Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2021

Supporting Information

Rhodium-Catalyzed Coupling-Cyclization Reaction of Isocyanides and 2-Azidophenyloxyacrylates: Synthesis of *N*-(3-Substituted Benzo[*d*]oxazol-2(3*H*)-ylidene)amines and Dihydrobenzo[*d*]oxazoles

Ming Yang, Xue-Cen Xu, Yue Gong and Yu-Long Zhao*

Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China; e-mail: zhaoyl351@nenu.edu.cn

Table of contents

I. General Information	S1
II. General Procedure for the Preparation of 2 (2a as example)	S2-8
III. General Procedure for the Preparation of 3 (3aa as example)	S9-30
IV. General Procedure for the Preparation of 4 (4a as example)	S31-39
V. General Procedure for the Preparation of 5a	S40
VI. General Procedure from 5a to 3aa	S41
VII. General Procedure from 5a to 4a and 6a	S42
VIII. General Procedure from 6a to 4a	
IX. ORTEP Drawing of Compound 3pa and 4m	S44-45
X. Copies of ¹ H NMR, ¹³ C NMR and ¹⁹ F NMR Spectra 2-6	of Compounds
XI. Copy of HRMS Spectra of $[O^{18}]$ -4a obtained by H_2O^{18}	reaction with

I. General Information:

All reagents were commercial and were used without further purification. Isocyanides 1 were prepared according to the previous reported method.¹ Chromatography was carried on flash silica gel (300-400 mesh). All reactions were monitored by TLC, which was performed on percolated aluminum sheets of silica gel 60 (F254). Unless noted, the ¹H NMR spectra were recorded at 500 MHz, 600 MHz in CDCl₃, the ¹³C NMR spectra were recorded at 151 MHz in CDCl₃ with TMS as internal standard, and the ¹⁹F NMR spectra were recorded at 471 MHz in CDCl₃. All coupling constants (J values) were reported in Hertz (Hz). High-resolution mass spectra (HRMS) were obtained using a Bruker microTOF II focus spectrometer (ESI). The compounds 3pa and 4m were glued on a glass fiber. X-ray single-crystal data of 3pa and 4m were collected by a Bruker D8 Venture diffractometer (Mo K α radiation, $\lambda = 0.71073$ Å (Cu K α radiation, $\lambda = 1.54178$ Å)) at 293(2) K, and IP technique in the range 2.19 ° < $\theta < 27.48^{\circ}$. Empirical absorption correction was applied. The structures were solved by the direct method and refined by the full-matrix least-squares method on F^2 using the SHELXS 97 crystallographic software package. Anisotropic thermal parameters were used to refine all non-hydrogen atoms. Hydrogen atoms were located from difference Fourier maps.

II. General Procedure for the Preparation of 2 (2a as example):

To a stirred solution of 2-Aminophenol **S1** (1.09 g, 10.0 mmol) in dry CH_2Cl_2 (25.0 mL) was added *N*-methyl morpholine (1.11 g, 11.0 mmol, 1.1 equiv) at 0 °C. The mixture was stirred for 10 min and ethyl propiolate **S2** (1.08 g, 11 mmol, 1.1 equiv) was added dropwise at 0 °C. The reaction mixture was stirred for additional 6-12 h at room temperature. The reaction progress was monitored by TLC. The organic layer was washed with brine, dried (Na₂SO₄) and concentrated under vacuum. The residue was purified by silica gel column chromatography using petroleum ether/EtOAc (50:1) as an eluent to afford **S3** in 85% yield.²

In a round-bottom flask equipped with a magnetic stirring bar, **S3** (10.0 mmol) was dissolved with HCl (6 N, 10.0 mL) in an ice bath. NaNO₂ (15.0 mmol) dissolved in 25.0 mL water was added dropwise. The reaction mixture was stirred for 30 min. Sodium azide (40.0 mmol) dissolved in 50 mL water was added dropwise. After this addition, the system was stirred for another 2-4 hours at room temperature. Then, the mixture was extracted with ethyl acetate and the combined organic extracts were washed with H₂O, dried (Na₂SO₄) and concentrated under vacuum. The residue was purified by silica gel column chromatography using PE/EtOAc (100:1) as an eluent to afford **2a** in 80% yield.²

Ethyl (E)-3-(2-azidophenoxy)acrylate (2a):

Yellow liquid, (**2a** was purified by PE/EtOAc = 100/1, V/V), 1.59 g, 68% yield. ¹H NMR (600 MHz, CDCl₃) δ 7.70 (d, J = 12.2 Hz, 1H), 7.19 – 7.22 (m, 1H) 7.11 – 7.17 (m, 2H), 7.07 (d, J = 7.9 Hz, 1H), 5.48 (d, J = 12.3 Hz, 1H), 4.19 (q, J = 7.1 Hz, 2H), 1.28 (t, J = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 166.8, 159.3, 147.0, 131.1, 126.3, 125.8, 120.8, 120.3, 102.4, 60.2, 14.3. HRMS (ESI-TOF): [M + Na]⁺ calculated for C₁₁H₁₁N₃O₃Na⁺: 256.0693, found: 256.0696.

Ethyl (*E*)-3-(2-azido-5-methylphenoxy)acrylate (2b):

Yellow liquid, (**2b** was purified by PE/EtOAc = 100/1, V/V), 1.73 g, 70% yield. ¹H NMR (600 MHz, CDCl₃) δ 7.67 (d, J = 12.3 Hz, 1H), 6.90 – 6.97 (m, 3H), 5.43 (d, J = 12.3 Hz, 1H), 4.18 (q, J = 7.1 Hz, 2H), 2.33 (s, 3H), 1.27 (t, J = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 166.9, 159.8, 144.7, 136.5, 130.6, 126.4, 121.0, 120.3, 101.9, 60.1, 20.8, 14.3. HRMS (ESI-TOF): [M + Na]⁺ calculated for C₁₂H₁₃N₃O₃Na⁺: 270.0849, found: 270.0846.

Ethyl (*E*)-3-(2-azido-4-methylphenoxy)acrylate (2c):

Yellow liquid, (**2c** was purified by PE/EtOAc = 100/1, V/V), 1.73 g, 70% yield. ¹H NMR (600 MHz, CDCl₃) δ 7.69 (d, J = 12.3 Hz, 1H), 7.00 (s, 2H), 6.88 (s, 1H), 5.47 (d, J = 12.2 Hz, 1H), 4.19 (q, J = 7.1 Hz, 2H), 2.33 (s, 3H), 1.28 (t, J = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 166.9, 159.4, 146.7, 136.3, 128.1, 126.9, 120.8, 120.5, 102.3, 60.2, 20.8, 14.3. HRMS (ESI-TOF): [M + Na]⁺ calculated for C₁₂H₁₃N₃O₃Na⁺:

Ethyl (*E*)-3-(2-azido-3-methylphenoxy)acrylate (2d):

Yellow liquid, (**2d** was purified by PE/EtOAc = 100/1, V/V), 1.61 g, 65% yield. ¹H NMR (600 MHz, CDCl₃) δ 7.73 (d, *J* = 12.2 Hz, 1H), 7.02 (t, *J* = 7.8 Hz, 1H), 6.98 (d, *J* = 7.2 Hz, 1H), 6.89 (d, *J* = 7.9 Hz, 1H), 5.58 (d, *J* = 12.2 Hz, 1H), 4.20 (q, *J* = 7.1 Hz, 2H), 2.25 (s, 3H), 1.28 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 166.7, 158.7, 149.6, 132.7, 129.0, 127.4, 125.2, 116.7, 103.1, 60.2, 17.8, 14.3. HRMS (ESI-TOF): [M + Na]⁺ calculated for C₁₂H₁₃N₃O₃Na⁺: 270.0849, found: 270.0859.

Ethyl (E)-3-(2-azido-4-methoxyphenoxy)acrylate (2e):

Yellow liquid, (**2e** was purified by PE/EtOAc = 100/1, V/V), 1.92 g, 73% yield. ¹H NMR (600 MHz, CDCl₃) δ 7.65 (d, J = 12.3 Hz, 1H), 6.98 (d, J = 8.8 Hz, 1H), 6.65 (dd, J = 8.8, 2.8 Hz, 1H), 6.63 (d, J = 2.8 Hz, 1H), 5.38 (d, J = 12.3 Hz, 1H), 4.17 (q, J = 7.1 Hz, 2H), 3.80 (s, 3H), 1.27 (t, J = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 166.9, 160.4, 157.8, 140.6, 132.0, 121.6, 110.8, 106.2, 101.5, 60.1, 55.7, 14.3. HRMS (ESI-TOF): [M + Na]⁺ calculated for C₁₂H₁₃N₃O₄Na⁺: 286.0798, found: 286.0799.

Ethyl (E)-3-(2-azido-5-fluorophenoxy)acrylate (2f):

White solid, (**2f** was purified by PE/EtOAc = 100/1, V/V), mp: 38 - 39 °C, 1.58 g, 63% yield. ¹H NMR (600 MHz, CDCl₃) δ 7.66 (d, J = 12.2 Hz, 1H), 7.08 (dd, J = 8.8, 5.4 Hz, 1H), 6.94 (ddd, J = 10.1, 8.3, 2.7 Hz, 1H), 6.85 (dd, J = 8.6, 2.7 Hz, 1H), 5.55 (d,

J = 12.2 Hz, 1H), 4.20 (q, J = 7.1 Hz, 2H), 1.29 (t, J = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 166.5, 159.8 (d, J = 247.9 Hz,), 158.1, 147.5 (d, J = 10.1 Hz), 127.1 (d, J = 3.3 Hz), 121.6 (d, J = 9.4 Hz), 113.0 (d, J = 22.7 Hz), 108.0 (d, J = 25.7 Hz), 103.5, 60.4, 14.3. HRMS (ESI-TOF): [M + Na]⁺ calculated for C₁₁H₁₀FN₃O₃Na⁺: 274.0598, found: 274.0593.

Ethyl (E)-3-(2-azido-5-chlorophenoxy)acrylate (2g):

Yellow liquid, (**2g** was purified by PE/EtOAc = 100/1, V/V), 1.73 g, 65% yield. ¹H NMR (600 MHz, CDCl₃) δ 7.65 (d, *J* = 12.2 Hz, 1H), 7.18 (d, *J* = 8.6 Hz, 1H), 7.09 (s, 1H), 7.05 (d, *J* = 8.6 Hz, 1H), 5.53 (d, *J* = 12.2 Hz, 1H), 4.21 (q, *J* = 7.1 Hz, 2H), 1.29 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 166.5, 158.2, 147.3, 130.7, 129.8, 126.3, 121.6, 120.5, 103.5, 60.4, 14.3. HRMS (ESI-TOF): [M + Na]⁺ calculated for C₁₁H₁₀ClN₃O₃Na⁺: 290.0303, found: 290.0296.

Ethyl (*E*)-3-(2-azido-5-bromophenoxy)acrylate (2h):

Yellow liquid. (**2h** was purified by PE/EtOAc = 100/1, V/V), 2.03 g, 65% yield. ¹H NMR (600 MHz, CDCl₃) δ 7.65 (d, *J* = 12.2 Hz, 1H), 7.32 (dd, *J* = 8.5, 2.0 Hz, 1H), 7.22 (d, *J* = 1.9 Hz, 1H), 6.99 (d, *J* = 8.5 Hz, 1H), 5.53 (d, *J* = 12.2 Hz, 1H), 4.20 (q, *J* = 7.1 Hz, 2H), 1.29 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 166.5, 158.3, 147.4, 130.4, 129.2, 123.3, 122.0, 117.7, 103.5, 60.4, 14.3. HRMS (ESI-TOF): [M + Na]⁺ calculated for C₁₁H₁₀BrN₃O₃Na⁺: 333.9798, found: 333.9801.

Ethyl (E)-3-(2-azido-4-chlorophenoxy)acrylate (2i):

White solid, (**2i** was purified by PE/EtOAc = 100/1, V/V), mp: 38 – 39 °C, 1.82 g, 68% yield. ¹H NMR (600 MHz, CDCl₃) δ 7.64 (d, *J* = 12.3 Hz, 1H), 7.13 – 7.09 (m, 2H), 7.01 (d, *J* = 9.4 Hz, 1H), 5.48 (d, *J* = 12.2 Hz, 1H), 4.19 (q, *J* = 7.1 Hz, 2H), 1.28 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 166.6, 158.8, 145.6, 132.4, 131.5, 125.7, 121.2, 120.9, 102.9, 60.3, 14.3. HRMS (ESI-TOF): [M + Na]⁺ calculated for C₁₁H₁₀ClN₃O₃Na⁺: 290.0303, found: 290.0298.

Ethyl (E)-3-(2-azido-4-bromophenoxy)acrylate (2j):

Red liquid, (**2j** was purified by PE/EtOAc = 100/1, V/V), 1.87 g, 60% yield. ¹H NMR (600 MHz, CDCl₃) δ 7.64 (d, J = 12.2 Hz, 1H), 7.24 – 7.29 (m, 2H), 6.95 (d, J = 9.3 Hz, 1H), 5.49 (d, J = 12.3 Hz, 1H), 4.19 (q, J = 7.1 Hz, 2H), 1.28 (t, J = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 166.6, 158.6, 146.1, 132.6, 128.7, 123.8, 121.5, 118.7, 103.0, 60.3, 14.3. HRMS (ESI-TOF): [M + Na]⁺ calculated for C₁₁H₁₀BrN₃O₃Na⁺: 333.9798, found: 333.9790.

Methyl (*E*)-4-azido-3-((3-ethoxy-3-oxoprop-1-en-1-yl)oxy)benzoate (2k):

White solid, (**2k** was purified by PE/EtOAc = 80/1, V/V), mp: 48 – 50 °C, 1.98 g, 68% yield. ¹H NMR (600 MHz, CDCl₃) δ 7.87 (dd, J = 8.3, 1.7 Hz, 1H), 7.74 (d, J = 1.7 Hz, 1H), 7.71 (d, J = 12.2 Hz, 1H), 7.16 (d, J = 8.4 Hz, 1H), 5.54 (d, J = 12.2 Hz, 1H), 4.21 (q, J = 7.1 Hz, 2H), 3.92 (s, 3H),1.29 (t, J = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 166.5, 165.3, 158.3, 146.7, 135.7, 127.7, 127.5, 121.0, 120.5, 103.3, 60.3, 52.4, 14.2. HRMS (ESI-TOF): [M + Na]⁺ calculated for C₁₃H₁₃N₃O₅Na⁺: 314.0747, found: 314.0741.

Ethyl (E)-3-((3-azidonaphthalen-2-yl)oxy)acrylate (2l):

Red liquid, (**2l** was purified by PE/EtOAc = 70/1, V/V), 1.42 g, 50% yield. ¹H NMR (600 MHz, CDCl₃) δ 7.80 (d, J = 12.2 Hz, 1H), 7.75 – 7.70 (m, 2H), 7.51 (s, 1H), 7.43 – 7.49 (m, 3H), 5.60 (d, J = 12.2 Hz, 1H), 4.21 (q, J = 7.1 Hz, 2H), 1.29 (t, J = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 166.8, 158.8, 146.2, 131.2, 131.1, 130.4, 127.2, 126.7, 126.6, 126.4, 118.2, 116.5, 103.2, 60.3, 14.3. HRMS (ESI-TOF): [M + Na]⁺ calculated for C₁₅H₁₃N₃O₃Na⁺: 306.0849, found: 306.0859.

Methyl (E)-3-(2-azidophenoxy)acrylate (2m):

Yellow liquid, (**2m** was purified by PE/EtOAc = 100/1, V/V), 1.53 g, 70% yield. ¹H NMR (600 MHz, CDCl₃) δ 7.70 (d, *J* = 12.3 Hz, 1H), 7.21 (t, *J* = 7.7 Hz, 1H), 7.12 – 7.16 (m, 2H), 7.06 (d, *J* = 8.0 Hz, 1H), 5.50 (d, *J* = 12.3 Hz, 1H), 3.72 (m, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 167.2, 159.5, 146.9, 131.1, 126.4, 125.8, 120.8, 120.2, 102.0, 51.4. HRMS (ESI-TOF): [M + Na]⁺ calculated for C₁₀H₉N₃O₃Na⁺: 242.0536, found: 242.0539.

Tert-butyl (E)-3-(2-azidophenoxy)acrylate (2n):

Yellow liquid, (**2n** was purified by PE/EtOAc = 100/1, V/V), 1.78 g, 68% yield. ¹H NMR (600 MHz, CDCl₃) δ 7.60 (d, J = 12.2 Hz, 1H), 7.19 (td, J = 7.7, 1.4 Hz, 1H), 7.16 – 7.10 (m, 2H), 7.06 (dd, J = 8.0, 1.2 Hz, 1H), 5.40 (d, J = 12.2 Hz, 1H), 1.48 (s, 9H). ¹³C NMR (151 MHz, CDCl₃) δ 166.1, 158.5, 147.1, 131.1, 126.2, 125.8, 120.8, 120.3, 104.1, 80.4, 28.2. HRMS (ESI-TOF): [M + Na]⁺ calculated for C₁₃H₁₅N₃O₃Na⁺: 284.1006, found: 284.1008.

(E)-Ethyl 3-((2-azidophenyl)thio)acrylate (2o):

Yellow liquid, (**20** was purified by PE/EtOAc = 100/1, V/V), 1.12 g, 45% yield. ¹H NMR (600 MHz, CDCl₃) δ 7.51 (dd, *J* = 7.8, 1.4 Hz, 1H), 7.41 (td, *J* = 7.9, 1.5 Hz, 1H), 7.22 (dd, J = 8.0, 1.0 Hz, 1H), 7.15 (td, *J* = 7.6, 1.2 Hz, 1H), 7.09 (d, *J* = 10.0 Hz, 1H), 5.93 (d, *J* = 10.0 Hz, 1H), 4.26 (q, *J* = 7.1 Hz, 2H), 1.33 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 166.5, 149.1, 140.9, 134.1, 130.2, 126.7, 125.4, 119.0, 113.8, 60.4, 14.4. HRMS (ESI-TOF): [M + Na]⁺ calculated for C₁₁H₁₁N₃NaO₂S⁺: 272.0464, found: 272.0455.

A sealed tube equipped with a magnetic stir bar was charged with $[Rh(COD)Cl]_2$ (2.5 mg, 0.005 mmol), DPPE (4.1 mg, 0.01 mmol) in toluene (2.0 mL), then **1a** (23.4 mg, 0.2 mmol), **2a** (46.6 mg, 0.2 mmol) and DBU (0.006 ml, 0.04 mmol) were added. Subsequently, the reaction mixture was stirred at 60 °C (heating mantle) for 5 h. After the reaction was complete, the solvent was removed under reduced pressure. The crude residue was purified by silica gel column chromatography (EtOAc/PE = 1/50, V/V) to afford pure product **3aa** (61.2 mg, 95%) as a white solid.

A gram-scale synthesis of compound 3aa:

An oven-dried vial equipped with a magnetic stir bar was charged with $[Rh(COD)Cl]_2$ (61.6 mg, 0.13 mmol), DPPE (99.6 mg, 0.25 mmol) in toluene (50.0 mL), then **1a** (0.59 g, 5.0 mmol), **2a** (1.17 g, 5.0 mmol) and DBU (0.149 ml, 1.0 mmol) were added. Subsequently, the reaction mixture was stirred at 60 °C (oil bath) for 12 h. After the reaction was complete, the solvent was removed under reduced pressure. The crude residue was purified by silica gel column chromatography (EtOAc/PE = 1/50, V/V) to afford pure product **3aa** (1.35 g, 84%) as a white solid.

Ethyl (*E*)-3-((*Z*)-2-(*p*-tolylimino)benzo[*d*]oxazol-3(2*H*)-yl)acrylate (3aa):

White solid, (**3aa** was purified by PE/EtOAc = 50/1, V/V), mp: 98 – 100 °C, 61.2 mg, 95% yield. ¹H NMR (600 MHz, CDCl₃) δ 8.13 (d, *J* = 14.4 Hz, 1H), 7.29 (d, *J* = 7.8 Hz, 1H), 7.17 (q, *J* = 8.4 Hz, 5H), 7.13 (q, *J* = 4.5, 3.7 Hz, 2H), 6.68 (d, *J* = 14.4 Hz, 1H), 4.28 (q, *J* = 7.1 Hz, 2H), 2.35 (s, 3H), 1.34 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 167.5, 144.7, 144.6, 141.7, 134.5, 133.5, 129.5, 129.3, 124.1, 123.8, 123.1, 110.0, 109.9, 104.8, 60.5, 21.0, 14.4. FT-IR (neat): (cm⁻¹) 3107, 2915, 2850, 1690, 1638, 1599, 1483, 1401, 1250, 967, 730. HRMS (ESI-TOF): [M + Na]⁺ calculated for C₁₉H₁₈N₂NaO₃⁺: 345.1210, found: 345.1208.

Ethyl (*E*)-3-((*Z*)-2-(phenylimino)benzo[*d*]oxazol-3(2*H*)-yl)acrylate (3ba):

White solid, (**3ba** was purified by PE/EtOAc = 50/1, V/V), mp: 83 – 85 °C, 55.5 mg, 90% yield. ¹H NMR (600 MHz, CDCl₃) δ 8.14 (d, *J* = 14.4 Hz, 1H), 7.36 (t, *J* = 7.8 Hz, 2H), 7.28 (dd, *J* = 19.2, 7.6 Hz, 3H), 7.20 (ddd, *J* = 8.0, 5.4, 3.4 Hz, 1H), 7.14 – 7.10 (m, 3H), 6.70 (d, *J* = 14.4 Hz, 1H), 4.28 (q, *J* = 7.1 Hz, 2H), 1.34 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 167.5, 144.9, 144.6, 144.4, 134.5, 129.3, 128.9, 124.2, 124.0, 123.8, 123.3, 110.0, 109.9, 105.0, 60.5, 14.4. FT-IR (neat): (cm⁻¹) 3100, 3070, 2977, 1692, 1638, 1586, 1487, 1357, 1228, 1139, 728. HRMS (ESI-TOF): [M + Na]⁺ calculated for C₁₈H₁₆N₂NaO₃⁺: 331.1053, found: 331.1051.

 $Ethyl \qquad (E)-3-((Z)-2-((4-methoxyphenyl)imino)benzo[d]oxazol-3(2H)-yl)acrylate$

(3ca):

White solid, (**3ca** was purified by PE/EtOAc = 50/1, V/V), mp: 94 – 95 °C, 58.9 mg, 87% yield. ¹H NMR (600 MHz, CDCl₃) δ 8.14 (d, *J* = 14.3 Hz, 1H), 7.31 (d, *J* = 7.8 Hz, 1H), 7.29 – 7.26 (m, 2H), 7.20 (td, *J* = 7.5, 1.8 Hz, 1H), 7.17 – 7.13 (m, 2H), 6.92 – 6.89 (m, 2H), 6.69 (d, *J* = 14.4 Hz, 1H), 4.28 (d, *J* = 7.1 Hz, 2H), 3.82 (s, 3H), 1.35 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 167.6, 156.3, 144.7, 144.2, 137.3, 134.6, 129.3, 124.4, 124.2, 123.7, 114.1, 110.0, 110.0, 104.6, 60.5, 55.5, 14.4. FT-IR (neat): (cm⁻¹) 3064, 2951, 2837, 1702, 1635, 1601, 1485, 1359, 1234, 1133, 1029, 831, 736. HRMS (ESI-TOF): [M + Na]⁺ calculated for C₁₉H₁₈N₂NaO₄⁺: 361.1159, found: 361.1168.

Ethyl (*E*)-3-((*Z*)-2-(mesitylimino)benzo[*d*]oxazol-3(2*H*)-yl)acrylate (3da):

White solid, (**3da** was purified by PE/EtOAc = 50/1, V/V), mp: 165 – 167 °C, 62.4 mg, 89% yield. ¹H NMR (600 MHz, CDCl₃) δ 8.07 (d, *J* = 14.3 Hz, 1H), 7.22 (d, *J* = 7.9 Hz, 1H), 7.10 (d, *J* = 15.4 Hz, 1H), 7.01 (t, *J* = 7.7 Hz, 1H), 6.97 (d, *J* = 7.8 Hz, 1H), 6.82 (s, 2H), 6.72 (d, *J* = 14.3 Hz, 1H), 4.19 (q, *J* = 7.1 Hz, 2H), 2.21 (s, 3H), 2.06 (s, 6H), 1.26 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 167.6, 144.6, 143.9, 140.4, 134.4, 132.7, 129.8, 128.8, 128.6, 124.1, 123.7, 110.1, 109.7, 105.0,

60.5, 20.8, 18.3, 14.4. FT-IR (neat): (cm⁻¹) 3109, 2977, 2912, 1702, 1614, 1489, 1400, 1357, 1250, 1131, 844, 730. HRMS (ESI-TOF): $[M + Na]^+$ calculated for $C_{21}H_{22}N_2NaO_3^+$: 373.1523, found: 373.1513.

Ethyl (*E*)-3-((*Z*)-2-((4-(dimethylamino)phenyl)imino)benzo[*d*]oxazol-3(2*H*)-yl)ac-rylate (3ea):

Yellow solid, (**3ea** was purified by PE/EtOAc = 50/1, V/V), mp: 162 – 164 °C, 60.4 mg, 86% yield. ¹H NMR (600 MHz, CDCl₃) δ 8.13 (d, *J* = 14.3 Hz, 1H), 7.29 – 7.26 (m, 3H), 7.16 (td, *J* = 7.6, 1.5 Hz, 1H), 7.14 – 7.09 (m, 2H), 6.75 (d, *J* = 8.9 Hz, 2H), 6.67 (d, *J* = 14.3 Hz, 1H), 4.28 (q, *J* = 7.1 Hz, 2H), 2.94 (s, 6H), 1.34 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 167.7, 147.8, 144.8, 143.4, 134.7, 133.7, 129.3, 124.4, 124.0, 123.6, 113.2, 109.9, 109.8, 104.1, 60.4, 41.0, 14.4. FT-IR (neat): (cm⁻¹) 3107, 2969, 2792, 1696, 1638, 1610, 1483, 1359, 1234, 1139, 812, 728. HRMS (ESI-TOF): [M + H]⁺ calculated for C₂₀H₂₂N₃O₃⁺: 352.1656, found: 352.1652.

Ethyl (*E*)-3-((*Z*)-2-((3-morpholinophenyl)imino)benzo[*d*]oxazol-3(2*H*)-yl)acrylate (3fa):

White solid, (**3fa** was purified by PE/EtOAc = 50/1, V/V), mp: 135 – 137 °C, 64.5 mg, 82% yield. ¹H NMR (600 MHz, CDCl₃) δ 8.14 (d, *J* = 14.4 Hz, 1H), 7.32 (d, *J* = 7.9

Hz, 1H), 7.27 – 7.25 (m, 1H), 7.21 (ddd, J = 8.0, 5.9, 3.0 Hz, 1H), 7.15 (q, J = 3.9, 2.8 Hz, 2H), 6.81 (d, J = 7.8 Hz, 1H), 6.77 (t, J = 2.0 Hz, 1H), 6.72 – 6.67 (m, 2H, Ar), 4.28 (q, J = 7.1 Hz, 2H), 3.89 - 3.85 (m, 4H), 3.21 - 3.17 (m, 4H), 1.35 (t, J = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 167.4, 152.1, 145.4, 144.9, 144.6, 134.5, 129.5, 129.3, 124.2, 123.8, 114.5, 111.6, 110.9, 110.1, 110.0, 105.0, 67.0, 60.5, 49.4, 14.4. FT-IR (neat): (cm⁻¹) 2994, 2954, 1689, 1642, 1580, 1357, 1228, 1170, 1040, 932, 734, 680. HRMS (ESI-TOF): [M + Na]⁺ calculated for C₂₂H₂₃N₃NaO₄⁺: 416.1581, found: 416.1577.

Ethyl (*E*)-3-((*Z*)-2-((4-(trifluoromethoxy)phenyl)imino)benzo[*d*]oxazol-3(2*H*)-yl) acrylate (3ga):

White solid, (**3ga** was purified by PE/EtOAc = 45/1, V/V), mp: 98 – 100 °C, 68.3 mg, 87% yield. ¹H NMR (600 MHz, CDCl₃) δ 8.12 (d, *J* = 14.4 Hz, 1H), 7.32 (d, *J* = 7.9 Hz, 1H), 7.30 – 7.27 (m, 2H), 7.23 (dt, *J* = 8.1, 4.1 Hz, 1H), 7.19 (d, *J* = 8.6 Hz, 2H), 7.17 (q, *J* = 4.8, 4.1 Hz, 2H), 6.69 (d, *J* = 14.4 Hz, 1H), 4.29 (q, *J* = 7.1 Hz, 2H), 1.35 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 167.3, 145.4, 145.3, 144.4, 143.0, 134.26, 129.1, 124.5, 124.4, 124.0, 121.6, 120.6 (q, J = 256.4 Hz), 110.1, 110.0, 105.4, 60.6, 14.4. ¹⁹F NMR (471 MHz, CDCl₃) δ -58.01. FT-IR (neat): (cm⁻¹) 3119, 3064, 2966, 1689, 1485, 1357, 1154, 846, 738, 674. HRMS (ESI-TOF): [M + Na]⁺ calculated for C₁₉H₁₅F₃N₂NaO₄⁺: 415.0876, found: 415.0869.

Ethyl (*E*)-3-((*Z*)-2-((4-bromophenyl)imino)benzo[*d*]oxazol-3(2*H*)-yl)acrylate (3ha):

White solid, (**3ha** was purified by PE/EtOAc = 50/1, V/V), mp: 136 – 138 °C, 65.8 mg, 85% yield. ¹H NMR (600 MHz, CDCl₃) δ 8.10 (d, *J* = 14.4 Hz, 1H), 7.44 (d, *J* = 8.6 Hz, 2H), 7.30 (d, *J* = 7.8 Hz, 1H), 7.21 (ddd, *J* = 8.0, 5.3, 3.5 Hz, 1H), 7.17 – 7.13 (m, 4H), 6.67 (d, *J* = 14.4 Hz, 1H), 4.28 (q, *J* = 7.1 Hz, 2H), 1.35 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 167.3, 145.2, 144.4, 143.4, 134.3, 131.9, 129.1, 125.2, 124.4, 124.0, 116.9, 110.1, 110.1, 105.3, 60.6, 14.4. FT-IR (neat): (cm⁻¹) 3117, 3061, 2988, 2899, 1700, 1627, 1575, 1482, 1400, 1278, 1176, 961, 816, 682. HRMS (ESI-TOF): [M + Na]⁺ calculated for C₁₈H₁₅BrN₂NaO₃⁺: 409.0158, found: 409.0150.

Ethyl (*E*)-3-((*Z*)-2-((2-bromophenyl)imino)benzo[*d*]oxazol-3(2*H*)-yl)acrylate (3ia):

White solid, (**3ia** was purified by PE/EtOAc = 50/1, V/V), mp: 130 – 132 °C, 70.5 mg, 91% yield. ¹H NMR (600 MHz, CDCl₃) δ 8.11 (d, *J* = 14.3 Hz, 1H), 7.62 (d, *J* = 7.9 Hz, 1H), 7.32 (d, *J* = 7.9 Hz, 1H), 7.30 (d, *J* = 4.2 Hz, 2H), 7.22 (td, *J* = 8.1, 7.2, 2.6 Hz, 1H), 7.17 – 7.13 (m, 2H), 7.00 – 6.96 (m, 1H), 6.91 (d, *J* = 14.3 Hz, 1H), 4.28 (q, *J* = 7.1 Hz, 2H), 1.34 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 167.4, 145.6, 144.4, 143.6, 133.9, 132.9, 129.4, 127.9, 125.0, 124.4, 124.0, 123.5, 118.3, 110.2, 109.8, 106.2, 60.6, 14.4. FT-IR (neat): (cm⁻¹) 3109, 2919, 2850, 1702, 1638, 1608, 1487, 1355, 1273, 1137, 958, 732. HRMS (ESI-TOF): [M + Na]⁺ calculated for C₁₈H₁₅BrN₂NaO₃⁺: 409.0158, found: 409.0154.

Ethyl (E)-3-((Z)-2-((4-iodophenyl)imino)benzo[d]oxazol-3(2H)-yl)acrylate (3ja):

White solid, (**3ja** was purified by PE/EtOAc = 50/1, V/V), mp: 130 – 132 °C, 69.5 mg, 80% yield. ¹H NMR (600 MHz, CDCl₃) δ 8.09 (d, *J* = 14.4 Hz, 1H), 7.62 (d, *J* = 8.5 Hz, 2H), 7.29 (d, *J* = 7.8 Hz, 1H), 7.22 – 7.19 (m, 1H), 7.14 (d, *J* = 4.1 Hz, 2H), 7.03 (d, *J* = 8.6 Hz, 2H), 6.66 (d, *J* = 14.4 Hz, 1H), 4.28 (q, *J* = 7.1 Hz, 2H), 1.34 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 167.3, 145.2, 144.4, 144.1, 137.9, 134.3, 129.1, 125.6, 124.4, 124.0, 110.1, 110.1, 105.4, 87.7, 60.6, 14.4. FT-IR (neat): (cm⁻¹) 3118, 3059, 2991, 1700, 1619, 1528, 1437, 1323, 852, 760, 674. HRMS (ESI-TOF): [M + Na]⁺ calculated for C₁₈H₁₅IN₂NaO₃⁺: 457.0020, found: 457.0013.

Ethyl (*E*)-3-((*Z*)-2-((4-chlorophenyl)imino)benzo[*d*]oxazol-3(2*H*)-yl)acrylate (3ka):

White solid, (**3ka** was purified by PE/EtOAc = 50/1, V/V), mp: 137 – 138 °C, 63.1 mg, 92% yield. ¹H NMR (600 MHz, CDCl₃) δ 8.09 (d, *J* = 14.4 Hz, 1H), 7.28 (d, *J* = 8.6 Hz, 3H), 7.23 – 7.18 (m, 3H), 7.14 (d, *J* = 3.3 Hz, 2H), 6.66 (d, *J* = 14.4 Hz, 1H), 4.28 (q, *J* = 7.1 Hz, 2H), 1.34 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 167.3, 145.1, 144.5, 142.8, 134.3, 129.1, 129.1, 128.9, 124.7, 124.4, 123.9, 110.0, 110.0, 105.3, 60.6, 14.4. FT-IR (neat): (cm⁻¹) 3115, 3059, 2925, 1694, 1612, 1489,

1360, 1249, 1135, 1085, 824, 738, 684. HRMS (ESI-TOF): $[M + Na]^+$ calculated for $C_{18}H_{15}ClN_2NaO_3^+$: 365.0663, found: 365.0665

Ethyl 4-(((Z)-3-((E)-3-ethoxy-3-oxoprop-1-en-1-yl)benzo[d]oxazol-2(3H)-ylidene) amin)benzoate (3la):

White solid, (**3la** was purified by PE/EtOAc = 50/1, V/V), mp: 134 – 135 °C, 63.1 mg, 83% yield. ¹H NMR (600 MHz, CDCl₃) δ 8.12 (d, *J* = 14.4 Hz, 1H), 8.04 (d, *J* = 8.5 Hz, 2H), 7.32 (d, *J* = 7.9 Hz, 1H), 7.30 (d, *J* = 8.5 Hz, 2H), 7.22 (dt, *J* = 8.1, 4.4 Hz, 1H), 7.16 (d, *J* = 4.2 Hz, 2H), 6.69 (d, *J* = 14.4 Hz, 1H), 4.37 (q, *J* = 7.1 Hz, 2H), 4.29 (q, *J* = 7.1 Hz, 2H), 1.40 (t, *J* = 7.1 Hz, 3H), 1.35 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 167.2, 166.4, 148.8, 145.6, 144.4, 134.2, 130.6, 129.0, 125.9, 124.5, 124.1, 123.2, 110.2, 110.1, 105.7, 60.7, 60.6, 14.4 (-CH₂CH₃), 14.4. FT-IR (neat): (cm⁻¹) 3394, 3113, 2981, 1687, 1644, 1588, 1483, 1357, 1254, 1107, 950, 846, 732. HRMS (ESI-TOF): [M + Na]⁺ calculated for C₂₁H₂₀N₂NaO₅⁺ : 403.1264, found: 403.1261.

Ethyl (*E*)-3-((*Z*)-2-((3,4-dichlorophenyl)imino)benzo[*d*]oxazol-3(2*H*)-yl)acrylate (3ma):

White solid, (3ma was purified by PE/EtOAc = 45/1, V/V), mp: 125 - 127 °C, 57.3

mg, 76% yield. ¹H NMR (600 MHz, CDCl₃) δ 8.08 (d, J = 14.4 Hz, 1H), 7.40 (d, J = 2.4 Hz, 1H), 7.37 (d, J = 8.6 Hz, 1H), 7.32 (d, J = 7.8 Hz, 1H), 7.23 (td, J = 7.6, 1.7 Hz, 1H), 7.21 – 7.16 (m, 2H), 7.13 (dd, J = 8.6, 2.4 Hz, 1H), 6.67 (d, J = 14.4 Hz, 1H), 4.29 (q, J = 7.1 Hz, 2H), 1.35 (t, J = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 167.2, 145.7, 144.4, 143.9, 134.1, 132.4, 130.4, 129.0, 127.3, 125.3, 124.6, 124.1, 123.2, 110.2, 110.1, 105.8, 60.7, 14.4. FT-IR (neat): (cm⁻¹) 3105, 3055, 2979, 1707, 1644, 1610, 1487, 1360, 1260, 1195, 1146, 1021, 961, 803, 732. HRMS (ESI-TOF): [M + Na]⁺ calculated for C₁₈H₁₄Cl₂N₂NaO₃⁺: 399.0274, found: 399.0270.

Ethyl (*E*)-3-((*Z*)-2-((4-(trifluoromethyl)phenyl)imino)benzo[*d*]oxazol-3(2*H*)-yl)acrylate (3na):

White solid, (**3na** was purified by PE/EtOAc = 45/1, V/V), mp: 125 – 127 °C, 64.7 mg, 86% yield. ¹H NMR (600 MHz, CDCl₃) δ 8.13 (d, *J* = 14.4 Hz, 1H), 7.60 (d, *J* = 8.4 Hz, 2H), 7.34 (d, *J* = 8.0 Hz, 3H), 7.24 (dd, *J* = 8.0, 4.3 Hz, 1H), 7.18 (d, *J* = 4.2 Hz, 2H), 6.70 (d, *J* = 14.4 Hz, 1H), 4.29 (q, *J* = 7.1 Hz, 2H), 1.35 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 167.2, 147.7, 145.8, 144.4, 134.2, 126.1 (q, *J* = 3.6 Hz), 125.8 (q, *J* = 32.6 Hz), 124.5, 124.4 (q, *J* = 271.5 Hz), 124.1, 123.5, 121.7, 110.2, 110.1, 105.8, 60.7, 14.4. ¹⁹F NMR (471 MHz, CDCl₃) δ -61.88. FT-IR (neat): (cm⁻¹) 3055, 2990, 2921, 1717, 1629, 1592, 1482, 1388, 1314, 1236, 1099, 963, 827, 741. HRMS (ESI-TOF): [M + Na]⁺ calculated for C₁₉H₁₅F₃N₂NaO₃⁺ : 399.0927, found: 399.0920.

Ethyl (E)-3-((Z)-2-(naphthalen-1-ylimino)benzo[d]oxazol-3(2H)-yl)acrylate (3oa):

White solid, (**3na** was purified by PE/EtOAc = 40/1, V/V), mp: 132 – 134 °C, 62.4 mg, 87% yield. ¹H NMR (600 MHz, CDCl₃) δ 8.28 (d, *J* = 14.3 Hz, 1H), 8.27 – 8.22 (m, 1H), 7.87 – 7.82 (m, 1H), 7.64 (d, *J* = 8.2 Hz, 1H), 7.51 – 7.45 (m, 3H), 7.36 (dd, *J* = 18.1, 7.6 Hz, 2H), 7.21 (t, *J* = 7.7 Hz, 1H), 7.13 (t, *J* = 7.7 Hz, 1H), 7.10 (d, *J* = 7.7 Hz, 1H), 6.84 (d, *J* = 14.3 Hz, 1H), 4.31 (q, *J* = 7.1 Hz, 2H), 1.36 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 167.5, 145.3, 144.6, 141.0, 134.5, 134.3, 129.4, 128.8, 127.9, 126.1, 125.8, 125.6, 124.3, 124.0, 124.0, 117.3, 110.2, 110.0, 105.3, 60.6, 14.4. FT-IR (neat): (cm⁻¹) 3105, 3059, 2921, 1690, 1607, 1485, 1392, 1351, 1241, 1140, 861, 768, 734. HRMS (ESI-TOF): [M + Na]⁺ calculated for C₂₂H₁₈N₂NaO₃⁺: 381.1210, found: 381.1200.

Ethyl (*E*)-3-((*Z*)-2-((2-((*E*)-3-methoxy-3-oxoprop-1-en-1-yl)phenyl)imino)benzo [*d*]oxazol-3(2*H*)-yl)acrylate (3pa):

White solid, (**3pa** was purified by PE/EtOAc = 50/1, V/V), mp: 170 – 172 °C, 66.7 mg, 85% yield. ¹H NMR (600 MHz, CDCl₃) δ 8.16 (d, *J* = 14.4 Hz, 1H), 8.10 (d, *J* = 16.1 Hz, 1H), 7.64 (d, *J* = 7.8 Hz, 1H), 7.38 (t, *J* = 7.6 Hz, 1H), 7.35 (d, *J* = 7.9 Hz, 1H), 7.23 (t, *J* = 7.6 Hz, 2H), 7.14 (m, 3H), 6.74 (d, *J* = 14.4 Hz, 1H), 6.45 (d, *J* = 16.1 Hz, 1H), 4.30 (q, *J* = 7.1 Hz, 2H), 3.77 (s, 3H), 1.36 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 167.6, 167.3, 145.5, 144.4, 141.7, 134.2, 130.8, 129.4, 127.9, 127.1, 124.4, 124.2, 124.0, 123.0, 118.0, 110.2, 110.1, 105.8, 60.6, 51.6, 14.4.

FT-IR (neat): (cm⁻¹) 3109, 3061, 2994, 2904, 1707, 1629, 1590, 1478, 1401, 1316, 1167, 1017, 872, 827, 730. HRMS (ESI-TOF): $[M + Na]^+$ calculated for $C_{22}H_{20}N_2NaO_5^+$: 415.1264, found: 415.1256.

Ethyl (*E*)-3-((*Z*)-2-((6-methoxypyridin-3-yl)imino)benzo[*d*]oxazol-3(2*H*)-yl)acrylate (3qa):

White solid, (**3qa** was purified by PE/EtOAc = 45/1, V/V), mp: 115 – 117 °C, 59.0 mg, 87% yield. ¹H NMR (600 MHz, CDCl₃) δ 8.21 (d, *J* = 2.6 Hz, 1H), 8.11 (d, *J* = 14.4 Hz, 1H), 7.61 (dd, *J* = 8.7, 2.7 Hz, 1H), 7.30 (d, *J* = 7.8 Hz, 1H), 7.21 (ddd, *J* = 8.0, 5.1, 3.7 Hz, 1H), 7.15 (d, *J* = 3.6 Hz, 2H), 6.74 (d, *J* = 8.7 Hz, 1H), 6.66 (d, *J* = 14.4 Hz, 1H), 4.28 (q, *J* = 7.1 Hz, 2H), 3.94 (s, 3H), 1.35 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 167.3, 160.8, 145.1, 144.4, 141.4, 134.5, 134.3, 134.3, 129.1, 124.4, 123.9, 110.4, 110.0, 110.0, 105.0, 60.5, 53.5, 14.4. FT-IR (neat): (cm⁻¹) 3085, 3038, 2982, 2899, 1707, 1625, 1590, 1483, 1374, 1278, 1172, 1129, 958, 814, 741. HRMS (ESI-TOF): [M + Na]⁺ calculated for C₁₈H₁₇N₃NaO₄⁺: 362.1111, found: 362.1108.

Ethyl (*E*)-3-((*Z*)-2-(cyclohexylimino)benzo[*d*]oxazol-3(2*H*)-yl)acrylate (3ra):

White solid, (**3ra** was purified by PE/EtOAc = 50/1, V/V), mp: 72 – 73 °C, 53.4 mg, 85% yield. ¹H NMR (600 MHz, CDCl₃) δ 7.99 (d, *J* = 14.2 Hz, 1H), 7.19 (d, *J* = 7.7

Hz, 1H), 7.12 (td, J = 7.8, 7.3, 2.1 Hz, 1H), 7.09 – 7.05 (m, 2H), 6.61 (d, J = 14.2 Hz, 1H), 4.26 (q, J = 7.1 Hz, 2H), 3.69 (td, J = 9.7, 4.9 Hz, 1H), 1.83 – 1.77 (m, 4H), 1.64 – 1.60 (m, 1H), 1.41 (dq, J = 21.5, 12.4, 11.0 Hz, 4H), 1.33 (t, J = 7.1 Hz, 3H), 1.30 – 1.23 (m, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 168.0, 144.9, 144.1, 134.8, 129.9, 123.5, 123.16, 109.4, 109.3, 103.2, 60.3, 55.4, 34.4, 25.9, 24.8, 14.4. FT-IR (neat): (cm⁻¹) 3036, 2979, 2917, 2848, 1705, 1633, 1607, 1489, 1353, 1271, 1206, 1133, 952, 838, 725, 674. HRMS (ESI-TOF): [M + Na]⁺ calculated for C₁₈H₂₂N₂NaO₃⁺: 337.1523, found: 337.1517.

Ethyl (*E*)-3-((*Z*)-2-((2-(5-methyl-1*H*-indol-3-yl)ethyl)imino)benzo[*d*]oxazol-3(2*H*) -yl) acrylate (3sa):

White solid, (**3sa** was purified by PE/EtOAc = 50/1, V/V), mp: 95 – 97 °C, 58.4 mg, 75% yield. ¹H NMR (600 MHz, CDCl₃) δ 7.99 (d, *J* = 14.2 Hz, 1H), 7.90 (s, 1H), 7.47 (s, 1H), 7.21 (d, *J* = 8.2 Hz, 1H), 7.15 (d, *J* = 7.8 Hz, 1H), 7.10 (td, *J* = 7.5, 1.6 Hz, 1H), 7.06 – 7.02 (m, 3H), 7.01 – 6.98 (m, 1H), 6.67 (d, *J* = 14.2 Hz, 1H), 4.27 (q, *J* = 7.1 Hz, 2H), 3.81 – 3.77 (m, 2H), 3.08 (t, *J* = 7.5 Hz, 2H), 2.46 (s, 3H), 1.34 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 168.0, 145.7, 144.8, 134.7, 134.6, 129.9, 128.3, 127.9, 123.7, 123.4, 123.26, 122.0, 118.7, 114.1, 110.7, 109.4, 109.4, 103.6, 60.4, 47.8, 27.2, 21.6, 14.5. FT-IR (neat): (cm⁻¹) 3303, 2899, 2844, 1724, 1679, 1636, 1607, 1485, 1347, 1275, 1241, 1150, 954, 848, 786, 732, 617, 425. HRMS (ESI-TOF): [M + Na]⁺ calculated for C₂₃H₂₃N₃NaO₃⁺: 412.1632, found: 412.1640.

Ethyl (*E*)-3-((*Z*)-2-(benzylimino)benzo[*d*]oxazol-3(2*H*)-yl)acrylate (3ta):

White solid, (**3ta** was purified by PE/EtOAc = 50/1, V/V), mp: 72 – 74 °C, 25.5 mg, 40% yield. ¹H NMR (600 MHz, CDCl₃) δ 8.07 (d, J = 14.3 Hz, 1H), 7.49 (d, J = 7.4 Hz, 2H), 7.40 (t, J = 7.6 Hz, 2H), 7.30 (t, J = 7.5 Hz, 1H), 7.23 (d, J = 7.8 Hz, 1H), 7.18 – 7.10 (m, 3H), 6.71 (d, J = 14.3 Hz, 1H), 4.77 (s, 2H), 4.31 (q, J = 7.1 Hz, 2H), 1.38 (t, J = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 167.72, 146.40, 144.73, 140.32, 134.51, 129.86, 128.38, 127.44, 126.67, 123.87, 123.38, 109.61, 109.56, 103.95, 60.37, 50.54, 14.44. FT-IR (neat): (cm⁻¹) 3115, 3025, 2979, 2859, 1702, 1610, 1487, 1346, 1245, 1137, 1057, 893, 598, 426. HRMS (ESI-TOF): [M + Na]⁺ calculated for C₁₉H₁₈N₂NaO₃⁺: 345.1210, found: 345.1215.

Ethyl 2-(((*Z*)-3-((*E*)-3-ethoxy-3-oxoprop-1-en-1-yl)benzo[*d*]oxazol-2(3*H*)-ylidene) amino)-3,3-di-*p*-tolylacrylate (3ua):

Yellow solid, (**3ua** was purified by PE/EtOAc = 45/1, V/V), mp: 160 – 161 °C, 84.8 mg, 83% yield. ¹H NMR (600 MHz, CDCl₃) δ 7.93 (d, *J* = 14.4 Hz, 1H), 7.26 (d, *J* = 7.9 Hz, 1H), 7.19 (t, *J* = 6.6 Hz, 3H), 7.17 – 7.12 (m, 4H), 7.09 (t, *J* = 6.3 Hz, 2H), 7.05 (d, *J* = 8.1 Hz, 2H), 6.52 (d, *J* = 14.4 Hz, 1H), 4.19 (q, *J* = 7.1 Hz, 2H), 4.05 (q, *J* = 7.1 Hz, 2H), 2.36 (s, 3H), 2.30 (s, 3H), 1.27 (t, *J* = 7.1 Hz, 3H), 1.00 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 167.9, 167.2, 146.4, 144.7, 138.24, 137.4, 137.2, 137.1, 137.0, 133.9, 130.6, 130.4, 129.7, 129.5, 128.8, 128.7, 128.2, 124.3, 123.9,

110.1, 110.0, 105.7, 60.8, 60.4, 21.3, 14.3, 13.7. FT-IR (neat): (cm⁻¹) 3027, 2966, 2913, 2858, 1687, 1636, 1605, 1482, 1362, 1278, 1133, 1023, 885, 818, 730. HRMS (ESI-TOF): $[M + Na]^+$ calculated for $C_{31}H_{30}N_2NaO_5^+$: 533.2047, found: 533.2040.

Ethyl (*E*)-3-((*Z*)-6-methyl-2-(*p*-tolylimino)benzo[*d*]oxazol-3(2*H*)-yl)acrylate (3ab):

White solid, (**3ab** was purified by PE/EtOAc = 50/1, V/V), mp: 110 – 112 °C, 63.9 mg, 95% yield. ¹H NMR (600 MHz, CDCl₃) δ 8.11 (d, *J* = 14.4 Hz, 1H), 7.19 – 7.14 (m, 3H), 7.14 – 7.10 (m, 2H), 6.95 (d, *J* = 8.1 Hz, 1H), 6.92 (s, 1H), 6.55 (d, *J* = 14.4 Hz, 1H), 4.27 (q, *J* = 7.1 Hz, 2H), 2.34 (s, 6H), 1.34 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 167.5, 144.8, 141.7, 134.8, 134.1, 133.4, 129.5, 126.8, 124.4, 123.2, 110.6, 109.7, 104.0, 60.4, 21.4, 21.0, 14.4. FT-IR (neat): (cm⁻¹) 3053, 2986, 2917, 2848, 1692, 1629, 1498, 1349, 1249, 1150, 960, 825, 777. HRMS (ESI-TOF): [M + Na]⁺ calculated for C₂₀H₂₀N₂NaO₃⁺: 359.1366, found: 359.1362.

Ethyl (E)-3-((Z)-5-methyl-2-(p-tolylimino)benzo[d]oxazol-3(2H)-yl)acrylate (3ac):

White solid, (**3ac** was purified by PE/EtOAc = 50/1, V/V), mp: 133 – 135 °C, 62.6 mg, 93% yield. ¹H NMR (600 MHz, CDCl₃) δ 8.13 (d, *J* = 14.4 Hz, 1H), 7.19 – 7.14 (m, 4H), 7.12 (s, 1H), 7.01 (d, *J* = 8.1 Hz, 1H), 6.92 (d, *J* = 8.1 Hz, 1H), 6.66 (d, *J* = 14.4

Hz, 1H), 4.29 (q, J = 7.1 Hz, 2H), 2.41 (s, 3H), 2.35 (s, 3H), 1.35 (t, J = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 167.6, 145.1, 142.7, 141.8, 134.7, 134.2, 133.5, 129.5, 129.2, 124.0, 123.1, 110.6, 109.5, 104.5, 60.5, 21.6, 21.0, 14.4. FT-IR (neat): (cm⁻¹) 3115, 3025, 2979, 1689, 1601, 1489, 1364, 1228, 1150, 1004, 958, 820, 667. HRMS (ESI-TOF): [M + Na]⁺ calculated for C₂₀H₂₀N₂NaO₃⁺: 359.1366, found: 359.1360.

Ethyl (*E*)-3-((*Z*)-4-methyl-2-(*p*-tolylimino)benzo[*d*]oxazol-3(2*H*)-yl)acrylate (3ad):

Yellow solid, (**3ad** was purified by PE/EtOAc = 50/1, V/V), mp: 93 – 95 °C, 54.5 mg, 81% yield. ¹H NMR (600 MHz, CDCl₃) δ 8.30 (d, *J* = 13.8 Hz, 1H), 7.34 (d, *J* = 13.8 Hz, 1H), 7.15 (s, 4H), 7.00 – 6.95 (m, 2H, Ar), 6.92 (d, *J* = 7.4 Hz, 1H), 4.26 (q, *J* = 7.1 Hz, 2H), 2.66 (s, 3H), 2.35 (s, 3H), 1.33 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 167.6, 145.0, 144.4, 142.1, 135.5, 133.4, 129.5, 127.8, 127.6, 123.5, 123.0, 121.0, 118.3, 108.0, 106.6, 60.3, 21.0, 19.2, 14.4. FT-IR (neat): (cm⁻¹) 3126, 2984, 2915, 1700, 1599, 1502, 1437, 1355, 1303, 1243, 1200, 1150, 1025, 805, 721. HRMS (ESI-TOF): [M + Na]⁺ calculated for C₂₀H₂₀N₂NaO₃⁺: 359.1366, found: 359.1362.

Ethyl (*E*)-3-((*Z*)-5-methoxy-2-(*p*-tolylimino)benzo[*d*]oxazol-3(2*H*)-yl)acrylate (3ae):

White solid, (**3ae** was purified by PE/EtOAc = 50/1, V/V), mp: 148 - 150 °C, 63.4 mg,

90% yield. ¹H NMR (600 MHz, CDCl₃) δ 8.07 (d, *J* = 14.3 Hz), 7.17 (dd, *J* = 8.0, 5.7 Hz, 4H), 7.02 (d, *J* = 8.7 Hz, 1H), 6.86 (d, *J* = 2.4 Hz, 1H), 6.71 (d, *J* = 14.3 Hz, 1H), 6.62 (dd, *J* = 8.7, 2.4 Hz, 1H), 4.28 (q, *J* = 7.1 Hz, 2H), 3.83 (s, 3H), 2.35 (s, 3H), 1.35 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 167.6, 156.9, 145.3, 141.7, 138.7, 134.4, 133.5, 130.0, 129.5, 123.1, 110.0, 107.9, 105.0, 97.4, 60.5, 56.2, 21.0, 14.4. FT-IR (neat): (cm⁻¹) 3104, 2982, 2919, 1703, 1597, 1489, 1338, 1252, 1139, 1032, 963, 783, 686. HRMS (ESI-TOF): [M + Na]⁺ calculated for C₂₀H₂₀N₂NaO₄⁺: 375.1315, found: 375.1318.

Ethyl (E)-3-((Z)-6-fluoro-2-(p-tolylimino)benzo[d]oxazol-3(2H)-yl)acrylate (3af):

White solid, (**3af** was purified by PE/EtOAc = 50/1, V/V), mp: 106 – 108 °C, 57.9 mg, 85% yield. ¹H NMR (600 MHz, CDCl₃) δ 8.09 (d, *J* = 14.4 Hz, 1H), 7.22 – 7.19 (m, 1H), 7.15 (s, 4H), 6.92 (dd, *J* = 4.6, 2.3 Hz, 1H), 6.91 – 6.89 (m, 1H), 6.62 (d, *J* = 14.4 Hz, 1H), 4.28 (q, *J* = 7.1 Hz, 2H), 2.35 (s, 3H), 1.34 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 167.3, 159.3 (d, *J* = 244.3 Hz), 145.0 (d, *J* = 13.3 Hz), 144.4, 141.2, 134.4, 133.8, 129.5, 125.7 (d, *J* = 2.4 Hz), 123.1, 110.5 (d, *J* = 23.9 Hz), 110.1 (d, *J* = 9.4 Hz), 104.6, 99.4 (d, *J* = 28.8 Hz), 60.6, 21.0, 14.4. ¹⁹F NMR (471 MHz, CDCl₃) δ -116.22. FT-IR (neat): (cm⁻¹) 3117, 3063, 2981, 1705, 1607, 1489, 1360, 1241, 1083, 1040, 947, 796. HRMS (ESI-TOF): [M + Na]⁺ calculated for C₁₉H₁₇FN₂NaO₃⁺: 363.1115, found: 363.1116.

Ethyl (*E*)-3-((*Z*)-6-chloro-2-(*p*-tolylimino)benzo[*d*]oxazol-3(2*H*)-yl)acrylate (3ag):

White solid, (**3ag** was purified by PE/EtOAc = 50/1, V/V), mp: 102 – 104 °C, 64.2 mg, 90% yield. ¹H NMR (600 MHz, CDCl₃) δ 8.07 (d, *J* = 14.4 Hz, 1H), 7.19 (d, *J* = 8.4 Hz, 1H), 7.18 – 7.13 (m, 6H), 6.64 (d, *J* = 14.4 Hz, 1H), 4.28 (q, *J* = 7.1 Hz, 2H), 2.35 (s, 3H), 1.34 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 167.2, 145.0, 144.0, 141.1, 134.2, 133.9, 129.5, 129.2, 128.1, 124.1, 123.1, 110.9, 110.3, 105.2, 60.6, 21.0, 14.4. FT-IR (neat): (cm⁻¹) 3107, 2971, 2910, 1703, 1599, 1482, 1357, 1297, 1258, 1187, 1140, 945, 919, 805. HRMS (ESI-TOF): [M + Na]⁺ calculated for C₁₉H₁₇ClN₂NaO₃⁺: 379.0820, found: 379.0814.

Ethyl (E)-3-((Z)-6-bromo-2-(p-tolylimino)benzo[d]oxazol-3(2H)-yl)acrylate (3ah):

White solid, (**3ah** was purified by PE/EtOAc = 50/1, V/V), mp: 120 – 121 °C, 70.6 mg, 88% yield. ¹H NMR (600 MHz, CDCl₃) δ 8.07 (d, *J* = 14.4 Hz, 1H), 7.33 (dd, *J* = 8.4, 1.6 Hz, 1H), 7.29 (d, *J* = 1.6 Hz, 1H), 7.15 (d, *J* = 7.1 Hz, 5H), 6.65 (d, *J* = 14.4 Hz, 1H), 4.28 (q, *J* = 7.1 Hz, 2H), 2.35 (s, 3H), 1.34 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 167.3, 145.2, 143.8, 141.1, 134.1, 133.9, 129.5, 128.6, 127.0, 123.1, 116.0, 113.6, 110.8, 105.4, 60.6, 21.0, 14.4. FT-IR (neat): (cm⁻¹) 3102, 2973, 2913, 1702, 1593, 1478, 1353, 1290, 1262, 1193, 1150, 954, 907, 796. HRMS (ESI-TOF): [M + Na]⁺ calculated for C₁₉H₁₇BrN₂NaO₃⁺: 423.0315, found: 423.0316.

Ethyl (E)-3-((Z)-5-chloro-2-(p-tolylimino)benzo[d]oxazol-3(2H)-yl)acrylate (3ai):

White solid, (**3ai** was purified by PE/EtOAc = 50/1, V/V), mp: 145 – 146 °C, 62.1 mg, 87% yield. ¹H NMR (600 MHz, CDCl₃) δ 8.04 (d, *J* = 14.4 Hz, 1H), 7.27 (d, *J* = 1.9 Hz, 1H), 7.15 (s, 4H), 7.09 (dd, *J* = 8.5, 1.9 Hz, 1H), 7.03 (d, *J* = 8.5 Hz, 1H), 6.64 (d, *J* = 14.4 Hz, 1H), 4.28 (q, *J* = 7.1 Hz, 2H), 2.34 (s, 3H), 1.35 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 167.1, 144.2, 143.2, 141.2, 134.0, 133.8, 130.3, 129.7, 129.5, 123.5, 123.1, 110.6, 110.4, 105.6, 60.6, 21.0, 14.4. FT-IR (neat): (cm⁻¹) 3107, 3074, 2954, 1702, 1597, 1478, 1366, 1297, 1245, 1036, 952, 805. HRMS (ESI-TOF): [M + Na]⁺ calculated for C₁₉H₁₇ClN₂NaO₃⁺: 379.0820, found: 379.0815.

Ethyl (E)-3-((Z)-5-bromo-2-(p-tolylimino)benzo[d]oxazol-3(2H)-yl)acrylate (3aj):

Yellow solid, (**3aj** was purified by PE/EtOAc = 50/1, V/V), mp: 122 – 124 °C, 70.6 mg, 88% yield. ¹H NMR (600 MHz, CDCl₃) δ 8.06 (d, *J* = 14.4 Hz, 1H), 7.43 (d, *J* = 1.8 Hz, 1H), 7.26 (t, *J* = 3.3 Hz, 1H), 7.16 (s, 4H), 7.01 (d, *J* = 8.4 Hz, 1H), 6.65 (d, *J* = 14.4 Hz, 1H), 4.29 (q, *J* = 7.1 Hz, 2H), 2.35 (s, 3H), 1.35 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 167.1, 144.1, 143.7, 141.2, 134.0, 133.9, 130.6, 129.5, 126.5, 123.1, 116.7, 113.1, 111.1, 105.7, 60.7, 21.0, 14.4. FT-IR (neat): (cm⁻¹) 3105, 2951, 2921, 1703, 1605, 1480, 1252, 1135, 950, 790. HRMS (ESI-TOF): [M + Na]⁺ calculated for C₁₉H₁₇BrN₂NaO₃⁺: 423.0315, found: 423.0308.

Methyl (*Z*)-3-((*E*)-3-ethoxy-3-oxoprop-1-en-1-yl)-2-(*p*-tolylimino)-2,3-dihydroben -zo [*d*]oxazole-6-carboxylate (3ak):

White solid, (**3ak** was purified by PE/EtOAc = 50/1, V/V), mp: 134 – 135 °C, 57.1 mg, 75% yield. ¹H NMR (600 MHz, CDCl₃) δ 8.09 (d, *J* = 14.3 Hz, 1H), 7.96 (dd, *J* = 8.3, 1.3 Hz, 1H), 7.79 (d, *J* = 1.2 Hz, 1H), 7.31 (d, *J* = 8.3 Hz, 1H), 7.21 – 7.15 (m, 4H), 6.79 (d, *J* = 14.3 Hz, 1H), 4.29 (q, *J* = 7.1 Hz, 2H), 3.92 (s, 3H), 2.36 (s, 3H), 1.35 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 167.2, 165.8, 144.4, 144.1, 141.0, 134.0, 133.9, 133.1, 129.6, 126.7, 125.9, 123.1, 110.9, 109.0, 106.4, 60.7, 52.4, 21.0, 14.4. FT-IR (neat): (cm⁻¹) 3109, 2975, 2949, 1698, 1605, 1506, 1446, 1360, 1265, 1146, 816, 755. HRMS (ESI-TOF): [M + Na]⁺ calculated for C₂₁H₂₀N₂NaO₅⁺: 403.1264, found: 403.1260.

Ethyl (E)-3-((Z)-2-(p-tolylimino)naphtho[2,3-d]oxazol-3(2H)-yl)acrylate (3al):

White solid, (**3al** was purified by PE/EtOAc = 45/1, V/V), mp: 184 – 185 °C, 41.7 mg, 56% yield. ¹H NMR (600 MHz, CDCl₃) δ 8.27 (d, J = 14.4 Hz, 1H), 7.84 (d, J = 7.8 Hz, 1H), 7.78 (d, J = 7.8 Hz, 1H), 7.62 (s, 1H), 7.46 (q, J = 6.6, 6.1 Hz, 3H), 7.23 – 7.18 (m, 4H), 6.71 (d, J = 14.4 Hz, 1H), 4.32 (q, J = 7.1 Hz, 2H), 2.37 (s, 3H), 1.38 (t, J = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 167.4, 144.4, 144.1, 141.4, 134.7,

133.8, 130.8, 130.3, 129.6, 129.0, 127.7, 127.6, 125.8, 125.7, 123.2, 106.8, 106.0, 105.1, 60.6, 21.0, 14.4. FT-IR (neat): (cm⁻¹) 3059, 2953, 2917, 1696, 1599, 1459, 1236, 1036, 950, 799, 743. HRMS (ESI-TOF): $[M + Na]^+$ calculated for $C_{23}H_{20}N_2NaO_3^+$: 395.1366, found: 395.1364.

Methyl (*E*)-3-((*Z*)-2-(*p*-tolylimino)benzo[*d*]oxazol-3(2*H*)-yl)acrylate (3am):

White solid, (**3am** was purified by PE/EtOAc = 50/1, V/V), mp: 114 – 115 °C, 56.7 mg, 92% yield. ¹H NMR (600 MHz, CDCl₃) δ 8.15 (d, *J* = 14.4 Hz, 1H), 7.30 (d, *J* = 7.9 Hz, 1H), 7.22 – 7.17 (m, 3H), 7.17 – 7.12 (m, 4H), 6.70 (d, *J* = 14.4 Hz, 1H), 3.82 (s, 3H), 2.35 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 167.9, 144.7, 144.6, 141.6, 134.7, 133.6, 129.5, 129.3, 124.2, 123.8, 123.1, 110.0, 109.9, 104.3, 51.7, 21.0. FT-IR (neat): (cm⁻¹) 3113, 2919, 1690, 1593, 1483, 1355, 1137, 975, 824, 730. HRMS (ESI-TOF): [M + Na]⁺ calculated for C₁₈H₁₆N₂NaO₃⁺: 331.1053, found: 331.1046.

Tert-butyl (*E*)-3-((*Z*)-2-(*p*-tolylimino)benzo[*d*]oxazol-3(2*H*)-yl)acrylate (3an):

White solid, (**3an** was purified by PE/EtOAc = 50/1, V/V), mp: 163 – 165 °C, 63.1 mg, 90% yield. ¹H NMR (600 MHz, CDCl₃) δ 8.05 (d, *J* = 14.4 Hz, 1H), 7.27 (d, *J* = 7.8 Hz, 1H), 7.19 – 7.14 (m, 5H), 7.11 (dd, *J* = 6.8, 1.2 Hz, 2H), 6.59 (d, *J* = 14.4 Hz, 1H), 2.35 (s, 3H), 1.55 (s, 9H). ¹³C NMR (151 MHz, CDCl₃) δ 166.8, 144.7, 144.6,

141.8, 133.8, 133.4, 129.5, 129.4, 124.1, 123.6, 123.1, 109.9, 109.9, 106.7, 80.6, 28.3, 21.0. FT-IR (neat): (cm⁻¹) 3091, 2973, 1687, 1607, 1478, 1353, 1250, 1135, 956, 740, 486. HRMS (ESI-TOF): $[M + Na]^+$ calculated for $C_{21}H_{22}N_2NaO_3^+$: 373.1523, found: 373.1514.

Ethyl (E)-3-((Z)-2-(p-tolylimino)benzo[d]thiazol-3(2H)-yl)acrylate (3ao):

White solid, (**3ao** was purified by PE/EtOAc = 50/1, V/V), mp: 123 – 125 °C, 30.5 mg, 45% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.20 (d, *J* = 14.1 Hz, 1H), 7.35 – 7.29 (m, 2H), 7.28 (s, 1H), 7.23 – 7.18 (m, 3H), 7.14 (t, *J* = 7.5 Hz, 1H), 6.94 (d, *J* = 8.1 Hz, 2H), 4.28 (q, *J* = 7.1 Hz, 2H), 2.36 (s, 3H), 1.34 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 168.3, 154.0, 147.8, 137.5, 135.5, 134.1, 130.2, 126.5, 124.0, 122.9, 122.6, 120.5, 111.1, 107.7, 60.5, 21.0, 14.4. FT-IR (neat): (cm⁻¹) 3124, 3029, 2979, 1703, 1648, 1500, 1472, 1349, 1264, 1144, 818, 741, 570. HRMS (ESI-TOF): [M + Na]⁺ calculated for C₁₉H₁₈N₂NaO₂S⁺: 361.0981, found: 361.0976.

References:

1. (a) Zhang, Z.; Huang, B. L.; Qiao, G. Y.; Zhu, L.; Xiao, F.; Chen, F.; Fu, B.; Zhang, Z. H. Tandem Coupling of Azide with Isonitrile and Boronic Acid: Facile Access to Functionalized Amidines. *Angew. Chem., Int. Ed.* **2017**, *56*, 4320-4323. (b) Hu, Z.; Yuan, H.; Men, Y.; Liu, Q.; Zhang, J.; Xu, X. Cross-Cycloaddition of Two Different Isocyanides: Chemoselective Heterodimerization and [3+2]-Cyclization of 1,4-Diazabutatriene. *Angew. Chem., Int. Ed.* **2016**, *55*, 7077-7080. (c) Wang, R.; Zhang, Y.; Yu, S. Synthesis of isoquinolines via visible light-promoted insertion of vinyl isocyanides with diaryliodonium salts. *Chem. Commun.* **2014**, *50*,

6164-6167. (d) Liu, Y.; Chen, X. L.; Li, X. Y.; Zhu, S. S.; Li, S. J.; Song, Y.; Qu, L. B.; Yu, B. 4CzIPN-^tBu-Catalyzed Proton-Coupled Electron Transfer for Photosynthesis of Phosphorylated *N*-Heteroaromatics. *J. Am. Chem. Soc.* **2021**, *143*, 964-972.

2. (a) Gharpure, S. J.; Naveen, S.; Samala, G.; Vishwakarma, D. S. Transition-Metal Acetate-Promoted Intramolecular Nitrene Insertion to Vinylogous Carbonates for Divergent Synthesis of Azirinobenzoxazoles and Benzoxazines. Chem. Eur. J. 2019, 25, 1456-1460. (b) Alt, I. T.; Plietker, B. Iron-Catalyzed Intramolecular C(sp²)-H Amination. *Angew*. Chem., Int. Ed. 2016, 55, 1519-1522. (c) Necardo, C.; Alfano, A. I.; Del Grosso, E.; Pelliccia, S.; Galli, U.; Novellino, E.; Meneghetti, F.; Giustiniano, M.; Tron, G. C. Aryl Azides as Forgotten Electrophiles in the Van Leusen Reaction: А Multicomponent Transformation Affording 4-Tosyl-1-arylimidazoles. J. Org. Chem. 2019, 84, 16299-16307. (d) Su, S.; Hu, J.; Cui, Y.; Tang, C.; Chen, Y.; Li, J. A formal (5+1) annulation reaction from heterodimerization of two different isocyanides: stereoselective synthesis of 2H-benzo[b][1,4]oxazin-2-one. Chem. Commun. 2019, 55, 12243-12246.

IV. General Procedure for the Preparation of 4:

A sealed tube equipped with a magnetic stir bar was charged with $[Rh(COD)Cl]_2$ (2.5 mg, 0.005 mmol), DPPE (4.1 mg, 0.01 mmol) and NaHCO₃ (16.8 mg, 0.2 mmol) in toluene (2.0 mL), then **1a** (23.4 mg, 0.2 mmol), **2a** (46.6 mg, 0.2 mmol) and H₂O (0.036 mL, 2 mmol) were added. Subsequently, the reaction mixture was stirred at 30 °C for 72 h and then heated to 70 °C for 12 h. After the reaction was complete, the solvent was removed under reduced pressure. The crude residue was purified by silica gel column chromatography (EtOAc/PE = 1/40, V/V) to afford pure product **4a** (49.0 mg, 72%) as colorless liquid.

 Table 1. Optimization of Reaction Conditions^a

entry ca		ligand	base	H_2O	solvent	yield ^{b} (%)
	catalyst (mol %)	(mol %)	(eq.)	(eq.)		
1	$[Rh(COD)Cl]_{2}(2.5)$				toluene	10
2	$[Rh(COD)Cl]_{2}(2.5)$	DPPE (5)	$NaHCO_3$ (1 eq.)	10 eq.	toluene	72^c
3	$[Rh(COD)Cl]_{2}(1.5)$	DPPE (5)	$NaHCO_3(1 eq.)$	10 eq.	toluene	55
4	$Rh_2(OAc)_4$ (2.5)	DPPE (5)	$NaHCO_3$ (1 eq.)	10 eq.	toluene	36
5	$[Cp*RhCl_2]_2$ (2.5)	DPPE (5)	$NaHCO_3$ (1 eq.)	10 eq.	toluene	43
6	$[Rh(COD)Cl]_2$ (2.5)	DPPP (5)	$NaHCO_3(1 eq.)$	10 eq.	toluene	56
7	$[Rh(COD)Cl]_2(2.5)$	DPPF (5)	$NaHCO_3(1 eq.)$	10 eq.	toluene	48
8	$[Rh(COD)Cl]_2(2.5)$	DPPE (5)	KH_2PO_4 (1 eq.)	10 eq.	toluene	40
9	$[Rh(COD)Cl]_2(2.5)$	DPPE (5)	K_2 HPO ₄ (1 eq.)	10 eq.	toluene	52
10	$[Rh(COD)Cl]_2(2.5)$	DPPE (5)	$Na_2CO_3(1 \text{ eq.})$	10 eq.	toluene	52
11	$[Rh(COD)Cl]_{2}(2.5)$	DPPE (5)	TfOK (1 eq.)	10 eq.	toluene	trace
12	$[Rh(COD)Cl]_{2}(2.5)$	DPPE (5)	$NaHCO_3(1 eq.)$	20 eq.	toluene	59
13	$[Rh(COD)Cl]_{2}(2.5)$	DPPE (5)	$NaHCO_3(1 eq.)$	10 eq.	toluene	59
14	$[Rh(COD)Cl]_{2}(2.5)$	DPPE (5)	$NaHCO_3(1 eq.)$	10 eq.	PhCl	62
15	$[Rh(COD)Cl]_2$ (2.5)	DPPE (5)	$NaHCO_3(1 eq.)$	10 eq.	PhF	56
16	$[Rh(COD)Cl]_2$ (2.5)	DPPE (5)	$NaHCO_3(1 eq.)$	10 eq.	xylene	65

^{*a*} Reaction conditions: **1a** (0.2 mmol), **2a** (0.2 mmol), catalyst (0.003-0.005 mmol), ligand (0.01 mmol), addive (0.1-0.2 mmol), H₂O (2 mmol), solvent (2.0 mL), at 30 °C for 72 h and heated to 70 °C for 12 h in a sealed tube. [Rh(COD)Cl]₂ = Chloro(1,5-cyclooctadiene)-rhodium(I)dimer, [Cp*RhCl₂]₂ = Bis[(pentamethylcyclopentadienyl)dichloro-rhodium]. DPPE = 1,2-Bis(diphenylphosphino)ethane, DPPP = 1,3-Bis(diphenylphosphino)propane, DPPF =1,1'-Bis(diphenylphosphino)ferrocene.^{*b*} Estimated by ¹H NMR spectroscopy using CH₂Br₂ as an internal standard. ^{*c*} Isolated yield.

Ethyl 2-(3-(*p*-tolylcarbamoyl)-2,3-dihydrobenzo[*d*]oxazol-2-yl)acetate (4a):

Colorless liquid, (**4a** was purified by PE/EtOAc = 40/1, V/V), 49.0 mg, 72% yield. ¹H NMR (600 MHz, CDCl₃) δ 8.27 (s, 1H), 7.39 (d, *J* = 7.7 Hz, 1H), 7.37 (d, *J* = 8.3 Hz, 2H), 7.13 (d, *J* = 8.2 Hz, 2H), 6.98 (dt, *J* = 24.4, 7.6 Hz, 2H), 6.87 (d, *J* = 7.7 Hz, 1H), 6.62 (dd, *J* = 7.2, 4.1 Hz, 1H), 4.24 (q, *J* = 7.1 Hz, 2H), 3.08 (dd, *J* = 17.2, 7.2 Hz, 1H), 2.92 (dd, *J* = 17.2, 4.0 Hz, 1H), 2.31 (s, 3H), 1.28 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 171.4, 152.3, 150.2, 135.6, 133.2, 129.5, 129.3, 124.5, 121.6, 119.9, 116.7, 109.7, 90.8, 61.7, 40.6, 20.8, 14.1. FT-IR (neat): (cm⁻¹) 3297, 2915, 1735, 1646, 1592, 1528, 1476, 1377, 1323, 1226, 805, 741, 602. HRMS (ESI-TOF): [M + Na]⁺ calculated for C₁₉H₂₀N₂NaO₄⁺: 363.1315, found: 363.1311.

Ethyl 2-(3-((4-chlorophenyl)carbamoyl)-2,3-dihydrobenzo[*d*]oxazol-2-yl)acetate (4b):

Yellow liquid, (**4b** was purified by PE/EtOAc = 40/1, V/V), 52.0 mg, 72% yield. ¹H NMR (600 MHz, CDCl₃) δ 8.68 (s, 1H), 7.48 – 7.44 (m, 2H), 7.44 – 7.41 (m, 1H), 7.30 – 7.27 (m, 2H), 7.02 (td, *J* = 7.7, 1.2 Hz, 1H), 6.98 (td, *J* = 7.6, 1.0 Hz, 1H), 6.88 (d, *J* = 7.6 Hz, 1H), 6.59 (dd, *J* = 8.0, 3.3 Hz, 1H), 4.26 (q, *J* = 7.2 Hz, 2H), 3.09 (dd, *J* = 17.5, 8.0 Hz, 1H), 2.94 (dd, *J* = 17.5, 3.3 Hz, 1H), 1.30 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 171.9, 152.3, 150.1, 137.1, 129.0, 129.0, 128.5, 124.8, 121.7, 120.8, 117.5, 109.6, 90.5, 62.0, 40.5, 14.0. FT-IR (neat): (cm⁻¹) 3283, 2923, 1735, 1649, 1592, 1526, 1474, 1401, 1312, 1219, 1004, 797, 743, 611. HRMS (ESI-TOF): [M + Na]⁺ calculated for C₁₈H₁₇ClN₂NaO₄⁺: 383.0769, found: 383.0767.

Ethyl 2-(3-((4-(trifluoromethyl)phenyl)carbamoyl)-2,3-dihydrobenzo[d]oxazol-2 -yl)acetate (4c):

Yellow liquid, (**4c** was purified by PE/EtOAc = 40/1, V/V), 45.7 mg, 58% yield. ¹H NMR (600 MHz, CDCl₃) δ 9.02 (s, 1H), 7.64 (d, *J* = 8.6 Hz, 2H), 7.57 (d, *J* = 8.7 Hz, 2H), 7.45 (dd, *J* = 7.6, 1.1 Hz, 1H), 7.04 (td, *J* = 7.7, 1.3 Hz, 1H), 6.99 (td, *J* = 7.7, 1.1 Hz, 1H), 6.88 (dd, *J* = 7.8, 0.9 Hz, 1H), 6.60 (dd, *J* = 8.3, 3.0 Hz, 1H), 4.27 (q, *J* = 7.1 Hz, 2H), 3.10 (dd, *J* = 17.7, 8.3 Hz, 1H), 2.95 (dd, *J* = 17.7, 3.0 Hz, 1H), 1.30 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 172.2, 152.3, 150.0, 141.8, 128.8, 126.2 (q, *J* = 3.9 Hz), 125.2 (q, *J* = 32.6 Hz), 125.0, 124.2 (q, *J* = 271.5 Hz), 121.8, 119.1, 117.9, 109.7, 90.4, 62.1, 40.5, 14.0. ¹⁹F NMR (471 MHz, CDCl₃) δ -61.97. FT-IR (neat): (cm⁻¹) 3281, 2981, 1728, 1640, 1483, 1407, 1308, 1241, 1112, 1012, 833, 747, 645. HRMS (ESI-TOF): [M + Na]⁺ calculated for C₁₉H₁₇F₃N₂NaO₄⁺: 417.1038, found: 417.1033.

Ethyl 2-(3-((6-methoxypyridin-3-yl)carbamoyl)-2,3-dihydrobenzo[*d*]oxazol-2-yl)acetate (4d):

Yellow liquid, (**4d** was purified by PE/EtOAc = 45/1, V/V), 46.5 mg, 65% yield. ¹H NMR (600 MHz, CDCl₃) δ 8.50 (s, 1H), 8.18 (d, J = 2.7 Hz, 1H), 7.85 (dd, J = 8.9, 2.8 Hz, 1H), 7.42 (dd, J = 7.6, 1.1 Hz, 1H), 7.02 (td, J = 7.7, 1.3 Hz, 1H), 6.97 (td, J = 7.6, 1.0 Hz, 1H), 6.87 (dd, J = 7.8, 0.9 Hz, 1H), 6.73 (d, J = 8.9 Hz, 1H), 6.61 (dd, J = 7.8, 3.5 Hz, 1H), 4.25 (q, J = 7.2 Hz, 2H), 3.92 (s, 3H), 3.09 (dd, J = 17.4, 7.8 Hz, 1H), 2.94 (dd, J = 17.4, 3.5 Hz, 1H), 1.29 (t, J = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 171.8, 160.8, 152.7, 150.0, 138.5, 132.3, 129.1, 124.7, 121.7, 117.2, 110.6,

109.6, 90.5, 61.9, 53.5, 40.6, 14.0. FT-IR (neat): (cm⁻¹) 3258, 2915, 1737, 1635, 1478, 1374, 1249, 1180, 1017, 822, 745, 602. HRMS (ESI-TOF): $[M + Na]^+$ calculated for $C_{18}H_{19}N_3NaO_5^+$: 380.1217, found: 380.1208.

Ethyl 2-(3-([1,1'-biphenyl]-4-ylcarbamoyl)-2,3-dihydrobenzo[*d*]oxazol-2yl)acetate (4e):

Colorless liquid, (**4e** was purified by PE/EtOAc = 40/1, V/V), 43.5 mg, 54% yield. ¹H NMR (600 MHz, CDCl₃) δ 8.57 (s, 1H), 7.57 (dd, *J* = 5.7, 2.5 Hz, 6H), 7.44 – 7.40 (m, 3H), 7.31 (t, *J* = 7.4 Hz, 1H), 7.02 (td, *J* = 7.7, 1.3 Hz, 1H), 6.98 (td, *J* = 7.6, 1.1 Hz, 1H), 6.90 – 6.84 (m, 1H), 6.63 (dd, *J* = 7.6, 3.7 Hz, 1H), 4.26 (q, *J* = 7.2 Hz, 2H), 3.10 (dd, *J* = 17.3, 7.6 Hz, 1H), 2.94 (dd, *J* = 17.3, 3.7 Hz, 1H), 1.29 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 171.6, 152.3, 150.2, 140.7, 137.7, 136.5, 129.2, 128.8, 127.6, 127.0, 126.8, 124.7, 121.7, 120.0, 117.1, 109.7, 90.7, 61.8, 40.5, 14.1. FT-IR (neat): (cm⁻¹) 3262, 2919, 1735, 1636, 1482, 1241, 1174, 1012, 833, 756. HRMS (ESI-TOF): [M + Na]⁺ calculated for C₂₄H₂₂N₂NaO₄⁺: 425.1472, found: 425.1471.

Ethyl 2-(6-methyl-3-(*p*-tolylcarbamoyl)-2,3-dihydrobenzo[*d*]oxazol-2-yl)acetate (4f):

Colorless liquid, (**4f** was purified by PE/EtOAc = 40/1, V/V), 48.2 mg, 68% yield. ¹H NMR (600 MHz, CDCl₃) δ 8.17 (s, 1H), 7.36 (d, *J* = 8.4 Hz, 2H), 7.23 (d, *J* = 7.9 Hz, 1H), 7.12 (d, *J* = 8.2 Hz, 2H), 6.76 (d, *J* = 7.9 Hz, 1H), 6.70 (s, 1H), 6.59 (dd, *J* = 7.0, 4.3 Hz, 1H), 4.23 (q, *J* = 7.2 Hz, 2H), 3.05 (dd, *J* = 17.1, 7.1 Hz, 1H), 2.89 (dd, *J* = 17.1, 4.3 Hz, 1H), 2.31 (s, 6H), 1.28 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃)

δ 171.2, 152.3, 150.4, 135.7, 134.8, 133.1, 129.5, 126.8, 121.9, 119.8, 116.1, 110.5, 91.0, 61.6, 40.5, 21.3, 20.8, 14.1. FT-IR (neat): (cm⁻¹) 3320, 2921, 1694, 1601, 1489, 1377, 1187, 1131, 1014, 807, 646. HRMS (ESI-TOF): [M + Na]⁺ calculated for C₂₀H₂₂N₂NaO₄⁺: 377.1472, found: 377.1480.

Ethyl 2-(5-methyl-3-(*p*-tolylcarbamoyl)-2,3-dihydrobenzo[*d*]oxazol-2-yl)acetate (4g):

Colorless liquid, (**4g** was purified by PE/EtOAc = 40/1, V/V), 49.6 mg, 70% yield. ¹H NMR (600 MHz, CDCl₃) δ 8.27 (s, 1H), 7.39 – 7.36 (m, 2H), 7.24 – 7.21 (m, 1H), 7.12 (d, *J* = 8.2 Hz, 2H), 6.80 – 6.78 (m, 1H), 6.74 (d, *J* = 8.0 Hz, 1H), 6.58 (dd, *J* = 7.3, 4.0 Hz, 1H), 4.23 (q, *J* = 7.2 Hz, 2H), 3.06 (dd, *J* = 17.2, 7.3 Hz, 1H), 2.90 (dd, *J* = 17.2, 4.0 Hz, 1H), 2.32 (d, *J* = 6.4 Hz, 6H), 1.28 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 171.4, 152.3, 148.1, 135.7, 133.1, 131.3, 129.5, 129.2, 124.7, 119.8, 117.5, 109.1, 90.9, 61.7, 40.5, 21.2, 20.8, 14.1. FT-IR (neat): (cm⁻¹) 3314, 2923, 1681, 1495, 1314, 1016, 805, 738. HRMS (ESI-TOF): [M + Na]⁺ calculated for C₂₀H₂₂N₂NaO₄⁺: 377.1472, found: 377.1472.

Ethyl 2-(5-methoxy-3-(*p*-tolylcarbamoyl)-2,3-dihydrobenzo[*d*]oxazol-2-yl)acetate (4h):

Yellow liquid, (**4h** was purified by PE/EtOAc = 40/1, V/V), 45.9 mg, 62% yield. ¹H NMR (600 MHz, CDCl₃) δ 8.28 (s, 1H), 7.36 (d, *J* = 8.4 Hz, 2H), 7.12 (d, *J* = 8.2 Hz, 2H), 7.06 (d, *J* = 2.6 Hz, 1H), 6.74 (d, *J* = 8.6 Hz, 1H), 6.57 (dd, *J* = 7.3, 4.0 Hz, 1H), 6.50 (dd, *J* = 8.6, 2.6 Hz, 1H), 4.23 (q, *J* = 7.2 Hz, 2H), 3.77 (s, 3H), 3.08 (dd, *J* =
17.2, 7.3 Hz, 1H), 2.90 (dd, J = 17.2, 4.0 Hz, 1H), 2.31 (s, 3H), 1.28 (t, J = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 171.5, 154.9, 152.1, 144.2, 135.6, 133.2, 130.1, 129.5, 120.0, 109.2, 108.7, 104.3, 91.2, 61.7, 56.1, 40.5, 20.8, 14.1. FT-IR (neat): (cm⁻¹) 3305, 2945, 1683, 1597, 1487, 1293, 1181, 1021, 799, 604. HRMS (ESI-TOF): [M + Na]⁺ calculated for C₂₀H₂₂N₂NaO₅⁺: 393.1421, found: 393.1417.

Ethyl 2-(6-chloro-3-(*p*-tolylcarbamoyl)-2,3-dihydrobenzo[*d*]oxazol-2-yl)acetate (4i):

Colorless liquid, (**4i** was purified by PE/EtOAc = 40/1, V/V), 54.0 mg, 72% yield. ¹H NMR (600 MHz, CDCl₃) δ 8.50 (s, 1H), 7.36 (d, *J* = 8.4 Hz, 2H), 7.34 (d, *J* = 8.3 Hz, 1H), 7.12 (d, *J* = 8.3 Hz, 2H), 6.94 (dd, *J* = 8.3, 2.0 Hz, 1H), 6.86 (d, *J* = 2.0 Hz, 1H), 6.61 (dd, *J* = 8.0, 3.3 Hz, 1H), 4.25 (q, *J* = 7.2 Hz, 2H), 3.06 (dd, *J* = 17.5, 8.0 Hz, 1H), 2.93 (dd, *J* = 17.5, 3.3 Hz, 1H), 2.31 (s, 3H), 1.29 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 171.6, 152.3, 150.8, 135.6, 133.3, 129.5, 129.5, 128.4, 121.6, 119.8, 117.9, 110.3, 91.5, 62.0, 40.5, 20.8, 14.0. FT-IR (neat): (cm⁻¹) 3290, 2919, 1694, 1601, 1536, 1478, 1377, 1310, 1191, 1010, 961, 812. HRMS (ESI-TOF): [M + Na]⁺ calculated for C₁₉H₁₉ClN₂NaO₄⁺: 397.0926, found: 397.0920.

Ethyl 2-(6-bromo-3-(*p*-tolylcarbamoyl)-2,3-dihydrobenzo[*d*]oxazol-2-yl)acetate (4j):

Yellow liquid, (**4j** was purified by PE/EtOAc = 40/1, V/V), 46.1 mg, 55% yield. ¹H NMR (600 MHz, CDCl₃) δ 8.49 (s, 1H), 7.36 (d, *J* = 8.4 Hz, 2H), 7.29 (d, *J* = 8.3 Hz, 1H), 7.12 (d, *J* = 8.3 Hz, 2H), 7.08 (dd, *J* = 8.3, 1.9 Hz, 1H), 7.00 (d, *J* = 1.8 Hz, 1H),

6.60 (dd, J = 8.0, 3.3 Hz, 1H), 4.25 (q, J = 7.2 Hz, 2H), 3.06 (dd, J = 17.5, 8.0 Hz, 1H), 2.93 (dd, J = 17.5, 3.3 Hz, 1H), 2.31 (s, 3H), 1.29 (t, J = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 171.6, 152.2, 151.0, 135.6, 133.3, 129.5, 129.0, 124.5, 119.8, 118.4, 116.6, 113.0, 91.4, 62.0, 40.5, 20.8, 14.1. FT-IR (neat): (cm⁻¹) 3294, 2915, 1694, 1601, 1536, 1476, 1381, 1191, 1008, 960, 810. HRMS (ESI-TOF): [M + Na]⁺ calculated for C₁₉H₁₉BrN₂NaO₄⁺: 441.0420, found: 441.0422.

Ethyl 2-(5-chloro-3-(*p*-tolylcarbamoyl)-2,3-dihydrobenzo[*d*]oxazol-2-yl)acetate (4k):

Colorless liquid, (**4k** was purified by PE/EtOAc = 40/1, V/V), 48.7 mg, 65% yield. ¹H NMR (600 MHz, CDCl₃) δ 8.49 (s, 1H), 7.45 (d, *J* = 2.1 Hz, 1H), 7.37 (d, *J* = 8.4 Hz, 2H), 7.13 (d, *J* = 8.3 Hz, 2H), 6.96 (dd, *J* = 8.4, 2.2 Hz, 1H), 6.76 (d, *J* = 8.4 Hz, 1H), 6.61 (dd, *J* = 8.0, 3.3 Hz, 1H), 4.26 (q, *J* = 7.2 Hz, 2H), 3.07 (dd, *J* = 17.5, 8.0 Hz, 1H), 2.94 (dd, *J* = 17.5, 3.3 Hz, 1H), 2.32 (s, 3H), 1.29 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 171.6, 152.0, 148.8, 135.5, 133.4, 130.7, 129.5, 126.5, 124.1, 119.9, 117.9, 109.8, 91.4, 62.0, 40.6, 20.8, 14.0. FT-IR (neat): (cm⁻¹) 3299, 2923, 1690, 1603, 1517, 1478, 1375, 1293, 1016, 797, 686. HRMS (ESI-TOF): [M + Na]⁺ calculated for C₁₉H₁₉ClN₂NaO₄⁺: 397.0926, found: 397.0921.

Ethyl 2-(5-bromo-3-(*p*-tolylcarbamoyl)-2,3-dihydrobenzo[*d*]oxazol-2-yl)acetate (4l):

Yellow liquid, (**4**I was purified by PE/EtOAc = 40/1, V/V), 48.6 mg, 58% yield. ¹H NMR (600 MHz, CDCl₃) δ 8.49 (s, 1H), 7.60 (d, *J* = 1.9 Hz, 1H), 7.37 (d, *J* = 8.4 Hz,

2H), 7.13 (d, J = 8.2 Hz, 2H), 7.10 (dd, J = 8.4, 2.0 Hz, 1H), 6.72 (d, J = 8.4 Hz, 1H), 6.60 (dd, J = 8.0, 3.2 Hz, 1H), 4.25 (q, J = 7.1 Hz, 2H), 3.07 (dd, J = 17.5, 8.0 Hz, 1H), 2.94 (dd, J = 17.5, 3.2 Hz, 1H), 2.32 (s, 3H), 1.29 (t, J = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 171.6, 152.0, 149.3, 135.5, 133.4, 131.0, 129.5, 127.1, 120.6, 119.9, 113.5, 110.5, 91.3, 62.0, 40.61, 20.8, 14.0. FT-IR (neat): (cm⁻¹) 3283, 2921, 1685, 1608, 1547, 1472, 1405, 1316, 1200, 1040, 801, 652. HRMS (ESI-TOF): [M + Na]⁺ calculated for C₁₉H₁₉BrN₂NaO₄⁺: 441.0420, found: 441.0423.

Ethyl 2-(6-bromo-3-((4-bromophenyl)carbamoyl)-2,3-dihydrobenzo[*d*]oxazol-2yl)acetate (4m):

White solid, (**4m** was purified by PE/EtOAc = 40/1, V/V), mp: 114 – 116 °C, 54.2 mg, 56% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.89 (s, 1H), 7.61 (d, *J* = 1.8 Hz, 1H), 7.47 – 7.38 (m, 4H), 7.12 (dt, *J* = 8.4, 1.7 Hz, 1H), 6.73 (dd, *J* = 8.4, 1.2 Hz, 1H), 6.62 – 6.55 (m, 1H), 4.27 (q, *J* = 7.1 Hz, 2H), 3.08 (dd, *J* = 17.8, 8.5 Hz, 1H), 3.00 – 2.92 (m, 1H), 1.30 (td, *J* = 7.1, 1.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 172.14, 151.97, 149.20, 137.47, 131.92, 130.74, 127.38, 121.22, 121.19, 116.23, 113.56, 110.53, 91.05, 62.24, 40.60, 14.02. FT-IR (neat): (cm⁻¹) 3275, 3197, 3124, 2919, 1687, 1545, 1476, 1368, 1310, 1195, 796, 654, 501, 430. HRMS (ESI-TOF): [M + Na]⁺ calculated for C₁₈H₁₆Br₂N₂NaO₄⁺: 504.9369, found: 504.9359.

Methyl 2-(3-(p-tolylcarbamoyl)-2,3-dihydrobenzo[d]oxazol-2-yl)acetate (4n):

Colorless liquid, (**4n** was purified by PE/EtOAc = 40/1, V/V), 42.4 mg, 65% yield. ¹H NMR (600 MHz, CDCl₃) δ 8.08 (s, 1H), 7.29 (dd, *J* = 8.6, 2.0 Hz, 3H), 7.05 (d, *J* =

8.3 Hz, 2H), 6.93 (td, J = 7.7, 1.3 Hz, 1H), 6.89 (td, J = 7.6, 1.1 Hz, 1H), 6.82 – 6.78 (m, 1H), 6.55 (dd, J = 7.0, 4.4 Hz, 1H), 3.70 (s, 3H), 3.02 (dd, J = 17.1, 7.0 Hz, 1H), 2.85 (dd, J = 17.1, 4.4 Hz, 1H), 2.24 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 171.6, 152.1, 150.2, 135.6, 133.3, 129.5, 129.2, 124.6, 121.7, 119.9, 116.5, 109.7, 90.8, 52.5, 40.3, 20.8. FT-IR (neat): (cm⁻¹) 3299, 2923, 1687, 1595, 1517, 1480, 1318, 986, 807, 740, 510. HRMS (ESI-TOF): [M + Na]⁺ calculated for C₁₈H₁₈N₂NaO₄⁺: 349.1159, found: 349.1151.

Tert-butyl 2-(3-(*p*-tolylcarbamoyl)-2,3-dihydrobenzo[*d*]oxazol-2-yl)acetate (40):

Colorless liquid, (**4o** was purified by PE/EtOAc = 40/1, V/V), 47.2 mg, 64% yield. ¹H NMR (600 MHz, CDCl₃) δ 8.49 (s, 1H), 7.43 (dd, *J* = 7.5, 1.2 Hz, 1H), 7.38 (d, *J* = 8.4 Hz, 2H), 7.12 (d, *J* = 8.3 Hz, 2H), 6.99 (td, *J* = 7.7, 1.4 Hz, 1H), 6.95 (td, *J* = 7.6, 1.2 Hz, 1H), 6.85 (dd, *J* = 7.7, 1.1 Hz, 1H), 6.56 (dd, *J* = 7.7, 3.6 Hz, 1H), 3.01 (dd, *J* = 17.3, 7.7 Hz, 1H), 2.86 (dd, *J* = 17.3, 3.6 Hz, 1H), 2.31 (s, 3H), 1.48 (s, 9H). ¹³C NMR (151 MHz, CDCl₃) δ 171.0, 152.4, 150.2, 135.9, 133.0, 129.5, 129.4, 124.4, 121.5, 119.8, 117.2, 109.5, 90.8, 83.0, 41.7, 28.1, 20.8. FT-IR (neat): (cm⁻¹) 3297, 2977, 1687, 1599, 1517, 1482, 1374, 1316, 1144, 810, 736, 508. HRMS (ESI-TOF): [M + Na]⁺ calculated for C₂₁H₂₄N₂NaO₄⁺: 391.1628, found: 391.1620.

V. General Procedure for the Preparation of 5a:

An oven-dried vial equipped with a magnetic stir bar was charged with **1a** (23.4 mg, 0.2 mmol), **2a** (46.6 mg, 0.2 mmol), $[Rh(COD)Cl]_2$ (2.5 mg, 0.005 mmol), DPPE (4.1 mg, 0.01 mmol), and toluene (2.0 mL) were added. The reaction was then stirred at room temperature for 0.5 h until arylisocyanide **1a** disappeared. The solvent was removed under reduced pressure. The crude residue was purified by silica gel column chromatography (EtOAc/PE = 1/60, V/V) to afford pure product **5a** (45.1 mg, 70%) as a yellow liquid.

Yellow liquid, (**5a** was purified by PE/EtOAc = 60/1, V/V), 45.1 mg, 70% yield. ¹H NMR (600 MHz, CDCl₃) δ 7.72 (d, J = 12.2 Hz, 1H), 7.19 – 7.14 (m, 3H), 7.13 – 7.05 (m, 5H), 5.37 (d, J = 12.2 Hz, 1H), 4.15 (q, J = 6.9 Hz, 2H), 2.33 (s, 3H), 1.25 (t, J = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 166.8, 158.7, 149.9, 135.4, 135.2, 135.1, 130.1, 126.3, 125.9, 125.9, 124.1, 118.7, 102.9, 60.1, 21.0, 14.3. FT-IR (neat): (cm⁻¹) 2934, 2110, 1713, 1491, 1232, 1103, 814; HRMS (ESI-TOF): [M + Na]⁺ calculated for C₁₉H₁₈N₂NaO₃⁺: 345.1210, found: 345.1213.

VI. General Procedure from 5a to 3aa:

An oven-dried vial equipped with a magnetic stir bar was charged with **5a** (64.5 mg, 0.2 mmol), DBU (6.0 μ L, 0.04 mmol), then toluene (2.0 mL) was added. The reaction was then stirred at 60 °C (heating mantle) for 4 h. After the reaction was complete, the solvent was removed under reduced pressure. The crude residue was purified by silica gel column chromatography (EtOAc/PE = 1/50, V/V) to afford pure product **3aa** (61.9 mg, 96%) as a white solid.

VII. General Procedure from 5a to 4a and 6a:

A Schlenck tube charged with **5a** (64.5 mg, 0.2 mmol), NaHCO₃ (16.8 mg, 0.2 mmol) in toluene (2.0 mL), then H₂O (0.036 mL, 2 mmol) was added. Subsequently, the reaction mixture was stirred at 30 °C (heating mantle) for 36 h. The solvent was removed under reduced pressure. The crude residue was purified by silica gel column chromatography to afford pure product **4a** (19.1 mg, 28%) as colorless liquid and pure product **6a** (13.6 mg, 20%) as white solid.

Ethyl (*E*)-3-(2-(3-(*p*-tolyl)ureido)phenoxy)acrylate (6a):

White solid, (**6a** was purified by PE/EtOAc = 40/1, V/V), mp: 118 – 120 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.25 (dd, *J* = 8.2, 1.1 Hz, 1H), 7.65 (d, *J* = 12.2 Hz, 1H), 7.51 (s, 1H), 7.44 (s, 1H), 7.23 (d, *J* = 8.3 Hz, 2H), 7.16 – 7.13 (m, 1H), 7.10 (d, *J* = 8.2 Hz, 2H), 7.00 – 6.95 (m, 2H), 5.46 (d, *J* = 12.2 Hz, 1H), 4.17 (q, *J* = 7.1 Hz, 2H), 2.30 (s, 3H), 1.26 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 167.5, 159.4, 153.3, 144.3, 135.3, 134.1, 130.0, 129.8, 126.0, 123.0, 121.0, 117.7, 102.6, 60.6, 20.8, 14.3. FT-IR (neat): (cm⁻¹) 3299, 2919, 1707, 1642, 1593, 1549, 1452, 1312, 1217, 1129, 745, 628; HRMS (ESI-TOF): [M + Na]⁺ calculated for C₁₉H₂₀N₂NaO₄⁺ : 363.1315, found: 363.1306.

VIII. General Procedure from 6a to 4a:

An oven-dried vial equipped with a magnetic stir bar was charged with **6a** (68.1 mg, 0.2 mmol) and NaHCO₃ (16.8 mg, 0.2 mmol) in toluene (2.0 mL). The reaction was then stirred at 70 °C (heating mantle) for 12 h. After the reaction was complete, the solvent was removed under reduced pressure. The crude residue was purified by silica gel column chromatography (EtOAc/PE = 1/40, V/V) to afford pure product **4a** (53.1 mg, 78%) as colorless liquid.

IX. ORTEP Drawing of Compound 3pa and 4m:

Figure 1. The ORTEP drawing of crystal 3pa (The ellipsoid contour percent probability level is 50%).

Figure 2. The ORTEP drawing of crystal 4m (The ellipsoid contour percent probability level is 50%).

Method of Crystallization: The compounds **3pa** and **4m** were recrystallized from mixed solvents of ethyl acetate and petroleum ether at 25 °C.

Introduction of crystal measuring instrument: X-ray single-crystal data of **3pa** and **4m** were collected by a Bruker D8 Venture diffractometer (Mo K α radiation, $\lambda = 0.71073$ Å (Cu K α radiation, $\lambda = 1.54178$ Å)) at 293(2) K. The adsorption corrections were conducted by a multiscan technique. All the structures were solved via direct method and refined by the full-matrix least-squares technique using the SHELXL-2014 program. Anisotropic thermal parameters were used to refine the non-hydrogen atoms and hydrogen atoms were contained in calculated positions, refining with isotropic thermal parameters locating at those of the parent atoms.

X. Copies of ¹H NMR, ¹³C NMR and ¹⁹F NMR Spectra of Compounds 2-6:

Figure 4. ¹³C NMR spectrum (151 MHz, CDCl₃) of 2a

Figure 10. ¹³C NMR spectrum (151 MHz, CDCl₃) of 2d

S50

Figure 14. ¹³C NMR spectrum (151 MHz, CDCl₃) of 2f

Figure 16. ¹³C NMR spectrum (151 MHz, CDCl₃) of 2g

Figure 18. ¹³C NMR spectrum (151 MHz, CDCl₃) of 2h

Figure 20. ¹³C NMR spectrum (151 MHz, CDCl₃) of 2i

S55

Figure 24. ¹³C NMR spectrum (151 MHz, CDCl₃) of 2k

Figure 26. ¹³C NMR spectrum (151 MHz, CDCl₃) of 2l

Figure 28. ¹³C NMR spectrum (151 MHz, CDCl₃) of 2m

Figure 30. ¹³C NMR spectrum (151 MHz, CDCl₃) of 2n

Figure 32. ¹³C NMR spectrum (151 MHz, CDCl₃) of 2n

Figure 36. ¹³C NMR spectrum (151 MHz, CDCl₃) of 3ba

Figure 38. ¹³C NMR spectrum (151 MHz, CDCl₃) of 3ca

Figure 39. ¹H NMR spectrum (600 MHz, CDCl₃) of 3da

Figure 40. ¹³C NMR spectrum (151 MHz, CDCl₃) of 3da

Figure 41. ¹H NMR spectrum (600 MHz, CDCl₃) of 3ea

Figure 42. ¹³C NMR spectrum (151 MHz, CDCl₃) of 3ea

Figure 44. ¹³C NMR spectrum (151 MHz, CDCl₃) of 3fa

Figure 48. ¹H NMR spectrum (600 MHz, CDCl₃) of 3ha

Figure 49. ¹³C NMR spectrum (151 MHz, CDCl₃) of 3ha

Figure 50. ¹H NMR spectrum (600 MHz, CDCl₃) of 3ia

Figure 51. ¹³C NMR spectrum (151 MHz, CDCl₃) of 3ia

Figure 52. ¹H NMR spectrum (600 MHz, CDCl₃) of 3ja

Figure 54. ¹H NMR spectrum (600 MHz, CDCl₃) of 3ka

Figure 56. ¹H NMR spectrum (600 MHz, CDCl₃) of 3la

Figure 58. ¹H NMR spectrum (600 MHz, CDCl₃) of 3ma

Figure 59. ¹³C NMR spectrum (151 MHz, CDCl₃) of 3ma

Figure 60. ¹H NMR spectrum (600 MHz, CDCl₃) of 3na

Figure 61. ¹³C NMR spectrum (151 MHz, CDCl₃) of 3na

Figure 62. ¹⁹F NMR spectrum (471 MHz, CDCl₃) of 3na

Figure 63. ¹H NMR spectrum (600 MHz, CDCl₃) of 30a

Figure 64. ¹³C NMR spectrum (151 MHz, CDCl₃) of 30a

Figure 68. ¹³C NMR spectrum (151 MHz, CDCl₃) of 3qa

Figure 70. ¹³C NMR spectrum (151 MHz, CDCl₃) of 3ra

Figure 72. ¹³C NMR spectrum (151 MHz, CDCl₃) of 3sa

Figure 74. ¹³C NMR spectrum (151 MHz, CDCl₃) of 3ta

Figure 76. ¹³C NMR spectrum (151 MHz, CDCl₃) of **3ua**

Figure 78. ¹³C NMR spectrum (151 MHz, CDCl₃) of 3ab

Figure 80. ¹³C NMR spectrum (151 MHz, CDCl₃) of 3ac

Figure 82. ¹³C NMR spectrum (151 MHz, CDCl₃) of 3ad

Figure 84. ¹³C NMR spectrum (151 MHz, CDCl₃) of 3ae

S87

Figure 86. ¹³C NMR spectrum (151 MHz, CDCl₃) of 3af

Figure 90. ¹H NMR spectrum (600 MHz, CDCl₃) of 3ah

Figure 92. ¹H NMR spectrum (600 MHz, CDCl₃) of 3ai

Figure 94. ¹H NMR spectrum (600 MHz, CDCl₃) of 3aj

Figure 96. ¹H NMR spectrum (600 MHz, CDCl₃) of 3ak

Figure 99. ¹³C NMR spectrum (151 MHz, CDCl₃) of 3al

Figure 100. ¹H NMR spectrum (600 MHz, CDCl₃) of 3am

Figure 104. ¹H NMR spectrum (500 MHz, CDCl₃) of 3ao

Figure 106. ¹H NMR spectrum (600 MHz, CDCl₃) of 4a

Figure 108. ¹H NMR spectrum (600 MHz, CDCl₃) of 4b

Figure 110. ¹H NMR spectrum (600 MHz, CDCl₃) of 4c

Figure 112. ¹⁹F NMR spectrum (471 MHz, CDCl₃) of 4c

Figure 114. ¹³C NMR spectrum (151 MHz, CDCl₃) of 4d

Figure 116. ¹³C NMR spectrum (151 MHz, CDCl₃) of 4e

Figure 118. ¹³C NMR spectrum (151 MHz, CDCl₃) of 4f

Figure 120. ¹³C NMR spectrum (151 MHz, CDCl₃) of 4g

Figure 124. ¹³C NMR spectrum (151 MHz, CDCl₃) of 4i

Figure 126. ¹³C NMR spectrum (151 MHz, CDCl₃) of 4j

Figure 128. ¹³C NMR spectrum (151 MHz, CDCl₃) of 4k

Figure 130. ¹³C NMR spectrum (151 MHz, CDCl₃) of 4l

Figure 132. ¹³C NMR spectrum (151 MHz, CDCl₃) of 4m

Figure 134. ¹³C NMR spectrum (151 MHz, CDCl₃) of 4n

Figure 138. ¹³C NMR spectrum (151 MHz, CDCl₃) of 4a'

Figure 140. ¹³C NMR spectrum (151 MHz, CDCl₃) of 5a

Figure 142. ¹³C NMR spectrum (151 MHz, CDCl₃) of 6a

XI. Copy of HRMS Spectra of $[O^{18}]$ -4a obtained by reaction with H_2O^{18} :