Supporting Information

Iridium(III)-Catalyzed Two-Fold C-H Alkylation of BINOLs

with Allyl Alcohols

Hao Liu, Wei Chi, Meng-Ling Lin and Lin Dong*

[§]Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China <u>dongl@scu.edu.cn</u>

Table of Contents

- 1. General Information
- 2. General Procedure for Synthesis of BINOL Units
- 3. Optimization of the Reaction Conditions
- 4. Screening of Directing Group
- 5. General Procedure for the Model Reaction
- 6. The Scope of Alkenes
- 7. Synthetic Transformations of Product 3aa
- 8. Mechanistic Studies
- 9. The Large-Scale Experiments
- 10. The HPLC Data of Compound 3af and 4af
- 11. Exploration of Methyl Acrylate and But-3-en-2-ol as the Coupling

Partners

- 12. Characterization Data and NMR Spectra
- 13. HPLC Data

1. General Information

NMR data were obtained for ¹H at 400 MHz or 600 MHz, and for ¹³C at 100 MHz or 151 MHz. Chemical shifts were reported in ppm from tetramethylsilane with the solvent resonance as the internal standard in CDCl₃ solution. NMR data are reported as follows: chemical shifts, multiplicity (s: singlet, d: doublet, dd: doublet of doublets, t: triplet, q: quartet, sep: septet, m: multiplet, br: broad signal), coupling constant (Hz), and integration. ESI HRMS was recorded on a Waters SYNAPT G2 and Water XEVO G2 Q-ToF. Infrared (IR) spectra were recorded by FTIR spectrometer and reported in terms of wave number (cm-1). UV detection was monitored at 254 nm. TLC was performed on glass-backed silica plates. Column chromatography was performed on silica gel (200-300 mesh), eluting with ethyl acetate and petroleum ether. Enantiomeric excesses were determined on a Thermo Fisher Chiral HPLC or Agilent Chiral HPLC using AD-H column.

Unless otherwise noted, all starting materials were purchased from commercial sources and used without any further purification. Anhydrous THF should be obtained by distillation before use. But-3-en-2-ol **2a** was commercially available, and (R)-BINOL compounds were prepared according to the literature procedures ¹

2. General Procedure for Synthesis of BINOL Units Procedure A:

A 100 mL oven-dried round bottomed flask was charged with a magnetic stirring bar, CuI (285 mg, 1.5 mmol, 30 mol%), picolinic acid (369 mg, 3.0 mmol, 60 mol%), (R)-BINOL (5 mmol), and K₃PO₄ (6360 mg, 30 mmol). The tube was then evacuated and back-filled with Ar. The procedure of evacuation/backfill was sequentially repeated two additional times. It was then added with 2-bromopyridine (24 mmol) and dimethylsulfoxide (25 mL) by syringe under an Ar atmosphere. The tube was placed in a pre-heated oil bath at 100 °C and the reaction mixture was stirred for 24 h. The reaction mixture was cooled to room temperature and quenched with water (20 mL). Ethyl acetate (30 mL) was added and the organic layer was separated and the aqueous layer was extracted twice more with ethyl acetate. Combined organic layer was washed with water and dried over Na₂SO₄. After removal of the solvent under reduced pressure, the residue was purified via silica gel column using ethyl acetate and petroleum ether (1: 12). The product **1a** were obtained with 92 % yield (2.0 g. 4.6 mmol).

1b-1p were also prepared according to the procedure A. The corresponding precursor compounds **1.1b-1.1p** were prepared according to the literature procedures ¹.

Procedure B:

A 100 mL oven-dried round bottomed flask was charged with a magnetic stirring bar, (R)-BINOL (1 mmol), K₂CO₃ (276 mg, 2 mmol) and DMF (2 mL). It was then added with 2-bromothiazole (328 mg, 2 mmol) dropwise. The tube was placed in a pre-heated oil bath at 130 °C and the reaction mixture was

stirred for 24 h. The reaction mixture was cooled to room temperature and quenched with water. Ethyl acetate was added and the organic layer was separated and the aqueous layer was extracted twice more with ethyl acetate. Combined organic layer was washed with water and dried over Na2SO4. After removal of the solvent under reduced pressure, the residue was purified via silica gel column using ethyl acetate and petroleum ether (1: 10). The product 1q were obtained with 88 % yield (337 mg. 0.9 mmol).

References:

[1] Liu, H.; Lin, M. L.; Chen, Y. J.; Huang, Y. H.; Dong, L. Rh(III)-catalyzed one-pot three-component cyclization reaction: rapid selective synthesis of monohydroxy polycyclic BINOL derivatives. Org. Chem. Front. 2021, 8, 4967–4973.

2. Optimization of the Reaction Conditions

Table S1. The effect of the amount of additives on the reaction.^a

entry	additives (equiv)	3aa yield / % ^b	4aa yield/ % ^b
1	AgOTf(0.3)+NaOAc(1)	88	trace
2	AgOTf(0.1)+NaOAc(1)	44	15
3	AgOTf (0.2)+NaOAc (0.5)	82	trace
4	AgOTf (0.2)+NaOAc (1.5)	64	24

^a Reaction conditions unless otherwise specified: 0.05 mmol of 1a, 5 equiv of 2a, 5 mol % of [Cp*IrCl2]2, 2 equiv of AgOAc, 0.5 mL of TFE, 140 °C, 24 h, Ar atmosphere. ^b Isolated yield.

Table S2.	The effect of the amount of AgOAc on the reaction. ^a					
	entry	oxidant (equiv)	3aa yield / % ^b	4 aa		

entry	oxidant (equiv)	3aa yield / % ^b	4aa yield/ % ^b
1	AgOAc(2)	89	trace
2	AgOAc (2.2)	77	11
3	AgOAc (1.8)	74	12

^a Reaction conditions unless otherwise specified: 0.05 mmol of 1a, 5 equiv of 2a, 5 mol % of [Cp*IrCl₂]₂, 0.2 equiv AgOTf, 1 equiv of NaOAc, 0.5 mL of TFE, 140 °C, 24 h, air atmosphere. ^b Isolated yield.

4. Screening of Directing Group

Table S3. Screening of Directing Group^a

^{*a*} Reaction conditions unless specified otherwise: 0.1 mmol of **1**, 6 equiv of **2a**, 5 mol % of [Cp*IrCl₂]₂, 2 equiv of AgOAc, 0.2 equiv of AgOTf, 1 equiv of NaOAc, 1 mL of TFE, 140 °C, 24 h, air atmosphere. Isolated yield.

Encouraged by this attractive result, further investigation on the feasibility of different directing group was commenced (Table S3). BINOLs with oxyacetamide, acyloxy, dimethylcarbamate, even elaborate carboxyl group under the indicated conditions, no desired product was observed. Nevertheless, switching to the heteroatom substituted BINOL compounds, **3pa** and **3qa** were obtained in slightly low yield respectively. Thus, compared with other directing groups, the 2-pyridyloxy had exhibited a powerful potential in two-fold C–H alkylation of BINOLs.

5. General Procedure for the Model Reaction

To a flame dried screw-cap tube equipped with magnetic stir bar were introduced (R)-(+)-2,2'bis(pyridin-2-yloxy)-1,1'-binaphthalene **1a** (22.0 mg, 0.05 mmol), and but-3-en-2-ol **2a** (26.0 μ L, 6.0 equiv), [Cp*IrCl₂]₂ (2.0 mg, 5 mol %), AgOAc (16.8 mg, 2.0 equiv), AgOTf (2.6 mg, 0.2 equiv), NaOAc (4.1 mg, 1.0 equiv) and TFE (0.5 mL). The reaction mixture was stirred in preheated oil bath at 140 °C under air atmosphere for 24 h. After completion, the reaction mixture was purified by flash chromatography eluting with ethyl acetate and petroleum ether (1:4) to give the product **3aa** as a colorless oil (27.0 mg, 93%).

6. The Scope of Alkenes^{*a*}

The but-3-en-2-ol 2a was replaced by other substituents as below, but all gave inferior results.

Table S4: ^{*a*} Reaction conditions unless otherwise specified: 0.1 mmol of **1**, 6 equiv of **2a**, 5 mol % of [Cp*IrCl₂]₂, 2 equiv of AgOAc, 0.2 equiv of AgOTf, 1 equiv of NaOAc, 1 mL of TFE, 140 °C, 24 h, air atmosphere. Isolated yield.

7. Synthetic Transformations of Product 3aa

Procedure for synthesis of 5:

To a solution of compound **3aa** (29 mg, 0.05 mmol) in THF (1 mL) was added 3.0 M THF solution of MeMgBr (0.05 mL, 0.15 mmol) at 0 °C under nitrogen. After stirring at 25 °C temperature for 60 min, the mixture was quenched with saturated aqueous solution of NH₄Cl, and extracted with EtOAc. The collected organic layers were dried with anhydrous Na_2SO_4 and the solvents were evaporated under reduced pressure. The residue was purified by flash column chromatography using ethyl acetate/petroleum ether (1:2) as an eluent to obtain product **5** as a yellow oil (25.1 mg, 82%).

Procedure for synthesis of 6:

To an oven dried round bottom flask equipped with a stir bar under a N₂ atmosphere was added PPh₃MeBr (3.50 eq.). The flask was evacuated and back filled with N₂ and dry THF (0.1 M) was added. The resultant mixture was cooled to -78 °C to which a solution of *n*-BuLi in hexanes (1.6M, 3.50 eq.) was added. The solution was allowed to warm to rt and stirred for 30 mins before ketone substrate was added (0.05 mmol). The reaction was allowed to stir at rt for 18 h before being diluted with ethyl acetate and quenched with H₂O. The collected organic layers were dried with anhydrous Na₂SO₄ and the solvents were evaporated under reduced pressure. The residue was purified by flash column chromatography using ethyl acetate/petroleum ether (1:10) as an eluent to obtain product **6** as a colorless oil (23.3 mg, 81%).

Procedure for synthesis of 7:

To a solution of **3aa** (29 mg, 0.05 mmol) in PhMe (1 mL) under N₂ was added MeOTf (50 μ L, 0.45 mmol). The reaction mixture was stirred under N₂ at 100 °C for 2 h. The reaction mixture was allowed to cool to ambient temperature. Evaporation of the solvent *in vacuo* yielded a yellow solid. The solid was dissolved in dry methanol (1.0 mL) and was added under N₂ to a solution of Na (69 mg, 3 mmol) in dry methanol (1 mL). The reaction mixture was heated at 80 °C for 15 min. The reaction mixture was allowed to cool to ambient temperature and the solvent was evaporated *in vacuo*. H₂O was added, and the resulting mixture was extracted with EtOAc. The collected organic layers were dried with anhydrous Na₂SO₄ and the solvents were evaporated under reduced pressure. The residue was purified by flash column chromatography using ethyl acetate/petroleum ether (1:8) as an eluent to obtain product 7 as a colorless oil (15.5 mg, 73%).

8. Mechanistic Studies

(1) Deuterium Exchange Experiments of 1a

To a test tube equipped with magnetic stir bar were added **1a** (22.0 mg, 0.05 mmol, 1.0 equiv), $[Cp*IrCl_2]_2$ (5 mol %), AgOAc (2.0 equiv), AgOTf (0.2 equiv), NaOAc (1.0 equiv) and D₂O (0.05 mL) were stirred in TFE (0.5 mL) under air atmosphere at 140 °C in preheated oil bath for 3 h. The solution was concentrated and the residue was separated on a flash column with PE/EA (5:1) as the eluent.

(2) Deuterium Exchange Experiments of 1a and 2a

To a test tube equipped with magnetic stir bar were added **1a** (22.0 mg, 0.05 mmol, 1.0 equiv), but-3en-2-ol **2a** (26.0 μ L, 6.0 equiv), [Cp*IrCl₂]₂ (5 mol %), AgOAc (2.0 equiv), AgOTf (0.2 equiv), NaOAc (1.0 equiv) and D₂O (0.05 mL) were stirred in TFE (0.5 mL) under air atmosphere at 140 °C in preheated oil bath for 10 h. The solution was concentrated and the residue was separated on a flash column with PE/EA (3:1) as the eluent.

(3) Procedure for Competition Experiments

Representative procedure for competition between **1e** and **1h**: To a flame dried screwcap tube equipped with magnetic stir bar was introduced **1e** (0.05 mmol, 1.0 equiv), **1h** (0.05 mmol, 1.0 equiv), but-3-en-2-ol **2a** (52.0 μ L, 12.0 equiv), [Cp*IrCl₂]₂ (10 mol %), AgOAc (4.0 equiv), AgOTf (0.4 equiv), and NaOAc (2.0 equiv) were stirred in TFE (1.0 mL) under air atmosphere at 140 °C in preheated oil bath for 24 h. The solution was concentrated and the residue was separated on a flash column with PE/EA (6:1) as the eluent to give the product **3ea** (23.4 mg, 77%), **3ha** (7.4 mg, 20%) and **4ha** (17.0 mg, 51%).

(4) Detection of Intermediate 8 by LCMS Data

To a flame dried screw-cap tube equipped with magnetic stir bar were introduced (R)-(+)-2,2'bis(pyridin-2-yloxy)-1,1'-binaphthalene **1a** (22.0 mg, 0.05 mmol), and but-3-en-2-ol **2a** (26.0 μ L, 6.0 equiv), [Cp*IrCl₂]₂ (2.0 mg, 5 mol %), AgOAc (16.8 mg, 2.0 equiv), AgOTf (2.6 mg, 0.2 equiv), NaOAc (4.1 mg, 1.0 equiv) and TFE (0.5 mL). The reaction mixture was stirred in preheated oil bath at 140 °C under argon atmosphere for 10 h. After completion, the reaction mixture was then tested by LCMS. Intermediate **8** was detected by LCMS.

(5) Transformation Experiment:

To a flame dried screw-cap tube equipped with magnetic stir bar were introduced 4aa (51.0 mg, 0.1

mmol), and but-3-en-2-ol **2a** (26.0 μ L, 3.0 equiv), [Cp*IrCl₂]₂ (2.0 mg, 2.5 mol %), AgOAc (16.8 mg, 1.0 equiv), AgOTf (2.6 mg, 0.1 equiv), NaOAc (4.1 mg, 0.5 equiv) and TFE (1.0 mL). The reaction mixture was stirred in preheated oil bath at 140 °C under air atmosphere for 24 h. After completion, the reaction mixture was purified by flash chromatography eluting with ethyl acetate and petroleum ether (1:4) to give the product **3aa** as a colorless oil (50.2 mg, 86%) and trace **4aa**. This proved that **4aa** can be transformed into **3aa**, and the reaction is a step-by-step process.

(6) Proposed Reaction Mechanism

Based on these results and previous reports, we propose the reaction mechanism shown in S5. In the initial stage, active iridium coordinates to the nitrogen followed by C–H bond activation to generate the Ir^{III} complex intermediate **I**. Subsequent insertion of the olefin into the C-Ir bond forms intermediate **II**, which undergoes β -H elimination and keto-enol tautomerism pathway to deliver the alkylation product **4aa** along with Ir^I specie which is oxidized by Ag^I to regenerate the Ir^{III} active catalyst. Then, the second C–H activation process occurs to furnish intermediate **IV**. Finally, the same process occurs to produce the target product **3aa**.

Table S5: Proposed Reaction Mechanism

9. The Large-Scale Experiments

The 1a large-scale experiments: To a flame dried screw-cap tube equipped with magnetic stir bar were introduced (R)-(+)-2,2'-bis(pyridin-2-yloxy)-1,1'-binaphthalene 1a (440.0 mg, 1 mmol), and but-3-en-2-ol 2a (520.0 μ L, 6.0 equiv), [Cp*IrCl₂]₂(40.0 mg, 5 mol %), AgOAc (336 mg, 2.0 equiv), AgOTf (52.0 mg, 0.2 equiv), NaOAc (82.0 mg, 1.0 equiv) and TFE (10 mL). The reaction mixture was stirred in preheated oil bath at 140 °C under argon atmosphere for 40 h. After completion, the reaction mixture was purified by flash chromatography eluting with ethyl acetate and petroleum ether (1:4) to give the product **3aa** as a colorless oil (348.0 mg, 60%) and **4aa** as a colorless oil (117.3 mg, 23%).

10. The HPLC Data of Compound 3af and 4af

The product **3af** was analyzed by HPLC (AD-H, hexane/i-PrOH = 19/1, detector: 220 nm, flow rate: 0.8 mL/min), d.r. = 1:2:1, t1(minor) = 23.5 min, t2(minor) = 24.1 min, t3(major) = 25.8 min, t4(major) = 30.6 min, t5(major) = 35.6 min, t6(minor) = 38.4 min.

The product **4af** was analyzed by HPLC (AD-H, hexane/i-PrOH = 35/1, detector: 280 nm, flow rate: 0.8 mL/min), d.r. = 1:1, t1(minor) = 33.8 min, t2(minor) = 36.2 min, t3(major) = 57.2 min, t4(major) = 61.7 min.

Rac-4af

Asy-4af

No	Retention	Area	Height	Relative	No	Retention	Area	Height	Relative
	Time			Area		Time			Area
	min	mAU*min	mAU	%		min	mAU*min	mAU	%
1	33.950	192.977	227.821	23.67	1	33.847	0.955	1.313	0.36
2	36.707	215.664	229.810	26.45	2	36.153	10.264	10.926	3.91
3	56.997	215.206	141.019	26.39	3	57.217	132.169	86.237	50.40
4	61.300	191.499	116.403	23.49	4	61.673	118.851	71.703	45.32

11. Exploration of methyl acrylate and but-3-en-2-ol as the coupling partners

Standard conditions of this manuscript --- **Condition A:** [Cp*IrCl₂]₂ (2.0 mg, 5 mol %), AgOAc (16.8 mg, 2.0 equiv), AgOTf (2.6 mg, 0.2 equiv), NaOAc (4.1 mg, 1.0 equiv) and TFE (0.5 mL). The reaction mixture was stirred in preheated oil bath at 140 °C under argon atmosphere for 24 h.

versus Standard conditions of our previous work (*Org. Lett.* **2020**, *22*, 4648-4652.) --- Condition B: [Cp*RhCl₂]₂ (2.1 mg, 7 mol %), Cu(OAc)₂:H₂O (30.0 mg, 3.0 equiv), AgSbF₆ (5.1 mg, 0.3 equiv) and DCE (0.5 mL). The reaction mixture was stirred in preheated oil bath at 160 °C under argon atmosphere for 22 h.

When **1a** reacted with **2i** under two conditions, the reaction results were as follows: under condition A, **1a** was destroyed and a very small amount of monoalkenylation product **3ai** was generated. The reaction system was messy by TLC. Under condition B, **1a** was decomposed and no product was generated. The reaction system was messy by TLC.

When 1r reacted with 2a under two conditions, the reaction results were as follows: under two conditions A and B, 1r was decomposed and no product was generated.

Thus, we could see the unique interaction between 1a and 2a.

12. Characterization Data and NMR Spectra

4,4'-(2,2'-bis(pyridin-2-yloxy)-(R)-[1,1'-binaphthalene]-3,3'-diyl)bis(butan-2-one) (3aa)

51.6 mg, 89% yield; colorless oil; eluent (petroleum ether/ethyl acetate = 3:1). ¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, J = 4.5 Hz, 2H), 7.58 (d, J = 8.2 Hz, 1H), 7.13 (dddd, J = 22.1, 8.7, 6.9, 1.8 Hz, 2H), 7.03 – 6.93 (m, 2H), 6.43 (dd, J = 7.1, 4.9 Hz, 1H), 6.30 (d, J = 8.2 Hz, 1H), 2.93 (t, J = 7.6 Hz, 2H), 2.78 (tt, J = 19.5, 7.4 Hz, 2H), 2.03 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 208.2, 163.2, 149.6, 147.0, 138.4, 133.8, 132.4, 131.2, 129.0, 127.1, 126.6, 125.1, 125.0, 117.5, 110.5, 43.8, 30.0, 25.8. HRMS (ESI-TOF) m/z: [M+H]⁺Calcd for C₃₈H₃₃N₂O₄ 581.2435; Found 581.2440. [α]²⁶_D= -88.8(c = 0.51, chloroform). The product was analyzed by HPLC to

determine the enantiomeric excess: >98% ee (AD-H, hexane/i-PrOH = 80/20, detector: 254 nm, flow rate: 0.8 mL/min), t1(major) = 8.2 min, t2(minor) = 12.1 min.

4-(2,2'-bis(pyridin-2-yloxy)-(R)-[1,1'-binaphthalen]-3-yl)butan-2-one (4aa)

7.7 mg, 30% yield; colorless oil; eluent (petroleum ether/ethyl acetate = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.83 (dd, J = 5.0, 2.0 Hz, 1H), 7.74 – 7.55 (m, 5H), 7.31 – 7.26 (m, 1H), 7.26 – 7.17 (m, 2H), 7.17 – 7.13 (m, 1H), 7.12 – 6.98 (m, 5H), 6.67 – 6.60 (m, 1H), 6.45 – 6.37 (m, 2H), 6.25 (d, J = 8.3 Hz, 1H), 2.87 (t, J = 7.6 Hz, 2H), 2.71 (dd, J = 8.2, 6.0 Hz, 2H), 1.95 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 208.3, 163.4, 163.3, 150.0, 149.6, 147.1, 147.0, 138.7, 138.4, 133.8, 133.5, 132.8,

131.5, 130.8, 129.3, 129.1, 127.6, 127.4, 126.7, 126.2, 125.8, 125.5, 125.2, 125.1, 124.8, 123.5, 121.6, 117.9, 117.5, 111.6, 110.6, 43.7, 30.0, 25.9. HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for $C_{34}H_{27}N_2O_3$ 511.2016; Found 511.2020. $[\alpha]^{26}_{D}=$ 3.6 (c = 0.11, chloroform). The product was analyzed by HPLC to determine the enantiomeric excess: >98% ee (AD-H, hexane/i-PrOH = 80/20, detector: 254 nm, flow rate: 0.8 mL/min), t1(minor) = 8.3 min, t2(major) = 8.8 min.

The crude material **1a** of **3aa** and **4aa** was analyzed by HPLC to determine the enantiomeric excess: >98% ee (AD-H, hexane/i-PrOH = 90/10, detector: 280 nm, flow rate: 0.8 mL/min), t1(minor) = 10.3 min, t2(major) = 14.5 min. So the process of C-H functionalization didn't affect the ee of the compounds.

4-(3'-methyl-2,2'-bis(pyridin-2-yloxy)-(R)-[1,1'-binaphthalen]-3-yl)butan-2-one (3ba)

49.3 mg, 94% yield; colorless oil; eluent (petroleum ether/ethyl acetate = 3:1). ¹H NMR (400 MHz, CDCl₃) δ 7.71 (dd, J = 5.0, 1.9 Hz, 1H), 7.65 – 7.52 (m, 5H), 7.14 (qd, J = 7.8, 3.9 Hz, 3H), 7.09 – 6.99 (m, 3H), 6.98 – 6.87 (m, 2H), 6.47 (dd, J = 7.1, 5.0 Hz, 1H), 6.40 (dd, J = 7.2, 5.0 Hz, 1H), 6.32 (d, J = 8.3 Hz, 1H), 6.27 (d, J = 8.2 Hz, 1H), 2.91 (t, J = 7.6 Hz, 2H), 2.73 (tq, J = 17.3, 9.0, 8.1 Hz, 2H), 2.27 (s, 3H), 1.99 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 208.3, 163.3, 163.3, 149.7, 149.7,

147.1, 147.0, 138.4, 133.9, 132.6, 132.2, 131.3, 131.3, 131.2, 129.6, 129.0, 127.2, 126.8, 126.7, 126.6, 125.3, 125.2, 125.0, 124.9, 124.8, 124.7, 117.5, 117.3, 110.7, 110.4, 43.8, 30.0, 26.0, 17.8. HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for $C_{35}H_{29}N_2O_3$ 525.2173; Found 525.2178. $[\alpha]^{26}{}_{D}=$ -75.0 (c = 1.59, chloroform). The product was analyzed by HPLC to determine the enantiomeric excess: >98% ee (AD-H, hexane/i-PrOH = 80/20, detector: 254 nm, flow rate: 0.8 mL/min), t1(major) = 5.5 min, t2(minor) = 6.3 min.

4-(3'-methoxy-2,2'-bis(pyridin-2-yloxy)-(R)-[1,1'-binaphthalen]-3-yl)butan-2-one (3ca)

45.9 mg, 85% yield; colorless oil; eluent (petroleum ether/ethyl acetate = 3:1). ¹H NMR (400 MHz, CDCl₃) δ 7.78 (dd, J = 5.1, 1.9 Hz, 1H), 7.71 – 7.63 (m, 3H), 7.57 (d, J = 8.2 Hz, 1H), 7.30 – 7.11 (m, 6H), 7.06 – 6.98 (m, 2H), 6.90 (ddd, J = 8.2, 6.8, 1.3 Hz, 1H), 6.59 (dd, J = 7.2, 5.0 Hz, 1H), 6.51 – 6.42 (m, 2H), 6.36 (d, J = 8.3 Hz, 1H), 3.79 (s, 3H), 2.88 (t, J = 7.6 Hz, 2H), 2.72 (td, J = 8.0, 7.5, 4.4 Hz, 2H), 1.99 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 208.3, 163.3, 151.3, 149.4, 147.0, 146.9, 141.6, 138.5, 138.3, 133.8, 132.6, 131.8, 131.4, 129.2, 128.4, 127.2, 126.8,

126.5, 126.3, 126.3, 125.4, 125.3, 125.2, 124.9, 123.4, 117.5, 117.4, 110.6, 110.3, 107.6, 55.8, 43.7, 30.0, 26.0. HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for C₃₅H₂₉N₂O₄ 541.2122; Found 541.2125. $[\alpha]^{26}_{D}$ = -49.5 (c = 0.44, chloroform). The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (AD-H, hexane/i-PrOH = 90/10, detector: 254 nm, flow rate: 0.8 mL/min), t1(major) = 16.7 min, t2(minor) = 20.8 min.

4-(3'-bromo-2,2'-bis(pyridin-2-yloxy)-(R)-[1,1'-binaphthalen]-3-yl)butan-2-one (3da)

43.5 mg, 74% yield; colorless oil; eluent (petroleum ether/ethyl acetate = 3:1). ¹H NMR (400 MHz, CDCl₃) δ 8.09 (s, 1H), 7.77 – 7.67 (m, 2H), 7.67 – 7.56 (m, 3H), 7.25 – 7.19 (m, 3H), 7.19 – 7.13 (m, 1H), 7.11 – 6.99 (m, 4H), 6.56 (dd, *J* = 7.2, 5.0 Hz, 1H), 6.45 (dd, *J* = 11.4, 7.5 Hz, 2H), 6.36 (d, *J* = 8.3 Hz, 1H), 2.93 (t, *J* = 7.6 Hz, 2H), 2.77 (tq, *J* = 17.2, 8.9, 8.0 Hz, 2H), 2.03 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 208.1, 163.2, 162.7, 149.7, 147.0, 146.9, 146.8, 138.5, 133.8, 132.5, 132.4,

132.2, 131.7, 131.2, 129.4, 127.3, 127.2, 127.2, 127.1, 126.6, 126.4, 125.9, 125.8, 125.3, 125.1, 124.4, 117.7, 117.6, 116.9, 110.8, 110.5, 43.7, 30.0, 25.9. HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for C₃₄H₂₆BrN₂O₃ 589.1121; Found 589.1125. $[\alpha]^{26}_{D}$ = -10.2 (c = 2.39, chloroform). The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (AD-H, hexane/i-PrOH = 80/20, detector: 280 nm, flow rate: 0.8 mL/min), t1(major) = 6.8 min, t2(minor) = 9.8 min.

4,4'-(6,6'-dimethyl-2,2'-bis(pyridin-2-yloxy)-(R)-[1,1'-binaphthalene]-3,3'-diyl)bis(butan-2-one)

(3ea) 55.9 mg, 92% yield; colorless oil; eluent (petroleum ether/ethyl acetate = 3:1). ¹H NMR (400 MHz, CDCl₃) δ 7.66 (dd, *J* = 5.0, 2.0 Hz, 1H), 7.53 (s, 1H), 7.36 (s, 1H), 7.12 (ddd, *J* = 8.9, 7.3, 1.9 Hz, 1H), 6.90 (d, *J* = 8.6 Hz, 1H), 6.79 (dd, *J* = 8.6, 1.8 Hz, 1H), 6.45 (dd, *J* = 7.2, 4.9 Hz, 1H), 6.30 (d, *J* = 8.3 Hz, 1H), 2.88 (t, *J* = 7.5 Hz, 2H), 2.74 (tt, *J* = 19.2, 7.3 Hz, 2H), 2.28 (s, 3H), 2.01 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 208.3, 163.3, 148.8, 147.0, 138.4, 134.5, 133.6, 131.5, 130.7, 128.3, 127.4, 126.5, 126.1, 125.1, 117.4, 110.5, 43.9, 30.0, 25.9, 21.5. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₄₀H₃₇N₂O₄ 609.2748; Found

609.2753. $[\alpha]^{25}_{D}$ = -67.1 (c = 0.38, chloroform). The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (AD-H, hexane/i-PrOH = 90/10, detector: 280 nm, flow rate: 0.8 mL/min), t1(major) = 16.4 min, t2(minor) = 25.7 min.

4,4'-(6,6'-di-tert-butyl-2,2'-bis(pyridin-2-yloxy)-(R)-[1,1'-binaphthalene]-3,3'-diyl)bis(butan-2-

one) (3fa) 64.4 mg, 93% yield; colorless oil; eluent (petroleum ether/ethyl acetate = 3:1). ¹H NMR (400 MHz, CDCl₃) δ 7.73 (dd, *J* = 4.9, 2.0 Hz, 1H), 7.68 (s, 1H), 7.59 (d, *J* = 2.1 Hz, 1H), 7.21 – 7.08 (m, 2H), 7.03 (d, *J* = 8.9 Hz, 1H), 6.50 (dd, *J* = 7.2, 5.0 Hz, 1H), 6.33 (d, *J* = 8.3 Hz, 1H), 2.99 (t, *J* = 7.6 Hz, 2H), 2.81 (dt, *J* = 11.8, 7.8 Hz, 2H), 2.10 (s, 3H), 1.31 (s, 9H). ¹³C NMR (151 MHz, CDCl₃) δ 208.3, 163.4, 149.0, 147.5, 147.0, 138.2, 133.5, 131.1, 130.6, 128.9, 126.3, 124.8, 123.9, 122.0, 117.3, 110.5, 43.9, 34.5, 31.1, 29.9, 25.8. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₄₆H₄₉N₂O₄ 693.3687; Found

693.3688. $[\alpha]^{26}_{D}$ = -36.7 (c = 0.32, chloroform). The product was analyzed by HPLC to determine the enantiomeric excess: >95% ee (AD-H, hexane/i-PrOH = 80/20, detector: 280 nm, flow rate: 0.8 mL/min), t1(minor) = 7.9 min, t2(major) = 9.3 min.

The crude material **1f** of **3fa** was analyzed by HPLC to determine the enantiomeric excess: >95% ee (AD-H, hexane/i-PrOH = 90/10, detector: 280 nm, flow rate: 0.8 mL/min), t1(minor) = 9.8 min, t2(major) = 11.3 min. So the process of C-H functionalization didn't affect the ee of the compounds.

4,4'-(6,6'-diphenyl-2,2'-bis(pyridin-2-yloxy)-(R)-[1,1'-binaphthalene]-3,3'-diyl)bis(butan-2-one)

(3ga) 65.1 mg, 89% yield; colorless oil; eluent (petroleum ether/ethyl acetate = 3:1). ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, *J* = 1.9 Hz, 1H), 7.58 (s, 1H), 7.53 (dd, *J* = 5.1, 1.9 Hz, 1H), 7.42 (d, *J* = 7.6 Hz, 2H), 7.23 (t, *J* = 7.5 Hz, 2H), 7.16 – 7.08 (m, 2H), 7.04 – 6.97 (m, 2H), 6.31 (dd, *J* = 7.2, 5.0 Hz, 1H), 6.21 (d, *J* = 8.3 Hz, 1H), 2.82 (t, *J* = 7.6 Hz, 2H), 2.66 (qd, *J* = 17.1, 7.8 Hz, 2H), 1.92 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 208.2, 163.3, 149.8, 147.1, 141.0, 138.5, 137.6, 134.3, 131.7, 131.5, 129.4, 128.8, 127.3, 127.2, 125.0, 125.0, 124.8, 117.6, 110.6, 43.8, 30.0, 25.9. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for

 $C_{50}H_{41}N_2O_4$ 733.3061; Found 733.3064. [α]²⁵_D= -1.2 (c = 1.07, chloroform). The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (AD-H, hexane/i-PrOH = 80/20, detector: 220 nm, flow rate: 0.8 mL/min), t1(major) = 10.0 min, t2(minor) = 11.7 min.

4,4'-(6,6'-dibromo-2,2'-bis(pyridin-2-yloxy)-(R)-[1,1'-binaphthalene]-3,3'-diyl)bis(butan-2-one)

(3ha) 16.2 mg, 22% yield; colorless oil; eluent (petroleum ether/ethyl acetate = 3:1). ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, *J* = 2.0 Hz, 1H), 7.57 (dd, *J* = 5.1, 2.0 Hz, 1H), 7.50 (s, 1H), 7.16 – 7.06 (m, 1H), 6.99 (dd, *J* = 9.0, 2.1 Hz, 1H), 6.80 (d, *J* = 9.0 Hz, 1H), 6.44 (dd, *J* = 7.2, 5.0 Hz, 1H), 6.27 (d, *J* = 8.3 Hz, 1H), 2.87 (t, *J* = 7.6 Hz, 2H), 2.79 – 2.61 (m, 2H), 1.99 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 206.7, 162.0, 149.0, 145.9, 137.6, 134.3, 131.2, 129.7, 128.1, 127.4, 127.2, 123.8, 118.1, 116.8, 109.5, 42.5, 28.9, 24.6. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₈H₃₁Br₂N₂O₄ 737.0645; Found 737.0649. [α]²⁶_D= -47.4 (c =

1.68, chloroform). The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (AD-H, hexane/i-PrOH = 65/35, detector: 280 nm, flow rate: 0.6 mL/min), t1(major) = 7.7 min, t2(minor) = 37.6 min.

4-(6,6'-dibromo-2,2'-bis(pyridin-2-yloxy)-(R)-[1,1'-binaphthalen]-3-yl)butan-2-one (4ha)

46.0 mg, 69% yield; colorless oil; eluent (petroleum ether/ethyl acetate = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.91 (dd, J = 19.0, 2.2 Hz, 3H), 7.74 – 7.66 (m, 3H), 7.45 – 7.36 (m, 2H), 7.26 – 7.17 (m, 3H), 7.04 (t, J = 8.3 Hz, 2H), 6.79 (dd, J = 7.2, 5.0 Hz, 1H), 6.60 – 6.51 (m, 2H), 6.37 (d, J = 8.2 Hz, 1H), 2.97 (t, J = 7.5 Hz, 2H), 2.80 (dd, J = 9.3, 6.9 Hz, 2H), 2.07 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 207.8, 163.1, 163.0, 150.3, 150.0, 147.1, 147.0, 138.9, 138.7, 135.4,

132.5, 131.9, 131.8, 131.1, 129.6, 129.4, 129.2, 128.9, 128.5, 128.4, 128.3, 127.8, 124.8, 123.3, 122.9, 119.4, 118.9, 118.3, 117.8, 111.6, 110.6, 43.4, 30.0, 25.7. HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for C₃₄H₂₅Br₂N₂O₃ 667.0226; Found 667.0230. $[\alpha]^{24}_{D}=1.9$ (c = 0.68, chloroform). The product was analyzed by HPLC to determine the enantiomeric excess: >94% ee (AD-H, hexane/i-PrOH = 80/20, detector: 280 nm, flow rate: 0.8 mL/min), t1(major) = 10.8 min, t2(minor) = 12.7 min.

4-(6,6'-dibenzhydryl-2,2'-bis(pyridin-2-yloxy)-(R)-[1,1'-binaphthalen]-3-yl)butan-2-one (4ia)

21.1 mg, 25% yield; colorless oil; eluent (petroleum ether/ethyl acetate = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.86 (dd, *J* = 5.0, 2.0 Hz, 1H), 7.69 – 7.57 (m, 3H), 7.36 – 7.22 (m, 14H), 7.20 (dq, *J* = 8.1, 3.7, 2.8 Hz, 4H), 7.15 – 7.12 (m, 1H), 7.11 – 7.01 (m, 8H), 6.92 (ddd, *J* = 8.8, 4.7, 1.9 Hz, 2H), 6.69 (dd, *J* = 7.1, 5.0 Hz, 1H), 6.48 (dd, *J* = 7.8, 4.0 Hz, 2H), 6.32 (d, *J* = 8.3 Hz, 1H), 5.56 (d, *J* = 5.6 Hz, 2H), 2.90 (t, *J* = 7.2 Hz, 2H), 2.76 (dd, *J* = 9.0, 7.1 Hz, 2H), 2.03 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 208.2, 163.5, 163.3, 149.9, 149.4,

147.1, 147.0, 143.7, 143.7, 143.6, 140.7, 140.2, 138.5, 138.3, 133.9, 132.1, 131.3, 130.7, 129.5, 129.5, 129.2, 128.9, 128.2, 128.2, 128.2, 127.9, 127.7, 127.4, 127.3, 126.8, 126.3, 126.3, 124.8, 123.5, 121.7, 117.7, 117.3, 111.4, 110.6, 56.7, 56.6, 43.7, 29.9, 25.7. HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for $C_{60}H_{47}N_2O_3$ 843.3581; Found 843.3543. $[\alpha]^{26}D=$ 28.5 (c = 0.11, chloroform). The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (AD-H, hexane/i-PrOH = 80/20, detector: 220 nm, flow rate: 0.8 mL/min), t1(minor) = 7.0 min, t2(major) = 7.6 min.

4,4'-(2,2'-bis(pyridin-2-yloxy)-5,6-dihydro-[1,1'-biphenyl]-3,3'-diyl)bis(butan-2-one) (3ja)

39.0 mg, 81% yield; colorless oil; eluent (petroleum ether/ethyl acetate = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, *J* = 4.9 Hz, 1H), 7.44 (td, *J* = 7.9, 7.4, 1.9 Hz, 1H), 7.11 (dd, *J* = 7.3, 1.9 Hz, 1H), 7.04 – 6.91 (m, 2H), 6.84 – 6.74 (m, 1H), 6.56 (d, *J* = 8.3 Hz, 1H), 2.73 (t, *J* = 8.0 Hz, 2H), 2.65 (dd, *J* = 11.2, 4.9 Hz, 2H), 2.03 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 208.1, 163.5, 149.4, 147.3, 138.9, 134.0, 131.9, 129.7, 129.7, 125.0, 117.7, 110.5, 43.7, 29.9, 25.1. HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₀H₂₈N₂NaO₄ 503.1941; Found 503.1964.

4,4'-(2,2'-bis(pyridin-2-yloxy)-5,5',6,6',7,7',8,8'-octahydro-(R)-[1,1'-binaphthalene]-3,3'-

diyl)bis(butan-2-one) (3ka) 50.0 mg, 85% yield; colorless oil; eluent (petroleum ether/ethyl acetate = 3:1). ¹H NMR (400 MHz, CDCl₃) δ 8.00 (dd, J = 5.1, 1.9 Hz, 1H), 7.41 (td, J = 7.8, 1.9 Hz, 1H), 6.85 (s, 1H), 6.79 (dd, J = 7.1, 5.1 Hz, 1H), 6.45 (d, J = 8.3 Hz, 1H), 2.70 (tdd, J = 16.9, 12.8, 7.7 Hz, 5H), 2.49 (dt, J = 16.0, 7.0 Hz, 1H), 2.23 – 2.11 (m, 2H), 2.07 (s, 3H), 1.52 (dh, J = 13.9, 6.7, 4.3 Hz, 3H), 1.16 (tdd, J = 11.6, 9.3, 8.3, 5.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 208.6, 163.4, 147.5, 147.1, 138.6, 135.7, 134.0, 131.1, 130.0, 129.7, 117.5, 110.8, 44.1, 29.9, 29.4, 26.8, 25.1, 22.9, 22.7. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₈H₄₁N₂O₄

589.3061; Found 589.3062. $[\alpha]^{26}_{D}$ = -191.1(c = 0.21, chloroform). The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (AD-H, hexane/i-PrOH = 80/20, detector: 280 nm, flow rate: 0.8 mL/min), t1(major) = 5.2 min, t2(minor) = 8.2 min.

4,4'-(2,2'-bis((3-methylpyridin-2-yl)oxy)-(R)-[1,1'-binaphthalene]-3,3'-diyl)bis(butan-2-one) (3la)

32.2 mg, 53% yield; colorless oil; eluent (petroleum ether/ethyl acetate = 3:1). ¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, *J* = 24.0 Hz, 2H), 7.40 – 6.71 (m, 5H), 6.22 (s, 1H), 2.93 (d, *J* = 68.9 Hz, 4H), 1.99 (d, *J* = 27.3 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 208.3, 161.6, 150.0, 144.1, 138.4, 132.2, 131.0, 128.5, 126.9, 124.7, 120.4, 117.4, 43.8, 29.9, 25.5, 15.4. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₄₀H₃₇N₂O₄ 609.2748; Found 609.2753. [α]²⁶_D= -31.5 (c = 1.19, chloroform). The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (AD-H, hexane/i-PrOH = 90/10, detector: 280 nm, flow rate: 0.8 mL/min),

t1(major) = 9.5 min, t2(minor) = 10.4 min.

4-(2,2'-bis((3-methylpyridin-2-yl)oxy)-(R)-[1,1'-binaphthalen]-3-yl)butan-2-one (4la)

13.5 mg, 25% yield; colorless oil; eluent (petroleum ether/ethyl acetate = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 8.03 – 7.59 (m, 5H), 7.58 – 6.87 (m, 10H), 6.48 (d, *J* = 83.6 Hz, 2H), 3.08 (td, *J* = 7.5, 3.6 Hz, 2H), 2.90 (td, *J* = 21.5, 19.0, 10.6 Hz, 2H), 2.12 (s, 3H), 2.03 – 1.45 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 208.3, 161.6, 144.1, 138.7, 138.5, 132.7, 131.3, 130.7, 128.6, 127.2, 126.5, 125.2, 125.0, 124.6, 122.2, 117.7, 117.4, 43.9, 30.0, 25.7, 15.4. HRMS (ESI-TOF) m/z: [M +

H]⁺ Calcd for C₃₆H₃₁N₂O₃ 539.2329; Found 539.2333. $[\alpha]^{26}_{D}$ = -12.3 (c = 0.45, chloroform). The product was analyzed by HPLC to determine the enantiomeric excess: >98% ee (AD-H, hexane/i-PrOH = 80/20, detector: 220 nm, flow rate: 0.8 mL/min), t1(minor) = 5.7 min, t2(major) = 7.0 min.

4,4'-(2,2'-bis((3-methoxypyridin-2-yl)oxy)-(R)-[1,1'-binaphthalene]-3,3'-diyl)bis(butan-2-one)

(3ma) 37.8 mg, 59% yield; colorless oil; eluent (petroleum ether/ethyl acetate = 3:1). ¹H NMR (400 MHz, CDCl₃) δ 7.68 (s, 1H), 7.63 (d, *J* = 8.2 Hz, 1H), 7.24 – 7.16 (m, 2H), 7.07 (d, *J* = 8.4 Hz, 1H), 7.00 – 6.94 (m, 1H), 6.58 (dd, *J* = 7.8, 1.6 Hz, 1H), 6.39 (dd, *J* = 7.8, 4.9 Hz, 1H), 3.50 (s, 3H), 3.12 – 2.92 (m, 3H), 2.82 (ddd, *J* = 16.4, 9.0, 6.3 Hz, 1H), 2.11 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 208.5, 153.9, 150.6, 143.7, 137.5, 134.1, 132.3, 131.0, 128.4, 126.8, 124.8, 124.7, 124.7, 119.2, 117.9, 55.8, 43.8, 29.9, 25.7. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₄₀H₃₇N₂O₆ 641.2646; Found 641.2646. [α]²⁵_D= -81.8 (c = 1.15, 100)

chloroform). The product was analyzed by HPLC to determine the enantiomeric excess: >98% ee (AD-H, hexane/i-PrOH = 80/20, detector: 280 nm, flow rate: 0.8 mL/min), t1(major) = 9.1 min, t2(minor) = 15.0 min.

4-(2,2'-bis((3-methoxypyridin-2-yl)oxy)-(R)-[1,1'-binaphthalen]-3-yl)butan-2-one (4ma)

13.7 mg, 24% yield; colorless oil; eluent (petroleum ether/ethyl acetate = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, *J* = 8.9 Hz, 1H), 7.70 – 7.61 (m, 3H), 7.36 – 7.27 (m, 2H), 7.23 – 7.11 (m, 5H), 7.05 – 6.96 (m, 2H), 6.70 (dd, *J* = 5.6, 4.0 Hz, 1H), 6.52 (td, *J* = 8.3, 7.4, 4.5 Hz, 2H), 6.37 (dd, *J* = 7.8, 4.9 Hz, 1H), 3.39 (s, 3H), 3.31 (s, 3H), 3.03 – 2.75 (m, 4H), 2.03 (s, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 208.6, 154.0, 154.0, 150.7, 150.6, 144.3, 143.9, 137.8, 137.5, 134.1, 133.6, 132.7, 131.3, 130.7, 128.8, 128.7, 127.3, 127.1, 126.9, 126.6, 125.5, 125.1,

124.9, 124.9, 124.6, 123.5, 121.9, 120.4, 119.1, 118.3, 118.0, 56.3, 55.8, 43.8, 30.0, 25.9. HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for C₃₆H₃₁N₂O₅ 571.2227; Found 571.2230. $[\alpha]^{26}_{D}$ = -6.7 (c = 0.14, chloroform). The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (AD-H, hexane/i-PrOH = 80/20, detector: 254 nm, flow rate: 0.8 mL/min), t1(minor) = 8.6 min, t2(major) = 13.5 min.

4,4'-(2,2'-bis((5-methylpyridin-2-yl)oxy)-(R)-[1,1'-binaphthalene]-3,3'-diyl)bis(butan-2-one) (3na)

59.6 mg, 98% yield; colorless oil; eluent (petroleum ether/ethyl acetate = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.61 (s, 1H), 7.56 (d, J = 8.2 Hz, 1H), 7.38 (d, J = 2.5 Hz, 1H), 7.13 (ddd, J = 8.1, 6.4, 1.5 Hz, 1H), 7.00 – 6.90 (m, 2H), 6.86 (dd, J = 8.4, 2.5 Hz, 1H), 6.15 (d, J = 8.3 Hz, 1H), 2.93 (t, J = 7.6 Hz, 2H), 2.78 (qd, J = 17.1, 7.7 Hz, 2H), 2.02 (s, 3H), 1.84 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 208.3, 161.6, 150.1, 146.6, 139.1, 133.8, 132.4, 131.1, 129.0, 127.1, 126.7, 126.5, 125.0, 125.0, 124.8, 110.0, 43.8, 30.0, 26.0, 17.2. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₄₀H₃₇N₂O₄ 609.2748; Found 609.2750. [α]²⁵_D= -33.3 (c = 0.54, 1.5 Hz, 1.5 Hz,

chloroform). The product was analyzed by HPLC to determine the enantiomeric excess: >97% ee (AD-H, hexane/i-PrOH = 90/10, detector: 280 nm, flow rate: 0.8 mL/min), t1(major) = 25.9 min, t2(minor) = 30.0 min.

4,4'-(2,2'-bis((4-methylpyridin-2-yl)oxy)-(R)-[1,1'-binaphthalene]-3,3'-diyl)bis(butan-2-one) (30a)

52.3 mg, 86% yield; colorless oil; eluent (petroleum ether/ethyl acetate = 3:1). ¹H NMR (400 MHz, CDCl₃) δ 7.65 – 7.55 (m, 2H), 7.47 (d, J = 5.2 Hz, 1H), 7.19 – 7.12 (m, 1H), 7.05 – 6.92 (m, 2H), 6.22 (d, J = 5.2 Hz, 1H), 6.08 (s, 1H), 2.93 (t, J = 7.6 Hz, 2H), 2.87 – 2.68 (m, 2H), 2.03 (s, 3H), 1.91 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 207.2, 162.5, 148.8, 148.6, 145.5, 132.7, 131.4, 130.1, 128.0, 126.0, 125.5, 124.0, 123.9, 123.9, 117.9, 109.8, 42.8, 29.0, 24.9, 19.5. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₄₀H₃₇N₂O₄ 609.2748; Found 609.2749. [α]²⁵_D= -12.7 (c = 0.86, chloroform). The product was analyzed by HPLC to

determine the enantiomeric excess: >95% ee (AD-H, hexane/i-PrOH = 80/20, detector: 280 nm, flow rate: 0.8 mL/min), t1(minor) = 6.0 min, t2(major) = 7.6 min.

The crude material of **3ab** was analyzed by HPLC to determine the enantiomeric excess: >96% ee (AD-H, hexane/i-PrOH = 80/20, detector: 280 nm, flow rate: 0.8 mL/min), t1(minor) = 7.1 min, t2(major) =

14.4 min. So the process of C-H functionalization didn't affect the ee of the compounds.

4-(2'-methoxy-2-(pyrimidin-2-yloxy)-(R)-[1,1'-binaphthalen]-3-yl)butan-2-one (3pa)

14.8 mg, 33% yield; colorless oil; eluent (petroleum ether/ethyl acetate = 2:1). ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, *J* = 4.8 Hz, 2H), 7.81 (d, *J* = 6.9 Hz, 2H), 7.73 (d, *J* = 9.0 Hz, 1H), 7.61 (d, *J* = 8.1 Hz, 1H), 7.34 (t, *J* = 7.4 Hz, 1H), 7.20 (d, *J* = 9.5 Hz, 1H), 7.16 – 7.01 (m, 5H), 6.50 (t, *J* = 4.8 Hz, 1H), 3.66 (s, 3H), 2.99 (dd, *J* = 11.5, 4.9 Hz, 2H), 2.89 (dd, *J* = 11.0, 6.7 Hz, 2H), 2.06 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 208.2, 164.8, 158.9, 155.0, 148.7, 133.3, 133.3, 132.9, 131.9, 129.9,

129.0, 128.7, 127.8, 127.5, 126.0, 126.0, 125.9, 125.9, 125.8, 125.5, 123.3, 117.7, 115.2, 113.4, 43.7, 30.1, 25.8. HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for $C_{29}H_{25}N_2O_3$ 449.1860; Found 449.1863. $[\alpha]^{26}_{D}=$ 7.0 (c = 0.33, chloroform). The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (AD-H, hexane/i-PrOH = 65/35, detector: 254 nm, flow rate: 0.6 mL/min), t1(major) = 7.9 min, t2(minor) = 8.8 min.

4-(2'-methoxy-2-(thiazol-2-yloxy)-[1,1'-binaphthalen]-3-yl)butan-2-one (3qa)

17.7 mg, 39% yield; colorless oil; eluent (petroleum ether/ethyl acetate = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.84 (q, *J* = 5.8, 4.8 Hz, 3H), 7.72 (d, *J* = 8.1 Hz, 1H), 7.42 – 7.34 (m, 1H), 7.23 – 7.10 (m, 5H), 7.01 (d, *J* = 8.5 Hz, 1H), 6.78 (d, *J* = 3.8 Hz, 1H), 6.34 (d, *J* = 3.7 Hz, 1H), 3.62 (s, 3H), 3.10 (t, *J* = 7.7 Hz, 2H), 2.96 – 2.87 (m, 2H), 2.09 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 208.0, 173.5, 154.9, 150.8, 136.8, 133.4, 132.9, 132.8, 132.1, 130.2, 129.4, 128.8, 127.7, 127.7, 126.3, 126.1,

126.1, 126.0, 125.9, 125.4, 123.4, 117.3, 113.1, 112.2, 56.3, 43.8, 30.1, 25.5. HRMS (ESI-TOF) m/z: [M + H]⁺Calcd for C₂₈H₂₄NO₃S 454.1471; Found 454.1477. [α]²⁵_D= 3.1 (c = 1.87, chloroform). The product was analyzed by HPLC to determine the enantiomeric excess: >93% ee (AD-H, hexane/i-PrOH = 90/10, detector: 280 nm, flow rate: 0.8 mL/min), t1(minor) = 7.5 min, t2(major) = 8.2 min.

1,1'-(2,2'-bis(pyridin-2-yloxy)-(R)-[1,1'-binaphthalene]-3,3'-diyl)bis(pentan-3-one) (3ab)

49.9 mg, 82% yield; colorless oil; eluent (petroleum ether/ethyl acetate = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.68 – 7.55 (m, 3H), 7.20 – 7.07 (m, 2H), 6.97 (dt, *J* = 15.1, 8.2 Hz, 2H), 6.42 (dd, *J* = 7.2, 5.0 Hz, 1H), 6.30 (d, *J* = 8.3 Hz, 1H), 2.93 (t, *J* = 7.7 Hz, 2H), 2.73 (dtd, *J* = 24.8, 16.7, 7.2 Hz, 2H), 2.30 (qd, *J* = 7.4, 3.9 Hz, 2H), 0.93 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 209.8, 162.2, 148.6, 145.9, 137.3, 132.9, 131.3, 130.2, 128.0, 126.1, 125.6, 124.0, 124.0, 123.9, 116.4, 109.5, 41.4, 34.9, 24.9, 6.8. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₄₀H₃₇N₂O₄ 609.2748; Found 609.2761. [α]²⁶_D= -76.0 (c = 0.33, chloroform). The product was

analyzed by HPLC to determine the enantiomeric excess: >98% ee (AD-H, hexane/i-PrOH = 80/20, detector: 254 nm, flow rate: 0.8 mL/min), t1(major) = 7.1 min, t2(minor) = 8.8 min.

1,1'-(2,2'-bis(pyridin-2-yloxy)-(R)-[1,1'-binaphthalene]-3,3'-diyl)bis(hexan-3-one) (3ac)

51.5 mg, 81% yield; colorless oil; eluent (petroleum ether/ethyl acetate = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, *J* = 3.6 Hz, 2H), 7.57 (d, *J* = 8.2 Hz, 1H), 7.18 – 7.06 (m, 2H), 7.00 (d, *J* = 8.4 Hz, 1H), 6.97 – 6.90 (m, 1H), 6.41 (dd, *J* = 7.1, 5.0 Hz, 1H), 6.29 (d, *J* = 8.3 Hz, 1H), 2.92 (t, *J* = 7.6 Hz, 2H), 2.82 – 2.61 (m, 2H), 2.25 (td, *J* = 7.3, 3.4 Hz, 2H), 1.47 (h, *J* = 7.4 Hz, 2H), 0.77 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 210.4, 163.3, 149.6, 147.0, 138.4, 133.9, 132.4, 131.2, 129.0, 127.1, 126.7, 125.1, 125.0, 125.0, 117.5, 110.6, 44.8, 42.9, 25.9, 17.3, 13.8. HRMS (ESI-TOF) m/z: [M+H]⁺Calcd for C₄₂H₄₁N₂O₄ 637.3066; Found 637.3078.

 $[\alpha]^{25}_{D}$ = -95.0 (c = 1.81, chloroform). The product was analyzed by HPLC to determine the enantiomeric excess: >98% ee (AD-H, hexane/i-PrOH = 90/10, detector: 254 nm, flow rate: 0.8 mL/min), t1(major) = 12.5 min, t2(minor) = 14.9 min.

1,1'-(2,2'-bis(pyridin-2-yloxy)-(R)-[1,1'-binaphthalene]-3,3'-diyl)bis(octan-3-one) (3ad)

51.9 mg, 75% yield; colorless oil; eluent (petroleum ether/ethyl acetate = 8:1). ¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, J = 4.0 Hz, 2H), 7.58 (d, J = 8.2 Hz, 1H), 7.19 – 7.08 (m, 2H), 6.98 (dt, J = 15.0, 8.4 Hz, 2H), 6.43 (dd, J = 7.1, 4.9 Hz, 1H), 6.30 (d, J = 8.2 Hz, 1H), 2.93 (t, J = 7.7 Hz, 2H), 2.83 – 2.64 (m, 2H), 2.27 (td, J = 7.4, 3.9 Hz, 2H), 1.45 (p, J = 7.4 Hz, 2H), 1.16 (dp, J = 15.2, 6.4, 5.2 Hz, 4H), 0.77 (t, J = 7.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 209.6, 162.2, 148.6, 145.9, 137.3, 132.9, 131.3, 130.2, 128.0, 126.1, 125.6, 124.0, 124.0, 123.9, 116.4, 109.5, 41.8, 41.8, 30.4, 24.8, 22.5, 21.4, 12.9. HRMS (ESI-TOF) m/z: [M + H]⁺

Calcd for C₄₆H₄₉N₂O₄ 693.3687; Found 693.3692. $[\alpha]^{26}_{D}$ = -28.6 (c = 0.21, chloroform). The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (AD-H, hexane/i-PrOH = 90/10, detector: 220 nm, flow rate: 0.8 mL/min), t1(major) = 10.6 min, t2(minor) = 20.7 min.

5,5'-(2,2'-bis(pyridin-2-yloxy)-(R)-[1,1'-binaphthalene]-3,3'-diyl)bis(1-phenylpentan-3-one) (3ae)

70.7 mg, 93% yield; colorless oil; eluent (petroleum ether/ethyl acetate = 8:1). ¹H NMR (400 MHz, CDCl₃) δ 7.51 – 7.40 (m, 3H), 7.07 – 6.99 (m, 3H), 6.99 – 6.88 (m, 4H), 6.88 – 6.78 (m, 2H), 6.27 (dd, *J* = 7.1, 5.0 Hz, 1H), 6.13 (d, *J* = 8.3 Hz, 1H), 2.80 (t, *J* = 7.6 Hz, 2H), 2.63 (dt, *J* = 14.4, 7.7 Hz, 3H), 2.58 – 2.51 (m, 1H), 2.47 (td, *J* = 8.4, 7.7, 5.9 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 209.4, 163.3, 149.6, 147.0, 141.1, 138.4, 133.8, 132.4, 131.2, 129.1, 128.5, 128.3, 127.1, 126.7, 126.1, 125.1, 125.1, 125.0, 117.5, 110.6, 44.4, 43.0, 29.7, 25.9. HRMS (ESI-TOF) m/z: [M + H]⁺Calcd for C₅₂H₄₅N₂O₄ 761.3374; Found 761.3375. [α]²⁶_D= -75.4 (c =

0.27, chloroform). The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (AD-H, hexane/i-PrOH = 90/10, detector: 220 nm, flow rate: 0.8 mL/min), t1(major) = 9.6 min, t2(minor) = 11.5 min.

5,5'-(2,2'-bis(pyridin-2-yloxy)-(R)-[1,1'-binaphthalene]-3,3'-diyl)bis(2-methylpentan-3-one) (3af)

10.6 mg, 14% yield; colorless oil; eluent (petroleum ether/ethyl acetate = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.58 – 7.44 (m, 3H), 7.23 – 7.10 (m, 4H), 7.07 (d, *J* = 7.3 Hz, 2H), 7.03 – 6.96 (m, 1H), 6.93 (d, *J* = 5.9 Hz, 2H), 6.41 – 6.32 (m, 1H), 6.14 (dt, *J* = 12.0, 7.7 Hz, 1H), 3.65 (p, *J* = 6.9 Hz, 1H), 2.96 – 2.56 (m, 4H), 1.28 (dd, *J* = 7.0, 4.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 210.2, 210.1, 163.2, 149.6, 149.6, 146.8, 140.6, 138.2, 138.2, 138.2, 138.2, 133.8, 133.7, 132.3, 131.1, 128.9, 128.8, 127.9, 127.8, 127.1, 127.1, 127.0, 127.0, 126.6, 124.9, 124.8, 117.3, 110.6, 52.9, 41.4, 41.3, 25.9, 25.8, 17.5, 17.4. HRMS (ESI-TOF) m/z: [M + H]⁺

Calcd for C₅₂H₄₅N₂O₄ 761.3374; Found 761.3375.

1-(2,2'-bis(pyridin-2-yloxy)-(R)-[1,1'-binaphthalen]-3-yl)-4-methylpentan-3-one (4af)

40.2 mg, 67% yield; colorless oil; eluent (petroleum ether/ethyl acetate = 8:1). ¹H NMR (400 MHz, CDCl₃) δ 7.70 (td, J = 4.9, 1.9 Hz, 1H), 7.60 (d, J = 8.8 Hz, 1H), 7.55 – 7.46 (m, 2H), 7.46 – 7.38 (m, 2H), 7.17 – 6.86 (m, 14H), 6.51 (q, J = 5.8 Hz, 1H), 6.35 – 6.22 (m, 2H), 6.07 (dd, J = 11.4, 8.3 Hz, 1H), 3.48 (p, J = 7.0 Hz, 1H), 2.82 – 2.45 (m, 4H), 1.12 (t, J = 6.9 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 210.2, 210.1, 163.4, 163.2, 163.2, 150.0, 145.0, 149.5, 147.1, 146.9, 140.5, 138.7, 138.7,

138.4, 138.4, 133.9, 133.8, 133.5, 133.5, 132.7, 131.4, 130.7, 129.3, 129.3, 129.0, 128.9, 128.9, 127.9, 127.9, 127.5, 127.4, 127.3, 127.1, 126.7, 126.2, 125.7, 125.7, 125.4, 125.1, 125.0, 124.7, 123.5, 121.5, 121.5, 118.0, 117.9, 117.4, 111.6, 111.6, 110.6, 110.6, 53.0, 52.9, 41.2, 41.2, 26.0, 25.9, 17.5, 17.4. HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for $C_{41}H_{33}N_2O_3$ 601.2486; Found 601.2491.

3,3'-(2,2'-bis(pyridin-2-yloxy)-(R)-[1,1'-binaphthalene]-3,3'-diyl)bis(1-phenylpropan-1-one) (3ag)

14.8 mg, 21% yield; colorless oil; eluent (petroleum ether/ethyl acetate = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.96 – 7.83 (m, 2H), 7.76 (s, 1H), 7.65 (t, *J* = 5.8 Hz, 2H), 7.49 (t, *J* = 7.3 Hz, 1H), 7.38 (t, *J* = 7.6 Hz, 2H), 7.22 (d, *J* = 4.2 Hz, 2H), 7.11 – 6.98 (m, 2H), 6.43 (dd, *J* = 7.1, 4.7 Hz, 1H), 6.33 (d, *J* = 8.3 Hz, 1H), 3.46 – 3.25 (m, 2H), 3.15 (dq, *J* = 14.4, 7.3, 6.5 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 199.6, 163.3, 149.8, 147.0, 138.3, 136.9, 134.0, 133.0, 132.4, 131.2, 129.3, 128.6, 128.1, 127.1, 126.7, 125.0, 124.9, 117.4, 110.6, 39.2, 26.5. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₄₈H₃₇N₂O₄ 705.2748; Found 705.2750. [α]²⁶_D= -3.0 (c = 0.76,

chloroform). The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (AD-H, hexane/i-PrOH = 90/10, detector: 220 nm, flow rate: 0.8 mL/min), t1(major) = 13.6 min, t2(minor) = 14.9 min.

3-(2,2'-bis(pyridin-2-yloxy)-(R)-[1,1'-binaphthalen]-3-yl)-1-phenylpropan-1-onee (4ag)

22.9 mg, 40% yield; colorless oil; eluent (petroleum ether/ethyl acetate = 8:1). ¹H NMR (400 MHz, CDCl₃) δ 7.93 – 7.82 (m, 4H), 7.81 – 7.62 (m, 4H), 7.51 – 7.44 (m, 1H), 7.39 – 7.22 (m, 6H), 7.20 – 7.03 (m, 5H), 6.68 (dd, *J* = 7.1, 5.0 Hz, 1H), 6.52 – 6.43 (m, 2H), 6.33 (d, *J* = 8.3 Hz, 1H), 3.42 – 3.23 (m, 2H), 3.11 (t, *J* = 8.1 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 199.6, 163.3, 150.0, 149.7, 138.9, 138.6, 136.8, 134.1, 133.5, 133.0, 132.8, 131.5, 130.8, 129.5, 128.5, 128.2, 127.6, 127.5,

126.8, 126.2, 125.8, 125.6, 125.2, 124.8, 123.5, 121.7, 118.0, 117.6, 111.7, 110.7, 39.1, 26.5. HRMS

(ESI-TOF) m/z: $[M + H]^+$ Calcd for C₃₉H₂₉N₂O₃ 573.2173; Found 573.2178. $[\alpha]^{26}_{D}=$ 2.0 (c = 0.15, chloroform). The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (AD-H, hexane/i-PrOH = 90/10, detector: 280 nm, flow rate: 0.8 mL/min), t1(minor) = 16.8 min, t2(major) = 24.7 min.

3,3'-(2,2'-bis(pyridin-2-yloxy)-(R)-[1,1'-binaphthalene]-3,3'-diyl)bis(1-(thiophen-2-yl)propan-1-

one) (3ah) 10.7 mg, 15% yield; colorless oil; eluent (petroleum ether/ethyl acetate = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.79 (s, 1H), 7.67 (dd, J = 6.2, 3.2 Hz, 3H), 7.60 (dd, J = 4.9, 1.1 Hz, 1H), 7.26 – 7.21 (m, 1H), 7.17 – 7.00 (m, 4H), 6.47 (dd, J = 7.2, 4.9 Hz, 1H), 6.36 (d, J = 8.2 Hz, 1H), 3.41 – 3.27 (m, 2H), 3.27 – 3.13 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 192.5, 163.2, 149.8, 146.8, 144.3, 138.6, 133.6, 133.5, 132.4, 132.1, 131.2, 129.5, 128.1, 127.2, 126.7, 125.1, 125.0, 117.5, 110.8, 39.7, 26.7. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₄₄H₃₃N₂O₄S₂ 717.1876; Found 717.1880. [α]²⁶_D= -5.9 (c = 0.57, chloroform). The product was analyzed by HPLC to determine the enantiomeric excess: >98% ee (AD-H,

hexane/i-PrOH = 80/20, detector: 280 nm, flow rate: 0.8 mL/min), t1(minor) = 15.4 min, t2(major) = 16.9 min.

3-(2,2'-bis(pyridin-2-yloxy)-(R)-[1,1'-binaphthalen]-3-yl)-1-(thiophen-2-yl)propan-1-one (4ah)

23.1 mg, 40% yield; colorless oil; eluent (petroleum ether/ethyl acetate = 8:1). ¹H NMR (400 MHz, CDCl₃) δ 7.94 – 7.84 (m, 1H), 7.84 – 7.59 (m, 5H), 7.53 (dd, *J* = 12.4, 4.3 Hz, 2H), 7.30 (dd, *J* = 11.5, 5.2 Hz, 2H), 7.23 (d, *J* = 8.2 Hz, 1H), 7.21 – 7.03 (m, 6H), 6.98 (t, *J* = 4.3 Hz, 1H), 6.67 (t, *J* = 5.6 Hz, 1H), 6.46 (t, *J* = 7.3 Hz, 2H), 6.32 (d, *J* = 8.2 Hz, 1H), 3.23 (q, *J* = 8.0 Hz, 2H), 3.10 (t, *J* = 7.5 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 192.6, 163.4, 163.3, 150.0, 149.7, 147.1, 147.0, 144.3, 138.8, 138.6, 133.8, 133.5, 133.5, 132.8, 132.0, 131.5, 130.8, 129.5, 129.4, 128.0, 127.6, 127.5, 126.8, 126.3, 125.8, 125.6, 125.2, 125.1, 124.8, 123.5, 121.6,

118.0, 117.5, 111.7, 110.7, 39.7, 26.8. HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for $C_{37}H_{27}N_2O_3S$ 579.1737; Found 579.1740. $[\alpha]^{26}_D = -0.6$ (c = 0.33, chloroform). The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (AD-H, hexane/i-PrOH = 90/10, detector: 280 nm, flow rate: 0.8 mL/min), t1(minor) = 19.8 min, t2(major) = 26.3 min.

4,4'-(2,2'-bis(pyridin-2-yloxy)-(R)-[1,1'-binaphthalene]-3,3'-diyl)bis(2-methylbutan-2-ol) (5)

25.1 mg, 82% yield; colorless oil; eluent (petroleum ether/ethyl acetate = 1:1). ¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, *J* = 5.9 Hz, 2H), 7.57 (d, *J* = 8.2 Hz, 1H), 7.15 (d, *J* = 7.2 Hz, 1H), 7.10 (ddd, *J* = 10.2, 5.8, 1.8 Hz, 1H), 7.00 (d, *J* = 8.4 Hz, 1H), 6.93 (ddd, *J* = 8.3, 6.7, 1.2 Hz, 1H), 6.42 (dd, *J* = 7.1, 5.0 Hz, 1H), 6.29 (d, *J* = 8.3 Hz, 1H), 2.69 (t, *J* = 8.4 Hz, 2H), 1.83 (dt, *J* = 13.6, 7.9 Hz, 1H), 1.72 (dt, *J* = 13.6, 8.2 Hz, 1H), 1.08 (d, *J* = 5.2 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 163.3, 149.6, 146.9, 138.4, 135.3, 132.2, 131.3, 128.7, 127.0, 126.7, 125.1, 124.9, 117.4, 110.6, 70.9, 44.0, 29.2, 29.1, 26.4. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₄₀H₄₁N₂O₄

613.3061; Found 613.3066. $[\alpha]^{26}_{D}$ = -35.4 (c = 0.26, chloroform). The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (AD-H, hexane/i-PrOH = 90/10, detector: 220 nm, flow rate: 0.8 mL/min), t1(minor) = 24.5 min, t2(major) = 27.4 min.

2,2'-((3,3'-bis(3-methylbut-3-en-1-yl)-(R)-[1,1'-binaphthalene]-2,2'-diyl)bis(oxy))dipyridine (6)

23.3 mg, 81% yield; colorless oil; eluent (petroleum ether/ethyl acetate = 20:1). ¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, J = 5.1 Hz, 2H), 7.62 (d, J = 8.2 Hz, 1H), 7.22 – 7.11 (m, 2H), 7.06 (d, J = 8.4 Hz, 1H), 6.97 (ddd, J = 8.2, 6.6, 1.2 Hz, 1H), 6.45 (dd, J = 7.1, 5.0 Hz, 1H), 6.35 (d, J = 8.2 Hz, 1H), 4.62 (d, J = 5.8 Hz, 2H), 2.77 (tt, J = 14.2, 7.2 Hz, 2H), 2.34 (dddd, J = 41.5, 14.9, 9.8, 6.2 Hz, 2H), 1.65 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 163.4, 149.6, 146.9, 145.6, 138.2, 134.9, 132.3, 131.3, 128.5, 127.0, 126.7, 125.1, 124.8, 117.2, 110.6, 110.1, 38.0, 29.9, 22.5. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₄₀H₃₇N₂O₂ 577.2850; Found 577.2850. [α]²⁶_D=

-65.4 (c = 0.57, chloroform). The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (AD-H, hexane/i-PrOH = 35/1, detector: 220 nm, flow rate: 0.8 mL/min), t1(major) = 8.1 min, t2(minor) = 8.7 min.

4,4'-(2,2'-dihydroxy-(R)-[1,1'-binaphthalene]-3,3'-diyl)bis(butan-2-one) (7)

15.5 mg, 73% yield; colorless oil; eluent (petroleum ether/ethyl acetate = 4:1). ¹H NMR (400 MHz, CDCl₃) δ 7.86 – 7.77 (m, 2H), 7.34 (ddd, J = 8.0, 6.7, 1.3 Hz, 1H), 7.25 – 7.21 (m, 1H), 7.05 (d, J = 8.4 Hz, 1H), 5.52 (s, 1H), 3.16 (t, J = 7.4 Hz, 2H), 2.94 (t, J =7.3 Hz, 2H), 2.19 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 208.8, 151.5, 132.4, 130.4, 129.7, 129.4, 127.8, 126.7, 124.1, 124.1, 111.7, 43.7, 30.0, 25.4. HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₈H₂₆NaO₄ 449.1723; Found 449.1729. [α]²⁴_D= 21.5 (c = 0.22, chloroform). The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (AD-H, hexane/i-PrOH = 90/10, detector: 220 nm, flow rate: 0.8

mL/min), t1(minor) = 19.2 min, t2(major) = 32.5 min.

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 11 (ppm)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

220 210 200 170 160 150 140 130 120 110 100 fl (ppm) Ó -10

13. HPLC Data

Rac-1a

Asy-1a

No	Retention	Area	Height	Relative
	Time			Area
	min	mAU*min	mAU	%
1	10.260	49.347	215.848	48.94
2	14.497	51.489	152.655	51.06

No	Retention	Area	Height	Relative
	Time			Area
	min	mAU*min	mAU	%
1	10.277	2.366	11.632	0.78
2	14.487	300.943	864.178	99.22

Rac-3aa

Asy-**3aa**

No	Retention	Area	Height	Relative
	Time			Area
	min	mAU*min	mAU	%
1	8.233	64.305	278.533	47.02
2	12.080	72.469	173.244	52.98

No	Retention	Area	Height	Relative
	Time			Area
	min	mAU*min	mAU	%
1	8.163	864.536	2754.466	99.41
2	12.130	5.101	14.648	0.59

Rac-4aa

Asy-4aa

200	UH-E001a #1 (manipulated)	LH-E001a	UV_VIS_3 WVL254	1800 LH-E0	01-2 #1 (manipulated)	LH-E001-2	UV_VIS_3 WVL 254 nm
175			1-8.137	1500		2 - 8 780	
150				1250			
125 INV				1000			
acueros 100				750			
50				² 500	4aa 0		
25		0	IVI	250			
-20				0		Mars.	
0	00 1.25 2.50 3.75	5.00 6.25 7.50 Time [min]	8.75 10.00 11.25	12.09 0.0	20 40 60	8.0 10.0 12. Time [min]	D 14.0 16.0 18.4

No	Retention	Area	Height	Relative
•	Time			Area
	min	mAU*min	mAU	%
1	8.137	33.825	173.936	51.45
2	8.627	31.918	155.027	48.55

No	Retention	Area	Height	Relative
	Time			Area
	min	mAU*min	mAU	%
1	8.323	2.819	19.262	0.80
2	8.780	349.132	1559.241	99.20

Rac-3ba

Asy-**3ba**

No	Retention Area		Height	Relative
	Time			Area
	min	mAU*min	mAU	%
1	5.507	34.270	342.732	52.19
2	6.200	31.397	209.619	47.81

No	Retention	Area	Height	Relative
	Time			Area
	min	mAU*min	mAU	%
1	5.537	594.152	3186.604	99.28
2	6.267	4.285	37.684	0.72

Rac-3ca

No	Retention	Area	Height	Relative
•	Time			Area
	min	mAU*min	mAU	%
1	16.867	33.211	81.340	52.27
2	20.730	30.320	60.536	47.73

No	Retention	Area	Height	Relative
	Time			Area
	min	mAU*min	mAU	%
1	16.713	178.786	437.173	99.99
2	20.827	0.022	0.000	0.01

LH-E031a #1 (manipulated)	LH-E031a	UV_VIS_2 WVL.280 nm	1 10 J C C C C	(ulated)	LH4[031	UV VI5 2 WVL 280 nm
100	1-6.853	1990.00	875	1-6.760		
80-	R.	9.200	750 625			Ĉ
nyul aurator 40			764 500 375			\bigcirc
20			250-		3da O	
0	-ml/		0	1,2-8 803		
-20]]	4.0 6.0 8.0 Time (min)	10.0 12.0 13.3	-100 3	10.0 1	15.0 20.0 25.0 Time [min]	30.0 35

No	Retention	Area	Height	Relative
	Time			Area
	min	mAU*min	mAU	%
1	6.853	18.441	106.578	50.27
2	9.260	18.242	70.564	49.73

No	Retention	Area Heigh		Relative
	Time			
	min	mAU*min	mAU	%
1	6.780	186.688	906.098	99.99
2	9.803	0.012	0.044	0.01

Rac-3ea

Asy-3ea

No	Retention	Area	Height	Relative
	Time			Area
	min	mAU*min	mAU	%
1	15.963	124.121	226.322	49.66
2	25.943	125.844	182.178	50.34

No	Retention	Area	Height	Relative
	Time			
	min	mAU*min	mAU	%
1	16.393	39.670	62.432	99.99
2	25.670	0.003	0.023	0.01

No	Retention	Area	Height	Relative	No	Retention	Area	Height	Relative
	Time			Area		Time			Area
	min	mAU*min	mAU	%		min	mAU*min	mAU	%
1	9.900	66.336	170.694	51.87	1	9.797	58.135	162.382	2.13
2	12.393	61.543	93.012	48.13	2	11.300	2670.888	3049.021	97.87

Rac-3fa

Asy-3fa

350 -	LH-E002a #1 [manipulated]	UH-E002a	UV_VIS_3 WVL 254 nm 300	00 1 LH-E002chong #1 (man	pulated] LH-E002chorg	UV_VI5_3 WVL 254 nm
300		1-8233	250	00-	1-8.163	o II
250			20	00-		
10 ²⁰⁰		,2 - 12.080	15	00-		
acutored acutored			04421092	00-		'BU N
< 100 50			6	00		3fa 0
0		N. M.		0	1, 2 - 12 130	
-50	0.50	10.0 15.0 2	-54	00 50	10.0 15.0	20.0 25.0 28

No	Retention	Area	Area Height	
	Time			Area
	min	mAU*min	mAU	%
1	8.483	31.695	119.057	50.06
2	9.743	31.623	94.800	49.94

No	Retention	Area	Height	Relative
	Time			Area
	min	mAU*min	mAU	%
1	7.873	2.270	11.036	2.23
2	9.347	99.754	364.822	97.77

Rac-3ga

Asy-3ga

No	Retention	Area	Height	Relative
	Time			Area
	min	mAU*min	mAU	%
1	9.910	383.717	1095.335	50.01
2	11.780	383.627	895.634	49.99

No	Retention	Area	Height	Relative
	Time			Area
	min	mAU*min	mAU	%
1	10.047	910.223	2447.553	99.78
2	11.733	2.046	9.258	0.22

Rac-3ha

Asy-**3ha**

No	Retention	Area	Height	Relative
	Time			Area
	min	mAU*min	mAU	%
1	7.643	68.539	343.057	52.98
2	37.767	60.833	24.819	47.02

No	Retention	Area	Height	Relative
	Time			Area
	min	mAU*min	mAU	%
1	7.673	1079.490	3026.522	99.81
2	37.607	2.066	0.000	0.19

250 - LH-E015a #1 (manpulated)	LH-E019a	UV_VIS_2 WVL 280 (3000 LH-E019m #1 [manipulated]	LH-E019m	UV_VIS_2 WVL280 nm
200- 150- 1774 100- 100- 100- 100- 100- 100- 100- 100		2-13.657	2500 2000 Int 1500 Br () Br		
	8.0 10.0 t.	20 140 160	500 4na 0	60 60 100 120 Trave femal	- 12.727 . 140 160 160 19

No	Retention	Area	Height	Relative
	Time			Area
	min	mAU*min	mAU	%
1	11.900	75.123	229.882	49.88
2	2 13.657 7		194.508	50.12

No	Retention	Area	Height	Relative
	Time			Area
	min	mAU*min	mAU	%
1	10.783	993.084	2717.435	97.10
2	12.727	29.636	91.712	2.90

Rac-4ia

Asy-4ia

No	Retention	Area	Height	Relative
	Time			Area
	min	mAU*min	mAU	%
1	7.097	266.669	1136.483	50.34
2	8.030	263.042	867.487	49.66

No	Retention	Area	Height	Relative
	Time			Area
	min	mAU*min	mAU	%
1	7.023	0.526	4.415	0.08
2	7.627	693.872	2082.389	99.92

Rac-3ka

Asy-3ka

No	Retention	Area	Height	Relative
	Time			Area
	min	mAU*min	mAU	%
1	4.960	1711.762	2565.564	51.74
2	7.557	1596.436	2566.282	48.26

No	Retention	Area	Height	Relative
	Time			Area
	min	mAU*min	mAU	%
1	5.197	452.671	2358.789	99.89
2	8.163	0.499	0.000	0.11

Rac-3la

Asy-3la

450	LH-E010a-2 #1 [manipulated]	LH-E010a-2	UV_VIS_2 WVL 280 nm	3500 1 LH-E010-2 #1 [manipulated]	LH-E010-2 UV_VIS_2 WVL260 nm
400			1 - 9.393	3000	1-9.473
300			.2 - 10.360		
Num 200					
064V 100				1000 N	
0				3la	1 22-10.307
-50	io 2.0 4.0	6.0 8.0	10.0 12.0 12.8	-500 J	10 80 100 120 140 14

No	Retention	Area	Height	Relative
	Time			Area
	min	mAU*min	mAU	%
1	9.393	94.954	400.320	50.02
2	10.350	94.874	311.302	49.98

No	Retention	Area	Height	Relative
	Time			Area
	min	mAU*min	mAU	%
1	9.473	755.982	2927.992	99.54
2	10.397	3.500	16.141	0.46

Rac-4la

Asy-4la

No	Retention	Area	Height	Relative
	Time			Area
	min	mAU*min	mAU	%
1	5.617	117.316	1044.547	49.17
2	7.287	121.261	650.512	50.83

No	Retention	Area	Height	Relative
	Time			Area
	min	mAU*min	mAU	%
1	5.723	3.037	30.233	0.72
2	6.973	421.185	2687.316	99.28

Rac-3ma

20	2.0 4.0	6.0 8.0 10.0	12.0 14.0 1	6.0 18.0 20.0	-200
0.037	2803 0198	Time (mir	1		
No	Retention	Area	Height	Relative	
•	Time			Area	
	min	mAU*min	mAU	%	
1	9.360	7.108	18.310	51.77	
2	14.783	6.622	8.084	48.23	

1000

200

c

No	Retention	Area	Height	Relative
	Time			Area
	min	mAU*min	mAU	%
1	9.083	410.830	1283.698	99.05
2	15.007	3.925	8.682	0.95

Rac-4ma

Asy-4ma

No	Retention	Area	Height	Relative
	Time			Area
	min	mAU*min	mAU	%
1	8.780	11.459	49.439	51.93
2	13.270	10.606	31.919	48.07

No	Retention	Area	Height	Relative
	Time			Area
	min	mAU*min	mAU	%
1	8.643	0.899	4.082	0.42
2	13.457	215.050	595.010	99.58

UV_VIS_2 WVL 280

2 - 29 954

30.0

- 25.890

25.0

Rac-3na

Asy-3na

No	Retention	Area	Height	Relative	
	Time			Area	
	min	mAU*min	mAU	%	
1	25.210	16.648	20.802	51.85	
2	28.633	15.458	16.811	48.15	

No	Retention	Area	Height	Relative
	Time			Area
	min	mAU*min	mAU	%
1	25.890	298.101	365.512	98.77
2	29 950	3 724	5 202	1 23

15.0 20.0 Time (min)

10.0

Rac-10

No	Retention	Area	Height	Relative	No	Retention	Area	Height	Relative
•	Time			Area		Time			Area
	min	mAU*min	mAU	%		min	mAU*min	mAU	%
1	7.090	212.903	1248.124	50.02	1	7.053	25.871	176.270	1.91
2	14.960	212.733	519.510	49.98	2	14.440	1326.433	2545.023	98.09

Rac-30a

Asy-30a

non UH-E004a #1 (manipulated)	LH-E004a	UV_VIS_2 WVL-280 nm	1200 UH-E004-2 #1 [manipulated]	LH-E004-2	UV_VI5_2 WVL:280 nm
200 UL4 COAs #T (hangeuland) 1175 150 153 155 50 25	1-6500 2-8220	UV_V(\$_2 WV.200 m		2-7.50 () () () () () () () () () ()	
0 -20 0.0 2.5 50	7.5 10.0 12.5 Time [min]	15.0 17.5 20.3	-200 0.0 2.0 4.0	6.0 6.0 Time (mn)	100 120 140 154

No	Retention	Area	Height	Relative
	Time			Area
	min	mAU*min	mAU	%
1	6.550	36.346	188.797	49.93
2	8.220	36.450	141.972	50.07

No	Retention	Area	Height	Relative
	Time			Area
	min	mAU*min	mAU	%
1	6.013	5.901	39.519	2.26
2	7.550	254.648	1082.558	97.74

Rac-3pa

Asy-**3pa**

No	Retention	Area	Height	Relative
	Time			Area
	min	mAU*min	mAU	%
1	7.917	49.033	283.681	50.16
2	8.817	48.715	246.751	49.84

No	Retention	Area	Height	Relative
	Time			Area
	min	mAU*min	mAU	%
1	7.903	101.275	603.508	99.71
2	8.777	0.295	2.304	0.29

Rac-3qa

Asy-**3qa**

1800 TELH-E017a #1 [manipulated]	LH-E017a	UV_VIS_2 WVL:260 nm	2500 LH-E017-ch	ong #1 [manipulated]	LH-E0017-chong	UV_VI5_2 WVL280 nm
1500	1 - 7.323 2 - 8.063		2000-		2-6.193	
1250			1500			
1000			1000 -		,	
40 750 - 10 - 500 -			500 -			
250			0	3qa Ö	1-7-50	
0			-500			
0.0 2.0 4.0	6.0 8.0 10 Time (min)	0 12.0 13.9	0.0 2	2.5 5.0 1	7.5 10.0 12.5 Time (min)	15.0 17.5 20.1

No	Retention	Area	Height	Relative	No
	Time			Area	
	min	mAU*min	mAU	%	
1	7.323	254.611	1531.746	49.59	1
2	8.063	258.797	1437.644	50.41	2

No	Retention	Area	Height	Relative
	Time			Area
	min	mAU*min	mAU	%
1	7.530	13.843	84.192	3.12
2	8.193	429.933	2046.831	96.88

Rac-3ab

Asy-3ab

No	Retention	Area	Height	Relative
	Time			Area
	min	mAU*min	mAU	%
1	6.923	423.186	1903.064	52.77
2	8.947	378.805	1710.434	47.23

No	Retention	Area	Height	Relative
	Time			Area
	min	mAU*min	mAU	%
1	7.130	882.932	2981.227	99.09
2	8.800	8.091	41.530	0.91

Rac-3ac

Asy-3ac

No	Retention	Area	Height	Relative
	Time			Area
	min	mAU*min	mAU	%
1	12.483	994.542	2144.577	48.95
2	15.133	1037.009	1759.879	51.05

No	Retention	Area	Height	Relative
	Time			Area
	min	mAU*min	mAU	%
1	12.453	1030.139	2210.899	99.20
2	14.880	8.302	22.580	0.80

Rac-3ad

No	Retention	Area	Height	Relative
	Time			Area
	min	mAU*min	mAU	%
1	9.980	24.565	93.327	50.23
2	18.850	24.336	39.240	49.77

No	Retention	Area Height		Relative
	Time			Area
	min	mAU*min	mAU	%
1	10.563	481.105	1447.121	99.57
2	20.667	2.082	4.424	0.43

Rac-3ae

Asy-3ae

No	Retention	Area Height		Relative
•	Time			Area
	min	mAU*min	mAU	%
1	9.873	259.290	847.873	51.98
2	12.167	239.536	134.408	48.02

No	Retention	Area	Height	Relative
	Time			Area
	min	mAU*min	mAU	%
1	9.557	811.434	2563.952	99.68
2	11.523	2.622	8.473	0.32

Rac-3ag

Asy-3ag

No	Retention	Area	Height	Relative
	Time			Area
	min	mAU*min	mAU	%
1	12.880	128.083	304.588	49.33
2	14.103	131.564	256.899	50.67

No	Retention	Area	Height	Relative
	Time			Area
	min	mAU*min	mAU	%
1	13.627	808.592	2434.920	99.56
2	14.887	3.593	10.849	0.44

Rac-4ag

Г

Asy-4ag

No	Retention	Area	Height	Relative	No	Retention	Area	Height	Relative
	Time			Area		Time			Area
	min	mAU*min	mAU	%		min	mAU*min	mAU	%
1	16.573	53.516	128.722	49.24	1	16.803	0.027	0.031	0.01
2	24.103	55.172	87.675	50.76	2	24.723	335.326	280.098	99.99

Rac-3ah

Asy-3ah

No	Retention	Area	Height	Relative
	Time			Area
	min	mAU*min	mAU	%
1	15.793	18.082	37.230	50.30
2	17.233	17.869	32.558	49.70

No	Retention	Area	Height	Relative
	Time			Area
	min	mAU*min	mAU	%
1	15.420	0.708	1.859	0.75
2	16.890	93.051	173.664	99.25

Rac-4ah

No	Retention	Area	Height	Relative
	Time			Area
	min	mAU*min	mAU	%
1	20.483	64.487	125.307	49.51
2	27.313	65.765	95.208	50.49

No	Retention	Area	Height	Relative
	Time			Area
	min	mAU*min	mAU	%
1	19.760	3.282	9.308	0.48
2	26.317	685.717	1002.002	99.52

Rac-5

00 1 LH-E032-3 #1 [manipulated]	LH-E032-3	UV_VIS_1 WVL 220 nm
но	12-27.410	
	N N	
	\sim	
	×	
но 5		
0	24.463	1

No	Retention	Area	Height	Relative	
	Time			Area	
	min	mAU*min	mAU	%	
1	23.517	1427.325	1635.293	51.25	
2	27.687	1357.620	1179.988	48.75	

No	Retention	Area	Height	Relative
	Time			Area
	min	mAU*min	mAU	%
1	24.463	0.268	0.000	0.01
2	27.410	4237.542	2591.211	99.99

Asy-5

Asy-6

No	Retention	Area	Height	Relative
	Time			Area
	min	mAU*min	mAU	%
1	7.807	179.176	624.294	50.57
2	8.520	175.168	566.936	49.43

No	Retention	Area	Height	Relative
	Time			Area
	min	mAU*min	mAU	%
1	8.093	366.919	1467.986	99.96
2	8.683	0.160	0.000	0.04

Rac-7

Asy-7

No	Retention	Area	Height	Relative
	Time			Area
	min	mAU*min	mAU	%
1	19.237	1138.845	575.271	50.51
2	33.167	1115.847	418.414	49.49

No	Retention	Area	Height	Relative
	Time			Area
	min	mAU*min	mAU	%
1	19.227	0.140	0.203	0.01
2	32.487	2465.672	1830.824	99.99