SUPPORTING INFORMATION

In situ phosphonium-containing Lewis base-catalyzed 1,6-cyanation reaction: facile way to α-diaryl and α-triaryl acetonitriles

Jian-Ping Tan,^{a, b, ‡} Yuan Chen,^{b, ‡} Xiaoyu Ren,^{b,*} Yumeng Guo,^a Bing Yi,^{a,*} Hongkui Zhang,^b Guowei Gao,^b and Tianli Wang^{b,*}

^a Hunan Province Key Laboratory of Environmental Catalysis and Waste Rechemistry, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, 411104, P. R. China.
 ^b Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China. E-mail: wangtl@scu.edu.cn

[‡] These authors contributed equally to this work.

1.	General information	S2
2.	Optimization of reaction conditions	S3
3.	Preparation of para-quinone methides (p-QMs) and fuchsones	S5
4.	Representative procedure for synthesis of α -diaryl acetonitriles	S7
5.	Representative procedure for synthesis of α -triary acetonitriles	S18
6.	Attempted enantioselective synthesis of α -diaryl or α -triary nitriles	S22
7.	Gram-scale synthesis and elaboration of reaction products	S27
8.	Experimental studies on mechanism and proposed reaction pathway	S33
9.	References	S36
10.	NMR spectra	S37


1. General Information

All the starting materials were obtained from commercial sources and used without further purification unless otherwise stated. ¹H and ¹³C NMR spectra were recorded at ambient temperature in CDCl₃ on a Bruker Advance ((400 MHz) spectrometer. The chemical shifts are reported in parts permillion (ppm) relative to CDCl₃ (δ = 7.26) for ¹H-NMR and relative to the central resonances of CDCl₃ (δ = 77.16) for ¹³C-NMR; Multiplicity was indicated follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), dd (doublet of doublet), dt (doublet of triplet), br s (broad singlet). Coupling constants (*J*) were reported in Hertz (Hz). All high resolution mass (ESI-MS) were obtained on Thermo LTQ mass spectrometer. For thin layer chromatography (TLC) was performed using commercially prepared and compounds were visualized with a UV light at 254 nm. Further visualization was achieved by staining with iodine, or ceric ammonium molybdate followed by heating on a hot plate. Flash chromatographic separations were performed on commercially prepared 200-300 mesh silicagel. Enantiomeric excess was determined by HPLC analysis using chiral column described below in detail.

All *para*-quinone methides **1** were synthesized following the known methods reported in the literature.^[1] and the fuchsones were synthesized following the known methods reported in the literature.^[2] All the achiral organophosphine catalysts **P1-P8** and electrophilic reagent **E1-E4** used in this study were commercially available and known compounds.

2. Optimization of Reaction Conditions

Table S1. The remote 1,6-cyanation of *para*-Quinone Methides with TMSCN by *in situ* phosphonium salts: screening of the catalyst^[a]

Entry	Р	Ε	Solvent	Time[h]	yield ^[b] (%)
1	P1	E1	CHCl ₃	12	65
2	P2	E1	CHCl ₃	12	76
3	P3	E1	CHCl ₃	12	74
4	P4	E1	CHCl ₃	12	32
5	P5	E1	CHCl ₃	12	86
6	P6	E1	CHCl ₃	12	94
7	P7	E1	CHCl ₃	12	trace
8	P8	E1	CHCl ₃	12	trace
9	P6	E2	CHCl ₃	12	55
10	P6	E3	CHCl ₃	12	98
11	P6	E4	CHCl ₃	24	NR

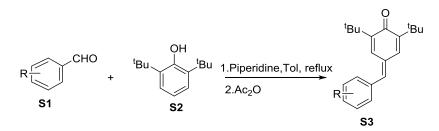
^[a] Reaction conditions: **1a** (0.10 mmol), **2a** (0.2 mmol) and **P** (10 mol%), **E** (10 mol%) and in CHCl₃ (1.0 mL) at room temperature; ^[b] Yields of isolated products of **3a**.

	^t Bu	O ^t Bu + TMSCN 2a 1a	P6 (5 mol%) ^t Bu E3 (5 mol%) Solvent, rt	OH ^t Bu Ph CN 3a	
Entry	Р	Ε	Solvent	Time[h]	yield ^[b] (%)
1	P6	E3	CHCl ₃	12	98
2	P6	E3	CH_2Cl_2	12	89
3	P6	E3	Et ₂ O	12	91
4	P6	E3	Hexane	12	88
5	P6	E3	PE	12	83
6	P6	E3	Toluene	12	75
7	P6	E3	EA	12	79
8	P6	E3	THF	12	82
9	P6	E3	CH ₃ CN	12	56
10	P6	E3	MeOH	12	NR
11 ^[c]	P6	E3	CHCl ₃	24	98

Table S2. The remote 1,6-cyanation of *para*-Quinone Methides with TMSCN by *in situ* phosphonium salts: screening of the solvent^[a]

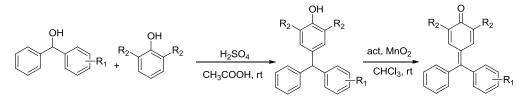
^[a] Reaction conditions: **1a** (0.10 mmol), **2a** (0.2 mmol) and P (10 mol%), E 10 mol%) and in indicated solvent (1.0 mL) at rt for 24 h; ^[b] Yields of isolated products of **3a**. ^[c] Reaction at 5 mol % P_6 and 5 mol % E_3 .

Table S3. The remote 1,6-cyanation of fuchsones with TMSCN by *in situ* phosphonium salts: Screening of the solvent and temperature^[a]</sup>


	Me	Me + TMSCN - 2a 3a	P6 (5 mol%) E3 (5 mol%) Solvent	OH Me NC 5a	
Entry	Р	Е	Solvent	Time[h]	yield ^[b] (%)
1	P6	E3	CHCl ₃	24	72
2	P6	E3	CH_2Cl_2	24	62

3	P6	E3	Et ₂ O	24	55
4	P6	E3	Hexane	24	23
5	P6	E3	PE	24	58
6	P6	E3	Toluene	24	61
7 ^[c]	P6	E3	CHCl ₃	24	87
8 ^[d]	P6	E3	CHCl ₃	24	82

^[a] Reaction conditions: **1a** (0.10 mmol), **2a** (0.2 mmol) and P₆ (5 mol%), E₃ (5 mol%) and in indicated solvent (1.0 mL) at rt for 24 h; ^[b] Yields of isolated products of **3a**; ^[c] Reaction run at 45 °C for 24 h; ^[d] Reaction run at 60 °C for 24 h.

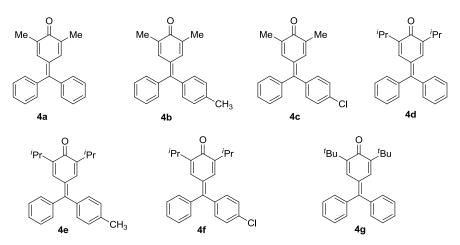
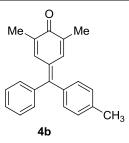

3. Preparation of *para*-Quinone Methides (*p*-QMs) and fuchsones.

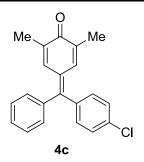
All the *para*-quinonemethides (*p*-QMs) were synthesized using the method as reported previously in the literature^[1] from the corresponding aldehydes with 2,6-*tert*-butyl phenol as shown in *Scheme S1*.

Scheme S1. The route for synthesis of para-quinonemethides

Fuchsones were synthesized using the method as reported previously in the literature^[2] as shown in *Scheme S2*. and **4a**, **4d**, **4e**, **4g** are known compounds. The unknown compounds **4b**, **4c**, **4f** were fully characterized.

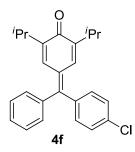
Scheme S2. The route for synthesis of fuchsones.

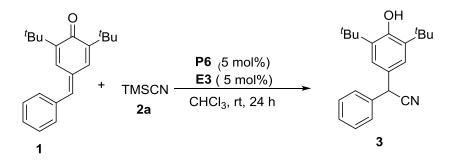

Figure S1. Substrates of fuchsones in this study

2,6-dimethyl-4-(phenyl(p-tolyl)methylene)cyclohexa-2,5-dienone (4b)

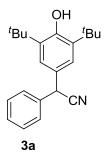
A yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 7.47-7.38 (m, 3H), 7.25-7.20 (m, 4H), 7.18 (dd, *J* = 2.6, 1.3 Hz, 1H), 7.14-7.11 (m, 2H), 7.10 (s, 1H), 2.42 (s, 3H), 2.02 (d, *J* = 1.2 Hz, 3H), 2.01 (d, *J* = 1.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 187.21, 157.04, 140.83, 139.82, 137.83, 135.75, 135.58, 132.17, 132.13, 129.62, 129.34, 128.87, 128.06, 21.44, 16.76; HRMS (ESI) *m*/*z* calcd for C₂₂H₂₀O [M+H]⁺ = 301.1592, found =301.1594.


4-((4-chlorophenyl)(phenyl)methylene)-2,6-dimethylcyclohexa-2,5-dienone (4c)

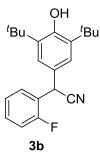
A yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 7.46-7.36 (m, 5H), 7.20 (dd, J = 7.6, 1.2 Hz, 2H), 7.16 (d, J = 8.4 Hz, 2H), 7.11 (d, J = 8.4 Hz, 2H), 2.02 (s, 3H), 2.00 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 187.27, 154.89, 140.37, 139.17, 136.18, 135.47, 135.13, 133.37, 132.14, 130.26, 129.67, 128.60, 128.37, 16.90; HRMS (ESI) m/z


calcd for $C_{21}H_{17}CIO [M+H]^+ = 321.1046$, found = 321.1048.

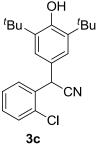
4-((4-chlorophenyl)(phenyl)methylene)-2,6-diisopropylcyclohexa-2,5-dienone (4f)


A yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 7.48-7.37 (m, 5H), 7.24-7.20 (m, 2H), 7.20-7.15 (m, 2H), 7.07 (dd, J = 8.4, 2.8 Hz, 2H), 3.25-3.09 (m, 2H), 1.07 (d, J = 7.0 Hz, 6H), 1.05 (d, J = 7.0 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 185.11, 154.86, 146.09, 140.46, 139.26, 135.72, 133.49, 132.24, 131.71, 131.32, 129.67, 128.52, 128.28, 26.97, 22.14; HRMS (ESI) *m*/*z* calcd for C₂₅H₂₅ClO [M+H]⁺ = 377.1672, found = 377.1673.

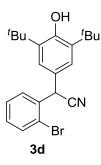
4. Representative procedure for synthesis of α-diaryl acetonitriles


To a dried round bottle flask with a magnetic stirring bar were added **P6** (5 mol%), **E3** (5 mol%) in CHCl₃ (1.0 mL) and then *para*-Quinone Methide **1** (29.4 mg, 0.1 mmol) and TMSCN (20 mg, 0.2 mmol) were added, The reaction mixture was stirred at rt for 24 h, and TLC show that the reaction was completed. Then, 1M TFA was added to the mixture, and stirred for 5 mins, The resulting solution was quenched by Na₂CO₃ (aq.) and was extracted with CH₂Cl₂ (3×10 mL). Then the combined organic phases were washed with brine and dried over anhydrous Na₂SO₄. The solvent was removed to give the crude product which was purified by flash column chromatography (PE/ethyl acetate = 80/1 to 10/1) to afford the desired compounds **3a** as yellow solid.

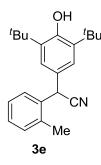
2-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-phenylacetonitrile (3a)


A yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 7.34-7.27 (m, 4H), 7.21 (s, 1H), 7.05 (s, 2H), 5.20 (s, 1H), 5.02 (s, 1H), 1.36 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 153.79, 136.67, 136.58, 129.19, 128.12, 127.81, 126.63, 124.63, 120.48, 42.67, 34.58, 30.28. HRMS (ESI) *m*/*z* calcd for C₂₂H₂₇NO [M-H]⁻ = 320.2014, found = 320.2015.

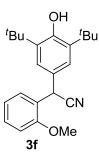
2-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-(2-fluorophenyl)acetonitrile (3b)


A pale yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 7.46 (td, J = 7.6, 1.6 Hz, 1H), 7.36-7.28 (m, 1H), 7.19 (td, J = 7.6, 1.2 Hz, 1H), 7.16 (s, 2H), 7.13-7.05 (m, 1H), 5.36 (s, 1H), 5.26 (s, 1H), 1.41 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 153.86, 136.78, 130.18 (d, J = 8.2 Hz), 129.29 (d, J = 3.0 Hz), 125.38, 124.99, 124.96, 124.42, 119.66, 116.17, 115.95, 36.12, 34.58, 30.26.; HRMS (ESI) m/z calcd for C₂₂H₂₆ FNO [M-H]⁻ = 338.1920, found = 338.1928.

2-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-(2-chlorophenyl)acetonitrile (3c)

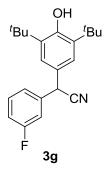

A yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 7.52 (dd, J = 7.6, 1.6 Hz, 1H), 7.42 (dd, J = 8.0, 1.6 Hz, 1H), 7.32 (td, J = 7.6, 1.6 Hz, 1H), 7.29 (dd, J = 7.6, 2.0 Hz, 1H), 7.16 (s, 2H), 5.55 (s, 1H), 5.26 (s, 1H), 1.41 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 153.86, 136.71, 134.59, 133.22, 130.18, 129.69, 129.67, 127.81, 125.17, 124.65, 119.93, 39.48, 34.58, 30.27; HRMS (ESI) m/z calcd for C₂₂H₂₆ClNO [M-H]⁻ = 354.1625, found = 354.1631.

2-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-(2-bromophenyl)acetonitrile (3d)

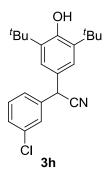


A yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 7.60 (dd, J = 8.0, 1.2 Hz, 1H), 7.52 (dd, J = 7.8, 1.6 Hz, 1H), 7.36 (td, J = 7.6, 1.2 Hz, 1H), 7.20 (dd, J = 7.6, 1.6 Hz, 1H), 7.17 (s, 2H), 5.56 (s, 1H), 5.26 (s, 1H), 1.41 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 153.86, 136.71, 136.34, 133.51, 129.92, 129.88, 128.47, 125.25, 124.67, 123.68, 119.99, 41.95, 34.60, 30.28; HRMS (ESI) m/z calcd for C₂₂H₂₆ BrNO [M-H]⁻ = 398.1120, found = 398.1120.

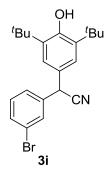
2-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-o-tolylacetonitrile (3e)



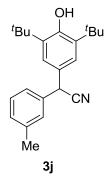
A orange gummy solid; ¹H NMR (400 MHz, CDCl₃) δ 7.42 (dd, J = 6.0, 4.8 Hz, 1H), 7.29-7.27 (m, 2H), 7.25-7.18 (m, 1H), 7.06 (s, 2H), 5.25 (s, 1H), 5.21 (s, 1H), 2.34 (s, 3H), 1.41 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 153.66, 136.65, 135.92, 134.43, 131.19, 128.53, 128.40, 126.89, 125.54, 124.68, 120.51, 39.80, 34.55, 30.28, 19.67; HRMS (ESI) m/z calcd for C₂₃H₂₉ NO [M-H]⁻ = 334.2171, found = 334.2155.


A orange gummy solid; ¹H NMR (400 MHz, CDCl₃) δ 7.37-7.27 (m, 2H), 7.19 (s, 2H), 6.97 (td, J = 7.6, 0.8 Hz, 1H), 6.91 (d, J = 8.0 Hz, 1H), 5.47 (s, 1H), 5.22 (s, 1H), 3.88 (s, 3H), 1.42 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 156.21, 153.50, 136.42, 129.49, 128.78, 126.24, 125.45, 124.67, 121.16, 120.77, 111.01, 55.68, 36.31, 34.54, 30.32; HRMS (ESI) *m*/*z* calcd for C₂₃H₂₉ NO₂ [M-H]⁻ = 350.2120, found = 350.2108.

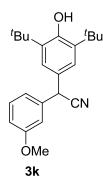
2-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-(3-fluorophenyl)acetonitrile (3g)


A orange gummy solid; ¹H NMR (400 MHz, CDCl₃) δ 7.40-7.31 (m, 1H), 7.17 (d, J = 7.8 Hz, 1H), 7.08 (s, 2H), 7.07-6.98 (m, 2H), 5.29 (s, 1H), 5.05 (s, 1H), 1.41 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 154.00, 138.94 (d, J = 7.6 Hz), 136.94, 130.77 (d, J = 8.4 Hz), 125.92, 124.61, 123.46 (d, J = 3.0 Hz), 119.92, 115.35, 115.14, 114.91, 42.34, 34.59, 30.26; HRMS (ESI) m/z calcd for C₂₂H₂₆FNO [M-H]⁻ = 338.1920, found = 338.1923.

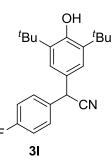
2-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-(3-chlorophenyl)acetonitrile (3h)


A yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 7.34 (s, 1H), 7.33-7.29 (m, 2H), 7.28-7.27(m, 1H), 7.08 (s, 2H), 5.29 (s, 1H), 5.02 (s, 1H), 1.41 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 154.03, 138.48, 136.96, 135.08, 130.44, 128.46, 128.00, 125.95, 125.85, 124.61, 119.85, 42.32, 34.60, 30.26; HRMS(ESI) *m*/*z* calcd for C₂₂H₂₆CINO [M-H]⁻ = 354.1625, found = 354.1627.

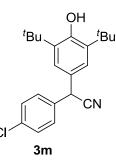
2-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-(3-bromophenyl)acetonitrile (3i)


A yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 7.50 (dd, J = 2.0, 1.6 Hz, 1H), 7.46 (dt, J = 7.6, 1.6 Hz, 1H), 7.31 (d, J = 7.6 Hz, 1H), 7.24 (d, J = 7.6 Hz, 1H), 7.08 (s, 2H), 5.29 (s, 1H), 5.02 (s, 1H), 1.41 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 154.03, 138.71, 136.96, 131.39, 130.87, 130.71, 126.42, 125.83, 124.60, 123.19, 119.82, 42.26, 34.60, 30.26; HRMS (ESI) *m*/*z* calcd for C₂₂H₂₆BrNO [M-H]⁻ = 398.1120, found = 398.1121.

2-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-m-tolylacetonitrile (3j)

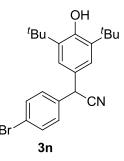

A orange gummy solid; ¹H NMR (400 MHz, CDCl₃) δ 7.30-7.27 (m, 1H), 7.22 (s, 1H), 7.18-7.13 (m, 2H), 7.13 (s, 2H), 5.27 (s, 1H), 5.04 (s, 1H), 2.38 (s, 3H), 1.43 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 153.75, 139.01, 136.70, 136.44, 129.04, 128.88, 128.44, 126.74, 124.85, 124.59, 120.60, 42.63, 34.57, 30.28, 21.57; HRMS (ESI) *m/z* calcd for C₂₃H₂₉NO [M-H]⁻ = 334.2179, found = 334.2171.

2-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-(3-methoxyphenyl)acetonitrile (3k)

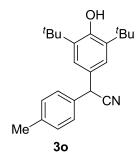


A orange gummy solid; ¹H NMR (400 MHz, CDCl₃) δ 7.29 (dd, *J* =8.0, 8.0 Hz ,1H), 7.11 (s, 2H), 6.95 (dd, *J* = 7.6, 0.8 Hz, 1H), 6.89 (dd, *J* = 2.4, 1.6 Hz, 1H), 6.85 (dd, *J* = 8.0, 2.0 Hz, 1H), 5.25 (s, 1H), 5.02 (s, 1H), 3.80 (s, 3H), 1.41 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 160.15, 153.82, 138.03, 136.76, 130.21, 126.46, 124.61, 120.40, 120.12, 113.71, 113.43, 55.46, 42.65, 34.57, 30.29; HRMS (ESI) *m/z* calcd for C₂₃H₂₉NO2 [M-H]⁻ = 350.2120, found = 350.2127.

2-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-(4-fluorophenyl)acetonitrile (31)

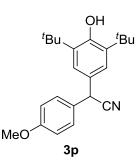


A orange solid; ¹H NMR (400 MHz, CDCl₃) δ 7.32 (dd, J = 8.8, 5.2 Hz, 2H), 7.10-7.02 (m, 4H), 5.27 (s, 1H), 5.05 (s, 1H), 1.41 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 162.49 (d, J = 245.4 Hz), 153.90, 136.89, 132.41, 129.54 (d, J = 8.4 Hz), 126.38, 124.55, 120.28, 116.15 (d, J = 21.8 Hz), 41.93, 34.59, 30.27; HRMS (ESI) m/z calcd for C₂₂H₂₆FNO [M-H]⁻ = 338.1920, found = 338.1926.

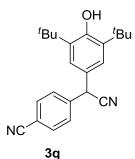

A orange solid; ¹H NMR (400 MHz, CDCl₃) δ 7.38-7.32 (m, 2H), 7.31-7.27 (m, 2H), 7.07 (s, 2H), 5.28 (s, 1H), 5.03 (s, 1H), 1.41 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 153.83, 136.82, 135.03, 134.05, 129.24, 129.02, 125.99, 124.42, 119.90, 41.97, 34.46, 30.13; HRMS (ESI) *m*/*z* calcd for C₂₂H₂₆CINO [M-H]⁻=354.1625, found = 354.1631.

2-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-(4-bromophenyl)acetonitrile (3n)

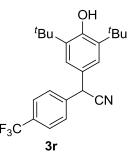
A orange solid; ¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, J = 8.4 Hz, 2H), 7.23 (d, J = 8.4 Hz, 2H), 7.06 (s, 2H), 5.28 (s, 1H), 5.01 (s, 1H), 1.41 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 153.97, 136.96, 135.71, 132.34, 129.46, 126.03, 124.55, 122.27, 119.94, 42.19, 34.59, 30.27; HRMS (ESI) m/z calcd for C₂₂H₂₆BrNO [M-H]⁻ = 398.1120, found = 398.1124.


2-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-p-tolylacetonitrile (30)

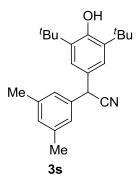
A orange solid; ¹H NMR (400 MHz, CDCl₃) δ 7.24 (d, J = 8.0 Hz, 2H), 7.17 (d, J = 8.0 Hz, 2H), 7.09 (s, 2H), 5.23 (s, 1H), 5.02 (s, 1H), 2.34 (s, 3H), 1.40 (s, 18H); ¹³C s₁₃


NMR (100 MHz, CDCl₃) δ 153.73, 137.90, 136.71, 133.66, 129.84, 127.64, 126.85, 124.56, 120.64, 42.35, 34.57, 30.29, 21.21; HRMS (ESI) *m*/*z* calcd for C₂₃H₂₉NO [M-H]⁻ = 334.2171, found = 334.2169.

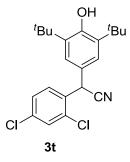
2-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-(4-methoxyphenyl)acetonitrile (3p)


A orange solid; ¹H NMR (400 MHz, CDCl₃) δ 7.24 (d, *J* =4.0 Hz, 2H), 7.08 (s, 2H), 6.91-6.88 (m, 1H), 6.88-6.86 (m, 1H), 5.23 (s, 1H), 5.00 (s, 1H), 3.80 (s, 3H), 1.40 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 159.39, 153.71, 136.71, 128.95, 128.66, 126.93, 124.53, 120.70, 114.51, 55.47, 41.89, 34.56, 30.29; HRMS (ESI) *m/z* calcd for C₂₃H₂₉NO₂ [M-H]⁻ = 350.2120, found = 350.2123.

4-((3,5-di-tert-butyl-4-hydroxyphenyl)(cyano)methyl)benzonitrile(3q)

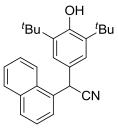

A orange solid; ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, J = 8.4 Hz, 2H), 7.48 (d, J = 8.0 Hz, 2H), 7.05 (s, 2H), 5.31 (s, 1H), 5.09 (s, 1H), 1.41 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 160.40, 154.92, 139.58, 136.83, 127.16, 126.53, 126.26, 126.17, 124.46, 119.62, 38.03, 34.60, 30.28; HRMS (ESI) m/z calcd for C₂₃H₂₆N₂O [M-H]⁻=345.1967, found =345.1969.

<u>2-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-(4-(trifluoromethyl)phenyl)acetonitrile(3</u> <u>r)</u>


A yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, J = 8.2 Hz, 2H), 7.49 (d, J = 8.4 Hz, 2H), 7.08 (s, 2H), 5.30 (s, 1H), 5.11 (s, 1H), 1.41 (s, 18H).; ¹³C NMR (100 MHz, CDCl₃) δ 154.11, 140.53 (d, J = 8.6 Hz), 137.11, 134.58, 134.38, 128.17, 126.24 (q, J = 3.8 Hz), 125.70, 124.61, 119.71, 42.53, 34.61, 30.25; HRMS (ESI) m/z calcd for C₂₃H₂₆F₃NO [M-H]⁻ = 388.1888, found = 388.1882.

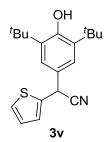
2-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-(3,5-dimethylphenyl)acetonitrile (3s)

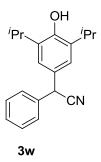
A yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 7.11 (s, 2H), 6.97 (s, 2H), 6.94 (s, 1H), 5.24 (s, 1H), 4.97 (s, 1H), 2.31 (s, 6H), 1.41 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 153.72, 138.84, 136.66, 136.35, 129.75, 126.87, 125.54, 124.56, 120.71, 42.60, 34.58, 30.30, 21.44; HRMS (ESI) *m*/*z* calcd for C₂₄H₃₁NO [M-H]⁻ = 348.2327, found = 348.2340.


2-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-(2,4-dichlorophenyl)acetonitrile (3t)

A orange solid; ¹H NMR (400 MHz, CDCl₃) δ 7.44 (s, 1H), 7.43 (d, J = 6.4 Hz, 1H),

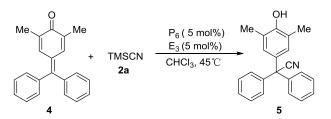
7.30 (dd, J = 8.4, 2.0 Hz, 1H), 7.13 (s, 2H), 5.48 (s, 1H), 5.28 (s, 1H), 1.41 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 154.01, 136.90, 134.98, 133.90, 133.34, 130.51, 130.00, 128.16, 124.67, 124.54, 119.45, 39.11, 34.59, 30.25; HRMS (ESI) *m/z* calcd for C₂₂H₂₅Cl₂NO [M-H]⁻=388.1235, found = 388.1228.


2-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-(naphthalen-1-yl)acetonitrile (3u)


3u

A orange solid; ¹H NMR (400 MHz, CDCl₃) δ 8.02-7.96 (m, 1H), 7.91 (dd, *J* =7.2, 3.2 Hz, 1H), 7.87 (d, *J* = 8.2 Hz, 1H), 7.59 (d, *J* = 6.7 Hz, 1H), 7.57-7.46 (m, 3H), 7.14 (s, 2H), 5.77 (s, 1H), 5.24 (s, 1H), 1.37 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 153.77, 136.70, 134.17, 131.79, 130.63, 129.32, 129.22, 126.99, 126.83, 126.23, 125.69, 125.60, 124.81, 123.20, 120.62, 39.63, 34.56, 30.26; HRMS (ESI) *m/z* calcd for C₂₆H₂₉NO [M-H]⁻ = 321.2171, found = 321.2179.

2-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-(thiophen-2-yl)acetonitrile (3v)



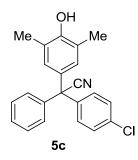
A pale yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 7.27 (d, *J* = 1.2 Hz, 1H), 7.17 (s, 2H), 7.07 (dd, *J* = 2.4, 1.0 Hz, 1H), 6.98 (dd, *J* = 4.8, 3.6 Hz, 1H), 5.29 (s, 1H), 5.27 (s, 1H), 1.43 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 154.00, 139.45, 136.71, 127.04, 126.41, 126.12, 126.04, 124.34, 119. 49, 37.90, 34.47, 30.16; HRMS (ESI) *m/z* calcd for C₂₀H₂₅NOS [M-H]⁻ = 326.1579, found = 326.1569.


A white solid; ¹H NMR (400 MHz, CDCl₃) δ 7.39-7.30 (m, 5H), 6.99 (s, 2H), 5.07 (s, 1H), 4.85 (s, 1H), 3.17-3.06 (m, 2H), 1.23 (d, *J* =7.0 Hz, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 150.07, 136.62, 134.63, 129.20, 128.14, 127.76, 127.74, 123.21, 120.38, 42.51, 27.48, 22.71; HRMS (ESI) *m*/*z* calcd for C₂₀H₂₃NO [M-H]⁻ = 292.1701, found = 292.1712.

5. Representative procedure for synthesis of α -triary acetonitriles

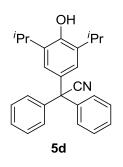
To a dried round bottle flask with a magnetic stirring bar were added **P6** (5 mol%), **E3** (5 mol%) in CHCl₃(2.0 mL). then fuchsones (28.6 mg, 0.1 mmol) and TMSCN (20 mg, 0.2 mmol) were added, The reaction mixture was stirred at 45°C for 24-48 h, and TLC show that the reaction was completed. Then, 1M TFA was added to the mixture, and stirred for 5 mins, The resulting solution was quenched by Na₂CO₃ (aq.) and was extracted with CH₂Cl₂ (3×10 mL). Then the combined organic phases were washed with brine and dried over anhydrous Na₂SO₄. The solvent was removed to give the crude product which was purified by flash column chromatography (PE/ethyl acetate = 80/1 to 10/1) to afford the desired compounds **5**.

2-(4-hydroxy-3,5-dimethylphenyl)-2,2-diphenylacetonitrile (5a)

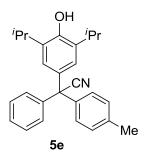

A orange gummy solid; ¹H NMR (400 MHz, CDCl₃) δ 7.37-3.31 (m, 6H), 7.25 – 7.20 (m, 4H), 6.80 (s, 2H), 4.82 (s, 1H), 2.19 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 152.16, 140.76, 131.63, 129.12, 128.91, 128.70, 128.12, 123.98, 123.36, 56.92, 16.23; HRMS (ESI) *m*/*z* calcd for C₂₀H₂₅NO [M-H]⁻ = 312.1388, found = 312.1374.

2-(4-hydroxy-3,5-dimethylphenyl)-2-phenyl-2-(p-tolyl)acetonitrile (5b)

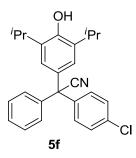
A orange gummy solid; ¹H NMR (400 MHz, CDCl₃) δ 7.38-7.29 (m, 3H), 7.24-7.19 (m, 2H), 7.15 (d, *J* = 8.2 Hz, 2H), 7.09 (d, *J* = 8.4 Hz, 2H), 6.79 (s, 2H), 4.74 (s, 1H), 2.36 (s, 3H), 2.19 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 152.07, 140.94, 137.95, 137.80, 131.84, 129.39, 129.10, 128.88, 128.78, 128.66, 128.04, 124.07, 123.26, 56.60, 21.17, 16.22; HRMS (ESI) *m*/*z* calcd for C₂₃H₂₁NO [M-H]⁻ = 326.1545, found = 326.1547.


2-(4-chlorophenyl)-2-(4-hydroxy-3,5-dimethylphenyl)-2-phenylacetonitrile (5c)

A orange gummy solid; ¹H NMR (400 MHz, CDCl₃) δ 7.41-7.28 (m, 5H), 7.23-7.12 (m, 4H), 6.77 (s, 2H), 4.78 (s, 1H), 2.19 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 152.28, 140.28, 139.42, 134.24, 131.18, 130.32, 129.01, 128.90, 128.86, 128.80,

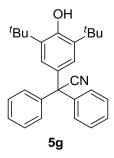

128.35, 123.59, 123.48, 56.44, 16.23; HRMS (ESI) m/z calcd for C₂₂H₁₈ClNO [M-H]⁻ = 346.0999, found = 346.1002.

2-(4-hydroxy-3,5-diisopropylphenyl)-2,2-diphenylacetonitrile (5d)



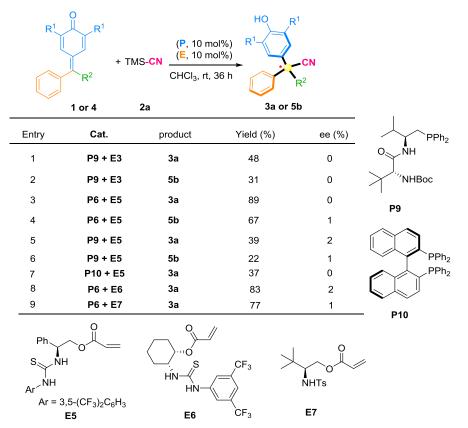
A orange solid; ¹H NMR (400 MHz, CDCl₃) δ 7.39-7.30 (m, 6H), 7.24-7.18 (m, 4H), 6.84 (s, 2H), 4.88 (s, 1H), 3.10 (dt, *J* = 13.6, 6.8 Hz, 2H), 1.16 (s, 6H), 1.14 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 149.85, 141.03, 133.85, 131.89, 128.91, 128.64, 128.08, 124.42, 123.97, 57.30, 27.49, 22.67; HRMS (ESI) *m*/*z* calcd for C₂₆H₂₇NO [M-H]⁻ = 368.2014, found = 368.2046.

2-(4-hydroxy-3,5-diisopropylphenyl)-2-phenyl-2-(p-tolyl)acetonitrile (5e)



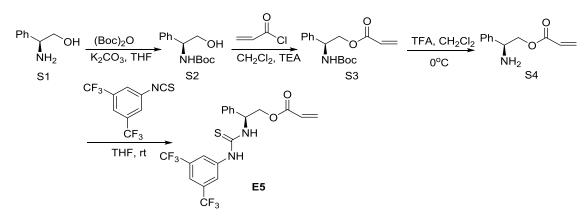
A orange solid; ¹H NMR (400 MHz, CDCl₃) δ 7.38-7.28 (m, 3H), 7.22 (dd, J = 7.6, 1.8 Hz, 2H), 7.15 (d, J = 8.2 Hz, 2H), 7.10 (d, J = 8.2 Hz, 2H), 6.86 (s, 2H), 4.91 (s, 1H), 3.11 (dt, J = 13.6, 6.8Hz, 2H), 2.36 (s, 3H), 1.17 (d, J = 1.7 Hz, 6H), 1.15 (d, J = 1.7 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 149.81, 141.25, 138.07, 137.85, 133.83, 132.02, 129.30, 128.86, 128.78, 128.58, 127.98, 124.38, 124.05, 57.00, 27.50, 22.68, 21.16; HRMS (ESI) *m*/*z* calcd for C₂₇H₂₉NO [M-H]⁻ = 382.2171, found = 382.2169. **2-(4-chlorophenyl)-2-(4-hydroxy-3,5-diisopropylphenyl)-2-phenylacetonitrile (5f)**

A orange solid; ¹H NMR (400 MHz, CDCl₃) δ 7.40-7.32 (m, 4H), 7.40-7.33 (m, 4H), 7.32-7.30 (m, 1H), 7.18-7.12 (m, 2H), 6.83 (s, 2H), 4.93 (s, 1H), 3.20-3.00 (m, 2H), 1.17 (d, *J* = 1.2 Hz, 6H), 1.15 (d, *J* = 1.2 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 150.04, 140.53, 139.72, 134.19, 134.08, 131.39, 130.31, 128.82, 128.78, 128.31, 124.27, 123.55, 56.84, 27.51, 22.66; HRMS (ESI) *m*/*z* calcd for C₂₆H₂₆ClNO[M-H]⁻ = 402.1625, found = 402.1631.


2-(3,5-di-tert-butyl-4-hydroxyphenyl)-2,2-diphenylacetonitrile (5g)

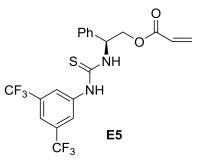
A orange solid; ¹H NMR (400 MHz, CDCl₃) δ 7.41-7.28 (m, 6H), 7.25-7.18 (m, 4H), 6.96 (s, 2H), 5.28 (s, 1H), 1.34 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 153.55, 141.10, 135.91, 130.53, 128.90, 128.61, 128.03, 125.88, 124.02, 57.39, 34.59, 30.26; HRMS (ESI) *m*/*z* calcd for C₂₈H₃₁NO[M-H]⁻ = 396.2327, found = 396.2332.

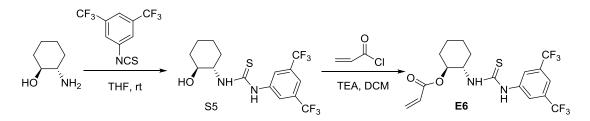
6. Attempted enantioselective synthesis of α -diaryl or α -triary nitriles^[a]


All the chiral organophosphine catalysts **P9** and **P10** are known compound and the chiral acrylate **E5-E7** were synthetized using the method as follow and were fully characterized.

^[a]Reactions were performed with **1a** or **4b** (0.1 mmol), TMSCN (0.2 mmol) and **P** (10 mol%) and **E** (10 mol%) in CHCl₃ (1.0 mL) at rt. ^{*b*}Isolated yields. ^{*c*}Enantiomeric ratio (er) determined by chiral HPLC.

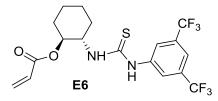
Scheme S3. Enantioselective synthesis of α -diaryl or α -triary nitriles

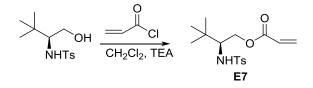

Preparation of chiral acrylates


To a (S)-2-amino-2-phenylethanol (5 mmol) and K_2CO_3 (10 mmol, 2.0 equiv.) in THF, (Boc)₂O (7.5 mmol, 1.5 equiv.) was added at 0 °C. Then, the reaction mixture was stirred at room temperature for 6 h and TLC show that the rection was completed. After evaporation of solvent, the crude product S2 was obtained and used directly for next step. To product S2 in CH₂Cl₂ at 0°C. Then TEA (2.0 equiv.) and acryloyl

chloride (1.5 equiv.) were added slowly at 0°C. The mixture was stirred at rt for 4 h, TLC show that the rection was completed, then the reaction was quenched by Na₂CO₃ (aq.) and extracted with CH_2Cl_2 three times. The combined organic layers were dried over Na₂SO₄. After evaporation of solvent, the crude product S3 was obtained and used directly for next step without purified. The crude product S3 was deprotectived N-Boc giving the target product S4 by TFA in CH_2Cl_2 at rt. then to S4 in THF at rt, then 1-isothiocyanato-3,5-bis (trifluoromethyl)benzene (1.2 equiv.) was added, the mixture was stirred at rt for 8 h and TLC show that the reaction was completed. After evaporation of solvent, the final product **E5** was obtained by flash chromatography on silica gel.

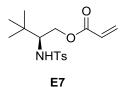
(S)-2-(3-(3,5-bis(trifluoromethyl)phenyl)thioureido)-2-phenylethyl acrylate (E5)

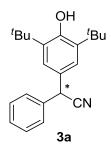

A colorless oil ; ¹H NMR (400 MHz, CDCl₃) δ 8.55 (s, 1H), 7.74 (s, 2H), 7.64 (s, 1H), 7.35-7.27 (m, 3H), 7.22 (dd, J = 9.4, 3.6 Hz, 2H), 6.31 (dd, J = 17.2, 0.6 Hz, 1H), 6.01 (dd, J = 17.2, 10.4 Hz, 1H), 5.81 (dd, J = 10.5, 1.0 Hz, 1H), 5.73 (s, 1H), 4.55 (dd, J = 11.8, 7.2 Hz, 1H), 4.35 (dd, J = 11.8, 4.2Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 180.75, 167.06, 139.06, 136.98, 132.69 (q, J = 27.3 Hz), 129.22, 128.66, 127.42, 127.00, 126.89, 124.24 (d, J = 2.8 Hz), 121.58, 119.54, 66.38, 58.41; HRMS (ESI) m/z calcd for C₂₀H₁₇F₆N₂O₂S[M+H]⁺=463.0909, found = 463.0910.


To a (1S, 2S)-2-aminocyclohexanol (10 mmol) and 1-isothiocyanato-3,5-bis

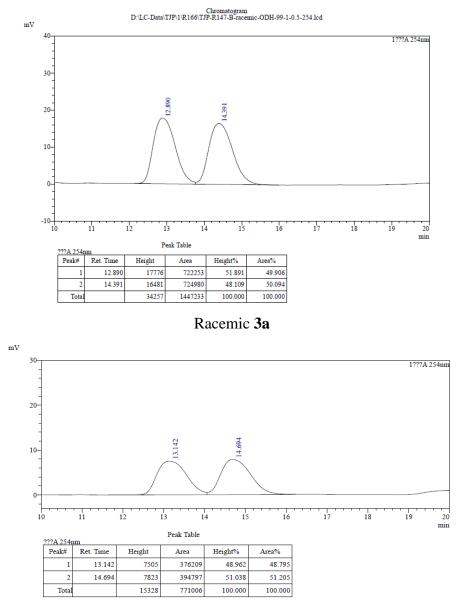
(trifluoromethyl)benzene (12 mmol, 1.2 equiv.) in THF, the reaction mixture was stirred at room temperature for 6 h and TLC show that the rection was completed. After evaporation of solvent, the crude product S5 was obtained and was used directly for next step. To the product S5 in CH_2Cl_2 at 0°C, TEA (20 mmol, 2.0 equiv.) and acryloyl chloride (15 mmol, 1.5 equiv.) were added slowly at 0°C. Then the mixture was stirred at rt for 3 h, TLC show that the reaction was completed, then quenched by Na_2CO_3 (aq.) and extracted with CH_2Cl_2 three times. The combined organic layer was dried over Na_2SO_4 . After evaporation of solvent, the crude product **E6**.

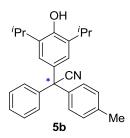
(1S,2R)-2-(3-(3,5-bis(trifluoromethyl)phenyl)thioureido)cyclohexyl acrylate (E6)

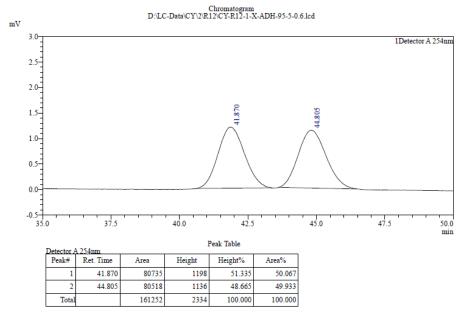

A colorless oil ; ¹H NMR (400 MHz, CDCl₃) δ 7.81 (s, 1H), 7.49 (s, 2H), 6.36 (dd, J = 17.2, 1.6 Hz, 1H), 6.05 (dd, J = 17.2, 10.4 Hz, 1H), 5.80 (dd, J = 10.4, 1.6 Hz, 1H), 4.64- 4.50 (m, 1H), 3.43 (td, J = 8.8, 4.4 Hz, 1H), 3.23-3.16 (m, 2H), 3.15- 3.08 (m, 2H), 1.89-1.79 (m, 1H), 1.55 (s, 1H), 1.39-1.19 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 169.62, 165.06, 148.48, 140.11, 132.13 (q, J = 33.8 Hz), 130.54, 129.98 (d, J = 3.0 Hz), 128.90, 124.49, 121.78, 119.07, 75.37, 62.46, 35.89, 29.81 (d, J = 80.2 Hz), 23.25 (d, J = 17.2 Hz), 22.34. HRMS (ESI) m/z calcd for C₁₈H₁₈F₆N₂O₂S [M+ H]⁺ = 441.1071, found = 441.1073.

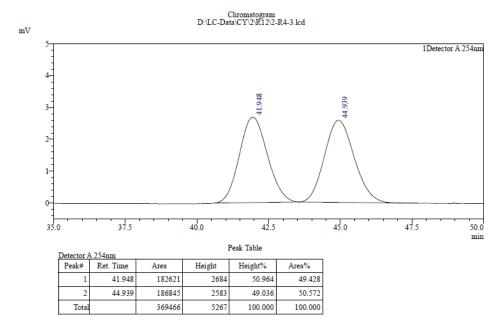

To a (*S*)-N-(1-hydroxy-3,3-dimethylbutan-2-yl)-4-methylbenzenesulfonamide (10 mmol) in CH_2Cl_2 at 0°C. then, TEA (20 mmol, 2.0 equiv.) was added and acryloyl chloride (15 mmol, 1.5 equiv.) was added slowly at 0°C. Then the mixture was stirred at rt for 5 h, TLC show that the reaction was completed, then the reaction was quenched by Na₂CO₃(aq.) and extracted with CH_2Cl_2 three times. The combined

organic layers were dried over Na_2SO_4 . After evaporation of solvent, the crude product was purified by flash chromatography on silica gel to afford the final product **E7**.

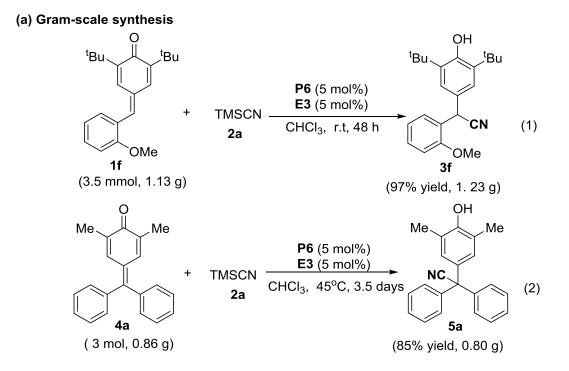

(S)-3,3-dimethyl-2-(4-methylphenylsulfonamido)butyl acrylate (E7)


A colorless oil ; ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, *J* = 8.3 Hz, 2H), 7.28-7.23 (m, 2H), 6.31 (dd, *J* = 16.8, 1.9 Hz, 1H), 5.79 (ddd, *J* = 13.6, 12.3, 6.2 Hz, 2H), 4.84 (d, *J* = 9.8 Hz, 1H), 4.06 (ddd, *J* = 15.9, 11.9, 5.0 Hz, 2H), 3.34 (ddd, *J* = 10.0, 6.1, 4.0 Hz, 1H), 2.40 (s, 3H), 0.92 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 166.07, 143.31, 138.79, 131.31, 129.76, 127.88, 127.07, 63.87, 61.09, 34.54, 27.07, 21.62; HRMS (ESI) *m*/*z* calcd for C₁₆H₂NO₄S[M+H]⁺= 326.1426, found = 326.1424.

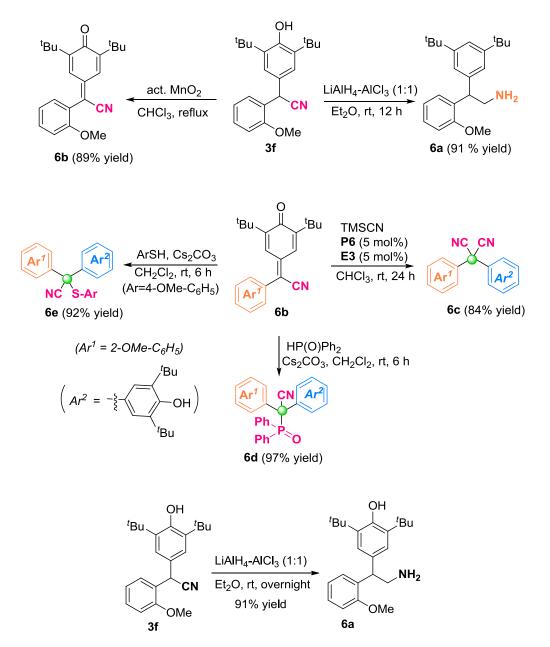

HPLC: (Chiralcel ODH, $\lambda = 254$ nm, 1% *i*-PrOH/hexane, flow rate = 0.5 mL/min), t₁ = 12.9 min, t₂ = 14.4 min, 2% ee.


Enantiomerically enriched 3a

HPLC: (Chiralcel ADH, $\lambda = 254$ nm, 5% *i*-PrOH/hexane, flow rate = 0.5 mL/min), t₁ = 41.9 min, t₂ = 44.8 min, 1% ee .

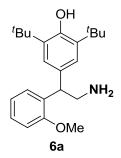


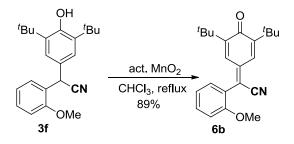
Racemic 5b


Enantiomerically enriched 5b

7. Gram-scale synthesis and elaboration of reaction product

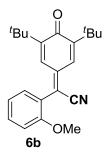
To a dried round bottle flask with a magnetic stirring bar were added P_6 (5 mol%), E_3 (5 mol%) in CHCl₃ (10.0 mL) and then *para*-Quinone Methide **1f** (3.5 mmol, 1.13 g) and TMSCN (7.0 mmol, 0.7g) were added. The reaction mixture was stirred at rt for 48 h, and TLC show that the reaction was completed. Then, 1M TFA (5 mL) was added to the mixture and stirred for 5mins, The resulting solution was quenched by Na₂CO₃ (aq.) and was extracted with CH₂Cl₂ (3×100 mL). Then the combined organic phases were washed with brine and dried over anhydrous Na₂SO₄. The solvent was removed to give the crude product which was purified by flash column chromatography (PE/ethyl acetate = 80/1 to 10/1) to afford the desired compounds **3f** (1.19 g, 97% yield).


(b) Synthetic elaboration of product

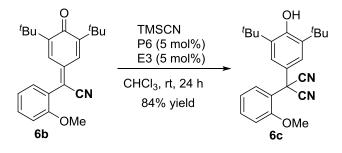

To a dried round bottle flask with a magnetic stirring bar were added LiAlH₄ (0.6 mmol, 23 mg). AlCl₃ (0.6 mmol, 80 mg) were added together, then *para*-Quinone Methides **3f** (0.4 mmol, 128 mg) and Et₂O (5 mL) were added. The reaction mixture was stirred at rt overnight, and TLC show that the reaction was completed. Then, the reaction was quenched by water. The resulting solution was extracted with CH₂Cl₂ (3×100 mL). Then the combined organic phases were washed with brine and dried over anhydrous Na₂SO₄. The solvent was removed to give the crude product which

was purified by flash column chromatography to afford the desired compounds **6a** (194 mg, yield 91%).

4-(2-amino-1-(2-methoxyphenyl)ethyl)-2,6-di-tert-butylphenol (6a)

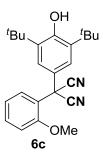


A white solid; ¹H NMR (400 MHz, CDCl₃) δ 7.19 -7.10 (m, 2H), 7.07 (s, 2H), 6.85 (dd, J = 12.2, 7.8 Hz, 2H), 4.92 (s, 3H), 4.45 (t, J = 8.1 Hz, 1H), 3.81 (s, 3H), 3.52-3.38 (m, 1H), 3.37-3.32 (m, 1H), 1.40 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 157.40, 152.62, 135.93, 131.53, 129.77, 128.71, 127.97, 124.92, 120.82, 111.11, 55.49, 45.96, 44.78, 34.48, 30.42; HRMS (ESI) m/z calcd for C₂₃H₃₃NO₂ [M+H]⁺ = 356.2590, found = 356.2548.

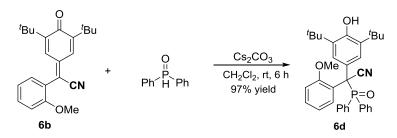


To a dried round bottle flask with a magnetic stirring bar were added act.MnO₂ (3 mmol, 261 mg) and *para*-Quinone Methide **3f** (1 mmol, 372 mg), then 5 mL CHCl₃ was added. The reaction mixture was stirred reflux overnight, and TLC show that the rection was completed. Then, the reaction was filtrated by celite. the solvent was removed under reduced press to give the crude product which was purified by flash column chromatography to afford the desired compounds **6b** (310 mg, yield 89%).

2-(3,5-di-tert-butyl-4-oxocyclohexa-2,5-dien-1-ylidene)-2-(2-methoxyphenyl)aceto nitrile (6b)



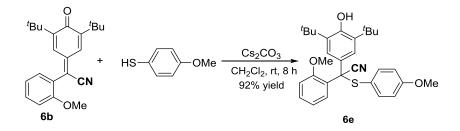
A orange solid; ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, *J* = 2.6 Hz, 1H), 7.47 (td, *J* = 8.4, 1.7 Hz, 1H), 7.20 (dd, *J* = 7.6, 1.7 Hz, 1H), 7.09-7.00 (m, 2H), 6.98 (d, *J* = 2.6 Hz, 1H), 3.91 (s, 3H), 1.35 (s, 9H), 1.18 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 186.57, 157.58, 151.51, 150.82, 141.84, 132.30, 132.19, 129.53, 127.84, 121.18, 120.82, 117.42, 117.09, 111.83, 5.93, 35.83, 35.77, 29.63, 29.55; HRMS (ESI) *m/z* calcd for C₂₃H₂₇NO₂ [M+H]⁺=350.2120, found = 350.2122.



To a dried round bottle flask with a magnetic stirring bar were added P_6 (5 mol%), $E_3(5mol\%)$ in CHCl₃ (1.0 mL).and then **6b** (35 mg, 0.1 mmol) and TMSCN (20 mg, 0.2 mmol) were added. The reaction mixture was stirred at rt for 24 h, and TLC show that the rection was completed. Then, 1 M TFA (2 mL) was added to the mixture, and stirred for 5 mins, the resulting solution was extracted with CH_2Cl_2 (3×10 mL). Then the combined organic phases were washed with brine and dried over anhydrous Na₂SO₄. The solvent was removed to give the crude product which was purified by flash column chromatography (PE/ethyl acetate = 60/1 to 10/1) to afford the desired compounds **6c**.

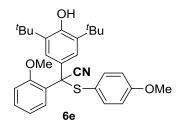
2-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-(2-methoxyphenyl)malononitrile (6c)

A orange solid; ¹H NMR (400 MHz, CDCl₃) δ 7.47-7.39 (m, 1H), 7.33 (s, 2H), 7.06 (dd, J = 7.8, 1.6 Hz, 1H), 7.02-6.95 (m, 2H), 5.44 (s, 1H), 3.92 (s, 3H), 1.43 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 156.81, 154.84, 136.96, 131.79, 128.17, 124.23, 122.30, 122.21, 121.14, 115.19, 112.48, 56.08, 43.23, 34.74, 30.21; HRMS (ESI) m/z calcd for C₂₄H₂₈N₂O₂ [M-H]⁻=375.2073, found = 375.2070.



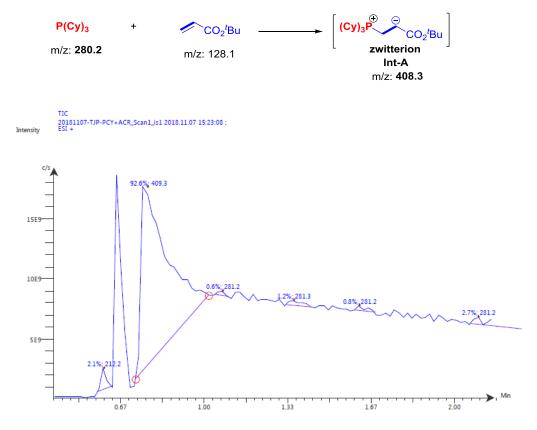
To a dried round bottle flask with a magnetic stirring bar were added **6b** (35 mg, 0.1 mmol) and diphenylphosphine oxide (0.12 mmol) and Cs_2CO_3 (0.2 mmol) in CH₂Cl₂, The reaction mixture was stirred at rt for 6 h, and TLC show that the reaction was completed. The crude mixture was purified by flash column chromatography (PE/ethyl acetate = 20/1 to 3/1) to afford the desired compounds **6d**.

<u>2-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-(diphenylphosphoryl)-2-(2-methoxyphen</u> <u>yl)acetonitrile (6d)</u>



A white foam; ¹H NMR (400 MHz, CDCl₃) δ 8.26 (dt, J = 8.1, 1.4 Hz, 1H), 8.17 – 8.10 (m, 2H), 7.57 – 7.52 (m, 1H), 7.50 – 7.40 (m, 3H), 7.36 – 7.26 (m, 4H), 7.25 – 7.23 (m, 1H), 6.95 (d, J = 2.0 Hz, 2H), 6.90 – 6.85 (m, 2H), 5.17 (s, 1H), 3.56 (s, 3H), 1.27 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 157.58 (d, J = 7.4 Hz), 153.46 (d, J = 2.7 Hz), 134.84 (d, J = 2.2 Hz), 133.72, 133.63, 132.87, 132.79, 132.28 (d, J = 2.8 Hz), 132.12 (d, J = 2.8 Hz), 131.02 (d, J = 3.1 Hz), 130.90, 130.02, 129.29, 128.72 (d, J = 11.8 Hz), 127.52 (d, J = 12.4 Hz), 126.37 (d, J = 1.8 Hz), 124.75, 122.82 (d, J = 5.9 Hz), 120.52, 119.77, 113.33, 56.03, 49.74 (d, J = 58.8 Hz), 34.45, 30.27; ³¹P NMR (162 MHz, CDCl₃) δ 32.76; HRMS (ESI) *m*/*z* calcd for C₃₅H₃₈NO₃P [M-H]⁻ = 550.2517, found = 550.2493.

To a dried round bottle flask with a magnetic stirring bar were added **6b** (35 mg, 0.1 mmol) and 4-methoxybenzenethiol (0.12 mmol) and Cs_2CO_3 (0.2 mmol) in CH_2Cl_2 , The reaction mixture was stirred at rt for 8 h, and TLC show that the reaction was completed. The crude mixture was purified by flash column chromatography (PE/ethyl acetate = 20/1 to 3/1) to afford the desired compounds **6e**.


<u>2-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-(2-methoxyphenyl)-2-((4-methoxyphenyl))</u> <u>)thio)acetonitrile (6e)</u>

A pale yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 7.87 (dd, J = 7.8, 1.6 Hz, 1H), 7.37 (td, J = 8.2, 1.6 Hz, 1H), 7.16 (d, J = 8.2 Hz, 2H), 7.07-6.99 (m, 3H), 6.97 (s, 2H), 6.91 (dd, J = 8.2, 0.8 Hz, 1H), 5.15 (s, 1H), 3.64 (s, 3H), 2.30 (s, 3H), 1.30 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 157.30, 153.29, 140.11, 137.01, 135.25, 131.69, 130.37, 129.54, 128.60, 128.50, 127.08, 126.07, 124.15, 120.59, 113.15, 56.10,55.39, 34.46, 30.25, 21.42. HRMS (ESI) *m*/*z* calcd for C₃₀H₃₅NO₃S [M-H]⁻=488.2259, found = 488.2261.

8. Experimental studies on mechanism and proposed reaction pathway

a) Experimental studies on mechanism

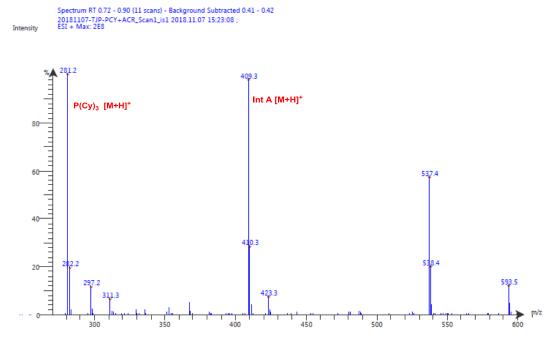
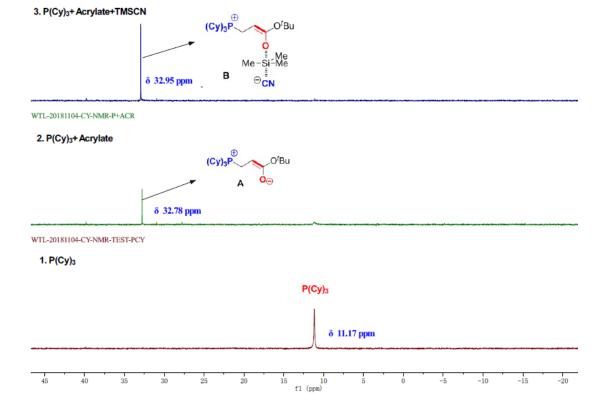



Figure S2. ESI-MS experimental studies on mechanism

WTL-20181104-CY-NMR-P+ACR+TMSCN

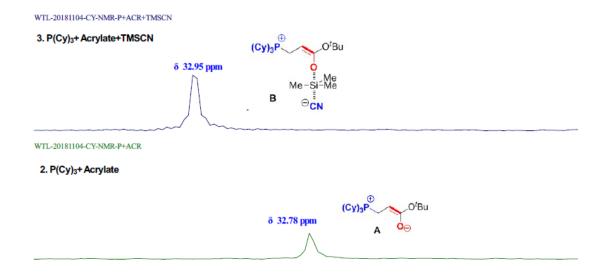


Figure S3. ³¹P NMR experimental studies on mechanism

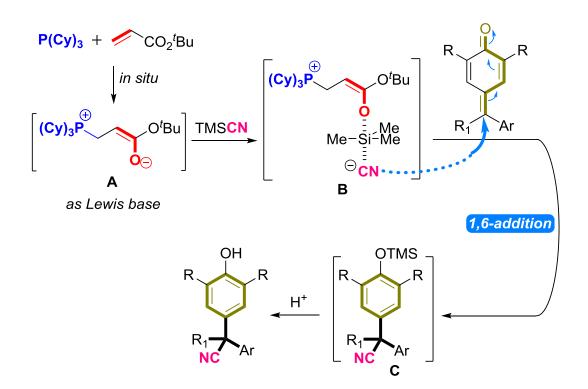
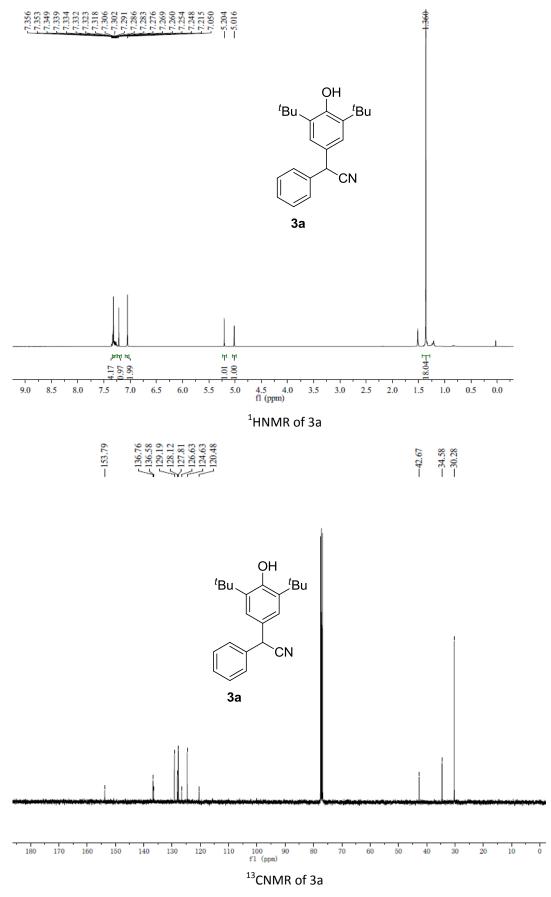
To gain further insight of the reaction mechanism, we then employed ESI-MS techniques and ³¹P NMR for characterization of this catalytic system. $P(Cy)_3$ and *tert*-butyl acrylate was added together and The resulting mixture was shaken up and immediately applied to ESI-MS analysis, then generate a zwitterion in situ int-A which was confirmed by ESI-MS with a new single peak **int-A.H** (m/z 409.3) (Figure S2).

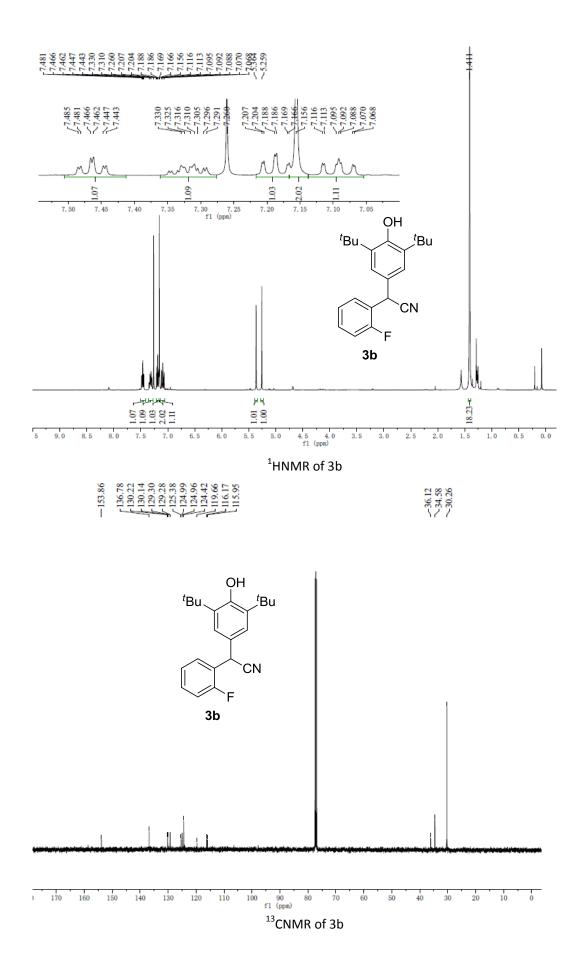
Furthermore, the ³¹P NMR study to track the reaction intermediate was carried out (Figure S3). when P(Cy)₃ and *tert*-butyl acrylate were added into in an NMR tube and shaked 5 mins, the formation of the zwitterion intermediate A as a new ³¹PNMR chemical shift was generated at $\delta = 32.78$ ppm .Then TMSCN was added into the NMR tube and another new ³¹PNMR chemical shift was generated at $\delta = 32.95$ ppm, suggesting that efficient activation of TMSCN by the zwitterion intermediate A to form a new specie. We proposed that the zwitterion intermediate A may conduct as a Lewis base to active the Si of TMSCN to form a new intermediate ion-pair B (Figure S4).

b). Proposed reaction pathway

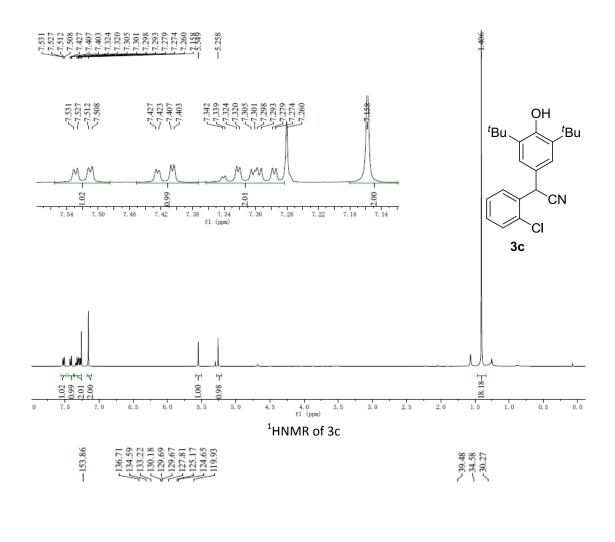
According to the studies on the above mechanism experimental results and several control experiments, we proposed a plausible reaction pathway for the dual-reagent

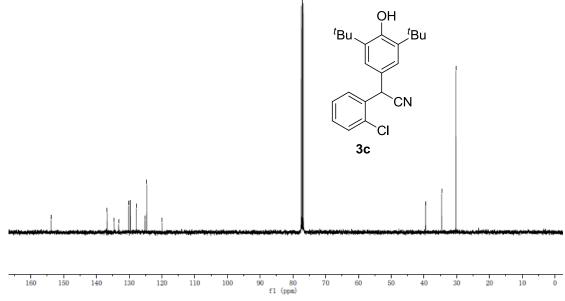
catalysis promoted direct 1,6-cyanation reaction (Figure S4). Fisrt, the Michael-type addition of $P(Cy)_3$ to *tert*-butyl acrylate generate a zwitterion **A**, which serves as a lewis base to active TMSCN to form a new species **B**. Then this zwitterion **B** release the active CN anion, which attack to C=C bond of *p*-QMs or fuchsone to accomplish 1,6 addition/aromatization affording the intermediate **C**, which was queenched by acid quickly to give the target product.

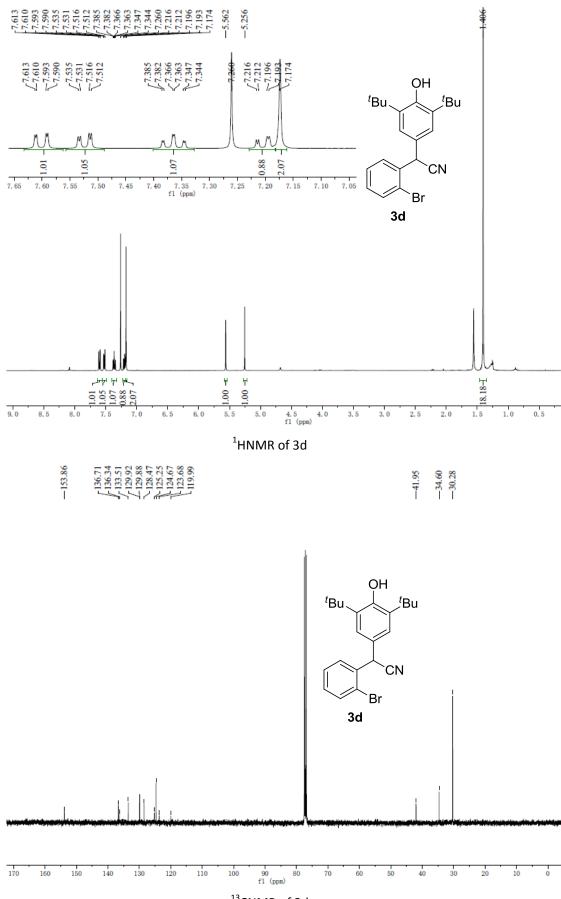



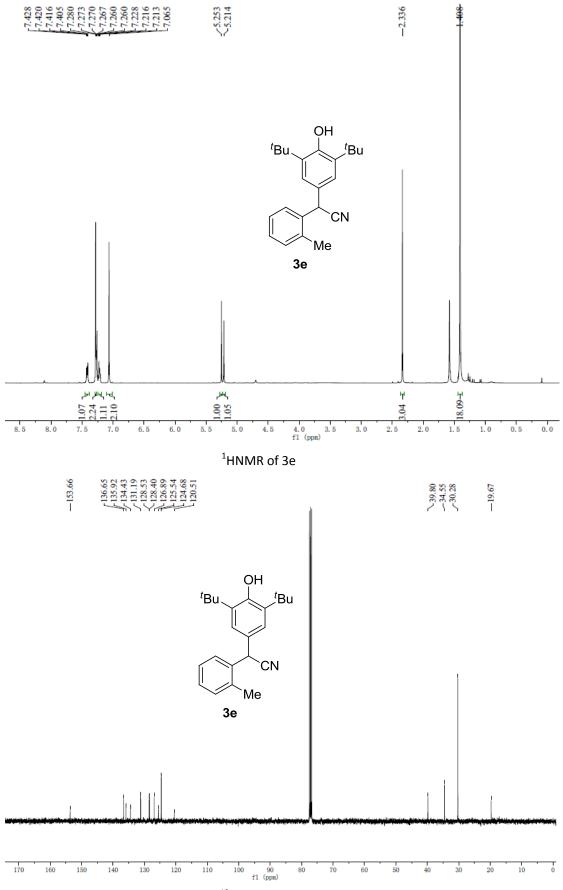

Figure S4. Proposed reaction pathway

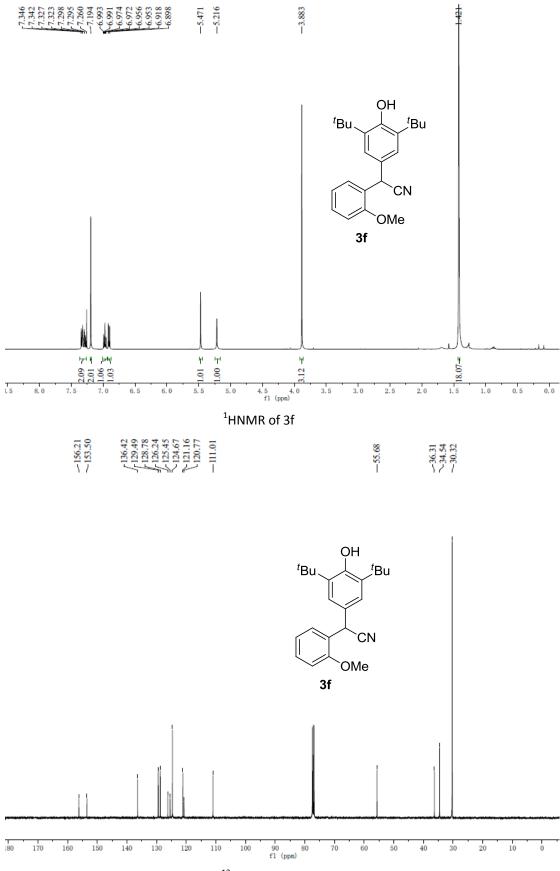
9. References

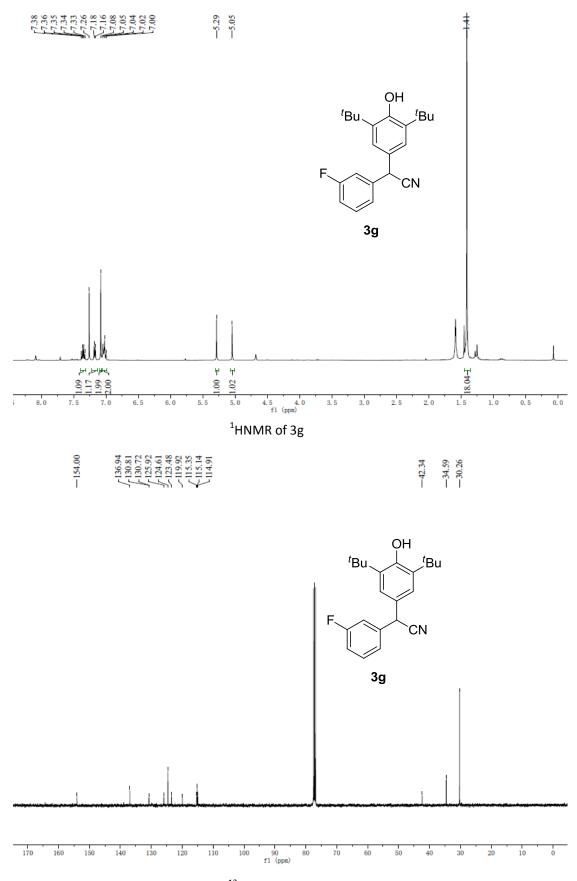

- [1] W.-D. Chu, L.-F. Zhang, X. Bao, X.-H. Zhao, C. Zeng, J.-Y. Du, G.-B. Zhang,
 F.-X. Wang, X.-Y. Ma, C.-A. Fan, *Angew. Chem. Int. Ed.*, **2013**, 52, 9229.
- [2] H. D. Becker, J. Org. Chem., 1967, 32, 2943.


10. NMR Spectra

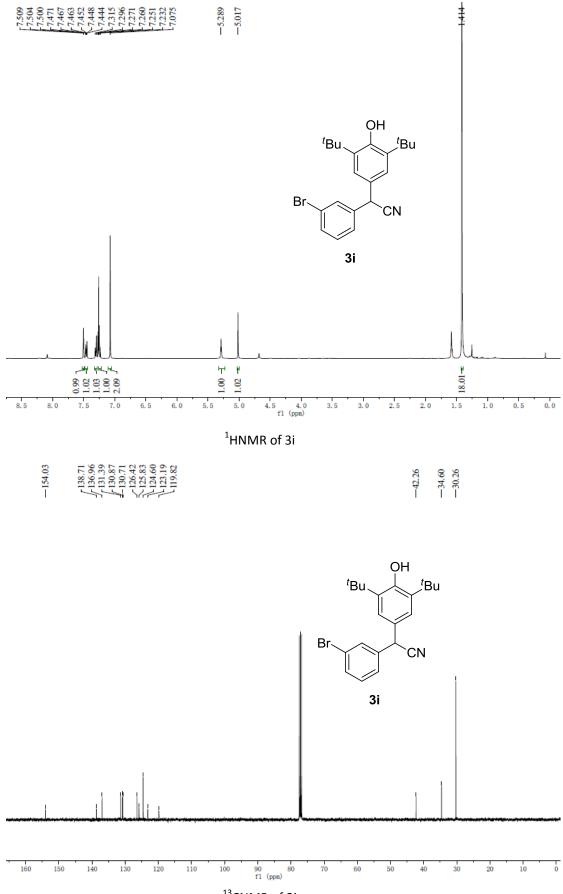


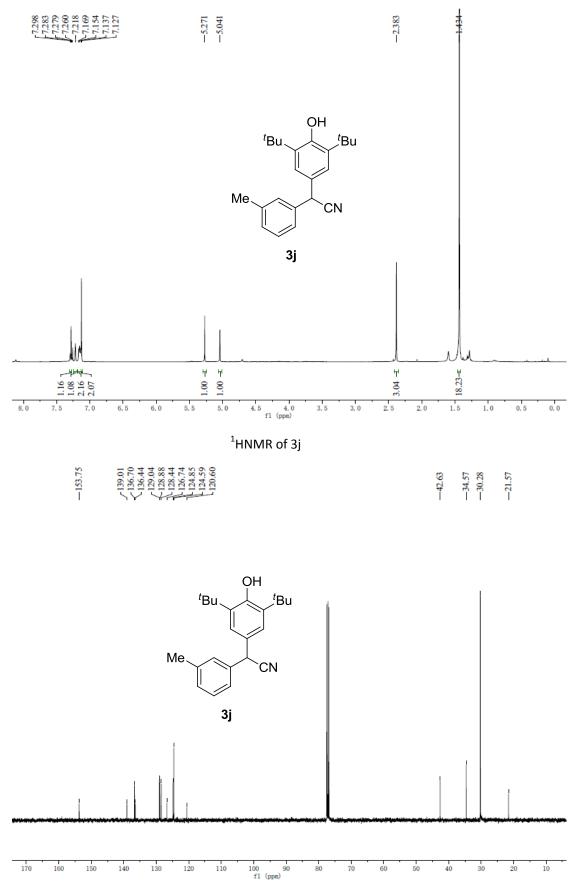



¹³CNMR of 3c

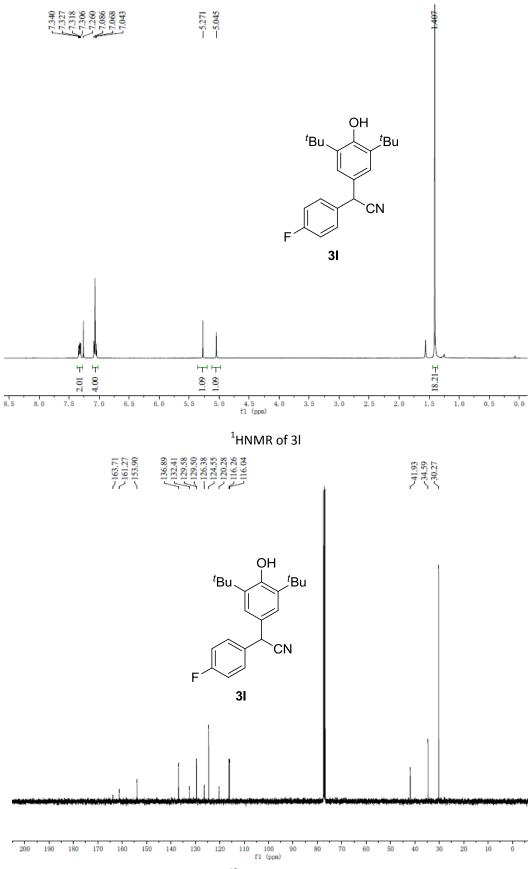

¹³CNMR of 3d

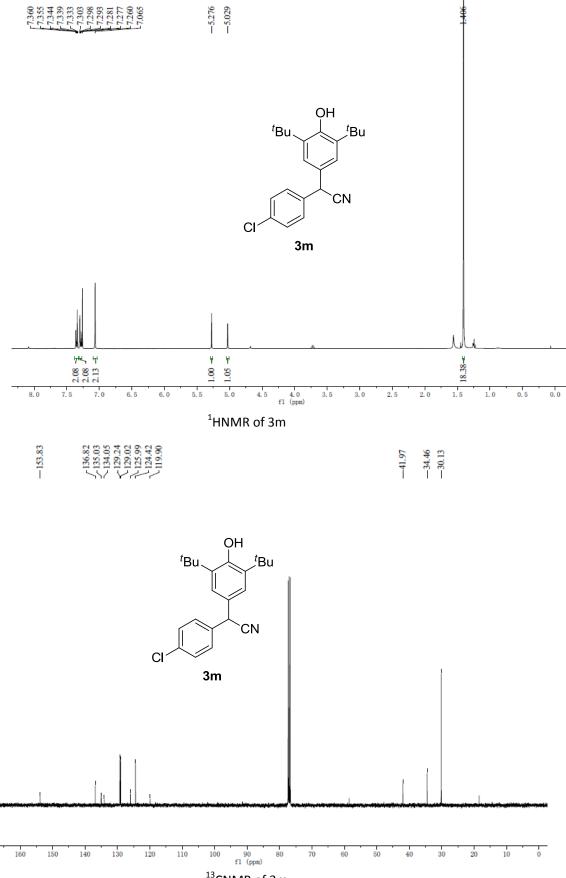
¹³CNMR of 3e

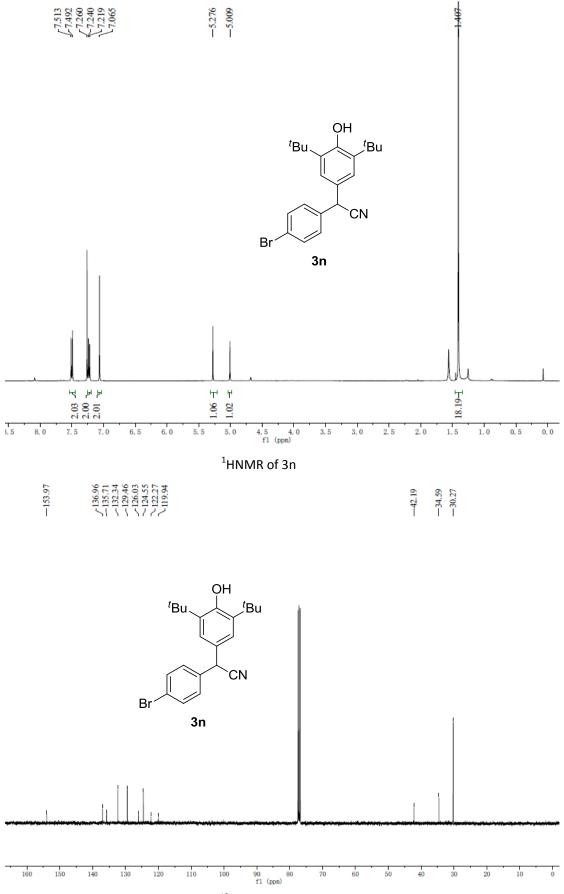

¹³CNMR of 3f

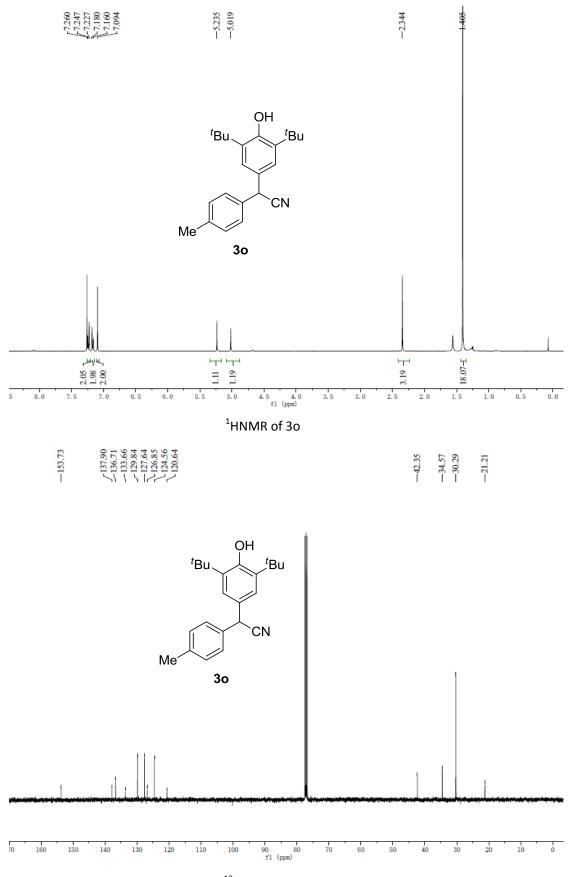

¹³CNMR of 3g

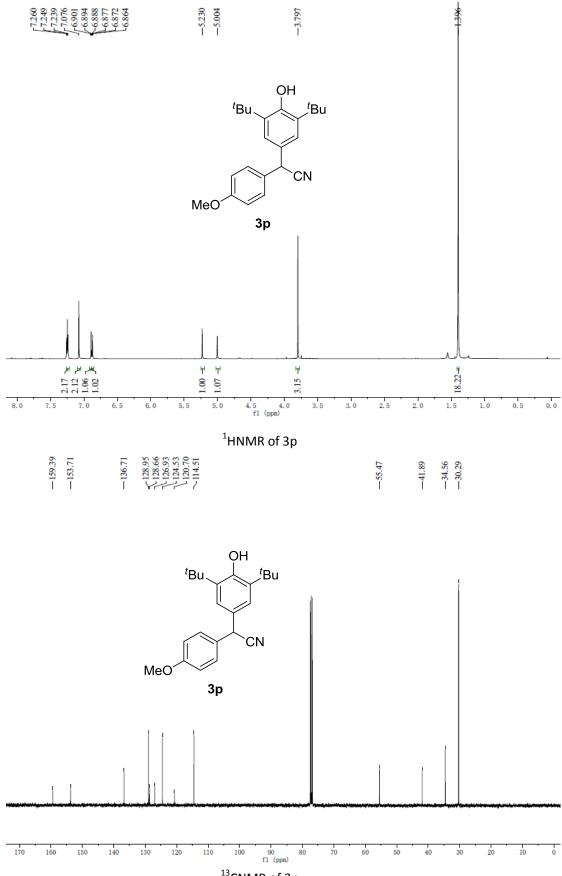

¹³CNMR of 3h

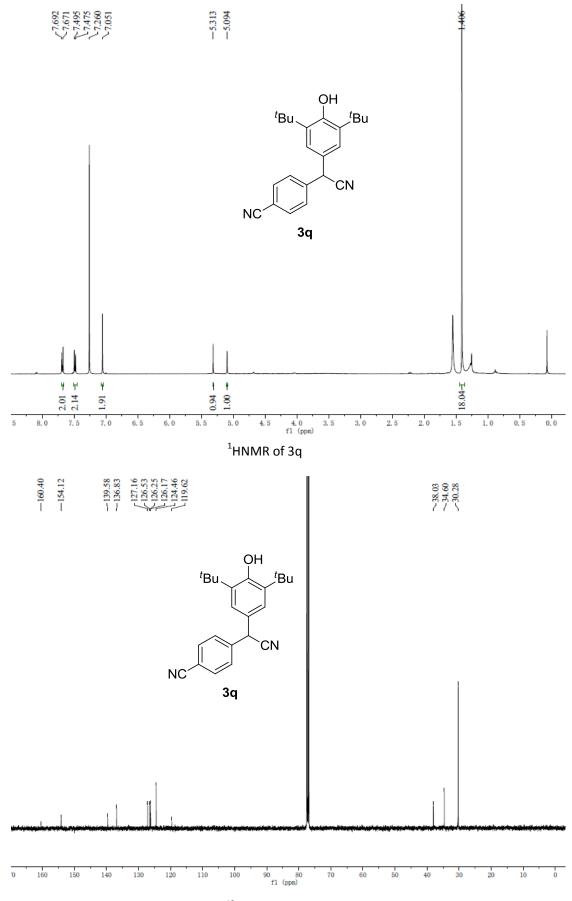

¹³CNMR of 3i

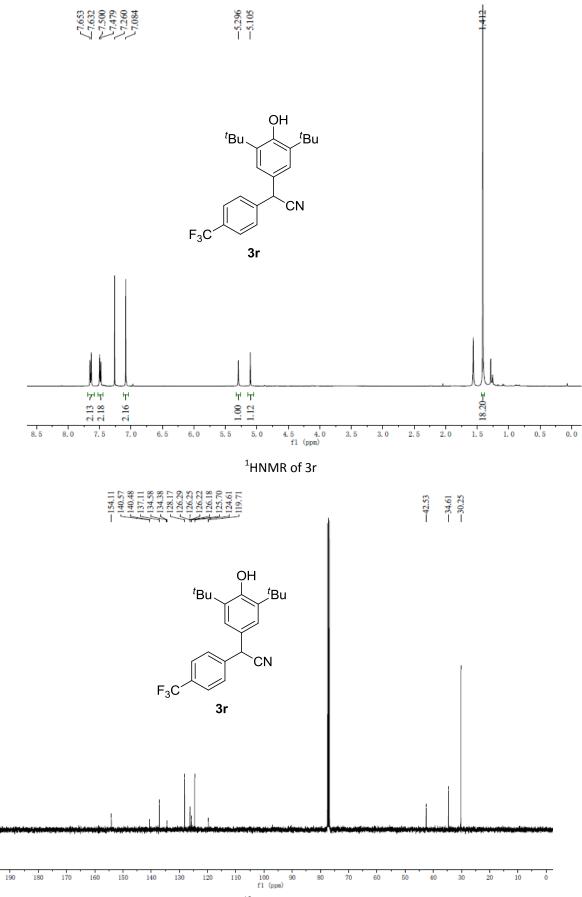

¹³CNMR of 3j

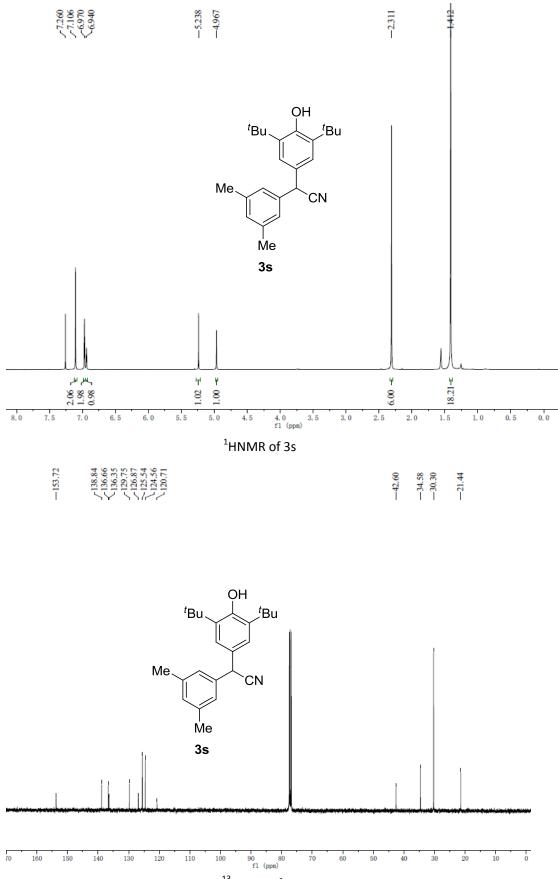


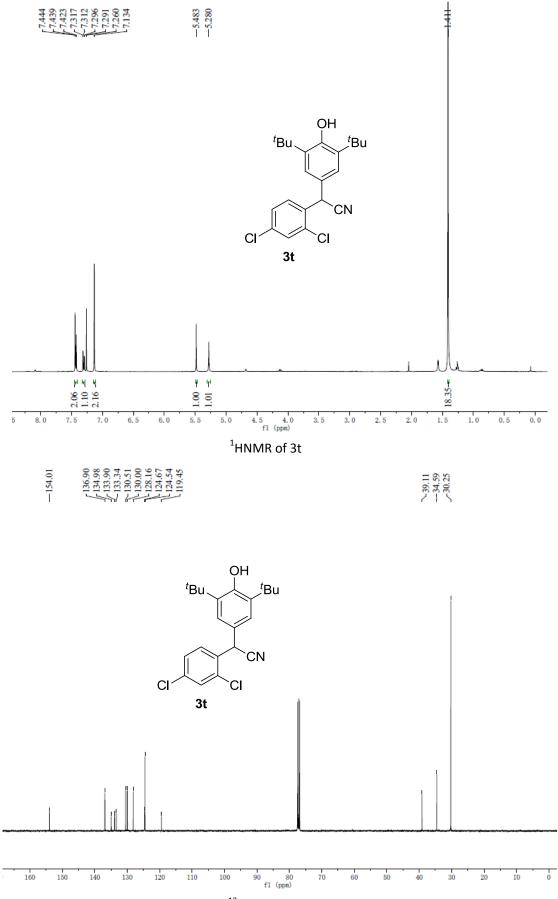


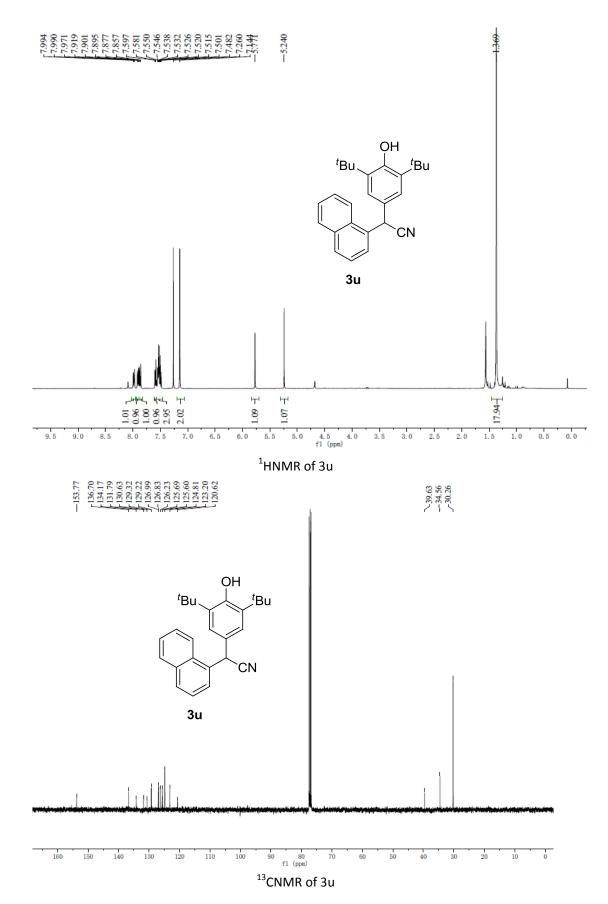


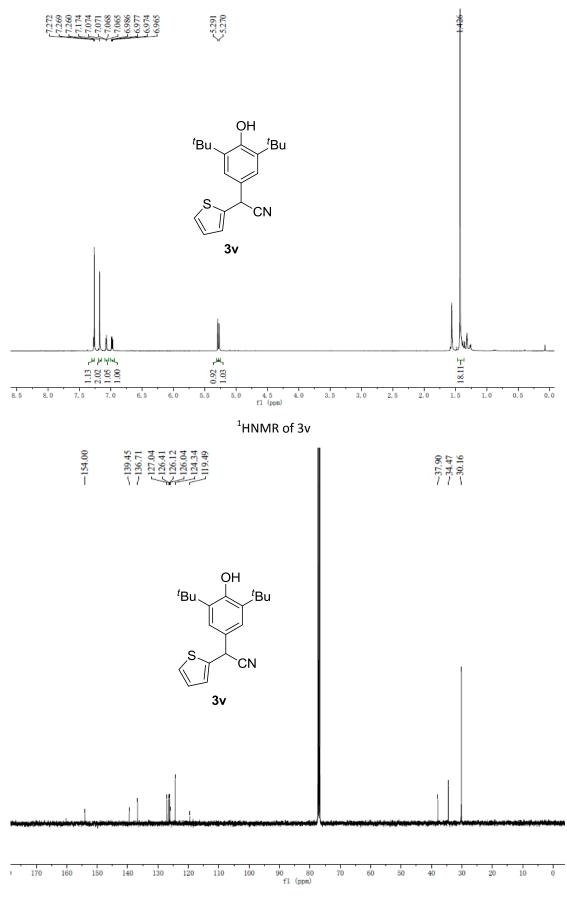

¹³CNMR of 3n

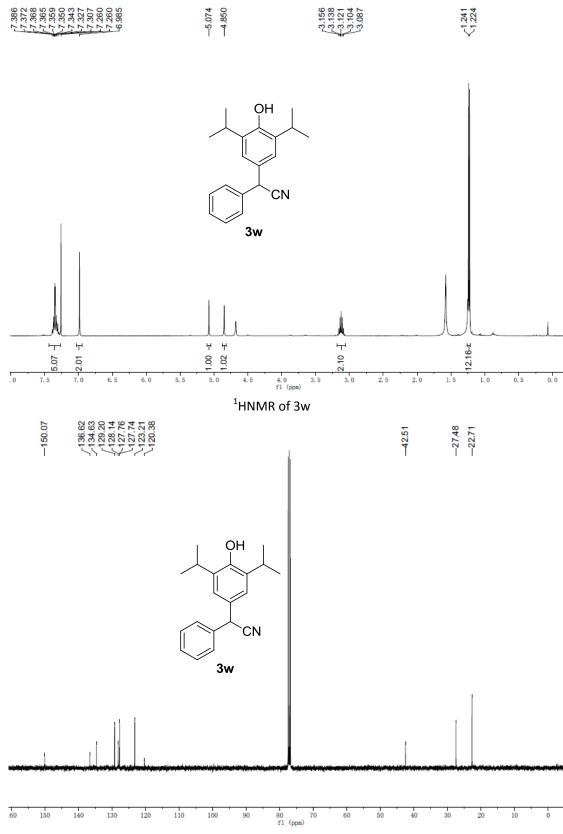

¹³CNMR of 30

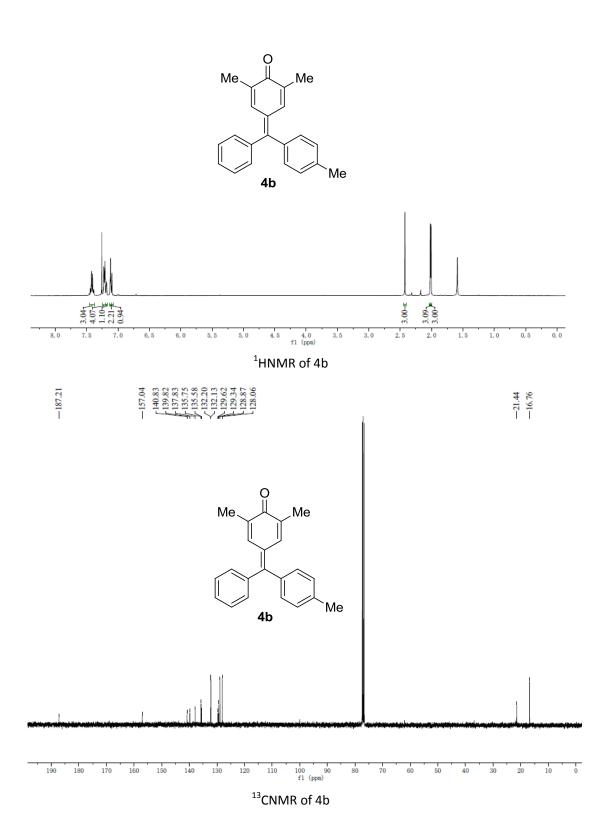



¹³CNMR of 3q

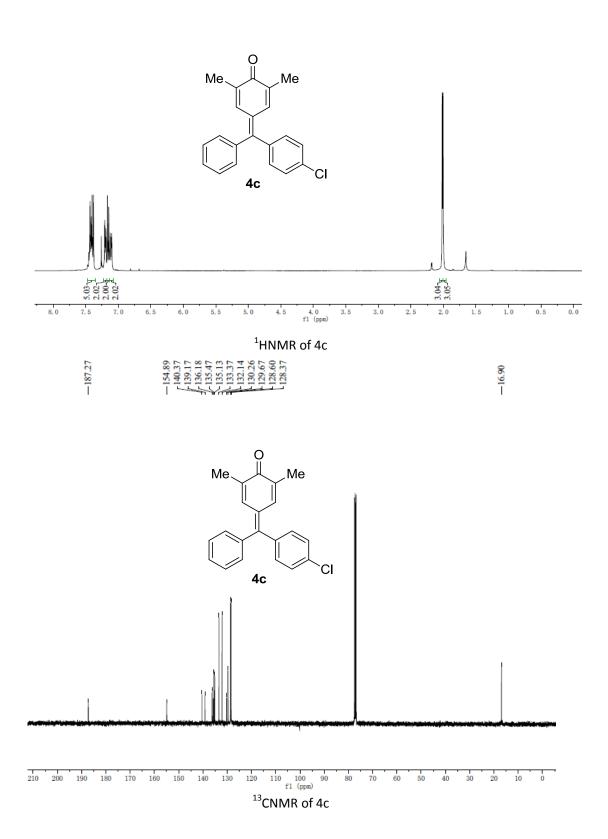

¹³CNMR of 3r


¹³CNMR of 3s


¹³CNMR of 3t

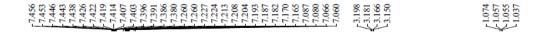


 $^{\rm 13}{\rm CNMR}$ of $3{\rm v}$

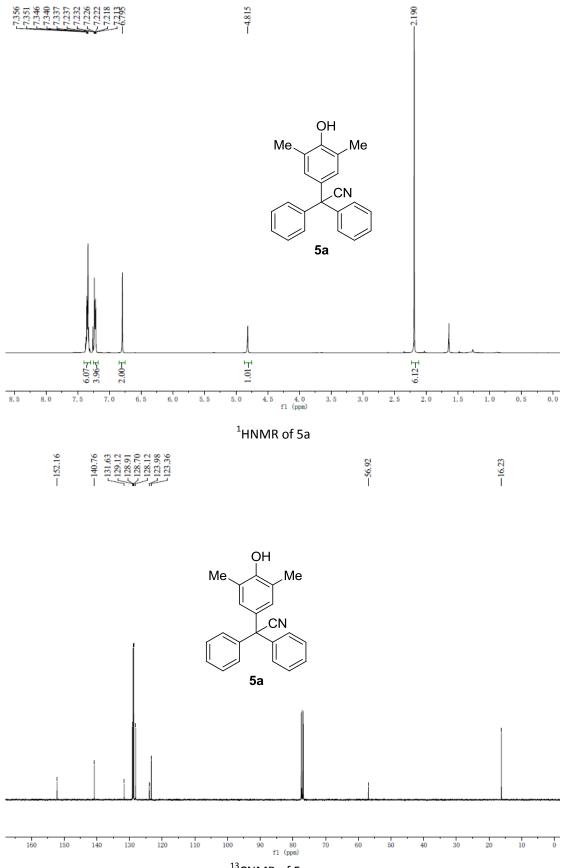


¹³CNMR of 3w

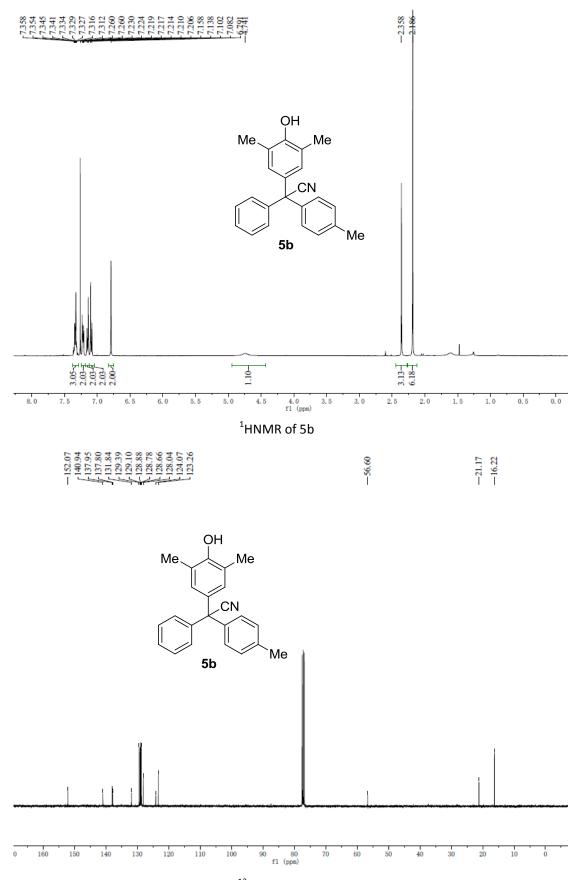
7,7,460 7,7,455 7,7,440 7,7,440 7,7,440 7,7,440 7,7,441 7,7,241 7,7,441 7,7,44

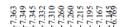


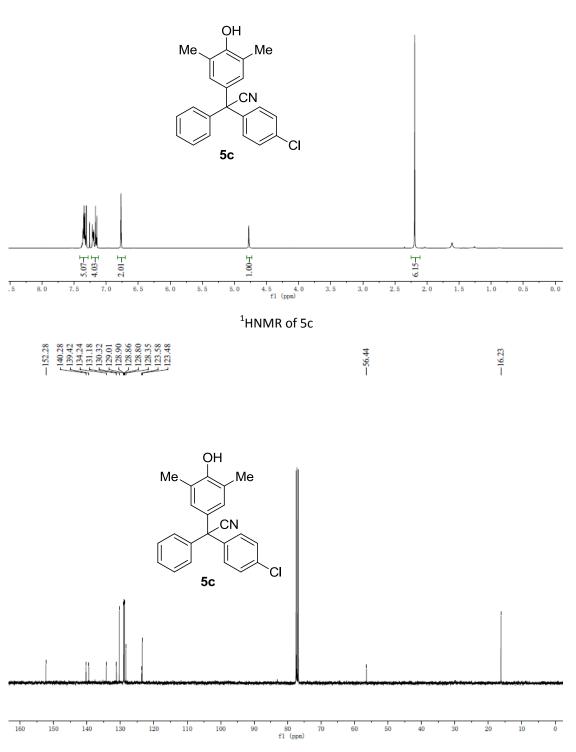

$\begin{array}{c} 7,452\\7,435\\7,435\\7,436\\7,409\\7,402\\7,208\\7,208\\7,208\\7,208\\7,102\\7,102\\7,102\\7,102\\7,102\\7,102\\7,102\end{array}$


 $<^{2.018}_{2.005}$

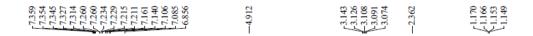
S61

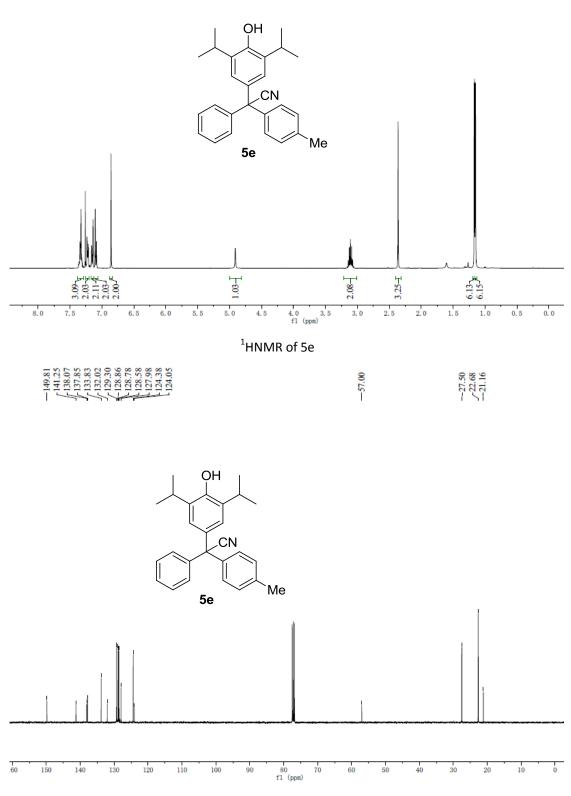



¹³CNMR of 4f

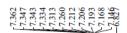


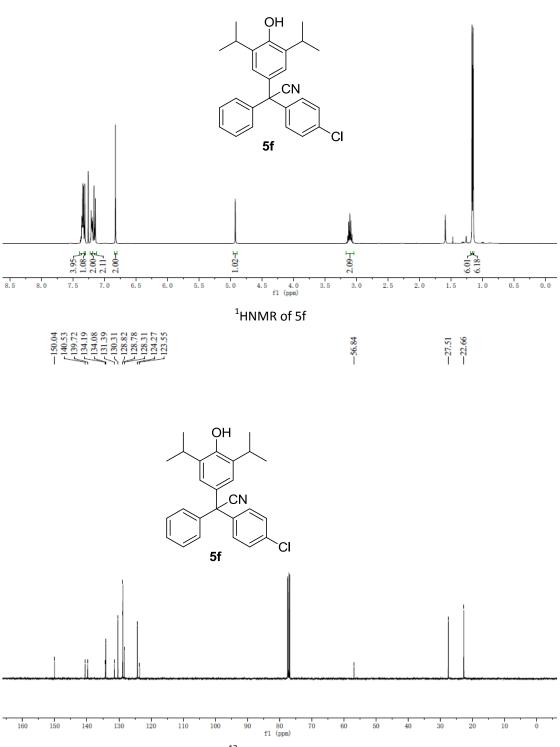
¹³CNMR of 5b

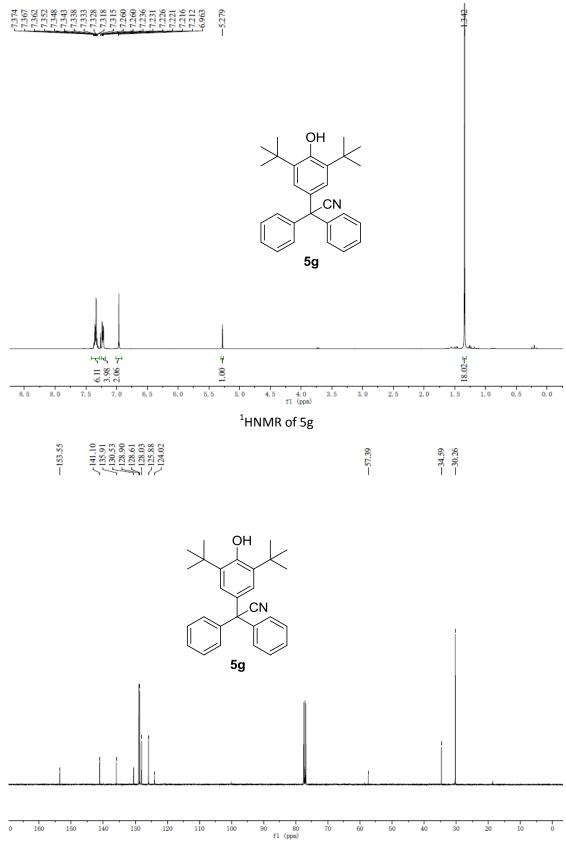

-4.777


-2.192

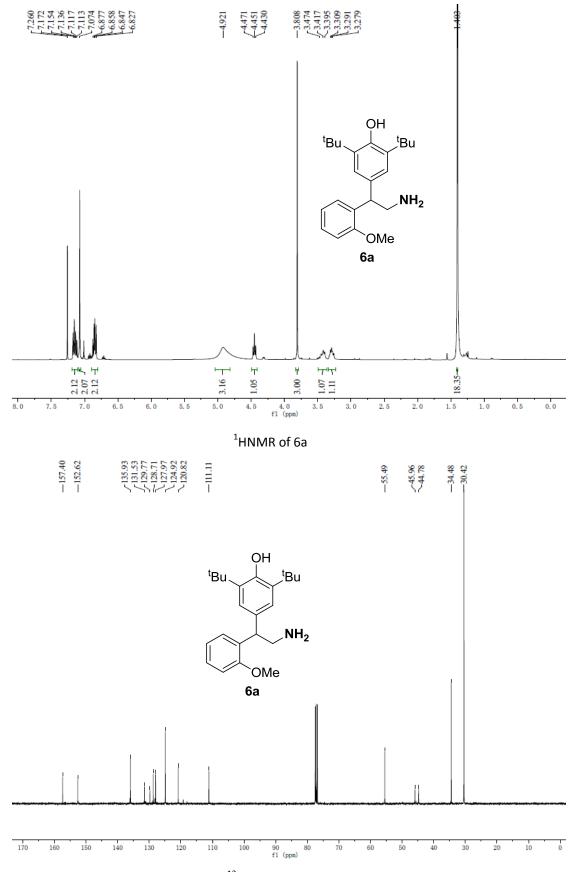
¹³CNMR of 5c

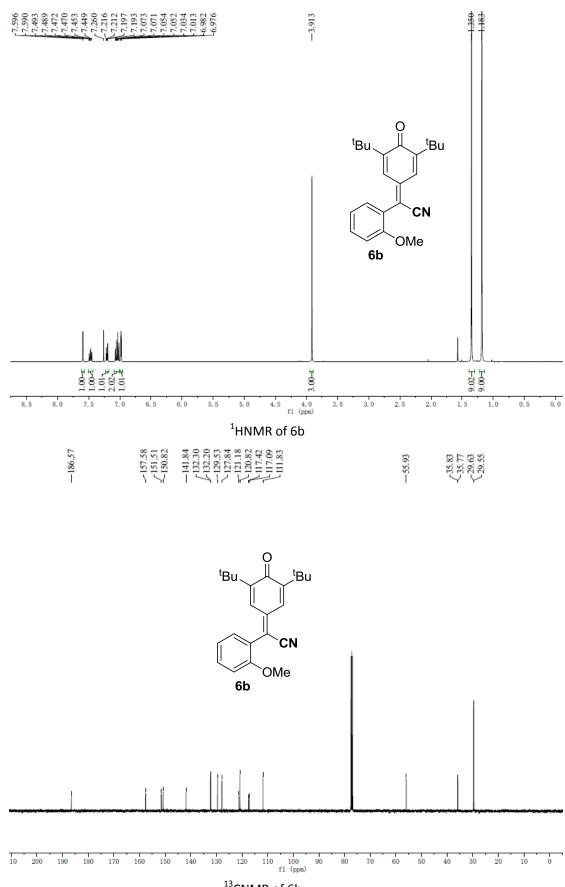


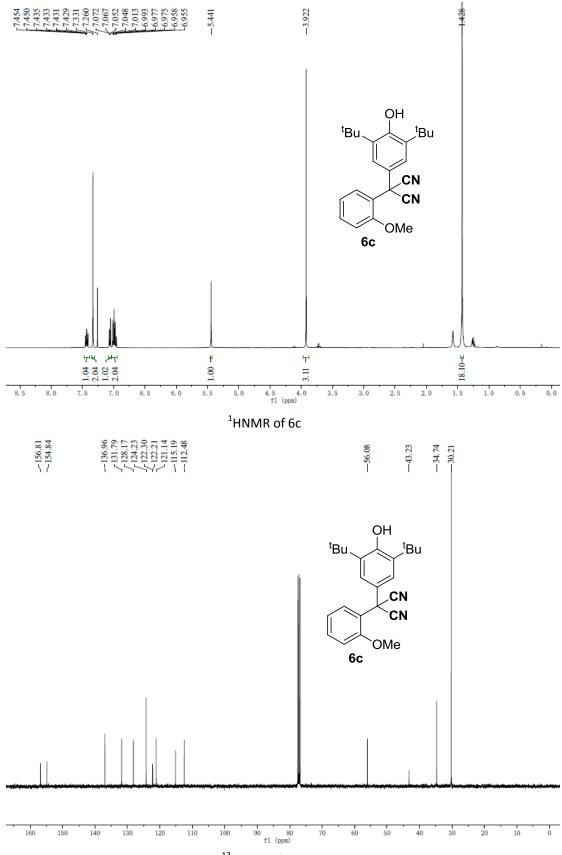


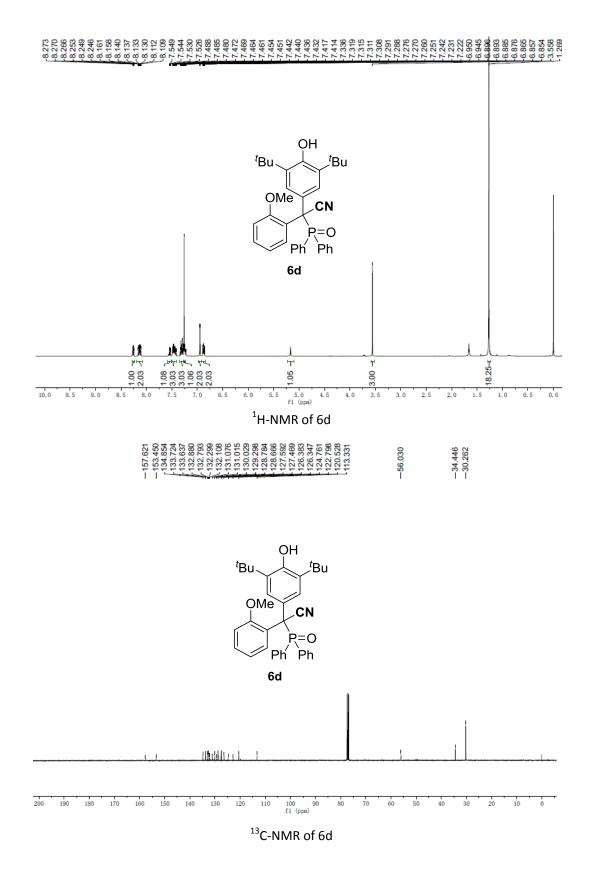


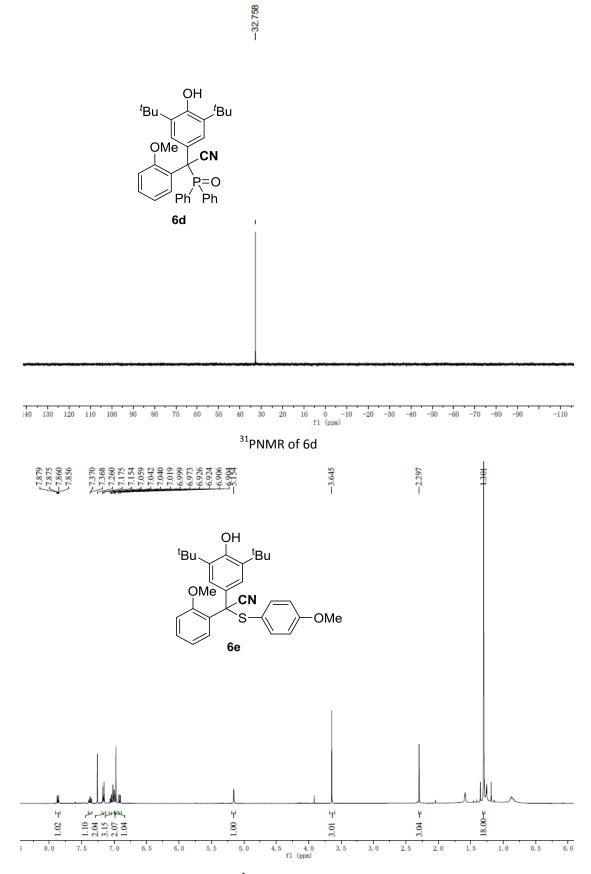
¹³CNMR of 5e

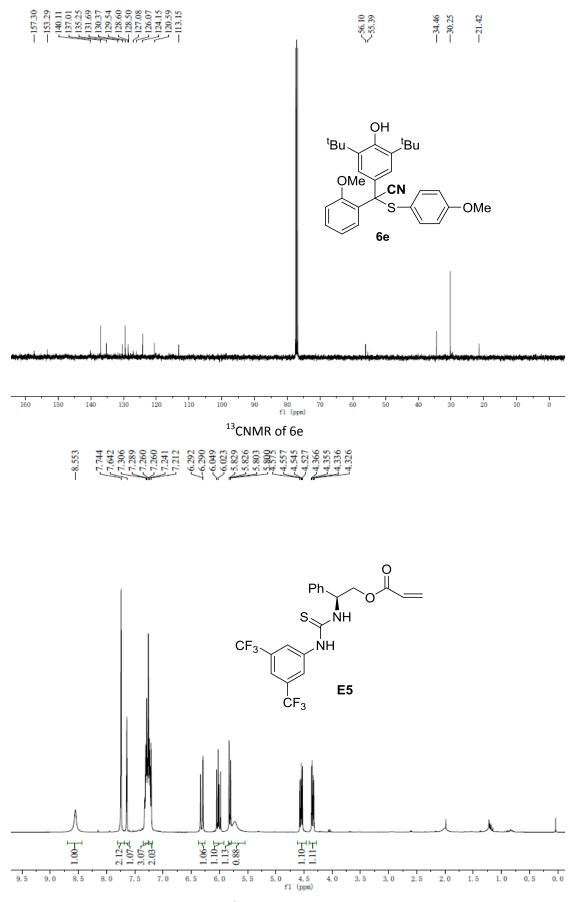


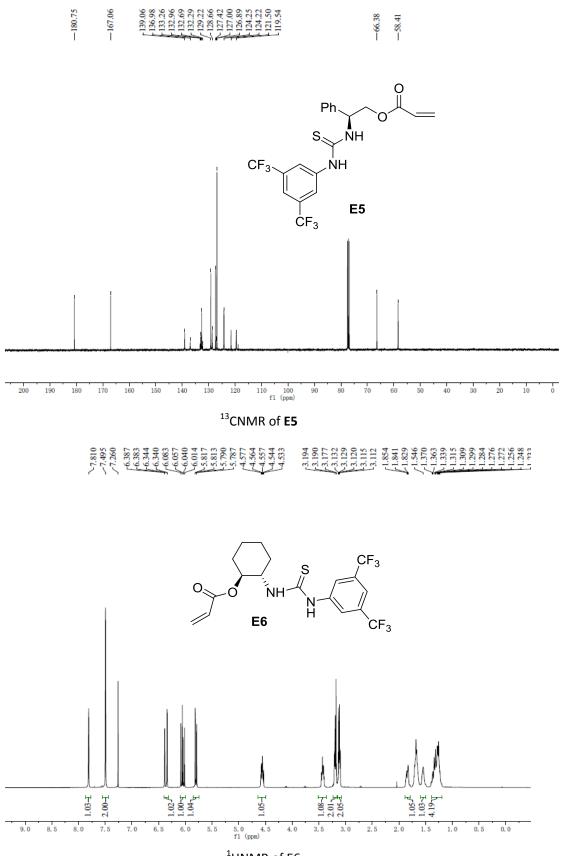

¹³CNMR of 5f



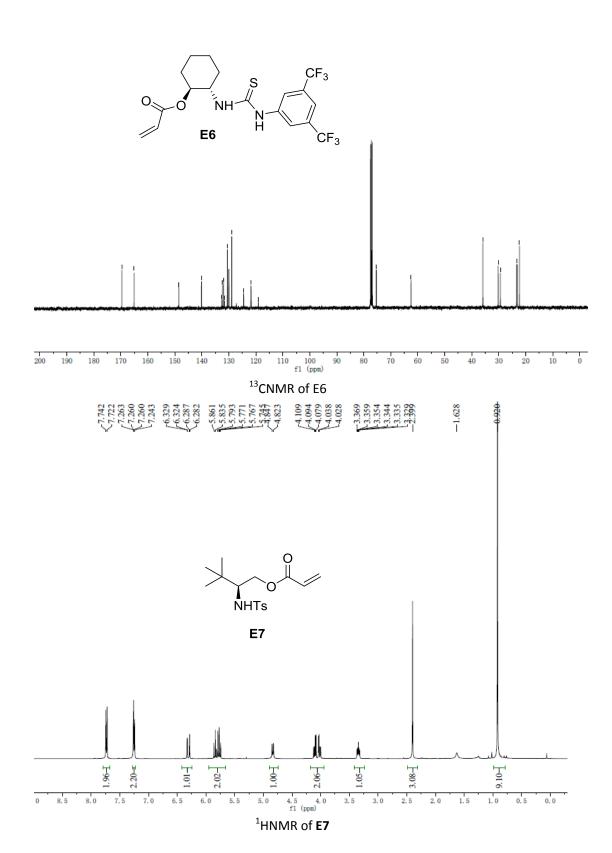

¹³CNMR of 6a

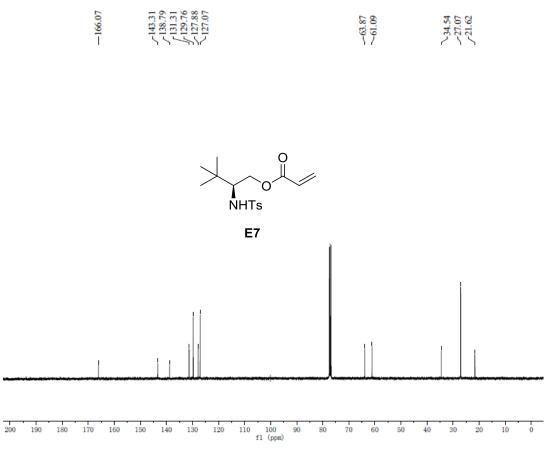





S73

¹HNMR of 6e




¹HNMR of E5

¹HNMR of E6

