Supporting Information

Sequence-sorted redox-switchable hetero[3]rotaxanes

Marius Gaedke, ‡^[a] Henrik Hupatz, ‡^[a] Felix Witte,^[b] Susanne M. Rupf,^[c] Clara Douglas,^[a] Hendrik V. Schröder,^[a,d] Lukas Fischer,^[a] Moritz Malischewski,^[c] Beate Paulus^[b] and Christoph A. Schalley*^[a]

 ^[a] Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 20, 14195 Berlin, Germany.
^[b] Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany.
^[c] Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstr. 34/36 14195 Berlin, Germany.
^[d]present address: Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ08544, USA
*Corresponding author e-mail: <u>c.schalley@fu-berlin.de</u>

+These authors contributed equally to this work.

Table of Contents

1.	Experi	rimental details	
	1.1.	General methods	S02
	1.2.	Synthesis of axle AX	S04
	1.3.	Synthesis of macrocycle NDIC7	S13
	1.4.	Synthesis of (pseudo)[3]rotaxanes	S19
2.	Isothermal titration calorimetry		S40
3.	Hetero	teropseudo[3]rotaxane ¹ H NMR experimentsS42	
4.	Tande	Fandem mass spectrometryS48	
5.	Electro	Electrochemical measurementsS73	
6.	UV/Vis experiments		S76
7.	Computational details		S77
8.	Crystallographic data		S78
9.	References		S81

1. Experimental details

1.1. General methods

All reagents and solvents were obtained from commercial sources and used without further purification. Dry solvents were purchased from Acros Organics (Geel, Belgium) and either directly used or treated with the M. Braun solvent purification system SPS 800. Wheel **TTFC8**,¹ 2,6-dimethoxybenzonitrile oxide stopper **St1**,² monovalent axle **A1**,³ monovalent axle **A2**,³ 1-bromo-6-(prop-2-yn-1-yloxy)hexane **S5**,⁴ *tert*-butyl (3,5-dihydroxyphenyl)carbamate **S10**,³ NDI building block **S13**,⁵ **BC7**⁶ and **NDIC8**³ were synthesised according to literature procedures, sodium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (NaBArF₂₄), 3,5-di-*tert*-butylbenzalde-hyde **S1**, (4-cyanophenyl)methanaminium chloride **S2**, di-*tert*-butyl-dicarbonate, were bought at Sigma Aldrich or TCI Chemicals. Thin-layer chromatography was performed on silica gel-coated plates with fluorescent indicator F254 (Merck). For column chromatography, silica gel (0.04-0.063 mm, Merck), or Biotage SNAP and SNAP Ultra Cartridges were used on a Biotage Isolera One.

¹H and ¹³C NMR experiments were performed on JEOL ECX 400, JEOL ECZ 600, Bruker AVANCE 500 or Bruker AVANCE 700 instruments. Residual solvent signals were used as the internal standards. All shifts are reported in ppm and NMR multiplicities are abbreviated as s (singlet), d (doublet), t (triplet), m (multiplet) and br (broad). Coupling constants *J* are reported in Hertz. Compounds containing the tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (BArF₂₄⁻) anion show ¹³C NMR spectra with ¹⁹F, ¹⁰B and ¹¹B couplings. These signals are denoted as one signal.

High-resolution ESI mass spectra were measured on an Agilent 6210 ESI-TOF device or a Synapt G2-S HDMS (Waters Co., Milford, MA, USA) mass spectrometer. HPLC grade solvents were used for sample preparation.

UV/Vis spectra were recorded with a Varian Cary 50 Bio spectrometer equipped with a xenon lamp. Solvents with HPLC grade and Suprasil glass cuvettes with a path-length of 1 cm were used.

CV measurements were carried out with an Autolab PGSTAT302N potentiostat in a 2 mL measuring cell in 1,2-dichloroethane with 0.1 M n-Bu₄NBArF₂₄ as the conducting salt. The working electrode was made of glassy carbon, the reference Ag electrode was etched with conc. aq. HCl. A Pt wire worked as the counter electrode. The cyclic voltammogram traces were recorded with 25, 50, 100, 250, 500, 1000 mV/s scan rates, to ensure that the observed processes are reversible and diffusion-limited. In order to obtain the correct half-wave potentials, FeCp₂*⁰/FeCp₂*⁺ (decamethylferrocene) was used as the reference. These values were afterwards referenced to FeCp₂/FeCp₂*⁺ (ferrocene) as described in the literature.⁷ The

S2

raw data were treated with Nova 1.5 by Metrohm and the plots were made with Origin 2020 by OriginLab.

1.2. Synthesis of axle Ax

4-(((3,5-di-tert-butylbenzyl)amino)methyl)benzonitrile S3

3,5-Di-*tert*-butylbenzaldehyde (2.00 g, 9.16 mmol, 1.00 equiv.) and (4-cyanophenyl)methanaminium chloride (1.53 g, 9.16 mmol, 1.00 equiv.) were dissolved in dry EtOH (400 ml) under argon atmosphere. Triethylamine (1.15 mL, 8.27 mmol, 0.90 equiv.) was added and the solution was refluxed for 5 h. After it was cooled to 0 °C, NaBH₄ (1.73 g, 45.8 mmol, 5.00 equiv.) was added and the solution was stirred under argon atmosphere overnight in the thawing ice bath. The reaction was then quenched by adding a concentrated aq. solution of NaHCO₃ until no more gas evolved. The solvent was removed under reduced pressure and the oily residue was dissolved in CH₂Cl₂ (100 ml). The organic layer was washed with brine and dried over MgSO₄. The solvent was removed under reduced pressure and the residue was purified by column chromatography (SiO₂, CH₂Cl₂/MeOH 100:1 \rightarrow 50:1, R_f ~ 0.4 in CH₂Cl₂/MeOH = 50:1) yielding the amine as a white solid (1.76 g, 5.26 mmol, 57%).

¹**H NMR** (500 MHz, CD₂Cl₂): δ = 1.33 (s, 18H, 1), 3.76 (s, 2H, 5), 3.87 (s, 2H, 4), 7.16 (d, *J* = 1.8 Hz, 2H, 3), 7.32 (t, *J* = 1.9 Hz, 1H, 2), 7.48 – 7.52 (m, 2H, 6), 7.60 – 7.64 (m, 2H, 7) ppm. ¹³**C NMR** (125 MHz, CD₂Cl₂): δ = 31.8, 35.3, 111.1, 119.6, 121.6, 122.9, 129.2, 132.7, 139.9, 147.2, 151.4.ppm. **HRMS (MeOH)**: m/z calcd. for [C₂₃H₃₁N₂]+: 335.2482 [M+H]+, found: 335.2495

Fig. S1 ¹H (top) and ¹³C (bottom) NMR spectra (500/126 MHz, CD_2CI_2 , 298 K) of amine S3.

tert-butyl (4-(((tert-butoxycarbonyl)amino)methyl)benzyl)(3,5-di-tertbutylbenzyl)carbamate S4

S4

Amine **S3** (1.76 g, 5.26 mmol, 1.00 equiv.) was dissolved in dry THF (400 ml) under argon atmosphere and cooled to 0 °C. LiAlH₄ (1.00 g, 26.3 mmol, 5.00 equiv.) was added and the solution was stirred under argon atmosphere for 24 h in the thawing ice bath. The reaction was quenched by adding a concentrated aq. solution of Na₂SO₄ until no more gas evolved. The precipitate was filtered off and the solvent was removed under reduced pressure. The residue was dissolved in CH₂Cl₂ (100 mL), washed with water and brine and dried over MgSO₄. The solvent was removed under reduced pressure. The raw product (1.75 g, 5.2 mmol, 1.00 equiv.) was dissolved in CH₂Cl₂ (50 mL) and cooled to 0 °C. Triethylamine (1.26 g, 12.4 mmol, 2.40 equiv.) and di-*tert*-butyl-dicarbonate (2.49 g, 11.4 mmol, 2.20 equiv.) was added. The reaction mixture was stirred overnight in the thawing ice bath. Afterwards, it was quenched by adding a concentrated aq. solution of NaHCO₃. The organic layer was washed with water and brine and dried over MgSO₄. The solvent was purified by column chromatography (SiO₂, CH₂Cl₂/MeOH 100:1 \rightarrow 20:1, R_f ~ 0.4 in CH₂Cl₂/MeOH = 100:1) yielding the protected diamine as a colorless sticky oil (1.88 g, 3.48 mmol, 66%).

¹**H NMR** (700 MHz, CDCl₃): δ = 1.31 (s, 18H, 1), 1.47 (s, 9H, *tert*-butyl), 1.50 (s, 9H, *tert*-butyl), 4.30 (m, 4H, 4,5), 4.40 (s, 2H, 8), 4.40 (s_{br}, 1H, NH), 6.99 – 7.09 (m, 2H, 3), 7.11 – 7.25 (m, 4H, 6, 7), 7.31 (t, *J* = 1.9 Hz, 1H, 2) ppm. ¹³**C NMR** (176 MHz, CDCl₃): δ = 28.6, 31.8, 34.9, 44.6, 48.9, 49.2, 49.7, 50.2, 80.0, 121.3, 122.0, 122.4, 127.8, 128.5, 137.4, 137.9, 151.0, 154.9, 156.2 ppm. **HRMS (MeOH)**: m/z calcd. for [C₃₃H₅₀N₂O₄]⁺: 577.3403 [M+K]⁺, found: 577.3436; m/z calcd. for [C₃₃H₅₀N₂O₄]⁺: 561.3663 [M+Na]⁺, found: 561.3696.

tert-butyl (4-(((*tert*-butoxycarbonyl)(6-(prop-2-yn-1yloxy)hexyl)amino)methyl)benzyl)(3,5-di-*tert*-butylbenzyl)carbamate S6

Carbamate **S4** (1.99 g, 3.8 mmol, 1.00 equiv.) was dissolved in dry DMF (50 ml) under argon atmosphere and cooled to 0 °C. NaH (0.2 g, 4.9 mmol, 1.30 equiv.) was added slowly and portion-wise, the mixture stirred for 10 min in the ice bath and became pink. **S5** (1.00 g, 4.5 mmol, 1.20 equiv.) was added and the mixture was stirred under argon atmosphere in the thawing ice bath overnight. The reaction was quenched by adding H₂O (50 mL). The solvent was removed under reduced pressure and the residue was dissolved in CH₂Cl₂ (100 mL), washed with water and dried over MgSO₄. The solvent was removed under reduced pressure. The crude product was purified by column chromatography (SiO₂, cyclohexane/Et₂O 9:1 -> 8:2, R_f ~ 0.5 in cyclohexane/Et₂O 8:2) yielding **S6** as a colorless sticky oil (2.19 g, 3.23 mmol, 85%).

¹H NMR (700 MHz, CDCl₃): δ = 1.24 – 1.29 (m, 2H, 11), 1.31 (s, 18H, 1), 1.33 – 1.39 (m, 2H, 12), 1.42 – 1.53 (m, 20H, *tert*-butyl, 10), 1.55 – 1.62 (m, 2H, 13), 2.40 (t, *J* = 2.4 Hz, 1H, 16), 3.08 – 3.22 (m, 2H, 9), 3.49 (t, *J* = 6.6 Hz, 2H, 14), 4.12 (d, *J* = 2.4 Hz, 2H, 15), 4.25 – 4.33 (m, 2H, 4/5), 4.35 – 4.46 (m, 4H, 8,4/5), 7.00 – 7.08 (m, 2H, 3), 7.11 – 7.22 (m, 4H, 6,7), 7.32 (t, *J* = 1.9 Hz, 1H, 2) ppm. ¹³**C** NMR (176 MHz, CDCl₃): δ = 26.0, 26.8, 28.2, 28.6, 29.6, 30.5, 31.6, 34.9, 47.1, 48.9, 49.3, 50.0, 50.1, 58.2, 70.2, 74.2, 79.7, 80.0, 80.2, 121.3, 122.1, 122.5, 127.2, 127.8, 128.3, 137.1, 137.4, 137.8, 151.0, 156.2 ppm. HRMS (MeOH): m/z calcd. for [C₄₂H₆₄N₂O₅]⁺: 715.4452 [M+K]⁺, found: 715.4473; m/z calcd. 699.4713 [M+Na]⁺, found: 699.4732.

Fig. S3 1 H (top) and 13 C (bottom) NMR spectra (700/176 MHz, CDCI₃, 298 K) of carbamate S6.

N-(4-(((3,5-di-tert-butylbenzyl)ammonio)methyl)benzyl)-6-(prop-2-yn-1-yloxy)hexan-1aminium tetrakis(3,5-bis(trifluoromethyl)phenyl)borate Ax

Ax

Carbamate **S6** (0.43 g, 0.61 mmol, 1.00 equiv.) was dissolved in EtOAc (20 ml) and cooled to 0 °C. conc. HCl (3 mL) was added. The mixture was stirred in the thawing ice bath overnight. The solvent was removed under reduced pressure and a portion (0.10 g, 0.18 mmol, 1.00 equiv.) was dissolved in MeOH (20 mL). NaBArF₂₄ (0.32 g, 0.36 mmol, 2.00 equiv.) was added and the mixture stirred for 3 h at r.t.. The solvent was removed under reduced pressure, the crude product was dissolved in CH₂Cl₂ (50 mL), washed with water and dried over MgSO₄. Removal of the solvent yielded **Ax** as a colorless sticky oil (0.31 g, 0.14 mmol, 78% combined). ¹**H NMR** (700 MHz, CD₂Cl₂): δ = 1.31 (s, 18H, 1), 1.35 – 1.40 (m, 2H, 12), 1.40 – 1.46 (m, 2H, 11), 1.51 (tt, *J* = 7.0, 5.5 Hz, 2H, 13), 1.74 (m, 2H, 10), 2.53 (t, *J* = 2.4 Hz, 1H, 16), 3.16 (t, *J* = 6.9 Hz, 2H, 9), 3.52 (t, *J* = 5.7 Hz, 2H, 14), 4.06 (d, *J* = 2.4 Hz, 2H, 15), 4.27 (s, 2H, 8), 4.35 (s, 2H, 4/5), 4.37 (s, 2H, 4/5), 7.18 (d, *J* = 1.8 Hz, 2H, 3), 7.49 (m, 4H, 6,7), 7.56 (s_{br}, 8H, BArF₂₄), 7.64 (t, *J* = 1.8 Hz, 1H, 2), 7.72 (s_{br}, 16H, BArF₂₄). ¹³C NMR (151 MHz, CD₂Cl₂): δ = 24.6, 25.2, 25.6, 28.3, 31.4, 35.5, 48.8, 52.3, 52.4, 54.7, 58.2, 71.3, 75.7, 79.8, 118.1, 122.5, 124.0, 125.0, 126.1, 126.4, 127.7, 127.9, 129.4, 131.7, 131.8, 132.0, 132.0, 135.4, 154.2, 162.3 ppm. HRMS (MeOH): m/z calcd. for [C₃₂H₅₀N₂O]²⁺: 477.3845 [M-H]⁺, found: 477. 3849.

Fig. S4 ¹H (top) and ¹³C (bottom) NMR spectra (700/151 MHz, CD_2CI_2 , 298 K) of axle Ax.

1.3. Synthesis of macrocycle NDIC7

Scheme S2 General procedure for macrocycle NDIC7.

tert-butyl 2,5,8,11,14,17,20-heptaoxa-1(1,3)-benzenacycloicosaphane-15-ylcarbamate S11

Ditosylate **S9** (525 mg, 0.89 mmol, 1.00 equiv.) was dissolved in dry DMF (100 mL) under argon atmosphere. In a separate vessel, K₂CO₃ (492 mg, 3.56 mmol, 4.00 equiv.) and diol **S10** (201 mg, 0.89 mmol, 1.00 equiv.) were dissolved in dry DMF (200 mL) and stirred at 60 °C under argon atmosphere. The ditosylate solution was added portion-wise over 2 h, afterwards the solution was stirred for 5 days at 80 °C. The solution was cooled to r.t. and filtered. The solvent was removed under reduced pressure. The residue was dissolved in CH_2Cl_2 (100 mL) and washed with water and brine and dried over MgSO₄. The solvent was removed under reduced pressure and the residue was purified by column chromatography (SiO₂, $CH_2Cl_2/EtOAc 30\% \rightarrow 100\% EtOAc, R_f \sim 0.2$ in $CH_2Cl_2/EtOAc = 1:1$) yielding **S11** as a yellowish oil (256 mg, 0.56 mmol, 63%). ¹**H NMR** (500 MHz, CDCl₃): δ = 1.49 (s, 9H, e), 3.61 – 3.65 (m, 12H, CH₂-O), 3.68 (m, 4H, CH₂-O), 3.76 – 3.81 (m, 4H, a), 4.12 – 4.16 (m, 4H, b), 6.35 (t, *J* = 2.2 Hz, 1H, c), 6.48 (s, 1H, NH), 6.59 (d, *J* = 2.2 Hz, 2H, d) ppm. ¹³**C NMR** (176 MHz, CDCl₃): δ = 28.4, 67.9, 69.7, 70.7, 70.7, 71.1, 71.3, 80.6, 97.9, 98.1, 140.2, 152.6, 160.4 ppm. **HRMS (MeOH)**: m/z calcd. for [C₂₃H₃₇NO₉]⁺: 494.2366 [M+Na]⁺, found: 494.2389; 510.2105 [M+K]⁺, found: 510.2131.

Fig. S5 1 H (top) and 13 C (bottom) NMR spectra (500/176 MHz, CDCl₃, 298 K) of crown ether S11.

2,5,8,11,14,17,20-heptaoxa-1(1,3)-benzenacycloicosaphan-15-amine S12

Crown ether **S11** (264 mg, 0.56 mmol, 1.00 equiv.) was dissolved in CH_2Cl_2 (30 mL). After cooling to 0 °C, trifluoroacetic acid (0.86 mL, 11.20 mol, 20.0 equiv.) was added and the mixture was stirred overnight in the thawing ice bath. The solvent was removed and the residue was taken up in aq. sat. NaHCO₃ solution. The solution was extracted with CH_2Cl_2 and the combined organic layers were washed with brine and dried over MgSO₄. The solvent was removed under reduced pressure and the residue was purified by column chromatography (SiO₂, $CH_2Cl_2 \rightarrow CH_2Cl_2/EtOH$ 10:1, $R_f \sim 0.4$ in CH_2Cl_2) yielding **S12** as a brown oil (162 mg, 0.44 mmol, 78%).

¹**H NMR** (700 MHz, CDCl₃): δ = 3.65 (d, *J* = 4.5 Hz, 12H, CH₂-O), 3.69 – 3.71 (m, 4H, CH₂-O), 3.80 – 3.82 (m, 4H, a), 4.10 – 4.13 (m, 4H, b), 5.88 (d, *J* = 2.1 Hz, 2H, d), 6.10 (t, *J* = 2.2 Hz, 1H, c) ppm. ¹³**C NMR** (176 MHz, CDCl₃): δ = 67.9, 69.8, 70.8, 70.9, 71.2, 71.3, 93.5, 95.3, 125.0, 148.3, 161.1 ppm. **HRMS (MeOH)**: m/z calcd. for [C₁₈H₂₉NO₇]⁺: 372.2022 [M+H]⁺, found: 372.2030; 394.1842 [M+Na]⁺, found: 394.1853; 410.1581 [M+K]⁺, found: 410.1595.

Fig. S6 1 H (top) and 13 C (bottom) NMR spectra (700/176 MHz, CDCl₃, 298 K) of crown ether S12.

2-(2,5,8,11,14,17,20-heptaoxa-1(1,3)-benzenacycloicosaphane-15-yl)-7butylbenzo[Imn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone NDIC7

NDI **S13** (146 mg, 0.48 mmol, 1.10 equiv.) was dissolved in dry DMF (18 mL) and stirred for 20 min at 70°C under argon. Triethylamine (0.18 mL, 1.31 mmol, 3.00 equiv.) and crown ether **S12** (162 mL, 0.44 mmol, 1.00 equiv.) were added and the mixture was refluxed overnight. The solvent was removed under reduced pressure and the residue was taken up in CH_2Cl_2 (50 mL). The solution was washed with water and brine and dried over MgSO₄. The solvent was removed under reduced pressure and the residue was purified by column chromatography (SiO₂, $CH_2Cl_2 \rightarrow CH_2Cl_2/ACN$ 2.6:1, $R_f \sim 0.3$ in CH_2Cl_2) yielding **NDIC7** as a greenish brown solid (170 mg, 0.25 mmol, 58%).

¹H NMR (700 MHz, CDCl₃): δ = 1.01 (t, *J* = 7.4 Hz, 3H, a), 1.44 – 1.51 (m, 2H, b), 1.72 – 1.78 (m, 2H, c), 3.66 – 3.74 (m, 16H, CH₂-O), 3.83 – 3.86 (m, 4H, j), 4.19 – 4.21 (m, 4H, i), 4.21 – 4.24 (m, 2H, d), 6.47 (d, *J* = 2.2 Hz, 2H, g), 6.86 (t, *J* = 2.2 Hz, 1H, h), 8.80 (s, 4H, e,f) ppm. ¹³C NMR (176 MHz, CDCl₃): δ = 14.0, 20.5, 30.3, 41.0, 68.3, 69.8, 70.8, 70.9, 71.3, 71.4, 103.6, 108.3, 126.9, 127.1, 131.2, 131.5, 136.1, 160.9, 162.9, 163.0 ppm. HRMS (MeOH): m/z calcd. for [C₃₆H₄₀N₂O₁₁]⁺: 699.2529 [M+Na]⁺, found: 699.2507; 715.2269 [M+K]⁺, found: 715.2252.

Fig. S7 1 H (top) and 13 C (bottom) NMR spectra (700/176 MHz, CDCI₃, 298 K) of wheel NDIC7.

1.4. Synthesis of (pseudo)[3]rotaxanes

RC8C7

Scheme S3 General synthesis procedure for hetero[3]rotaxanes RC8C7.

Pseudo[3]rotaxane PRTTFC8BC7

PRTTFC8BC7

The axle **Ax** (50 mg, 23 µmol, 1.00 equiv.) and macrocycle **TTFC8** (15 mg, 20 µmol, 0.90 equiv.) were dissolved in CICH₂CH₂CI (2 mL) and stirred for 30 min, then macrocycle **BC7** (49 mg, 136 µmol, 6.00 equiv.) was added. After 2 days, the mixture was purified by column chromatography (SiO₂, CH₂Cl₂, R_f ~ 0.9 in CH₂Cl₂) to obtain the desired product **PRTTFC8BC7** (16 mg, 5 µmol, 24%) as an orange oil.

¹**H NMR** (700 MHz, CD₂Cl₂) δ = 1.23 – 1.25 (s, 18H, 1), 1.25 – 1.32 (m, 4H, 11,12), 1.32 – 1.38 (m, 2H, 10), 1.41 – 1.47 (m, 2H, 13), 2.40 (s, 6H, A), 2.41 – 2.43 (t, *J* = 2.4 Hz, 1H, 16), 3.11 – 3.24 (m, 8H, O-CH₂-CH₂), 3.29 – 3.52 (m, 20H, O-CH₂-CH₂, 9,14), 3.53 – 3.63 (m, 8H, O-CH₂-CH₂), 3.66 – 3.75 (m, 4H, O-CH₂-CH₂), 3.77 – 3.87 (m, 4H, O-CH₂-CH₂), 3.92 – 3.97 (m, 2H, 8), 4.00 – 4.05 (m, 4H, O-CH₂-CH₂), 4.06 (d, *J* = 2.4 Hz, 2H, 15), 4.08 – 4.11 (m, 2H, O-CH₂-CH₂), 4.11 – 4.17 (m, 2H, O-CH₂-CH₂), 4.70 – 4.78 (m, 4H, 4.5), 6.81 – 6.85 (m, 2H, b), 6.88 – 6.92 (m, 4H, B, 6/7), 6.94 – 6.98 (m, 2H, a), 7.17 – 7.23 (m, 4H, 6/7,NH₂), 7.31 – 7.37 (m, 2H, D), 7.42 (d, *J* = 1.8 Hz, 2H, 3), 7.50 (t, *J* = 1.8 Hz, 1H, 2), 7.56 (s_{br}, 8H, BArF₂₄), 7.58 – 7.61 (m, 2H, C), 7.70 – 7.77 (s_{br}, 16H, BArF₂₄), 7.82 – 7.90 (s, 2H, NH₂) ppm. ¹³C NMR (176 MHz, CD₂Cl₂) δ = 19.4, 26.0, 26.9, 27.0, 29.5, 29.6, 31.4, 35.3, 37.2, 47.6, 50.3, 53.1, 58.3, 68.4, 68.9, 70.0, 70.1, 70.1, 70.8, 71.0, 71.2, 71.3, 71.7, 71.8, 74.1, 80.5, 108.2, 108.3, 112.2, 114.5, 117.9, 122.0, 122.7, 123.7, 124.2, 124.8, 125.8, 126.7, 127.3, 128.0, 128.6, 129.3, 130.2, 130.6, 132.7, 134.5, 135.2, 146.9, 147.0, 152.8, 162.2 ppm. HRMS (CH₂Cl₂):m/z calcd. for [C₈₀H₁₁₄N₂O₁₄S₈]⁺⁺: 791.3012 [M]⁺⁺, found: 791.3034.

Fig. S8 ¹H (top) and ¹³C (bottom) NMR spectra (700/176 MHz, CD₂Cl₂, 298 K) of pseudo[3]rotaxane PRTTFC8BC7.

Fig. S9 COSY (top), HMBC (center) and HMQC (bottom) NMR spectra (700/176 MHz, CD₂Cl₂, 298 K) of pseudo[3]rotaxane PRTTFC8BC7.

RTTFC8BC7

Axle **Ax** (60.0 mg, 27 µmol, 1.00 equiv.) and **TTFC8** (18 mg, 24 µmol, 0.90 equiv.) were dissolved in 1,2-dichloroethane (3 mL) and stirred for 30 min, then **BC7** (58 mg, 163 µmol, 6.00 equiv.) were added and stirred at 35° C. After 2 days, N-oxide **St1** (7 mg, 41 µmol, 1.50 equiv.) was added to the mixture and stirred for an additional 18 h at 35° C. The crude product was purified by preparative thin-layer chromatography (SiO₂, CH₂Cl₂, R_f ~ 0.3 in CH₂Cl₂). The product was obtained as an orange oil (12 mg, 3.6 µmol, 15%).

¹**H NMR** (700 MHz, CD₂Cl₂) δ = 1.23 – 1.25 (s, 18H, 1), 1.34 – 1.39 (m, 6H, 10,11,12), 1.45 – 1.50 (m, 4H, 13), 2.40 – 2.41 (s, 6H, A), 3.11 – 3.23 (m, 8H, O-CH₂-CH₂), 3.28 – 3.39 (m, 10H, 9, O-CH₂-CH₂), 3.40 – 3.52 (m, 14H, 14, O-CH₂-CH₂), 3.54 – 3.64 (m, 10H, O-CH₂-CH₂), 3.66 - 3.71 (m, 4H, O-CH₂-CH₂), 3.71 - 3.75 (m, 3H, O-CH₂-CH₂), 3.75 - 3.76 (s, 6H, 17), 3.76 -3.83 (m, 3H, O-CH₂-CH₂), 3.83 – 3.88 (m, 3H, O-CH₂-CH₂), 3.93 – 3.98 (m, 2H, 8), 3.99 – 4.05 (m, 4H, O-CH₂-CH₂), 4.08 – 4.16 (m, 4H, O-CH₂-CH₂), 4.55 (s, 2H, 15), 4.70 – 4.77 (m, 4H, 4,5), 6.29 – 6.31 (s, 1H, 16), 6.65 – 6.68 (d, J = 8.5 Hz, 2H, 18), 6.80 – 6.84 (m, 2H, a/b), 6.89 - 6.92 (m, 4H, 7,B), 6.93 - 6.97 (m, 2H, a/b), 7.17 - 7.24 (m, 4H, 6, NH₂), 7.32 - 7.34 (m, 2H, D), 7.36 - 7.41 (t, J = 8.5 Hz, 1H, 19), 7.41 - 7.42 (d, J = 1.8 Hz, 2H, 3), 7.49 - 7.50 (t, J = 1.8Hz, 1H, 2), 7.55 – 7.57 (s_{br}, 8H, BArF₂₄), 7.58 – 7.61 (m, 2H, C), 7.71 – 7.73 (s_{br}, 16H, BArF₂₄), 7.81 – 7.90 (s_{br}, 2H, NH₂) ppm. ¹³**C NMR** (176 MHz, CD₂Cl₂) δ = 14.3, 19.4, 23.1, 25.9, 26.9, 27.0, 29.8, 30.1, 31.4, 32.3, 35.3, 37.1, 47.6, 50.3, 53.1, 56.3, 63.9, 68.4, 68.9, 70.0, 70.1, 70.8, 71.0, 71.1, 71.2, 71.3, 71.4, 71.6, 71.8, 104.5, 106.4, 107.4, 108.2, 112.2, 114.2, 114.5, 117.9, 122.0, 122.7, 123.7, 124.2, 124.8, 125.8, 126.7, 127.3, 128.0, 128.6, 129.3, 130.2, 130.6, 131.7, 132.7, 134.5, 135.2, 146.8, 147.0, 152.8, 157.4, 159.0, 162.1, 168.2 ppm. HRMS (acetonitrile):m/z calcd. for [C₈₉H₁₂₃N₃O₁₇S₈]⁺⁺: 881.3319 [M]⁺⁺, found: 881.3325.

Fig. S10 ¹H (top) and ¹³C (bottom) NMR spectra (700/176 MHz, CD₂Cl₂, 298 K) of [3]rotaxane RTTFC8BC7.

Fig. S11 COSY (top), HMBC (center) and HMQC (bottom) NMR spectra (700/176 MHz, CD₂Cl₂, 298 K) of [3]rotaxane RTTFC8BC7.

RTTFC8NDIC7

The axle **Ax** (60 mg, 27 µmol, 1.00 equiv.) and **TTFC8** (18 mg, 24 µmol, 0.90 equiv.) were dissolved in CH_2Cl_2 (3 mL) and stirred for 30 min. **NDIC7** (110 mg, 163 µmol, 6.00 equiv.) was added and stirred for another 2 days. Finally, N-oxide **St1** (7 mg, 41 µmol, 1.50 equiv.) was added to the mixture and stirred for an additional 24 h at 35° C. The crude product was purified via preparative thin-layer chromatography (SiO₂, CH₂Cl₂/EtOH 50:1, R_f ~ 0.25 in CH₂Cl₂/EtOH 100:1) The product was obtained as a greenish brown oil (27 mg, 7 µmol, 29%).

¹**H NMR** (700 MHz, CD₂Cl₂) δ =1.00 (t, *J* = 7.4 Hz, 3H, a), 1.27 (s, 18H, 1), 1.34 – 1.38 (m, 4H, 11,12), 1.42 – 1.45 (m, 2H, 10), 1.45 – 1.49 (m, 2H, b), 1.58 – 1.62 (m, 2H, 13), 1.74 – 1.76 (m, 2H, c), 2.40 (s, 6H, A), 2.96 – 3.03 (m, 4H, O-CH₂-CH₂), 3.07 – 3.19 (m, 10H, O-CH₂-CH₂, 9), 3.26 – 3.30 (m, 2H, O-CH₂-CH₂), 3.32 – 3.35 (m, 2H, O-CH₂-CH₂), 3.38 – 3.42 (m, 2H, O-CH₂-CH₂), 3.46 – 3.50 (m, 4H, O-CH₂-CH₂), 3.50 – 3.56 (m, 10H, O-CH₂-CH₂, 14), 3.58 – 3.67 (m, 16H, O-CH₂-CH₂), 3.67 – 3.69 (m, 4H, O-CH₂-CH₂), 3.70 – 3.71 (s, 6H, 17), 3.73 – 3.77 (m, 6H, O-CH₂-CH₂, 8), 3.79 – 3.90 (m, 8H, O-CH₂-CH₂), 4.04 – 4.08 (m, 2H, O-CH₂-CH₂), 4.16 – 4.22 (m, 6H, O-CH₂-CH₂, d), 4.22 – 4.28 (m, 6H, O-CH₂-CH₂), 4.53 (s, 2H, 15), 4.71 – 4.74 (m, 2H, 4/5), 4.90 – 4.94 (m, 2H, 4/5), 6.23 (s, 1H, 16), 6.43 (t, *J* = 2.3 Hz, 1H, h), 6.56 (d, *J* = 8.4 Hz, 18H), 6.61 (d, *J* = 2.2 Hz, 2H, g), 6.94 – 6.97 (m, 4H, B, 6/7), 7.27 – 7.37 (m, 5H, D, 19, NH₂), 7.36 – 7.38 (m, 2H, 6/7), 7.44 (d, *J* = 1.8 Hz, 2H, 3), 7.54 (t, *J* = 1.8 Hz, 1H, 2), 7.56 (s_{br}, 8H, BArF₂₄), 7.60 – 7.64 (m, 2H, C), 7.72 (s_{br}, 16H, BArF₂₄), 7.99 (s_{br}, 2H, NH₂),

8.69 – 8.77 (m, 4H, e,f) ppm. ¹³**C NMR** (176 MHz, CD_2Cl_2) δ = 8.9, 14.0, 14.3, 19.3, 20.8, 23.1, 25.2, 26.1, 26.2, 26.7, 26.8, 26.9, 27.6, 29.5, 29.8, 29.9, 29.9, 30.1, 30.5, 31.4, 31.6, 32.0, 32.3, 33.5, 34.5, 35.4, 37.2, 41.1, 47.1, 48.4, 51.1, 56.2, 63.8, 67.8, 68.0, 68.9, 70.0, 70.2, 70.6, 70.8, 70.9, 71.3, 71.4, 71.9, 103.7, 104.4, 106.5, 107.2, 108.0, 108.2, 108.6, 109.2, 114.7, 117.9, 122.7, 123.5, 124.2, 124.8, 125.8, 126.1, 126.5, 126.7, 126.9, 127.3, 127.4, 127.7, 128.0, 128.8, 129.0, 129.2, 129.4, 129.5, 129.7, 130.1, 130.3, 130.5, 130.6, 130.7, 131.1, 131.4, 131.5, 133.1, 133.5, 135.2, 138.5, 146.6, 152.9, 157.2, 158.9, 159.7, 159.9, 161.7, 162.0, 162.3, 162.6, 163.1, 163.3, 168.0 ppm. **HRMS (acetonitrile):**m/z calcd. for $[C_{107}H_{135}N_5O_{21}S_8]^{++}$: 1041.3719 [M]^{++}, found: 1041.3729.

Fig. S12 ^1H (top) and ^{13}C (bottom) NMR spectra (700/176 MHz, CD_2Cl_2, 298 K) of [3]rotaxane RTTFC8NDIC7

Fig. S13 COSY (top), HMBC (center) and HMQC (bottom) NMR spectra (700/176 MHz, CD₂Cl₂, 298 K) of [3]rotaxane RTTFC8NDIC7

Fig. S14 [3]rotaxane RTTFC8NDIC7 (bottom) and axle Ax (top) NMR spectra (700 MHz, CD_2CI_2 , 298 K).

RNDIC8BC7

The axle **Ax** (60 mg, 27 µmol, 1.00 equiv.) and macrocycle **NDIC8** (20 mg, 25 µmol, 0.90 equiv.) were dissolved in CH_2Cl_2 (3 mL) and stirred for 30 min, then macrocycle **BC7** (15 mg, 41 µmol, 1.50 equiv.) was added. After 3 days, stopper **St1** (7 mg, 41 µmol, 1.50 equiv.) was added and the mixture was heated to 35°C for 24 h. Then, the mixture was purified by preparative TLC (SiO₂, 2000 µm, CH₂Cl₂/ACN 10:1, R_f ~ 0.4 in CH₂Cl₂/ACN 10:1) to obtain the desired product **RNDIC8BC7** (17 mg, 5 µmol, 20 %) as yellow oil.

¹**H NMR** (700 MHz, CD₂Cl₂) δ = 0.99 (t, *J* = 7.4 Hz, 3H, A), 1.24 (s, 18H, 1), 1.33 – 1.40 (m, 6H, 10,11,12), 1.43 – 1.46 (m, 4H, B, 13), 1.68 – 1.75 (m, 2H, C), 3.12 – 3.17 (m, 4H, O-CH₂-CH₂), 3.25 – 3.39 (m, 16H, 9, O-CH₂-CH₂), 3.41 – 3.46 (m, 5H, 14, O-CH₂-CH₂), 3.46 – 3.52 (m, 5H, O-CH₂-CH₂), 3.52 – 3.62 (m, 10H, O-CH₂-CH₂), 3.62 – 3.70 (m, 10H, O-CH₂-CH₂), 3.73 (s, 6H, 17), 3.75 – 3.78 (m, 1H, O-CH₂-CH₂), 3.78 – 3.83 (m, 3H, O-CH₂-CH₂), 3.85 - 3.89 (m, 2H, O-CH₂-CH₂), 3.96 – 4.04 (m, 6H, 8, O-CH₂-CH₂), 4.04 – 4.08 (m, 2H, O-CH₂-CH₂), 4.08 – 4.12 (m, 3H, O-CH₂-CH₂), 4.12 – 4.16 (m, 2H, O-CH₂-CH₂), 4.17 – 4.20 (m, 2H, D), 4.21 – 4.27 (m, 3H, O-CH₂-CH₂), 4.53 (s, 2H, 15), 4.60 – 4.64 (m, 4H, 4,5), 6.50 (s, 1H, 16), 6.56 (d, *J* = 2.2 Hz, 2H, G), 6.63 (t, *J* = 2.2 Hz, 1H, H), 6.69 (d, *J* = 8.5 Hz, 2H, 18), 6.78 - 6.82 (m, 2H, a/b), 6.90 – 6.95 (m, 6H, a/b, I, 6/7), 7.22 (s_{br}, 2H, NH₂), 7.29 (dd, *J* = 8.8, 2.5 Hz, 2H, 6/7), 7.33 – 7.35 (m, 2H, K), 7.37 (t, *J* = 8.4 Hz, 1H, 19), 7.41 (d, *J* = 1.8 Hz, 2H, 3), 7.51 (t, *J* = 1.8

Hz, 1H, 2), 7.55 (s_{br}, 8H, BArF₂₄), 7.58 - 7.62 (m, 2H, J), 7.71 (s_{br}, 16H, BArF₂₄), 8.00 (s_{br}, 2H, NH₂), 8.67 - 8.80 (m, 4H, E,F) ppm. ¹³**C NMR** (176 MHz, CD₂Cl₂) δ = 1.2, 14.0, 14.3, 20.7, 25.9, 27.0, 27.1, 29.7, 30.1, 30.5, 31.3, 31.4, 32.3, 35.3, 41.2, 47.7, 50.3, 52.4, 57.2, 63.8, 68.4, 68.4, 68.8, 69.5, 70.0, 70.9, 71.1, 71.2, 71.6, 71.7, 71.8, 77.6, 77.7, 77.9, 104.4, 106.2, 106.7, 107.0, 108.1, 108.9, 112.1, 117.9, 122.0, 122.7, 123.9, 124.2, 124.9, 125.8, 126.7, 126.9, 127.3, 127.6, 128.1, 129.3, 130.3, 130.4, 130.7, 131.3, 131.5, 132.6, 134.7, 135.2, 137.9, 146.8, 147.0, 152.8, 157.9, 158.5, 160.6, 162.1, 163.3, 164.8, 168.9 ppm. **HRMS** (acetonitrile): m/z calcd. for [C₁₀₅H₁₃₃N₅O₂₃]⁺⁺: 916.4707 [M]⁺⁺, found: 916.4714

Fig. S15 ¹H (top) and ¹³C (bottom) NMR spectra (700/176 MHz, CD_2CI_2 , 298 K) of [3]rotaxane **RNDIC8BC7**.

Fig. S16 COSY (top), HMBC (center) and HMQC (bottom) NMR spectra (700/176 MHz, CD₂Cl₂, 298 K) of [3]rotaxane RNDIC8BC7.

Fig. S17 [3]rotaxane RNDIC8BC7 (bottom) and axle Ax (top) NMR spectra (700 MHz, CD_2CI_2 , 298 K).
[3]rotaxane RDBC8NDIC7

RDBC8NDIC7

The axle **Ax** (60 mg, 27 µmol, 1.00 equiv.) and macrocycle **DBC8** (11 mg, 25 µmol, 0.90 equiv.) were dissolved in CH_2CI_2 (3 mL) and stirred for 30 min, then macrocycle **NDIC7** (110 mg, 163 µmol, 6.00 equiv.) was added. After 2 days, stopper **St1** (7 mg, 41 µmol, 1.50 equiv.) was added and the mixture was heated to 35°C for 24 h. Then, the mixture was purified by preparative TLC (SiO₂, 2000 µm, CH_2CI_2/ACN 10:1, $R_f \sim 0.4$ in CH_2CI_2/ACN 10:1) to obtain the desired product **RDBC8NDIC7** (12 mg, 3 µmol, 14 %) as yellow oil.

¹**H NMR** (700 MHz, CD₂Cl₂) δ = 0.99 (t, *J* = 7.4 Hz, 3H, a), 1.24 (s, 18H, 1), 1.33 – 1.38 (m, 1H, c, 11, 12), 1.42 – 1.51 (m, 2H, 10, b), 1.65 (tt, *J* = 14.3, 6.3 Hz, 2H, 13), 1.69 – 1.75 (m, 2H, c), 2.96 – 3.00 (m, 2H, O-CH₂-CH₂), 3.09 – 3.15 (m, 4H, 9, O-CH₂-CH₂), 3.24 – 3.29 (m, 2H, O-CH₂-CH₂), 3.34 – 3.43 (m, 6H, O-CH₂-CH₂), 3.48 – 3.52 (m, 6H, O-CH₂-CH₂), 3.53 – 3.62 (m, 7H, 14, O-CH₂-CH₂), 3.63 – 3.67 (m, 5H, O-CH₂-CH₂), 3.71 (s, 6H, 17), 3.72 – 3.80 (m, 12H, O-CH₂-CH₂), 4.02 – 4.11 (m, 10H, 8, O-CH₂-CH₂), 4.16 – 4.20 (m, 2H, d), 4.29 – 4.33 (m, 4H, O-CH₂-CH₂), 4.55 (s, 2H, 15), 4.71 – 4.75 (m, 2H, 4/5), 4.79 – 4.83 (m, 2H, 4/5), 6.28 (s, 1H, 16), 6.56 (d, *J* = 8.5 Hz, 2H, 18), 6.62 (d, *J* = 2.2 Hz, 2H, g), 6.68 (t, *J* = 2.3 Hz, 1H, h), 6.74 (m, 4H, A/B), 6.85 (m, 4H, A/B), 6.96 – 7.00 (m, 2H, 6/7), 7.24 – 7.30 (m, 3H, 19, 6/7), 7.33 (d, *J* = 1.8 Hz, 2H, 3), 7.39 – 7.44 (m, 2H, NH₂), 7.49 (t, *J* = 1.8 Hz, 1H, 2), 7.54 – 7.57 (m, 8H, BArF₂₄), 7.60 (s_{br}, 2H, NH₂), 7.69 – 7.74 (m, 16H, BArF₂₄), 8.67 – 8.78 (m, 4H, e/f) pm. ¹³**C NMR** (176 MHz, CD₂Cl₂) δ = 14.0, 14.3, 19.5, 20.7, 23.1, 26.2, 26.7, 26.9, 29.8, 29.9, 30.1, 30.5, 31.4, 32.3, 35.3, 36.7, 41.1, 48.5, 49.8, 51.4, 52.5, 56.3, 63.8, 68.0, 68.3, 70.6,

70.8, 71.1, 71.2, 71.5, 71.9, 72.0, 103.9, 104.6, 106.6, 107.1, 109.1, 112.9, 117.9, 122.0, 122.7, 123.8, 124.2, 124.3, 125.8, 126.9, 127.3, 127.6, 129.3, 130.4, 130.6, 131.2, 131.4, 131.6, 132.7, 133.9, 135.2, 138.6, 147.9, 152.5, 157.3, 158.8, 159.8, 162.2, 163.1, 163.2, 168.0 ppm. **HRMS (acetonitrile):** m/z calcd. for $[C_{101}H_{131}N_5O_{23}]^{++}$: 891.4629 [M]⁺⁺, found: 891.4639.

Fig. S18 ¹H (top) and ¹³C (bottom) NMR spectra (700/176 MHz, CD₂Cl₂, 298 K) of [3]rotaxane RDBC8NDIC7.

S37

Fig. S19 COSY (top), HMBC (center) and HMQC (bottom) NMR spectra (700/176 MHz, CD₂Cl₂, 298 K) of [3]rotaxane RDBC8NDIC7.

Fig. S20 [3]rotaxane RDBC8NDIC7 (bottom) and axle Ax (top) NMR spectra (700 MHz, CD₂Cl₂, 298 K).

2. Isothermal titration calorimetry

ITC titrations were carried out in dry 1,2-dichloroethane (DCE) at 298 K on a TAM III microcalorimeter (Waters GmbH, TA Instruments, Eschborn, Germany). In a typical experiment, an 800 μ L solution of crown ether was placed in the sample cell at a concentration of 1.1 mM, and 260 μ L of a solution of the ammonium salt (8.0 mM) were put into the syringe. The titrations consisted of 32 consecutive injections of 8 μ L each with a 20 min interval between injections. Heats of dilution were determined by titration of ammonium salt solutions into the sample cell containing blank solvent and were subtracted from each data set. The heat flow generated in the sample cell is measured as a differential signal between sample and reference cell. Hence, an exothermic event results in a positive and an endothermic in a negative heat flow. The data were analysed using the instrument's internal software package and fitted with a 1:1 binding model. Each titration was conducted at least three times and the measured values for *K* and ΔH were averaged.

Instead of divalent axle **Ax**, two monovalent model compounds **A1** and **A2** were titrated to the five macrocycles (Figure S21) of this study. Hexafluorophosphate PF_6^- was used as counter ion, as the binding constants are too high with $BArF_{24}^-$ anions to be determined with ITC. Earlier studies showed that the binding constant is roughly 15 - 20 times higher with $BArF_{24}^-$ anions and that trends are similar for both counterions.³

Fig. S21 Chemical structures of the monovalent model ammonium axles used to determine thermodynamic binding data for all five macrocycles.

axle	macrocycle	K _a / 10 ³ M ⁻¹	∆ G ⁰ / kJ/mol	∆ H ⁰ / kJ/mol	7∆S⁰ / kJ/mol
A2· PF ₆	BC7 ^[a]	1200 ± 100	-34.6 ± 0.2	-63.0 ± 0.5	-28.3 ± 0.7
	NDIC7	7.0 ± 1.0	-22.1 ± 0.2	-51.2 ± 2.0	-29.2 ± 2.2
A2· PF ₆	DBC8 ^[a]	480 ± 70	-32.4 ± 0.3	-60.4 ± 1.5	-28.0 ± 1.8
	NDIC8 ^[a]	13 ± 1	-23.4 ± 0.2	-48.1 ± 1.0	-24.7 ± 1.2
	TTFC8 ^[a]	7.0 ± 1.0	-22.1 ± 0.2	-50.3 ± 1.0	-28.3 ± 1.2
A1· PF ₆	DBC8 ^[a]	1300 ± 100	-34.8 ± 0.3	-60.9 ± 2.0	-26.1 ± 2.3
	NDIC8 ^[a]	49 ± 6	-26.7 ± 0.3	-46.6 ± 2.0	-19.9 ± 2.3
	TTFC8 ^[a]	33 ± 3	-25.7 ± 0.2	-51.5 ± 0.9	-25.9 ± 1.1

Table S1. Thermodynamic binding data of different crown ether/secondary ammonium axle complexes obtained by ITC titrations in 1,2-dichloroethane at 298 K.

^[a] Taken from a previous report.³

Fig. S22 Titration plots (heat flow versus time and heat/volume versus guest/host ratio) obtained from ITC experiments at 298 K in 1,2-dichloroethane: vial: NDIC7, syringe: axle
A2·PF₆. Points marked with non-filled squares were not considered in the fitting process. Titration plots for the other combinations are part of a previous report. ³

3. Heteropseudo[3]rotaxane ¹H NMR experiments

Equimolar solutions of divalent axle **Ax** and macrocycles gave complex ¹H NMR spectra. When a crown ether is bound to ammonium units, the methylene protons (H_4 , H_5 , H_8 and H_9) exhibit unambiguous cross coupling signals in the COSY spectrum to the corresponding ammonium protons. The characteristic shifts of these methylene protons were used to identify the pseudorotaxane species present in solution and the integrals of these signals were used to calculate the ratio of the species, which is given in percent of all identified pseudorotaxane species. Due to imprecise integration, the given percentages have experimental errors of 5%.

Fig. S23 ¹H NMR and partial COSY spectra (700 MHz, CD₂Cl₂, 298 K, 5 mM) of an equimolar solution of Ax, DBC8 and BC7 16 d after mixing. Signals of protons corresponding to the heteropseudo[3]rotaxane PRDBC8BC7 (58%) are labeled in blue, those corresponding to the homopseudo[3]rotaxane PRDBC8DBC8 (21%) in red and those of the pseudo[2]rotaxane PRBC7 (21%) in green.

Fig. S24 ¹H NMR and partial COSY spectra (700 MHz, CD₂Cl₂, 298 K, 5 mM) of an equimolar solution of Ax, TTFC8 and BC7 16 d after mixing. Signals of protons corresponding to the heteropseudo[3]rotaxane PRTTFC8BC7 (56%) are labeled in blue, those corresponding to the homopseudo[3]rotaxane PRTTFC8TTFC8 (20%) in red and those of the pseudo[2]rotaxane PRBC7 (24%) in green.

Fig. S25 ¹H NMR and partial COSY spectra (700 MHz, CD₂Cl₂, 298 K, 5 mM) of an equimolar solution of Ax, NDIC8 and BC7 16 d after mixing. Signals of protons corresponding to the heteropseudo[3]rotaxane PRNDIC8BC7 (57%) are labeled in blue, those corresponding to the homopseudo[3]rotaxane PRNDIC8NDIC8 (19%) in red and those to the pseudo[2]rotaxane PRBC7 (24%) in green. The methylene protons of PRNDIC8NDIC8 overlap with PRNDIC8BC7 and crown ether signals, therefore, the integrals of the ammonium protons were used to calculate the ratios.

Fig. S26 ¹H NMR and partial COSY spectra (700 MHz, CD₂Cl₂, 298 K, 5 mM) of an equimolar solution of **Ax**, **DBC8** and **NDIC7** 16 d after mixing. Signals of protons corresponding to the heteropseudo[3]rotaxane **PRDBC8NDIC7** (72%) are labeled in blue and those corresponding to the homopseudo[3]rotaxane **PRDBC8DBC8** (28%) in red.

Fig. S27 ¹H NMR and partial COSY spectra (700 MHz, CD₂Cl₂, 298 K, 5 mM) of an equimolar solution of Ax, TTFC8 and NDIC7 16 d after mixing. Signals of protons corresponding to the heteropseudo[3]rotaxane PRTTFC8NDIC7 (70%) are labeled in blue, those corresponding to the homopseudo[3]rotaxane PRTTFC8TTFC8 (16%) in red and those to the pseudo[2]rotaxane PRTTFC8 (13%) in brown.

Fig. S28 ¹H NMR and partial COSY spectra (700 MHz, CD₂Cl₂, 298 K, 5 mM) of an equimolar solution of **Ax**, **NDIC8** and **NDIC7** 16 d after mixing. Signals of protons corresponding to the Heteropseudo[3]rotaxane **PRNDIC8NDIC7** (74%) are labeled in blue and those corresponding to the Homopseudo[3]rotaxane **PRNDIC8NDIC8NDIC8** (26%) in red.

4. Tandem mass spectrometry

A Synapt G2-S HDMS (Waters Co., Milford, MA, USA) instrument with a quadrupole-time-offlight high-resolution mass analyser was used to perform electrospray ionization tandem mass spectrometry. One of the following ionization conditions were used: a) For pseudorotaxane mixtures in dichloromethane or acetonitrile: flow rate 8 μ L min⁻¹, capillary voltage 1.5 or 2.5 kV, sample cone voltage 34 V, source offset 54 V, source temperature 100 °C, desolvation temperature 220 °C, nebulizer gas 3.0 bar, desolvation gas flow 450 L h⁻¹. b) For sample solutions of the isolated rotaxane in acetonitrile: flow rate 8 μ L min⁻¹, capillary voltage 2.5 kV, sample cone voltage 80 V, source offset 54 V, source temperature 100 °C, desolvation temperature 220 °C, nebulizer gas 2.5 bar, desolvation gas flow 700 L h⁻¹.

For collision-induced dissociation (CID) experiments of mass-selected ions, N₂ was used as the collision gas. Fragmentation experiments were conducted in the trap cell of the Synapt G2-S HDMS instrument with collision energies of 3-55 V. For the isolated rotaxane, 5 V steps were used and for the pseudorotaxane mixtures 3 V steps. Data acquisition and processing was carried out using MassLynxTM (version 4.1).

For plotting of the survival yield curves the spectra were centroided. For each spectrum at different collision voltages, the intensity of the ion with the selected mass was divided by the total ion intensity (only fragments with an intensity above 1% were considered) and then plotted against the collision voltage. Fitting was done with applying a sigmoidal Boltzmann function using Origin Pro 2020 to obtain the 50% survival yield voltages.

For time-dependent measurements, a solution of the axle **Ax** and one kind of crown[8] ether was prepared and stirred for 1 h (10 mM, 1,2-dichloroethane, 20 °C). One kind of crown[7] ether was added to yield an equimolar solution of 5 mM. The pseudorotaxane equilibrium in solution was monitored by HRMS. Prior to each measurement the sample was diluted to a concentration of 2.5 μ M using dichloromethane. The absolute intensities of the ions do not necessarily correlate with the concentrations of the species in solution, as the ionization efficiencies of the involved species may differ significantly. Especially, all ions involving **BC7** ionize very efficiently at the conditions used in the experiment. For a better visibility of the signals of interest the mass range of these ions (*m*/*z* < 450) is not shown. Nevertheless, a good qualitative picture may be derived from these experiments.

Figure S35 Plots summarising the changes of the hetero- and homopseudo[3]rotaxanes signal intensities and those of their pseudorotaxane precursors over reaction time from equimolar solutions of **Ax**, crown[8] ether and crown[7] ether at 20 °C. The relative intensities are taken from ESI-Q-TOF-HRMS spectra. The absolute intensities of the ions are not representative for the concentrations of the species in solution, as the ionization efficiencies of the involved species differ significantly. For full spetra see above.

first fragmentation at high collision voltages is the cleavage of a covalent bond in the axle rather than dissociation of the crown ether. The loss of **DBC8** upon axle cleavage at the western ammonium station evidences the desired sequence in the **PRDBC8BC7** pseudo[3]rotaxane.

pseudo[3]rotaxane. The appearance of **TTFC8**⁺ as a fragment has been observed for other mechanically interlocked structures containing **TTFC8**.^{1,8}

obtained from a CH_2CI_2 solution (2.5 μ M). Due to the remarkably strong binding of **BC7**, the first fragmentation at high collision voltages is the cleavage of a covalent bond in the axle rather than dissociation of the crown ether. The loss of **NDIC8** upon cleavage of the axle at the western ammonium station evidences the desired sequence in the **PRNDIC8BC7** pseudo[3]rotaxane.

obtained from a CH₂Cl₂ solution (2.5 μM). The first fragmentation step at lower collision energies is the cleaving of the non-covalent bond to **NDIC7** to form the pseudo[2]rotaxane **PRDBC8**, which evidences the desired sequence in the **PRDBC8NDIC7** pseudo[3]rotaxane.

Figure S40 CID experiment with mass-selected [**PRTTFC8NDIC7**-2BArF₂₄⁻]²⁺ ions at m/z 951 obtained from a CH₂Cl₂ solution (2.5 μ M). The first fragmentation step at lower collision energies is the cleavage of the non-covalent bond to **NDIC7** to form the pseudo[2]rotaxane

PRTTFC8, which evidences the desired sequence in the **PRTTFC8NDIC7** pseudo[3]rotaxane.

Figure S42 Survival yield curves for the different hetero[3]pseudorotaxane under study. Dications of hetero[3]pseudorotaxanes were mass-selected and fragmented at increasing collision voltages. The solid lines represent a sigmoidal fitting to determine 50% survival yield voltages.

hinderance for dethreading of **BC7** and the kinetic stability of the pseudorotaxane **PRTTFC8BC7** in acetonitrile at low concentrations.

comparison of measured and calculated isotopic patterns.

[2]rotaxane fragment at m/z 1012 is formed by the opening and loss of **TTFC8** at high collision energies. The loss of **TTFC8** upon cleavage of the axle at the western ammonium station proves the desired sequence in the **RTTFC8BC7** [3]rotaxane.

RTTFC8NDIC7 (1 μM in acetonitrile). Higher voltages are necessary to induce fragmentation of RTTFC8NDIC7 and as major fragments oxidized TTFC8 and axle fragments are observed. This is diagnostic for a mechanically interlocked structure.^{8, 9} The small amount of [2]rotaxane fragment at *m*/*z* 1332 is formed by the opening and loss of TTFC8 at high collision energies. The loss of TTFC8 upon cleavage of the axle at the western ammonium station proves the desired sequence in the RTTFC8NDIC7 [3]rotaxane.

RNDIC8BC7 (1 μM in acetonitrile). Higher voltages are necessary to induce fragmentation of RNDIC8BC7 and only axle fragments are observed. This is diagnostic for a mechanically interlocked structure.³ The loss of NDIC8 upon cleavage of the axle at the western ammonium station proves the desired sequence in the RNDIC8BC7 [3]rotaxane.

RDBC8NDIC7 (1 μM in acetonitrile). Higher voltages are necessary to induce fragmentation of **RDBC8NDIC7** and only axle fragments are observed. This is diagnostic for a mechanically interlocked structure.³ The loss of **DBC8** upon cleavage of the axle at the western ammonium station proves the desired sequence in the **RDBC8NDIC7** [3]rotaxane.

5. Electrochemical measurements

Redox-potentials reported in this study were obtained by DPV. All measurements were at least conducted twice. Measurements were conducted in 1,2-dichloroethane (DCE) with 0.1 M electrolyte and 1.5 mM analyte concentration.

Fig. S53 Stacked differential pulse voltammograms (DPV, 10 mV/s scan rate, 25 mV modulation amplitude, 50 ms modulation time, 5 mV step potential, 0.5 s interval time) (DCE, n-Bu₄NBArF₂₄, 298 K) of **TTFC8**, **PRTTFC8BC7**, **RTTFC8BC7**, **RTTFC8NDIC7**.

Fig. S54 Stacked differential pulse voltammograms (DPV, 10 mV/s scan rate, 25 mV modulation amplitude, 50 ms modulation time, 5 mV step potential, 0.5 s interval time) (DCE, n-Bu₄NBArF₂₄, 298 K) of **RTTFC8NDIC7**, **RDBC8NDIC7**, **NDIC7**, **RNDIC8BC7**, **NDIC8**.

-II / mV	-I / mV	species	+l / mV	+II / mV
		TTFC8	594	987
		RTTFC8 ⁸	694	1349
		PRTTFC8BC7	720	1349
		RTTFC8BC7	725	1369
-921	-508	RTTFC8NDIC7	720	1329
-932	-489	RDBC8NDIC7		
-921	-498	NDIC7		
-992	-529	RNDIC8BC7		
-937	-509	NDIC8		

Tab. S2 Electrochemical data obtained from DPV measurements (DCE, with n-Bu4NBArF24as the electrolyte, 298 K).

6. UV/Vis experiments

Fig. S55 UV/Vis spectra of TTFC8 (15 μ M in CH₂Cl₂, 298 K, excess bulk Fe(ClO₄)₃ as the

Fig. S56 UV/Vis spectra of **RTTFC8BC7** (15 μM in CH₂Cl₂, 298 K, excess bulk Fe(ClO₄)₃ as the oxidant) in the TTF⁰, TTF⁺⁺ and TTF²⁺ state.

Fig. S57 UV/Vis spectra of **RTTFC8NDIC7** (15 μM in CH₂Cl₂, 298 K, excess bulk Fe(ClO₄)₃ as the oxidant) in the TTF⁰, TTF⁺⁺ and TTF²⁺ state.

species	+l / nm	+ll / nm
TTFC8	455, 819	679
RTTFC8BC7	456, 836	704
RTTFC8NDIC7	453, 846	696

Tab. S3 Absorption maxima of TTF⁺⁺ and TTF²⁺ in different species(15 μ M in CH₂Cl₂, 298 K,
bulk Fe(ClO₄)₃ as the oxidant).

The photometric titrations of hetero[3]rotaxanes **RTTFC8BC7** and **RTTFC8NDIC7** with $Fe(CIO_4)_3$ show bands similar to those of free wheel **TTFC8** for the three redox states (TTF, TTF+ and TTF²⁺).¹⁰ In contrast to a fixed conformation divalent donor-acceptor rotaxane¹¹ with TTF and NDI, no intramolecular charge transfer band is observable.

7. Computational details

A conformational scan of the potential energy surface using Grimme's GFN2-xTB code¹² was conducted for compound **RTTFC8NDIC7** and **RNDIC8BC7** to obtain the most stable structures. Compound **RTTFC8NDIC7** was optimised in charge states 1+, 2+, and 3+, respectively, at the PBEh-3c¹³ level of DFT in combination with the COSMO¹⁴ solvation model ($\epsilon = 8.9$ for CH₂Cl₂)¹⁵ employing the Turbomole programm package (Version 7.4).¹⁶ Subsequent single point calculations for an accurate description of the electronic structure were performed at the ω B97X-D3/def2-TZVP¹⁷ level using the CPCM¹⁸ solvent model and the ORCA programm package.¹⁹ Spin densities were generated with ORBKIT.²⁰

Fig. S58 Optimised structure of compound RNDIC8BC7 illustrating the efficient stacking between the NDI and stopper moiety.

Fig. S59 Optimised structure of compound RTTFC8NDIC7 illustrating the efficient stacking between the TTF, NDI and stopper moieties.

Fig. S60 Spin density of RTTFC8NDIC7⁺⁺ localised on the TTF molety, isovalue = $0.001 a_0^{-3}$.

Fig. S61 Spin density of **RTTFC8NDIC7**⁻⁻ localised on the NDI moiety, isovalue = $0.001 a_0^{-3}$.

The spin density plots confirm the retained redox-behaviour of the macrocycles within the rotaxane.

8. Crystallographic data

The crystals were grown by diffusing pentane into a sat. acetonitrile solution of NDIC7. X-ray data were collected on a BRUKER D8 Venture system. Data were collected at 100(2) K using graphite-monochromated Mo K_a radiation ($\lambda_{\alpha} = 0.71073$ Å). The strategy for data collection was evaluated by using the Smart software. The data were collected by the standard " ψ - ω scan techniques" and were scaled and reduced using Saint+software. The structures were solved by using Olex2,²¹ the structure was solved with the XT²² structure solution program using Intrinsic Phasing and refined with the XL refinement package²³ using Least Squares minimization. Bond length and angles were measured with Diamond Crystal and Molecular Structure Visualization Version 4.6.2.²⁴ Drawings were generated with POV-Ray.²⁵ Deposition number CCDC 2047286 contains the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre Fachinformationszentrum Karlsruhe and Access Structures service www.ccdc.cam.ac.uk/structures.

Compound	NDI-MC • ACN
Empirical formula	$C_{38}H_{43}O_{11}N_3$
Formula weight	717.75
Temperature/K	100
Crystal system	triclinic
Space group	PĪ
a/Å	8.908(11)
b/Å	8.969(9)
c/Å	26.350(3)
α/°	84.32(7)
β/°	85.34(6)
γ/°	64.95(7)
Volume/Å ³	1896(4)
Z	2
ρ _{calc} /g⋅cm³	1.257
µ/mm⁻¹	0.093
F(000)	760.0
Crystal size/mm ³	0.871 x 0.531 x 0.381
Crystal shape	plate
Radiation	ΜοΚα (λ = 0.71073)
2O range for data collection/°	4.664 to 50.996
Index ranges	-10 ≤ h ≤ 10, -10 ≤ k ≤ 10, -31 ≤ l ≤ 31
Reflections collected	42858
Independent reflections	$6884 [R_{int} = 0.0560, R_{sigma} = 0.0363]$
Data/restrains/parameters	6884/0/625
Goodness-of-fit on F ²	1.057
Final R indexes [I>=2σ(I)]	$R_1 = 0.0553$, $wR_2 = 0.1315$
Final R indexes [all data]	$R_1 = 0.0673, wR_2 = 0.1385$
Largest diff. peak/hole / e ⋅ ų	0.26/-0.35

Tab. S4 Crystal data of NDIC7.

Fig. S62 Asymmetric unit cell of NDIC7.

Fig. S63 Crystal packing of two NDIC7, with NDI-NDI plane distance of 3.27 Å.

9. References

- 1. H. V. Schröder, S. Sobottka, M. Nößler, H. Hupatz, M. Gaedke, B. Sarkar and C. A. Schalley, *Chem. Sci.*, 2017, **8**, 6300-6306.
- 2. T. Matsumura, F. Ishiwari, Y. Koyama and T. Takata, *Org. Lett.*, 2010, **12**, 3828-3831.
- 3. H. Hupatz, M. Gaedke, H. V. Schröder, J. Beerhues, A. Valkonen, F. Klautzsch, S. Müller, F. Witte, K. Rissanen, B. Sarkar and C. A. Schalley, *Beilstein J. Org. Chem.*, 2020, **16**, 2576-2588.
- 4. L. Zou and M. J. Webber, *Chem. Commun.*, 2019, **55**, 9931-9934.
- 5. H. Shao, T. Nguyen, N. C. Romano, D. A. Modarelli and J. R. Parquette, *J. Am. Chem. Soc.*, 2009, **131**, 16374-16376.
- 6. W. Jiang and C. A. Schalley, *Beilstein J. Org. Chem.*, 2010, **6**, 14.
- 7. J. R. Aranzaes, M.-C. Daniel and D. Astruc, *Can. J. Chem.*, 2006, **84**, 288-299.
- 8. M. Gaedke, H. Hupatz, H. V. Schröder, S. Suhr, K. F. Hoffmann, A. Valkonen, B. Sarkar, S. Riedel, K. Rissanen and C. A. Schalley, *Org. Chem. Front.*, 2021, **8**, 3659-3667.
- 9. M. Gaedke, F. Witte, J. Anhäuser, H. Hupatz, H. V. Schröder, A. Valkonen, K. Rissanen, A. Lützen, B. Paulus and C. A. Schalley, *Chem. Sci.*, 2019, **10**, 10003-10009.
- 10. S. V. Rosokha and J. K. Kochi, *J. Am. Chem. Soc.*, 2007, **129**, 828-838; M. B. Kirketerp, L. A. Leal, D. Varsano, A. Rubio, T. J. Jørgensen, K. Kilsa, M. B. Nielsen and S. B. Nielsen, *Chem. Commun.*, 2011, **47**, 6900-6902.
- 11. H. V. Schröder, H. Hupatz, A. J. Achazi, S. Sobottka, B. Sarkar, B. Paulus and C. A. Schalley, *Chem. Eur. J.*, 2017, **23**, 2960-2967.
- 12. C. Bannwarth, S. Ehlert and S. Grimme, J. Chem. Theory Comput., 2019, 15, 1652-1671.
- 13. S. Grimme, J. G. Brandenburg, C. Bannwarth and A. Hansen, *J. Chem. Phys.*, 2015, **143**, 054107.
- 14. A. Klamt and G. Schüürmann, J. Chem. Soc., Perkin Trans. 2, 1993, 5, 799-805.
- 15. I. M. Smallwood, *Handbook of Organic Solvent Properties*, Butterworth-Heinemann, Oxford, 1996.
- 16. R. Ahlrichs, M. Bär, M. Häser, H. Horn and C. Kölmel, *Chem. Phys. Lett.*, 1989, **162**, 165-169.
- 17. J. D. Chai and M. Head-Gordon, *J. Chem. Phys.*, 2008, **128**, 084106; F. Weigend and R. Ahlrichs, *Phys. Chem. Chem. Phys.*, 2005, **7**, 3297-3305.
- 18. V. Barone and M. Cossi, J. Phys. Chem. A, 1998, **102**, 1995-2001.
- 19. F. Neese, WIREs Comput. Mol. Sci., 2017, 8:e1327.
- 20. G. Hermann, V. Pohl, J. C. Tremblay, B. Paulus, H. C. Hege and A. Schild, *J. Comput. Chem.*, 2016, **37**, 1511-1520.
- 21. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *J. Appl. Crystallogr.*, 2009, **42**, 339-341.
- 22. G. M. Sheldrick, *Acta Cryst.*, 2015, **A71**, 3-8.
- 23. G. M. Sheldrick, *SHELXL Version 2014/7, Programm for Crystal Structure Solution and Refinement, University of Göttingen,* 2014; G. M. Sheldrick, *Acta Cryst.,* 2008, **A64**, 112-122.
- 24. K. Brandenburg, "Diamond: Crystal and Molecular Structure Visualization" can be found under <u>http://www.crystalimpact.com/diamond</u>, 2017.
- 25. *Persistence of Vision. Ltd., retrieved from <u>http://www.povray.org/download/</u>, 2004.*