Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2021

Supplementary Information for

The First N-Ligands Assisted Pd Catalyzed Asymmetric Synthesis of 3-

Arylsuccinimides as Novel Antifungal Leads

Jixing Lai, † Juan Yang, † Chen Yang, † René Csuk, ‡ Baoan Song, † Shengkun Li *, †

†Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key

Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education,

Guizhou University, Huaxi District, Guiyang 550025, China

‡Organic Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 2, D-

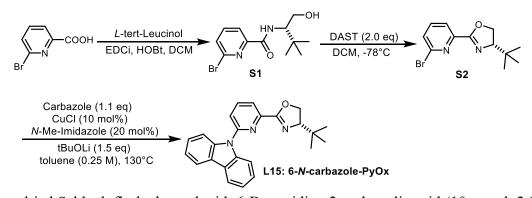
06120 Halle (Saale), Germany

Corresponding Author: Shengkun Li, E-mail: <u>skl505@outlook.com</u>

Content

1. General Information	3
2. Synthesis and Structural Elucidation of Ligands	4
2.1 Synthesis of Ligand L15.2.2 Synthesis of Ligand L16, L17 and L18.	·····4 ·····6
3. Enantioselective Addition of Arylboronic Acid to Maleamide	8
3.1. General Procedure3.2. Optimization of the Reaction Conditions	
4. Substrate Scopes of this Methodology	14
 4.1 Substrate Scope of Maleimides 4.2 Substrate Scope of Ar-B(OH)₂ 5. Antifungal Bioassay of 3-Arylsuccinimides 	15
5.1 Initial Antifungal Screening5.2 Precise Antifungal Test	
6. Characterization of Chiral 3-Arylsuccinimides	
7. Heterocycle-oxazolines for Asymmetric Synthesis of 11h	55
8. NMR spectra	59

1. General Information


Unless otherwise stated, all solvents and reagents were purchased from commercial sources (Energy or Meryer Chemicals etc.), they were analytically pure and used without further purification. Anhydrous solvents were dried and distilled by standard techniques before use or were purchased from commercial sources (Energy Chemicals etc.).

Silica gel GF₂₅₄ and column chromatography silica gel for isolation (200-300 mesh) were both purchased from Qingdao Broadchem Industrial Co., Ltd. Reaction progress was monitored by thinlayer chromatography (TLC) on silica gel GF₂₅₄ with ultraviolet (UV_{254nm} or UV_{365nm}) detection. ¹HNMR and ¹³CNMR spectra were recorded on a Bruker AV 400 spectrometers with CDCl₃ as solvent and tetramethylsilane as the internal standard. The chemical shifts (δ) were recorded in parts per million (ppm). Data for ¹H NMR are reported as follows: chemical shift (δ : ppm), multiplicity (s, singlet; d, doublet; t, triplet; q, quartet; and m, multiplet), coupling constant (Hz), integration and assignment (*H*). Data for ¹³C NMR are reported in terms of chemical shift (δ : ppm).

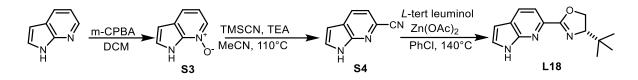
The agriculturally important plant pathogens were provided by the College of Plant Protection, Nanjing Agricultural University (Nanjing, China).

2. Synthesis and Structural Elucidation of Ligands

2.1 Synthesis of Ligand L15

To a dried Schlenk flask charged with 6-Br-pyridine-2-carboxylic acid (10 mmol, 2.04 g) and *L*-tert-Leucinol (10 mmol, 1.17 g) was added anhydrous dichloromethane (100 mL) for dissolution. Hydroxybenzotriazole (HOBt) (1.75 g, 13 mmol) and *N*-(3-(dimethyl amino)-propyl)-*N'*-ethylcarbodiimide hydrochloride (EDC-HCl) (2.50 g, 13 mmol) were then added while the reaction flask was in an ice bath. The mixture was allowed to gradually warm to room temperature, and it was stirred overnight until full consumption of the carboxylic acid detected by thin layer chromatography (TLC). The mixture was quenched by the addition of a saturated aqueous solution of NaHCO₃ (50 mL) and separated. The water phase was sequentially washed with water (30 mL \times 3), and the combined organic phase was sequentially washed with water (30 mL \times 2) and saturated aqueous NaCl (30 mL), dried over anhydrous sodium sulfate, and concentrated under vacuum. Purification by silica gel column chromatography on silica gel with hexane/EtOAc (2:1, v/v) as the eluent gave the amide **S1** in 63% yield as white solid.

To a Schlenk tube charged the amide (5.0 mmol) was added anhydrous DCM (20.0 mL) under N₂ atmosphere. Diethylaminosulfur trifluoride (DAST) (1.6 g, 10 mmol) was added dropwise at -78°C. The reaction mixture was stirred at -78°C until the full consumption of

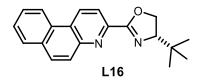

the starting material was detected by TLC. The mixture was quenched by the addition of a saturated aqueous solution of NaHCO₃ (20 mL) and separated, The water phase was extracted with dichloromethane (20 mL \times 3), and the combined organic phase was sequentially washed with water (20 mL \times 2) and saturated aqueous NaCl (20 mL), dried over anhydrous sodium sulfate, and concentrated under vacuum. Purification by silica gel column chromatography on silica gel (200-300 m) with hexane/EtOAc (2:1, v/v) as the eluent gave the ligand **S2** in 65% yield as white solid.

To a Schlenk tube charged the **S2** (0.2 mmol), tBuOLi (0.3 mmol, 1.5 equiv), CuCl (0.02 mmol, 10 mol%), *N*-Me-Imidazole (0.04 mmol, 20 mol%) and carbazole (0.22 mmol, 1.1 equiv) was added anhydrous toluene (0.8 mL, 0.25 M) under N₂ atmosphere. The reaction mixture was stirred at 130° C until the full consumption of the starting material was detected by TLC. The mixture was quenched by the addition of H₂O (5 mL) and separated, the water phase was extracted with EtOAc (5 mL \times 3), dried over anhydrous sodium sulfate, and concentrated under vacuum. Purification by silica gel column chromatography on silica gel (200-300 m) with hexane/EtOAc (15:1, v/v) as the eluent gave the ligand L15 in 53% yield as white solid.

M.p.75-76 °C. ¹HNMR (500 MHz, CDCl₃) δ 8.13-8.08 (m, 3H), 7.99 (t, J = 7.8 Hz, 1H), 7.92 (d, J = 6.6 Hz, 2H), 7.75 (dd, $J_1 = 8.1$ Hz, $J_2 = 0.9$ Hz, 1H), 7.47 - 7.44 (m, 2H), 7.34-7.31 (m, 2H), 4.50 (dd, $J_1 = 10.2$ Hz, $J_2 = 8.7$ Hz, 1H), 4.36 (t, J = 8.5 Hz, 1H), 4.17 (dd, $J_1 = 10.2$ Hz, $J_2 = 8.3$ Hz, 1H), 1.01 (s, 9H). ¹³CNMR (126 MHz, CDCl₃) δ 162.5, 151.6, 147.0, 139.5, 139.1, 126.5, 124.6, 121.3, 121.2, 120.4, 120.3, 111.4, 69.6, 34.2, 26.1.

5

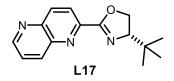
2.2 Synthesis of Ligand L16, L17 and L18


To a dried Schlenk flask charged with 7-azaindole (10 mmol, 1.18 g) was added anhydrous dichloromethane (100 mL) for dissolution. m-CPBA (15 mmol, 1.5 equiv) was then added while the reaction flask was in an ice bath. The mixture was allowed to gradually warm to room temperature, and it was stirred overnight until full consumption of the pyridine-2-ethyl detected by thin layer chromatography (TLC). The mixture was quenched by the addition of a saturated aqueous solution of NaHCO₃ (100 mL) and separated. The water phase was extracted with dichloromethane (100 mL \times 3), dried over anhydrous sodium sulfate, and concentrated under vacuum to give the product **S3**, which can be used in next step without further purification.

To a Schlenk flask charged the nitrogen oxide **S3** (5.0 mmol) and TMSCN (18 mmol, 3.6 equiv) was added anhydrous MeCN (20 mL). Triethylamine (TEA) (7.5 mmol, 1.5 equiv) was added dropwise. The reaction mixture was stirred at 110°C until the full consumption of the starting material was detected by TLC. The mixture was quenched by the addition of a saturated aqueous solution of NaHCO₃ (30 mL) and separated, The water phase was extracted with EtOAc (30 mL \times 3), and the combined organic phase was sequentially washed with water (20 mL \times 2) and saturated aqueous NaCl (20 mL), dried over anhydrous sodium sulfate, and concentrated under vacuum. Purification by silica gel column chromatography on silica gel (200-300m) with hexane/EtOAc (10:1, v/v) as the eluent gave the cyanated compound

S4 (47% yield in two steps) as white solid.

To a Schlenk flask charged the compound **S4** (1.0 mmol) and Zn(OAc)₂ (0.2 mmol, 0.2 equiv) was added anhydrous PhCl (5 mL). Then *L*-tert-Leucinol (1.5 mmol, 1.5 equiv) was added. The reaction mixture was stirred at 140°C until the full consumption of the starting material was detected by TLC. The mixture was quenched by the addition of a saturated aqueous solution of NaHCO₃ (5 mL) and separated. The water phase was extracted with EtOAc (5 mL × 3), and the combined organic phase was sequentially washed with water (5 mL × 2), dried over anhydrous sodium sulfate, and concentrated under vacuum. Purification by silica gel column chromatography on silica gel (200-300m) with hexane/EtOAc (5:1, v/v) as the eluent gave the I Ligand L18 as white solid in 61% yield. M.p.189-192°C. ¹H NMR (500 MHz, CDCl₃) δ 8.03 (dd, $J_1 = 0.7$ Hz, $J_2 = 0.7$ Hz, 1H), 7.95 (d, J = 8.1 Hz, 1H), 7.63 (dd, $J_1 = 3.4$ Hz, $J_2 = 2.6$ Hz, 1H), 6.55 (dd, $J_1 = 3.4$ Hz, $J_2 = 1.9$ Hz, 1H), 4.54 (dd, $J_1 = 10.2$ Hz $J_2 = 8.4$ Hz, 1H), 4.43 (t, J = 8.1 Hz, 1H), 4.21 (dd, $J_1 = 10.1$ Hz, $J_2 = 7.8$ Hz, 1H), 1.02 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 163.4, 148.3, 138.9, 129.6, 128.9, 122.9, 116.2, 100.3, 76.6, 69.2, 34.3, 26.1.


Ligands L16 and L17 were synthesized according to the same procedure as above.

White solid. M.p.111 - 113°C. ¹H NMR (500 MHz, CDCl₃) δ 9.48 – 9.27 (m, 1H), 8.37 (d, J = 8.3 Hz, 1H), 8.23 (d, J = 8.3 Hz, 1H), 7.92 – 7.89 (m, 1H), 7.86 (d, J = 8.8 Hz, 1H), 7.77

-7.69 (m, 3H), 4.59 (dd, $J_1 = 10.3$ Hz, $J_2 = 8.6$ Hz, 1H), 4.44 (t, J = 8.5 Hz, 1H), 4.21 (dd, $J_1 = 10.3$ Hz, $J_2 = 8.4$ Hz, 1H), 1.03 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 163.4, 146.1, 145.7, 136.4, 133.8, 131.6, 129.4, 128.7, 127.9, 127.5, 127.4, 125.1, 125.0, 122.1, 69.7, 34.3, 26.2.

Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.98 (dd, J_1 = 4.1 Hz, J_2 = 1.7 Hz, 1H), 8.40 (m, 2H), 8.33 (m, 1H), 7.65 (dd, J_1 = 8.6 Hz, J_2 = 4.2 Hz, 1H), 4.12 – 3.98 (m, 2H), 3.74 (dd, J_1 = 10.2 Hz, J_2 = 8.0 Hz, 1H), 1.04 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 164.7, 152.5, 150.3, 144.5, 142.0, 138.7, 137.8, 125.0, 122.6, 62.9, 60.4, 34.1, 27.1.

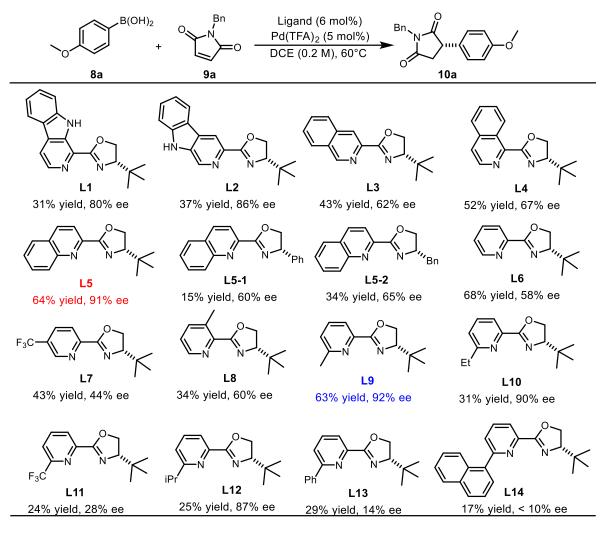
3. Enantioselective Addition of Arylboronic Acid to Maleamide

3.1. General Procedure

To a Schlenk tube charged with Pd(TFA)₂ (0.01 mmol, 3.3 mg, 5 mol%), ligand (0.012 mmol, 6 mol%) and 4-OMe-PhB(OH)₂ (60.8 mg, 0.4 mmol, 2.0 eq) was added DCE (0.5 mL). The mixture was stirred at 60 °C for 15 min to afford the catalyst solution.

To the above solution was added *N*-Bn-Maleimide (37.4 mg, 0.2 mmol) and 0.5 mL DCE (The volume of DCE is 1.0 mL). The tube was placed in the modules of the reactor which

was set at 60°C. After stirring for 36 h, the solvent was removed by rotary evaporation.


The residue was purified by column chromatography (petroleum ether/EtOAc = 10/1, v/v) to give the desired chiral pyrrolidine-2,5-dione product 10a as white solid.

Bpy (2,2- Bipyridine) was utilized as a ligand for the preparation of the racemic products.

3.2. Optimization of the Reaction Conditions

3.2.1 Ligand Screening^{*a*, *b*}

To select the appropriate chiral nitrogen-containing chiral ligand(s), *N*-benzylmaleimide and 4-methoxyphenylboronic acid were chosen as benchmark reaction partners. Versatile chiral ligands developed by our groups or synthesized according to the previous reports, were thoroughly tested.

a All reactions were run at 0.2 mmol scale. *b* Isolated yield and ee determined by HPLC on a chiral stationary phase.

3.2.2 Solvent Screening ^a

B(OH	P_{2} + P_{1} + P_{2} + P_{2} + P_{3} + P_{3	L9 (6 mol%) Pd(TFA) ₂ (5 mol%) solvent (0.2 M), 60°C	
entry	solvent	Yield (%) ^b	ee (%) ^b
1	DMF	19%	46%
2	THF 31%		20%
3	Toluence	19%	63%

4	MeCN	15%	34%
5	DMSO		N.D.
6	Butyl acetate	17%	61%
7	CHCl ₃	9%	57%
8°	МеОН	22%	17%
9 ^d	DCM	53%	78%

a All reactions were run at 0.2 mmol scale. b Isolated yield and ee determined by HPLC on a chiral stationary phase. c β^1 -CarOx as Ligand. d temp as 40°C. N.D. = not detected.

3.2.3 Metal Screening ^a

∕₀	B(OH 8a	$+ \underbrace{\overset{Bn}{\overset{N}}{\overset{N}{\overset{N}{\overset{N}{\overset{N}}{\overset{N}}}}}}}}}$	L9 (6 mol%) Metal (5 mol%) DCE (0.2 M), 60°C	
	entry	metal	Yield (%) ^b	ee (%) ^b
	1	Pd(OAc) ₂	17%	84%
	2	PdCl ₂	N.C).
	3	Cu(TFA)2 [·] H ₂ O	N.C).
	4	Ni(OAc) ₂ ·4H ₂ O	N.C).
_	5	Ag ₂ OTf	N.C).

a All reactions were run at 0.2 mmol scale. b Isolated yield and ee determined by HPLC on a chiral stationary phase. N.D. = not detected.

3.2.4 Temperature Screening ^a

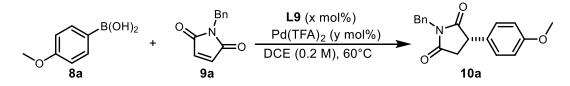
B(OH)	$+ \underbrace{\overset{\text{Bn}}{\overset{\text{N}}{\overset{N}{N$	L9 (6 mol%) Pd(TFA) ₂ (5 mol%) DCE (0.2 M), Temp.	
entry	Temp. (°C)	Yield (%) ^b	ee (%) ^b
1	40	17%	83%
2	60	63%	91%
3	80	9%	77%

a All reactions were run at 0.2 mmol scale. b Isolated yield and ee determined by HPLC on a chiral

stationary phase.

0 Ba	$^{B(OH)_2}$ + O N O $^{Pd(T)_2}$	0 (6 mol%) Br FA) ₂ (5 mol%) 0.2 M), 60°C ➤ C	
entry	Amount of PMP-B(OH) ₂	Yield (%) ^b	ee (%) ^b
1	1.5 eq	46%	92%
2	2.0 eq	63%	92%
3	3.0 eq	33%	89%
4	4.0 eq	31%	89%

3.2.5 The Effect of the Amount of PMP-B(OH)2^a


a All reactions were run at 0.2 mmol scale. b Isolated yield and ee determined by HPLC on a chiral stationary phase.

3.2.6 The Effect of Aryl Boron Variants ^a

BX 8a	+ 9a	L9 (6 mol%) Pd(TFA) ₂ (5 mol%) DCE (0.2 M), 60°C	
entry	PhBX	Yield (%) ^b	ee (%) ^b
1	PhBPin		N.D.
2	PhBF ₃ K		N.D.
3	(PhBO) ₃		N.D.
4	PhBneop		N.D.

a All reactions were run at 0.2 mmol scale. b Isolated yield and ee determined by HPLC on a chiral stationary phase. N.D. = not detected.

3.2.7 The Effect of the ratio of L11 to Pd(TFA)2^a

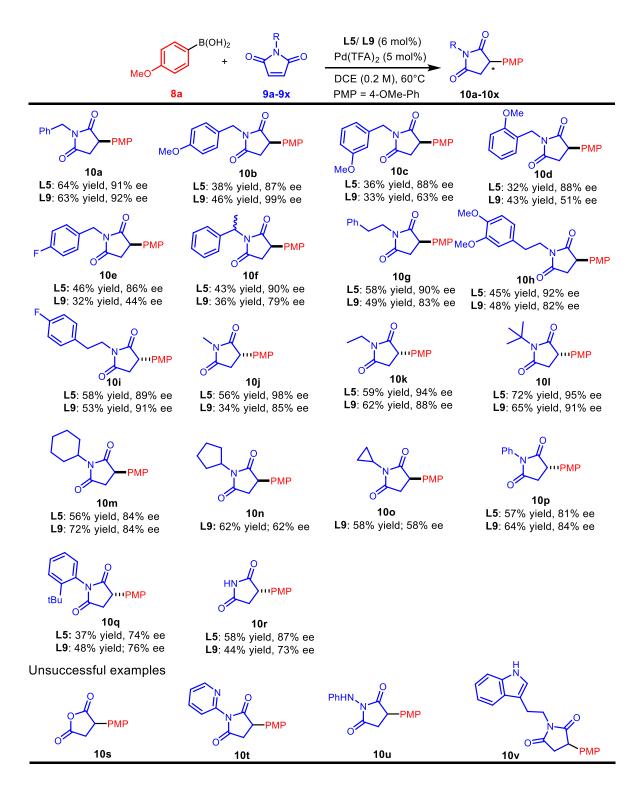
entry	Pd(TFA) ₂ /mol%	L9/mol%	Yield(%) ^b	ee (%) ^b
1	5%	7.5%	29%	72%
2	5%	6%	63%	92%
3	10%	12%	46%	77%

a All reactions were run at 0.2 mmol scale. b Isolated yield and ee determined by HPLC on a chiral stationary phase.

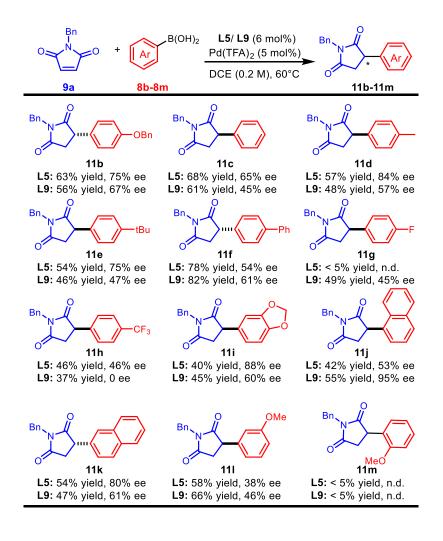
3.2.8 The Effect of the Reaction Concentration ^a

0	Bn N 9a	+ B(OH) ₂ Pd(TF	6 mol%) A) ₂ (5 mol%) ➤ α M), 60°C	³ⁿ , N, O O 10a
	entry	Amount of DCE	Yield (%) ^b	ee (%) ^b
	1	0.4 M (0.5 mL)	70%	83%
	2	0.2 M (1.0 mL)	63%	92%
	3	0.1 M (2.0 mL)	55%	96%

a All reactions were run at 0.2 mmol scale. b Isolated yield and ee determined by HPLC on a chiral stationary phase.


3.2.9 Screening of Additive ^a

O,	Bn N 9a	+ B(OH) ₂ MeO 8a	L9 (6 mol%) Pd(TFA) ₂ (5 mol%) Additive (0.5 eq) DCE (0.2 M), 60°C	Bn N O O O 10a
	entry	Additive	Yield (%) ^b	ee (%) ^b
	1	K ₂ CO ₃	89%	30.2%
	2	tBuOk	57%	79.9%
	3	PhCOOH		N.D.


a All reactions were run at 0.2 mmol scale. *b* Isolated yield and ee determined by HPLC on a chiral stationary phase. N.D. = not detected.

4. Substrate Scopes of this Methodology

4.1 Substrate Scope of Maleimides

4.2 Substrate Scope of Ar-B(OH)₂

5. Antifungal Bioassay of 3-Arylsuccinimides

5.1 Initial Antifungal Screening

The antifungal activity of the target compounds was tested in *vitro* against the plant pathogenic fungi using the mycelium growth rate test. All the tested compounds were dissolved in DMSO at a concentration of mmol/mL. The media containing compounds at a concentration of 0.1 mmol/mL were then poured into Petri dishes for initial screening.

Inhibition rate (%) =
$$(C-T) / (C-5 \text{ mm}) \times 100\%$$

Where *C*: The average diameter (in mm) of mycelia in the blank test, *T*: The average diameter (in mm) of mycelia on treated PDA with tested compounds.

Compda	Inhibitory Rate at 100 uM (%)					
Compds.	R.s	S.s	B.c	F.g	P.o	
<i>rac</i> -10a	7.9	23.6	6.3	32	11.3	
10a	90.3	66.7	90.9	33.6	58.1	
<i>rac</i> -10b	3.4	17.9	1.1	<mark>4</mark> 0.8	<mark>3</mark> 0.9	
10b	70.9	30.5	90.9	14.1	<mark>44</mark> .8	
rac-10e	30.3	4 3.8	13.5	29.1	<mark>30.9</mark>	
10e	74.8	71.4	70.1	28.9	52.4	
<i>rac</i> -10g	23.6	46.1	15.6	57.3	30.9	
10g	4 3.7	23.8	90.9	18.8	29.5	
<i>rac</i> -10h	64.1	76.4	4 3.8	<u>57.</u> 3	<mark>54</mark> .6	
10h	86.4	53.3	75.6	30.5	61. <mark></mark> 9	
<i>rac</i> -10i	0	31.5	21.9	20	29.9	
10i	4 <mark>2.1</mark>	32.6	16.7	4.9	27.8	

<i>rac</i> -10j	43.2	3 4.8	32.3	33.9	25.8
10j	8.7	0	29.3	0	20
<i>rac</i> -10k	24.3	23.6	3 5.4	24.3	29.9
10k	<mark>3</mark> 9.8	12.4	26.8	0	16.2
<i>rac</i> -101	75.3	4 <mark>0.8</mark>	33.3	41.7	33
10l	64.1	2.9	29.9	7.8	26.7
<i>rac</i> -10m	44 .9	62.9	16.7	22.3	34
10m	98.1	98.1	3 6.6	3 5.9	60
<i>rac</i> -10n	19.7	<mark>4</mark> 2.7	8.2	18.4	23.7
10n	0	14.6	2.8	29.1	11.2
<i>rac</i> -100	75.3	10.1	1.1	30.1	11.3
10o	4 0.4	28.1	0	30.1	9.3
<i>rac</i> -10p	64.1	55.1	4 1.7	3 6.9	25.8
10p	67	26.7	<u>50</u> .1	10.9	25.7
<i>rac</i> -11c	43.8	<u>60.</u> 7	26	<mark>3</mark> 9.8	3 7.1
11c	84.5	<mark>46</mark> .7	90.9	26.6	60
<i>rac</i> -11d	3 7.1	4 0.4	3 7.5	<mark>3</mark> 9.8	58
11d	90.3	81	90.9	23.4	60.9
<i>rac</i> -11f	20.2	<mark>3</mark> 4.8	27.1	3 6.9	27.8
11f	4 3.7	29.5	90.9	25	41
<i>rac</i> -11g	31.5	55.1	15.6	32	23.7
11g	76.4	97.7	47.9	47.6	65
<i>rac</i> -11h	64.1	83.1	3 7.4	<mark>46</mark> .6	62.3
11h	98.1	98.1	90.9	59.3	71.4
<i>rac</i> -11j	75.7	60.9	64.6	8.6	78
11j	98.1	73.3	90.9	3 7.5	82
<i>S</i> -11j	65	4 <mark>1.9</mark>	79.3	23.4	71.4
boscalid	93.4	88.6	90.9	30.5	81.9

5.2 Precise Antifungal Test

In the precision antifungal test, the 20 mg/mL stock solution was diluted to 100, 50, 25, 12.5, 6.25, 3.125 uM and the above experiments were repeated for three times, the inhibition rates were calculated separately. The statistical analyses were performed by SPSS software version 20.0. Inhibition rate was calculated as follows,

Inhibition rate (%) = (C-T) / (C-5 mm) \times 100%

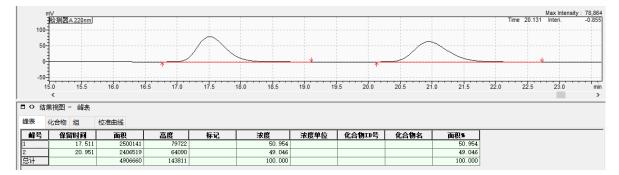
Where C: The average diameter (in mm) of mycelia in the blank test, T: The average diameter (in mm) of mycelia on treated PDA with tested compounds.

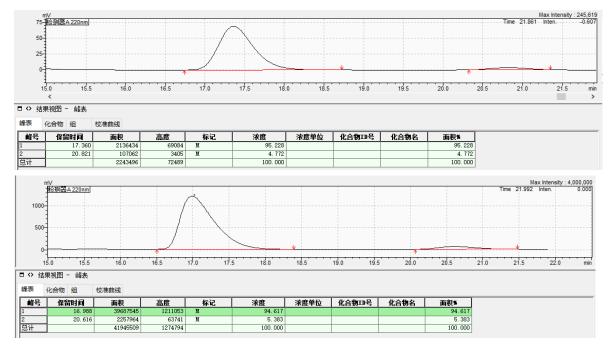
Compds.	EC ₅₀ (uM)								
Compus.	R.s	S.s	B.c	Р.о					
<i>rac</i> -10m	69.83	39.99	214.04	128.76					
10m	39.31	25.71	304.51	328.26					
<i>rac</i> -11d	93.68	134.38	107.06	40.91					
11d	46.99	43.01	43.99	46.79					
<i>rac</i> -11h	18.24	14.32	33.27	29.65					
11h	32.03	13.33	15.14	22.27					
<i>rac</i> -11j	127.52	34.98	73.34	11.83					
11j	26.31	50.11	44.41	16.12					
<i>S</i> -11j	118.7	70.7	163.7	21.2					
boscalid	1.22	1.56	5.38	1.02					

6. Characterization of Chiral 3-Arylsuccinimides

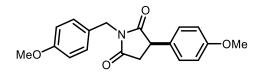
(R)-1-benzyl-3-(4-methoxyphenyl) pyrrolidine-2,5-dione (10a)

White solid. Yield: 64% yield (L5); 63% yield (L9).


The ¹H NMR data is in accordance with that of previous publications. (*Chem. Eur. J.* **2015**, 21, 11050-11055)


¹H NMR (500 MHz, CDCl₃): δ 7.41-7.39 (m, 2H), 7.34-7.29 (m, 3H), 7.10-7.07 (m, 2H), 6.89-6.86 (m, 2H), 4.72 (dd, $J_1 = 29.3$ Hz, $J_2 = 14.1$ Hz, 2H), 3.98 (dd, $J_1 = 9.6$ Hz, $J_2 = 4.8$ Hz, 1H), 3.79 (s, 3H), 3.18 (dd, $J_1 = 18.5$ Hz, $J_2 = 9.5$ Hz, 1H), 2.79 (dd, $J_1 = 18.5$ Hz, $J_2 = 4.8$ Hz, 1H).

HPLC trace: Daicel chiralcel OD-H, hexane/ i -PrOH = 80/20, 220 nm, 1.1 mL/min.


L5: $t_{R1} = 17.4 \text{ min (major)}, t_{R2} = 20.8 \text{ min (minor)}; ee = 90.5\%.$

L9: $t_{R1} = 17.0 \text{ min (major)}, t_{R2} = 20.6 \text{ min (minor)}; ee = 91.7\%.$

(R)-1-(4-methoxybenzyl)-3-(4-methoxyphenyl) pyrrolidine-2,5-dione (10b)

Colorless oil. Yield: 38% yield (L5); 46% yield (L9).

¹H NMR (500 MHz, CDCl₃) δ 7.40 – 7.30 (m, 2H), 7.12 – 6.99 (m, 2H), 6.89-6.82 (m, 4H),

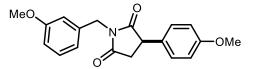
4.70 - 4.59 (dd, J = 2H), 3.94 (dd, $J_1 = 9.5$ Hz, $J_2 = 4.7$ Hz, 1H), 3.78 (s, 6H), 3.15 (dd, $J_1 = 1.5$ Hz, $J_2 = 4.7$ Hz, 1H), 3.78 (s, 6H), 3.15 (dd, $J_2 = 1.5$ Hz, $J_$

18.0 Hz, *J*₂ = 9.6 Hz, 1H), 2.75 (dd, *J*₁= 18.5 Hz, *J*₂ = 4.7 Hz, 1H).


¹³C NMR (126 MHz, CDCl₃) δ 177.9, 176.1, 159.5, 159.3, 130.5, 129.3, 128.6, 128.3,

114.7, 114.1, 55.5, 55.4, 45.3, 42.3, 37.4.

HPLC trace: Daicel chiralcel AD-H, hexane/ i -PrOH = 70/30, 220 nm, 1.0 mL/min.


L5: $t_{R1} = 12.4 \text{ min (minor)}, t_{R2} = 15.6 \text{ min (major)}; ee = 86.6\%.$

L9: $t_{R1} = 12.2 \text{ min (minor)}, t_{R2} = 15.2 \text{ min (major)}; ee = 98.6\%.$

-5-									•				
	+												_
1	1.50 11.75	12.00 12.25	12.50 12.	75 13.00	13.25 13.50	13.75 14.00	14.25 14.5	0 14.75	15.00 15.25	15.50 15.75	16.00	16.25	
	<												
■ ◇ 结	果视图 - 峰表												
峰表	化合物组	校准曲线											
		Companyone -											_
峰号	保留时间	面积	高度	标记	浓度	浓度单位	化合物ID号	化合物名	面积%				
1	12.248	295124	7383	M	99.301				99.301				
2	15.243	2079	111	M	0.699				0.699				
总计		297203	7494		100.000				100.000				

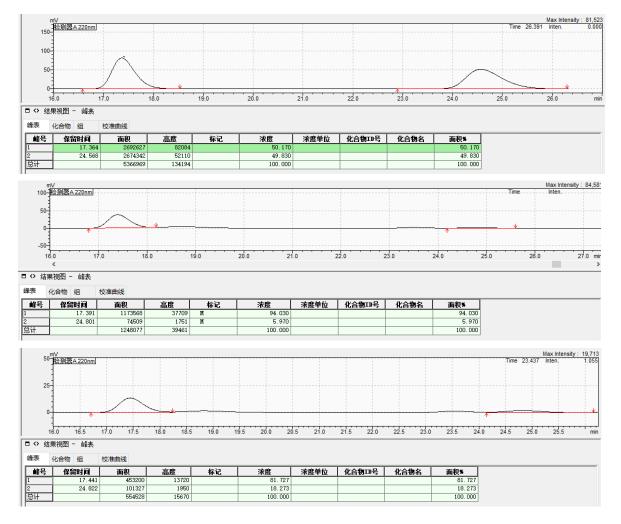
(*R*)-1-(3-methoxybenzyl)-3-(4-methoxyphenyl) pyrrolidine-2,5-dione (10c)

Colorless oil. Yield: 36% yield (L5); 33% yield (L9).

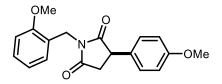
¹H NMR (400 MHz, CDCl₃) δ 7.45 – 7.35 (m, 1H), 7.32 – 7.19 (m, 2H), 7.18 – 7.08 (m, 2H),

7.08 - 6.93 (m, 3H), 4.94 - 4.75 (m, 2H), 4.13 (dd, $J_1 = 9.5$ Hz, $J_2 = 4.8$ Hz, 1H), 3.94 (d, J = 1.00

3.6 Hz, 6H), 3.34 (dd, *J*₁= 18.0 Hz, *J*₂ = 9.6 Hz, 1H), 2.94 (dd, *J*₁= 18.5 Hz, *J*₂ = 4.8 Hz, 1H).


 ^{13}C NMR (101 MHz, CDCl_3) δ 177.8, 176.0, 159.8, 159.3, 137.3, 129.8, 129.2, 128.5, 121,0,

114.6, 114.1, 113.8, 55.4, 55.3, 45.2, 42.7, 37.3.


HPLC trace: Daicel chiralcel OD-H, hexane/ i -PrOH = 70/30, 220 nm, 1.0 mL/min.

L5: $t_{R1} = 17.4 \text{ min (major)}, t_{R2} = 24.8 \text{ min (minor)}; ee = 88.0\%.$

L9: $t_{R1} = 17.4 \text{ min (major)}, t_{R2} = 24.8 \text{ min (minor)}; ee = 63.4\%.$

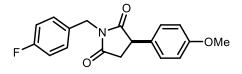
(R)-1-(2-methoxybenzyl)-3-(4-methoxyphenyl) pyrrolidine-2,5-dione (10d)

Colorless oil. Yield: 32% yield (L5); 43% yield (L9).

¹H NMR (400 MHz, CDCl₃) δ 7.22 – 7.13 (m, 1H), 7.10 – 7.00 (m, 3H), 6.86 – 6.76 (m, 4H), 4.79 – 4.62 (m, 2H), 3.92 (dd, J_1 = 9.5 Hz, J_2 = 4.7 Hz, 1H), 3.72 (d, J = 3.4 Hz, 6H), 3.13 (dd, J_1 = 18.4 Hz, J_2 = 9.6 Hz, 1H), 2.73 (dd, J_1 = 18.5 Hz, J_2 = 4.7 Hz, 1H).


¹³C NMR (101 MHz, CDCl₃) δ 176.7, 175.1, 158.3, 156.3, 128.5, 128.1, 128.1, 127.6, 122.5,

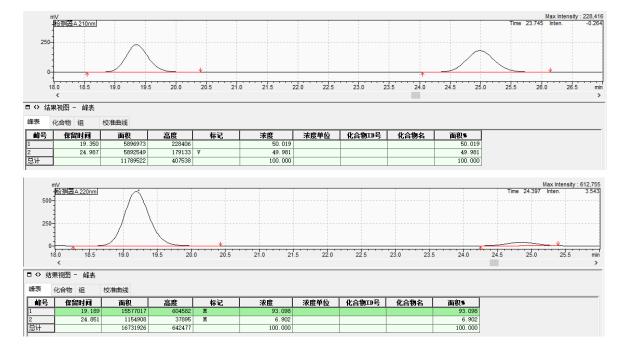
119.5, 113.7, 109.6, 54.5, 54.5, 44.3, 37.3, 36.3.


HPLC trace: Daicel chiralcel OD-H, hexane/ i -PrOH = 70/30, 220 nm, 1.0 mL/min.

L5: $t_{R1} = 9.6 \text{ min (major)}, t_{R2} = 19.5 \text{ min (minor)}; ee = 87.8\%.$

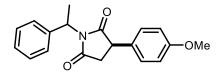
L9: $t_{R1} = 9.6 \text{ min (major)}, t_{R2} = 19.5 \text{ min (minor)}; ee = 50.6\%.$

(R)-1-(4-fluorobenzyl)-3-(4-methoxyphenyl) pyrrolidine-2,5-dione (10e)


Colorless oil. Yield: 46% yield (L5); 32% yield (L9).

¹H NMR (400 MHz, CDCl₃) δ 7.41-7.36 (m, 2H), 7.12 – 7.03 (m, 2H), 7.03 – 6.96 (m, 2H), 6.94 – 6.79 (m, 2H), 4.80 – 4.58 (m, 2H), 3.96 (dd, J_1 = 9.5 Hz, J_2 = 4.7 Hz, 1H), 3.79 (s, 3H), 3.18 (dd, J_1 = 18.5 Hz, J_2 = 9.5 Hz, 1H), 2.78 (dd, J_1 = 18.5 Hz, J_2 = 4.7 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 177.8, 176.0, 162.6 (d, J = 247.8 Hz), 159.4, 131.8 (d, J = 3.3 Hz), 130.9 (d, J = 8.2 Hz), 129.1, 128.5, 115.7 (d, J = 21.7 Hz), 114.8, 55.5, 45.3, 42.1, 37.4.

HPLC trace: Daicel chiralcel OD-H, hexane/ i -PrOH = 70/30, 220 nm, 1.0 mL/min.


L5: $t_{R1} = 19.2 \text{ min (major)}, t_{R2} = 24.7 \text{ min (minor)}; ee = 86.2\%.$

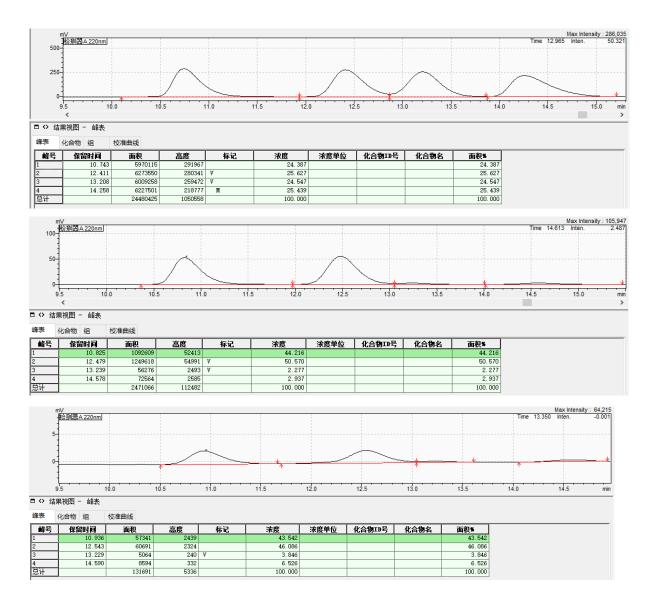
L9: $t_{R1} = 19.3 \text{ min (major)}, t_{R2} = 24.9 \text{ min (minor)}; ee = 44.4\%.$

	nV									Max Intensity : 199,514
200-	<u> 检测器A210nm</u>	~								Time 23.137 - Inten 0.724
	4		\mathbb{N}							
	1		\backslash							
100-		·····								
	1	/	1							
	1	1								
0-				¥						
1	8.0 18.5	19.0	19.5 20.	0 20.5	21.0 21	.5 22.0	22.5	23.0 23.5	24.0	24.5 25.0 25.5 min
	<									>
= 八 (井)	电动图 地士									
	果视图 - 峰表									
峰表	化合物 组	校准曲线								
峰号	保留时间	面积	高度	标记	浓度	浓度单位	化合物10号	化合物名	面积\$	
1	19.302	5086979	198908	M	72. 232				72.232	
2	24.934	1955562	61841	M	27.768				27.768	
总计		7042541	260748		100.000				100.000	

(3R)-3-(4-methoxyphenyl)-1-(1-phenylethyl) pyrrolidine-2,5-dione (10f)

White solid. Yield: 43% yield (L5); 36% yield (L9).

¹H NMR (500 MHz, CHCl₃) δ 7.38 (d, *J* = 7.3 Hz, 2H), 7.28 – 7.16 (m, 3H), 7.02 – 6.93 (m, 2H), 6.82 – 6.74 (m, 2H), 5.42-5.36 (m, 1H), 3.80 (ddd, *J*₁= 12.2 Hz, *J*₂=9.7 Hz, *J*₃= 4.8 Hz, 1H), 3.70 (d, *J* = 4.7 Hz, 3H), 3.03 (dt, *J*₁= 18.4 Hz, *J*₂=9.4 Hz, 1H), 2.64 (ddd, *J*₁= 18.3 Hz, *J*₂=8.5 Hz, *J*₃= 4.6 Hz, 1H), 1.76 (dd, *J*₁= 12.6 Hz, *J*₂=7.4 Hz, 3H). ¹³C NMR (126 MHz, CHCl₃) δ 178.0, 177.9, 176.1, 176.1, 159.3, 159.3, 139.7, 139.6, 129.5, 128.6, 128.5, 128.0, 127.9, 127.7, 127.6, 114.7, 114.6, 55.4, 50.8, 50.5, 45.0, 37.3, 37.2, 16.8, 16.5.


HPLC trace: Daicel chiralcel OD-H, hexane/ i -PrOH = 70/30, 220 nm, 1.0 mL/min.

L5: $t_{R1} = 10.8 \text{ min (major)}, t_{R2} = 13.2 \text{ min (minor)}, ee = 90.2\%.$


 $t_{R1} = 12.5 \text{ min (major)}, t_{R2} = 14.6 \text{ min (minor)}, ee = 89.0\%.$

L9: $t_{R1} = 10.9 \text{ min (major)}, t_{R2} = 13.2 \text{ min (minor)}, ee = 83.8\%.$

 $t_{R1} = 12.5 \text{ min (major)}, t_{R2} = 14.6 \text{ min (minor)}, ee = 75.2\%.$

(*R*)-3-(4-methoxyphenyl)-1-phenethylpyrrolidine-2,5-dione (10g)

White solid. Yield: 58% yield (L5); 49% yield (L9).

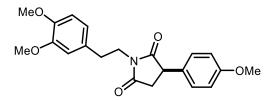
¹H NMR (500 MHz, CHCl₃) δ 7.21 (dd, J_1 = 7.9 Hz, J_2 = 6.4 Hz, 2H), 7.18 – 7.08 (m, 3H),

6.87 (d, J = 8.7 Hz, 2H), 6.76 (d, J = 8.7 Hz, 2H), 3.83 – 3.71 (m, 3H), 3.71 (s, 3H), 3.01 (dd,

*J*₁= 18.4 Hz, *J*₂ = 9.6 Hz, 1H), 2.87 (t, *J* = 7.8 Hz, 2H), 2.59 (dd, *J*₁= 18.4 Hz, *J*₂ = 4.8 Hz, 1H).

¹³C NMR (126 MHz, CHCl₃) δ 178.0, 176.2, 159.3, 137.7, 129.3, 129.1, 128.7, 128.5, 126.9,

114.6, 55.4, 45.1, 40.1, 37.3, 33.4.


HPLC trace: Daicel chiralcel AD-H, hexane/ i -PrOH = 70/30, 220 nm, 1.0 mL/min.

L5: $t_{R1} = 9.5 \text{ min (major)}, t_{R2} = 22.5 \text{ min (minor)}; ee = 89.8\%.$

L9: $t_{R1} = 9.6 \text{ min (major)}, t_{R2} = 22.6 \text{ min (minor)}; ee = 82.8\%.$

(R)-1-(3,4-dimethoxyphenethyl)-3-(4-methoxyphenyl)pyrrolidine-2,5-dione (10h)

Colorless oil. Yield: 45% yield (L5); 48% yield (L9).

The ¹H NMR data is in accordance with that of previous publications. (*Chem. Eur. J.* 2015,

21, 11050-11055.)

¹H NMR (400 MHz, CHCl₃) δ 8.32-8.27 (m, 2H), 7.79-7.75 (m, 1H), 7.64-7.60 (m, 1H), 6.82 – 6.69 (m, 3H), 5.36 (dd, J_1 = 8.7 Hz, J_2 = 4.7 Hz, 1H), 4.09 – 3.98 (m, 2H), 3.87 (s, 3H), 3.86-3.83 (m, 3H), 3.80 – 3.70 (m, 3H), 3.10 (dd, J_1 = 18.3 Hz, J_2 = 8.7 Hz, 1H), 2.90 – 2.81 (m, 2H), 2.61 (dd, J_1 = 18.3 Hz, J_2 = 4.8 Hz, 1H).

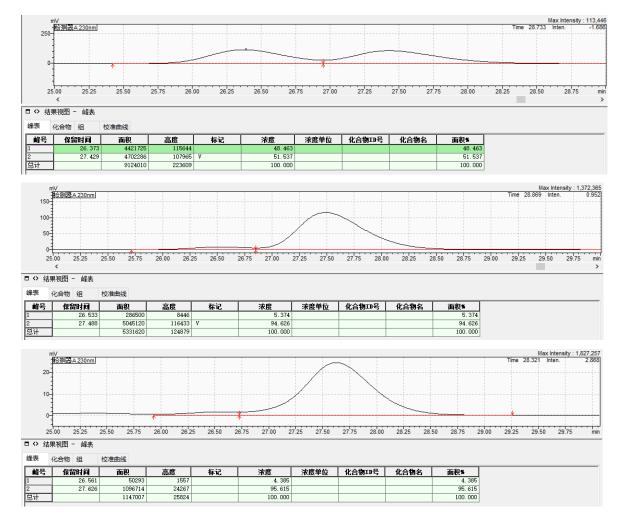
HPLC trace: Daicel chiralcel AD-H, hexane/ *i*-PrOH = 70/30, 220 nm, 1.0 mL/min.

L5: $t_{R1} = 9.5 \text{ min (major)}, t_{R2} = 22.5 \text{ min (minor)}; ee = 92.2\%.$

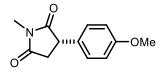
L9: $t_{R1} = 9.6 \text{ min (major)}, t_{R2} = 22.6 \text{ min (minor)}; ee = 82.4\%.$

n	nV											lax Intensity	
	检测器A 230nm									Tim	e 24.414	Inten.	0.684
25-													
-			_										
0-	· • · · · · · · · · · · · · · · · · · ·										_		¥
-								T					
-													
-		i .											
	21.75 2	22.00 22.25	22.50	22.75 23.0	0 23.25	23.50 23.75	24.00	24.25 24.50) 24.75	25.00	25.25	25.50	min
	<												>
□◇ 结野	₹视图 - 峰表												
峰表	化合物组	校准曲线											
	ND E1 100 9E	12/#щ%											
峰号	保留时间	面积	高度	标记	浓度	浓度单位	化合物ID号	化合物名	面积%				
1	22.312	1086129	25105	M	91.184				91.184				
2	24.930	105013	2385	M	8.816				8.816				
总计		1191142	27490		100.000				100.000				

(S)-1-(4-fluorophenethyl)-3-(4-methoxyphenyl)pyrrolidine-2,5-dione (10i)


Colorless oil. Yield: 58% yield (L5); 53% yield (L9).

¹H NMR (400 MHz, CDCl₃) δ 7.21 – 7.13 (m, 2H), 7.02 – 6.91 (m, 4H), 6.89 – 6.82 (m, 2H), 3.88 (dd, J_1 = 9.6 Hz, J_2 = 4.6 Hz, 1H), 3.86 – 3.74 (m, 5H), 3.11 (dd, J_1 = 18.5 Hz, J_2 = 9.5 Hz, 1H), 2.94 (td, J_1 = 7.4 Hz, J_2 = 1.7 Hz, 2H), 2.68 (dd, J_1 = 18.5 Hz, J_2 = 4.7 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 178.0, 176.2, 162.5 (d, J = 245.7 Hz), 159.3, 133.3 (d, J = 3.2 Hz), 130.6, 130.5 (d, J = 8.1 Hz), 129.2, 128.5, 115.5 (d, J = 21.3 Hz), 114.7, 55.5, 45.1, 40.0, 37.2, 32.6.

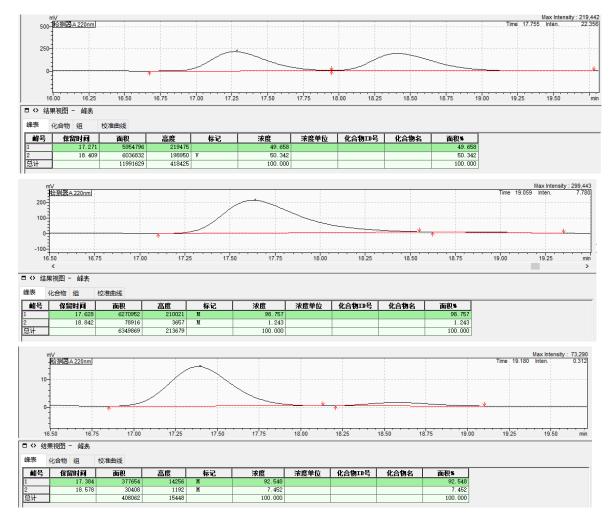

HPLC trace: Daicel chiralcel AD-H, hexane/ i -PrOH = 70/30, 220 nm, 1.0 mL/min.

L5: $t_{R1} = 26.5 \text{ min (minor)}, t_{R2} = 27.5 \text{ min (major)}; ee = 89.2\%.$

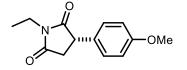
L9: $t_{R1} = 26.6 \text{ min (minor)}, t_{R2} = 27.6 \text{ min (major)}; ee = 91.2\%.$

(S)-3-(4-methoxyphenyl)-1-methylpyrrolidine-2,5-dione (10j)

Colorless oil. Yield: 56% yield (L5); 34% yield (L9).


¹H NMR (500 MHz, CDCl₃): δ 7.16-7.13 (m, 2H), 6.91-6.88 (m, 2H), 3.98 (dd, $J_1 = 9.6$ Hz, $J_2 = 4.8$ Hz, 1H), 3.80 (s, 3H), 3.20 (dd, $J_1 = 18.5$ Hz, $J_2 = 9.6$ Hz, 1H), 3.06 (s, 3H), 2.80 (dd, $J_1 = 18.5$ Hz, $J_2 = 4.8$ Hz, 1H).

¹³C NMR (126 MHz, CDCl₃): δ 178.3, 176.5, 159.3, 129.1, 128.6, 114.7, 55.4, 45.3, 37.3, 25.3.


HPLC trace: Daicel chiralcel OD-H, hexane/ i -PrOH = 80/20, 220 nm, 1.1 mL/min.

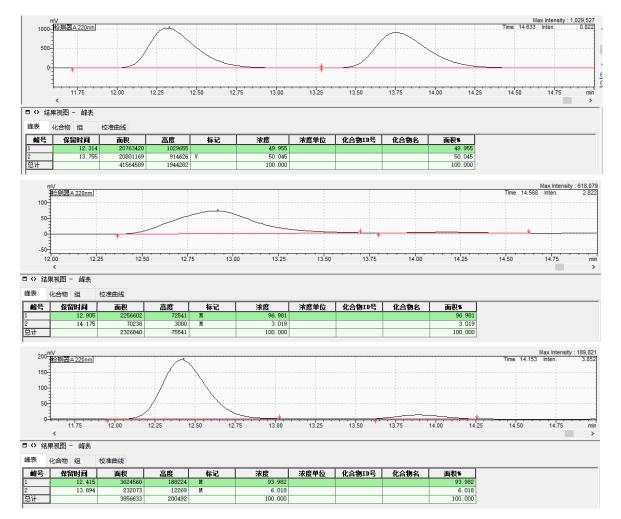
L5: $t_{R1} = 17.6 \text{ min (major)}, t_{R2} = 18.8 \text{ min (minor)}; ee = 97.6\%.$

(S)-1-ethyl-3-(4-methoxyphenyl) pyrrolidine-2,5-dione (10k)

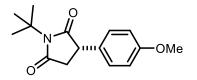
Colorless oil. Yield: 59% yield (L5); 62% yield (L9).

¹H NMR (500 MHz, CDCl₃): δ 7.14-7.11 (m, 2H), 6.91-6.88 (m, 2H), 3.95 (dd, $J_1 = 9.7$ Hz, $J_2 = 4.6$ Hz, 1H), 3.80 (s, 3H), 3.63 (dd, $J_1 = 14.4$ Hz, $J_2 = 7.9$ Hz, 2H), 3.16 (dd, $J_1 = 18.4$

Hz, $J_2 = 9.8$ Hz, 1H), 2.77 (dd, $J_1 = 18.3$ Hz, $J_2 = 4.5$ Hz, 1H), 1.21 (t, J = 7.0 Hz, 3H).


¹³C NMR (126 MHz, CDCl₃): δ 178.0, 176.3, 159.3, 129.3, 128.5, 114.7, 55.4, 45.2, 37.4,

34.1, 13.2.

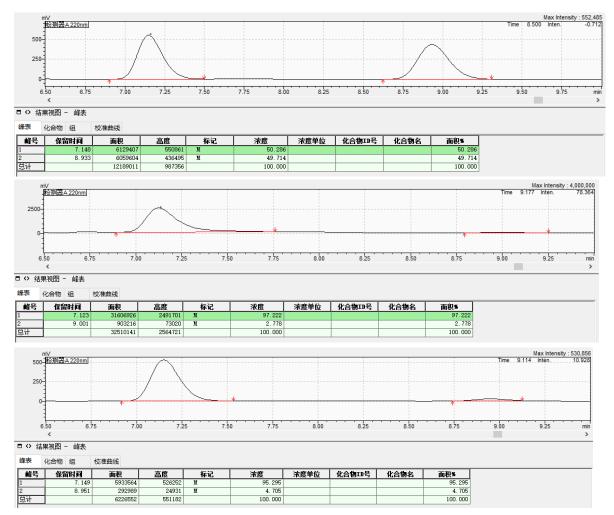

HPLC trace: Daicel chiralcel OD-H, hexane/ i -PrOH = 80/20, 220 nm, 1.1 mL/min.

L5: $t_{R1} = 12.9 \text{ min (major)}, t_{R2} = 14.2 \text{ min (minor)}; ee = 93.9\%.$

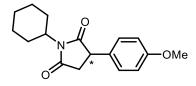
L9: $t_{R1} = 12.4 \text{ min (major)}, t_{R2} = 13.9 \text{ min (minor)}; ee = 88.0\%.$

(S)-1-(tert-butyl)-3-(4-methoxyphenyl) pyrrolidine-2,5-dione (10l)

Colorless oil. Yield: 72% yield (L5); 65% yield (L9).


¹H NMR (500 MHz, CDCl₃): δ 7.14-7.11 (m, 2H), 6.91-6.88 (m, 2H), 3.82-3.79 (m, 4H), 3.06 (dd, *J*₁ = 17.9 Hz, *J*₂ = 9.8 Hz, 1H), 2.69 (dd, *J*₁ = 18.3 Hz, *J*₂ = 4.9 Hz, 1H), 1.60 (s, 9H).

¹³C NMR (126 MHz, CDCl₃): δ 179.3, 177.5, 159.2, 130.0, 128.4, 114.6, 58.6, 55.4, 45.3, 37.6, 28.5.

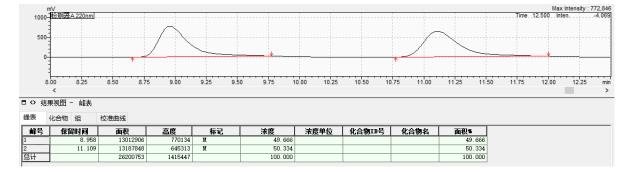

HPLC trace: Daicel chiralcel OD-H, hexane/*i*-PrOH = 80/20, 220 nm, 1.1 mL/min.

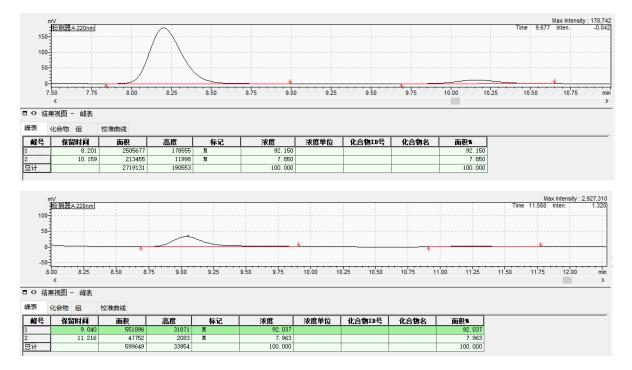
L5: $t_{R1} = 7.1 \text{ min (major)}, t_{R2} = 9.0 \text{ min (minor)}; ee = 94.5\%.$

L9: $t_{R1} = 7.1 \text{ min (major)}, t_{R2} = 9.0 \text{ min (minor)}; ee = 90.6\%.$

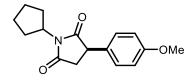
1-cyclohexyl-3-(4-methoxyphenyl)pyrrolidine-2,5-dione (10m)

White solid. Yield: 56% yield (L5); 72% yield (L9).


¹H NMR (500 MHz, CHCl₃) δ 7.13 – 7.07 (m, 2H), 6.92 – 6.84 (m, 2H), 4.05- 4.02 (m, 1H), 3.88 (dd, $J_1 = 9.6$ Hz, $J_2 = 4.5$ Hz, 1H), 3.79 (s, 3H), 3.12 (dd, $J_1 = 18.4$ Hz, $J_2 = 9.6$ Hz, 1H), 2.71 (dd, $J_1 = 18.4$ Hz, $J_2 = 4.6$ Hz, 1H), 2.26 – 2.09 (m, 2H), 1.82 (m, 2H), 1.63 (m, 3H), 1.34 – 1.21 (m, 3H).

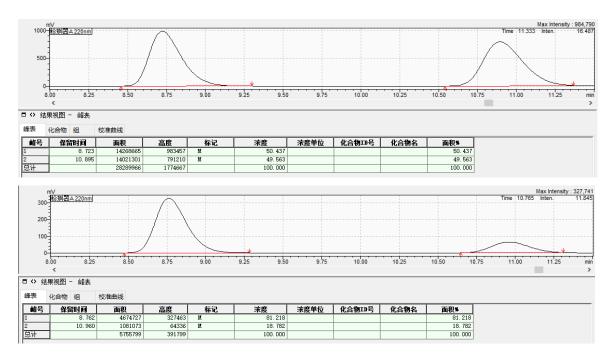

¹³C NMR (126 MHz, CHCl₃) δ 178.3, 176.7, 159.3, 129.8, 128.4, 114.7, 55.4, 52.1, 44.9, 37.3, 29.0, 28.8, 26.0, 25.9, 25.1.

HPLC trace: Daicel chiralcel OD-H, hexane/*i*-PrOH = 80/20, 220 nm, 1.1 mL/min.

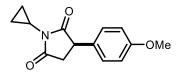

L5: $t_{R1} = 8.2 \text{ min (minor)}, t_{R2} = 10.2 \text{ min (major)}; ee = 84.3\%.$

L9: $t_{R1} = 9.0 \text{ min (major)}, t_{R2} = 11.2 \text{ min (minor)}; ee = 84.0\%.$

(R)-1-cyclopentyl-3-(4-methoxyphenyl)pyrrolidine-2,5-dione (10n)


White solid. Yield: 62% yield (L9).

¹H NMR (500 MHz, CHCl₃) δ 7.14 – 7.08 (m, 2H), 6.91 – 6.86 (m, 2H), 4.57-4.50 (m, 1H), 3.88 (dd, $J_1 = 9.7$ Hz, $J_2 = 4.6$ Hz, 1H), 3.78 (s, 3H), 3.12 (dd, $J_1 = 18.3$ Hz, $J_2 = 9.7$ Hz, 1H), 2.72 (dd, $J_1 = 18.3$ Hz, $J_2 = 4.6$ Hz, 1H), 2.01 (m, 2H), 1.93 – 1.79 (m, 4H), 1.64 – 1.51 (m, 2H).


¹³C NMR (126 MHz, CHCl₃) δ 178.3, 176.5, 159.3, 129.6, 128.5, 114.7, 55.4, 51.9, 44.9, 37.2, 28.9, 28.8, 25.4.

HPLC trace: Daicel chiralcel OD-H, hexane/*i*-PrOH = 80/20, 220 nm, 1.0 mL/min.

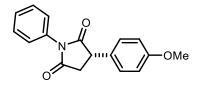
L9: $t_{R1} = 8.8 \text{ min (major)}, t_{R2} = 11.0 \text{ min (minor)}; ee = 62.4\%.$

(*R*)-1-cyclopropyl-3-(4-methoxyphenyl)pyrrolidine-2,5-dione (10o)

White solid. Yield: 58% yield (L9).


¹H NMR (500 MHz, CDCl₃) δ 7.15 – 7.07 (m, 2H), 6.92 – 6.85 (m, 2H), 3.89 (dd, $J_1 = 9.6$ Hz, $J_2 = 4.8$ Hz, 1H), 3.79 (s, 3H), 3.12 (dd, $J_1 = 18.5$ Hz, $J_2 = 10.2$ Hz, 1H), 2.73 (dd, $J_1 = 18.5$ Hz, $J_2 = 9.8$ Hz, 1H), 2.70 – 2.63 (m, 1H), 1.01 – 0.93 (m, 4H).

¹³C NMR (126 MHz, CDCl₃) δ 178.6, 176.8, 159.4, 129.3, 128.5, 114.7, 55.5, 44.8, 37.1,


22.7, 5.04, 5.01.

HPLC trace: Daicel chiralcel OD-H, hexane/*i*-PrOH = 80/20, 220 nm, 1.0 mL/min.

L9: $t_{R1} = 30.3 \text{ min (major)}, t_{R2} = 34.4 \text{ min (minor)}; ee = 57.8\%.$

(S)-3-(4-methoxyphenyl)-1-phenylpyrrolidine-2,5-dione (10p)

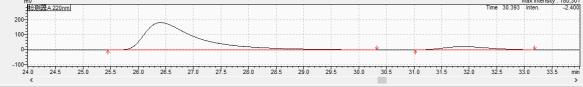
Yellow solid. Yield: 57% yield (L5); 64% yield (L9).

¹H NMR (500 MHz, CDCl₃): δ 7.50-7.46 (m, 2H), 7.42-7.38 (m, 1H), 7.33-7.31 (m, 2H),

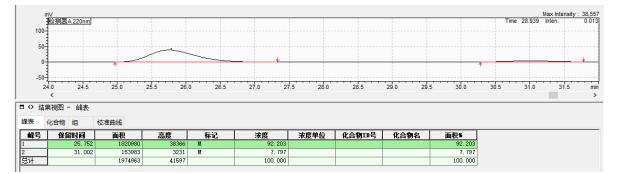
7.25-7.21 (m, 2H,), 6.94-6.91 (m, 2H), 4.14 (dd, *J*₁ = 9.7 Hz, *J*₂ = 4.8 Hz, 1H), 3.81 (s, 3H),

3.35 (dd, *J*₁ = 18.5 Hz, *J*₂ = 9.8 Hz, 1H), 2.96 (dd, *J*₁ = 18.6 Hz, *J*₂ = 4.8 Hz, 1H).

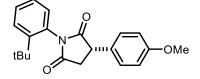
¹³C NMR (125 MHz, CDCl₃): δ 177.1, 175.4, 159.4, 132.0, 129.3, 129.1, 128.8, 128.6, 126.6,


114.8, 55.5, 45.3, 37.4.

HPLC trace: Daicel chiralcel OD-H, hexane/*i*-PrOH = 80/20, 220 nm, 1.1 mL/min.


L5: $t_{R1} = 26.4 \text{ min (major)}, t_{R2} = 31.8 \text{ min (minor)}; ee = 81.4\%.$

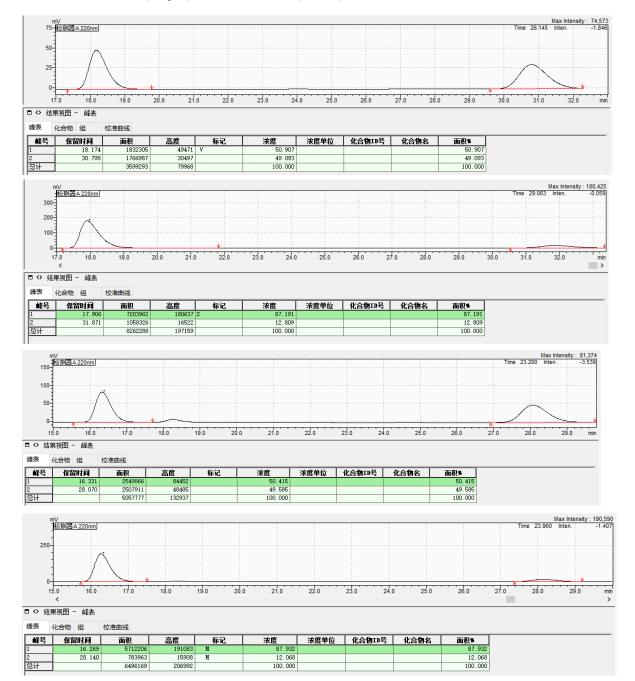
L9: $t_{R1} = 25.8 \text{ min (major)}, t_{R2} = 30.9 \text{ min (minor)}; ee = 84.4\%.$


	会测器A 220nm	1	1								1	1		Time		lax Intensity Inten.	-2.7
	家测器A 220nmj													Time	20.000	inten.	-2
100-																	
4																	
50-																	
3					_								سسلم				
0+		1						*			1						
2																	
-50-						· · · · · · ·										· · · · · · · ·	
24.0	0 24.5 < 视图 - 峰表	25.0	25.5 26	5.0	26.5	27.0	27.5	28.0	28.5	29.0	29.5	30.0	30.5	31.0	31.5	32.0	•
	< 视图 - 峰表 (合物 组	校准曲线		5.0										31.0	31.5	32.0	•••
	< 视图 - 峰表 (合物组 (保留时间)	校准曲线 面积	高度		26.5 标记		衣度	28.0 浓度单位		29.0 物ID号	29.5		积5	31.0	31.5	32.0	
↓ 24.(◆ ◆ 结果 表 化	< 视图 - 峰表 (合物 组 (保留时间 25.792	校准曲线 面积 1634905	<u>高度</u> 335	953			衣度 50. 245						积 \$ 50.245	31.0	31.5	32.0	
↓ 24.(◆ ◆ 结果	< 视图 - 峰表 (合物组 (保留时间)	校准曲线 面积	<u>高度</u> 335	953			衣度					」 面	积5	31.0	31.5	32.0	

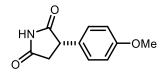
■ ◇ 结	果视图 - 峰表								
峰表	化合物组	校准曲线							
峰号	保留时间	面积	高度	标记	浓度	浓度单位	化合物ID号	化合物名	面积%
1	26.406	12310753	183390	M	90.694				90.694
2	31.889	1263201	22180	M	9.306				9.306
总计		13573953	205571		100.000				100.000

(S)-1-(2-(tert-butyl)phenyl)-3-(4-methoxyphenyl)pyrrolidine-2,5-dione (10q)

White solid. Yield: 37% yield (L5); 48% yield (L9).


¹H NMR (400 MHz, CHCl₃) δ 7.58 (dd, $J_1 = 8.2$ Hz, $J_2 = 1.5$ Hz, 1H), 7.44 – 7.33 (m, 1H), 7.31 – 7.19 (m, 3H), 6.98 – 6.88 (m, 2H), 6.84 (dd, $J_1 = 7.7$ Hz, $J_2 = 1.5$ Hz 1H), 4.13 (dd, $J_1 = 9.8$ Hz, $J_2 = 4.6$ Hz, 1H), 3.80 (s, 3H), 3.35 (dd, $J_1 = 18.8$ Hz, $J_2 = 9.6$ Hz, 1H), 2.96 (dd, $J_1 = 18.6$ Hz, $J_2 = 4.6$ Hz, 1H), 1.33 (s, 9H). ¹³C NMR (101 MHz, CHCl₃) δ 178.2, 176.7, 159.5, 148.2, 130.9, 130.5, 129.9, 129.2, 129.1,

128.7, 127.6, 114.8, 55.5, 45.7, 37.9, 35.8, 31.8.

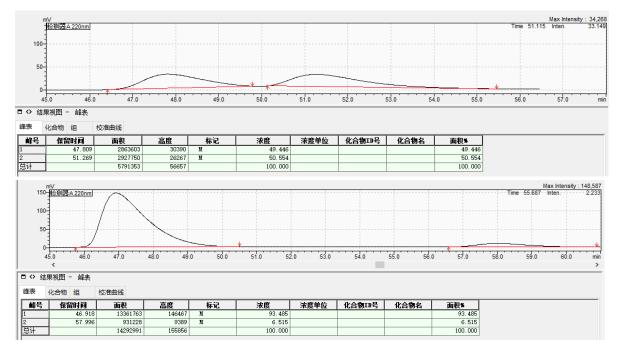

HPLC trace: Daicel chiralcel OD-H, hexane/*i*-PrOH = 90/10, 220 nm, 1.0 mL/min.

L5: $t_{R1} = 17.9 \text{ min (major)}, t_{R2} = 31.9 \text{ min (minor)}; ee = 74.4\%.$

L9: $t_{R1} = 16.3 \text{ min (major)}, t_{R2} = 28.1 \text{ min (minor)}; ee = 75.8\%.$

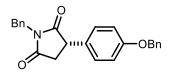
(S)-3-(4-methoxyphenyl)pyrrolidine-2,5-dione (10r)

White solid. Yield: 56% yield (L5); 44% yield (L9).


¹H NMR (500 MHz, CDCl₃) δ 8.67 (s, 1H), 7.21 – 7.10 (m, 2H), 6.98 – 6.80 (m, 2H), 4.04 (dd, $J_1 = 9.7$ Hz, $J_2 = 5.1$ Hz, 1H), 3.80 (s, 3H), 3.23 (dd, $J_1 = 18.6$ Hz, $J_2 = 9.6$ Hz, 1H), 2.85 (dd, $J_1 = 18.6$ Hz, $J_2 = 5.1$ Hz, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 178.6, 176.6, 159.4, 128.7, 128.6, 114.7, 55.5, 46.7, 38.4.

HPLC trace: Daicel chiralcel OD-H, hexane/*i*-PrOH = 90/10, 220 nm, 1.1 mL/min.


L5: $t_{R1} = 46.9 \text{ min (major)}, t_{R2} = 58.0 \text{ min (minor)}; ee = 87.0\%.$

L9: $t_{R1} = 48.0 \text{ min (minor)}, t_{R2} = 51.2 \text{ min (major)}; ee = 73.4\%.$

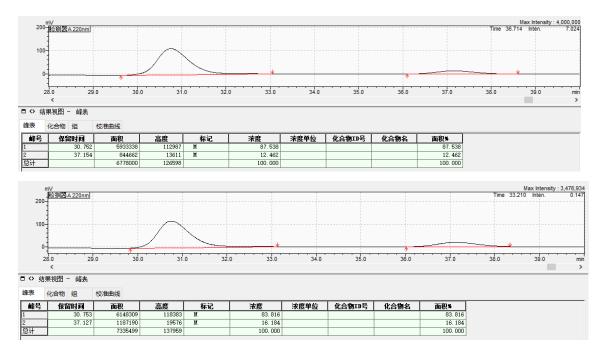
r	nV										Max Intensi	ty: 85,26
	检测器A220nm									Time	50.783 Inten.	19.26
	-											
25-	1											
20-							_ 					
	4											
	1									_		
0-						N					·····	
4	5.0	16.0	47.0	48.0	49.0	50.0	51.0	52.0	53.0	54.0	55.0	'n
	<											
○ 结!	■ 単表											
	no public initiality											
峰表	化合物组	校准曲线										
峰号	保留时间	面积	高度	标记	浓度	浓度单位	化合物ID号	化合物名	面积\$			
1	48.114	343523	4048	M	13.257				13.257			
2	51.174	2247763	18854	M	86.743				86.743			
总计					100.000				100.000			

(S)-1-benzyl-3-(4-(benzyloxy)phenyl)pyrrolidine-2,5-dione (11b)

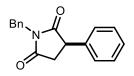
White solid. Yield: 63% yield (L5); 56% yield (L9).

¹H NMR (500 MHz, CDCl₃) δ 7.39 – 7.34 (m, 2H), 7.32 – 7.22 (m, 6H), 7.14 – 7.09 (m, 2H), 4.76 – 4.60 (m, 2H), 3.97 (dd, J_1 = 9.6 Hz, J_2 = 4.7 Hz, 1H), 3.15 (dd, J_1 = 18.5 Hz, J_2 = 9.7 Hz, 1H), 2.77 (dd, J_1 = 18.0 Hz, J_2 = 4.8 Hz, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 177.6, 175.9, 137.3, 135.9, 129.3, 128.9, 128.8, 128.2, 128.1,


127.5, 45.9, 42.8, 37.3.

HPLC trace: Daicel chiralcel OD-H, hexane/*i*-PrOH = 70/30, 220 nm, 1.1 mL/min.


L5: $t_{R1} = 30.8 \text{ min (minor)}, t_{R2} = 37.2 \text{ min (major)}; ee = 75.0\%.$

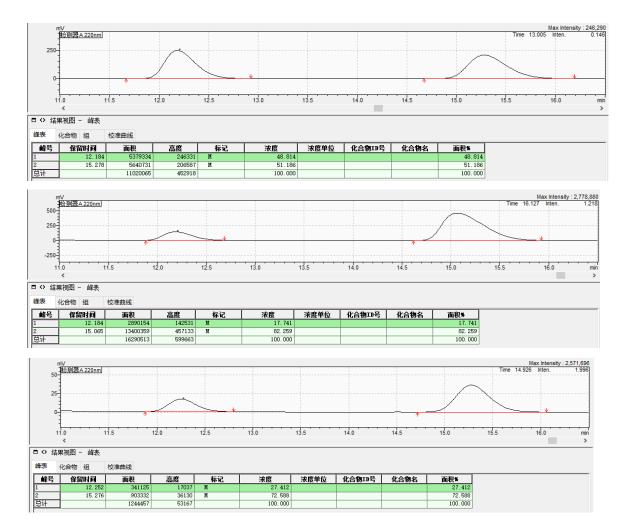
L9: $t_{R1} = 30.7 \text{ min (minor)}, t_{R2} = 37.1 \text{ min (major)}; ee = 66.6\%.$

(*R*)-1-benzyl-3-phenylpyrrolidine-2,5-dione (11c)

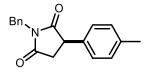
White solid. Yield: 68% yield (L5); 61% yield (L9).

¹H NMR (500 MHz, CDCl₃): δ 7.41-7.39 (m, 2H), 7.36-7.28 (m, 6H), 7.16-7.14 (m, 2H),

 $J_1 = 18.3 \text{ Hz}, J_2 = 9.7 \text{ Hz}, 1\text{H}$, 2.82 (dd, $J_1 = 18.3 \text{ Hz}, J_2 = 4.8 \text{ Hz}, 1\text{H}$).


¹³C NMR (126 MHz, CDCl₃): δ 177.6, 175.9, 137.3, 135.8, 129.3, 129.1, 128.9, 128.8, 128.2,

128.1, 127.5, 46.0, 42.8, 37.3.


HPLC trace: Daicel chiralcel OD-H, hexane/*i*-PrOH = 80/20, 220 nm, 1.1 mL/min.

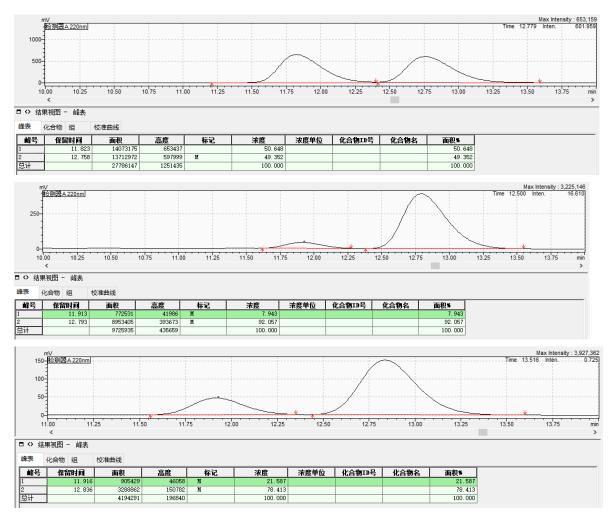
L5: $t_{R1} = 12.2 \text{ min (minor)}, t_{R2} = 15.1 \text{ min (major)}; ee = 64.6\%.$

L9: $t_{R1} = 12.3 \text{ min (minor)}, t_{R2} = 15.3 \text{ min (major)}; ee = 45.2\%.$

(*R*)-1-benzyl-3-(*p*-tolyl)pyrrolidine-2,5-dione (11d)

White solid. Yield: 57% yield (L5); 48% yield (L9).

¹H NMR (500 MHz, CDCl₃): δ 7.41-7.39 (m, 2H), 7.34-7.29 (m, 3H), 7.14 (d, *J* = 8.0 Hz, 2H), 7.04 (d, *J* = 8.4 Hz, 2H), 4.73 (dd, *J*₁ = 29.8 Hz, *J*₂ = 14.0 Hz, 2H), 3.98 (dd, *J*₁ = 9.6 Hz, *J*₂ = 4.6 Hz, 1H), 3.19 (dd, *J*₁ = 18.5 Hz, *J*₂ = 9.3 Hz, 1H), 2.80 (dd, *J*₁ = 18.7 Hz, *J*₂ = 5.0 Hz, 1H).


¹³C NMR (126 MHz, CDCl₃): δ 177.8, 176.1, 137.9, 135.9, 134.2, 130.0, 128.9, 128.8, 128.1,

127.3, 45.6, 42.8, 37.3, 21.2.

HPLC trace: Daicel chiralcel OD-H, hexane/*i*-PrOH = 80/20, 220 nm, 1.1 mL/min.

L5: $t_{R1} = 11.9 \text{ min (minor)}, t_{R2} = 12.8 \text{ min (major)}; ee = 84.0\%.$

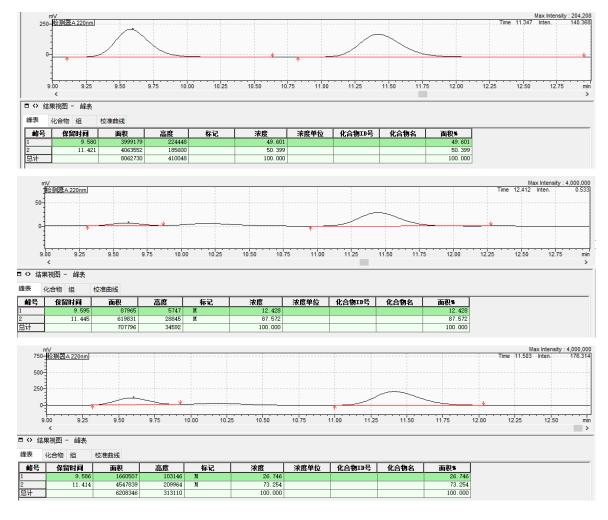
L9: $t_{R1} = 11.9 \text{ min (minor)}, t_{R2} = 12.8 \text{ min (major)}; ee = 56.8\%.$

(R)-1-benzyl-3-(4-(tert-butyl)phenyl)pyrrolidine-2,5-dione (11e)

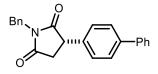
Bn

White solid. Yield: 54% yield (L5); 46% yield (L9).

¹H NMR (500 MHz, CDCl₃) δ 7.43 – 7.38 (m, 2H), 7.38 – 7.28 (m, 5H), 7.12 – 7.07 (m, 2H), 4.89 – 4.60 (m, 2H), 4.00 (dd, $J_1 = 9.5$ Hz, $J_2 = 4.8$ Hz, 1H), 3.18 (dd, $J_1 = 18.6$ Hz, $J_2 = 9.5$ Hz, 1H), 2.82 (dd, $J_1 = 18.6$ Hz, $J_2 = 4.7$ Hz, 1H), 1.30 (s, 9H).


¹³C NMR (126 MHz, CDCl₃) δ 177.8, 176.1, 151.0, 135.9, 134.1, 128.9, 128.8, 128.1, 127.1,

126.3, 45.6, 42.8, 37.3, 34.7, 31.4.


HPLC trace: Daicel chiralcel OD-H, hexane/*i*-PrOH = 80/20, 220 nm, 1.1 mL/min.

L5: $t_{R1} = 9.6 \text{ min (minor)}, t_{R2} = 11.4 \text{ min (major)}; ee = 75.2\%.$

L9: $t_{R1} = 9.6 \text{ min (minor)}, t_{R2} = 11.4 \text{ min (major)}; ee = 46.6\%.$

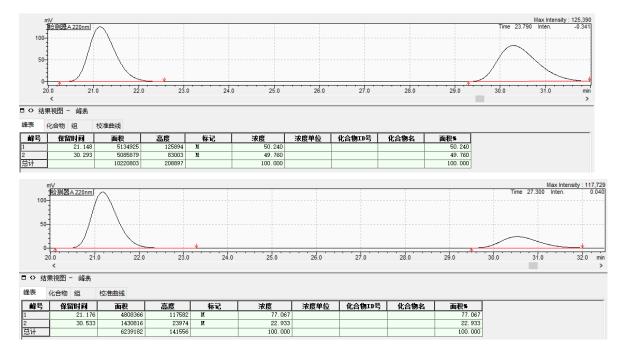
(S)-3-([1,1'-biphenyl]-4-yl)-1-benzylpyrrolidine-2,5-dione (11f)

White solid. Yield: 78% yield (L5); 82% yield (L9).

¹H NMR (400 MHz, CDCl₃) δ 7.62 – 7.52 (m, 4H), 7.50 – 7.39 (m, 4H), 7.39 – 7.27 (m, 4H),

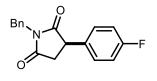
7.26 – 7.22 (m, 2H), 4.86 – 4.65 (m, 2H), 4.07 (dd, *J*₁ = 9.5 Hz, *J*₂ = 4.8 Hz, 1H), 3.24 (dd,

 $J_1 = 18.5$ Hz, $J_2 = 9.6$ Hz, 1H), 2.87 (dd, $J_1 = 18.5$ Hz, $J_2 = 4.8$ Hz, 1H).


¹³C NMR (101 MHz, CDCl₃) δ 177.6, 175.9, 141.1, 140.5, 136.2, 135.9, 129.0, 128.9, 128.9,

128.2, 128.1, 127.9, 127.7, 127.2, 45.7, 42.9, 37.3.

HPLC trace: Daicel chiralcel OD-H, hexane/*i*-PrOH = 80/20, 220 nm, 1.1 mL/min.

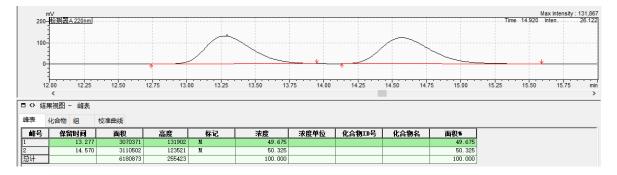

L5: $t_{R1} = 21.2 \text{ min (major)}, t_{R2} = 30.5 \text{ min (minor)}; ee = 54.0\%.$

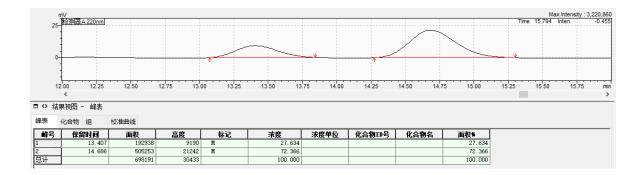
L9: $t_{R1} = 21.2 \text{ min (major)}, t_{R2} = 30.5 \text{ min (minor)}; ee = 61.4\%.$

πV										Max Intensit	
检测器A220nm									Time 28	3.897 Inten.	-3.788
1	\sim										
		- ti									di.
1									<u>۸</u>		
]											
		· · · · ·						· · · · · · · · · · · · · · · · · · ·		· · · · ·	
	.0 22.	0 23	0 24.0	0 25.0	26.0	27.0	28.0	29.0	30.0	31.0	min
<											>
果视图 - 峰表											
化合物组	校准曲线										
保留时间	面积	高度	标记	浓度	浓度单位	化合物ID号	化合物名	面积%			
21.158	5550757	136702	M	80. 741				80. 741			
30.535	1323990	22419	M	19.259				19.259			
	6874747	159121		100.000				100.000			
	21.158				保留时间 面积 高度 标记 浓度 21.158 5550757 136702 M 80.741 30.535 1323990 224.9 M 19.259	<td>21.0 22.0 23.0 24.0 25.0 26.0 27.0 実規図 - 峰表 26.0 27.0 <t< td=""><td>21.0 22.0 23.0 24.0 25.0 26.0 27.0 26.0 第21.156 5550757 136702 M 60.741 19.2599</td><td>保留时间 面积 高度 标记 浓度 浓度单位 化合物名 面积s 21.158 5550757 136702 M 80.741 80.741 80.741 30.5055 1323990 22419 M 19.259 19.741</td><td>000 21.0 22.0 23.0 24.0 25.0 26.0 27.0 28.0 29.0 36.0 #305.55 136702 M 80.741 80.741 80.741 305.55 1323990 22419 M 19.259 19.259</td><td>お到器A 220nm Time 28.897 Inten. Time 28.89</td></t<></td>	21.0 22.0 23.0 24.0 25.0 26.0 27.0 実規図 - 峰表 26.0 27.0 <t< td=""><td>21.0 22.0 23.0 24.0 25.0 26.0 27.0 26.0 第21.156 5550757 136702 M 60.741 19.2599</td><td>保留时间 面积 高度 标记 浓度 浓度单位 化合物名 面积s 21.158 5550757 136702 M 80.741 80.741 80.741 30.5055 1323990 22419 M 19.259 19.741</td><td>000 21.0 22.0 23.0 24.0 25.0 26.0 27.0 28.0 29.0 36.0 #305.55 136702 M 80.741 80.741 80.741 305.55 1323990 22419 M 19.259 19.259</td><td>お到器A 220nm Time 28.897 Inten. Time 28.89</td></t<>	21.0 22.0 23.0 24.0 25.0 26.0 27.0 26.0 第21.156 5550757 136702 M 60.741 19.2599	保留时间 面积 高度 标记 浓度 浓度单位 化合物名 面积s 21.158 5550757 136702 M 80.741 80.741 80.741 30.5055 1323990 22419 M 19.259 19.741	000 21.0 22.0 23.0 24.0 25.0 26.0 27.0 28.0 29.0 36.0 #305.55 136702 M 80.741 80.741 80.741 305.55 1323990 22419 M 19.259 19.259	お到器A 220nm Time 28.897 Inten. Time 28.89

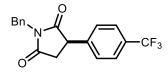
(*R*)-1-benzyl-3-(4-fluorophenyl)pyrrolidine-2,5-dione (11g)

White solid. Yield: 49% yield (L9).


¹H NMR (400 MHz, CDCl₃) δ 7.47 – 7.37 (m, 2H), 7.37 – 7.27 (m, 3H), 7.18 – 7.09 (m, 2H), 7.08 – 6.98 (m, 2H), 4.80 – 4.62 (m, 2H), 4.01 (dd, J_1 = 9.6 Hz, J_2 = 4.9 Hz, 1H), 3.20 (dd, J_1 = 18.5 Hz, J_2 = 9.6 Hz, 1H), 2.78 (dd, J_1 = 18.5 Hz, J_2 = 4.8 Hz, 1H).


¹³C NMR (101 MHz, CDCl₃) δ 177.4, 175.6, 162.5 (d, J = 63.7 Hz), 135.8, 132.9 (d, J = 3.4

Hz), 129.1 (d, J = 8.2 Hz), 128.9, 128.8, 128.2, 116.3 (d, J = 15.7 Hz), 45.2, 42.9, 37.2.

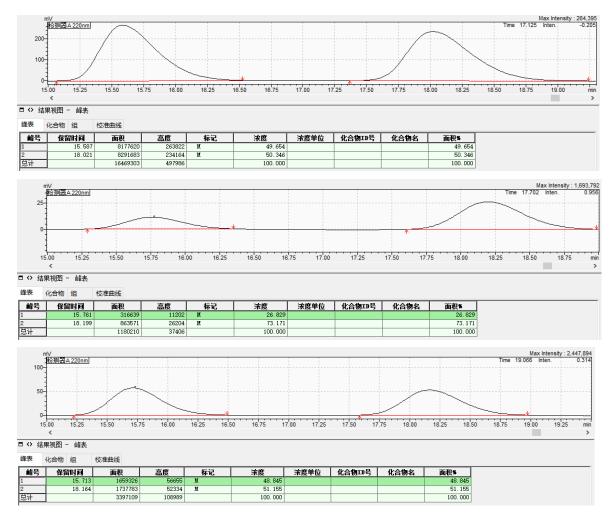

HPLC trace: Daicel chiralcel OD-H, hexane/*i*-PrOH = 80/20, 220 nm, 1.1 mL/min.

L9: $t_{R1} = 13.4 \text{ min (minor)}, t_{R2} = 14.7 \text{ min (major)}; ee = 44.8\%.$

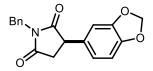
(*R*)-1-benzyl-3-(4-(trifluoromethyl)phenyl)pyrrolidine-2,5-dione (11h)

White solid. Yield: 46% yield (L5); 37% yield (L9)

¹H NMR (500 MHz, CDCl₃) δ 7.61 – 7.53 (m, 2H), 7.36 (dd, $J_1 = 7.9$ Hz, $J_2 = 1.7$ Hz, 2H), 7.33 – 7.23 (m, 5H), 4.75 – 4.62 (m, 2H), 4.05 (dd, $J_1 = 9.6$ Hz, $J_2 = 4.9$ Hz, 1H), 3.20 (dd, $J_1 = 18.5$ Hz, $J_2 = 9.6$ Hz, 1H), 2.77 (dd, $J_1 = 18.5$ Hz, $J_2 = 4.9$ Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 176.7, 175.3, 141.1, 135.7, 130.4 (d, J = 251.2 Hz), 128.9 (d,

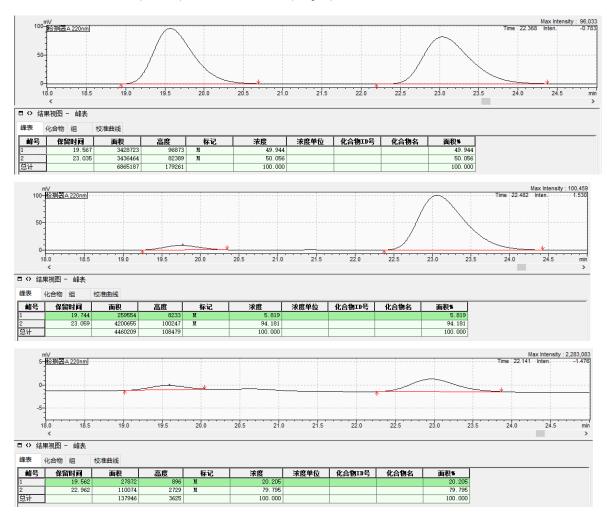

J = 115.0 Hz), 128.32, 128.01, 126.3 (dd, *J*₁ = 77.1 Hz, *J*₂ = 38.6 Hz), 125.0, 122.9, 45.7,

43.0, 36.9.

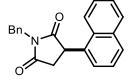

HPLC trace: Daicel chiralcel OD-H, hexane/*i*-PrOH = 80/20, 220 nm, 1.1 mL/min.

L5: $t_{R1} = 15.8 \text{ min (major)}, t_{R2} = 18.2 \text{ min (minor)}; ee = 46.4\%.$

L9: $t_{R1} = 15.7 \text{ min}$, $t_{R2} = 18.2 \text{ min}$; ee = 0.


(R)-3-(benzo[d][1,3]dioxol-5-yl)-1-benzylpyrrolidine-2,5-dione (11i)

White solid. Yield: 40% yield (L5); 45% yield (L9)


¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.33 (m, 2H), 7.32 – 7.23 (m, 3H), 6.79 – 6.66 (m, 1H), 6.62 – 6.51 (m, 2H), 5.90 (s, 2H), 4.75 – 4.59 (m, 2H), 3.88 (dd, $J_1 = 9.5$ Hz, $J_2 = 4.8$ Hz, 1H), 3.13 (dd, $J_1 = 18.5$ Hz, $J_2 = 9.5$ Hz, 1H), 2.71 (dd, $J_1 = 18.5$ Hz, $J_2 = 4.8$ Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 177.6, 175.8, 148.4, 147.5, 135.8, 130.8, 128.9, 128.8, 128.2, 120.9, 108.9, 107.8, 101.4, 45.7, 42.8, 37.4. HPLC trace: Daicel chiralcel OD-H, hexane/*i*-PrOH = 80/20, 220 nm, 1.1 mL/min.

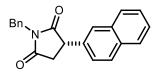
L5: $t_{R1} = 19.7 \text{ min (minor)}, t_{R2} = 23.1 \text{ min (major)}; ee = 88.4\%.$

L9: $t_{R1} = 19.6 \text{ min (minor)}, t_{R2} = 23.0 \text{ min (major)}; ee = 59.6\%.$

(R)-1-benzyl-3-(naphthalen-1-yl)pyrrolidine-2,5-dione (11j)


White solid. Yield: 42% yield (L5); 55% yield (L9)

¹H NMR (400 MHz, CDCl₃) δ 7.89 (dd, *J*₁ = 8.1 Hz, *J*₂ = 1.4 Hz, 1H), 7.81 (d, *J* = 8.3 Hz, 1H), 7.65 (d, *J* = 8.5 Hz, 1H), 7.55 – 7.47 (m, 3H), 7.47 – 7.31 (m, 5H), 7.21 (dd, *J*₁ = 7.1 Hz, $J_2 = 1.2$ Hz, 1H), 4.83 (dd, $J_1 = 13.8$ Hz, $J_2 = 2.3$ Hz, 2H), 4.70 (dd, $J_1 = 9.7$ Hz, $J_2 = 5.0$ Hz, 1H), 3.35 (dd, $J_1 = 18.5$ Hz, $J_2 = 9.7$ Hz, 1H), 2.82 (dd, $J_1 = 18.5$ Hz, $J_2 = 5.0$ Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 177.6, 175.8, 148.4, 147.5, 135.8, 130.8, 128.9, 128.8, 128.2, 120.9, 108.9, 107.8, 101.4, 45.7, 42.8, 37.4.


HPLC trace: Daicel chiralcel OD-H, hexane/*i*-PrOH = 80/20, 220 nm, 1.1 mL/min.

L5: $t_{R1} = 24.0 \text{ min (minor)}, t_{R2} = 29.7 \text{ min (major)}; ee = 52.6\%.$

L9: $t_{R1} = 24.2 \text{ min (minor)}, t_{R2} = 29.6 \text{ min (major)}; ee = 95.0\%.$

(S)-1-benzyl-3-(naphthalen-2-yl)pyrrolidine-2,5-dione (11k)

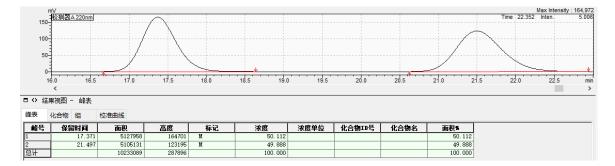
White solid. Yield: 54% yield (L5); 47% yield (L9)

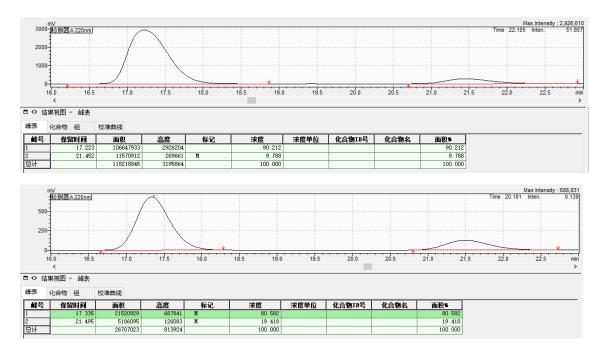
¹H NMR (500 MHz, CDCl₃) δ 7.88 – 7.82 (m, 2H), 7.82 – 7.76 (m, 1H), 7.66 (d, *J* = 1.8 Hz,

1H), 7.56 - 7.47 (m, 4H), 7.42 - 7.33 (m, 3H), 7.25 (dd, $J_1 = 8.5$ Hz, $J_2 = 1.9$ Hz, 1H), 4.81

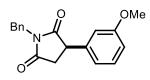
 $(dd, J_1 = 28.5 Hz, J_2 = 14.1 Hz, 2H), 4.17 (dd, J_1 = 9.5 Hz, J_2 = 4.7 Hz, 1H), 3.26 (dd, J_1 = 28.5 Hz, J_2 = 14.1 Hz, 2H), 4.17 (dd, J_1 = 9.5 Hz, J_2 = 4.7 Hz, 1H), 3.26 (dd, J_1 = 28.5 Hz, J_2 = 14.1 Hz, 2H), 4.17 (dd, J_1 = 9.5 Hz, J_2 = 4.7 Hz, 1H), 3.26 (dd, J_1 = 28.5 Hz, J_2 = 14.1 Hz, 2H)$

18.5 Hz, $J_2 = 9.6$ Hz, 1H), 2.92 (dd, $J_1 = 18.5$ Hz, $J_2 = 4.7$ Hz, 1H).


¹³C NMR (126 MHz, CDCl₃) δ 177.5, 175.9, 135.9, 134.6, 133.4, 132.8, 129.3, 128.9, 128.8,


128.1, 127.8, 127.7, 126.6, 126.6, 126.4, 124.8, 46.0, 42.8, 37.2.

HPLC trace: Daicel chiralcel OD-H, hexane/*i*-PrOH = 80/20, 220 nm, 1.1 mL/min.


L5: $t_{R1} = 17.2 \text{ min (major)}, t_{R2} = 21.5 \text{ min (minor)}; ee = 80.4\%.$

L9: $t_{R1} = 17.1 \text{ min (major)}, t_{R2} = 21.5 \text{ min (minor)}; ee = 61.2\%.$

(R)-1-benzyl-3-(3-methoxyphenyl)pyrrolidine-2,5-dione (111)

White solid. Yield: 58% yield (L5); 66% yield (L9)

¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.28 (m, 2H), 7.27 – 7.09 (m, 4H), 6.74 (dd, $J_1 = 8.1$

Hz, $J_2 = 2.5$ Hz, 1H), 6.68 – 6.60 (m, 1H), 6.57 (t, J = 2.2 Hz, 1H), 4.72 – 4.52 (m, 2H),

3.88 (dd, *J*₁ = 9.5 Hz, *J*₂ = 4.6 Hz 1H), 3.64 (s, 3H), 3.09 (dd, *J*₁ = 18.5 Hz, *J*₂ = 9.5 Hz,

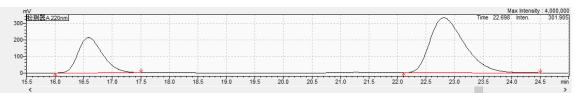
1H), 2.71 (dd, $J_1 = 18.5$ Hz, $J_2 = 4.6$ Hz, 1H).


¹³C NMR (101 MHz, CDCl₃) δ 177.4, 175.9, 160.2, 138.8, 135.9, 130.4, 128.9, 128.8,

128.1, 119.6, 113.5, 113.2, 55.3, 46.0, 42.8, 37.3.

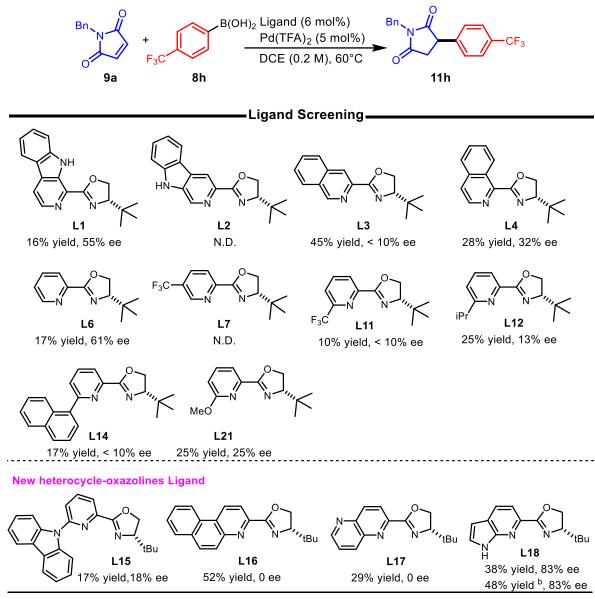
HPLC trace: Daicel chiralcel OD-H, hexane/*i*-PrOH = 80/20, 220 nm, 1.1 mL/min.

L5: $t_{R1} = 16.6 \text{ min (minor)}, t_{R2} = 22.8 \text{ min (major)}; ee = 37.6\%.$


L9: $t_{R1} = 16.6 \text{ min (minor)}, t_{R2} = 22.8 \text{ min (major)}; ee = 45.6\%.$

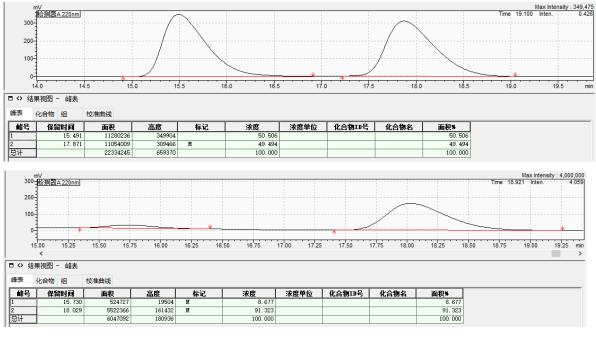
□ ◇ 结果视图 - 峰表

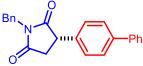
峰表 化合物 组 校准的


1001100 28	12/12/12/12/22							
保留时间	面积	高度	标记	浓度	浓度单位	化合物ID号	化合物名	面积%
16.545	9628609	319514	M	50.162				50.162
22.853	9566604	230628	M	49.838				49.838
	19195213	550142		100.000				100.000
	保留时间 16.545	保留时间 面积 16.545 9628609 22.853 9566604	保留时间 面积 高度 16.545 9628609 319514 22.853 9566604 230628	保留时间 面积 高度 标记 16.545 9628609 319514 M 22.853 9566604 230628 M	保留时间 面积 高度 标记 浓度 16.545 9628609 319614 M 50.162 22.853 9566604 230628 M 49.838	保留时间 面积 高度 标记 浓度 浓度单位 16.545 9828609 319514 M 50.162 22.853 9566604 230628 M 49.838	保留时间 面积 高度 标记 浓度 浓度单位 化合物口号 16.645 9628609 319514 M 50.162 22.853 9566604 230628 M 49.838	保留时间 面积 高度 标记 浓度 浓度单位 化合物10号 化合物24 16:545 9828609 319514 M 50.162

□ ◇ 结果视图 - 峰表

峰表	化合物组	校准曲线								
峰号	保留时间	面积	高度	标记	浓度	浓度单位	化合物ID号	化合物名	面积%	
1	16.	582 6323	563 213091	м	31.155				31.155	
2	22.	310 13973	507 332295	M	68.845				68.845	
总计		20297	070 545386		100.000				100.000	

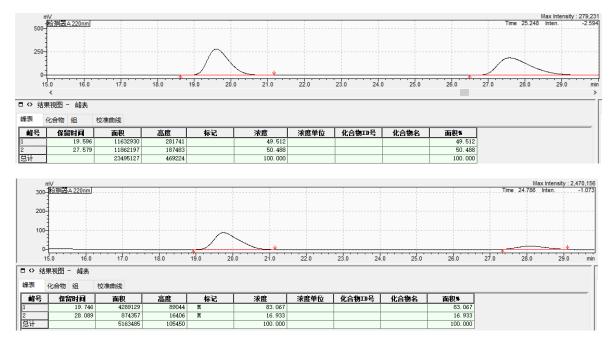


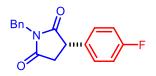

7. Heterocycle-oxazolines for Asymmetric Synthesis of 11h

a, unless otherwise mentioned, the yields referred to HPLC yield. The ee values were determined by HPLC analysis on a chiral phase. b, Isolated yield. N.D. = not detected.

HPLC trace: Daicel chiralcel OD-H, hexane/*i*-PrOH = 80/20, 220 nm, 1.1 mL/min.

L18: $t_{R1} = 15.7 \text{ min (minor)}, t_{R2} = 18.0 \text{ min (major)}; ee = 82.7\%.$

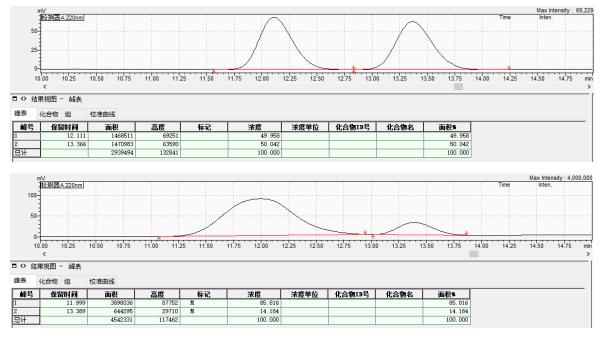


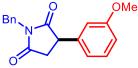


11f: 76% isolated yield.

HPLC trace: Daicel chiralcel OD-H, hexane/*i*-PrOH = 80/20, 220 nm, 1.2 mL/min.

L18: $t_{R1} = 19.7 \text{ min (major)}, t_{R2} = 28.1 \text{ min (minor)}; ee = 66.0\%.$

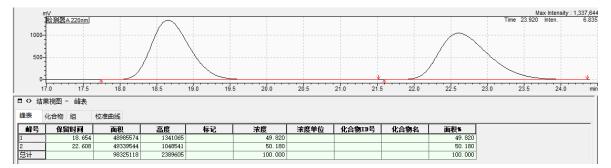




11g: 58% isolated yield.

HPLC trace: Daicel chiralcel OD-H, hexane/*i*-PrOH = 80/20, 220 nm, 1.2 mL/min.

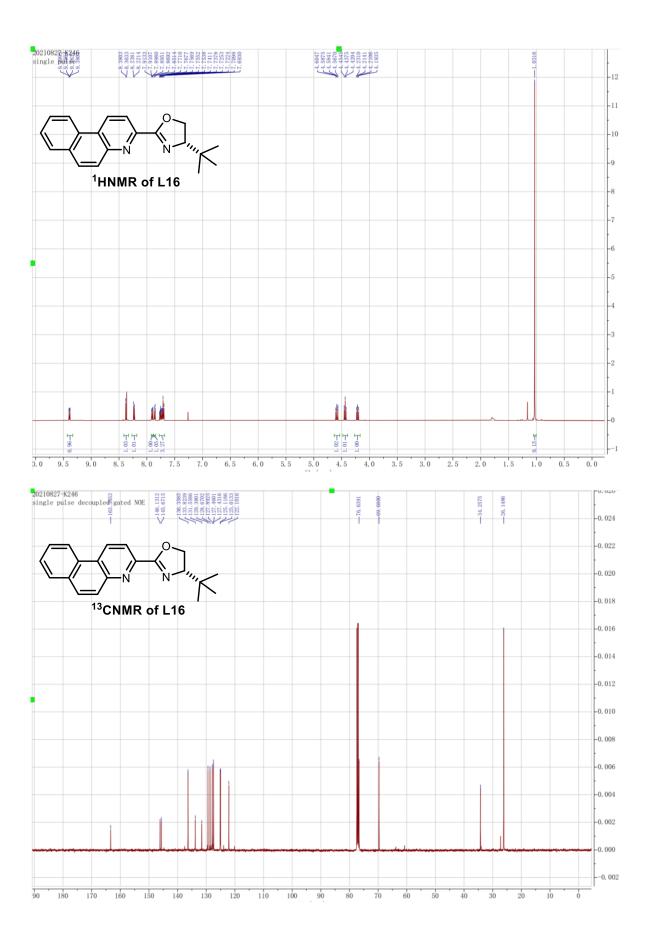
L18: $t_{R1} = 12.0 \text{ min (major)}, t_{R2} = 13.4 \text{ min (minor)}; ee = 71.6\%.$

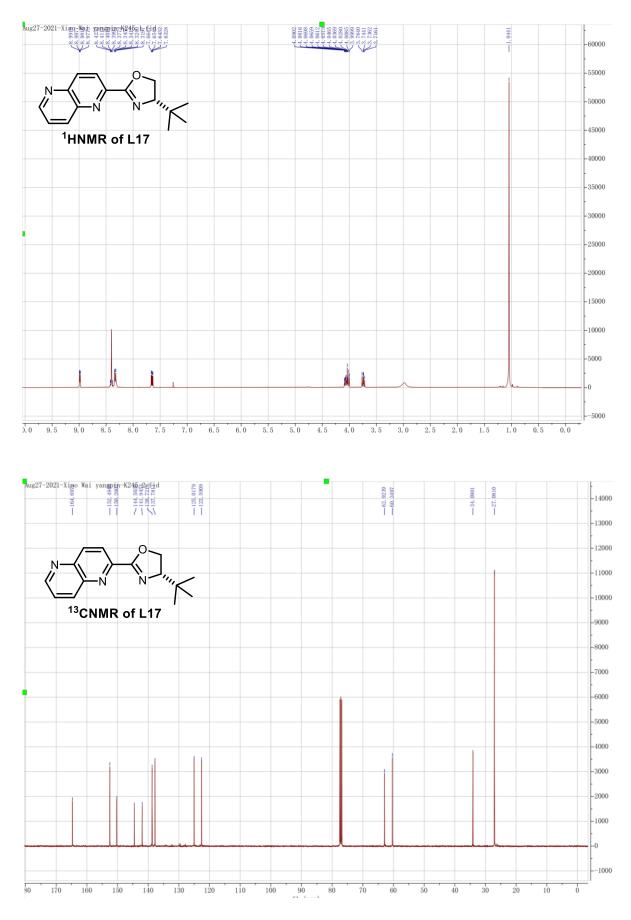


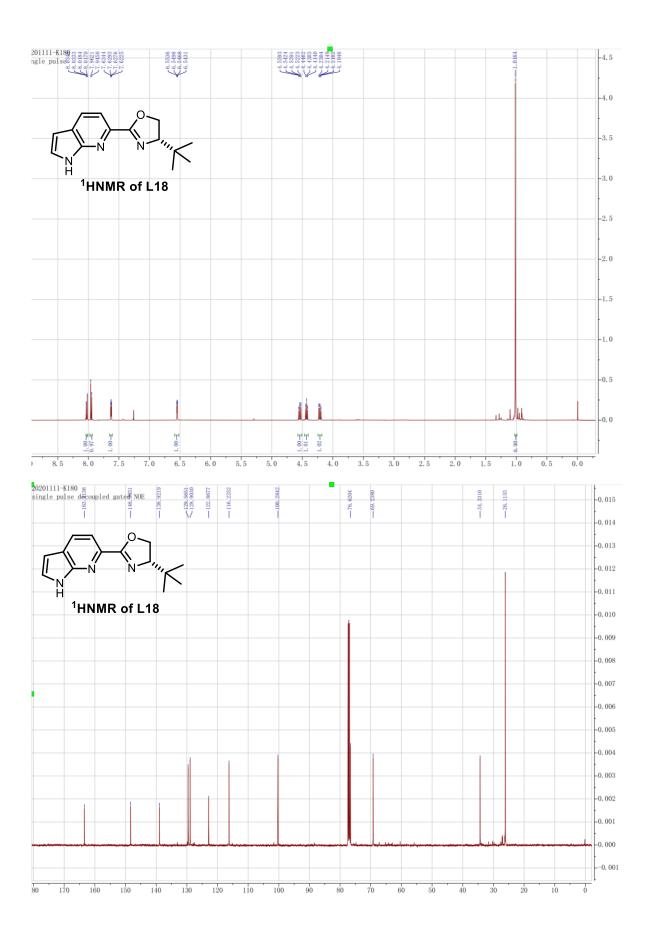
111: 53% isolated yield.

HPLC trace: Daicel chiralcel OD-H, hexane/*i*-PrOH = 80/20, 220 nm, 1.2 mL/min.

L18: $t_{R1} = 15.3 \text{ min (minor)}, t_{R2} = 20.3 \text{ min (major)}; ee = 57.6\%.$


m	IV													ax Intensity	: 2,471,710
	<u> </u>											Time	21.336	Inten.	5.303
1000-															
1															
500-												~			
1															
.1		1	¥											¥	
1		4	46.6	16.0 16		.0 17.	- · · · · · · · · · · · · · · · · · · ·				20.0	20.5	24.0	245	
14	14.5	15.0	15.5	16.0 16	0.5 1/	r.u 17.	.5 18.	0 18.5	19.0	19.5	20.0	20.5	21.0	21.5	mir
	<														>


□ ◇ 结果视图 - 峰表


峰表	化合物组	校准曲线							
峰号	保留时间	面积	高度	标记	浓度	浓度单位	化合物ID号	化合物名	面积%
1	15.261	5869458	215913	M	21.159				21.159
2	20.292	21870696	567968	M	78.841				78.841
总计		27740154	783881		100.000				100.000

8. NMR spectra

