Supporting Information

Direct Synthesis β-Acyloxy Substitued Aldehydes from Linear Allylic Esters Using O₂ as Sole Oxidant

Shu-Hui Lei,[†] Ya Zhong,[†] Xian-Peng Cai,[†] Qing Huang[†], Jian-Ping Qu,^{†*} Yan-Biao Kang^{‡#*}

† Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China, ias_jpqu@njtech.edu.cn

‡ Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China, ybkang@ustc.edu.cn

Contents

1.General Information	2
2. Optimization for the Synthesis of 2a	3
3. Time Dependence of the Components for Reactions of 1a	4
4. Synthesis of 1a	5
5. Synthesis of 2a	
6 NMR Spectra of 1a	
6 NMR Spectra of 2a	
7 References	91

1. General Information

Unless otherwise specified, Analytical thin layer chromatography (TLC) was performed on HSGF 254 (0.17mm-0.23 thickness), visualized by irradiation with UV light (254 nm). Column chromatography was performed on silica gel FCP 200-400 using ethyl acetate (EA)/petroleum ether (PE)/ dichloromethane (DCM). all the reactions were carried out in a glassware under an oxygen atmosphere. Pd(PhCN)₂Cl₂ was commercially available and used without purification. *tert*-Butanol was purified by distillation over CaH under a nitrogen atmosphere. ¹H NMR and ¹³C NMR spectra were recorded on a Bruker 400 or JEOL 400 spectrometer. Chemical shifts are reported in δ units relative to CDCl₃ [¹H δ = 7.260, ¹³C δ = 77.160]. Proton coupling patterns were described as singlet (s), doublet (d), triplet (t), quartet (q), multiplet (m), doublet of doublets (dd), and broad (br). High-resolution mass spectra (HRMS) were measured on Acquity UPLC/XEVO G2-XS QTOF.

2. Optimization for the Synthesis of 2a

Me	O O Ph	[Pd] (x additive O ₂ , sol ^a	(y mmol%) (y mmol%) vent, rt, t h	rh ≥ <mark>0</mark> №	O le		h Me	0	^ ₀ ⁄	O ↓ Ph
1a			2a		3a			4a		
entry	[Pd]	х	solvent	additive	y t/h		2a ^d	3a ^d	4a ^d	1a ^d
1	Pd(CH ₃ CN) ₂ Cl ₂	7.5	^t BuOH	TBN	20	12	68	10	17	-
2	$Pd(PPh_3)_2Cl_2$	7.5	^t BuOH	TBN	20	12	n.r.	-	-	97
3	PdCl ₂	7.5	^t BuOH	TBN	20	12	trace	10	12	45
4	Pd(OAc) ₂	7.5	^t BuOH	TBN	20	12	trace	10	10	74
5	Pd(PhCN) ₂ Cl ₂	7.5	^t BuOH	TBN	20	5	78(77 ^e)	5	12	0
6 ^b	Pd(PhCN) ₂ Cl ₂	10	^t BuOH	TBN	20	5	68	12	15	0
7°	Pd(PhCN) ₂ Cl ₂	5	^t BuOH	TBN	20	5	70	9	15	0
8	Pd(PhCN) ₂ Cl ₂	7.5	^t BuOH	BQ	20	12	trace	5	5	40
9	Pd(PhCN) ₂ Cl ₂	7.5	^t BuOH	DDQ	20	12	11	3	3	39
10	Pd(PhCN) ₂ Cl ₂	7.5	MeOH	TBN	20	20	0	13	20	35
11	Pd(PhCN) ₂ Cl ₂	7.5	EtOH	TBN	20	20	0	15	33	29
12	Pd(PhCN) ₂ Cl ₂	7.5	THF	TBN	20	20	trace	40	15	3
13	Pd(PhCN) ₂ Cl ₂	7.5	DMF	TBN	20	20	n.d.	-	-	75
14	Pd(PhCN) ₂ Cl ₂	7.5	^t BuOH:acetone = 24:1	TBN	20	5	65	11	15	0
15	Pd(PhCN) ₂ Cl ₂	7.5	^t BuOH:MeNO ₂ = 24:1	TBN	20	5	72	9	17	0
16	Pd(PhCN) ₂ Cl ₂	7.5	^t BuOH	TBN	10	5	66	12	15	0

^aReaction conditions: **1a** (0.5 mmol), [Pd] (7.5 mol%), additive (20 mol%), O₂ (1 atm), solvent (2 mL), rt., t h. ^b [Pd] (10 mol%), ^c [Pd] (5 mol%), ^d Yield was determined by ¹H NMR analysis of crude products. ^e Isolated yield.

3. Time Dependence of the Components for Reactions of 1a

Pd(PhCN)₂Cl₂ (14.4 mg, 0.0375 mmol) was weighed directly into a 25 mL flask and dried under high vacuum for 15 mins, purge oxygen 3 times. Under an atmosphere of oxygen (1 atm, balloon), ^{*i*}BuOH (2 mL) and ^{*i*}BuONO (10.3 mg, 0.1 mmol) were added and stirred at 25 °C. **1a** (0.5 mmol) was added. Taken samples with a micro-injector at 0.08 h, 0.17 h, 0.5 h, 0.67h, 1 h, 2 h, 3 h, 4 h, 5 h, and then filtered, filtrate concentrated under reduced pressure. Added internal standard in crude product, which was examined on ¹H NMR spectrometer to determine the yields.

entry	[Pd]	х	solvent	additive	у	t/h	2a ^b	3 a ^b	4a ^b	5a ^b	1a [♭]
1	Pd(PhCN) ₂ Cl ₂	7.5	^t BuOH	TBN	20	0.08	0	0	0	36	50
2	Pd(PhCN) ₂ Cl ₂	7.5	^t BuOH	TBN	20	0.17	2	1	1	35	49
3	Pd(PhCN) ₂ Cl ₂	7.5	^t BuOH	TBN	20	0.5	7	4	3	30	43
4	Pd(PhCN) ₂ Cl ₂	7.5	^t BuOH	TBN	20	0.67	18	9	3	27	39
5	Pd(PhCN) ₂ Cl ₂	7.5	^t BuOH	TBN	20	1	35	11	8	27	33
6	Pd(PhCN) ₂ Cl ₂	7.5	^t BuOH	TBN	20	2	52	16	8	17	24
7	Pd(PhCN) ₂ Cl ₂	7.5	^t BuOH	TBN	20	3	64	19	8	14	22
8	Pd(PhCN) ₂ Cl ₂	7.5	^t BuOH	TBN	20	4	76	21	11	15	14
9	Pd(PhCN) ₂ Cl ₂	7.5	^t BuOH	TBN	20	5	79	19	12	15	8

^aReaction conditions: **1a** (0.5 mmol), Pd(PhCN)₂Cl₂ (7.5 mol%), additive (20 mol%), O₂ (1 atm), solvent (2 mL), rt., t h. ^byield was determined by ¹H NMR analysis of crude products.

4. Synthesis of 1a

a) General procedure A

1a-1M was prepared according to the following method. Under nitrogen atmosphere, to a dry and clean Schlenk flask charged with CH₂Cl₂ (2 mL), allyl alcohol (2 mmol, 1 equiv.) and pyridine (4 mmol, 2 equiv.) was added acid chloride (2 mmol, 1 equiv.) at 0 °C slowly. The reaction mixture was then stirred overnight at room temperature. After the completion of reaction, the reaction mixture was diluted with EtOAc (2 mL), and washed with saturated sodium chloride, extracted by EtOAc, dried with anhydrous Na₂SO₄, and then concentrated. The crude product was purified by flash chromatography on silica gel.

b) General procedure B

$$R^{1}$$
 OH + R^{2} OH OH CH₂Cl₂, rt R¹ O

To a solution of alcohol (10.0 mmol, 1.0 equiv.), DCC (15.0 mmol, 1.5 equiv.) and DMAP (3.0 mmol, 30 mol%) in CH_2CI_2 (30 mL) was added the acid. The reaction was monitored by TLC. After the completion of reaction, the crude product was filtered through celite and washed with CH_2CI_2 . The organic layers were then concentrated and purified by flash chromatography on silica gel.

(*E*)-but-2-en-1-yl benzoate (1a) was prepared according to general procedure A. The crude product was purified by chromatography on silica gel [PE (petroleum ether)/EA (ethyl acetate) = 100:1] affording a colorless oil. (0.2467, 70%). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.10 – 8.01 (m, 2 H), 7.53 (t, *J* = 7.4 Hz, 1 H), 7.42 (t, *J* = 7.7 Hz, 2 H), 5.94 – 5.80 (m, 1 H), 5.71 (dddd, *J* = 15.2, 7.9, 4.0, 1.5 Hz, 1 H), 4.75 (d, *J* = 6.4 Hz, 2 H), 1.79 – 1.69 (m, 3 H).^[1]

(E)-but-2-en-1-yl 2-methylbenzoate (1b) was prepared according to general procedure A. The crude product

was purified by chromatography on silica gel (PE/EA = 100:1) affording a colorless oil. (0.3230 g, 85%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.97 – 7.83 (m, 1 H), 7.46 – 7.31 (m, 1 H), 7.23 (td, *J* = 7.1, 6.4, 3.7 Hz, 2 H), 5.95 – 5.80 (m, 1 H), 5.77 – 5.63 (m, 1 H), 4.72 (dd, *J* = 6.9, 1.5 Hz, 2 H), 2.59 (s, 3 H), 1.75 (s, 3 H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 167.47, 140.25, 131.98, 131.74, 131.34, 130.66, 129.82, 125.76, 125.36, 65.51, 21.85, 17.94. HRMS (ESI) calculated for C₁₂H₁₄O₂H [M+H]⁺ 191.1072, found 191.1064.

(*E*)-but-2-en-1-yl [1,1'-biphenyl]-3-carboxylate (1c) was prepared according to general procedure A. The crude product was purified by chromatography on silica gel (PE/EA = 100:1) affording a colorless oil. (0.4693 g, 93%). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.32 (s, 1 H), 8.06 (d, *J* = 7.7 Hz, 1 H), 7.81 – 7.76 (m, 1 H), 7.67 – 7.61 (m, 2 H), 7.50 (dt, *J* = 16.7, 7.8 Hz, 3 H), 7.40 (d, *J* = 7.4 Hz, 1 H), 5.96-5.87 (m, 1 H), 5.81 – 5.71 (m, 1 H), 4.81 (d, *J* = 6.4 Hz, 2 H), 1.78 (d, *J* = 6.4 Hz, 3 H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 166.50, 141.55, 140.26, 131.63, 131.06 (d, *J* = 2.3 Hz), 129.02, 128.96, 128.54, 128.40, 127.86, 127.30, 65.93, 18.01. HRMS (ESI) calculated for C₁₇H₁₆O₂H [M+H]⁺ 253.1229, found 253.1221.

(*E*)-but-2-en-1-yl 4-methoxybenzoate (1d) was prepared according to general procedure A. The crude product was purified by chromatography on silica gel (PE/EA = 100:1) affording a colorless oil. (0.3712 g, 90%). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.15 – 7.90 (m, 2 H), 6.91 (d, *J* = 8.9 Hz, 2 H), 5.86 (dd, *J* = 15.3, 6.5 Hz, 1 H), 5.74 (s, 1 H), 4.72 (d, *J* = 6.4 Hz, 2 H), 3.85 (s, 3 H), 1.88 – 1.66 (m, 4 H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 166.24, 163.37, 131.67, 131.10, 125.48, 122.86, 113.61, 65.42, 55.43, 17.89. HRMS (ESI) calculated for C₁₂H₁₅O₃ [M+H]⁺ 207.1021, found 207.1019.

1e

(E)-but-2-en-1-yl-1-naphthoate (1e) was prepared according to general procedure A. The crude product

was purified by chromatography on silica gel (PE/EA = 100:1) affording a yellow oil. (0.3526 g, 78%). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.97 (d, *J* = 8.7 Hz, 1 H), 8.24 (d, *J* = 7.2 Hz, 1 H), 8.04 (d, *J* = 8.2 Hz, 1 H), 7.91 (d, *J* = 8.1 Hz, 1 H), 7.65 (t, *J* = 7.4 Hz, 1 H), 7.54 (dt, *J* = 15.7, 7.8 Hz, 2 H), 6.02 – 5.91 (m, 1 H), 5.86 – 5.77 (m, 1 H), 4.89 (d, *J* = 6.4 Hz, 2 H), 1.81 (d, *J* = 6.4 Hz, 3 H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 167.48, 133.95, 133.40, 131.67, 131.49, 130.31, 128.64, 127.82, 127.40, 126.28, 125.95, 125.31, 124.60, 65.88, 17.99. HRMS (ESI) calculated for C₁₅H₁₄O₂H [M+H]⁺ 227.1072, found 227.1074.

(*E*)-but-2-en-1-yl 2-(benzo[d][1,3]dioxol-5-yl)acetate (1f) was prepared according to general procedure B. The crude product was purified by chromatography on silica gel (PE/EA = 30:1) affording a yellow oil. (0.4076 g, 87%). ¹H NMR (400 MHz, Chloroform-*d*) δ 6.80 – 6.68 (m, 3 H), 5.93 (s, 2 H), 5.77 (tt, *J* = 14.8, 7.4 Hz, 1 H), 5.58 (dtd, *J* = 15.0, 6.5, 1.5 Hz, 1 H), 4.52 (d, *J* = 6.5 Hz, 2 H), 3.53 (s, 2 H), 1.75 – 1.69 (m, 3 H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 171.57, 147.82, 146.77, 131.63, 127.68, 125.07, 122.50, 109.83, 108.32, 101.10, 65.72, 40.98, 17.88. HRMS (ESI) calculated for $C_{13}H_{14}O_4H$ [M+H]⁺ 235.0970, found 235.0964.

(*E*)-but-2-en-1-yl 4-chlorobenzoate (1g) was prepared according to general procedure A. The crude product was purified by chromatography on silica gel (PE/EA = 100:1) affording a colorless oil. (2.0223 g, 96%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.98 (d, *J* = 8.5 Hz, 2 H), 7.39 (d, *J* = 8.5 Hz, 2 H), 5.87 (dq, *J* = 12.9, 6.5 Hz, 1 H), 5.70 (dtd, *J* = 11.8, 6.4, 3.2 Hz, 1 H), 4.74 (d, *J* = 6.4 Hz, 2 H), 1.75 (d, *J* = 6.4 Hz, 3 H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 165.49, 139.31, 131.67, 131.04, 128.90, 128.68, 125.07, 65.92, 17.87. HRMS (ESI) calculated for C₁₁H₁₁O₂ClH [M+H]⁺ 211.0526, found 211.0523.

(E)-but-2-en-1-yl *(E)*-3-(4-bromophenyl) acrylate (1h) was prepared according to general procedure B. The crude product was purified by chromatography on silica gel (PE/EA = 100:1) affording a white solid. (0.4200 g,

75%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.61 (d, *J* = 16.0 Hz, 1 H), 7.50 (d, *J* = 8.4 Hz, 2 H), 7.36 (d, *J* = 8.4 Hz, 2 H), 6.42 (d, *J* = 16.0 Hz, 1 H), 5.95 – 5.79 (m, 1 H), 5.72 – 5.60 (m, 1 H), 4.64 (d, *J* = 6.5 Hz, 2 H), 1.74 (d, *J* = 6.5 Hz, 3 H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 166.57, 143.48, 133.42, 132.21, 131.75, 129.51, 125.13, 124.59, 118.89, 65.50, 17.92. HRMS (ESI) calculated for C₁₃H₁₃BrO₃H [M+H]⁺ 281.0177, found 281.0177. MP:36 - 37 °C.

(*E*)-but-2-en-1-yl furan-2-carboxylate (1i) was prepared according to general procedure A. The crude product was purified by chromatography on silica gel (PE/EA = 100:1) affording a colorless oil. (1.1632 g, 70%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.53 (s, 1 H), 7.14 (d, *J* = 3.2 Hz, 1 H), 6.46 (dd, *J* = 3.4, 1.6 Hz, 1 H), 5.89 – 5.77 (m, 1 H), 5.69 – 5.59 (m, 1 H), 4.69 (s, 2 H), 1.73 – 1.67 (m, 3 H). The spectroscopic data matched that previously report.^[2]

(*E*)-but-2-en-1-yl thiophene-2-carboxylate (1j) was prepared according to general procedure A. The crude product was purified by chromatography on silica gel (PE/EA = 100:1) affording a colorless oil. (1.7313 g, 95%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.79 (ddt, *J* = 3.7, 1.1, 0.5 Hz, 1 H), 7.53 (ddt, *J* = 5.0, 1.2, 0.5 Hz, 1 H), 7.08 (ddt, *J* = 4.9, 3.8, 0.8 Hz, 1 H), 5.93 – 5.80 (m, 1 H), 5.72 – 5.60 (m, 1 H), 4.71 (dq, *J* = 6.4, 1.0 Hz, 2 H), 1.76 – 1.71 (m, 3 H). The spectroscopic data matched that previously report.^[2]

(E)-but-2-en-1-yl cyclopropanecarboxylate (1k) was prepared according to general procedure B. The crude product was purified by chromatography on silica gel (PE/EA = 50:1) affording a colorless oil. (0.4696 g, 67%). ¹H NMR (400 MHz, Chloroform-*d*) δ 5.90 – 5.72 (m, 1 H), 5.69 – 5.51 (m, 1 H), 4.59 – 4.43 (m, 2 H), 1.73 (d, *J* = 6.5 Hz, 3 H), 1.61 (tq, *J* = 11.1, 6.4, 5.5 Hz, 1 H), 1.00 (p, *J* = 4.1 Hz, 2 H), 0.85 (dq, *J* = 7.4, 3.9 Hz, 2 H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 174.84, 131.36, 125.28, 65.33, 17.88, 12.96, 8.51. HRMS (ESI) calculated for C₈H₁₂O₂H [M+H]⁺ 141.0916, found 141.0920.

(E)-but-2-en-1-yl cyclobutanecarboxylate (1I) was prepared according to general procedure B. The crude product was purified by chromatography on silica gel (PE/EA = 100:1) affording a colorless oil. (0.2406 g, 78%). ¹H NMR (400 MHz, Chloroform-*d*) δ 5.83 – 5.68 (m, 1 H), 5.56 (dtq, *J* = 13.0, 4.9, 1.5 Hz, 1 H), 4.48 (d, *J* = 6.4 Hz, 2 H), 3.12 (q, *J* = 8.5 Hz, 1 H), 2.33 – 2.10 (m, 4 H), 2.01 – 1.80 (m, 2 H), 1.73 – 1.65 (m, 3 H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 175.38, 131.25, 125.31, 65.12, 38.15, 25.31, 18.44, 17.86. HRMS (ESI) calculated for C₉H₁₄O₂H [M+H]⁺ 155.1072, found 155.1064.

(*E*)-but-2-en-1-yl cyclopentanecarboxylate (1m) was prepared according to general procedure B. The crude product was purified by chromatography on silica gel (PE/EA = 100:1) affording a colorless oil. (0.2822 g, 84%). ¹H NMR (400 MHz, Chloroform-*d*) δ 5.78 (dq, *J* = 13.0, 6.5 Hz, 1 H), 5.64 – 5.54 (m, 1 H), 4.50 (d, *J* = 6.4 Hz, 2 H), 2.73 (p, *J* = 7.9 Hz, 1 H), 1.88 (qd, *J* = 11.5, 10.3, 5.1 Hz, 2 H), 1.83 – 1.76 (m, 2 H), 1.72 (p, *J* = 6.7 Hz, 6 H), 1.58 (qq, *J* = 8.8, 5.6, 4.7 Hz, 2 H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 176.68, 131.05, 125.38, 65.09, 43.87, 30.07, 25.87, 17.85. HRMS (ESI) calculated for C₁₀H₁₆O₂H [M+H]⁺ 169.1229, found 169.1230.

(E)-but-2-en-1-yl cyclohexanecarboxylate (1n) was prepared according to general procedure B. The crude product was purified by chromatography on silica gel (PE/EA = 100:1) affording a colorless oil. (0.3276 g, 90%). ¹H NMR (400 MHz, Chloroform-*d*) δ 5.78 (dq, *J* = 13.0, 6.4 Hz, 1 H), 5.65 – 5.46 (m, 1 H), 4.49 (d, *J* = 6.4 Hz,

2 H), 2.30 (tt, *J* = 11.4, 3.6 Hz, 1 H), 1.90 (d, *J* = 13.1 Hz, 2 H), 1.80 – 1.59 (m, 6 H), 1.44 (q, *J* = 12.5, 12.1 Hz, 2 H), 1.34 – 1.18 (m, 3 H). The spectroscopic data matched that previously report.^[3]

(*E*)-but-2-en-1-yl 2-(cyclohex-1-en-1-yl) acetate (1o) was prepared according to general procedure B. The crude product was purified by chromatography on silica gel (PE/EA = 100:1) affording a colorless oil. (0.4867 g, 50%). ¹H NMR (400 MHz, Chloroform-*d*) δ 5.79 (dq, *J* = 13.0, 6.5 Hz, 1 H), 5.64 – 5.53 (m, 2 H), 4.51 (d, *J* = 6.5 Hz, 2 H), 2.95 (s, 2 H), 2.01 (d, *J* = 6.1 Hz, 5 H), 1.73 (d, *J* = 6.5 Hz, 4 H), 1.68 – 1.60 (m, 2 H), 1.60 – 1.52 (m, 3 H), 1.38 – 1.22 (m, 2 H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 171.94, 131.42, 131.19, 125.76, 125.19, 65.32, 43.69, 28.46, 25.36, 22.79, 22.05, 17.89. HRMS (ESI) calculated for C₁₂H₁₉O₂ [M+H]⁺ 195.1385, found 195.1390.

1p

(*E*)-but-2-en-1-yl hexanoate (1p) was prepared according to general procedure B. The crude product was purified by chromatography on silica gel (PE/EA = 100:1) affording a colorless oil. (0.2554 g, 75%). ¹H NMR (400 MHz, Chloroform-*d*) δ 5.73 (dq, *J* = 13.8, 6.4 Hz, 1 H), 5.59 – 5.48 (m, 1 H), 4.44 (d, *J* = 5.9 Hz, 2 H), 2.24 (t, *J* = 7.5 Hz, 2 H), 1.66 (d, *J* = 6.4 Hz, 3 H), 1.57 (p, *J* = 7.5 Hz, 2 H), 1.33 – 1.18 (m, 5 H), 0.84 (t, *J* = 6.7 Hz, 3 H). The spectroscopic data matched that previously report.^[4]

(*E*)-but-2-en-1-yl (*S*)-2-(6-methoxynaphthalen-2-yl) propanoate (1q) was prepared according to general procedure B. The crude product was purified by chromatography on silica gel (PE/EA = 50:1) affording a yellow solid. (0.4970 g, 87%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.74 – 7.64 (m, 3 H), 7.41 (dd, *J* = 8.4, 1.6 Hz, 1 H), 7.16 – 7.09 (m, 2 H), 5.78 – 5.66 (m, 1 H), 5.58 – 5.48 (m, 1 H), 4.54 (dd, *J* = 12.4, 6.4 Hz, 1 H), 4.46 (dd, *J* = 12.3, 6.4 Hz, 1 H), 3.91 (s, 3 H), 3.85 (q, *J* = 7.2 Hz, 1 H), 1.67 (d, *J* = 7.0 Hz, 3 H), 1.57 (d, *J* = 7.1 Hz, 4 H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 174.60, 157.70, 135.84, 133.77, 131.34, 129.38, 129.02, 127.21, 126.37,

126.05, 125.12, 119.04, 65.62, 55.39, 45.58, 18.79, 17.86. HRMS (ESI) calculated for C₁₈H₂₀O₃H [M+H]⁺ 285.1491, found 285.1488. MP: 49 - 50 °C.

(E)-2-(but-2-en-1-yl) 1-(tert-butyl) pyrrolidine-1,2-*d*icarboxylate (1r) was prepared according to general procedure B. The crude product was purified by chromatography on silica gel (PE/EA = 50:1) affording a yellow oil. (0.4848 g, 90%). ¹H NMR (400 MHz, Chloroform-*d*) δ 5.77 (dt, *J* = 14.5, 7.6 Hz, 1 H), 5.64 – 5.47 (m, 1 H), 4.51 (d, *J* = 5.6 Hz, 2 H), 4.30 (dd, *J* = 8.5, 2.9 Hz, 0 H), 4.19 (dd, *J* = 8.5, 3.9 Hz, 1 H), 3.45 (dddd, *J* = 40.5, 23.4, 10.3, 5.4 Hz, 2 H), 2.18 (ddd, *J* = 20.8, 11.8, 9.0 Hz, 1 H), 2.01 – 1.79 (m, 3 H), 1.70 (d, *J* = 6.1 Hz, 3 H), 1.44 (s, 3 H), 1.39 (s, 6 H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 173.50, 173.20, 154.83, 154.27, 132.23, 131.72, 125.31 (d, *J* = 6.4 Hz), 80.29, 80.14, 66.02, 59.62, 59.29, 46.97, 46.74, 31.31, 30.33, 28.85, 28.69, 18.19. HRMS (ESI) calculated for C₁₄H₂₃NO₄H [M+H]⁺ 270.1705, found 270.1700.

(*E*)-but-2-en-1-yl 2-(11-oxo-6,11-*d*ihydrodibenzo[b,e]oxepin-2-yl)acetate (1s) was prepared according to general procedure B. The crude product was purified by chromatography on silica gel (PE/EA = 50:1) affording a yellow solid. (0.4970 g, 87%). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.11 (d, *J* = 2.2 Hz, 1 H), 7.89 (d, *J* = 7.5 Hz, 1 H), 7.56 (t, *J* = 7.3 Hz, 1 H), 7.51 – 7.40 (m, 2 H), 7.36 (d, *J* = 7.4 Hz, 1 H), 7.03 (d, *J* = 8.4 Hz, 1 H), 5.79 (dq, *J* = 12.9, 6.4 Hz, 1 H), 5.64 – 5.52 (m, 1 H), 5.19 (s, 2 H), 4.53 (d, *J* = 6.5 Hz, 2 H), 3.65 (s, 2 H), 1.72 (d, *J* = 6.4 Hz, 3 H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 190.93, 171.34, 160.54, 140.54, 136.48, 135.63, 132.84, 132.56, 131.82, 129.55, 129.34, 127.92, 127.89, 125.19, 124.96, 121.12, 73.69, 65.83, 40.27, 17.89. HRMS (ESI) calculated for C₂₀H₁₈O₄H [M+H]⁺ 323.1283, found 323.1279. MP: 69 – 70 °C.

(*E*)-but-2-en-1-yl(*R*)-4-((3*R*,5*R*,8*R*,9*S*,10*S*,13*R*,14*S*,17*R*)-3-hydroxy-10,13-dimethylhexadecahydro-1Hcyclopenta[a]phenanthren-17-yl)pentanoate (1t) was prepared according to general procedure B. The crude product was purified by chromatography on silica gel (PE/EA = 20:1) affording a colorless viscous oil. (0.6393 g, 74%). ¹H NMR (400 MHz, Chloroform-*d*) δ 5.84 – 5.73 (m, 1 H), 5.63 – 5.54 (m, 1 H), 4.49 (d, *J* = 6.4 Hz, 2 H), 3.62 (tt, *J* = 10.1, 4.1 Hz, 1 H), 2.35 (ddd, *J* = 15.2, 10.1, 5.1 Hz, 1 H), 2.21 (ddd, *J* = 15.6, 9.5, 6.6 Hz, 1 H), 1.98 – 1.91 (m, 1 H), 1.89 – 1.63 (m, 11 H), 1.37 (td, *J* = 17.1, 16.1, 7.6 Hz, 9 H), 1.32 – 1.18 (m, 6 H), 1.18 – 0.95 (m, 8 H), 0.90 (d, *J* = 7.1 Hz, 7 H), 0.63 (s, 4 H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 131.28, 125.23, 71.87, 65.03, 56.49, 55.96, 42.73, 42.10, 40.43, 40.17, 36.46, 35.85, 35.35, 34.58, 31.30, 30.98, 30.55, 28.20, 27.20, 26.42, 24.22, 20.82, 18.28, 17.81, 12.04. HRMS (ESI) calculated for C₂₈H₄₆O₃H [M+H]⁺ 431.3525, found 431.3521.

(*E*)-oct-2-en-1-yl benzoate (1u) was prepared according to general procedure A. The crude product was purified by chromatography on silica gel (PE/EA = 100:1) affording a colorless oil. (0.4368 g, 94%). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.06 (d, *J* = 7.5 Hz, 2 H), 7.55 (t, *J* = 7.4 Hz, 1 H), 7.43 (t, *J* = 7.7 Hz, 2 H), 5.86 (dt, *J* = 13.9, 6.7 Hz, 1 H), 5.69 (dt, *J* = 15.2, 6.4 Hz, 1 H), 4.77 (d, *J* = 6.4 Hz, 2 H), 2.08 (q, *J* = 7.1 Hz, 2 H), 1.47 – 1.23 (m, 6 H), 0.89 (t, *J* = 6.8 Hz, 3 H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 166.46, 136.74, 132.90, 130.52, 129.68, 128.37, 123.87, 65.82, 32.37, 31.47, 28.67, 22.59, 14.12. HRMS (ESI) calculated for C₁₅H₂₀O₂H [M+H]⁺ 233.1542, found 233.1540.

(E)-oct-2-en-1-yl 4-methoxybenzoate (1v) was prepared according to general procedure A. The crude product

was purified by chromatography on silica gel (PE/EA = 100:1) affording a colorless oil. (0.4827 g, 92%). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.04 – 7.98 (m, 2 H), 6.94 – 6.88 (m, 2 H), 5.89 – 5.79 (m, 1 H), 5.69 (s, 1 H), 4.73 (d, *J* = 6.3 Hz, 2 H), 3.84 (d, *J* = 2.3 Hz, 3 H), 2.07 (q, *J* = 7.1 Hz, 2 H), 1.46 – 1.25 (m, 7 H), 0.89 (t, *J* = 6.8 Hz, 3 H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 166.25, 163.36, 136.48, 131.69, 124.06, 122.91, 113.61, 65.54, 55.45, 32.36, 31.47, 28.68, 22.59, 14.12. HRMS (ESI) calculated for C₁₆H₂₂O₃H [M+H]⁺ 263.1647, found 263.1645.

(*E*)-oct-2-en-1-yl 2-methylbenzoate (1w) was prepared according to general procedure A. The crude product was purified by chromatography on silica gel (PE/EA = 100:1) affording a colorless oil. (0.3892 g, 79%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.97 – 7.87 (m, 1 H), 7.38 (s, 1 H), 7.27 – 7.20 (m, 2 H), 5.85 (dt, *J* = 13.6, 6.7 Hz, 1 H), 5.75 – 5.62 (m, 1 H), 4.74 (d, *J* = 6.4 Hz, 2 H), 2.60 (s, 3 H), 2.08 (s, 2 H), 1.48 – 1.19 (m, 6 H), 0.89 (t, *J* = 6.8 Hz, 3 H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 167.50, 140.19, 136.72, 131.93, 131.71, 130.64, 129.93, 125.74, 123.97, 65.61, 32.37, 31.46, 28.69, 22.60, 21.81, 14.13. HRMS (ESI) calculated for C₁₆H₂₂O₂H [M+H]⁺ 247.1698, found 247.1693.

1x

(*E*)-oct-2-en-1-yl 4-chlorobenzoate (1x) was prepared according to general procedure A. The crude product was purified by chromatography on silica gel (PE/EA = 100:1) affording a colorless oil. (0.5282 g, 99%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.98 (d, *J* = 8.4 Hz, 2 H), 7.41 (dd, *J* = 8.6, 1.9 Hz, 2 H), 5.93 – 5.80 (m, 1 H), 5.67 (dt, *J* = 15.2, 6.4 Hz, 1 H), 4.75 (d, *J* = 6.5 Hz, 2 H), 2.08 (q, *J* = 7.1 Hz, 2 H), 1.46 – 1.22 (m, 6 H), 0.89 (t, *J* = 6.8 Hz, 3 H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 165.54, 139.32, 137.04, 131.06, 128.94, 128.68 (d, *J* = 2.1 Hz), 123.64, 66.06, 32.34, 31.45, 28.63, 22.57, 14.10. HRMS (ESI) calculated for C₁₅H₁₉ClO₂H [M+H]⁺ 267.1152, found 267.1157.

(E)-oct-2-en-1-yl thiophene-2-carboxylate (1y) was prepared according to general procedure A. The crude product was purified by chromatography on silica gel (PE/EA = 100:1) affording a colorless oil. (0.4529 g, 95%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.80 (d, J = 3.7 Hz, 1 H), 7.54 (d, J = 5.0 Hz, 1 H), 7.09 (t, J = 4.2 Hz, 1 H), 5.85 (dt, J = 13.7, 6.7 Hz, 1 H), 5.74 – 5.58 (m, 1 H), 4.73 (d, J = 6.4 Hz, 2 H), 2.07 (q, J = 7.1 Hz, 2 H), 1.40 (p, J = 7.2 Hz, 2 H), 1.30 (h, J = 6.5 Hz, 4 H), 0.89 (t, J = 6.8 Hz, 3 H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 162.12, 136.98, 134.07, 133.42, 132.33, 127.75, 123.64, 65.95, 32.33, 31.45, 28.62, 22.58, 14.11. HRMS (ESI) calculated for C₁₃H₁₈O₂SH [M+H]⁺ 239.1106, found 239.1098.

(*E*)-oct-2-en-1-yl furan-2-carboxylate (1z) was prepared according to general procedure A. The crude product was purified by chromatography on silica gel (PE/EA = 100:1) affording a colorless oil. (0.4401 g, 99%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.56 (s, 1 H), 7.18 (d, *J* = 2.7 Hz, 1 H), 6.52 – 6.44 (m, 1 H), 5.92 – 5.78 (m, 1 H), 5.74 – 5.56 (m, 1 H), 4.73 (d, *J* = 6.5 Hz, 2 H), 2.05 (q, *J* = 7.0 Hz, 2 H), 1.44 – 1.20 (m, 6 H), 0.87 (dt, *J* = 7.1, 3.3 Hz, 3 H). The spectroscopic data matched that previously report.^[2]

1**A**

(*E*)-4-(benzyloxy) but-2-en-1-yl cyclopropanecarboxylate (1A) was prepared according to general procedure B. The crude product was purified by chromatography on silica gel (PE/EA = 50:1) affording a colorless oil. (0.4236 g, 86%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.38 – 7.26 (m, 5 H), 5.87 (s, 2 H), 4.60 (d, J = 4.3 Hz, 2 H), 4.53 (s, 2 H), 4.04 (d, J = 4.0 Hz, 2 H), 1.68 – 1.56 (m, 1 H), 1.09 – 0.98 (m, 3 H), 0.86 (dq, J = 7.5, 4.0 Hz, 2 H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 174.64, 138.21, 130.80, 128.50, 127.84, 127.76, 126.91, 72.44, 69.90, 64.34, 12.95, 8.60. HRMS (ESI) calculated for C₁₅H₁₈O₃H [M+H]⁺ 247.1334, found 247.1331.

(*E*)-4-(benzyloxy) but-2-en-1-yl-cyclobutanecarboxylate (1B) was prepared according to general procedure B. The crude product was purified by chromatography on silica gel (PE/EA = 50:1) affording a colorless oil. (0.4426 g, 85%). ¹H NMR (401 MHz, Chloroform-*d*) δ 7.38 – 7.25 (m, 5 H), 5.92 – 5.79 (m, 2 H), 4.58 (dd, *J* = 4.7, 1.0 Hz, 2 H), 4.51 (s, 2 H), 4.03 (dd, *J* = 3.1, 2.1 Hz, 2 H), 3.23 – 3.05 (m, 1 H), 2.35 – 2.11 (m, 4 H), 2.04 – 1.82 (m, 2 H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 175.28, 138.16, 130.72, 128.50, 127.85, 127.77, 126.97, 72.43, 69.88, 64.17, 38.13, 25.36, 18.50. HRMS (ESI) calculated for C₁₅H₁₈O₃H [M+H]⁺ 261.1491, found 261.1488.

(*E*)-4-(benzyloxy) but-2-en-1-yl-cyclopentanecarboxylate (1C) was prepared according to general procedure B. The crude product was purified by chromatography on silica gel (PE/EA = 50:1) affording a colorless oil. (0.5377 g, 98%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.42 – 7.29 (m, 5 H), 5.90 (q, *J* = 4.4 Hz, 2 H), 4.61 (d, *J* = 4.3 Hz, 2 H), 4.55 (s, 2 H), 4.07 (d, *J* = 3.8 Hz, 2 H), 2.77 (p, *J* = 8.0 Hz, 1 H), 2.00 – 1.52 (m, 8 H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 176.42, 138.24, 130.59, 128.48, 127.83 (d, *J* = 2.3 Hz), 127.75 (d, *J* = 1.7 Hz), 127.05 (d, *J* = 3.6 Hz), 72.39, 69.90, 64.13, 43.87, 30.12, 25.92. HRMS (ESI) calculated for C₁₇H₂₂O₃H [M+H]⁺ 275.1647, found 275.1640.

(*E*)-4-(benzyloxy) but-2-en-1-yl-4-methoxybenzoate (1D) was prepared according to general procedure A. The crude product was purified by chromatography on silica gel (PE/EA = 50:1) affording a white solid. (0.5335 g, 90%). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.07 – 7.98 (m, 2 H), 7.39 – 7.28 (m, 5 H), 6.96 – 6.89 (m, 2 H), 5.97 (t, *J* = 2.8 Hz, 2 H), 4.87 – 4.79 (m, 2 H), 4.54 (s, 2 H), 4.11 – 4.04 (m, 2 H), 3.86 (s, 3 H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 166.15, 163.48, 138.15, 131.79, 130.64, 128.53 (d, *J* = 0.9 Hz), 127.90, 127.80 (d, *J* = 0.9 Hz), 127.11 (d, J = 0.9 Hz), 122.60, 113.70, 72.51, 69.98, 64.51, 55.54. HRMS (ESI) calculated for $C_{19}H_{20}O_4H [M+H]^+ 313.1440$, found 313.1437. MP: 32-33 °C.

1E

(*E*)-4-(benzyloxy) but-2-en-1-yl-2-(benzo[d] [1,3] dioxol-5-yl) acetate (1E) was prepared according to general procedure B. The crude product was purified by chromatography on silica gel (PE/EA = 50:1) affording a yellow oil. (0.6807 g, 93%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.43 – 7.28 (m, 5 H), 6.85 – 6.70 (m, 3 H), 5.95 (s, 2 H), 5.94 – 5.83 (m, 2 H), 4.63 (d, *J* = 4.1 Hz, 2 H), 4.54 (s, 2 H), 4.06 (d, *J* = 3.6 Hz, 2 H), 3.58 (s, 2 H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 171.46, 147.88, 146.85, 138.19, 131.17, 128.53, 127.87, 127.80, 127.57 (d, *J* = 1.4 Hz), 126.54, 122.54, 109.86, 108.40, 101.13, 72.43, 69.82, 64.77, 40.99. HRMS (ESI) calculated for C₂₀H₂₀O₅H [M+H]⁺ 341.1389, found 341.1387.

(E)-4-(benzyloxy) but-2-en-1-yl thiophene-2-carboxylate (1F) was prepared according to general procedure A. The crude product was purified by chromatography on silica gel (PE/EA = 50:1) affording a colorless oil. (0.5479 g, 95%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.85 (dd, *J* = 3.7, 1.1 Hz, 1 H), 7.58 (dd, *J* = 5.0, 1.1 Hz, 1 H), 7.43 – 7.28 (m, 5 H), 7.13 (dd, *J* = 4.9, 3.8 Hz, 1 H), 6.05 – 5.93 (m, 2 H), 4.84 (d, *J* = 4.2 Hz, 2 H), 4.57 (s, 2 H), 4.10 (d, *J* = 3.8 Hz, 2 H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 162.02, 138.17, 133.73, 133.69, 132.62, 131.19, 128.54, 127.89, 127.88 (d, *J* = 0.6 Hz), 127.81, 126.52, 72.53, 69.88, 64.91. HRMS (ESI) calculated for C₁₆H₁₆O₃SH [M+H]⁺ 289.0898, found 289.0892.

(E)-4-(benzyloxy) but-2-en-1-yl furan-2-carboxylate (1G) was prepared according to general procedure A. The crude product was purified by chromatography on silica gel (PE/EA = 50:1) affording a colorless oil. (0.4738 g, 87%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.66 – 7.57 (m, 1 H), 7.41 – 7.27 (m, 5 H), 7.22 (d, *J* = 3.5 Hz, 1 H), 6.53 (dd, J = 3.5, 1.7 Hz, 1 H), 5.99 (q, J = 4.3 Hz, 2 H), 4.84 (d, J = 4.4 Hz, 2 H), 4.56 (s, 2 H), 4.09 (d, J = 3.7 Hz, 2 H). The spectroscopic data matched that previously report.^[2]

(*E*)-4-methylhex-2-en-1-yl benzoate (1H) was prepared according to general procedure B. The crude product was purified by chromatography on silica gel (PE/EA = 100:1) affording a colorless oil. (0.5688 g, 87%). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.11 – 8.02 (m, 2 H), 7.59 – 7.51 (m, 1 H), 7.44 (t, *J* = 7.7 Hz, 2 H), 5.74 (dd, *J* = 15.5, 7.2 Hz, 1 H), 5.64 (dt, *J* = 15.5, 6.0 Hz, 1 H), 4.78 (d, *J* = 5.9 Hz, 2 H), 2.09 (hept, *J* = 6.8 Hz, 1 H), 1.40 – 1.29 (m, 2 H), 1.01 (d, *J* = 6.7 Hz, 3 H), 0.87 (t, *J* = 7.4 Hz, 3 H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 166.51, 142.09, 132.91, 130.53, 129.69, 128.39, 122.34, 65.93, 38.16, 29.45, 19.79, 11.76. HRMS (ESI) calculated for C₁₄H₁₈O₂H [M+H]⁺ 219.1387, found 219.1385.

(*E*)-4-ethylhex-2-en-1-yl 2-methylbenzoate (1J) was prepared according to general procedure B. The crude product was purified by chromatography on silica gel (PE/EA = 50:1) affording a colorless oil. (0.3485 g, 78%). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.08 – 8.04 (m, 2 H), 7.55 (t, *J* = 7.4 Hz, 1 H), 7.44 (t, *J* = 7.7 Hz, 2 H), 5.69 – 5.54 (m, 2 H), 4.79 (d, *J* = 5.9 Hz, 2 H), 1.89 – 1.79 (m, 1 H), 1.50 – 1.38 (m, 2 H), 1.27 (dp, *J* = 15.4, 7.5 Hz, 2 H), 0.86 (t, *J* = 7.4 Hz, 6 H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 166.47, 140.62, 132.89, 130.57, 129.67, 128.39, 124.09, 65.86, 46.05, 27.37, 11.76. HRMS (ESI) calculated for $C_{15}H_{20}O_2H$ [M+H]⁺ 233.1542, found 233.1539.

(*E*)-3-cyclohexylallyl benzoate (1K) was prepared according to general procedure. The crude product was purified by chromatography on silica gel (PE/EA = 100:1) affording a colorless oil. (0.4374 g, 90%). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.14 – 8.05 (m, 2 H), 7.61 – 7.53 (m, 1 H), 7.46 (t, *J* = 7.7 Hz, 2 H), 5.83 (dd, *J* =

15.5, 6.5 Hz, 1 H), 5.72 – 5.60 (m, 1 H), 4.85 – 4.75 (m, 2 H), 2.03 (dtt, J = 10.1, 6.2, 3.1 Hz, 1 H), 1.85 – 1.63 (m, 6 H), 1.37 – 1.03 (m, 6 H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 166.47, 142.16, 132.90, 130.53, 129.70, 128.38, 121.47, 66.05, 40.47, 32.65, 26.21, 26.06. HRMS (ESI) calculated for C₁₆H₂₀O₂H [M+H]⁺ 245.1542, found 245.1533.

(*E*)-4,4-*d*imethylpent-2-en-1-yl benzoate (1L) was prepared according to general procedure. The crude product was purified by chromatography on silica gel (PE/EA = 100:1) affording a colorless oil. (0.4799 g, 73%). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.09 – 8.04 (m, 2 H), 7.55 (t, *J* = 7.4 Hz, 1 H), 7.45 (d, *J* = 7.8 Hz, 3 H), 5.86 (d, *J* = 15.6 Hz, 1 H), 5.59 (dt, *J* = 15.6, 6.4 Hz, 1 H), 4.78 (dd, *J* = 6.4, 1.1 Hz, 2 H), 1.05 (s, 9 H). HRMS (ESI) calculated for C₁₄H₁₈O₂H [M+H]⁺ 219.1385, found 219.1386. The spectroscopic data matched that previously report.^[5]

3-methylbut-2-en-1-yl benzoate (1M) was prepared according to general procedure. The crude product was purified by chromatography on silica gel (PE/EA = 100:1) affording a colorless oil. (0.8561 g, 90%). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.05 (dt, *J* = 8.5, 1.6 Hz, 2 H), 7.59 – 7.50 (m, 1 H), 7.48 – 7.37 (m, 2 H), 5.48 (dddt, *J* = 7.2, 5.8, 2.8, 1.4 Hz, 1 H), 4.82 (d, *J* = 7.2 Hz, 2 H), 1.78 (d, *J* = 6.5 Hz, 6 H). The spectroscopic data matched that previously report.^[6]

5. Synthesis of 2a

Pd(PhCN)₂Cl₂ (14.4 mg, 0.0375 mmol) was weighed directly into a 25 mL flask and dried under high vacuum for 15 mins, purge oxygen 3 times. Under an atmosphere of oxygen (1 atm, balloon), 'BuOH (2 mL) and 'BuONO (10.3 mg, 0.1 mmol) were added and stirred at 25 °C. *(E)*-but-2-en-1-yl benzoate (0.5 mmol) was then added and the resulting reaction mixture was monitored by TLC. After completion, the reaction was quenched by addition of water (5 mL) and extracted three times with CH₂Cl₂. The combined organic layers were subsequently

washed with brine and dried over Na₂SO₄. The organic solvent was removed under reduced pressure then the crude mixture was examined on ¹H NMR spectrometer to determine the conversion and regioselectivity. The crude product was purified by chromatography on silica gel to affording the corresponding products.

4-oxobutan-2-yl benzoate (2a) was prepared according to the general procedure and purified by flash column chromatography (PE/EA = 30/1) as yellow oil (74.1 mg, 77%). ¹H NMR (400 MHz, Chloroform-*d*) δ 9.86 – 9.81 (m, 1 H), 8.07 – 7.99 (m, 2 H), 7.58 (t, *J* = 7.4 Hz, 1 H), 7.45 (t, *J* = 7.7 Hz, 2 H), 5.64 (h, *J* = 6.4 Hz, 1 H), 2.90 (ddd, *J* = 16.8, 7.1, 2.5 Hz, 1 H), 2.75 (ddd, *J* = 16.8, 5.3, 1.4 Hz, 1 H), 1.48 (d, *J* = 6.4 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 199.59, 165.93, 133.23, 130.09, 129.67, 128.49, 66.72, 49.73, 20.36. HRMS (ESI) calculated for C₁₁H₁₂O₃H [M+H]⁺ 193.0865, found 193.0861.

4-oxobutan-2-yl 2-methylbenzoate (2b) was prepared according to the general procedure and purified by flash column chromatography (PE/EA = 10/1) as yellow oil (84.5 mg, 82%). ¹H NMR (400 MHz, Chloroform-*d*) δ 9.83 (dd, *J* = 2.5, 1.5 Hz, 1 H), 7.85 (dd, *J* = 8.1, 1.3 Hz, 1 H), 7.40 (td, *J* = 7.5, 1.3 Hz, 1 H), 7.29 – 7.20 (m, 2 H), 5.64 (d, *J* = 6.4 Hz, 1 H), 2.88 (ddd, *J* = 16.8, 7.2, 2.5 Hz, 1 H), 2.73 (ddd, *J* = 16.7, 5.2, 1.5 Hz, 1 H), 2.58 (s, 3 H), 1.47 (d, *J* = 6.4 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 199.45, 166.84, 140.15, 131.72, 130.47, 129.48, 125.74, 66.33, 49.72, 21.77, 20.30. HRMS (ESI) calculated for C₁₄H₁₈O₂H [M+H]⁺ 219.1385, found 219.1386.

4-oxobutan-2-yl [1,1'-biphenyl]-3-carboxylate (2c) was prepared according to the general procedure and purified by flash column chromatography (PE/EA = 20/1) as yellow oil (86.8mg, 65%). ¹H NMR (400 MHz, Chloroform-*d*) δ 9.84 (dd, *J* = 2.4, 1.6 Hz, 1 H), 8.24 (t, *J* = 1.6 Hz, 1 H), 7.99 (dt, *J* = 7.8, 1.4 Hz, 1 H), 7.79

(ddd, J = 7.7, 1.9, 1.2 Hz, 1 H), 7.65 – 7.59 (m, 2 H), 7.55 – 7.44 (m, 3 H), 7.42 – 7.36 (m, 1 H), 5.71 – 5.62 (m, 1 H), 2.92 (ddd, J = 16.8, 7.1, 2.5 Hz, 1 H), 2.76 (ddd, J = 16.8, 5.4, 1.5 Hz, 1 H), 1.49 (d, J = 6.4 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 199.34, 165.79, 141.58, 140.09, 131.79, 130.61, 128.92, 128.89, 128.37, 128.28, 127.80, 127.20, 66.76, 49.69, 20.31. HRMS (ESI) calculated for C₁₇H₁₆O₃H [M+H]⁺ 269.1178, found 269.1175.

4-oxobutan-2-yl 4-methoxybenzoate (2d) was prepared according to the general procedure and purified by flash column chromatography (PE/EA = 10/1) as yellow oil (69.2 mg, 76%). ¹H NMR (400 MHz, Chloroform-*d*) δ 9.86 – 9.81 (m, 1 H), 8.01 – 7.95 (m, 2 H), 6.93 (d, *J* = 8.8 Hz, 2 H), 5.61 (h, *J* = 6.4 Hz, 1 H), 3.88 (s, 3 H), 2.88 (ddd, *J* = 16.7, 7.1, 2.6 Hz, 1 H), 2.74 (ddd, *J* = 16.7, 5.3, 1.4 Hz, 1 H), 1.47 (d, *J* = 6.4 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 199.61, 165.57, 163.49, 131.64, 122.42, 113.62, 66.29, 55.46, 49.74, 20.34. HRMS (ESI) calculated for C₁₂H₁₄O₄H [M+H]⁺ 223.0970, found 223.0968.

4-oxobutan-2-yl 2-Naphthoate (2e) was prepared according to the general procedure and purified by flash column chromatography (PE/EA = 20/1) as yellow oil (83.4 mg, 69%). ¹H NMR (400 MHz, Chloroform-*d*) δ 9.92 – 9.88 (m, 1 H), 8.91 (d, *J* = 8.7 Hz, 1 H), 8.15 (dd, *J* = 7.3, 1.0 Hz, 1 H), 8.05 (d, *J* = 8.2 Hz, 1 H), 7.91 (d, *J* = 8.1 Hz, 1 H), 7.65 (ddd, *J* = 8.5, 6.9, 1.3 Hz, 1 H), 7.60 – 7.48 (m, 2 H), 5.76 (h, *J* = 6.4 Hz, 1 H), 2.98 (ddd, *J* = 16.8, 7.2, 2.5 Hz, 1 H), 2.82 (ddd, *J* = 16.8, 5.3, 1.4 Hz, 1 H), 1.56 (d, *J* = 6.4 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 199.41, 166.76, 133.82, 133.53, 131.32, 130.12, 128.59, 126.97, 126.78, 125.65, 124.47, 66.64, 49.76, 20.36. HRMS (ESI) calculated for C₁₅H₁₄O₃H [M+H]⁺ 243.1021, found 243.1019.

4-oxobutan-2-yl 2-(benzo[d][1,3] dioxol-5-yl)acetate (2f) was prepared according to the general procedure

and purified by flash column chromatography (PE/EA = 10/1) as yellow oil (81.3 mg, 65%). ¹H NMR (400 MHz, Chloroform-*d*) δ 9.73 – 9.66 (m, 1 H), 6.75 (dd, *J* = 4.6, 3.2 Hz, 2 H), 6.69 (dd, *J* = 8.0, 1.5 Hz, 1 H), 5.94 (s, 2 H), 5.36 (h, *J* = 6.4 Hz, 1 H), 3.49 (s, 2 H), 2.72 (ddd, *J* = 16.8, 7.2, 2.4 Hz, 1 H), 2.59 (ddd, *J* = 16.8, 5.3, 1.4 Hz, 1 H), 1.31 (d, *J* = 6.4 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 199.42, 171.10, 147.84, 146.81, 127.39, 122.44, 109.71, 108.40, 101.14, 66.53, 49.54, 41.12, 20.18. HRMS (ESI) calculated for C₁₃H₁₄O₅H [M+H]⁺ 251.0919, found 251.0915.

4-oxobutan-2-yl 4-chlorobenzoate (2g) was prepared according to the general procedure and purified by flash column chromatography (PE/EA = 10/1) as yellow oil (90.9 mg, 80%). ¹H NMR (400 MHz, Chloroform-*d*) δ 9.88 – 9.78 (m, 1 H), 8.03 – 7.89 (m, 2 H), 7.42 (d, *J* = 8.5 Hz, 2 H), 5.63 (h, *J* = 6.4 Hz, 1 H), 3.00 – 2.69 (m, 2 H), 1.48 (d, *J* = 6.4 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 199.14, 164.97, 139.58, 130.98, 128.74, 128.48, 66.91, 49.61, 20.24. HRMS (ESI) calculated for C₁₁H₁₁ClO₃H [M+H]⁺ 227.0475, found 227.0470.

4-oxobutan-2-yl *(E)***-3-(4-bromophenyl)acrylate (2h)** was prepared according to the general procedure and purified by flash column chromatography (PE/EA = 5/1) as yellow oil (98.1 mg, 66%). ¹H NMR (400 MHz, Chloroform-*d*) δ 9.78 (dd, *J* = 2.5, 1.5 Hz, 1 H), 7.60 (d, *J* = 16.0 Hz, 1 H), 7.54 – 7.49 (m, 2 H), 7.41 – 7.34 (m, 2 H), 6.38 (d, *J* = 16.0 Hz, 1 H), 5.59 – 5.45 (m, 1 H), 2.81 (ddd, *J* = 16.8, 7.2, 2.5 Hz, 1 H), 2.68 (ddd, *J* = 16.8, 5.3, 1.5 Hz, 1 H), 1.40 (d, *J* = 6.4 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 199.40, 165.94, 143.84, 133.17, 132.17, 129.48, 124.69, 118.55, 66.21, 49.64, 20.26. HRMS (ESI) calculated for C₁₃H₁₃BrO₃H [M+H]⁺ 297.0126, found 297.0126.

4-oxobutan-2-yl furan-2-carboxylate (2i) was prepared according to the general procedure and purified by flash column chromatography (PE/EA = 10/1) as yellow oil (91.1 mg, 73%). ¹H NMR (400 MHz, Chloroform-*d*) δ 9.82 – 9.79 (m, 1 H), 7.62 – 7.56 (m, 1 H), 7.18 (d, *J* = 3.4 Hz, 1 H), 6.52 (dd, *J* = 3.5, 1.7 Hz, 1 H), 5.61 (h, *J* = 6.5 Hz, 1 H), 2.90 (ddd, *J* = 17.0, 7.1, 2.3 Hz, 1 H), 2.73 (ddd, *J* = 17.0, 5.4, 1.4 Hz, 1 H), 1.46 (d, *J* = 6.4 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 199.11, 157.93, 146.47, 144.55, 118.22, 111.88, 66.68, 49.52, 20.24.

4-oxobutan-2-yl thiophene-2-carboxylate (2j) was prepared according to the general procedure and purified by flash column chromatography (PE/EA = 10/1) as yellow oil (72.7 mg, 73%). ¹H NMR (400 MHz, Chloroform*d*) δ 9.96 – 9.69 (m, 1 H), 7.80 (d, *J* = 2.9 Hz, 1 H), 7.58 (d, *J* = 4.7 Hz, 1 H), 7.18 – 7.04 (m, 1 H), 5.59 (h, *J* = 6.4 Hz, 1 H), 2.98 – 2.67 (m, 2 H), 1.47 (d, *J* = 6.4 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 199.28, 161.48, 133.63, 133.58, 132.65, 127.80, 66.94, 49.56, 20.27.

4-oxobutan-2-yl cyclopropanecarboxylate (2k) was prepared according to the general procedure and purified by flash column chromatography (PE/EA = 5/1) as yellow oil (45.3 mg, 58%). ¹H NMR (400 MHz, Chloroform*d*) δ 9.72 (dd, J = 2.5, 1.6 Hz, 1 H), 5.40 – 5.28 (m, 1 H), 2.71 (ddd, J = 16.7, 7.2, 2.6 Hz, 1 H), 2.58 (ddd, J = 16.7, 5.3, 1.6 Hz, 1 H), 1.54 (tt, J = 8.1, 4.6 Hz, 1 H), 1.31 (d, J = 6.4 Hz, 3 H), 0.96 (tdd, J = 5.2, 4.5, 3.8, 1.7 Hz, 2 H), 0.84 (ddd, J = 8.2, 4.7, 2.2 Hz, 2 H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 199.59, 174.23, 65.87, 49.64, 20.21, 12.97, 9.17. HRMS (ESI) calculated for C₈H₁₂O₃H [M+H]⁺ 157.0865, found 157.0872.

4-oxobutan-2-yl cyclobutanecarboxylate (2I) was prepared according to the general procedure and purified by flash column chromatography (PE/EA = 10/1) as yellow oil. (51.1 mg, 60%). ¹H NMR (400 MHz, Chloroformd) δ 9.73 (dd, *J* = 2.5, 1.6 Hz, 1 H), 5.41 – 5.31 (m, 1 H), 3.15 – 3.01 (m, 1 H), 2.71 (ddd, *J* = 16.7, 7.4, 2.6 Hz, 1 H), 2.64 – 2.54 (m, 1 H), 2.33 – 2.10 (m, 4 H), 2.03 – 1.82 (m, 2 H), 1.31 (d, *J* = 6.4 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 199.48, 174.78, 65.56, 49.63, 38.08, 25.08, 20.17, 18.35. HRMS (ESI) calculated for C₉H₁₄O₃H [M+H]⁺ 171.1021, found 171.1017.

4-oxobutan-2-yl cyclopentanecarboxylate (2m) was prepared according to the general procedure and purified by flash column chromatography (PE/EA = 20/1) as yellow oil (61.3 mg, 66%). ¹H NMR (400 MHz, Chloroform-*d*) δ 9.78 – 9.71 (m, 1 H), 5.36 (dt, *J* = 12.8, 6.4 Hz, 1 H), 2.76 – 2.57 (m, 3 H), 1.92 – 1.51 (m, 9 H), 1.32 (d, *J* = 6.4 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 199.52, 176.06, 65.53, 49.65, 43.81, 29.96, 25.77, 20.16. HRMS (ESI) calculated for C₁₀H₁₆O₃H [M+H]⁺ 185.1178, found 185.1170.

2n

4-oxobutan-2-yl cyclohexanecarboxylate (2n) was prepared according to the general procedure and purified by flash column chromatography (PE/EA = 10/1) as yellow oil (61.2 mg, 62%). ¹H NMR (400 MHz, Chloroform*d*) δ 9.83 – 9.62 (m, 1 H), 5.38 (h, *J* = 6.4 Hz, 1 H), 2.72 (ddd, *J* = 16.6, 7.4, 2.7 Hz, 1 H), 2.61 (ddd, *J* = 16.6, 5.1, 1.4 Hz, 1 H), 2.27 (tt, *J* = 11.2, 3.6 Hz, 1 H), 1.88 (d, *J* = 12.9 Hz, 2 H), 1.80 – 1.70 (m, 2 H), 1.70 – 1.61 (m, 1 H), 1.50 – 1.36 (m, 2 H), 1.33 (d, *J* = 6.4 Hz, 3 H), 1.31 – 1.15 (m, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 199.71, 175.52, 100.00, 65.46, 49.72, 43.24, 29.02, 28.91, 25.78, 25.46, 25.42, 20.26. HRMS (ESI) calculated for C₁₁H₁₈O₃H [M+H]⁺ 199.1334, found 199.1329.

4-oxobutan-2-yl 2-(cyclohex-1-en-1-yl)acetate (20) was prepared according to the general procedure and purified by flash column chromatography (PE/EA = 10/1) as yellow oil (49.8 mg, 47%). ¹H NMR (400 MHz, Chloroform-*d*) δ 9.73 (dd, *J* = 2.5, 1.6 Hz, 1 H), 5.57 – 5.52 (m, 1 H), 5.40 (d, *J* = 6.4 Hz, 1 H), 2.90 (s, 2 H), 2.72 (ddd, *J* = 16.7, 7.3, 2.6 Hz, 1 H), 2.59 (ddd, *J* = 16.7, 5.2, 1.5 Hz, 1 H), 2.05 – 1.93 (m, 4 H), 1.62 (ddt, *J* =

12.2, 6.1, 3.1 Hz, 2 H), 1.55 (dd, *J* = 5.9, 2.1 Hz, 2 H), 1.32 (d, *J* = 6.4 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 198.40, 171.32, 130.85, 125.88, 65.96, 49.55, 43.69, 28.39, 25.28, 22,71, 21.96, 20.15. HRMS (ESI) calculated for C₁₂H₁₈O₃H [M+H]⁺ 211.1334, found 211.1327.

4-oxobutan-2-yl hexanoate (2p) was prepared according to the general procedure and purified by flash column chromatography (PE/EA = 20/1) as yellow oil (48.4 mg, 52%). ¹H NMR (400 MHz, Chloroform-*d*) δ 9.89 – 9.65 (m, 1 H), 5.40 (h, J = 6.4 Hz, 1 H), 2.74 (ddd, J = 16.7, 7.3, 2.6 Hz, 1 H), 2.62 (ddd, J = 16.7, 5.2, 1.5 Hz, 1 H), 2.29 (t, J = 7.6 Hz, 2 H), 1.63 (p, J = 7.5 Hz, 3 H), 1.39 – 1.25 (m, 8 H), 0.91 (t, J = 6.9 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 199.43, 173.15, 65.62, 49.62, 34.41, 31.23, 24.60, 22.29, 20.19, 13.89. HRMS (ESI) calculated for C₁₀H₁₈O₃H [M+H]⁺ 187.1334, found 187.1337.

4-oxobutan-2-yl (2*S***)-2-(6-methoxynaphthalen-2-yl)propanoate (2q)** was prepared according to the general procedure and purified by flash column chromatography (PE/EA = 5/1) as yellow oil (99.1mg, 66%). ¹H NMR (400 MHz, Chloroform-*d*) δ 9.70 (dd, *J* = 2.5, 1.5 Hz, 0.56 H), 9.50 (dd, *J* = 2.4, 1.7 Hz, 0.39 H), 7.70 (dd, *J* = 8.7, 1.7 Hz, 2 H), 7.67 – 7.60 (m, 1 H), 7.37 (ddd, *J* = 8.3, 6.2, 1.8 Hz, 1 H), 7.22 – 7.09 (m, 2 H), 5.42 – 5.31 (m, 1 H), 3.91 (s, 3 H), 3.81 (qd, *J* = 7.0, 5.0 Hz, 1 H), 2.75 – 2.43 (m, 2 H), 1.56 (dd, *J* = 7.2, 1.9 Hz, 3 H), 1.31 (d, *J* = 6.4 Hz, 1 H), 1.20 (d, *J* = 6.4 Hz, 2 H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 199.55 (d, *J* = 8.2 Hz), 174.09 (d, *J* = 3.8 Hz), 157.72, 135.50 (d, *J* = 5.0 Hz), 133.75, 129.36, 129.10 – 128.76 (m), 127.26 (d, *J* = 2.9 Hz), 126.18 (d, *J* = 6.0 Hz), 126.00, 119.12 (d, *J* = 3.4 Hz), 105.65, 66.36 (d, *J* = 14.0 Hz), 55.41, 49.47 (d, *J* = 17.1 Hz), 45.57 (d, *J* = 4.9 Hz), 20.07 (d, *J* = 23.7 Hz), 18.48 (d, *J* = 18.9 Hz). HRMS (ESI) calculated for C₁₈H₂₀O₄H [M+H]* 301.1440, found 301.1449.

1-(tert-butyl) 2-(4-oxobutan-2-yl) (2S)-pyrrolidine-1,2-dicarboxylate (2r) was prepared according to the general procedure and purified by flash column chromatography (PE/EA = 10/1) as yellow oil. (107.0 mg, 75%). ¹H NMR (400 MHz, Chloroform-*d*) δ 9.72 (s, 1 H), 5.37 (hept, *J* = 6.4 Hz, 1 H), 4.28 – 4.13 (m, 1 H), 3.58 – 3.30 (m, 2 H), 2.80 – 2.53 (m, 2 H), 2.17 (dqt, *J* = 20.4, 7.7, 4.4 Hz, 1 H), 1.99 – 1.80 (m, 3 H), 1.48 – 1.37 (m, 10 H), 1.36 – 1.26 (m, 3 H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 198.85, 172.39, 153.78, 80.85 – 78.82 (m), 66.40 (t, *J* = 15.1 Hz), 59.69 – 56.86 (m), 50.46 – 48.61 (m), 46.43 (d, *J* = 23.5 Hz), 30.85 (d, *J* = 7.3 Hz), 29.83, 28.37 (d, *J* = 5.8 Hz), 24.32 (d, *J* = 7.1 Hz), 23.45, 20.08 (dd, *J* = 15.1, 9.8 Hz). HRMS (ESI) calculated for C₁₄H₂₃NO₅H [M+H]⁺ 286.1654, found 286.1651.

4-oxobutan-2-yl-2-(11-oxo-6,11-*d***ihydrodibenzo[b,e]oxepin-2-yl)acetate (2s)** was prepared according to the general procedure and purified by flash column chromatography (PE/EA = 5/1) as yellow oil (113.4 mg, 67%). ¹H NMR (400 MHz, Chloroform-*d*) δ 9.70 (dd, J = 2.3, 1.5 Hz, 1 H), 8.09 (d, J = 2.3 Hz, 1 H), 7.88 (dd, J = 7.7, 1.2 Hz, 1 H), 7.55 (td, J = 7.4, 1.4 Hz, 1 H), 7.46 (td, J = 7.6, 1.3 Hz, 1 H), 7.42 – 7.33 (m, 2 H), 7.02 (d, J = 8.4 Hz, 1 H), 5.41 (d, J = 6.4 Hz, 1 H), 5.18 (s, 2 H), 3.61 (s, 2 H), 2.74 (ddd, J = 16.9, 7.2, 2.4 Hz, 1 H), 2.60 (ddd, J = 16.9, 5.3, 1.5 Hz, 1 H), 1.32 (d, J = 6.4 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 199.23, 190.85, 70.13, 160.50, 140.41, 136.26, 135.53, 132.81, 132.39, 129.47, 129.28, 127.84, 127.56, 125.11, 121.11, 73.63, 66.60, 49.46, 40.29, 20.11. HRMS (ESI) calculated for C₂₀H₁₈O₅H [M+H]⁺ 339.1232, found 339.1236.

4-oxobutan-2-yl(4R)-4-((3R,5R,8R,9S,10S,13R,14S,17R)-3-hydroxy-10,13 dimethylhexadecahydro-1H-

cyclopenta[a]phenanthren-17-yl)pentanoate (2t) was prepared according to the general procedure and purified by flash column chromatography (PE/EA = 5/1) as white solid. (116.1 mg, 52%). ¹H NMR (400 MHz, Chloroform-*d*) δ 3.61 (tt, J = 11.0, 4.6 Hz, 1 H), 2.71 (ddd, J = 16.7, 7.3, 2.6 Hz, 1 H), 2.59 (ddd, J = 16.7, 5.2, 1.6 Hz, 1 H), 2.38 – 2.24 (m, 1 H), 2.24 – 2.11 (m, 1 H), 1.94 (dt, J = 12.3, 3.0 Hz, 1 H), 1.90 – 1.60 (m, 10 H), 1.53 (dddt, J = 21.2, 10.2, 4.4, 2.6 Hz, 3 H), 1.45 – 1.18 (m, 19 H), 1.18 – 0.98 (m, 7 H), 0.98 – 0.81 (m, 9 H), 0.63 (s, 4 H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 199.52, 173.64, 71.81, 65.64, 56.48, 55.93, 49.60, 42.73, 42.08, 40.41, 40.16, 36.41, 35.83, 35.35, 35.30, 31.38, 30.91, 30.51, 28.19, 27.19, 26.42, 24.19, 23.38, 20.81, 20.19, 18.23, 12.03. HRMS (ESI) calculated for C₂₈H₄₆O₄H [M+H]⁺ 447.3474, found 447.3471. MP: 75- 76 °C.

1-oxooctan-3-yl benzoate (2u) was prepared according to the general procedure and purified by flash column chromatography (PE/EA = 10/1) as yellow oil (89.4 mg, 72%). ¹H NMR (400 MHz, Chloroform-*d*) δ 9.82 (dd, *J* = 2.6, 1.7 Hz, 1 H), 8.05 – 8.00 (m, 2 H), 7.57 (s, 1 H), 7.45 (d, *J* = 7.8 Hz, 2 H), 5.60 – 5.52 (m, 1 H), 2.90 – 2.72 (m, 2 H), 1.88 – 1.67 (m, 2 H), 1.50 – 1.24 (m, 7 H), 0.92 – 0.81 (m, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 199.64, 166.03, 133.12, 130.02, 129.61, 128.41, 69.94, 48.24, 34.35, 31.49, 24.89, 22.47, 13.95. HRMS (ESI) calculated for C₁₅H₂₀O₃H [M+H]⁺ 249.1491, found 249.1494.

1-oxooctan-3-yl 4-methoxybenzoate (2v) was prepared according to the general procedure and purified by flash column chromatography (PE/EA = 10/1) as yellow oil (98.8mg, 71%). ¹H NMR (400 MHz, Chloroform-*d*) δ 9.83 – 9.79 (m, 1 H), 7.97 (dd, *J* = 9.3, 2.3 Hz, 2 H), 6.92 (dd, *J* = 9.3, 2.3 Hz, 2 H), 5.56 – 5.48 (m, 1 H), 3.86 (s, 3 H), 2.85 – 2.69 (m, 2 H), 1.86 – 1.65 (m, 2 H), 1.49 – 1.23 (m, 7 H), 0.94 – 0.82 (m, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 199.86, 165.78, 163.50, 131.86, 122.38, 113.65, 69.58, 55.46, 48.32, 34.40, 31.50, 24.91, 22.48, 13.97. HRMS (ESI) calculated for C₁₆H₂₂O₄H [M+H]⁺ 279.1596, found 279.1590.

1-oxooctan-3-yl 2-methylbenzoate (2w) was prepared according to the general procedure and purified by flash column chromatography (PE/EA = 10/1) as yellow oil (91.8 mg, 70%). ¹H NMR (400 MHz, Chloroform-*d*) δ 9.87 – 9.83 (m, 1 H), 7.91 – 7.86 (m, 1 H), 7.45 – 7.39 (m, 1 H), 7.30 – 7.23 (m, 2 H), 5.57 (tt, *J* = 7.2, 5.4 Hz, 1 H), 2.92 – 2.72 (m, 2 H), 2.61 (s, 3 H), 1.91 – 1.68 (m, 2 H), 1.53 – 1.27 (m, 7 H), 0.96 – 0.87 (m, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 199.65, 167.00, 140.22, 132.09, 131.73, 130.43, 129.48, 125.74, 69.61, 48.30, 34.38, 31.50, 24.97, 22.49,21.76, 13.96. HRMS (ESI) calculated for C₁₆H₂₂O₃H [M+H]⁺ 263.1647, found 263.1651.

1-oxooctan-3-yl 4-chlorobenzoate (2x) was prepared according to the general procedure and purified by flash column chromatography (PE/EA = 30/1) as yellow oil (96.1mg, 68%). ¹H NMR (400 MHz, Chloroform-*d*) δ 9.80 (dd, *J* = 2.6, 1.6 Hz, 1 H), 7.98 – 7.90 (m, 2 H), 7.45 – 7.37 (m, 2 H), 5.54 (tt, *J* = 7.3, 5.3 Hz, 1 H), 2.87 – 2.70 (m, 2 H), 1.87 – 1.65 (m, 2 H), 1.46 – 1.20 (m, 7 H), 0.88 (d, *J* = 6.9 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 199.63, 166.29, 139.70, 131.11, 128.87, 128.47, 70.26, 48.27, 34.37, 31.56, 24.99, 22.58, 14.10. HRMS (ESI) calculated for C₁₅H₁₉ClO₃H [M+H]⁺ 283.1101, found 283.1097.

1-oxooctan-3-yl thiophene-2-carboxylate (2y) was prepared according to the general procedure and purified by flash column chromatography (PE/EA = 10/1) as yellow oil (76.3 mg, 60%). ¹H NMR (400 MHz, Chloroform*d*) δ 9.79 (dd, *J* = 2.6, 1.6 Hz, 1 H), 7.78 (dd, *J* = 3.8, 1.2 Hz, 1 H), 7.55 (dd, *J* = 5.0, 1.3 Hz, 1 H), 7.09 (dd, *J* = 5.0, 3.7 Hz, 1 H), 5.49 (tt, *J* = 7.3, 5.2 Hz, 1 H), 2.85 – 2.69 (m, 2 H), 1.83 – 1.64 (m, 2 H), 1.46 – 1.22 (m, 7 H), 0.91 – 0.82 (m, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 199.72, 161.81, 133.76, 133.57, 132.78, 127.94, 70.29, 48.25, 34.37, 31.53, 24.93, 22.56, 14.07. HRMS (ESI) calculated for C₁₃H₁₈O₃SH [M+H]⁺ 250.1055, found 255.1049.

1-oxobutan-3-ylfuran-2-carboxylate (2z) was prepared according to the general procedure and purified by flash column chromatography (PE/EA = 10/1) as yellow oil (78.7mg, 66%). ¹H NMR (400 MHz, Chloroform-*d*) δ 9.80 (s, 1 H), 7.59 (s, 1 H), 7.17 (d, *J* = 4.1 Hz, 1 H), 6.51 (dd, *J* = 3.5, 1.7 Hz, 1 H), 5.59 – 5.50 (m, 1 H), 2.87 – 2.70 (m, 2 H), 1.85 – 1.58 (m, 3 H), 1.50 – 1.21 (m, 7 H), 0.99 – 0.80 (m, 3 H). ¹³C NMR (400 MHz, CDCl₃) δ 199.41, 158.16, 146.51, 144.39, 118.24, 111.89, 69.94, 48.13, 34.28, 31.43, 24.83, 22.46, 13.96.

1-(benzyloxy)-4-oxobutan-2-yl cyclopropanecarboxylate (2A) was prepared according to the general procedure and purified by flash column chromatography (PE/EA = 10/1) as yellow oil (102.3 mg, 78%). ¹H NMR (400 MHz, Chloroform-*d*) δ 9.75 (t, *J* = 1.9 Hz, 1 H), 7.33 (d, *J* = 15.0 Hz, 6 H), 5.47 – 5.41 (m, 1 H), 4.60 – 4.49 (m, 2 H), 3.61 (qd, *J* = 10.4, 4.7 Hz, 2 H), 2.85 – 2.72 (m, 2 H), 1.61 (dt, *J* = 8.0, 3.9 Hz, 2 H), 1.00 (tt, *J* = 4.6, 2.5 Hz, 2 H), 0.88 (dq, *J* = 8.1, 3.2 Hz, 2 H). ¹³C NMR (100 MHz, CDCl₃) δ 199.17, 174.20, 137.65, 128.47, 127.85, 127.68, 73.35, 70.37, 67.88, 45.21, 12.90, 8.80. HRMS (ESI) calculated for C₁₅H₁₈O₄H [M+H]⁺ 263.1283, found 263.1280.

1-(benzyloxy)-4-oxobutan-2-yl cyclobutanecarboxylate (2B) was prepared according to the general procedure and purified by flash column chromatography (PE/EA = 20/1) as yellow oil (102.2 mg, 74%). ¹H NMR (400 MHz, Chloroform-*d*) δ 9.74 (t, *J* = 1.7 Hz, 1 H), 7.40 – 7.27 (m, 6 H), 5.45 (dt, *J* = 10.5, 5.0 Hz, 1 H), 4.61 – 4.49 (m, 2 H), 3.66 – 3.53 (m, 2 H), 3.13 (p, *J* = 8.5 Hz, 1 H), 2.85 – 2.70 (m, 2 H), 2.33 – 2.13 (m, 4 H), 2.03 – 1.83 (m, 2 H). ¹³C NMR (100 MHz, CDCl₃) δ 199.13, 174.76, 137.66, 128.46, 127.85, 127.67, 73.34, 70.42, 67.57, 45.23, 37.97, 25.20, 18.39. HRMS (ESI) calculated for C₁₆H₂₀O₄H [M+H]⁺ 277.1440, found 277.1437.

1-(benzyloxy)-4-oxobutan-2-yl cyclopentanecarboxylate (2C) was prepared according to the general procedure and purified by flash column chromatography (PE/EA = 20/1) as yellow oil (119.9 mg, 83%). ¹H NMR (400 MHz, Chloroform-*d*) δ 9.76 (t, *J* = 1.7 Hz, 1 H), 7.41 – 7.29 (m, 6 H), 5.47 (dt, *J* = 10.5, 5.0 Hz, 1 H), 4.63 – 4.51 (m, 2 H), 3.69 – 3.56 (m, 2 H), 2.86 – 2.70 (m, 3 H), 1.95 – 1.51 (m, 9 H). ¹³C NMR (400 MHz, CDCl₃) δ 199.19, 176.06, 137.67, 128.46, 127.84, 127.67, 73.34, 70.46, 67.54, 45.26, 43.69, 30.01, 25.81. HRMS (ESI) calculated for C₁₇H₂₂O₄H [M+H]⁺ 291.1596, found 291.1601.

1-(benzyloxy)-4-oxobutan-2-yl-4-methoxybenzoate (2D) was prepared according to the general procedure and purified by flash column chromatography (PE/EA = 10/1) as yellow oil (131.3 mg, 80%). ¹H NMR (400 MHz, Chloroform-*d*) δ 9.76 (t, *J* = 1.7 Hz, 1 H), 7.41 – 7.29 (m, 6 H), 5.47 (dt, *J* = 10.5, 5.0 Hz, 1 H), 4.63 – 4.51 (m, 2 H), 3.69 – 3.56 (m, 2 H), 2.86 – 2.70 (m, 3 H), 1.95 – 1.51 (m, 9 H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 199.26, 165.55, 163.64, 137.71, 131.83, 128.48, 127.84, 127.68, 122.10, 113.68, 73.40, 70.51, 68.32, 55.48. HRMS (ESI) calculated for C₁₉H₂₀O₅H [M+H]⁺ 329.1389, found 329.1383.

1-(benzyloxy)-4-oxobutan-2-yl 2-(benzo[d][1,3]dioxol-5-yl)acetate (2E) was prepared according to the general procedure and purified by flash column chromatography (PE/EA = 5/1) as yellow oil (139.5mg, 78%). ¹H NMR (400 MHz, Chloroform-*d*) δ 9.70 (t, *J* = 1.8 Hz, 1 H), 7.38 – 7.25 (m, 5 H), 6.79 – 6.67 (m, 4 H), 5.94 – 5.91 (m, 2 H), 5.45 (tt, *J* = 6.0, 4.6 Hz, 1 H), 4.56 – 4.43 (m, 2 H), 3.65 – 3.54 (m, 2 H), 3.52 (s, 2 H), 2.77 (dt, *J* = 6.6, 1.8 Hz, 2 H). ¹³C NMR (100 MHz, CDCl₃) δ 198.92, 170.99, 147.78, 146.78, 137.60, 128.46, 127.86, 127.66, 127.15, 122.40, 109.67, 108.32, 101.05, 73.36, 70.29, 68.44, 44.98, 40.90. HRMS (ESI) calculated for C₂₀H₂₀O₆H [M+H]⁺ 357.1338, found 357.1342.

1-(benzyloxy)-4-oxobutan-2-yl thiophene-2-carboxylate (2F) was prepared according to the general procedure and purified by flash column chromatography (PE/EA = 10/1) as yellow oil (122 mg, 80%). ¹H NMR (400 MHz, Chloroform-*d*) δ 9.83 (t, J = 1.7 Hz, 1 H), 7.83 (dd, J = 3.7, 1.2 Hz, 1 H), 7.60 (dd, J = 5.0, 1.1 Hz, 1 H), 7.41 – 7.29 (m, 5 H), 7.13 (dd, J = 4.9, 3.8 Hz, 1 H), 5.68 (ddd, J = 10.8, 6.1, 4.7 Hz, 1 H), 4.67 – 4.54 (m, 2 H), 3.75 (qd, J = 10.6, 4.6 Hz, 2 H), 2.93 (dd, J = 6.2, 1.7 Hz, 2 H). ¹³C NMR (400 MHz, CDCl₃) δ 199.00, 161.44, 137.67, 133.99, 133.17, 132.98, 128.50, 127.90, 127.86, 73.38, 70.32, 68.88, 45.13. HRMS (ESI) calculated for C₁₆H₁₆O₄SH [M+H]⁺ 305.0848, found 305.0852.

1-(benzyloxy)-4-oxobutan-2-yl furan-2-carboxylate (2G) was prepared according to the general procedure and purified by flash column chromatography (PE/EA = 20/1) as yellow oil (112.4 mg, 78%). ¹H NMR (400 MHz, Chloroform-*d*) δ 9.82 (t, *J* = 1.6 Hz, 1 H), 7.63 – 7.59 (m, 1 H), 7.41 – 7.27 (m, 6 H), 7.21 (d, *J* = 3.5 Hz, 1 H), 6.53 (dd, *J* = 3.5, 1.7 Hz, 1 H), 5.69 (ddd, *J* = 10.9, 6.1, 4.8 Hz, 1 H), 4.59 (q, *J* = 12.1 Hz, 2 H), 3.74 (qd, *J* = 10.5, 4.7 Hz, 2 H), 2.93 (dd, *J* = 6.2, 1.7 Hz, 2 H). ¹³C NMR (400 MHz, CDCl₃) δ 198.83, 157.86, 146.69, 144.14, 137.58, 128.47, 127.71, 118.64, 111.96, 73.37, 70.22, 68.52, 45.08.

4-methyl-1-oxohexan-3-yl benzoate (2H) was prepared according to the general procedure and purified by flash column chromatography (PE/EA = 60/1) as yellow oil (80.8 mg, 69%). ¹H NMR (400 MHz, Chloroform-*d*) δ 9.83 (dt, *J* = 3.0, 1.8 Hz, 1 H), 8.09 – 7.98 (m, 2 H), 7.58 (t, *J* = 7.4 Hz, 1 H), 7.46 (t, *J* = 7.7 Hz, 2 H), 5.65 – 5.51 (m, 1 H), 2.91 – 2.66 (m, 2 H), 1.98 – 1.75 (m, 1 H), 1.64 – 1.49 (m, 1 H), 1.29 (d, *J* = 7.6 Hz, 1 H), 1.08 – 0.94 (m, 6 H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 199.85, 133.15, 130.01, 129.63, 128.44, 72.34, 46.05, 45.00, 38.66, 38.19, 25.57, 25.07, 14.50, 14.24, 11.70, 11.50. HRMS (ESI) calculated for C₁₄H₁₈O₃H [M+H]⁺ 235.1334,

found 235.1337.

4-ethyl-1-oxohexan-3-yl benzoate (2J) was prepared according to the general procedure and purified by flash column chromatography (PE/EA = 20/1) as yellow oil (74.5 mg, 60%). ¹H NMR (400 MHz, Chloroform-*d*) δ 9.81 (dd, J = 3.0, 1.5 Hz, 1 H), 8.05 – 7.97 (m, 2 H), 7.56 (d, J = 7.4 Hz, 1 H), 7.45 (d, J = 7.8 Hz, 2 H), 5.68 (dt, J = 8.5, 4.3 Hz, 1 H), 2.81 (ddd, J = 16.5, 8.4, 3.1 Hz, 1 H), 2.70 (ddd, J = 16.5, 4.1, 1.4 Hz, 1 H), 1.63 (dq, J = 12.5, 6.2 Hz, 1 H), 1.43 (ddt, J = 35.7, 14.1, 7.1 Hz, 4 H), 0.98 (dt, J = 11.1, 7.4 Hz, 6 H). ¹³C NMR (100 MHz, CDCl₃) δ 199.99, 166.04, 133.14, 133.19, 129.99, 129.63, 128.43, 71.10, 45.62, 44.78, 22.16, 22.05, 11.72, 11.66. HRMS (ESI) calculated for C₁₅H₂₀O₃H [M+H]⁺ 249.1491, found 249.1486.

1-cyclohexyl-3-oxopropyl benzoate (2K) was prepared according to the general procedure and purified by flash column chromatography (PE/EA = 30/1) as yellow oil (98.9 mg, 76%). ¹H NMR (400 MHz, Chloroform-*d*) δ 9.79 (dd, J = 2.7, 1.9 Hz, 1 H), 8.05 – 7.98 (m, 2 H), 7.55 (tt, J = 7.0, 1.3 Hz, 1 H), 7.43 (t, J = 7.7 Hz, 2 H), 5.44 (dt, J = 7.2, 5.4 Hz, 1 H), 2.83 – 2.69 (m, 2 H), 1.88 – 1.63 (m, 6 H), 1.32 – 1.03 (m, 6 H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 200.04, 133.15, 129.65, 128.44, 73.31, 45.83, 41.62, 28.79, 28.21, 26.21, 25.94, 25.89. HRMS (ESI) calculated for C₁₆H₂₀O₃H [M+H]⁺ 261.1491, found 261.1497.

4,4-dimethyl-1-oxopentan-3-yl benzoate (2L) was prepared according to the general procedure and purified by flash column chromatography (PE/EA = 60/1) as yellow oil (65.3 mg, 56%). ¹H NMR (400 MHz, Chloroform*d*) δ 9.79 (dd, *J* = 3.2, 1.6 Hz, 1 H), 8.05 – 7.99 (m, 2 H), 7.57 (d, *J* = 7.4 Hz, 1 H), 7.44 (t, *J* = 7.8 Hz, 2 H), 5.41 (dd, *J* = 8.6, 3.7 Hz, 1 H), 2.79 – 2.63 (m, 2 H), 1.03 (s, 9 H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 200.14, 166.11, 133.19, 129.66, 128.46, 75.96, 44.97, 34.84, 25.85. HRMS (ESI) calculated for C₁₅H₂₀O₃H [M+H]⁺ 235.1334, found 235.1337.

2-methyl-4-oxobutan-2-yl benzoate (2M) was prepared according to the general procedure and purified by flash column chromatography (PE/EA = 60/1) as yellow oil (30.9 mg, 30%). ¹H NMR (400 MHz, Chloroform-*d*) δ 9.88 (t, *J* = 2.6 Hz, 1 H), 8.02 – 7.92 (m, 2 H), 7.59 – 7.51 (m, 1 H), 7.46 – 7.40 (m, 2 H), 3.01 (d, *J* = 2.6 Hz, 2 H), 1.72 (s, 6 H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 200.04, 165.68, 132.94, 131.06, 129.49, 128.36, 80.27, 53.61, 26.84. HRMS (ESI) calculated for C₁₂H₁₄O₃H [M+H]⁺ 207.1021, found 207.1014.

6 NMR Spectra of 1a

Figure 2. ¹H NMR of spectrum of 1b

Figure 22 ¹³C NMR of spectrum of 1t

Figure 26 ¹H NMR of spectrum of 1x

6 NMR Spectra of 2a

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -1 f1 (ppm)

Figure 42 ¹³C NMR of spectrum of 2a

Figure 44 ¹³C NMR of spectrum of 2b

Figure 74 ¹³C NMR of spectrum of 2q

Figure 79 ¹H NMR of spectrum of 2t

Figure 80 ¹H NMR of spectrum of 2t

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

Figure 96 ¹³C NMR of spectrum of 2B

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

Figure 112 ¹³C NMR of spectrum of 2K

Figure 114 ¹³C NMR of spectrum of 2L

Figure 116 ¹³C NMR of spectrum of 2M

7 References

1. Ren, L.; Wang, L.; Lv, Y.; Li, G.; Gao, S., An Effective Method for the Construction of Esters Using Cs₂CO₃ as Oxygen Source. *Org. Lett.* **2015**, *17* (21), 5172-5175.

2. Dong, J. J.; Fañanás-Mastral, M.; Alsters, P. L.; Browne, W. R.; Feringa, B. L., Palladium-Catalyzed Selective Anti-Markovnikov Oxidation of Allylic Esters. *Angew. Chem. Int. Ed.* **2013**, *52* (21), 5561-5565.

3. Lu, L.; Shi, R.; Liu, L.; Yan, J.; Lu, F.; Lei, A., Oxidative Alkane C-H Alkoxycarbonylation. *Chemistry* **2016**, *22* (41), 14484-14488.

4. Al-Masum, M.; Hira, A.; Microwave Irradiated Cross Coupling of Carboxylic Acids and Crotyl Bromides: Efficient Application to Make Arachidonic Acid Esters *International Journal of Organic Chemistry* **2018**, *8* (4), 341-348.

5 Russell, G. A. N., P.; Wu, Y. W., Allylic and Propargylic Substitution Reactions Involving Radicals Generated from Alkylmercury Halides. *J. Am. Chem. Soc.* **1989**, *111* (13), 4921-4927.

6. Mahajani, N. S.; Meador, R. I. L.; Smith, T. J.; Canarelli, S. E.; Adhikari, A. A.; Shah, J. P.; Russo, C. M.; Wallach, D. R.; Howard, K. T.; Millimaci, A. M.; Chisholm, J. D., Ester Formation via Symbiotic Activation Utilizing Trichloroacetimidate Electrophiles. *J. Org. Chem.* **2019**, *84* (12), 7871-7882