, 15%) as a yellow oil and **3af** (42.9 mg, 41%) as a white solid.


7. Deuterium-labeling experiments

(A) Rhodium-catalyzed [3+3] annulation of anilide [D]₅-1a with CF₃-ynone 2a in the presence of DCE/t-AmOH

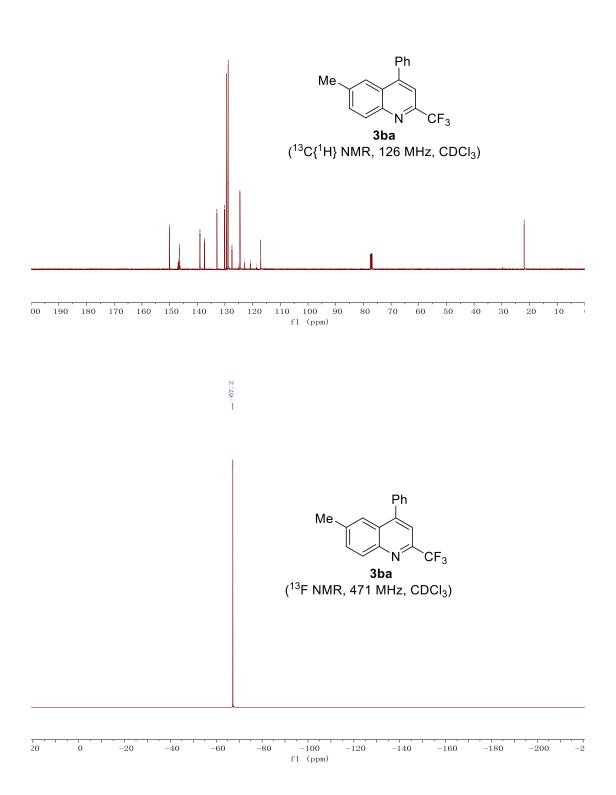

The (42.0)0.30 mixture of anilide [D]5-1a mg, mmol, 1.0equiv), 1,1,1-trifluoro-4-phenylbut-3-yn-2-one (**2a**, 65.4 mg, 0.33 mmol, 1.1 equiv), [RhCp*Cl₂]₂ (3.7 mg, 0.006 mmol) and AgSbF₆ (8.2 mg, 0.024 mmol) in DCE/t-AmOH (4:1, v/v, 1.0 mL) was stirred at 100 °C under N₂ for 3 h. After reaction completion, the solvent was removed under reduced pressure. The resulting residue was purified by column chromatography on silica gel on silica gel (petroleum ether : ethyl acetate = $100:1 \rightarrow 50:1 \rightarrow 10:1$, v/v) to afford [D]_n-**3aa** (48.7 mg, 58%) as a yellow solid and [D]_n-1a (16.6 mg, 39%) as a white solid. The deuterium incorporation was estimated by ¹H-NMR spectroscopy.

(B) Kinetic isotope effect studies

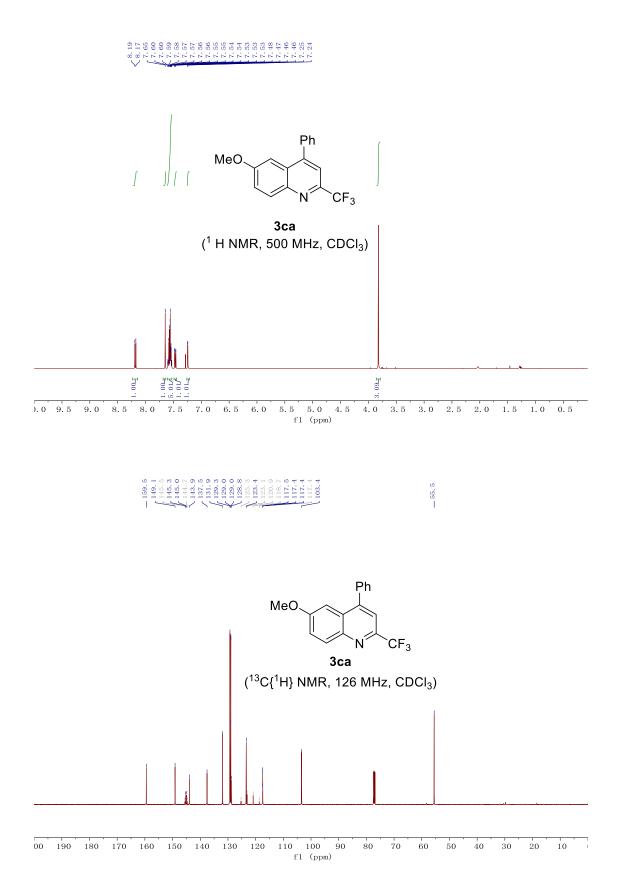


The mixture of anilide **1a** (40.5 mg, 0.30 mmol, 1.0 equiv), anilide $[D]_5$ -**1a** (42.0 mg, 0.30 mmol, 1.0 equiv), 1,1,1-trifluoro-4-phenylbut-3-yn-2-one (**2a**, 59.4 mg, 0.30 mmol, 1.0 equiv), $[RhCp^*Cl_2]_2$ (3.7 mg, 0.006 mmol) and AgSbF₆ (8.2 mg, 0.024 mmol) in DCE (1.0 mL) was stirred at 100 °C under N₂ for 3 h. After reaction completion, the solvent was removed under reduced pressure. The resulting residue was purified by column chromatography on silica gel (petroleum ether : ethyl acetate = $100:1 \rightarrow 50:1$, v/v) to afford $[D]_n$ -**3aa** (69.1 mg, 84%) as a yellow solid. The deuterium incorporation was estimated by ¹H-NMR spectroscopy.

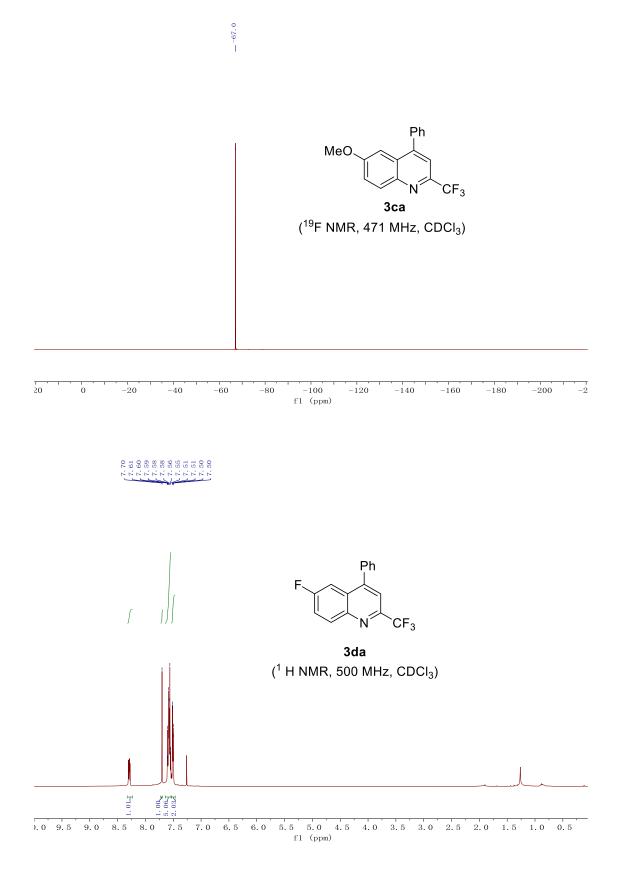
8. NMR spectra of compounds 3, 5 and 10.

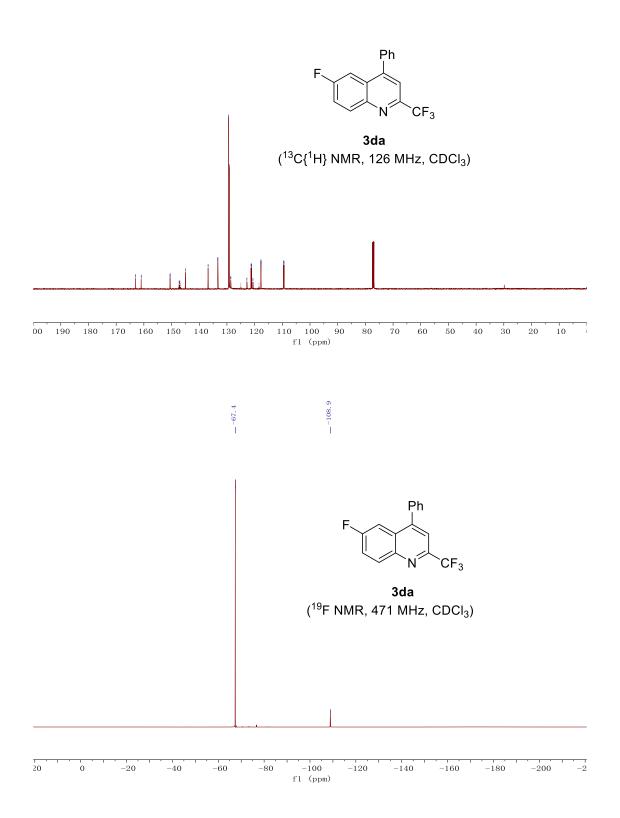


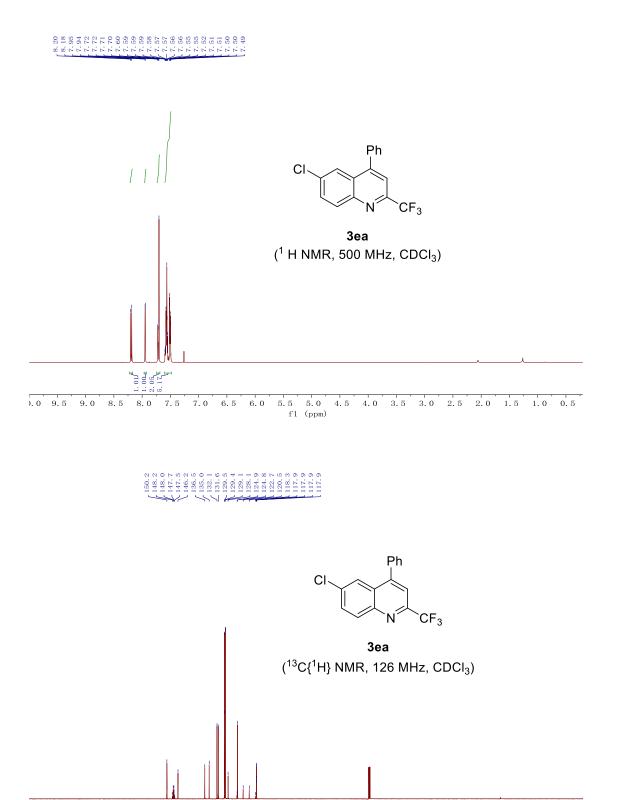
·* E.....

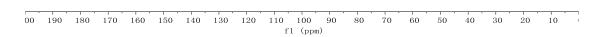


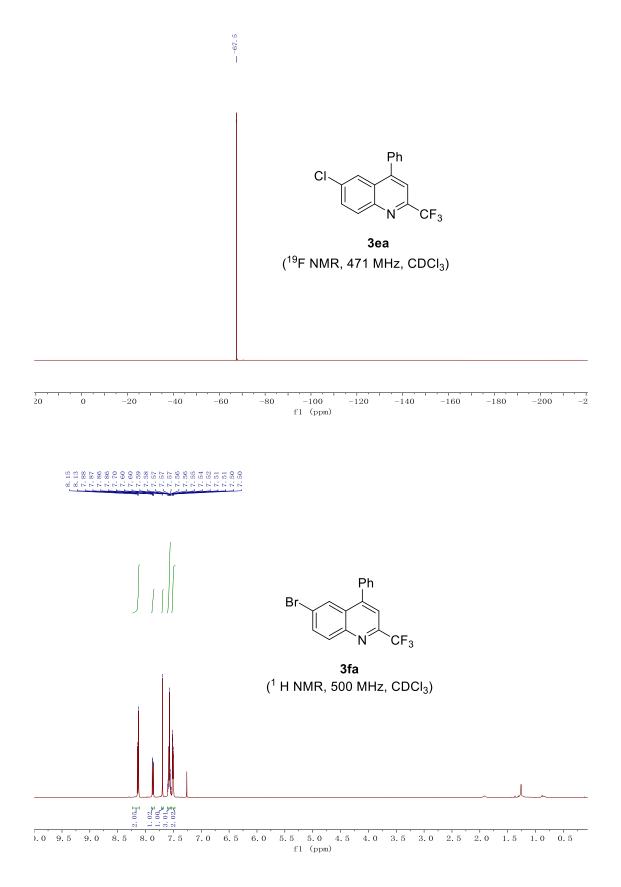
150.1 146.5 146.5 146.5 146.5 139.0 139.0 132.9 132.9 132.9 132.9 132.9 132.9 132.9 129.5 129.5 129.5 129.5 129.5 129.5 129.5 120.8


__21.9

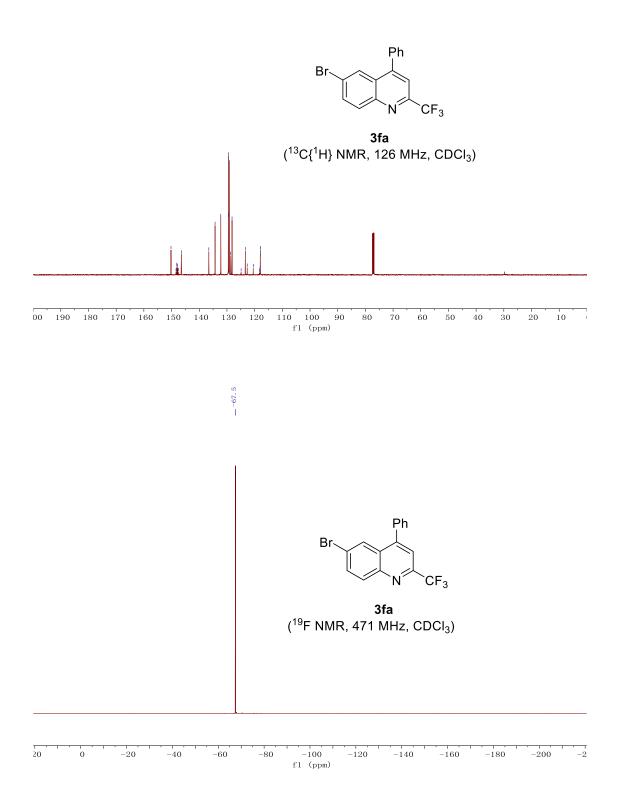

S28

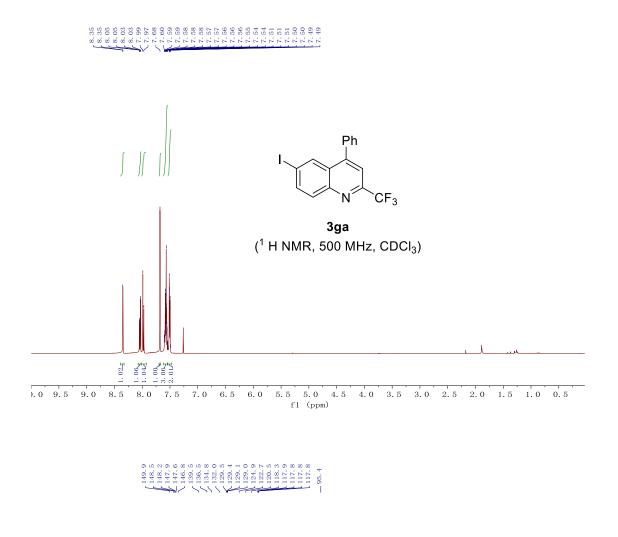


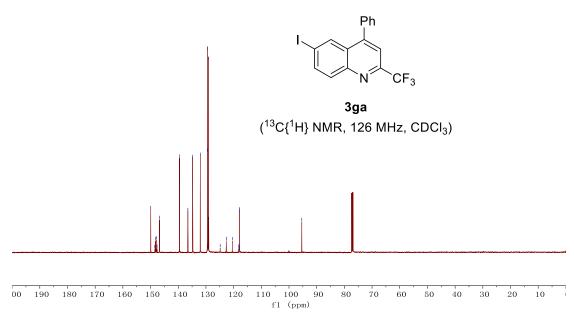


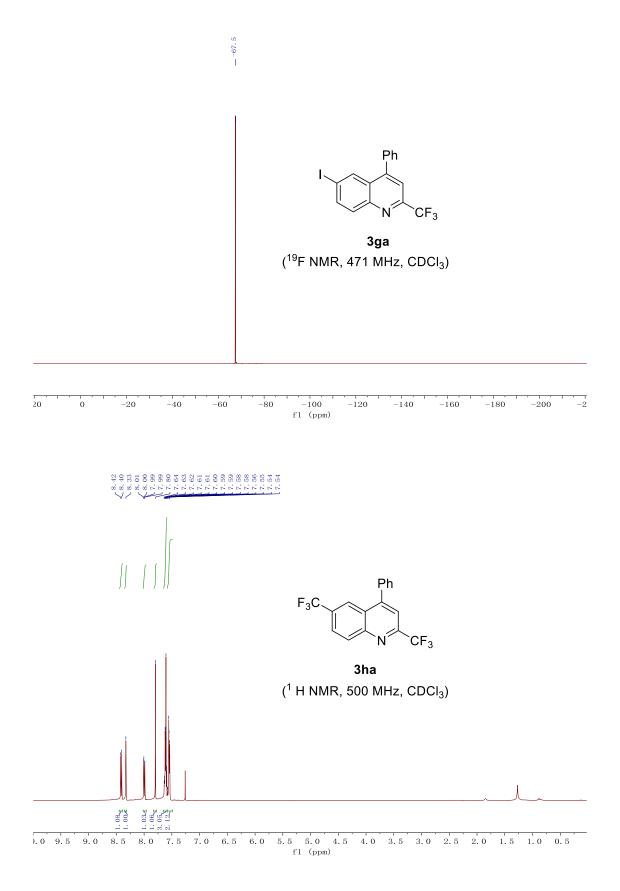


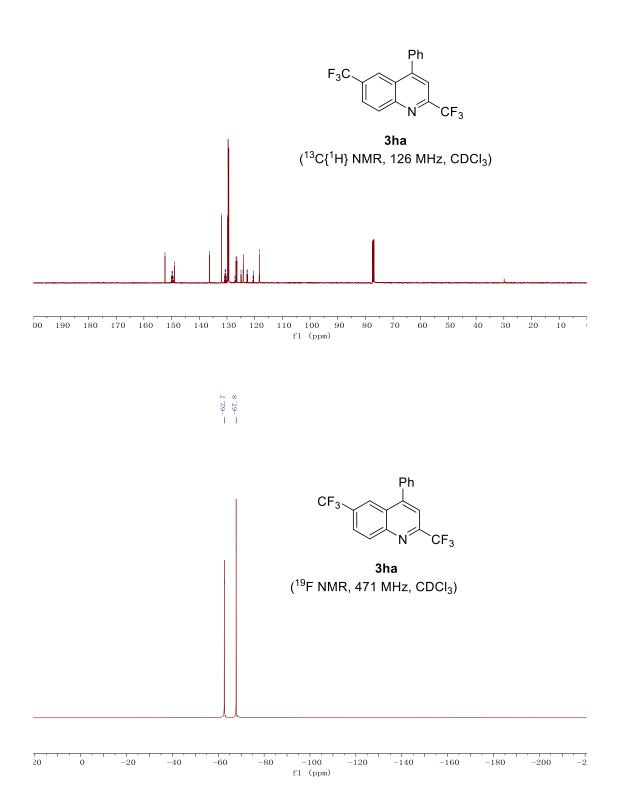
A 163:0 A 163:0 A 164:0 A 164:0

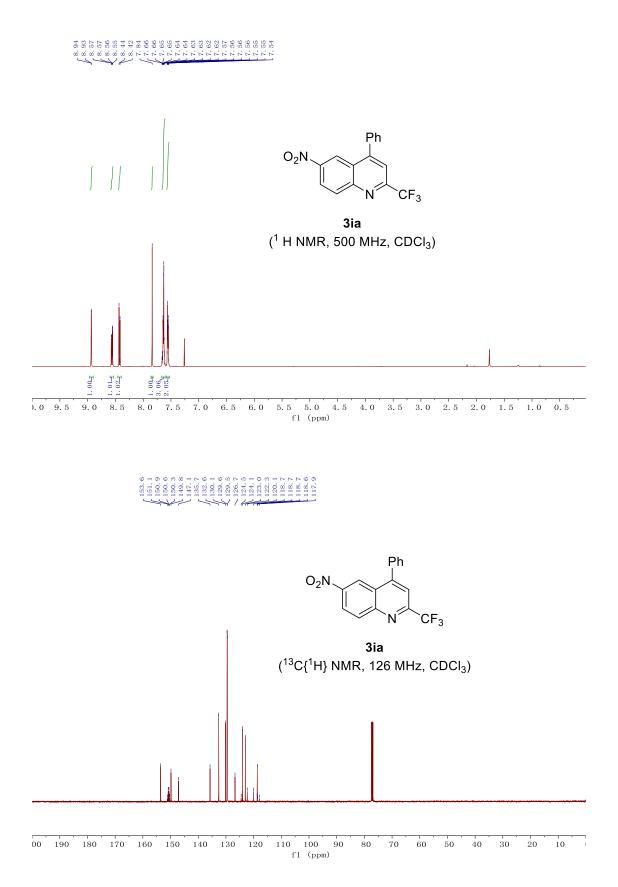


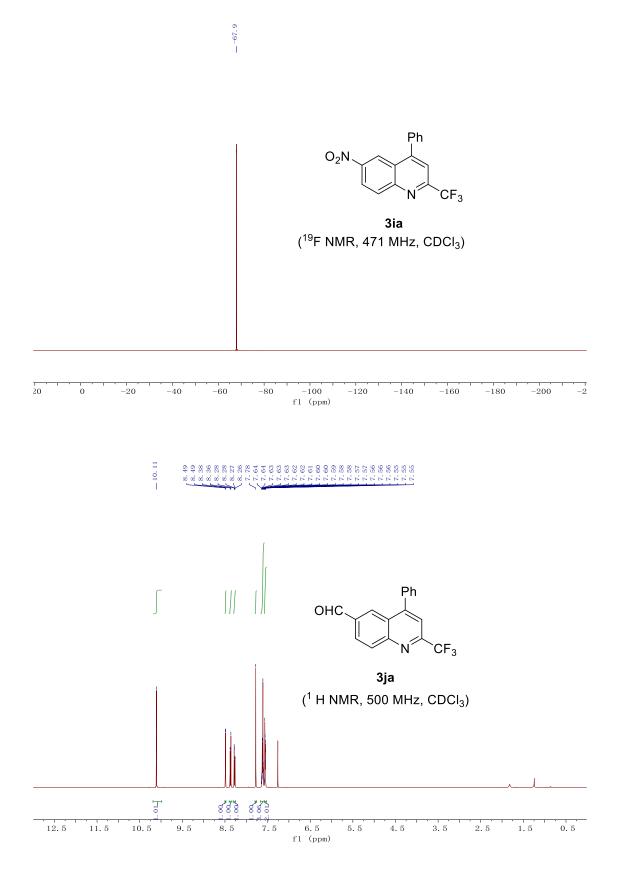


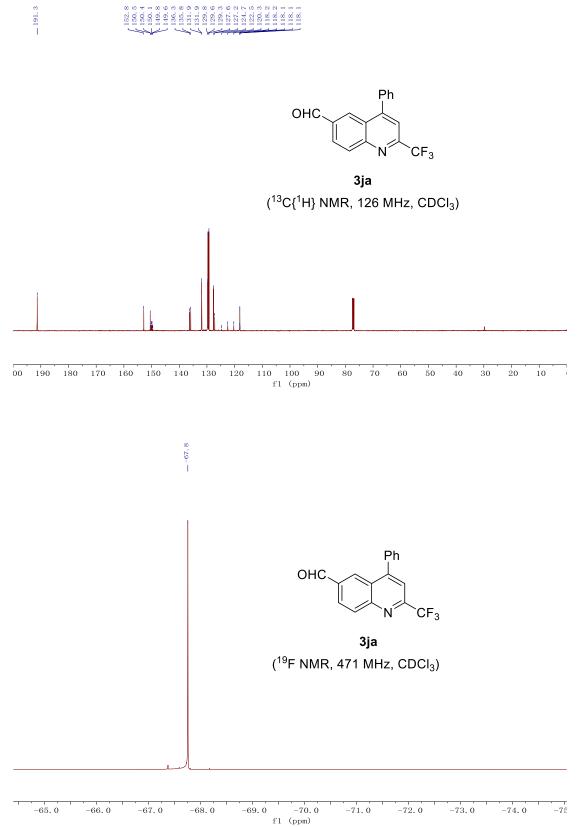


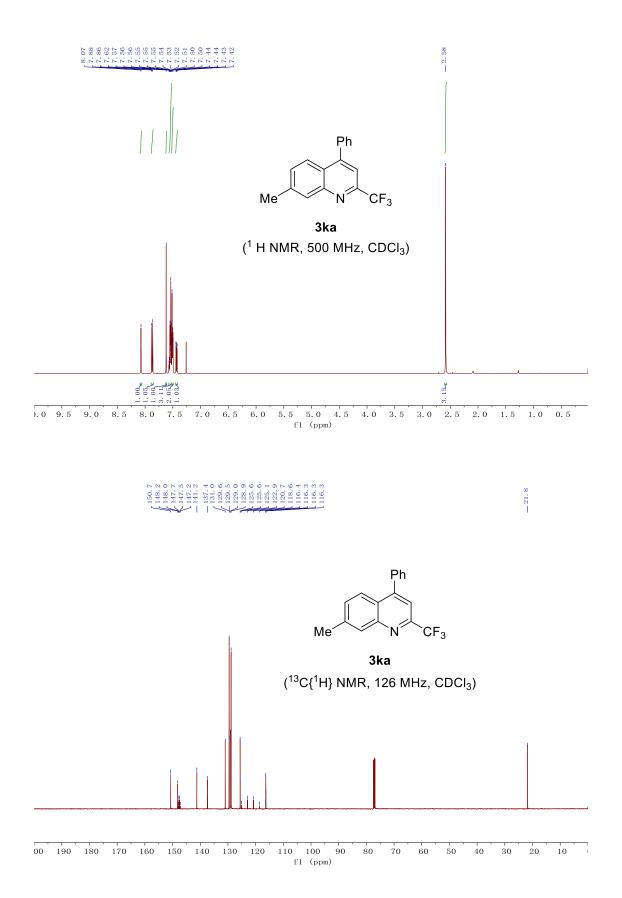


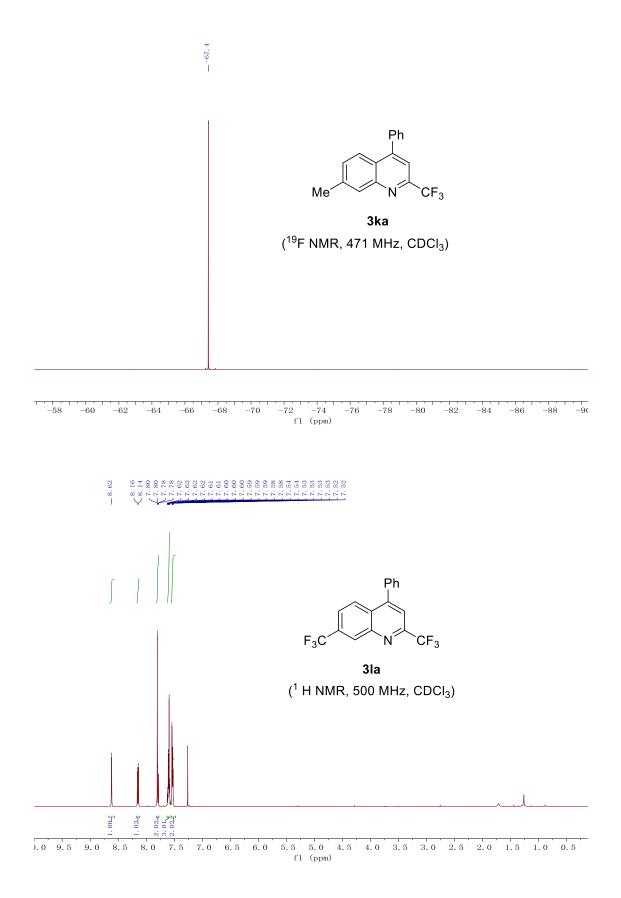


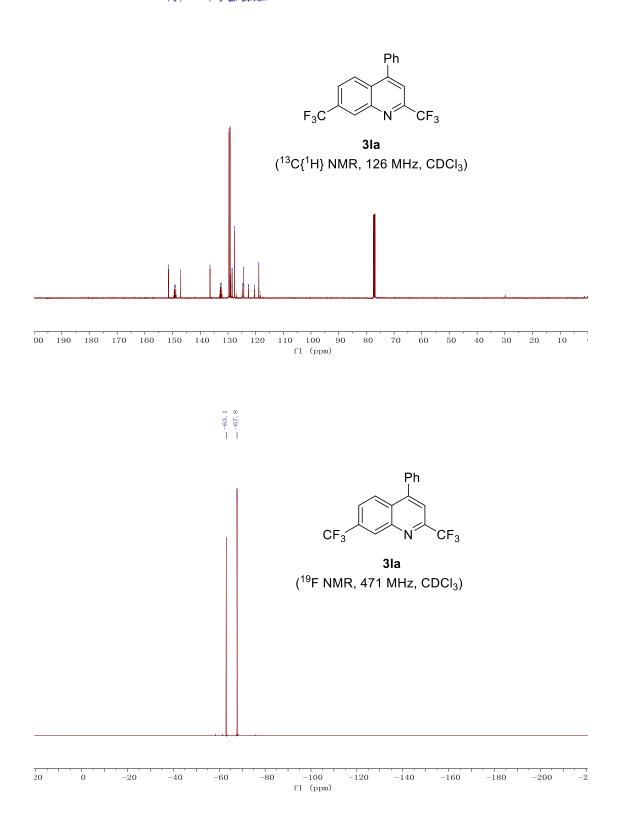


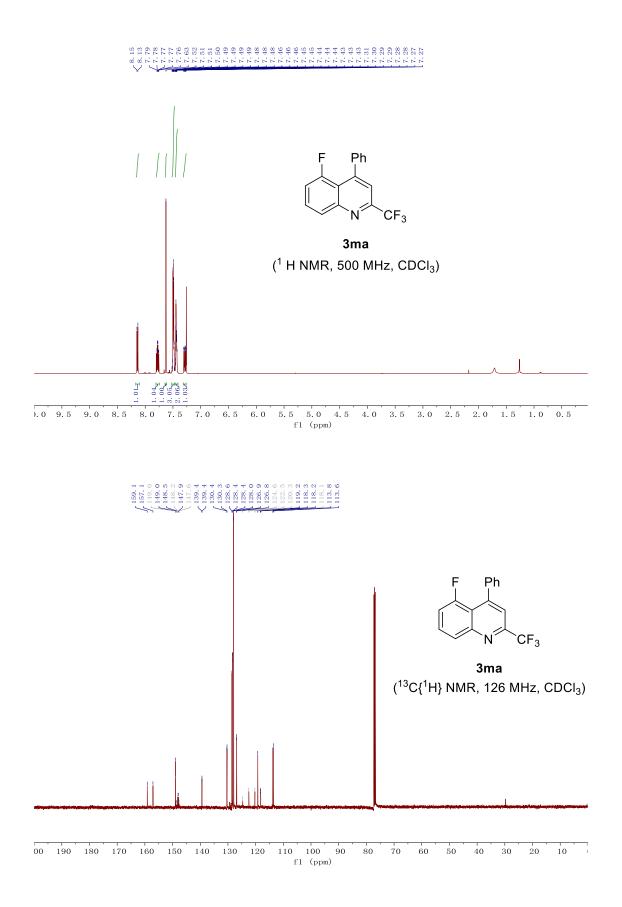


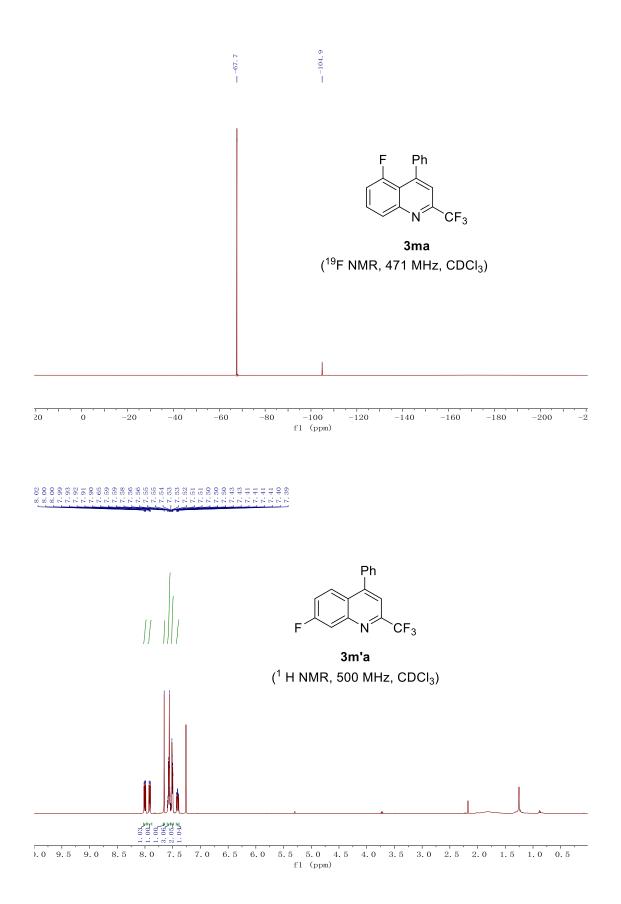

$\begin{bmatrix} 152 & 4 \\ 152 & 4 \end{bmatrix}$

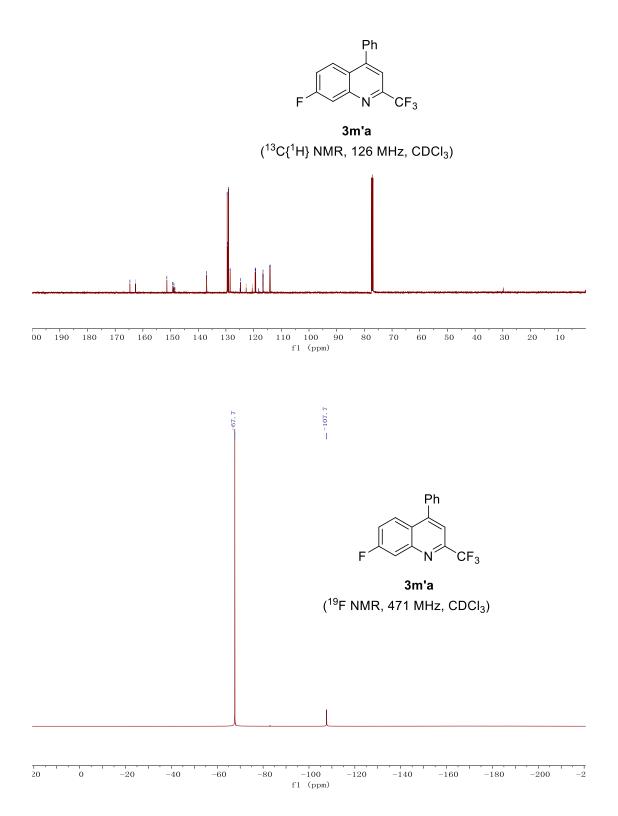


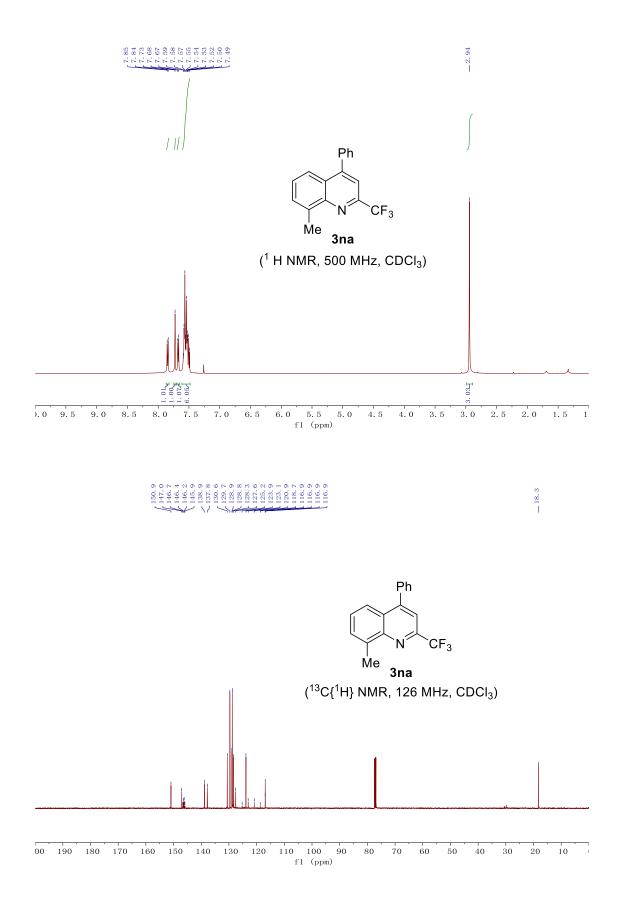

S38

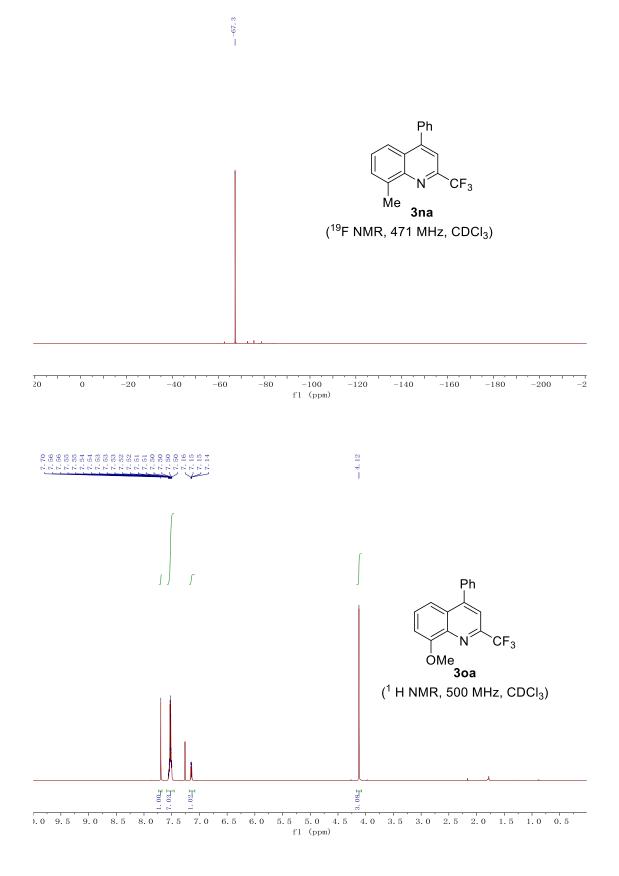


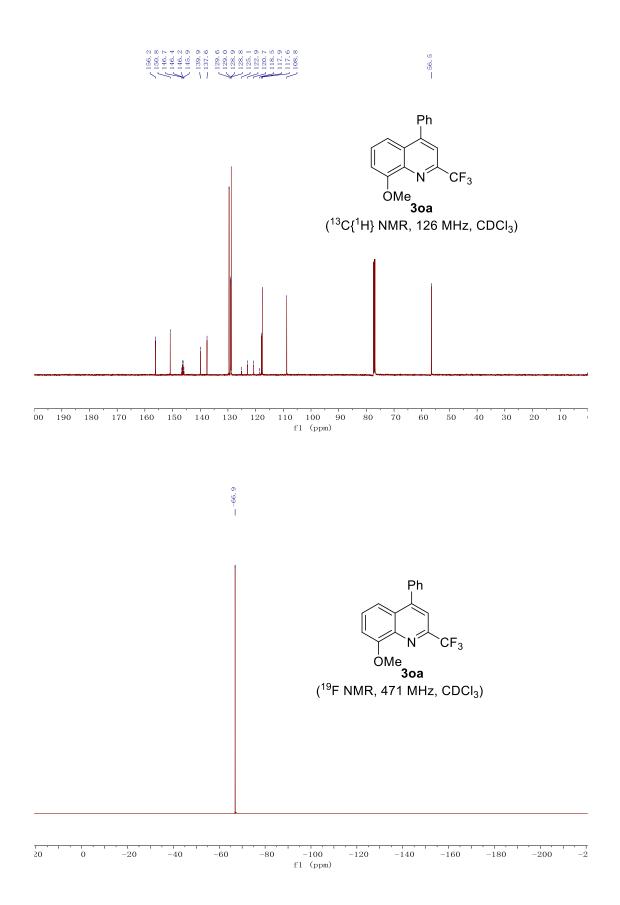


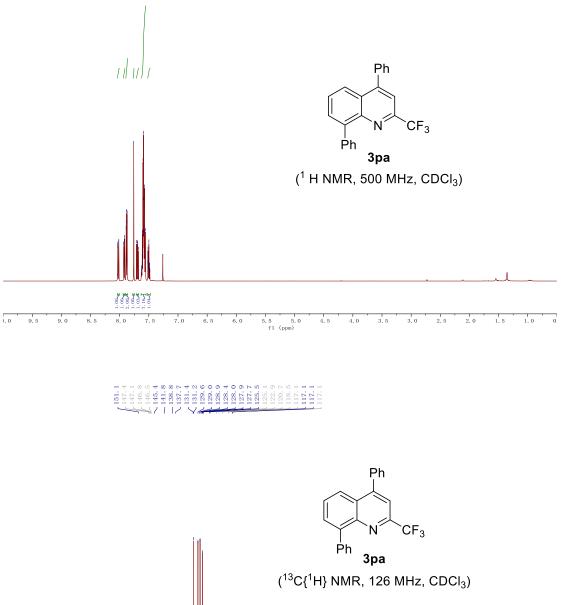


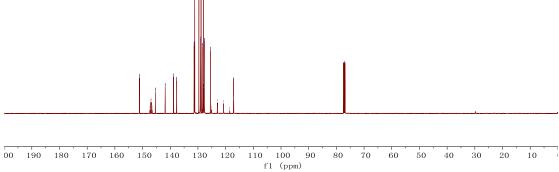

151. 4 149. 6 149. 6 149. 6 147. 7 147. 7 147. 7 147. 7 135. 5 15. 5

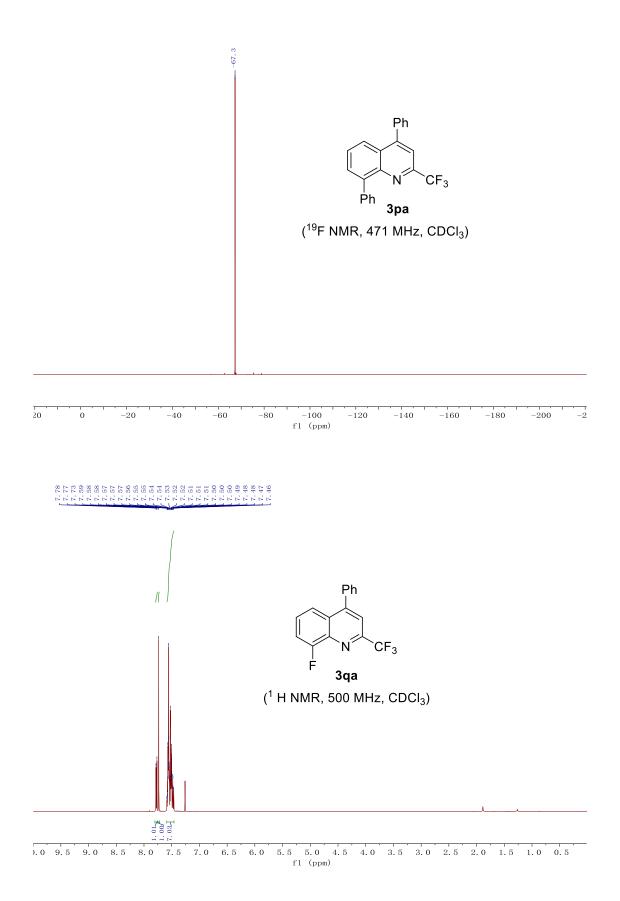


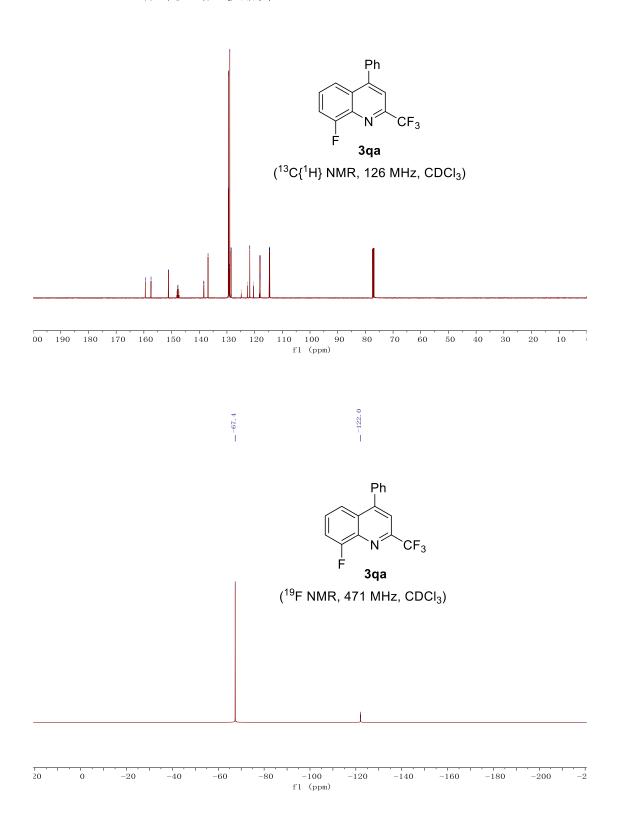




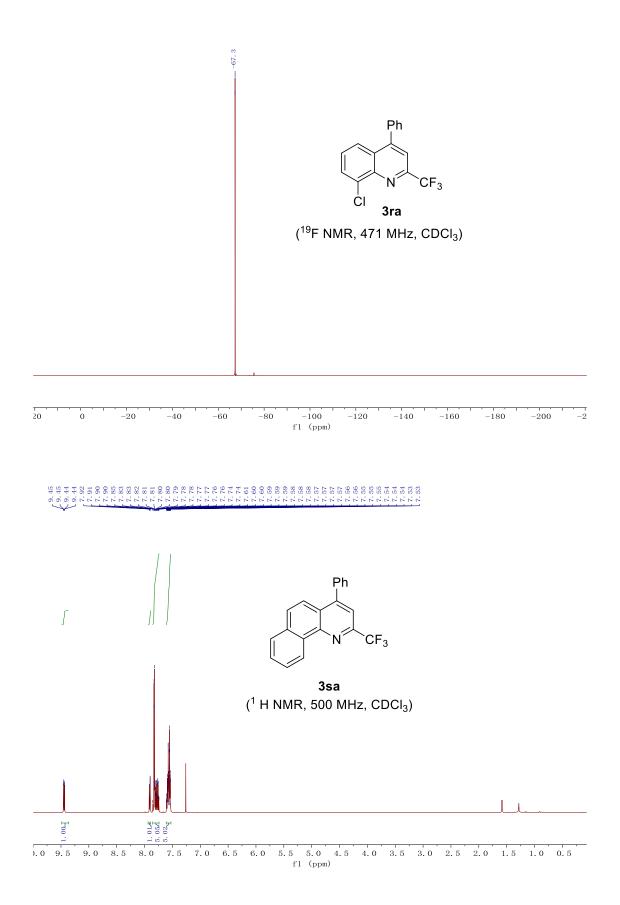


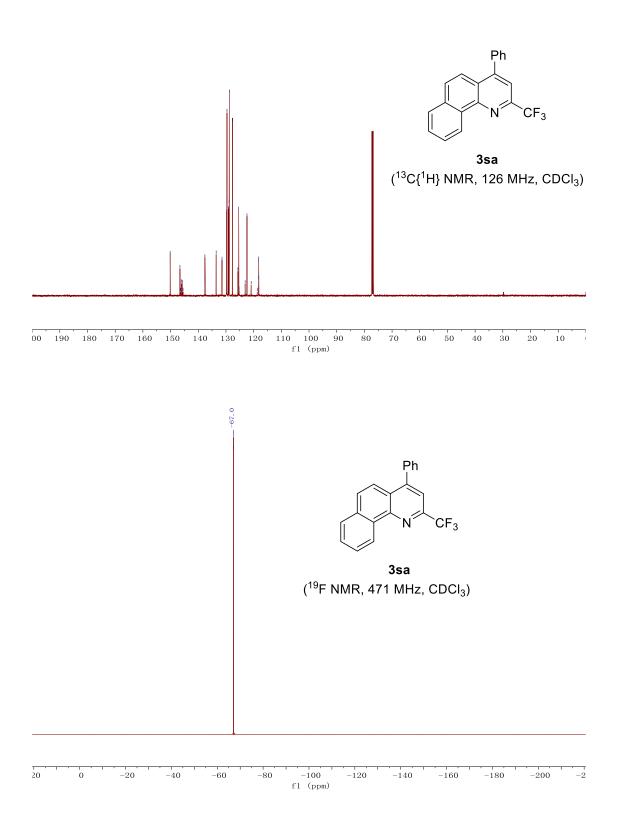


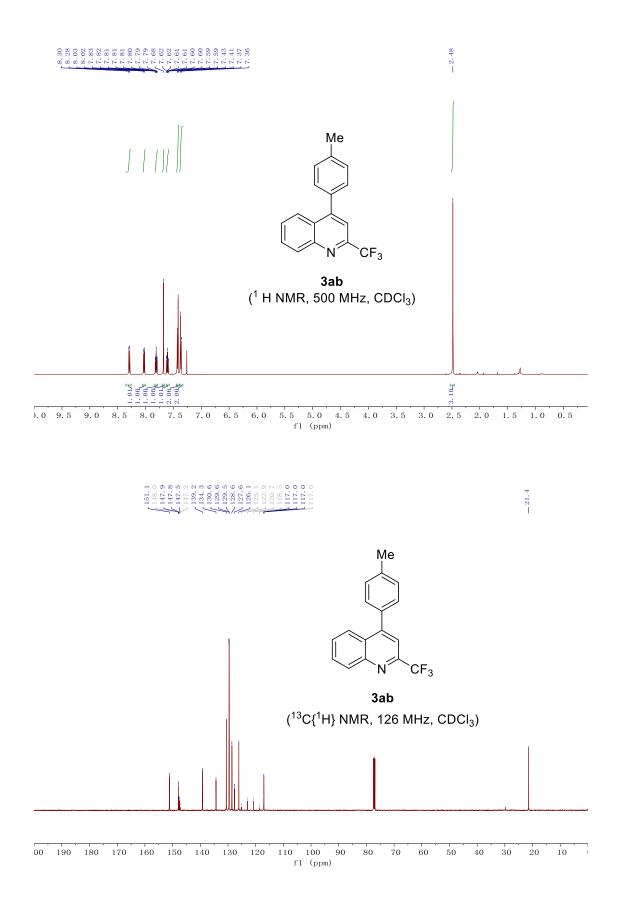


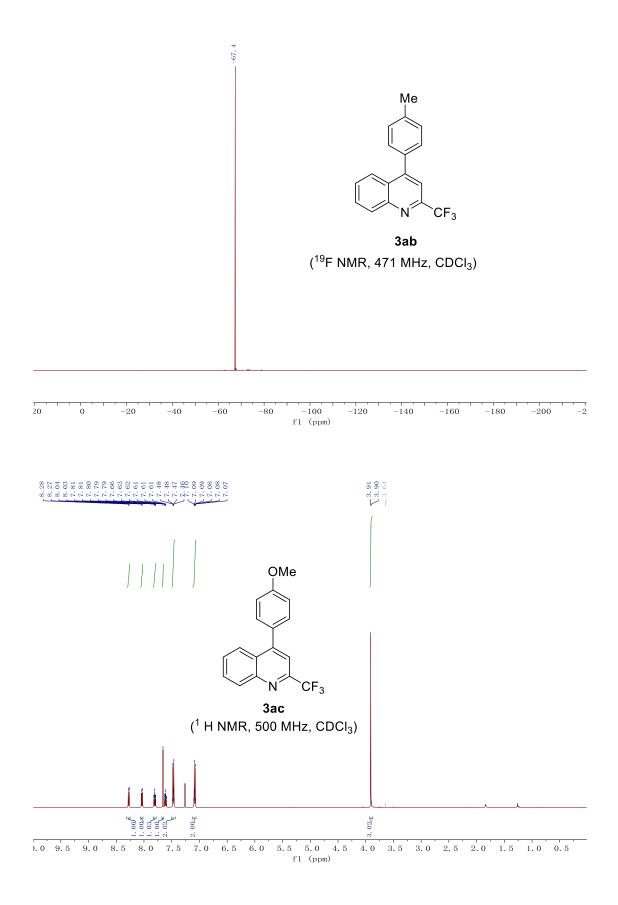


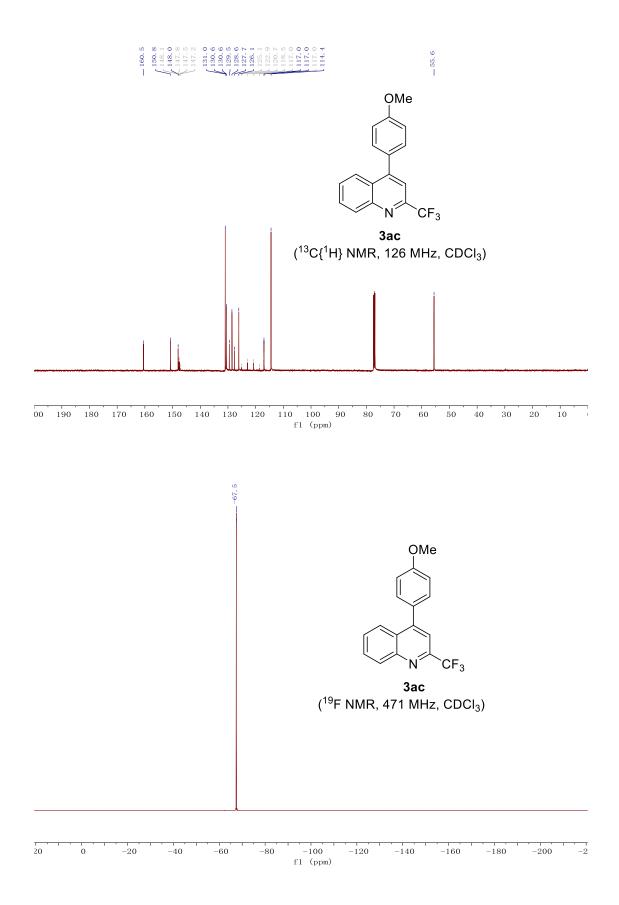


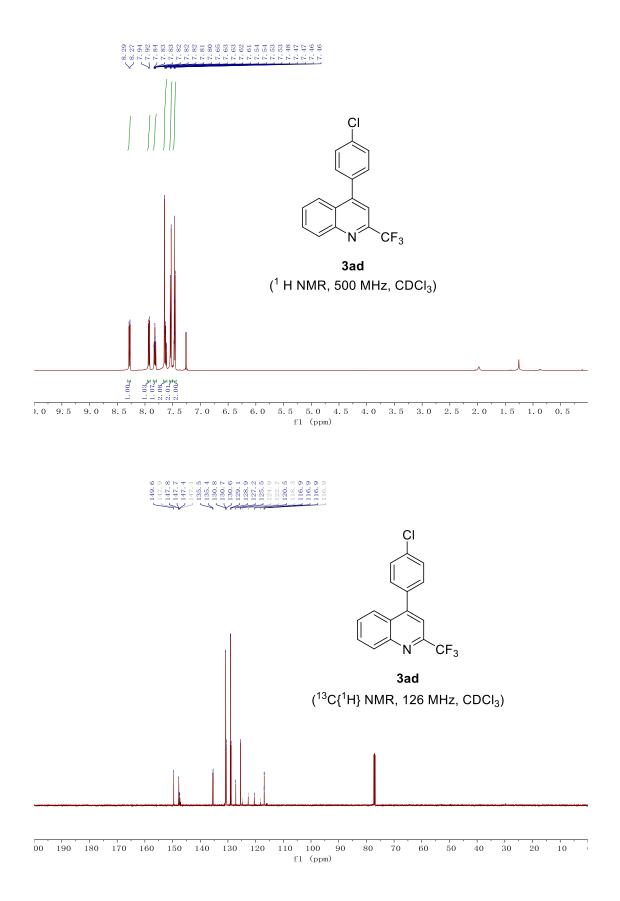


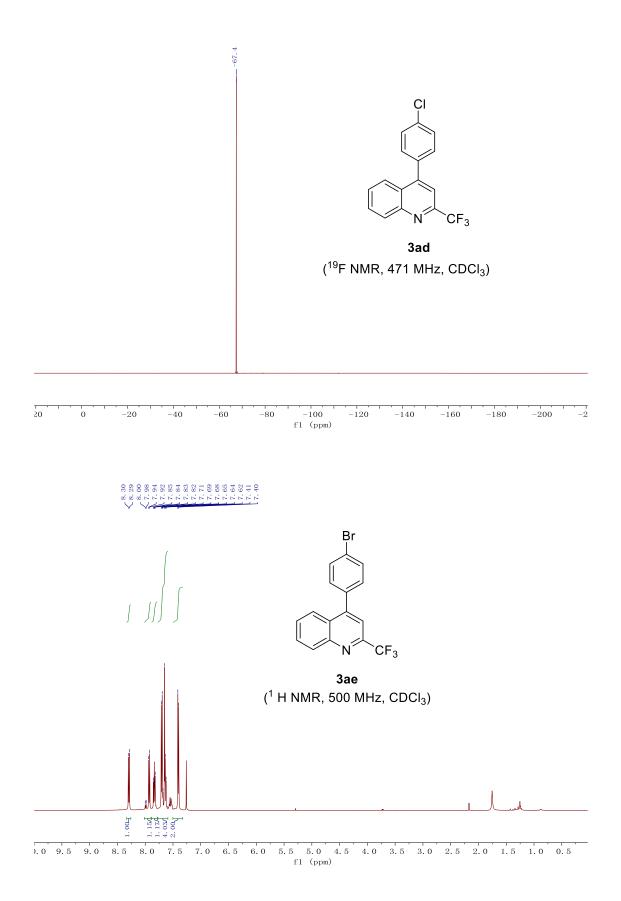

159. 5 159. 5 157. 4 157. 4 157. 4 157. 4 157. 4 147. 8 147. 6 147. 6 147. 6 147. 6 147. 6 147. 6 147. 6 147. 6 129. 5 12

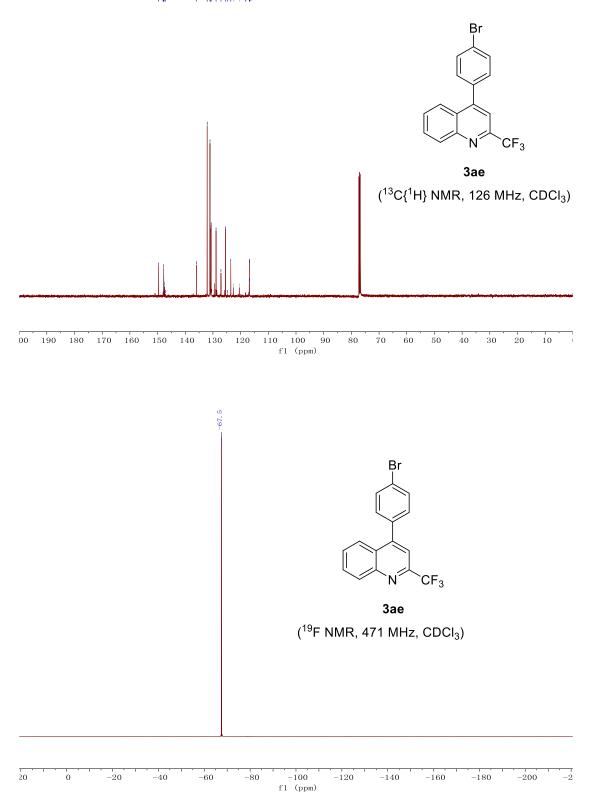


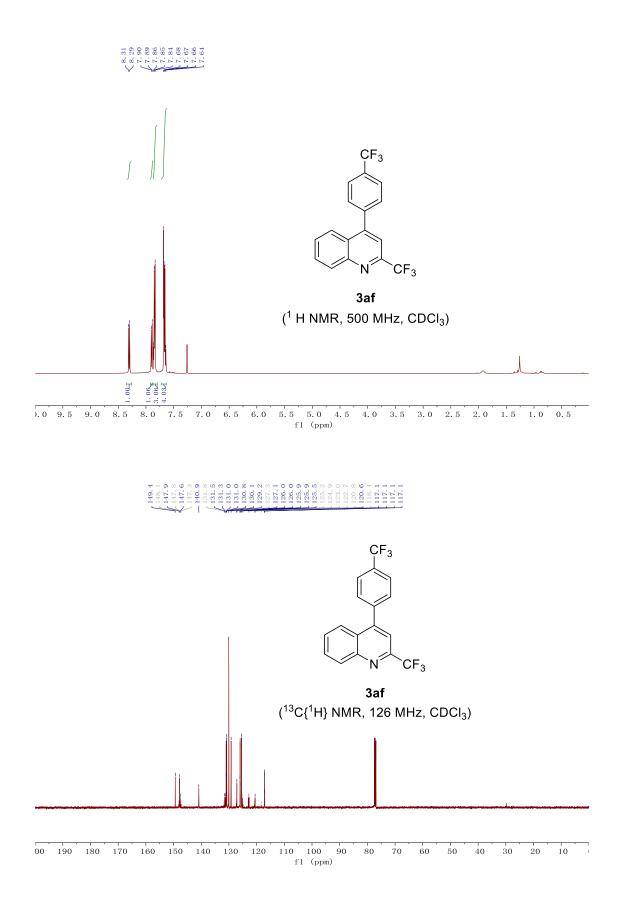


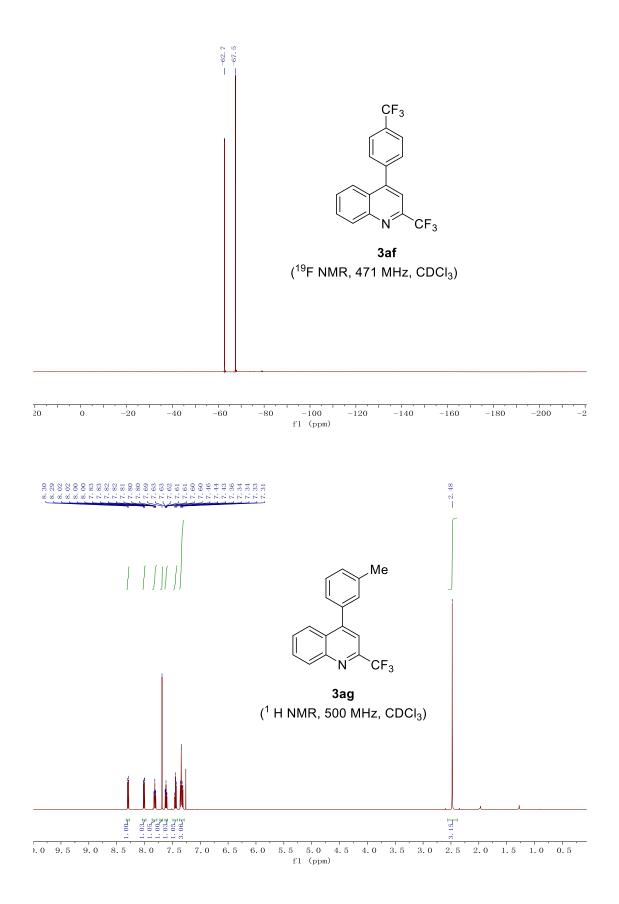


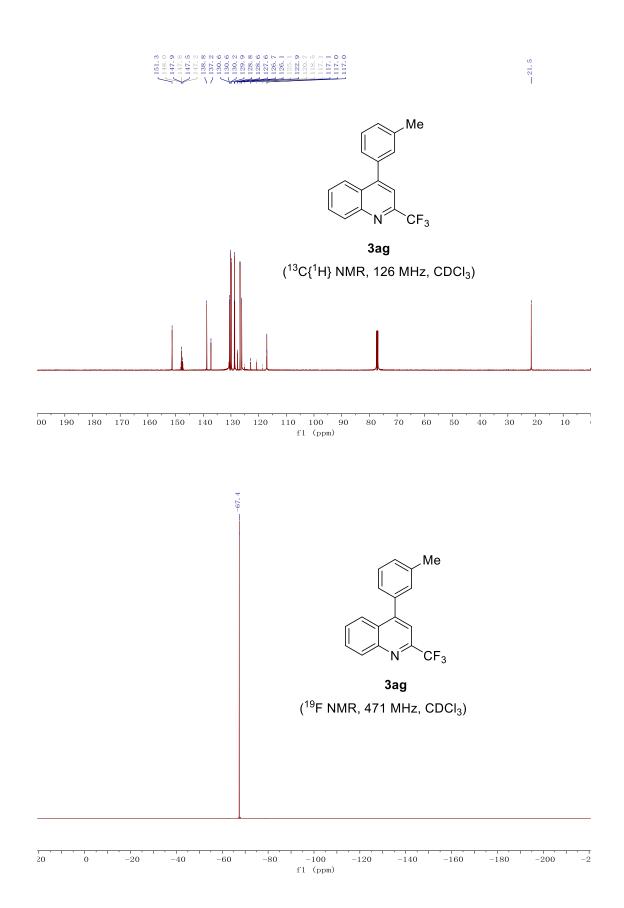


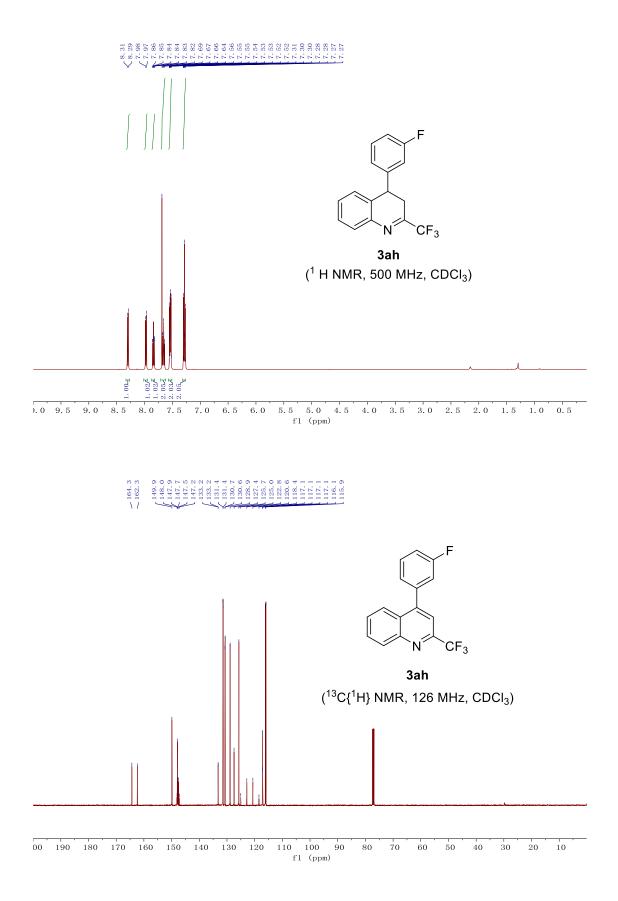


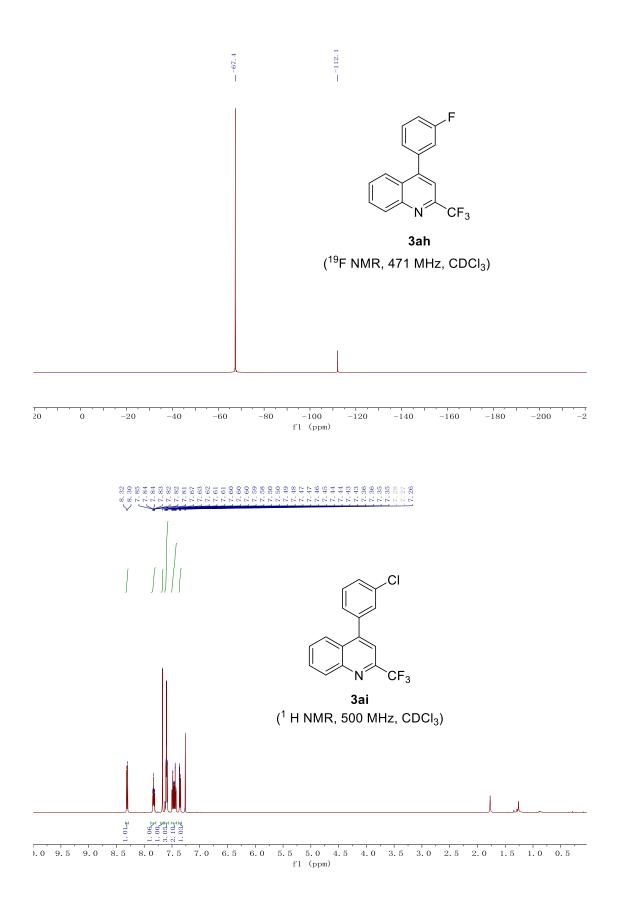


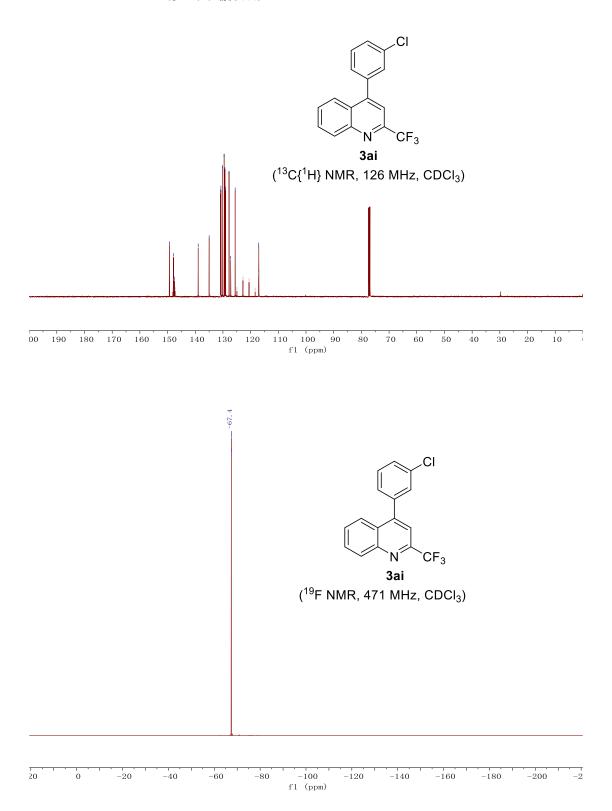


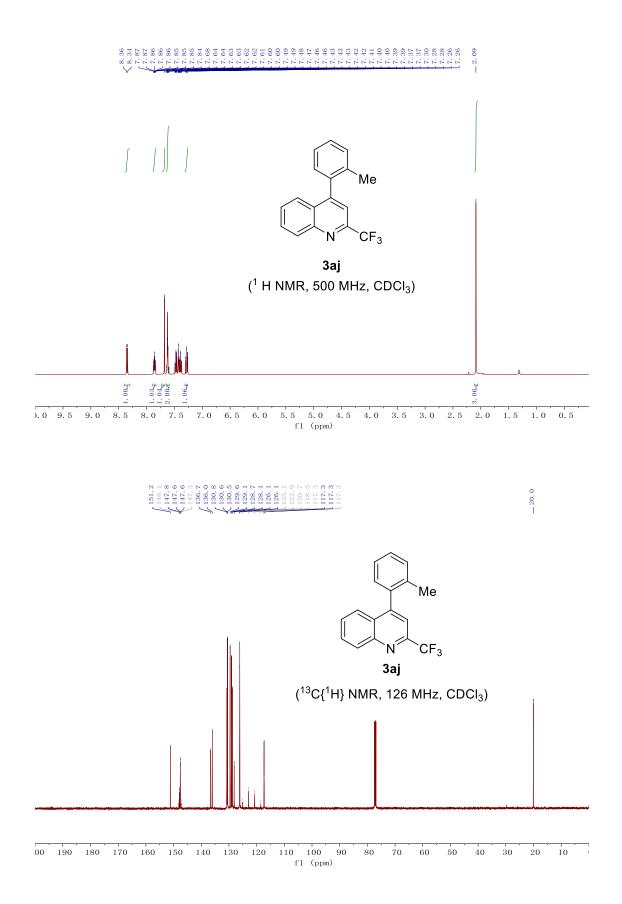


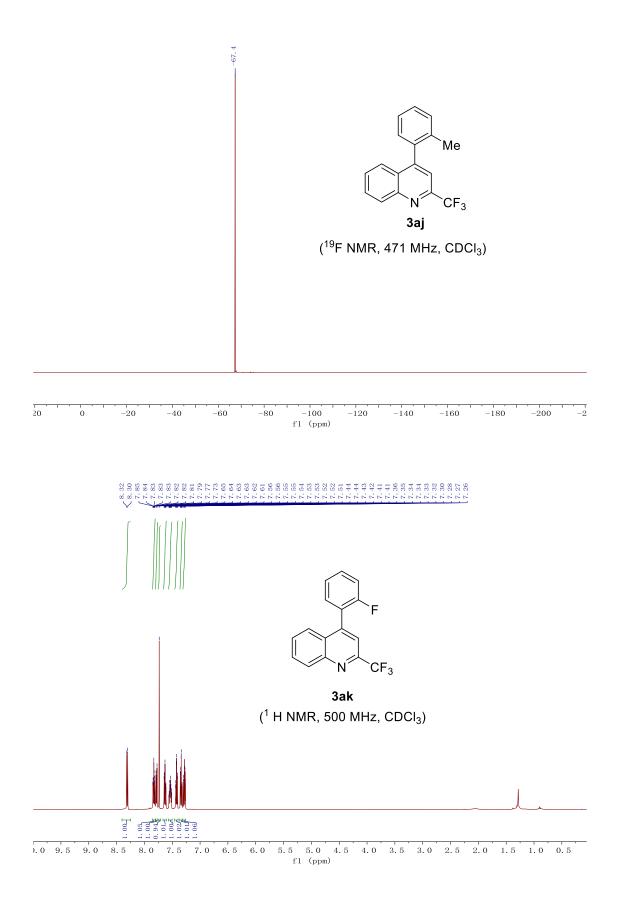


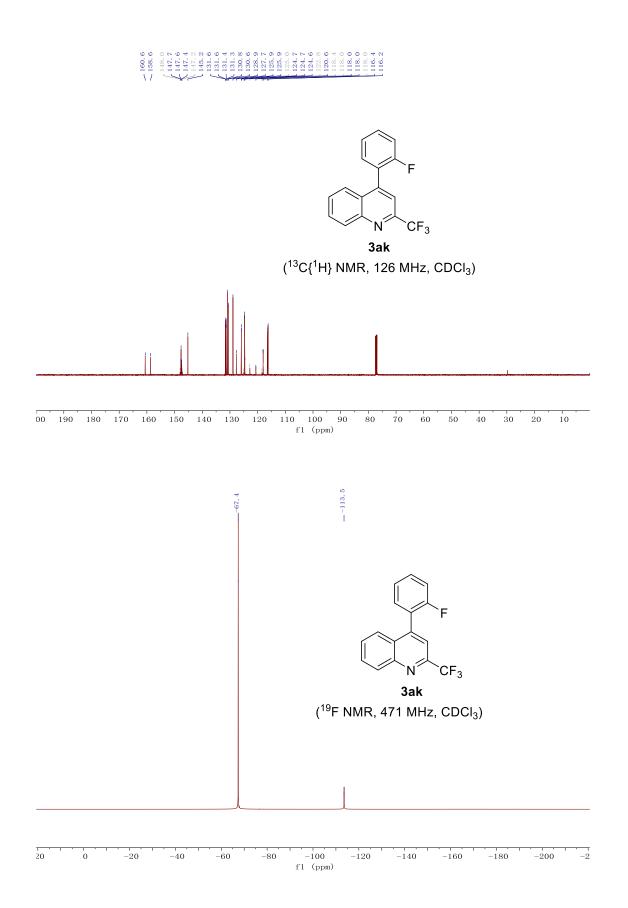

149. 6 147. 7 147. 7 147. 7 147. 7 147. 7 147. 2 136. 0 136. 0 136. 0 136. 0 137. 1 147. 1 14



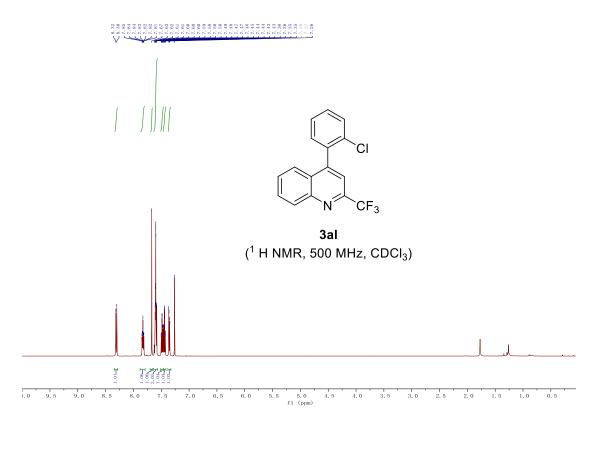


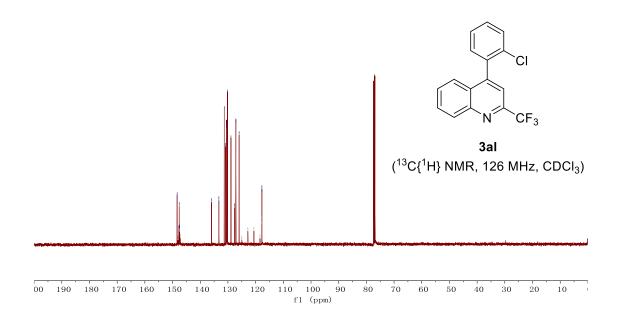


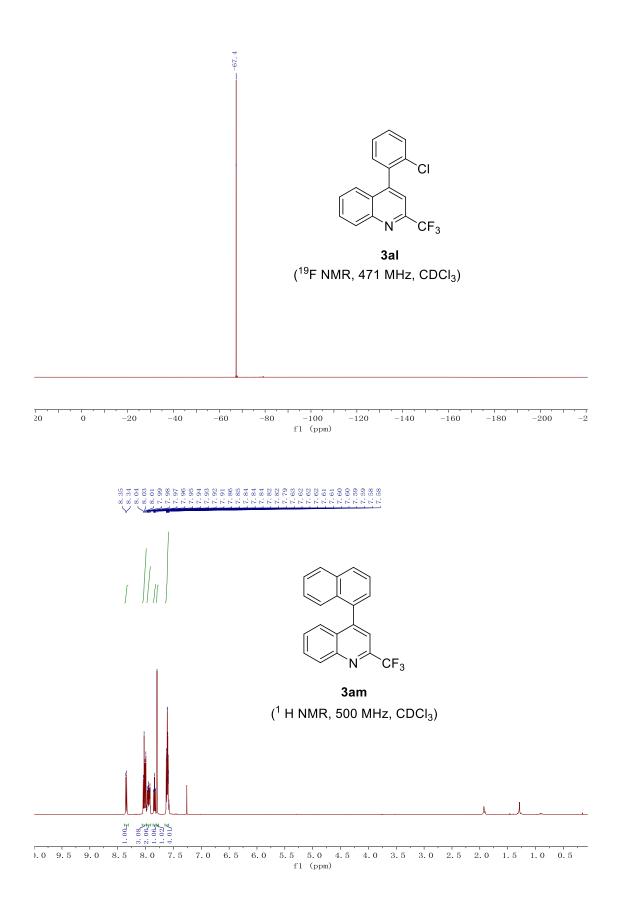




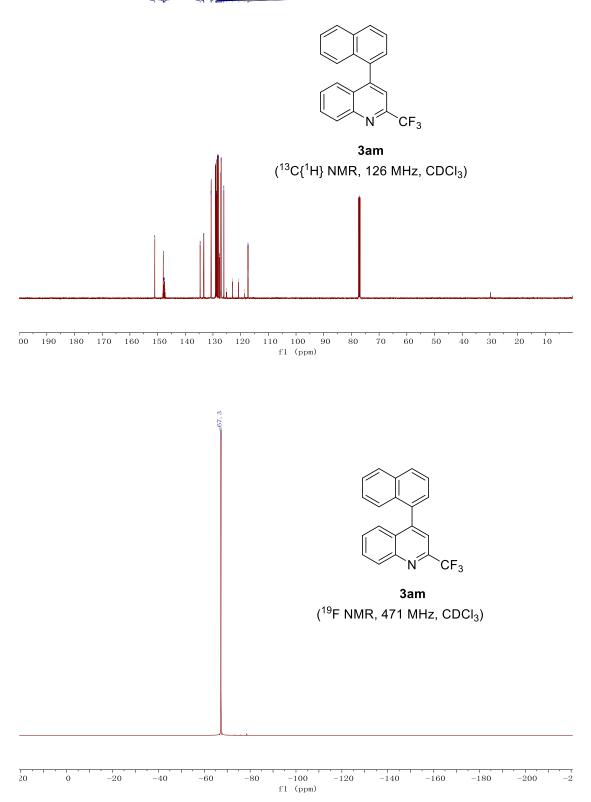
149.4 147.5 147.5 147.5 147.5 147.5 147.5 147.5 138.9 138.9 130.1 133.9 130.2 133.9 130.2 130.2 130.2 130.2 130.2 130.2 130.2 130.2 130.2 130.2 130.2 120.6 1127.8 117.1 117.1 117.1

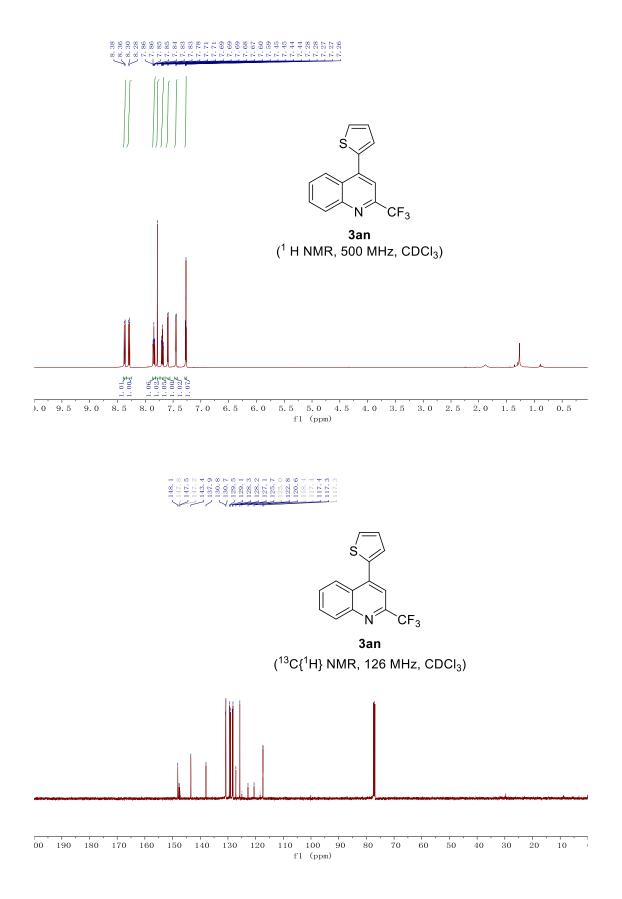


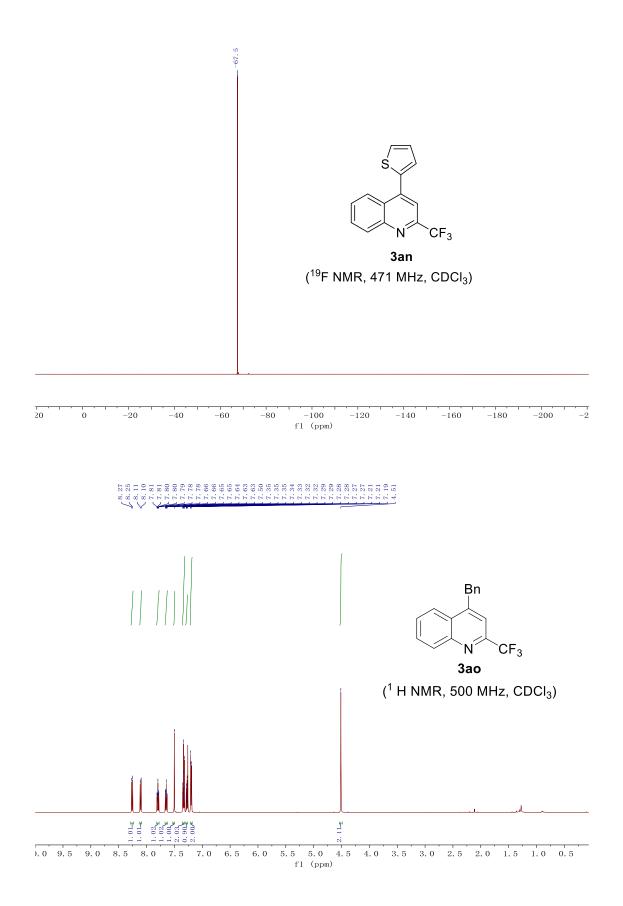


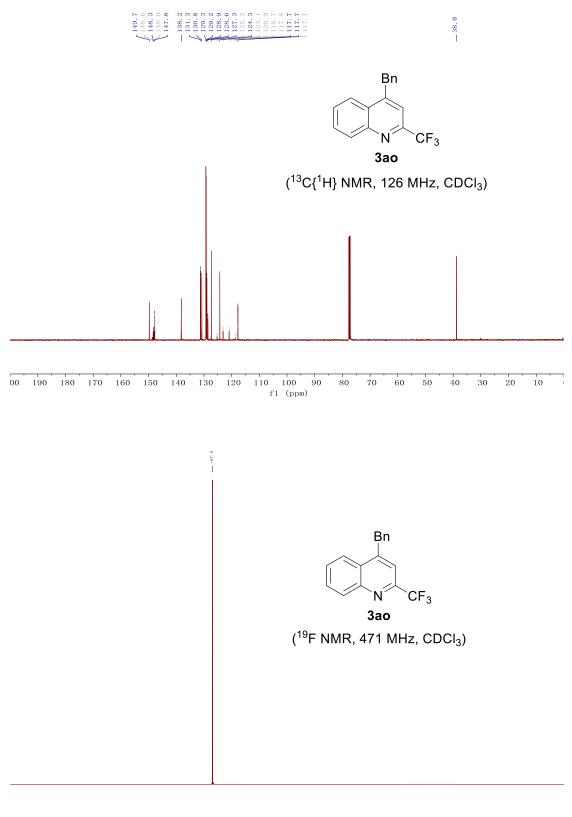


S70

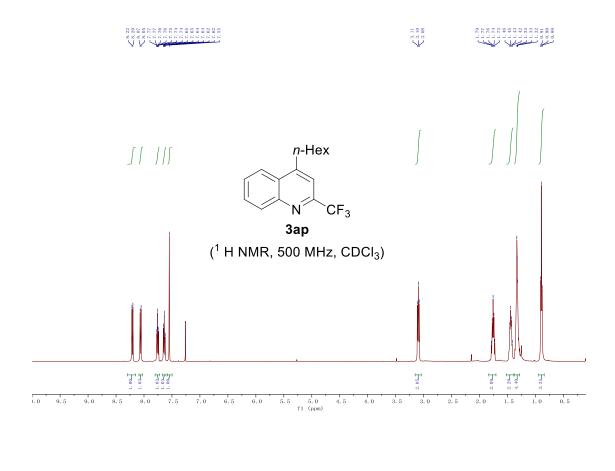


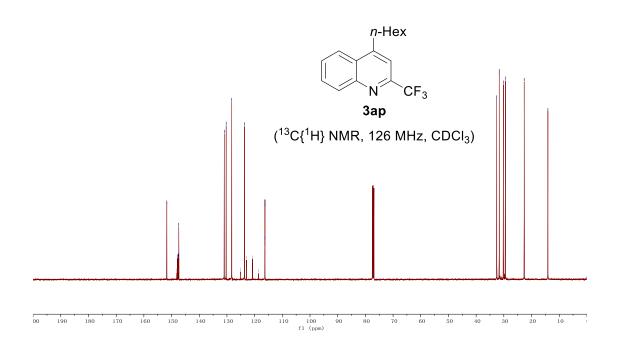

148.4 148.0 148.0 147.5 147.5 147.5 147.5 147.5 135.9 135.9 135.9 130.5 100.50

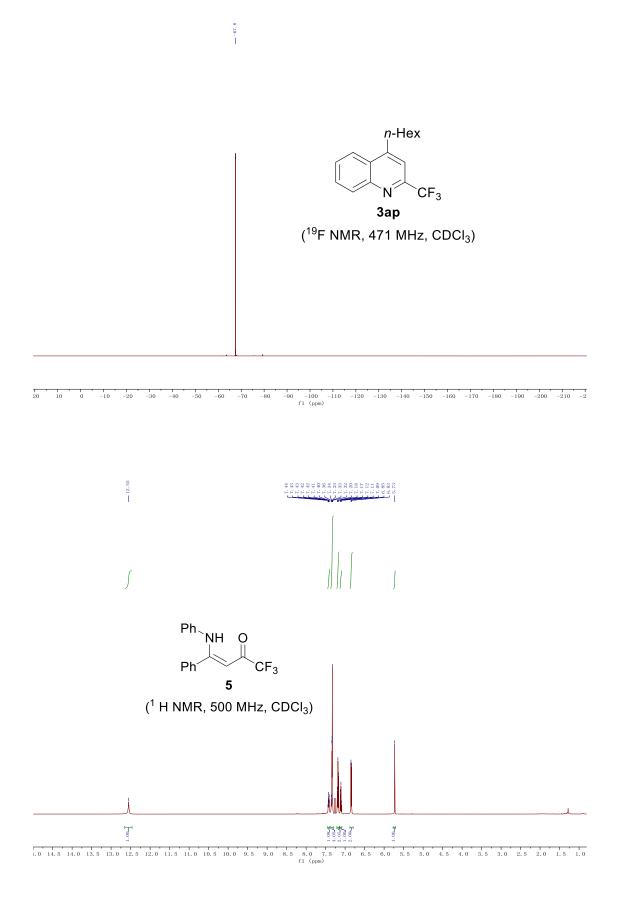


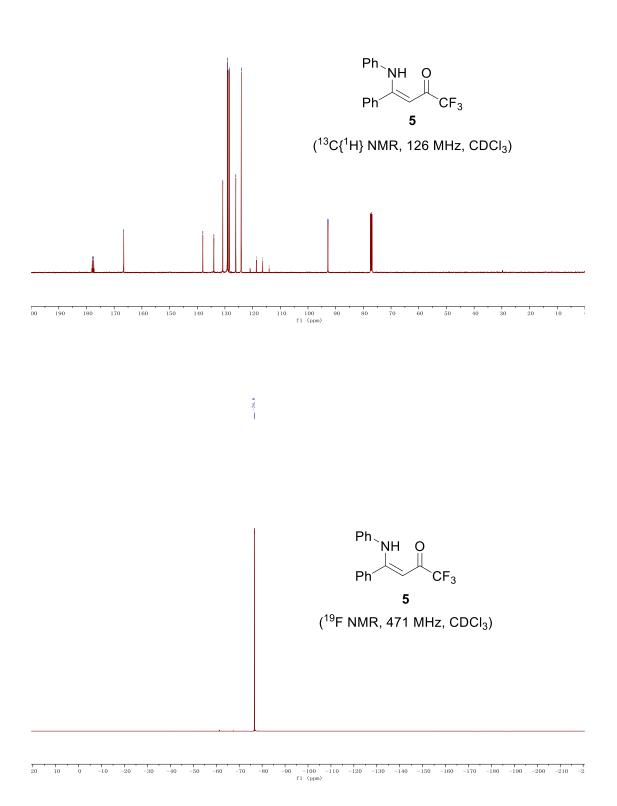


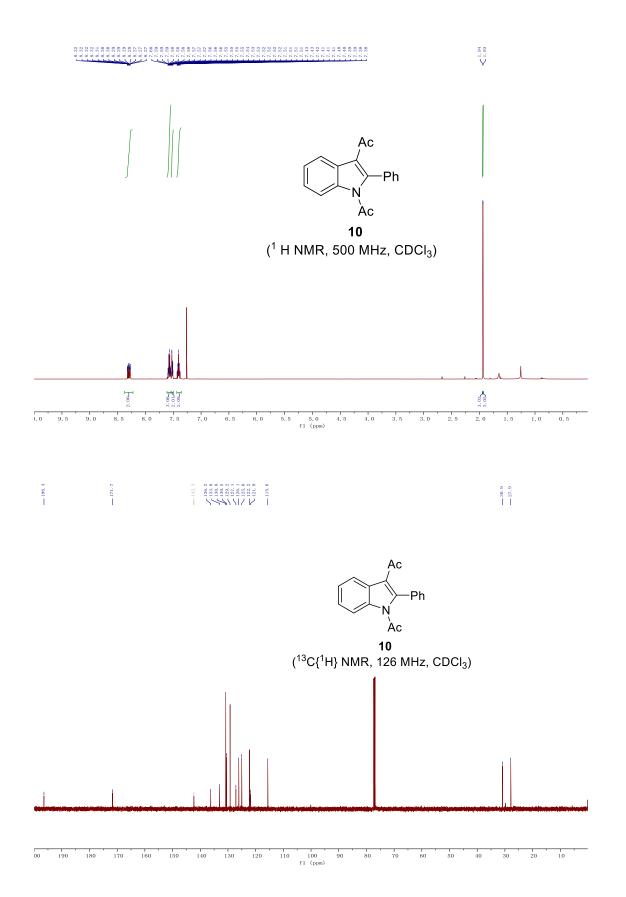
151.0 147.1 147.5 147.5 147.5 147.5 147.5 147.5 133.6 133.7 133.8 133.7 133.8 133.7 133.7 132.1 132.1 132.2 132.3 132.4 132.7 132.7 122.7 122.7 122.7 122.7 122.7 122.7 122.7 122.7 122.7 122.7 122.7 122.7 122.7 122.7 122.7 122.1 122.1 122.1 122.1 122.1 122.1 122.1 122.1 122.1 122.1 122.1 122.1</

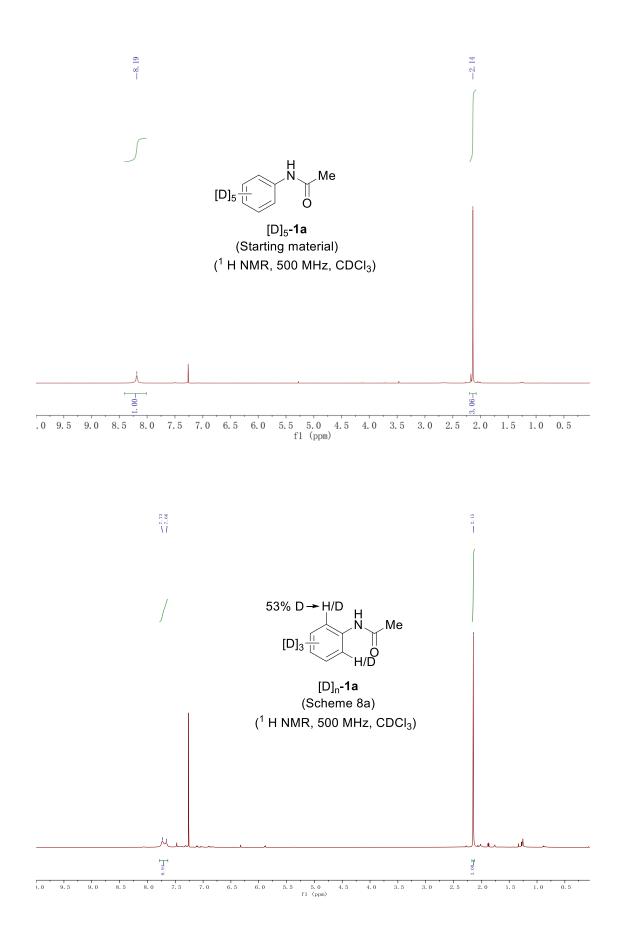


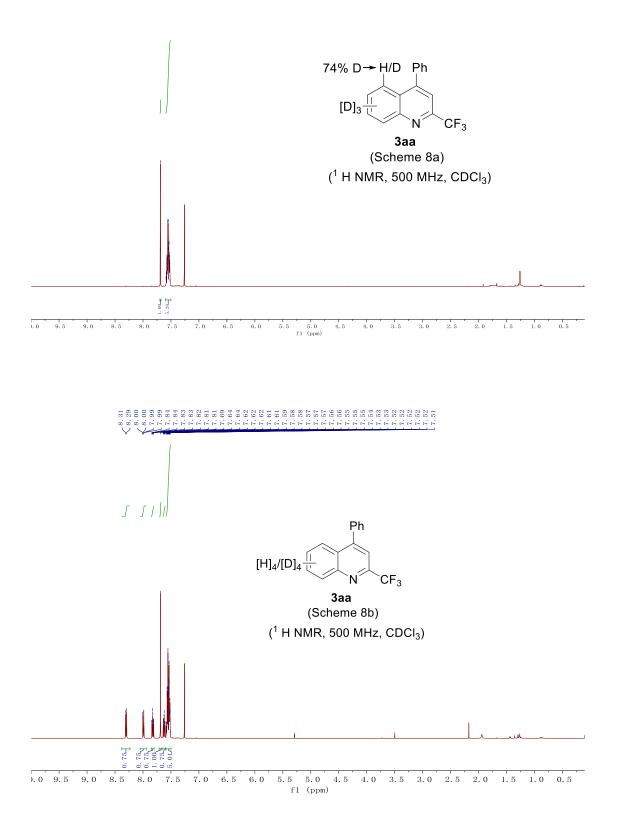



 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 <th1</th>
 <th1</th>
 <th1</th>
 <th1</th>









S80

9. X-ray crystallographic analysis

Single crystals suitable for X-ray diffraction experiment were obtained by slow evaporation of n-hexane/acetone solution containing the corresponding compounds **3aa** and **10**.

≤13

Table S2. Crystal data and structure refinement for Exp_10398 (3aa)

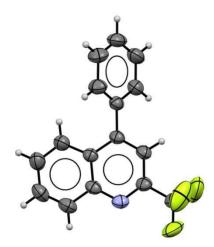


Figure S1. ORTEP plots for molecular structure of 3aa with the probability at 50% Level

Table S3. Crystal data and structure refinement for Exp_10046 (10)				
Identification code	exp_10046			
Empirical formula	$C_{18}H_{15}NO_2$			
Formula weight	277.31			
Temperature/K	296.01(10)			
Crystal system	monoclinic			
Space group	P1 21/c 1			
a/Å	8.3362(8)			
b/Å	12.0976(8)			
c/Å	14.4307(11)			
α/\circ	90			
β/°	92.893(8)			
$\gamma/^{\circ}$	90.00			
Volume/Å ³	1453.5(2)			
Z	4			
$\rho_{calc}g/cm^3$	1.267			
μ/mm^{-1}	0.083			
F(000)	584			
Crystal size/mm ³	0.30 imes 0.26 imes 0.22			
Radiation	MoKα ($\lambda = 0.71073$)			
2Θ range for data collection/°	3.65 to 29.08			
Index ranges	$-11 \le h \le 7, -16 \le k \le 10, -19 \le l \le 19$			
Reflections collected	6737			
Independent reflections	3369 [R(int) = 0.0322]			
Data/restraints/parameters	3369/0/193			
Goodness-of-fit on F ²	1.033			
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0679, wR_2 = 0.1256$			
Final R indexes [all data]	$R_1 = 0.1297, wR_2 = 0.1542$			
Largest diff. peak/hole / e Å ⁻³	0.147/-0.169			

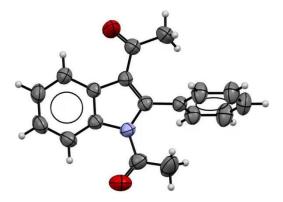


Figure S2. ORTEP plots for molecular structure of 5 with the probability at 50% Level

10. Photophysical data of compounds 30a and 3pa

Compounds	$\lambda_{ex} (nm)^a$ in DCM	$\lambda_{em}(nm)^ainDCM$	$(\Phi_f)^b$ in DCM
3oa	339	429	86
3pa	339	418	12

^{*a*}Excitation maximum in DCM. ^{*b*}Exmission maximum in DCM. ^{*c*}The quantum yield determined in

DCM relative to 55% of quinine sulfate.9

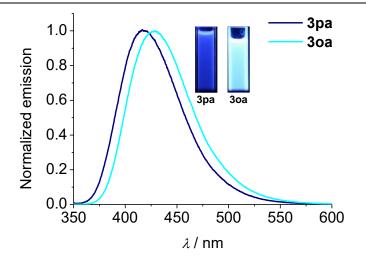


Figure S3. Normalized emission spectra of representative compounds 30a and 3pa with a concentration of 10^{-5} M in CH₂Cl₂ on excitation at 339 nm. Inset: images of compounds 30a and 3pa under a UV lamp (365 nm).

11. Reference

- (a) P. Patel and G. Borah, Synthesis of oxindole from acetanilide via Ir(iii)-catalyzed C–H carbenoid functionalization, *Chem. Commun.*, 2017, **53**, 443-446; (b) D. C. Simkó, P. Elekes, V. Pázmándi and Z. Novák, Sulfonium salts as alkylating agents for palladium-catalyzed direct ortho alkylation of anilides and aromatic ureas, *Org. Lett.*, 2018, **20**, 676-679.
- 2 J. A. Leitch, C. L. McMullin, A. J. Paterson, M. F. Mahon, Y. Bhonoah and C. G. Frost, Ruthenium-catalyzed para-selective C-H alkylation of aniline derivatives, *Angew. Chem. Int. Ed.*, 2017, **56**, 15131-15135.
- 3 S. W. Youn and Y. H. Kim, Pd(II)/Ag(I)-promoted one-pot synthesis of cyclic ureas from (hetero)aromatic amines and isocyanates, *Org. Lett.*, 2016, **18**, 6140-6143.
- 4 B. M. Trost, C.-I. Hung and M. J. Scharf, Direct catalytic asymmetric vinylogous additions of α,β- and β,γ-butenolides to polyfluorinated alkynyl ketimines, *Angew. Chem. Int. Ed.*, 2018, **57**, 11408-11412.
- 5 J. Nan, Y. Hu, P. Chen and Y. Ma, Metal-free synthesis of 2-fluoroalkylated quinolines using polyfluoroalkanoic acids as direct fluorine sources, *Org. Lett.*, 2019, **21**, 1984-1988.
- 6 Q.-W. Pan, J.-H. Wang, Q. Wang, H.-J. Li and Y.-C. Wu, Synthesis of 2-trifluoromethyl quinolines from α ,β-unsaturated trifluoromethyl ketones: regiochemistry reversal comparing to the standard Skraup-Doebner-von Miller synthesis, *ChemistrySelect*, 2020, **5**, 4099-4103.
- 7 M. Zhu, W. Fu, G. Zou, C. Xun, D. Deng and B. Ji, An efficient synthesis of 2-trifluoromethyl quinolines via gold-catalyzed cyclization of trifluoromethylated propargylamines, *J. Fluorine Chem.*, 2012, **135**, 195-199.
- 8 X. Dong, Y. Xu, J. J. Liu, Y. Hu, T. Xiao and L. Zhou, Visible-light-induced radical cyclization of trifluoroacetimidoyl chlorides with alkynes: catalytic synthesis of 2-trifluoromethyl quinolines, *Chem.- Eur. J.*, 2013, **19**, 16928-16933.
- 9 A. N. Fletcher, Quinine sulfate as a fluorescence quantum yield standard, *Photochem. Photobiol.*, 1969, 9, 439-444.